
Thomas Wolfgang Pieber, BSc

Design and Implementation of a
Secure User Authentication Protocol for Smart Sensors

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Assoc. Prof. Dipl.-Ing. Dr. Christian Steger

Institute for Technical Informatics
Graz University of Technology, Austria

 Diplom-Ingenieur

Supervisor

Advisors
Assoc. Prof. Dipl.-Ing. Dr. Christian Steger

Dipl.-Ing. Holger Bock (Infineon Technologies Austria AG)

Graz, September 2016

Abstract

In the near future almost every device will be connected via the Internet. This

vision is called “Internet of Everything” or “Internet of Things” or, in an industrial

environment, “Industrie 4.0”. The process of connecting everything with each other

yields huge benefits, but has also the potential of being misused - unknowingly or

conscious. To counter that, security measures must be taken in order to restrict

the access to authorized users. Furthermore, the communication between users and

machines or within machines must be encrypted to weaken the threat caused by any

adversary.

This thesis is written within the context of the EU-project IoSense, which motivates

with the vision of a production facility of the near future. It then describes the

development process of a method to perform an authenticated key exchange on mi-

crocontrollers. The developed design was implemented with the support of Infineon

Technologies. The evaluation of the protocol is done by measuring the computation

time of the whole authentication and key exchange process. It is compared to the

time that is needed to exchange messages on its own. With these statistics the over-

head of other protocols, that also perform authentication, can be calculated. The

thesis is concluded with a prospect for future research.

Kurzfassung

In naher Zukunft wird fast jedes Gerät mit dem Internet verbunden sein. Diese

Vision wird “Internet von Allem” oder “Internet der Dinge” oder, in einem indus-

triellen Umfeld, “Industrie 4.0” genannt. Dieser Prozess in dem Alles mit Allem

verbunden wird bringt riesige Vorteile mit sich, hat aber auch das Potential miss-

braucht zu werden - unwissentlich oder absichtlich. Um dem entgegenzuwirken

müssen Sicherheitsmaßnahmen ergriffen werden um den Zugriff auf autorisierte Per-

sonen zu beschränken. Weiters muss die Kommunikation zwischen den Benutzern

und Maschinen, oder unter den Maschinen verschlüsselt werden, um die Gefahr, die

von Angreifern ausgeht, zu minimieren.

Diese Arbeit, welche im Rahmen des EU-Projektes IoSense angefertigt wurde, ist

motiviert durch eine Vision von einer Produktionsanlage der nahen Zukunft. Es wird

danach der Entwicklungsprozess einer Methode zur Durchführung von einem authen-

tifizierten Schlüsselaustausch, welcher auf einem Mikrocontroller durchgeführt wer-

den kann, beschrieben. Das entwickelte Design ist dann, mit der Hilfe von Infineon

Technologies, umgesetzt worden. Die Bewertung dieses Protokolls geschieht mit der

Messung der Zeit, die für den gesamten authentifizierten Schlüsselaustausch benötigt

wird. Diese Messung wird dann mit der Zeit, die für einen Nachrichtenaustausch

benötigt wird, verglichen. Mit diesen Werten kann der benötigte Mehraufwand ver-

glichen mit anderen Protokollen, die ebenfalls eine Authentifizierung durchführen,

berechnet werden. Diese Arbeit wird mit einem Ausblick für zukünftige Forschung

beendet.

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Note of Thanks

Here I want to thank all those who have guided me in the course of this master’s

thesis.

I want to express my thankfulness to Assoc. Prof. Dipl.-Ing. Dr. Christian Steger

who has tutored me while conducting this work. His professional and personal

support guided me throughout this time. The skillful assistance of my supervisors

Dipl.-Ing Holger Bock and Dipl.-Ing Thomas Ruprechter and the competent help

of Andreas Wallner improved the experience of this work much. Likewise, I want

to thank my colleagues at Infineon for their support. Foremost, I want to show

my appreciation for Dipl.-Ing. Dr. Christian Lesjak who helped me take foot at

Infineon.

Beyond that I want to thank my parents Josef and Edith and my brothers Daniel and

Roman who enabled me to participate in this study and encouraged me throughout

it. Their support has led me through many tough times.

A special thank goes to my fellow students Jakob, Marco, Sarah, and Thomas who

helped on countless occasions throughout my time in university. The discussions

with them have inspired and have brightened the time. I found true friends with

them.

Last but not least I want to thank all my friends who supported my moral patiently.

