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Abstract

Steel is one of the world’s most important resources and our standard of living wouldn’t be
possible without it. Cars, skyscrapers, planes, power lines, natural-gas pipelines - the list is
endless. Neither of those things would be possible without steel. Therefore many companies
conduct research to optimize the processes involved in steelmaking. This thesis is part of the
APO project (“Automatische Pflegeoptimierung”) from RHI AG. The RHI AG is one of the
world’s leading refractory material and maintenance robot manufacturer.
Maintenance in a steel plant is crucial for safely operating a steel plant and extending the lifetime
of an electric arc furnace (EAF). The long term goal of APO is to extend the lifetime of such a
furnace and therefore propose and automatically execute maintenance actions. One important
step towards this goal is to predict the remaining useful lifetime (RUL) of a furnace according to
a production plan. The prediction of the RUL, i.e., the prediction of the wear of the refractory
is the subject of this thesis.
For the prediction of the refractory wear we design and evaluate three linear models that make
use of the well-known Kalman filter. The first model heavily relies on the wear rates of the most
frequent steel grades which are previously calculated from an overdetermined system of linear
equations. The second model is designed for adaption of the wear rate during the lifetime of an
EAF but also relies on a modified version of the control inputs. The third model is designed to
adapt the wear of the most common steel grades and the maintenance actions separately.
All three models are evaluated individually. We show that all three models promise good pre-
diction results as long as the ground truth data, i.e., the laser measurements are plausible. In
a further step, we compare all three models. This comparison leads to the conclusion that the
performance of the three models is similarly good with the exception of Model Two. At average,
Model Two has a slightly higher error. We show that all three models are able to predict the
wear of the refractory of an EAF.
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Kurzfassung

Stahl is eine der wichtigsten Ressourcen der Welt und unser Lebensstandard wäre ohne Stahl
nicht möglich. Autos, Hochhäuser, Flugzeuge, Stromleitungen, Gas Pipelines - die Liste ist
endlos. All dies wäre ohne Stahl nicht möglich. Aus diesem Grund forschen viele Firmen an den
Prozessen, die in die Produtkion von Stahl involviert sind. Diese Arbeit ist ein Teil von APO
(“Automatische Pflegeoptimierung”), ein Projekt der RHI AG. Die RHI AG ist ein weltweit
führender Hersteller von Feuerfest-Produkten und Pflege-Robotern.
Die Pflege und Wartung eines Elektrolichtbogenofens in einem Stahlwerk ist ein wichtiger Punkt
um die Sicherheit zu gewährleisten und die Lebensdauer eines solchen Ofens zu erhöhen. Das
Langzeitziel von APO ist es, die Verwendungsdauer eines Elektrolichbogenofens zu erhöhen.
Dazu sollen optimale Pflegezeitpunkte vorgeschlagen und in weiterer Folge sollen die Pflegemaß-
nahmen automatisiert durchgeführt werden. Dafür muss zuerst eine Methode gefunden werden
um die Lebenszeit eines Elektrolichbogenofens vorherzusagen. Diese Vorhersage ist das Thema
dieser Arbeit.
Für diese Vorhersage wurden drei lineare Modelle entwickelt, die sich den Kalman Filter zu Nutze
machen. Das erste Modell besteht aus einem eindimensionalen Kalman Filter mit “Control
Inputs”. Diese “Control Inputs” wurden vorab aus einem überdefinierten linearen Gleichungs-
system bestimmt. Das zweite Modell basiert ebenfalls auf diesen “Control Inputs”, ist jedoch
ein zweidimensionaler Kalman Filter und bietet somit eine gewisse Anpassungsfähigkeit an die
vergangenen Verschleißraten. Das dritte Modell versucht den Verschleiß der am häufigsten
auftretenden Stahlsorten und den Einfluss der Pflege zu modellieren um sich flexibler anpassen
zu können.
Alle drei Modelle werden zuerst einzeln evaluiert. Es wird gezeigt, dass alle drei Modelle eine
gute Vorhersage liefern solange die zugrunde liegenden Laserdaten korrekt sind. In einem weit-
eren Schritt werden alle drei Modelle miteinander verglichen. Dieser Vergleich führt zu der
Schlussfolgerung, dass alle drei Modelle ungefähr gleich gute Vorhersagen liefern. Eine Aus-
nahme bildet Modell Zwei welches im Durchschnitt einen leicht höheren Vorhersagefehler hat
als die anderen zwei Modelle. Es wird gezeigt, dass es mit Hilfe dieser linearen Modelle möglich
ist die Lebensdauer eines Elektrolichtbogenofens vorherzusagen.

– iii –
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1.4 Involved Companies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 RHI AG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Emirates Steel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 Process Metrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

This chapter introduces the process of steelmaking. Steel is one of the most important resources
in the world and our standard of living wouldn’t be possible without it. Cars, skyscrapers,
planes, power lines, natural-gas pipelines, the list is endless, neither of those would be possible
without steel. Therefore a lot of research has been conducted in the area of steelmaking and
improving the involved processes. The demand of steel today is bigger than ever.

First, we shortly introduce the two basic approaches to produce steel and then introduce the
steelmaking process with an electric arc furnace in more detail. After this overview of the
steelmaking process, we introduce further steelmaking terminology used throughout this the-
sis. Furthermore, the critical and time consuming aspects of refractory wear maintenance are
described and the involved companies are introduced.

1.1 Steelmaking - Two Different Furnaces

Basically there exist two different processes to make steel:

• Basic oxygen furnace (BOF)

• Electric arc furnace (EAF)

The BOF uses around 25-35 percent of old steel (scrap) while the rest is liquid hot metal which
is delivered from a blast furnace to produce new steel. On the other hand the EAF uses almost
100 percent of scrap or direct reduced iron (DRI) to produce new steel [1]. In this thesis the
main focus lies on the electric arc furnace.

– 7 –
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1.2 Steelmaking with the Electric Arc Furnace

1.2 Steelmaking with the Electric Arc Furnace

In an electric arc furnace, see Figure 1.1, batches of molten steel are produced. One such batch
melting process is called “heat”. A heat includes several operations and is also known as tap to
tap cycle. These operations include:

1. Furnace charging

2. Melting

3. Refining

4. De-slagging

5. Tapping

6. Furnace turn-around

1.2.1 Furnace Charging

Generally, before starting a shift, a production plan is made which specifies what grades of steel
are going to be produced. Therefore, the scrap yard operator can prepare buckets of scrap and
direct reduced iron (DRI) according to the production plan. This is an important step, since
it must be ensured that the scrap is layered correctly in the bucket, regarding size and density,
to ensure good melting conditions. There are a lot of other considerations to be taken care of,
such as making sure no heavy pieces lie directly in front of burner ports to avoid blow-back of
the flame onto the water cooler panels and many more.
After carefully preparing the buckets, the first step in a tap to tap cycle is charging the EAF.
In order to charge the EAF, the roof and the electrodes are raised and swung to the side. The
bucket of scrap and DRI is moved over the furnace with the help of a crane and then the scrap
is released into the furnace. Afterwards, the electrodes and the roof are brought back into place.

1.2.2 Melting

The main part of the EAF operations consists of the melting period, also referred to as “Power
On Time”. By applying electrical or chemical energy to the furnace interior, the melting period
is initiated. In case of electrical energy, there exist alternating current (AC) and direct current
(DC) furnaces. In AC furnaces usually three graphite electrodes that form an arc between the
charged scrap and the electrodes are used to supply the electrical energy. First, a moderate
voltage is supplied until the electrodes penetrate the light scrap at the top. This is also known
as bore-in phase. The heat to melt the scrap comes from both the current passing through the
scrap and the radiation caused by the arc. Following the bore-in phase, in which about 15% of
the charged load is melted, high voltage is applied. The high voltage causes longer arcs. The
rest of the scrap melts and a pool of liquid metal is formed at the hearth of the furnace. In
this phase the arc is considerably stable whereas in the beginning it is rather unstable and large
current fluctuations can be detected.

In DC arc furnaces only one electrode is needed at the roof but this setup needs a conduc-
tive bottom lining.
One of the most common sources of chemical energy are oxy-fuel burners that burn natural gas
using oxygen or a combination of oxygen and air. The heat to melt the scrap comes on the one
hand from flame radiation and on the other hand from radiation caused by combustion. Since
large pieces of scrap take longer to melt, some operations inject oxygen with a pipe lance to split
the large parts into smaller ones. This is caused by the reaction of oxygen with the hot scrap. The
injected oxygen also reacts with other elements in the melted bath, which causes additional heat.