Contents

List Of Figures ix

List Of Abbreviations x

1 Introduction 1
1.1 Introduction to the Project . 1

1.2 Motivation . 2

1.2.1 In Industry . 2

1.2.2 At Home . 3

1.2.3 In Science . 3

1.3 Configuring Devices . 4

1.3.1 Why Using Passwords . 4

1.3.2 What To Consider Using Passwords 5

1.3.3 Why Exchange Keys . 5

1.3.4 What To Consider Exchanging Keys 5

1.4 Password-based Authentication . 6

1.5 Exchanging Keys . 6

1.6 Contribution of the Thesis . 7

1.7 Outline . 9

2 Related Work and Background 10
2.1 Related Work . 10

2.1.1 Key Agreement . 10

2.1.2 Password-based Authenticaion 11

2.1.3 Authenticated Key Exchange 14

2.1.4 Internet of Things . 16

2.2 Background . 18

2.2.1 Cryptography . 18

2.2.2 Symmetric Cryptography . 19

2.2.3 Asymmetric Cryptography 20

2.2.4 Cryptographic Hash . 21

2.2.5 Message Authentication Code 23

vi

2.2.6 Diffie-Hellman . 23

2.3 Prerequisites . 24

2.3.1 Secure Element . 24

2.3.2 Field Programmable Gate Array 25

2.3.3 NFC Technology . 25

2.3.4 Commonly Used Terms . 26

3 Design 28
3.1 Application Scenarios . 28

3.1.1 Future Industry . 28

3.1.2 Smart Home . 31

3.1.3 Next Generation Research 32

3.2 Design Analysis . 33

3.3 Demonstrator . 35

3.4 Authentication . 38

3.5 Key Transfer . 38

3.6 Different Designs . 40

3.7 Evaluation . 46

4 Implementation 48
4.1 Mathematical Concept . 48

4.2 Authenticate the User . 49

4.3 Key Exchange . 49

4.4 Design Flow . 50

4.5 Implementation Environments . 52

4.5.1 Used Libraries . 52

4.5.2 Used Applications . 52

4.6 Prototypical Implementation . 53

4.7 Transitional Implementation . 61

4.8 Changes for the Security Controller 64

4.9 Implementation of the Demonstrator 65

5 Performance Evaluation 69
5.1 Process . 69

5.2 Results . 70

5.3 Interpretation . 73

6 Conclusion and Future Work 75
6.1 Conclusion . 75

6.1.1 Limitations . 76

6.1.2 Combination With Other Work 76

6.2 Future Work . 76

Bibliography 78

A Listings 82
A.1 Prototype . 82

A.2 Transition . 87

A.3 Demonstrator . 88

B Figures 91

List of Figures

1.1 The TrustWorSys Demonstrator overview. 8

2.1 Lightweight authentication protocol. 14

3.1 A static production line. 29

3.2 A production process in the “Industrie 4.0” context. 30

3.3 Information flow from the idea of a configuration to the machine . . 34

3.4 Design of the communication between user and machine. 35

3.5 Use Cases of a communication between user and machine. 36

3.6 Calculation of the masked public key of user and machine. 36

3.7 Calculation of the shared secret between user and machine. 37

3.8 Establishment of a secured connection between user and machine. . 37

3.9 Datastructure for storing long integers and the ECC related data. . 41

3.10 Software design for the conceptual evaluation. 43

3.11 Software design for transition to the secure element. 44

3.12 Design of the algorithm on the secure element. 45

3.13 Design of the cycle-accurate evaluation. 47

4.1 Mathematical proof of the design of the SPAKE-algorithm. 49

4.2 Software toolchain . 51

4.3 Steps to configure the machineame and users on a machine. 65

4.4 User Interface of the demonstrator. 68

5.1 Comparison of the echo commands with different payloads. 73

B.1 Timings of 500 measurements of different commands. 91

B.2 Timings of 500 measurements of the challenging commands. 92

B.3 Timings of 500 measurements of the debug-command. 92

B.4 Timings of 500 measurements of the simple commands. 93

ix

List Of Abbreviations

AES Advanced Encryption Standard

APDU Application Protocol Data Unit

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CDH Computational Diffie-Helman

CPU Central Processing Unit

DDH Decisional Diffie-Helman

DES Data Encryption Standard

DH Diffie-Helman

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Helman

ECDHE Elliptic Curve Diffie-Helman Ephemeral

EKE Encrypted Key Exchange

FPGA Field Programmable Gate Array

FTP File Transfer Protocol

HF High Frequency

IIoT Industrial Internet of Things

IoT Internet of Things

ISO International Organization for Standardization

KDF Key Derivation Function

x

MAC Media Access Control

MAC Message Authentication Code

MitM Man-in-the-Middle

MMU Memory Management Unit

NFC Near Field Communication

NIST National Institute of Standards and Technology

NVM Non Volatile Memory

OSI Open Systems Interconnection

PIN Personal Identification Number

PLC Programmable Logic Controller

RAM Random Access Memory

ROM Read Only Memory

RSA Rivest, Shamir, Adleman

SHA Secure Hash Algorithm

SIM Subscriber Identity Module

SMS Short Message Service

SPAKE Simple Password-based Authenticated Key Exchange

SSL Secure Sockets Layer

TLS-SRP Transport Layer Security - Secure Remote Password

UI User Interface

US-CERT United States Computer Emergency Readiness Team

VLC Visible Light Communication

WSN Wireless Sensor Network

XML Extensible Markup Language

XOR Exclusive OR

1
Introduction

The following chapter gives an introduction to the “IoSense” project and to this

thesis. It explains the vision we have and introduces to the topics of NFC-based

sensor systems, password-based authentication, and key exchange. After that the

contribution of this thesis to the IoSense project is explained. This chapter concludes

with the outline of the conducted thesis.

1.1 Introduction to the Project

This thesis was carried out within the EU-funded project “IoSense - Flexible Front

End / Back End Sensor Pilot Line for the Internet of Everything” which aims to

add intelligence into sensors used in the “Internet of Things” (IoT). That is done

in order to empower semiconductor manufacturers to be the ”key drivers for in-

novation and employment and creator for answers to the challenges of the modern

society”1.

The project was initiated by Infineon Technologies to show that Europe still has

a leading role in development, and that the fourth industrial (r)evolution - called

”Industrie 4.0” - remains in Europe, as did the other three. To achieve this goal the

project aims at increasing the pilot production capacity and improving the Time-

to-Market for innovative microelectronics by establishing fully connected semicon-

ductor pilot-lines in Europe 1.

1 http://www.iosense.eu - accessed on 24.05.2016

1

http://www.iosense.eu

1 Introduction

Within this project a demonstrator called “TrustWorSys” will be implemented. This

name is a compound of Trustworthy and System. From this name one can say that

the aim is to give sensors logic to become smart sensors that we can trust. To do

so we need to connect and configure them. On the microcontrollers a lightweight

protocol should run that allows to secure the communication with the sensor and

the configuration stored on it.

1.2 Motivation

This section describes the application possibilities of the theis’ contribution in three

parts. These segments are dedicated to industry, home, and science.

1.2.1 In Industry

We have envisioned a futuristic production facility that works with the concept of

“Industrie 4.0”. This term describes a part of the “Internet of Things” (IoT) and

is also often referred to as “Industrial Internet of Things” (IIoT). The idea of this

concept is that all devices in a factory become smart and can communicate with

each other. This facility enables the company to produce low volume, high quality,

fully customizable products. To enable the production of those products the con-

figuration of the machines and maybe also the path, goods need to take between

the machines, have to be changed frequently. To comply with this vision robots

are used to transport the items between the machines. These robots need to know

which item they currently transport and where it should go next. Furthermore the

machine needs to know which item it just received and what to do with it. Therefore

the machines need to communicate with each other as well as with the robots and

the robots need to be capable of configuring the machines. As sometimes a human

engineer or maintenance worker needs to interact with the machines and robots,

they should provide a communication interface that is easily accessible and com-

monly available. As all the communication between the operating entities can be

stored, and the machines are capable of frequent reconfiguration, we can furthermore

envision that a central server is able to find optimal item flows and configurations

with the help of computational intelligence. These configuration files can then be

deployed during manufacturing and increase the efficiency of the facility.

In this link the human operator is capable of reconfiguring big parts of the pro-

duction. Therefore he must be authenticated against the machines. A simple and

widely used mechanism to proof that a dedicated user wants to use a device, is the

usage of passwords. With the knowledge of the password - the secret key - the user

can log into an account and perform operations on the machine. These accounts

2

1 Introduction

have different privileges and must therefore be secured from access of unauthorized

persons. If the user wants to log into a machine via a remote terminal the key has to

be securely transferred to the other end. An authenticated user can use the elevated

rights to access secure information about the device (like measurement values or

settings) and configure the device. Configuration of a device is a key component

of a devices’ lifecycle management. It needs to be configured in the manufacturing

process to be tested, reconfigured if it is sold or resold, and configured and recon-

figured by the enduser during the operational phase.

As the communication vector for configuration should not interfere with other links

a short ranged wireless technique should be used. The best solution would be Near

Field Communication (NFC - Section 2.3.3) as it is short ranged and already widely

deployed on almost every new smartphone.

1.2.2 At Home

This technique to configure smart devices can also be used at home. When thinking

of a smart home, many settings need to be changed to fit the users’ needs. To be

able to configure some devices, one must even connect to it with a cable. This can be

done easier when utilizing the communication capabilities of a smartphone. The user

just opens the app for his home, configures the parameters to better suit his needs,

and taps the device with the phone. The phone uses the provided NFC interface to

authenticate the user and configure the device. Another possibility to configure any

appliances is to use a web-interface provided by the vendor, configure the parameters

there, download the configuration file to the smartphone, and transmit it wirelessly

to the apparatus.

1.2.3 In Science

A technology for researchers are wireless sensor networks consisting of sensor nodes.

These are small, usually battery driven, devices. The nodes have sensing capabilities,

a microprocessor, and some form of wireless communication technology. These nodes

can be deployed almost everywhere. A requirement for them is to perform their

operations for months. Sometimes they have to be reconfigured as the goals of

the scientists change or better algorithms are developed. This software update is

currently transmitted via the same channel as the sensor data is sent. Furthermore,

these sensor nodes need to use their very limited resources to send the update to all

nodes and they need to verify the correctness of the received data. A microcontroller

performing cryptographic functions can also use a lot of precious energy. In order

to resolve this issue, the update can be sent via NFC. With this technology the

node can perform all energy consuming tasks while being powered with the NFC

3

1 Introduction

field, conserving the energy provided by the battery. These updates also need to

be authenticated as not everyone should be allowed to change operational data on

scientific instruments. Therefore a lightweight but secure algorithm needs to be

executed to authenticate the user and provide additional security.

1.3 Configuring Devices

Many devices can perform more operations than those, which are noticeable by users.

These are operations for testing the device, changing the firmware, or operations used

during the development process. It is useful to restrict the customer from using these

functionalities as they can disclose internal operations and company secrets. Other

functions can be enabled if a customer purchases them separately. This is done to

have one product capable of everything and selling it to different companies. For

example a company might want to use only parts of a product. They do not want

additional capabilities and therefore ask for a cheaper version. They can get this by

restricting functionalities. Of course these settings must be secured as the customer

could re-enable the full functionalities without having paid for them.

Configuration of a product to the users environment must be accessible by the

user. These settings can be custom policies for communication (with the Internet),

changing of cryptographic keys to be able to secure communication, setting a sensor

to different modes in order to get better performance, changing the operational

mode of actuators, setting up user accounts with elevated privileges, to name a few.

These configurations must certainly be secured as well. Therefore the privileged

users need to authenticate themselves to the device they want to configure - usually

this happens by showing knowledge of a certain secret (a password). As the devices

may be connected to a terminal over an insecure channel, the communication must be

secured against intruders as they could get hold of the password as it is transmitted.

This in turn requires the use of an encrypted channel.

1.3.1 Why Using Passwords

In order to use computers or change the operational mode of machinery, the opera-

tors need to authenticate themselves. This authentication gives them permission to

operate the device in a certain manner. As different users have different needs why

they want to use a device, different users get different levels of access. For example

a normal user can see some operational data and an administrator is also allowed to

change the mode in which the machine operates. As the users need to log into an

account to get the needed privileges to operate a device, they need to prove their

identity. The simplest way to give such a proof is to show that the user has knowl-

4

1 Introduction

edge about a shared secret. As this method of authentication uses passwords it is

called password-based authentication. This pass-phrase should be kept a secret to

ensure that only the authorized persons get access to critical operations. Therefore

it should not be written down somewhere. That in turn means, that the passwords

needs to be memorable.

1.3.2 What To Consider Using Passwords

As humans are not particularly good at remembering a random sequence of charac-

ters, numbers and other special characters, passwords are normally constrained to

be words. With a dictionary attack these passwords can be obtained easily [BPR00].

To be more secure the first letters of a sentence can be taken as a pass-phrase. To get

additional entropy in this password some letters can be replaced by similar-looking

numbers or other characters (leetspeak). This gives a little amount of entropy for

the password, but not as much as a complete random sequence of characters. It

is still very probable that the password is a sequence of lower-case letters of the

alphabet which are in the American Standard Code for Information Interchange

(ASCII)-table at positions 97 to 122. Even with a random sequence of characters

one only uses letters 20 to 126 of the 256 possible 8-bit characters.

1.3.3 Why Exchange Keys

For others to read encrypted data they first need to decode it. The decoding is done

using a publicly available algorithm. This means that the information that secures

the data has to come from somewhere else: the key. Possessing this key enables the

holder to decrypt the message. If the key is sent with no protection, anyone who

captures both, the key and the message, can read it. Therefore special key-exchange

or key-agreement procedures are necessary to securely exchange key-material over

the insecure medium ”Internet”.

1.3.4 What To Consider Exchanging Keys

When exchanging secret material like cypher-keys, one should always use methods

that assure that the transmitted secret stays secret and secured. One of the best

ways to securely give secret material to another person is to hand over the material

in a personal meeting. As this cannot be done in the Internet, other methods need

to be used. These methods must consider that, in the Internet, the communication

is transmitted over many nodes where some of them may be compromised and also

send the data to unauthorized persons. This means that an algorithm, which trans-

mits secret data, must secure the secret even if the whole communication is stored

5

1 Introduction

and analyzed by an unauthorized user.

The key-exchange should also provide measurements to authenticate the communi-

cation parties. This is done to detect if an adversary reroutes the communication

and places himself in the middle of the communication. In this scenario the ad-

versary can not only listen to the whole communication but can also change every

data-packet at will. This is called a man-in-the-middle attack.

1.4 Password-based Authentication

As described previously, passwords are used as a simple way to prove that a person is

the one who he claims to be by showing knowledge of a shared secret. As passwords

are used to authenticate a human operating a machine, this human has to hold the

knowledge. When using passwords to authenticate oneself against someone else on

a remote place, the secret has to be transmitted to the other party. This implies

that the knowledge has to leave the communication device in some form - either in

plain text or encrypted. A better way to authenticate oneself is to use the password

as a seed to generate a key which is then transmitted. The remote party uses the

same password to generate the second side of the key exchange protocol. When the

protocol is finished successfully both parties have a session key that is generated by

the password of the user. If the password is wrong (the user is not authenticated) the

key will not match and the messages cannot be decoded. This method for remote

authentication is a simple approach to use a password to generate an authenticated

communication with another party whilst the password does not need to leave the

communication-devices.

1.5 Exchanging Keys

Cryptographic keys are the fundamental building blocks that enable the secure data

transfer over an insecure medium - the Internet. They provide not only access to

this data, they can also enable any person to verify the origin and integrity of the

data. These keys can also represent the owner of every secret transferred over the

Internet. Therefore keys are also used to authenticate the communicating parties

against each other.

If encrypted data is transferred to another party, this recipient should be able to

decipher the message. Therefore a key is needed. For bigger amounts of data a

symmetric cryptography is used. That means that the same key is used to en- and

decipher the message. But this requires the sender to also transmit the used key to

6

1 Introduction

the recipient. As the information about the key needs to be transmitted over many

nodes to the recipient the key also needs to be encrypted. This may seem like a

chicken-egg-problem: the data is encrypted and the key is also encrypted - so we

also need a key to decrypt the key. But also this key needs to be secured. This can

be solved by using a different cryptographic style - asymmetric cryptography.