– 9 –



1 Introduction

The formation of slag on the top of the bath, where metallic oxides and other contamina-
tions are bound, is very important and is induced by admixing so called slag formers. These
slag formers come in the form of burnt lime and magnesium oxide and are blown into the fur-
nace during meltdown or are charged with the scrap. Iron oxide, a product that results from
steel combustion, is also a component of the EAF slag. An additional but important benefit of
the slag is the protection of the EAF roof from intense heat radiation and better arc stability
and also results in better energy efficiency. To further improve these slack properties, carbon is
added to the slag [2]. Carbon reacts with the iron oxide and results in metallic iron and carbon
monoxide. The carbon monoxide causes the slag to foam and improves the thermal shielding
and arc stability even more.

Optionally, a second bucket of scrap can be charged by the time the first charge has melted
sufficiently. Modern operations tend to charge the furnace only once to reduce heat loss caused
by opening the EAF roof and to minimize the tap to tap time. Once the whole scrap is fully
melted, a condition is reached that is called flat bath. The melting master can now take samples
to decide what actions to take during refining.

1.2.3 Refining

Refining is the operation of removing unwanted elements to achieve the desired steel grade. In
the past, refining was performed after the flat bath has been reached. Some of the undesired
elements include phosphorus, sulfur, aluminum, silicon, manganese and carbon. Removal of
these elements is achieved by blasting oxygen into the bath and adding more slag formers to
bind them. To control impurities caused by metals such as copper and nickel, DRI and pig iron
has to be introduced.
In modern EAF operations, refining and melting are performed almost simultaneously since the
optimal conditions for removing phosphorus and sulfur are conflictive.

1.2.4 De-slagging

Phosphorous is removed best at low temperatures, i.e. at the beginning of a heat. Once the
desired amount of phosphorous is bound in the slag, the EAF is tilted and the slag is poured
from the furnace through the slag door. Slag also may overflow during the injection of carbon
which causes foam as described above. If the sill level in the furnace is reached, the slag can
flow out through the slag door.

1.2.5 Tapping

As soon as the desired steel chemistry is reached and the correct temperature is achieved, the
steel is poured into a preheated ladle through the taphole. The process of pouring the steel is
called tapping.

1.2.6 Furnace Turn-around

Furnace turn-around is the time between tapping and furnace charging. In this time span, the
furnace is carefully inspected to discover any defects. The water cooled elements are inspected
to detect any possible leaks since the refractory is susceptible to water and more over, leaks
can lead to steam explosions. Refractory inspections are also very important because massive
wear can lead to breakouts where slag and steel could leak out of the furnace. Therefore, the
refractory is maintained regularly. Since maintenance is such a crucial part of securely operating
an EAF, this part is usually the largest dead time period in a heat cycle.
Automated maintenance happens mainly in two forms which are called gunning and fettling.

– 10 –



1.3 Motivation

Gunning is a process where refractory material (gunning mix) is applied to the furnace lining
in order to counteract the wear. Fettling material is mainly applied to the electric arc furnace
bottom and banks. It has quick sintering properties to ensure high durability against slag effects
and mechanical wear-out.

1.3 Motivation

Refractory wear is a great concern in the process of steelmaking. Therefore all steelmakers
have to face the issue of maintenance tasks. Time used for maintenance is time where no
steel is produced which is a cost factor to be optimized. The RHI AG started a project called
“Automatische Pflegeprogrammoptimierung” (APO) [3]. The long term goal of APO is to
predict the remaining useful life (RUL) of refractory bricks in different steelmaking processes and
to propose optimal maintenance. Furthermore, this proposed maintenance should be executed
autonomously by a maintenance robot.

Scope of this thesis

To reach the goal of APO this thesis addresses the prediction of the refractory wear. The goal
is to predict the refractory wear with the help of a production plan that is known in advance.
This production plan contains information about what steel grades are going to be produced.
For the prediction of the refractory wear we design and evaluate three linear models that make
use of the well-known Kalman filter. The first model heavily relies on the wear rates of the most
frequent steel grades which are previously calculated from an overdetermined system of linear
equations. The second model is designed for adaption of the wear rate during the lifetime of an
EAF but also relies on a modified version of the control inputs. The third model is designed
to adapt the wear of the most common steel grades and the maintenance actions separately. A
simplified sketch of these models can be seen in Figure 1.2.

Steel Grades

Maintenance Actions

Model Prediction

Past Measurements

Figure 1.2: Sketch of models in this thesis.

All three models are evaluated individually. We show that all three models promise good pre-
diction results as long as the ground truth data, i.e., the laser measurements are plausible. In
a further step, we compare all three models. This comparison leads to the conclusion that the
performance of the three models is similarly good, with the exception of Model Two. At average,
Model Two has a slightly higher error. We show that all three models are able to predict the
wear of the refractory of an EAF.
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1 Introduction

1.4 Involved Companies

1.4.1 RHI AG

RHI is the world market leader in refractories. The company is a global supplier of high-
grade refractory products, systems and services for industrial high-temperature processes that
exceed 1200 °C. More than 10000 customers in different industries including steel, cement, glass,
nonferrous metals and chemical industries are served by RHI. The RHI headquarters is located
in Vienna, Austria and is the purchaser of this thesis.

1.4.2 Emirates Steel

Emirates Steel has been founded in 1998 and is owned by SENAAT, the United Arab Emirates
largest industrial conglomerate. Emirates steel is based in Abu Dhabi, U.A.E. and provides all
the data discussed in this thesis, namely production data, laser measurements and maintenance
data.

1.4.3 Process Metrix

Process Metrix was founded in 1987 and is located in Pleasanton, California. Process Metrix
constructs laser and vision based systems for process industries. The laser measurement system
and the according software used to acquire the laser measurement data was provided by this
company.
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2.1 Least Squares Method

Carl Friedrich Gauss has been attributed with the invention of the least squares method [4]. It
was the first attempt to form an optimal estimate from noisy data. Since then, the method of
least squares has suited many generations of scientists and still is a useful method to solve an
overdetermined system of linear equations. The most common form of a least-squares problem
can be written in the form of

h11 h12 h13 · · · h1n
h21 h22 h23 · · · h2n
h31 h32 h33 · · · h3n

...
...

...
. . .

...
hl1 hl2 hl3 · · · hln




x1
x2
x3
...
xn

 =


z1
z2
z3
...
zl

 ; (2.1)

where hln is the nth feature of sample l, zl is the target of the lth sample and xn represents the
weight.
Equation 2.1 can be rewritten in matrix notation

Hx = z, (2.2)

where we use uppercase boldface symbols to denote matrices and lowercase boldface symbols to
denote vectors. The objective is to find an estimate of the weights x̂ that minimizes the squared
estimated measurement error

E2(x̂) = |Hx̂− z|2 =

m∑
i=1

 n∑
j=1

hij x̂j − zi

2

. (2.3)

As generally known, to find x̂ minimizing an equation E(x̂), i.e. argminx = E(x̂), one can use
gradient descent techniques. In this case of a convex objective, the minimum is found where the
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2 Theory and Background

first derivative is zero, i.e.

δE2(x̂)

δx̂k

!
= 0 (2.4)

for k = 1, 2, 3, . . . , n. Setting the derivative of Equation 2.3 to zero leads to

δE2(x̂)

δx̂k
= 2

m∑
i=1

hik

n∑
j=1

hij x̂j − zi
!

= 0 (2.5)

which can be rewritten in matrix notation as follows

2HT [Hx̂− z]
!

= 0 (2.6)

and

HTHx̂ = HT z. (2.7)

Equation 2.7 is known as the normal form of the equation for the linear least-squares problem
and has exactly as many scalar equations as unknowns.
The solution for the estimation of x̂ is

x̂ = (HTH)−1HT z (2.8)

as long as the matrix product G = HTH is nonsingular, G is invertible. G is called the Gramian
matrix and its determinant defines whether x̂ has a unique solution:

det(G) =

{
0 no unique solution

otherwise unique solution
(2.9)
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2.2 Kalman Filter

2.2 Kalman Filter

The Kalman filter, developed by Rudlf E. Kalman [5] in 1960, is used in a wide field of engineering
approaches and is clearly established as a fundamental tool for analyzing and solving a broad
range of estimation and filtering problems. Probably the most famous application to date was
the use of the Kalman filter in the Apollo mission to the moon [6]. More recent applications
include global positioning receivers, output smoothing of mouse trackpads, tracking objects,
fusing data from different sensors and many more [7]. Generally, the application of this filter
is to estimate a process state at some given point in time and correct this estimation with the
help of a feedback. This feedback is a noisy measurement, obtained by a sensor. Therefore the
Kalman filter can be seen as a predictor-corrector algorithm [8] [9]. The Kalman filter consists
of two parts: the time update which is also known as prediction step and the measurement
update also known as correction step. The Kalman filter is a set of mathematical equations
that minimize the mean of the squared error of the state estimate of a process. This set of
equations provides a recursive solution to the estimation problem since the current predicted
step is dependent on the previous estimate and the current input data. For the derivation of
the Kalman filter we will take a look at discrete linear dynamical systems, i.e. the observed
signals are equally spaced in time. The derivation follows closely the steps discussed in [10].
The process equation of such a discrete linear system is defined by

xk+1 = Fk+1xk + wk, (2.10)

where Fk+1 represents the state transition matrix that propagates the state vector from xk to
xk+1, at time step k. The vector wk is the process noise, assumed to be white, additive and
Gaussian with zero mean, where