This method uses two keys. One of them is open to the public, the other one

is secret. A message encrypted with one of these keys can only be decrypted by

the other. This method is is more complex regarding computational effort and is

therefore only used for small amounts of data - like a key.

1.6 Contribution of the Thesis

Within the IoSense project this thesis is located within the TrustWorSys demonstra-

tor. An overview of this demonstrator is depicted in Figure 1.1. The marked region

in this picture is where the thesis gives its contribution. Its main focus is on the “Se-

curity and Trust” aspect of the communication between the elements. To establish

trust between the electronic device (smart sensor) and the user a password-based

authentication scheme is used. With the use of the implemented protocol mutual

authentication can be achieved. The security of the communication between the

smart sensor and the user is achieved with a Diffie-Helman key exchange. The aim

of the thesis is to perform the key exchange and the authentication in one step.

This thesis gives a detailed view on password-based authentication techniques and

how the authentication is done. It furthermore builds a concept on how the au-

thentication step can be used while exchanging cryptographic keys. Furthermore, a

library for password-based authentication using the asymmetric Elliptic Curve Cryp-

tography (ECC) is built. This library should be easily portable to an Infineon-type

cryptocontroller. The prototypical implementation uses the OpenSSL cryptolibrary.

This implementation in C++ features many aspects that are expected of authen-

tication processes - e.g.: supporting multiple connections, multiple curves, and the

change of passwords, and - of course - securely using the passwords.

To get the implemented code running on the cryptoprocessor and using the

hardware-accelerations that are featured in the processor, the ECC-specific com-

mands need to be changed to those that use the processor-specific cryptolibrary.

An interface between the processor-specific commands and the OpenSSL library is

implemented to be able to test the code. This version of the protocol contains all

features that are available in the previous version.

7

1 Introduction

Figure 1.1: The TrustWorSys Demonstrator overview. The marked region is where this thesis
is located.

The generated code is then transferred to the tool that creates the code that can

be flashed to the cryptoprocessor. To be able to test the implementation a simu-

lation software for the cryptoprocessor is used. In the version that is used on the

simulation, only the functions for the machine-part are used, as the use case defines

that the cryptoprocessor is on the machine-side. To be able to communicate with

the protocol-implementation, Application Protocol Data Units (APDUs) are defined

and the communication is implemented.

The demonstrator consists of a simulation for the cryptoprocessor running the gen-

erated code that is communicating with the computer that is running a user-side

interface. The demonstrator is then able to communicate with the cryptoproces-

sor via the defined APDUs. It is able to perform the authenticated key exchange,

change the name of the machine, configure the users of the machine, and perform

an authenticated echo-request as a dummy operation.

8

1 Introduction

1.7 Outline

In Chapter two related work on the topic of password-based authentication is an-

alyzed. This chapter starts by motivating an authenticated key exchange and ad-

dresses security challenges, linked to authentication, that arise in the “Internet of

Things”. This chapter further gives an introduction to the commonly used crypto-

graphic primitives and algorithms. At the end of this chapter the necessary prereq-

uisites are described.

Chapter three is dedicated to describe the design of the demonstrator as a whole,

the authentication-process, the key-exchange algorithm, and the evaluation of the

performance of the algorithm. Furthermore, the developed designs of the imple-

mentation iterations are described. It begins with an analysis of different scenarios

where the thesis’ contribution can be used.

The fourth Chapter focuses on the details of the implementation. This chapter also

describes the used implementation environments and the different implementations

of the algorithm in each development iteration. Key points in this chapter are the

authentication and the key exchange. It furthermore describes the used algorithm

in more detail and gives better insight into the reference implementation.

The results of the performance evaluation process are described in Chapter five. In

this chapter the evaluation process is described and the results are depicted. The

chapter concludes with a Interpretation of the found results.

In the next chapter, Chapter six, a prospect into future work is given. The main

focus is the combination of this thesis’ results with the results of other theses within

the same or related projects. Furthermore, the goal of the development within the

project is described.

This thesis ends with Chapter seven. In this chapter a conclusion of the whole work

is given.

9

2
Related Work and Background

This chapter addresses works that are done on related topics to password-based au-

thentication and key exchange. It begins by describing the process of key agreement

and the basics of password-based authentication. With those sections the next one,

which describes the authenticated key exchange, is motivated. After that the topic

of “Internet of Things” and the security issues that arise with that are described.

Furthermore, the mathematical background, for the used primitives in cryptography

and key exchange, is described. At the end of this chapter the necessary prerequi-

sites, to understand the remainder of this work, are described.

2.1 Related Work

In this section the problems of authentication and key agreement in the “Internet

of Things” are described. To have a better understanding of the topic key agree-

ment and password-based authentication are explained beforehand. With that the

authenticated key exchange, which is used in many IoT-systems, is motivated. Fi-

nally the security issues, linked to authentication, in the “Internet of Things” are

presented.

2.1.1 Key Agreement

Since ancient times, messages have been encrypted. The method of encrypting the

data has changed often since then. But the problem to exchange the secret material

10

2 Related Work and Background

for deciphering the message has stayed the same. In the beginning the key was

attached to the message and it was hoped that no one would guess what to do with

that. Or it was also a seemingly random string of characters that blend in with

the encrypted material. Only when you know how to interpret the received data,

one could decrypt the received text. This symmetric cryptography brings the capa-

bilities of encrypting large amounts of data with comparably small computational

effort. As the methods of encrypting data get standardized one cannot rely on the

obscurity of the key-text-concatenation to keep messages secure. This implies that

the key has to be sent to the receiver with a different method. This can be a personal

meeting where the secret, used to encrypt data, is handed over to the receiver, or

using a different communication channel. To get better security the key should be

changed after every conversation. To do this one could send the next key within

the last conversation. That, on the other hand, implies that, if the encryption is

broken once, all the following conversations can be decrypted as the key is then

known by the adversary. To solve this problem a key agreement must be performed.

A well-known key agreement protocol invented is by W. Diffie and M. Hellman in

[DH76]. This method is based on the assumption that it is infeasible to calculate the

discrete logarithm of big numbers. In their protocol the two communicating parties

agree publicly on a basis g and a modulus p. Additionally they choose a secret

number x or y. Both parties calculate X = gx mod p or Y = gy mod p respectively.

These numbers can then be transmitted. As it is currently not possible to calculate

gx·y mod p in a reasonable amount of time if x and y are big numbers and only X

and Y are known. This problem is called the Computational Diffie-Hellman problem

(Section 2.2.6).

A modern implementation of the Diffie-Hellman key agreement protocol is the El-

liptic Curve Diffie-Hellman (ECDH). In this method every user generates a Elliptic

Curve key pair. The public key is distributed. The shared secret between two parties

is the multiplication of the own private key with the public key of the other entity.

Because the public key can be linked to a certain person authentication is given.

This implies that in the ephemeral version of ECDH (ECDHE) the authentication

must be done in another way.

The generated shared secret can then be used directly as a key to use cryptographic

functions. But in [LMQ+03] it is recommended to use a key derivation function on

this secret to remove weak bits that appear during the Diffie-Hellman key agreement.

2.1.2 Password-based Authenticaion

W. Diffie and M. E. Hellman stated in [DH76] that:

The problem of authentication is perhaps an even more serious barrier to

11

2 Related Work and Background

the universal adoption of telecommunications for business transactions

than the problem of key distribution. Authentication is at the heart of

any system involving contracts and billing. Without it, business cannot

function.

This is not only true for businesses, but for almost every interaction that use digital

parts. We need to authenticate ourselves against our cell phone, the mailserver,

the router at home, the computer(s) and machinery at work, to name a few. Most

of these systems rely on the use of passwords (or PIN codes). These secrets must

be secure as they allow anyone to impersonate the owner. These passwords must

therefore not be written down but remembered. That makes them an easy target

for a dictionary attack. To prevent this from happening and to empower people to

generate secure passwords the United States Computer Emergency Readiness Team

(US-CERT) provides a guideline to create a secure passphrase on their website2. In

this work the authors mention the most common mistakes and offer remedies. They

further claim that an attacker can gain information on passwords with every other

one. That implies that there is no such thing as a “less important” password and

that all have to be made as secure as possible. One can think now, that the secure

password would do a good job as a key for a cryptographic function. After all,

passwords are the most common way of authenticating oneself and, with a strong

one, performing encryption of the message should not be easier. But as S. Halevi

and H. Krawczyk state in [HK99]:

[. . .] using a low-entropy password as a key to a cryptographic function,

can transform an otherwise strong function into a weak one. Namely,

when using passwords as cryptographic keys, one makes the assumption

that these functions remain secure even when the keys are chosen from a

very small set. These assumptions are so unusual that [. . .] no one has

been able to formally define the requirements from these cryptographic

functions under which existing protocols can be proved secure.

The term “low-entropy” means that even a random string of characters uses only

the letters 20 to 126 of the 256 (= 28) possible 8-bit characters of the ASCII-table.

That means that passwords should not be used for encrypting data, only for au-

thentication. Halevi and Krawczyk show some basic approaches for password-based

authentication mechanisms:

(1) Transmission in clear: This mechanism is the classic one used in Unix systems

and in remote authentication with FTP and telnet.

(2) Challenge-response system: In this scheme the password is used to compute

2 https://www.us-cert.gov/sites/default/files/publications/PasswordMgmt2012.pdf -
accessed on 27.06.2016

12

https://www.us-cert.gov/sites/default/files/publications/PasswordMgmt2012.pdf

2 Related Work and Background

a secret function on the challenge of the server (the challenge gets encrypted with

the password as key). The server, knowing the password, can decrypt the challenge

and check if it is fulfilled. This mechanism is prone to offline attacks as the adver-

sary knows the challenge and can try to guess the password.

(3) One-time passwords: Using these with a challenge-response system avoids

the password-guessing attack by replacing the key after every use. This however,

leaves the user with the inconvenience of carrying a long list of one-time passwords.

Later on, the authors propose mechanisms to provide additional functionalities such

as mutual authentication, authenticated key exchange, and user-identity protection.

There are many algorithms that use a password for authentication. One of them is

proposed by M. Peyravian and N. Zunic in [PZ00]. This protocol is especially well

suited for microcontrollers as it does not use any encryption at all. The only cryp-

tographic method used is a collision-resistant hash function H. In this protocol the

user generates a random number (ru) and sends it to the server with his username

(un). The server replies with another random number (rs). The user calculates the

hash H(H(un, pw), ru, rs) and sends the result to the server. The server, knowing

the used hash with the username and password (pw) (H(un, pw)), can verify the

message and grant access. This very simple method, depicted in Figure 2.1, also

complies with a secure storage of the password as proposed by the National Insti-

tute of Standards and Technology (NIST) in their Guide to Enterprise Password

Management (Draft)3. This document also describes the “salting” of hashes, as this

decreases the chance of a birthday- or dictionary attack with precomputed hashes.

This method of storing the passwords must be done because hardware-security mod-

ules are not feasible for storing many passwords.

3 http://www.tier3md.com/media/800-118.pdf - accessed on 27.6.2016

13

http://www.tier3md.com/media/800-118.pdf

2 Related Work and Background

Figure 2.1: Lightweight authentication protocol. [PZ00]

2.1.3 Authenticated Key Exchange

With the knowledge from the preceding sections it comes easy to see that in the

future of the “Internet of Things”, and especially within the industrial context, we

need encryption of the data and therefore key exchange mechanisms. Furthermore,

authentication of users, or in general communication parties, is of high priority. As

we have seen, many of these futuristic applications use microcontrollers as their com-

puting element. They have limited calculation power. Therefore an efficient way of

combining authentication and the secure exchange of keys must be used. A method

that fulfills the criterion was proposed by S. M. Bellowin and M. Merrit in [BM92]

in the year 1992. This protocol is called the “Encrypted Key Exchange”-protocol

(EKE). They show the use of this protocol with various asymmetrical cryptography

algorithms like RSA, ElGamal, and exponential key exchange. At this stage the

proposed protocol uses six messages between the parties to perform a secured and

authenticated link. It starts by symmetrically encrypting the public key and session

key with the password as a key. The authentication is therefore done as only the

two parties know the password. Many other variants of that protocol are proposed

in the literature such as [BR00], [KI03], and [Kra03].

In “The AuthA Protocol for Password-Based Authenticated Key Exchange” by M.

Bellare and P. Rogaway [BR00] the public RSA or ECC key is encrypted with a key,

derived from the passwords and parties names, and sent to the other party. With

that a master key and session keys can be calculated. They claim that this pro-

14

2 Related Work and Background

tocol is secure against dictionary attacks and the “Denning-Sacco attack” [DS81],

provides perfect forward secrecy, and more. The latter protocol proposed by K.

Kobara and H. Imai in [KI03] calculates another key with the password and another

generator (a randomly chosen number or point on the ECC-curve). With this key

the public key is masked. On the other side the inverse mask can be calculated and

the Diffie-Hellman key exchange can be finished.

In more recent years the TLS-SRP (Transport Layer Security - Secure Remote Pass-

word) ciphersuite was created. This is an augmented password-authenticated key

agreement (PAKE) protocol that works with values derived from, in advance shared,

passwords. It was proposed in [TWMP07] by Taylor et. al. This specific protocol is

designed to be cryptographically secure with weak passwords as an eavesdropper or

Man-in-the-Middle cannot obtain enough information to guess a password without

further interaction with the users.