E[wnwT
k ] =

{
Qk for n = k

0 for n 6= k,
(2.11)

is the covariance matrix Qk of the process noise. The state xk+1 is unknown and needs to be
estimated for xk. A second equation is needed for an observation yk. This equation is called
the measurement equation and is defined by

yk = Hkxk + vk, (2.12)

with vk being the measurement noise vector which is also assumed to be white, and Gaussian
with zero mean. The covariance matrix for the measurement noise is described by

E[vnvT
k ] =

{
Rk for n = k

0 for n 6= k.
(2.13)

The same assumptions as for the process noise apply to the measurement noise. Additionally it
is assumed that the measurement noise is uncorrelated with the process noise.
With these definitions in mind, the Kalman filtering problem can be formulated as finding the
minimum mean squared error for the state estimate xi using all observed data y1,y2, . . . ,yk

known at time k. If k = i, the above defined problem is called filtering. If i > k, it is called
prediction and if 1 <= i < k, the problem is known as Kalman smoothing.
Before delving into the derivation a few additional equations have to be defined. First, the
equation

yk = xk + vk (2.14)
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2 Theory and Background

defines the observable yk and the unknown signal xk at a given point k in time. Considering
all observations y1,y2, . . . ,yk, the a posteriori estimate of xk is defined by x̂k. Since x̂k is an
estimate, it is likely to be different from the true unknown signal xk. Therefore, the mean
squared error as a cost function is defined as

Jk = E [x̃2
k], (2.15)

where x̃k is the estimation error defined by

x̃k = xk − x̂k. (2.16)

In order to find the optimal estimate of x̂k, two theorems need to be formulated [11] which are
restated from [10]:

Theorem 1.1 Conditional mean estimator

If the stochastic processes x1,x2, . . . ,xk and y1,y2, . . . ,yk are jointly Gaussian, the optimum
estimate x̂k that minimizes the mean-square error Jk is the conditional mean estimator

x̂k = E[xk|y1, y2, ..., yk], (2.17)

where E[.] denotes the expectation.

Theorem 1.2 Principle of orthogonality

Let the stochastic processes xk and yk be of zero means; that is,

E[xk] = E[yk] = 0 for all k. (2.18)

Then:

• the stochastic processes x1,x2, . . . ,xk and y1,y2, . . . ,yk are jointly Gaussian; or

• if the optimal estimate x̂k is restricted to be a linear function of the observables and the
cost function is the mean-square error;

• then the optimum estimate x̂k, given the observables y1,y2, . . . ,yk, is the orthogonal
projection of xk on the space spanned by these observables.

When we get a new measurement yk at time k for the dynamic linear system we defined in 2.10
and 2.12, we want to use the new measurement in the new estimate of x̂k with

x̂k = G
(1)
k x̂−

k + Gkyk, (2.19)

where x̂− describes the a priori estimate that is already known at time k and where the matrices

G
(1)
k and Gk are yet unknown and need to be determined. Now, Theorem 1.2 is used:

E[x̃ky
T
i ] = 0 for i = 1, 2, ..., k − 1 (2.20)

Substituting Equations 2.12, 2.16 and 2.19 into 2.20 leads to

E[(xk −G
(1)
k x̂−

k −GkHkxk −Gkvk)yT
i ] = 0 for i = 1, 2, . . . , k − 1. (2.21)

As stated earlier, the measurement and the measurement noise are uncorrelated, i.e.

E[vky
T
k ] = 0. (2.22)
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2.2 Kalman Filter

Applying 2.22 to 2.21 and reorganizing the terms results in

E[(I−GkHk −G
(1)
k )xky

T
i + G

(1)
k (xk − x̂−

k )yT
i ] = 0, (2.23)

where I is the identity matrix. Since the state vector xk and the observable yi are orthogonal,
one can say that the estimate and the observable are also orthogonal. Therefore, the state error
vector and the observable are orthogonal, too, i.e.

E[(xk − x̂−
k )yT

i ] = 0. (2.24)

Using 2.24 in 2.23 leads to

(I−GkHk −G
(1)
k )E[xky

T
i ] = 0 for i = 1, 2, ..., k − 1. (2.25)

For arbitrary values of xk and yi, Equation 2.25 holds if

G(1) = I−GkHk. (2.26)

The a priori estimate x̂k was defined in Equation 2.19. The matrix G(1) can now be substituted
with Equation 2.26 as follows

x̂k = x̂−
k + Gk(yk −Hkx̂

−
k ), (2.27)

which is also known as the state estimation update equation.
In the next step, an equation needs to be found to calculate the Kalman gain Gk. Again, the
orthogonality principle from Theorem 1.2 can be used, i.e.,

E[(xk − x̂k)yT
k ] = 0. (2.28)

Since ŷT
k is the estimate of yT

k Equation 2.28 can be rewritten as

E[(xk − x̂k)ŷT
k ] = 0. (2.29)

The residual of the real and estimated observation, also called the innovation process, is defined
by

ỹk = yk − ŷk (2.30)

In Equation 2.12 yk was defined. Therefore, Equation 2.30 can be reformulated as

ỹk = Hkxk + vk −Hkx̂
−
k

= Hkx̃
−
k + vk. (2.31)

With the help of Equation 2.12 and 2.27 the equation for the state error vector can be defined
as

xk − x̂k = x̃−
k −Gk(Hkx̃k + vk)

= (I−GkHk)x̃−
k −Gkvk. (2.32)

With Equation 2.31 and 2.32 at hand, Equation 2.29 can be rewritten as

E[{I−GkHk)x̃−
k −Gkvk}(Hkx̃

−
k + vk)] = 0. (2.33)
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2 Theory and Background

Knowing that the state error x̃−
k and the measurement noise vk are independent, Theorem 1.2

can be invoked. This results in the simplification of Equation 2.33

(I−GkHk)E[x̃kx̃
T−
k ]︸ ︷︷ ︸

P−
k

HT
k −Gk E[vkv

T
k ]︸ ︷︷ ︸

Rk

= 0, (2.34)

where P−
k is the a priori covariance matrix of the state error vector

P−
k = E[(xk − x̂−

k )(xk − x̂−
k )T ]

= E[x̃−
k x̃T−

k ] (2.35)

and Rk is the covariance matrix of the measurement noise defined in 2.13. Substituting these
matrices and solving for Gk leads to the formula for the Kalman gain matrix

Gk = P−
k HT

k [HkP
−
k HT

k + Rk]−1. (2.36)

The last steps in deriving the Kalman filter equations are to determine the formulas for the error
covariance propagation. As stated in [10], this propagation involves two steps.

• The a priori covariance matrix P−
k was already defined in 2.35. With the a priori covariance

at hand, the a posteriori covariance matrix Pk at time k is determined as

Pk = E[(x̃kx
T
k ]

= E[xk − x̂k)(xk − x̂k)T ]. (2.37)

• With the help of the a posteriori covariance matrix Pk−1 of the previous time step k − 1
the new a priori covariance matrix P−

k needs to be calculated.