In [DOW92] W. Diffie, P. C. Oorschot and M. J. Winter define that:

A secure protocol is a protocol such that the following conditions hold

in all cases where one party, say Alice, executes the protocol faithfully

and accepts the identity of another party:

� At the time that Alice accepts the other party’s identity (before she

sends or receives a subsequent message), the other party’s record of

the partial or full run matches Alice’s record.

� It is computationally infeasible for the exchanged key accepted by

Alice to be recovered by anyone other than Alice and possibly the

party whose identity Alice accepted. (This condition does not apply

to authentication without key exchange.)

In addition to this definition of a secure protocol other desirable characteristics for

a cryptographic protocol are: perfect forward secrecy, direct authentication, and no

timestamps. That means that the exchanged messages should stay secret even if

the long-term secret key is disclosed, the authentication should be established at the

end of the protocol run - and not be done with a subsequent protocol, and it is not

necessary for the communicating parties to have (synchronized) clocks.

These traits are found in the SPAKE (Simple Password-Authenticated Key

Exchange)-protocol proposed by M. Abdalla and D. Pointcheval in [AP05]. This

protocol performs a Diffie-Hellman key exchange with the messages masked using

the authentication information. This protocol is not only secure by the definition

above, but also efficient as it only needs two messages to be exchanged to perform an

authenticated key-exchange. M. Abdalla states in a later published paper [Abd14]

that:

15

2 Related Work and Background

[. . .] the simple password-authenticated key exchange protocol [. . .]

to which we refer as SPAKE [. . .] is among the most efficient PAKE

schemes based on the EKE protocol.

This protocol relies on the random oracle protocol as a key derivation function is used

to generate the session key out of the exchanged credentials. Therefore, it cannot

be secure in the standard model of cryptography. A better, but computationally

more expensive) protocol is the Gennalo-Lindell PAKE protocol [GL06]. This uses

additional public key cryptography to get the added security in the standard model.

2.1.4 Internet of Things

The term “Internet of Things” (IoT) describes a vision where most of the everyday

objects are connected with each other over the Internet. This was proposed by Mark

Weiser in the 1991 Article “The Computer for the 21st Century” [Wei91]. He and

his colleges proposed hundreds of computers in a single room, all connected with

each other, performing tasks to ease everyday life. It is estimated that by 2020 the

number of connected devices is about 50 billion. In 2008 the amount of connected

devices surpassed the human population. Within this world humans interact with

objects and these objects report their state to other objects. On a small scale that

can be that the flower pot senses that the soil is too dry. The pot communicates

that information to the phone of the owner, which should refill the water. Or the

pot sends the information to an automated watering system which acts accordingly.

This vision has many vulnerabilities and security challenges.

Cisco Systems proposed a framework for securing the IoT in 4. In this scheme the

authentication of IoT machinery (embedded sensors or endpoints) against the in-

frastructure. The machines can authenticate themselves with X.509 certificates, the

MAC address or some sort of hardware trust anchor. The endpoint, typically a

human user, can be identified by human credentials like a fingerprint or username

and password. On top of the authentication authorization must be accomplished to

form a trust relationship between the machine and the endpoint. As a third layer

of the secure IoT framework network enforced policies come to use. This layer is

established to transport the data securely to the endpoint. To gain visibility of the

IoT environment (and maybe controlling the ecosystem) a fourth layer is added.

This layer can perform statistical analysis to detect outliers and potential threats.

The major challenges are that the computing platforms have limited resources and

that encryption uses high processing power. Furthermore, the devices may need to

be reconfigured such that security features can be changed if they are not secure

4 http://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.

html - accessed on 27.8.2016

16

http://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.html
http://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.html

2 Related Work and Background

anymore. The lack of interest in security of IoT devices has put the IoT in a position

that does not provide reliability, safety, and security - in short dependability.

The LEAD-project “Dependable Things” 5 should devise methods to increase the

level of dependability of IoT devices. The four ongoing subprojects use WSNs as IoT

devices and perform the research with them. These and even more challenges are to

be addressed in an industrial environment (IIoT - Industrial IoT), where the data

from the connected machines can reveal company secrets. The topic of industrial

security becomes even more critical when looking at the “Stuxnet”-incident [Kar11].

This computer-worm infected a host computer and searched for peripheral devices

that are used to program PLCs (Programmable Logic Controllers). On the PLC

the worm manipulates the actuators to a point of failure whilst presenting a nor-

mal state at the superordinate control instance. This incident was a wakeup call

for many industries that had seen security as an afterthought and add-on to their

processes.

This problem is tackled in the doctoral thesis of C. Lesjak in [Les16] and the re-

lated publications [LRH+14], [LRB+14], [LHH+15], [LHW15] and, [LB16] from the

ARROWHEAD6 project. This work describes the use of a broker-system to get

maintenance data from the factory to the device vendor. In this work a mediator

was attached to the industrial machine. This mediator encrypts the required data

and sends it to the broker. There the snapshots from all customers of a vendor get

collected. To ensure that the device sends only the maintenance data, the factory

owner can request the own data. The concept further ensures that any other com-

pany cannot read data from potential competitors.

As the literature shows Near Field Communication (NFC) is a promising technology

for the IoT. Due to its short range it does not interfere with other communication

in the vicinity. Furthermore, the data rate is sufficient to transmit the required

messages in a reasonable time. NFC is also used as a tool to exchange keys for

another connection with higher bandwidth like WiFi. This short-range out-of-band

configuration ensures the authenticity of the other device whilst the key exchange

is inaudible to eavesdroppers on the high-bandwidth channel. The reconfiguration

of the NFC tag yields weak spots if the user or the tag are not authenticated.

To counter that problem J. Baek and H. Y. Youm present a lightweight protocol

for authentication against NFC tags in [BY15]. Their scenario describes the mali-

cious reconfiguration of a NFC tag to infect smartphones, steal data, and perform

phishing and smishing (phishing over SMS). Other protocols try to secure the data

transmission of NFC. The technology proposed by R. Jin and K. Zeng in [JZ15]

secures the communication at the physical layer of the OSI-stack by modifying the

5 https://www.tugraz.at/projekte/dependablethings/home/ - accessed on 29.8.2016
6 http://www.arrowhead.eu/

17

https://www.tugraz.at/projekte/dependablethings/home/
http://www.arrowhead.eu/

2 Related Work and Background

field strength randomly during the transmission. This protocol seems to be well

suited to counter most attacks. One violation this protocol cannot handle is in the

case that the reader itself is compromised. This is especially dangerous in case of

a payment system based on NFC. The protocol by O. Jensen et. al. in [JGQ16] is

claimed to be able to counter that form of attack by performing a challenge-response

protocol between the NFC tag and the backend-server (at the bank).

2.2 Background

This section describes the mathematical background for different cryptographic

methods and the used cryptographic primitives. Furthermore, the most notable

parts of the described mechanisms are pointed out. A good reference to start with

cryptography is [PP09]. Another very useful source for Elliptic Curve Cryptography

is [CFA+05].