Starting with the first step, Equation 2.32 can be combined with 2.37 which results in

Pk = E[{(I−GkHk)x̃−
k −Gkvk}{(I−GkHk)x̃−

k −Gkvk}T ]

= E[(I−GkHk)x̃−
k x̃T−

k (I−GkHk)T − (I−GkHk)x̃−
k vT

k GT
k︸ ︷︷ ︸

0

(2.38)

− x̃T−(I−GkHk)TGkvk︸ ︷︷ ︸
0

+Gkvkv
T
k GT

k ]

= (I−GkHk)E[x̃−
k x̃T−

k ]︸ ︷︷ ︸
P−

k

(I−GkHk)T + Gk E[vkv
T
k ]︸ ︷︷ ︸

Rk

GT
k

= (I−GkHk)P−
k (I−GkHk)T + GkRkG

T
k

= (I−GkHk)P−
k − (I−GkHk)P−

k HT
k︸ ︷︷ ︸

GkRk

GT
k + GkRkG

T
k (2.39)

= (I−GkHk)P−
k −GkRkG

T
k + GkRkG

T
k

= (I−GkHk)P−
k . (2.40)

In 2.38 Theorem 1.2 is used, since it is assumed that the measurement noise and the a priori
estimation error are independent and therefore the two middle terms are zero. In 2.39 one
can recognize the term from Equation 2.34. Equation 2.40 is the resulting formula for the error
covariance update. We can then proceed to derive the last equation needed for the Kalman filter
which is the error covariance propagation. Since the a priori estimate is propagated through
time and therefore depends on the estimate of the time step before, it follows that

x̂−
k = Fk,k−1x̂k−1. (2.41)
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The a priori estimation error can be rewritten using Equations 2.10 and 2.41 as

x̃−
k = xk − x̂−

k

= (Fkxk−1 + wk−1)− (Fkx̂k−1)

= Fk(xk−1 − x̂k−1) + wk−1

= Fkx̃k−1 + wk−1. (2.42)

Equation 2.42 can be substituted into 2.35 by applying the orthogonality principle stated in
Theorem 1.2, since the process noise and the state error vector are independent. Thus we obtain

P−
k = E[x̃−

k x̃T−
k ]

= E[Fkx̃k−1x̃
T
k−1F

T
k + Fkx̃k−1w

T
k−1︸ ︷︷ ︸

0

+ wk−1F
T
k x̃T

k−1︸ ︷︷ ︸
0

+wk−1w
T
k−1]

= Fk E[x̃k−1x̃
T
k−1]︸ ︷︷ ︸

Pk−1

FT
k + E[wk−1w

T
k−1]︸ ︷︷ ︸

Qk−1

= FkPk−1F
T
k + Qk−1. (2.43)

With the error covariance propagation all equations for the Kalman filter are at hand. In general,
the Kalman filter consists of two parts, the time update which is called the prediction step and
the measurement update called the correction step. Figure 2.1 shows a sketch of this concept.
The notation slightly differs from the previous notation, but we refer to the corresponding
equations. For the projection to the next time step we additionally add the term Buk where uk

is an input control vector and B is an input control model.

xk+1=Fxk+Buk

Pk+1=FPkFT+Q

S=HPk+1HT+R

K=Pk+1HTS-1

y=z-Hxk+1

xk+1=xk+1+Ky

Pk+1=(I-KH)Pk+1

Project the next state ahead

Compute the Kalman Gain

Update estimate with measurement z

Update the error covariance

Project the error covariance ahead

Prediction Correction

Initialize

k=k+1

see eq. 2.43

see eq. 2.10

see eq. 2.36

see eq. 2.12

see eq. 2.40

Figure 2.1: Sketch of prediction-correction process.
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2.3 Data Set

The data set is structured into individual campaigns. One campaign represents the lifetime of an
EAF refractory lining. Each campaign consists of several hundred heats. The data set provided
for this thesis contains laser measurement data, production parameters and the produced steel
grades. Furthermore, maintenance data is available. The data set contains 52 campaigns. Only
the last 22 campaigns contain laser measurement data and are therefore used in this thesis.

2.3.1 Laser Measurements

Laser measurements are a crucial part of the steelmaking process. It helps the operator to
investigate the condition of the furnace. Since the furnace condition decreases with an increasing
number of heats, laser measurements taken at the beginning of a campaign are more sparse than
at the end. Laser measurements are taken with a Terminator XL maintenance robot which is a
state of the art RHI product for highly efficient gunning repair [12]. The Terminator XL has one
arm for gunning and another arm for laser measurements, as can be seen in Figure 2.2. The roof
of the EAF has to be opened and then the arm of the Terminator XL is lowered from the top into
the EAF to take laser measurements. Opening the roof of the EAF means heat and energy loss.
Therefore it is crucial that measurements are taken quickly which leads to significant errors and
noise in the measurements. Another big source of error is the positioning of the laser itself. The
resulting data is continuous and consists of depth, angle and radius values. The depth values
describe how deep the laser is lowered into the furnace, while the radius describes the distance
between the laser and the refractory bricks. The angle values describe the radial orientation.
From these three values 3D positions can be reconstructed.
This continuous data needs to be processed and cleaned to acquire a uniform, discrete grid of
measurement data. Forrer [13] did intensive research on this topic and the data used in this
thesis is already processed and cleaned. Preprocessing and cleaning includes interpolating the
measurements provided by the laser and taking care of duplicates to achieve an uniform grid of
measurement data. Moreover, an attempt has been made to detect outliers.

Figure 2.2: Terminator during laser measurement. [RHI AG]

– 20 –



2.3 Data Set

2.3.2 Production Data

Different steel grades are produced following specific “recipes”. Depending on the quality of
the steel, various elements need to be extracted from the molten bath as described in the steel-
making process in Section 1.2. There are about 140 production parameters available, including
production time, charged scrap, pig iron, etc. These parameters are available for each heat but
are not known in advance and therefore disregarded for this work.

2.3.3 Maintenance Data

Maintenance data is also available but maintenance does not occur periodically. This data
describes what actions are taken during maintenance. These actions include gunning and fettling
and how much maintenance material has been consumed. Furthermore, the area where the
maintenance happened and the duration of the maintenance has been recorded. This data has
also been recorded by the Terminator XL. Therefore, maintenance performed by hand is not
reflected in the data set. In earlier campaigns, the mapping of the maintenance consumption to
a specified area was wrong and only a few campaigns exist with properly mapped maintenance
data.

2.3.4 Hot Spots

An EAF is huge in terms of size and dimension. The arrangement of the graphite electrodes
influences the areas where the most wear occurs. Specialists from RHI AG have defined so-called
“Hot Spots”. In our dataset, three Hot Spots have been defined, namely “Hot Spot 1”, “Hot
Spot 2” and “Slag Door”. These Hot Spots describe areas with excessive wear and draw our
attention since these areas are prone to breakouts of the liquid steel. Our main research in
this thesis has been done on “Hot Spot 1” but is applicable to all of them. Figure 2.3 shows a
three-dimensional model constructed from laser data with the definition of Hot Spot 1. Figure
2.4 shows the same Hot Spot in a two-dimensional representation.

Figure 2.3: 3D view generated from laser measurements. The highlighted area indicates Hot Spot 1
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Figure 2.4: 2D view of the laser measurements with Hot Spot 1 highlighted.
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The main interest of this thesis is to estimate the remaining useful life of an EAF. In other
words, we want to estimate the refractory wear for a given Hot Spot in an EAF. The objective
is that the estimate is only dependent on as little production parameters as possible and that,
according to a given production plan, the expected wear over the course of several heats can be
estimated. There is little knowledge about the wear process that is going on in an EAF. The
hot, dirty and steamy conditions make it hard to observe the processes that cause wear and tear.
Furthermore, the influence of automatic maintenance actions are not clear. We do know that
maintenance increases the lifetime of an EAF but we do not know how the maintenance material
behaves precisely. In this thesis we try to approximate these processes with linear systems.
From previous research done for BOF [13] we know that different steel grades induce different
grades of wear of the refractory material. The steel plant operators try to compensate this wear
process with maintenance, especially with gunning and fettling. Therefore an obvious choice for
the parameter set used for a prediction model are the steel grades that have been and are going
to be produced as well as the maintenance data.

This chapter describes the different models and points out specific implementation details. The
development language of our choice is Python 3.5 [14]. Python is an open source programming
language which has significantly emerged in the scientific community over the last years. Python
has a lot of scientific packages including Numpy [15], which is a highly efficient linear algebra
package and Matplotlib [16], which provides a very customizable plotting environment. SciPy
[15] is a scientific computing package that provides several numerical algorithms, including opti-
mization, statistics, signal processing and more. We start with a least squares model in Section
3.1 and than proceed to different models using the linear Kalman filter in Sections 3.2 - 3.4.
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3 Approach and Implementation

3.1 Least Squares Model

3.1.1 Approach

As previously described in 2.3.4, three areas have been defined that are exposed to excessive
refractory wear. Let us first introduce the term slot. A slot defines the timespan between two
consecutive laser measurements. In other words, a laser measurement LMt defines the beginning
of a slot and a laser measurement LMt+1 defines the end. This concept is depicted in the sketch
in Figure 3.1. Each slot can consist of a different timespan since laser measurements don’t
happen in regular intervals. Obviously, it is possible that in a given slot several different steel
grades are produced. Furthermore, one or more maintenance actions could have taken place but
maintenance is not mandatory.

Δx

LMt LMt+1 LMt+2

Steel Grade 1
Steel Grade 2
Steel Grade 3

Figure 3.1: Sketch of laser measurement and steel grades.

With these definitions at hand we are able to construct our first model. It is a straight forward
linear model. We determine a separate weight for the wear for each steel grade and also consider
the maintenance actions as a factor. The provided data set for the steel plant “SMP 1” contains
29 different steel grades that are produced. Some of them are produced seldomly while other
steel grades dominate the production plan. We chose to only calculate separate weights for steel
grades that have been produced more than 400 times counted over the whole data set. All the
other steel grades are collected in a common weight called “others”. To estimate these weights,
the following system of equations

SG1,1 SG1,2 · · · SG1,n GC1

SG2,1 SG2,2 · · · SG2,n GC2

...
...

. . .
...

...
SGm,1 SGm,2 · · · SGm,n GCm



w1

w2

...
wn+1

 =


∆x1
∆x2

...
∆xm

 (3.1)

is used. Each line of this equation system is populated from one slot. The variables SG1, . . . , SGn

represent the frequency count of how often a specific steel grade has been produced in a given slot.
The automatic maintenance actions, e.g. gunning, are represented with the variable GC which
represents the frequency count of the gunning actions. ∆x holds the wear of the refractory lining
that occurred in a given slot. To solve this overdetermined system for the weights w1, . . . , wn+1,
the method of least squares introduced in Section 2.1 is used.

3.1.2 Implementation

The practical implementation in Python 3.5 uses the numpy and scipy.opitmize packages. SciPy
provides a curve fit function which needs at least three arguments. These three arguments
consist of a function to be minimized and the parameters xdata and ydata. The xdata variable
in this case is the steel grade matrix as discussed above and the ydata variable is an array with
the corresponding wear values. Amongst other optional arguments, one is to provide an initial
guess of the coefficients. We initialize these coefficients with ones. The result of the curve fit
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3.1 Least Squares Model

function is the least squares solution of Equation 3.1. Listing 1 shows an excerpt from the
practical implementation.

1 import numpy as np

2 import scipy.optimize as spo

3

4 def fit_func(x, *p):

5 a = np.array(x)

6 b = np.array(p)

7 return np.dot(b, a)

8

9 def linear_fit(x, y, p):

10 err = 0

11 coeff = []

12

13 try:

14 coeff, var_matrix = spo.curve_fit(fit_func, x, y, p0=p)

15 except RuntimeError:

16 err = 1

17 print("Fitting Error")

18 return coeff, err

19

20 startCoeff = [1.0 for c in range(0, len(lHeatFamiliesLimited) + 1)]

21 coeff, err = linear_fit(npSteelgrade, npDeltas, startCoeff)

Listing 1: Excerpt of the least squares implementation.
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3 Approach and Implementation

3.2 Kalman Filter - Model One

3.2.1 Approach

The first model designed is a one-dimensional linear Kalman filter with control inputs uk. We
stick to boldface symbols for vectors and matrices although in this model they are scalar values.
The equations for the prediction step and respectively for the update step are listed in 3.2 and
3.3. The first part of the filter equation consists of a scalar xk, representing the remaining depth
of the refractory bricks. The subscript k defines the step number in time in terms of the produced
heats. The state transition matrix is also a scalar and initialized to F = 1 since the wear is
completely modeled with the control inputs. The second part of the equation are the control
inputs. The control input matrix B holds the weights calculated from the equations in Section
3.1. The control inputs vector uk contains the steel grade and possible maintenance actions.
The scalar uk is adjusted at each heat according to the produced steel grade. Maintenance
actions are updated too.

xk+1 =
[
1
]︸︷︷︸

F

xk +
[
w1 w2 · · · wn+1

]︸ ︷︷ ︸
B


SG1

SG2

...
SGn

GC


︸ ︷︷ ︸

uk

Pk+1 = FPkF
T + Q

(3.2)

S = HPk+1H
T + R

K = Pk+1H
TS−1

y = z−Hxk+1

x = xk+1 + Ky

Pk+1 = (I−KH)Pk+1

(3.3)

Calculating the update is only possible at points in time where laser measurements are available.
Since we model the wear process with the control input matrix, we can only adjust the remaining
brick depth scalar x with the update step. In principle, one can say this is an improved linear
model with some brick depth adjustment. The scalar z describes a measurement value, in this
case the remaining refractory brick depth obtained from a laser measurement. H transforms
a predicted scalar x into a measurement to calculate the residual y. Since x already holds a
measurement value, the measurement matrix, which in this case is a scalar, can be set to H = 1.
P describes the covariance matrix and needs to be initialized at the beginning. R and Q describe
the noise of the measurements and the process uncertainty.
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3.2 Kalman Filter - Model One

3.2.2 Implementation

Python already provides a package for Kalman filter calculations, called FilterPy. Listing 2
shows a heavily stripped down code snippet of Model One which makes use of the FilterPy
package. This should give a basic understanding how the implementation of Model One works.

1 from filterpy.kalman import KalmanFilter

2 import numpy as np

3

4 class KalmanModelOne(KalmanFilter):

5

6 def set_all(self, f, h, b, r, q, p):

7 self.R = r

8 self.Q = q

9 self.P = p

10 self.F = f

11 self.H = h

12 self.B = b

13 self.lastP = self.P

14

15 myKal = KalmanModelOne(dim_x= 1, dim_z = 1, dim_u=i_nr_steelgrades)

16 myKal.set_all(f=[[1.0]], h=np.array(1.0), b=B, r=100, q=1, p=20)

17

18 for heat in campaign:

19 u_k = myKal.makeSteelgradeList(heat)

20 myKal.predict(u_k)

21

22 if heat.hasLaserMeasurment:

23 myKal.update(heat.laserMeasurment)

Listing 2: Excerpt of the implementation for Model One.
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3 Approach and Implementation

3.3 Kalman Filter - Model Two

3.3.1 Approach

The second model that was designed to estimate the remaining useful life of an electric arc
furnace refractory brick lining is a two dimensional Kalman filter with a modified control input
matrix. The prediction and update equations for this model are listed in Equation 3.4 and 3.5,
respectively. The first line of the two-dimensional Kalman filter equation system implements the
change of the remaining refractory brick depth while the second line of the equations accounts
for the delta wear change. Since the measurements in time are sparsely distributed and the
delta wear between different steel grades changes, we try to address this phenomenon with the
help of modified control inputs. These control inputs calculate the gradient change of the wear
that happens if the produced steel grades change. This change is fed into the model with the
help of the control input vectors uk and uk−1 to adjust the delta wear value. In the case when
the steel grades do not change, the input controls stay zero. The adaption of the wear change
∆xk is still possible due to the Kalman filter updates. The state transition matrix is set to

F =

[
1 1
0 1

]
to account for the wear. The update equations listed in Equation 3.5 remain mostly

the same. In contrast to Model One, the equation system is two dimensional. This implies that
the measurement matrix H needs to be chosen such that it transforms the predicted vector x
into a measurement to calculate the residual y. This leads to a measurement matrix in the form
of H = [1 0].

[
xk+1

∆xk+1

]
︸ ︷︷ ︸

xk+1

=

[
1 1
0 1

]
︸ ︷︷ ︸

F

[
xk

∆xk

]
︸ ︷︷ ︸

xk

+

[
0 0 · · · 0
w1 w2 · · · wn+1

]
︸ ︷︷ ︸

B




SG1

SG2

...
SGn

GC


︸ ︷︷ ︸

uk

−


SG1

SG2

...
SGn

GC


︸ ︷︷ ︸
uk−1


Pk+1 = FPkF

T + Q

(3.4)

S = HPk+1H
T + R

K = Pk+1H
TS−1

y = z−Hxk+1

x = xk+1 + Ky

Pk+1 = (I−KH)Pk+1

(3.5)
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3.3 Kalman Filter - Model Two

3.3.2 Implementation

As already mentioned in Section 3.2.2, FilterPy provides an implementation of the Kalman filter.
For this model, we need to adjust the code to realize the modified control input calculation from
Equation 3.5. Since FilterPy is implemented object oriented, it takes little effort to modify the
equations. We can inherit from the KalmanFilter class and override the predict function as
needed. The modified Kalman filter implementation is shown in Listing 3 as well as the update
and prediction loop in pseudo code.

1 from filterpy.kalman import KalmanFilter

2 import numpy as np

3

4 class KalmanModelTwo(KalmanFilter):

5 def predict(self, u1=0, u2=0):

6 """

7 Override predict function from kalman filter

8 Predict next position using the Kalman filter state propagation

9 equations.

10 **Parameters**

11 u : np.array

12 Optional control vector. If non-zero, it is multiplied by B

13 to create the control input into the system.