2.2.1 Cryptography

A cryptographic scheme should have the following security features:

� Authentication: An efficient way to authenticate the creator of a message is

by signing it. This is done by calculating a hash of the message and encrypting

it with the private key. As everyone can have the public key it is easy to decrypt

the hash. If it is consistent with the digest calculated with the message the

author is fixed.

� Data integrity: This term explains that the received data should be the

same as the sender intended it to be. This can be achieved by calculating a

message digest. If something on the message changed, either through an error

in the communication or by an attacker, the digest would show this.

� Data security: With the use of (symmetric) cryptography the data can be

made secure against eavesdroppers. Even if the eavesdropper gets hold of the

message he cannot decipher it.

� Anti-tampering: A temper-resistant message can be created by encryption,

and authentication. In this way the message is secured against an attacker

that can manipulate the message. But he cannot encrypt the message digest

in the way the intended “author” could.

� Anti-counterfeit: This trait is gained with asymmetric cryptography. Only

the author can encrypt the message digest with his private key.

18

2 Related Work and Background

In addition to those features the “Open Group” proposed in the “OISM3” standard

an operational definition of security objectives. These are confidentiality, integrity,

availability, and non-repudiation. These terms can be linked with the features above.

Confidentiality and integrity can be gained with data security and -integrity. Avail-

ability describes the fact that the message should be decipherable at any time and

non-repudiation can be achieved with the use of a certificate and public-key cryp-

tography. The certificate is signed by a trusted third party and links the keys to a

dedicated entity.

2.2.2 Symmetric Cryptography

Symmetric Cryptography is a method to en- and decipher messages using the same

key. An early example for this method was the Caesar-cipher. In this method the

secret key was a number by which the letters were shifted [Kip06].

A common and widely used method is the Data Encryption Standard (DES). As

the length of the key is only 56 bit it is considered as not secure enough. Methods

to increase the keylength are for example the Triple-DES (TDES or 3DES). In

October 2000 the successor for DES - the Advanced Encryption Standard (AES) -

was announced by the National Institute of Standards and Technology (NIST).

The Data Encryption Standard

The DES-scheme takes the input, splits it in two equally sized blocks and performs

16 Feistel-rounds. Each of these rounds looks as follows: The input on one side

gets expanded to 48 bit. Then it gets mixed (XORed) with the subkey of this

round. After that the 48 bit get split into eight 6-bit blocks. These blocks are then

transformed to four bits each. The result gets rearranged by a fixed permutation.

The next step is the XOR-ing of the output with the data from the other side. As

a last step the two sides get swapped.

The Advanced Encryption Standard

The AES-scheme is based on a substitution-permutation network. The network gets

repeated 10 to 14 times, based on the key-length. Each repetition follows the order:

1. Form a n-by-n block.

2. Replace each byte of the block by another one based on a non-linear function.

3. Shift the rows of the block to avoid that columns are independent.

4. Multiply each column by a fixed polynomial.

5. XOR the round key to the data.

19

2 Related Work and Background

In the first round only the last step is performed, in the last round all but the third

(multiplication with the polynomial).

2.2.3 Asymmetric Cryptography

Asymmetric Cryptography or public-key-cryptography describes methods that use

different keys for encryption and decryption. That means that a message that was

encrypted with key A can only be deciphered with an inverse key B that is not

equal to A. This form of encryption is expensive regarding computational effort

and is therefore mostly used for small amounts of data. For example to distribute

keys (Diffie-Hellman key exchange - DH) for symmetric cryptography methods or to

digitally sign messages (Digital Signature Algorithm - DSA). Some other methods

provide both functions. These are for example the ”Rivest, Shamir and Adleman”

(RSA) and ”Elliptic Curve Cryptography” (ECC).

Rivest, Shamir and Adleman

The security of RSA is based on the difficulty of factoring the product of two large

prime numbers - the factoring problem. When using RSA the user generates two

keys (one public and one private) and an auxiliary number. The auxiliary number

is the product of the used primes and is the divisor in the modulo operation. One

of the keys is a number that is coprime (only integer that divides them is 1 7) with

the totient (Euler’s totient function 8) of the divisor. The other key is the modular

multiplicative inverse to the first key.

To encrypt a message one has to take the message to the power of the key modulo the

divisor. The decryption is the same operation with the private key as the exponent.

Elliptic Curve Cryptography

ECC is based on the algebraic structure of elliptic curves over finite fields. The

problem of discrete logarithms on elliptic curves is more difficult than normal, there-

fore the key-length can be smaller to reach the same amount of security. Thereby

also the calculation-time is reduced. The curve is represented by the formula

y2 = x3 + a · x + b mod p where 4 · a3 + 27 · b2 6= 0. There are 6 parameters

for an ECC-system:

1. p: Prime, Defines the field in which the curve operates. All operations are

made modulo p.

2. a, b: Integers, Define the curve.

7 https://en.wikipedia.org/wiki/Coprime_integers - accessed on 27.05.2016
8 https://en.wikipedia.org/wiki/Euler’s_totient_function - accessed on 27.05.2016

20

https://en.wikipedia.org/wiki/Coprime_integers
https://en.wikipedia.org/wiki/Euler's_totient_function

2 Related Work and Background

3. G: A point on the curve. The start (generator) on the curve. G is maybe given

as gx and gy, both integers.

4. n: Integer, Order of the curve generator point. This number specifies the

number of reachable points on the curve based on multiplying with a scalar.

This is only used for ECDSA (Elliptic Curve Digital Signature Algorithm).

5. h: Cofactor of the curve. This is the number of curve points.

The private key is an Integer in [1, n-1] mod n. The according public key is the point

that one gets when multiplying the generator G with the private key. Generating a

symmetric key is done by choosing a random number, multiplying this number with

the generator point and transmitting the resulting point. Also the random number

is multiplied by the public key. From the resulting point a symmetric key can be

derived.

Not all curves that fit in this scheme are safe to use. A summary of the most used

curves and their security status is shown in 9.

2.2.4 Cryptographic Hash

A cryptographic hash is a function that maps any input of different lengths to an

output (hash value, hash, message digest or digest) of fixed length. This mathemat-

ical function is designed to be a one-way-function, that means that it is infeasible to

invert the function. An ideal cryptographic hash functions has four main properties:

� The digest is quick to compute for any input.

� The digest is of uniform length regardless of the input.

� It is infeasible to generate a message from it’s hash except by trying all possible

inputs.

� It is infeasible to find two different messages with the same digest.

� Even a small change in the input changes the output so drastically that is

appears uncorrelated with the other hash value.

Hash functions are mainly used for digital signatures, message authentication code

generation, key derivation, checksums, indexing and finding duplicates and different

kinds of authentication.

Commonly used cryptographic hash functions are the MD5 and the SHA versions.