14 """

15

16 self._x = np.dot(self._F, self.x) + np.dot(self._B, u2)

17 - np.dot(self._B, u1)

18 self._P = self._alpha_sq * dot3(self._F, self._P, self._F.T)

19 + self._Q

20

21 myKal = KalmanModelTwo(dim_x= 1, dim_z = 1, dim_u=i_nr_steelgrades)

22 myKal.set_all(f=[[1.0]], h=np.array(1.0), b=B, r=100, q=1, p=20)

23

24 u_k_old = myKal.makeSteelgradeList(heat)

25 for heat in campaign:

26 u_k = myKal.makeSteelgradeList(heat)

27 myKal.predict(u_k_old, u_k)

28 u_k_old = u_k

29

30 if heat.hasLaserMeasurment:

31 myKal.update(heat.laserMeasurment)

Listing 3: Excerpt of the implementation for Model Two.
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3.4 Kalman Filter - Model Three

3.4.1 Approach

The third model that was designed to estimate the remaining brick depth of an electric arc
furnace is a multidimensional Kalman filter without control inputs. Since we know that different
steel grades lead to different wear, we try to model the gradient of each steel grade with an explicit
wear delta. An additional delta for the maintenance actions is introduced. The equations for
the prediction and update step are listed in Equation 3.6 and Equation 3.7. The state transition
matrix F is a square matrix. It’s size is determined by the number of steel grades plus one. The
matrix is initialized with zeros and its main diagonal is set to one. At each heat, the entries of
the first row are modified according to the produced steel grade and the performed maintenance
actions. The first entry of vector x is initialized to the brick depth and the other entries are
initialized to the calculated average delta wear values from the least squares calculations. The
measurement matrix H is initialized as a one-dimensional vector with zeros, but its first entry
is set to one. This is needed to calculate the residual y of the real laser measurement and the
predicted measurement.

x[k + 1]

∆x1[k + 1]

∆x2[k + 1]
...

∆xn+1[k + 1]


︸ ︷︷ ︸

xk+1

=F


x[k]

∆x1[k]

∆x2[k]
...

∆xn+1[k]


︸ ︷︷ ︸

xk

Pk+1 =FPkF
T + Q

(3.6)

S = HPk+1H
T + R

K = Pk+1H
TS−1

y = z−Hxk+1

x = xk+1 + Ky

Pk+1 = (I−KH)Pk+1

(3.7)
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3.4 Kalman Filter - Model Three

3.4.2 Implementation

We again use FilterPy for the implementation of Model Three. No modifications are needed
and we just have to design our matrices accordingly. Listing 4 shows the pseudo code for the
implementation. As one can see, in contrast to the other two models, this implementation does
not have any arguments in the predict function since this is the only model without control
inputs.

1 from filterpy.kalman import KalmanFilter

2 import numpy as np

3

4 class KalmanModelThree(KalmanFilter):

5

6 def set_all(self, f, h, b, r, q, p):

7 self.R = r

8 self.Q = q

9 self.P = p

10 self.F = f

11 self.H = h

12 self.B = b

13 self.lastP = self.P

14

15 myKal = KalmanModelThree(dim_x= 1, dim_z = 1, dim_u=i_nr_steelgrades)

16 myKal.set_all(f=[[1.0]], h=np.array(1.0), b=B, r=100, q=1, p=20)

17

18 for heat in campaign:

19 myKal.predict()

20

21 if heat.hasLaserMeasurment:

22 myKal.update(heat.laserMeasurment)

Listing 4: Excerpt of the implementation for Model Three.
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In this chapter we discuss the results of the different models and also take a closer look at
the laser measurements of the different campaigns. Out of 52 provided campaigns, only the
last 22 contain valid maintenance data. Therefore we will focus on these 22 campaigns for our
evaluation.

4.1 Least Squares Evaluation

As described in Section 3.1 we solve an overdetermined system of equations with least squares.
For these calculations, only campaigns have been used that contain valid maintenance informa-
tion. Campaigns that contain obviously wrong data are disregarded. For all steel grades that
have been produced more than 400 times over these 22 campaigns, a separate delta wear is
calculated. Steel grades that have been produced less than this threshold are consolidated in a
general steel grade called “Other”. Figure 4.1 shows the result of these calculations.
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Figure 4.1: Estimated average wear per heat for Hot Spot 1 for steel grades produced more than 400 times.

From Figure 4.1 it can be seen that from the 29 different steel grades produced only five occur
more than 400 times over the given data set. All the other steel grades are combined in the
penultimate bar labeled “Other”. The last bar shows the impact of the gunning maintenance
per heat. One can say that most of the steel grades cause an average wear around 0.6mm per heat
except of steel grade “AISI 1008-RM03”, which causes a significant lower wear. However, it is
crucial to point out that the laser data is very noisy. We assume that the real wear is probably
higher since we don’t know how the gunning material behaves exactly. RHI experts suspect
that the refractory maintenance material wears out much faster than the refractory bricks.
Furthermore, in reality the gunning mass would have a much higher impact than calculated.
The laser measurements are way too sparse to account for these assumptions. However, these
calculations build the basis for our three models.
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4.2 Model One Evaluation

The control input matrix B of our first model is initialized with the steel grade and gunning
weights calculated from the least squares method described in Section 4.1. For each campaign to
be tested with the model the specific campaign from the least squares calculations is excluded.
This approach is known as “Leave-one-out cross validation”. The control input vector uk is
changed according to the produced steel grade and gunning action performed. The measure-
ment noise matrix is initialized to R = 100 and the process noise matrix is set to Q = 0.1. The
covariance matrix is initialized with P = 10000.

Figure 4.2 shows the estimated prediction of this first model. The thick blue line indicates
the ground truth. The ground truth is calculated from the mean of the remaining brick depth
in Hot Spot 1. The darker blue shaded area indicates one standard deviation of Hot Spot 1 and
the lighter blue shaded area indicates twice the standard deviation of the Hot Spot 1 laser mea-
surements. The different colors in the background indicate different steel grades. The dashed
green lines visualize at which heats laser measurements were taken and the blue bar plots de-
pict the consumed refractory material in kg used by gunning for this area. Each of the colored
lines indicates one prediction. The first prediction starts at the first laser measurement named
“LM 1”. Therefore, the model receives no further updates. The second prediction line starts
at the second laser measurement. Obviously, the second prediction receives a model update at
laser measurement one but no updates are performed after “LM 1”. This concept is continued
for the remaining prediction lines. To make this more clear, Figures 4.3 - 4.5 show this concept
up to the first three predictions. Figure 4.3 depicts the first prediction line. Figure 4.4 shows
the first and second prediction lines where the second prediction received an update at the first
laser measurement and the third prediction received an update at laser measurement one and
laser measurement two.
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Figure 4.2: Campaign 40; The blue line indicates the mean of the remaining brick depth in Hot Spot 1 and
the blue shaded areas indicate one standard deviation and two times the standard deviation. The
colored lines are the prediction of Model One. The first prediction starts at laser measurement
one and the model isn’t updated after that. The second prediction starts at laser measurement
two, etc. The different colors in the background indicate different produced steel grades. The
vertical green dashed lines depict the heats where laser measurements were taken. The blue bars
show the gunning consumption in kg.

As one can see, the more laser measurement updates the model receives, the better the prediction
gets, evaluated on the last measurement in time. We are not interested in calculating an error
measure over the whole campaign, since faulty measurements, outliers and wrong positioning
of the laser influences the result. For APO it is essential to know how many heats the EAF
lasts and therefore we are interested in how many heats are possible until a critical brick depth
is reached. Since most campaigns end before the critical brick depth is reached, we have to
evaluate our models on the last measurement of each campaign. Therefore, we calculate the
root mean squared error (RMSE) between the last prediction value and the last measurement.
These calculations are shown in Figure 4.6. Figure 4.6 confirms our visual observations from
Figure 4.2 that the predictions get better over time.
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Figure 4.3: Prediction, starting from the first laser measurement.
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Figure 4.4: Second prediction, starting from the second laser measurement.
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Figure 4.5: Third prediction, starting from the third laser measurement.
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Figure 4.6: RMSE over all predictions started at different laser measurements evaluated at the end of the
campaign.

Figure 4.7 shows the RMSE with its standard deviation over a selection of 18 tested campaigns
since four campaigns contain obviously false measurements which would lead to a worse RMSE.
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Since each campaign consists of a different amount of heats, we divided each campaign in eight
equal parts. All predictions that start in the same part are collected over all campaigns to
calculate a mean error and its corresponding standard deviation. One can observe from Figure
4.7 that on average Model One has a solid prediction accuracy from the beginning on and the
accuracy is getting better over the duration of the campaigns.
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Figure 4.7: RMSE over all campaigns. Each campaign is divided into eight equal parts.
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4.3 Model Two Evaluation

For Model Two we initialize the input control matrix B with the weights calculated from least
squares like we did for Model One. In contrast to Model One, this time we calculate the differ-
ence of the delta wear of two consecutive heats in the control inputs. As long as the produced
steel grade does not change and there is also no change in the maintenance actions applied, the
difference equals to zero and therefore the control inputs do not contribute to the model. The
vector uk again holds the produced steel grade and also maintenance actions that happened.
Additionally, a second control input vector uk−1 is needed that holds the produced steel grade
and maintenance actions of the previous heat.

In Figure 4.8 the estimated wear of Hot Spot 1 for campaign 40 calculated from Model Two is
shown. Again, the darker shaded blue areas indicate one standard deviation of Hot Spot 1 while
the lighter area indicates twice the standard deviation. The colored lines show the predictions
starting at different laser measurements while the thicker blue line depicts the ground truth
calculated from the mean of Hot Spot 1. In contrast to the first model, Model Two does not
only update the remaining brick depth values but updates a general wear value ∆x, too. Figure
4.9 shows this change of ∆x over the whole campaign. The spikes indicate that maintenance
in terms of gunning happened. The control inputs also cause changes when the produced steel
grades change. The changes that are caused from the correction step of the Kalman filter can
be observed at the time steps where a laser measurement happened, since these are the only
points in time the Kalman filter receives values to update the model. Laser measurements were
taken at each green dashed line. One can clearly see how the modified input controls of this
model change the delta wear value at each steel grade change. Different values for R and Q lead
to different magnitudes of correction of ∆x. The laser measurement updates adapt the general
wear ∆x only by small amounts because the second entry of the main diagonal of the process
noise matrix is set to very small values, i.e. Q = 0.0001. This is done to prevent the model
to correct itself based on false measurements or manually performed maintenance that is not
reflected in the data set. The measurement noise matrix is set to R = 500 and the covariance
matrix is initialized by P = 10000. If we would increase Q to bigger values, we would get
significant updates at the laser measurements. This updates cause large changes in the gradient
∆x and effect the model negatively. Further information on the process noise matrix and the
measurement noise matrix are discussed in Section 4.6
Figure 4.10 shows the prediction error of campaign number 40. The error is calculated anal-
ogously to Model One. The observations from Model One hold true for Model Two. The
predictions are getting better towards the end of the campaign.
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Figure 4.8: Campaign 40; The blue line indicates the mean of the remaining brick depth in Hot Spot 1 and
the shaded blue areas indicate one standard deviation and two times the standard deviation. The
colored lines are the prediction of Model Two. The first prediction starts at laser measurement
one and the model isn’t updated after that. The second prediction starts at laser measurement
two, etc. The different colors in the background indicate different produced steel grades. The
vertical green dashed lines depict the heats where laser measurements were taken. The blue bars
show the gunning consumption in kg.
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Figure 4.9: Change of ∆x over the course of the campaign. Each line represents one prediction.
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Figure 4.10: RMSE over all predictions started at different laser measurements evaluated at the end of the
campaign.

Figure 4.11 shows the prediction error over the previously tested 18 campaigns. As in the eval-
uation of Model One we again divided all campaigns into eight equal parts. For each prediction
started in one part the mean error and its standard deviation are calculated. One can observe
from the plot that on average the prediction is getting better in the second half of a campaign.
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Figure 4.11: RMSE over all campaigns. Each campaign is divided into eight equal parts.
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4.4 Model Three Evaluation

Model Three is designed to adapt itself completely. No additional control inputs are needed.
The state vector x of Model Three is initialized with the delta wear learned from least squares.
As mentioned before, Model Three does not have a control input matrix. Each steel grade that
occurs more than 400 times over the campaigns is modeled with a separate delta wear parameter
in the vector x. Additionally, a parameter for maintenance actions in the form of gunning is
added to the state vector x. The first row of the state transition matrix F is adapted to the
according production plan parameters. We set the measurement noise matrix R = 500 and the
main diagonal of the process noise matrix Q = 0.00015 except the first entry of Q[0, 0] = 5.0.
The main diagonal of the covariance matrix P is initialized to P = 0.25 and its first entry to
P[0, 0] = 10000. Figure 4.12 shows the prediction of this model. At first sight, there is not much
difference to the previous two models. If we take a closer look at the delta wear values for the
different steel grades, we can see that Model Three adapts to the different produced steel grades.
Figure 4.13 depicts this change of the delta wear value. Each line in Figure 4.13 represents one
steel grade from the vector x for the prediction with updates until the last laser measurement.
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Figure 4.12: Campaign 40; The blue line indicates the mean of the remaining brick depth in Hot Spot 1 and
the shaded blue areas indicate one standard deviation and two times the standard deviation. The
colored lines are the prediction of Model Three. The first prediction starts at laser measurement
one and the model isn’t updated after that. The second prediction starts at laser measurement
two, etc. The different colors in the background indicate different produced steel grades. The
vertical green dashed lines depict the heats where laser measurements were taken. The blue bars
show the gunning consumption in kg.
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Figure 4.13: Change of ∆x over the course of the campaign. Each line represents one entry of the state
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Figure 4.14 shows the prediction error of campaign nr. 40. The error is calculated analogously
to Model One and Model Two. Again the observations from Model One hold true for Model
Two. The predictions are getting better towards the end of the campaign.
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Figure 4.14: RMSE for all predictions started at different laser measurements evaluated at the end of the
campaign.

Identical to the other models, we divided each campaign into eight different parts. For each
of these parts the mean error of all predictions starting in this part are calculated over all 18
campaigns. These calculations are shown in Figure 4.15.
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Figure 4.15: RMSE over all campaigns. Each campaign is divided into eight equal parts.
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4.5 Comparison

In this section the errors of all three models are compared. First, we will take a look at the
previously shown campaign number 40. Figure 4.16 shows the mean error of all three models
for this campaign. As one can see, Model Two performs best for campaign number 40. This ob-
servation is specific to this campaign and is not representative over all tested campaigns. Figure
4.17 depicts the mean prediction error over all campaigns of all three models. All campaigns are
divided into eight equal parts. All predictions that start in a specific part are collected over the
whole range of campaigns and the mean error and the standard deviation are calculated. One
can see from this plot that on average Model One and Model Three provide the best predic-
tions. Model One performs slightly better in the first half of the campaigns. Towards the end
of the campaigns, Model Three provides slightly better predictions with smaller errors than the
other two models. It is important to state that these observations hold true as long as the used
refractory bricks and maintenance material don’t change significantly. If maintenance material
is used that has a better durability, Model One would probably lead to worse predictions than
the other two models, since Model One heavily relies on the calculations from least squares and
is not able to adapt the wear rates.
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Figure 4.16: Comparison of RMSE for all three models on campaign Nr. 40.
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Figure 4.17: Comparison of RMSE with standard deviation over all campaigns for all three models.

To gather more detailed insights, Table 4.1 shows the mean error for each campaign and each
model separately. The highlighted green cells indicate the lowest error for each part of the
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campaigns over the three models. Empty cells indicate that no laser measurements took place
in a given part of the campaign.

Campaign 30
Model 1 62.44 59.43 57.48 59.14 54.71 46.94 42.31
Model 2 61.25 68.20 53.04 61.20 33.80 20.77 13.09
Model 3 63.06 59.31 55.63 60.14 39.90 24.58 15.77

Campaign 31
Model 1 3.31 30.84 27.64 17.62 12.04 17.26 14.83
Model 2 2.71 132.16 39.03 29.44 16.69 30.20 12.06
Model 3 14.27 37.06 23.95 5.74 2.52 34.83 13.85

Campaign 32
Model 1 15.62 19.91 20.35 24.67 25.90 23.50 9.31 6.29
Model 2 14.97 18.26 35.28 49.71 44.69 35.26 27.63 11.67
Model 3 26.71 32.52 35.63 44.16 42.86 30.94 13.89 11.99

Campaign 33
Model 1 14.13 7.94 1.78 0.91 9.81 14.63 14.33 14.50
Model 2 15.70 70.43 47.88 22.01 32.34 29.05 17.31 15.47
Model 3 23.60 7.68 4.53 2.51 23.36 17.51 9.67 12.34

Campaign 34
Model 1 41.72 43.28 48.42 51.58 52.37 44.74 40.69 33.49
Model 2 41.21 58.27 88.80 78.34 60.43 17.67 23.07 14.33
Model 3 57.13 62.14 68.11 71.17 52.96 10.00 20.46 13.11

Campaign 35
Model 1 121.23 110.06 102.12 79.08 65.57 55.02 50.92 50.92
Model 2 121.88 98.85 60.56 30.27 9.00 5.28 8.15 8.15
Model 3 111.24 93.94 86.81 21.35 15.79 7.18 15.56 15.81

Campaign 36
Model 1 39.01 25.32 22.33 45.06 67.04 81.11 62.45
Model 2 39.40 19.64 9.42 144.60 164.38 154.82 42.39
Model 3 44.56 23.93 17.96 60.36 83.25 102.24 21.35

Campaign 37
Model 1 56.93 51.51 48.74 42.75 37.02 35.36 28.90 21.04
Model 2 56.92 7.41 11.72 6.94 16.78 4.91 3.96 3.30
Model 3 57.86 43.32 41.72 30.95 22.96 25.75 23.27 12.53

Campaign 38
Model 1 170.79 160.39 155.35 141.38 115.95 101.88 89.50 84.18
Model 2 169.21 148.98 112.33 41.57 19.48 6.40 14.32 27.31
Model 3 159.71 143.49 136.57 115.96 61.86 44.14 21.98 44.39

Campaign 39
Model 1 87.54 54.79 39.05 16.71 3.46 3.16 5.57
Model 2 87.53 107.68 45.24 94.83 76.20 53.11 31.16
Model 3 83.37 36.20 25.97 37.45 47.17 40.62 23.88

Campaign 40
Model 1 85.77 78.70 78.07 75.51 68.44 56.23 46.33 29.13
Model 2 86.13 63.79 76.61 54.56 26.40 6.82 6.82 13.19
Model 3 87.21 73.33 72.69 65.35 49.78 21.95 15.74 7.27

Campaign 41
Model 1 67.15 72.16 76.52 94.78 100.05 91.41 74.09 50.11
Model 2 81.32 86.33 101.87 217.86 158.35 78.87 21.63 8.98
Model 3 90.33 99.93 106.72 195.05 178.45 107.74 37.89 12.40

Campaign 42
Model 1 22.77 37.18 58.08 60.15 63.00 47.05 13.48 5.42
Model 2 26.07 119.95 185.38 117.99 102.27 71.48 63.79 24.24
Model 3 35.99 64.47 88.14 90.70 94.79 49.86 14.79 9.94

Campaign 43
Model 1 44.22 26.34 32.23 25.96 29.06 24.16 14.31
Model 2 44.52 36.06 39.74 0.99 29.74 9.87 10.04
Model 3 45.72 15.95 23.12 12.96 21.58 5.50 17.48

Campaign 44
Model 1 34.01 55.28 69.05 79.34 90.96 95.54
Model 2 34.28 79.19 116.00 131.53 138.78 126.40
Model 3 36.51 70.74 92.64 108.80 120.69 116.33

Campaign 45
Model 1 59.77 91.58 58.57 32.96 14.35 2.04 3.09 3.09
Model 2 59.80 191.10 165.64 196.33 128.16 95.70 38.02 38.02
Model 3 57.95 120.25 21.93 21.08 52.47 67.79 25.85 25.58

Campaign 46
Model 1 115.29 115.97 119.56 104.25 85.86 64.77 52.80 36.88
Model 2 108.81 129.48 141.44 35.47 14.74 20.07 1.84 13.30
Model 3 123.45 122.44 129.93 79.83 29.37 4.20 10.56 8.33

Table 4.1: Mean error for each campaign and model. All campaigns are divided into eight equal parts. Green
cells indicate the lowest error of a given model for each part of a campaign.
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4.6 Insights on Q and R

In order to discuss the influence of the measurement noise matrix R and the process noise ma-
trix Q, we select a campaign which is not as smooth as the already discussed campaign in the
evaluations. We show the influence of these parameters on Model Three, but the general concept
applies to all three models. The analysis is done on campaign number 51. Figure 4.18 shows
the prediction with all parameters set as in the evaluation of Model Three.
Figure 4.19 shows the prediction line with all updates until the latest laser measurement. The
measurement noise matrix is set to R = 100. One can see that the Kalman filter clearly trusts
the measurements and subsequently corrects the prediction of the remaining refractory lining
depth to the measurement. In contrast, Figure 4.20 shows the same prediction with a measure-
ment noise matrix set to R = 1000. The high value of R tells the filter to trust the measurements
less. This can be clearly observed in Figure 4.20. These observations should make our choice of
the measurement matrix R = 500 obvious, since this is a trade off between too much and too
little correction.

Similar conclusions can be drawn for the process noise Q. Setting the process noise matrix
to a rather big value Q = 0.01 leads to significant updates of the delta wear values in the state
vector x. This behavior can be observed in Figure 4.21. As one can see at the first occurrence
of the steel grade, indicated with the red background color, significant updates are made for
the wear of this steel grade. At the second occurrence, this wear leads to very false predictions.
Figure 4.22 shows the same predictions with a smaller process noise matrix Q = 0.0001. The
updates of the state vector x are not as aggressive as shown in Figure 4.21.
From these insights it is obvious that the process noise and measurement noise matrices need
to be designed carefully. A trade off between adaption and good prediction capabilities has to
be made.
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Figure 4.18: Campaign 51; Prediction with all updates on each laser measurement. Measurement noise
matrix R = 500 and process noise matrix Q = 0.0001.
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Figure 4.19: Campaign 51; Prediction with all updates on each laser measurement. Measurement noise
matrix R = 100 and process noise matrix Q = 0.0001.
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Figure 4.20: Campaign 51; Prediction with all updates on each laser measurement. Measurement noise
matrix R = 1000 and process noise matrix Q = 0.0001.
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Figure 4.21: Campaign 51; Prediction with all updates on each laser measurement. Measurement noise
matrix R = 500 and process noise matrix Q = 0.01.
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Figure 4.22: Campaign 51; Prediction with all updates on each laser measurement. Measurement noise
matrix R = 500 and process noise matrix Q = 0.0001.
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4.7 Quality of Laser Measurments

Several challenges exist that need to be solved. In this section we point out the things that
we discovered over the course of this work. We calculated the mean and standard deviation of
the laser measurements in Hot Spot 1. As described earlier, the blue shaded areas in the plot
indicate one standard deviation and twice the standard deviation respectively. One can clearly
see that from the Figures 4.23 - 4.25 that the laser measurements vary a lot. This could be
caused because the definition of Hot Spot 1 is not optimal. Further investigation on this topic
needs to be conducted.
From Figure 4.23 one can clearly see that the positioning of the laser is sometimes not optimal.
This campaign is an extreme example but leads to the assumption that other campaigns are
also affected, even if it is not as obvious.
In Figure 4.24 one can see several anomalies in the first half of the campaign. Around heat
number 100 the refractory lining depth is suddenly thicker without maintenance action. The
same happens again around heat 350. Other campaigns exist where the same phenomenon can
be observed. We don’t know if these increases in brick depth come from slag that remains on
the refractory bricks or if it is a cause of the laser positioning issues mentioned above. Figure
4.25 depicts another issue. The cause of the sudden increase of refractory brick depth around
heat 450 remains unknown to us. We found from further investigation that there was a timespan
of 12 hours in which no steel has been produced. That leads to the assumption that manual
maintenance has been performed. It should be considered to include annotations into the data
set if such things happen.
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Figure 4.23: Campaign 44; Sample campaign to show laser positioning issues.
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Figure 4.24: Campaign 45; Unknown increase of refractory brick depth with no obvious cause.
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Figure 4.25: Campaign 46; Increase of refractory brick depth with 12 hour production pause.
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5
Conclusion and Future Work
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5.1 Conclusion

This thesis shows that it is possible to predict the remaining refractory brick depth from a
predefined production plan with a linear model. This production plan only contains the steel
grades that are going to be produced in each heat. Furthermore, the production plan includes
information about maintenance actions that take place. For this research the only maintenance
action considered is gunning.
Three models have been developed and tested. The first model is a simple linear wear model
which heavily relies on its initialization from the least squares solution of an overdetermined
set of linear equations. The second model is an improvement over the first model in terms of
its adaption abilities. A general wear factor is introduced to adapt the model better. Finally,
the third model implements different wear factors for selected steel grades and additionally for
maintenance actions. As shown in Chapter 4.5, each model has its strength.
The conclusion of this work can be summarized as follows:

• Model One shows the best overall prediction abilities as long as the conditions don’t change.
This means that as soon as significant changes in brick durability or maintenance material
durability occur, the model will not be able to provide satisfactory predictions.

• Model Three has the best abilities to adapt to changes. Since the dataset contains a lot of
faulty laser measurement data, we have not been able to show the strength of the model.

• Model Two is a trade off between the other two models. It can adapt slightly but also
relies on the calculations from least squares.

• Currently, Model One provides the predictions with the smallest error and standard devi-
ation.
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5.2 Future Work

Important tasks for future work to improve the prediction of the remaining useful life of an
electric arc furnace include:

• The main focus should lie on improving the quality of the laser measurements. Especially
the positioning of the laser is a subject which should be thought of.

• More frequent leaser measurements improve the ability to determine how refractory wear
behaves.

• Include other production parameters.

• Include data of what refractory materials have been applied since different refractory
materials have different wear properties.

• Investigate possibility of sensor fusion with an optical image sensor to determine remaining
slag on the refractory bricks.

• Refine the models with expert knowledge and knowledge obtained from the above points.

• Currently, each heat is considered to have the same timespan. In reality each heat duration
is different. Consider the time as additional feature in the model. If the furnace cools down
and is then heated again, the refractory material might behave differently.

• Reconsider the definition of the Hot Spot areas.
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