9 https://safecurves.cr.yp.to/index.html - accessed on 01.06.2016

21

https://safecurves.cr.yp.to/index.html

2 Related Work and Background

Principle of Hash Functions

There are two main methods of generating hash-values. The MD5 is based on

a custom designed structure and works with a compression-function at its heart.

A block from the input is taken and together with the previously calculated hash

placed in the compression function that works with bitwise boolean functions (AND,

OR, NOT, XOR). This is done until the last block and the last calculated value is

given as the message digest or hash. This model for calculating the hash is called a

Merkle-Damg̊ard hash function [Mer79].

Another method for obtaining hash values is by utilizing a block cypher. This is done

in SHA-1. In this method the last output is used as a seed for the key generation

for the encryption of a block. This is done using a m-to-n (bit) mapping. After the

encryption of a block the output is XORed to the original block. This is the output

for one message-block. The last output is then returned as the message digest.

This construction is called Matyas-Meyer-Oseas hash function. There exist many

other variants of this method. One uses the message-block as key and the hash is

encrypted (Davies-Meyer) another one also uses the old hash value to be XORed to

the result (Miyaguchi-Preneel).

Key derivation

Key derivation is done using a Key Derivation Function (KDF) which generates new

key material from old ones or to generate session keys (or ephemeral keys) from the

shared secret derived in the beginning of the communication. Deriving new keys is

done because if an attacker gets hold of a key he can only decipher a small portion

of the communication [PP09].

A simple way of deriving a new session key is to send a random nonce (value only

used once) to the remote party and use this as the seed for the next key. The real key

is then calculated by encrypting the nonce with the shared key (the key agreed on

in the beginning of the communication) and uses this value as the new key. Another

possibility is the use of hash functions on the random nonce. If a counter is used as

nonce the new key can be calculated by both parties independent and therefore the

no additional value needs to be transmitted.

A KDF needs to be a one-way-function. This is done because if the attacker can get

hold of a session-key he should not be able to recalculate the shared secret as this

would allow the attacker to calculate all other session keys.

22

2 Related Work and Background

2.2.5 Message Authentication Code

A Message Authentication Code (MAC) is also called keyed hash function. From

this name one can see that this is calculated using the hash of the message. A MAC

is sometimes confused with a digital signature, but a MAC is calculated with a sym-

metric cryptography whilst a signature is calculated using asymmetric cryptography.

This means that MACs do not provide nonrepudiation (after the communication no

one can blame that a certain message is from him).

MACs are used as a simple way to ensure that a message was not manipulated.

This is done by sending the message and the encrypted hash of the message. As the

adversary is not able to fake an encrypted hash he cannot manipulate the message.

With this mechanism in place message integrity is provided. In respect of this also

the authentication is provided as the other communication party has to have gener-

ated the MAC.

Another method of creating MACs is by utilizing Block Ciphers. As ciphers can

also be used to generate hash values they can also be used to generate MACs. This

is done in the same way as to create a hash. That means that the message is split

into blocks, the blocks are XORed with the previous output, this input is encrypted

using the shared secret. The output after the last block is then used as MAC. As

the key is used to generate the MAC, message authenticity is provided.

2.2.6 Diffie-Hellman

The Diffie-Hellman (DH) key exchange protocol works with two asymmetrical key-

pairs. It is a method to generate a shared secret based on the public key of one

and the private key of the other party. This key-exchange protocol is based on the

assumption that it is infeasible to calculate a discrete logarithm for big numbers as

the discrete exponentiation is a one-way-function. That means that the function

y = gx mod p can be calculated efficiently but there is no fast algorithm to calculate

x if y, g and p are given.

Computational Diffie-Hellman

The Computational Diffie-Hellman (CDH) problem describes the complexity to cal-

culate the discrete logarithm given the result, basis and modulus. The full problem

is to get the shared secret ga·b mod p given p, g, A = ga and B = gb. This means

that the CDH problem is to derive the shared DH secret. Therefore it is used in

modern key agreement schemes (Section 2.1.1).

If an adversary can break the CDH problem he can also break the Decisional Diffie-

Hellman problem. The inversion of that argument does not hold.

23

2 Related Work and Background

Decisional Diffie-Hellman

The Decisional Diffie-Hellman (DDH) problem is the described as the problem that,

given A = ga mod p, B = gb mod p and C = gc mod p and a, b and c are randomly

distributed in {0, . . . , p− 2} or c = a · b mod (p− 1), one has to decide if gc = ga·b.

The DDH problem is to recognize the DH shared secret.

2.3 Prerequisites

This section describes the prerequisites needed for the development, simulation, and

emulation of an NFC-based algorithm on a secure element.

2.3.1 Secure Element

A secure element is a type of processor that has many hardware features to protect

the system from unauthorized access. These features can be sensors that check

for incoming light signaling that the casing is breached or if an attack including

lasers is attempted. Another sensor can be sensory lines in a higher layer of the

controller hardware that can signal if a probe tries to reach data lines running from

the memory to the executing unit. Other sensors can detect if a probe has reached

the data-, clock- or other lines. Furthermore, active parts can be that the bus that

transports the data is encrypted or that execution units get their parameters in

more steps. Another active element to protect the data on the bus is the injection

of random bits on the bus. Furthermore, it might be the case that a parameter is

transmitted and in another step a mask is transmitted that must be XOR-ed to the

parameter before execution. Some secure elements also perform the execution twice

or in parallel to detect if an execution unit was faulty or attacked. Upon detection

of an attack measures to prevent the extraction of data are taken. These actions

can range from simply shutting down, over erasing the whole memory, to setting

up little explosive charges to destroy the memory for good.

Examples for secure elements are the SIM-card (Subscriber Identity Module10) of

mobile phones or satellite receivers. Many of such secure elements also feature

special execution units that are designed to perform cryptographic functions such

as signing a value, performing a key exchange, or confirming a signature.

10 https://en.wikipedia.org/wiki/Subscriber_identity_module

24

https://en.wikipedia.org/wiki/Subscriber_identity_module

2 Related Work and Background

2.3.2 Field Programmable Gate Array

A Field Programmable Gate Array (FPGA) is a kind of processor that allows for very

accurate measurements of algorithm performance. It is devised that it can emulate

almost any kind of hardware. To do so hardware-components can be configured and

connected freely. This programming is done by providing a so called “net-list” to the

FPGA. With this file the logic blocks of the FPGA get reconnected and the blocks

itself get configured. Most of the FPGAs have additionally one or more embedded

microcontrollers and the related peripherals to be able to emulate a “system on

chip”. Some even have analog components integrated to emulate a mixed-signal

system. Modern FPGAs also have the ability to be reprogrammed at runtime.

This means that at the start of a emulation one part emulates a certain part of

another processor and later in the same emulation the same part “impersonates”

a different part of the emulated processor. This can be done in order to emulate

different coprocessors. For example at first a processor for data analysis (a Digital

Signal Processor) can be emulated and, if that part is not needed anymore, the same

hardware can be used to emulate a special circuit that is needed for the application

(Application Specific Integrated Circuit - ASIC).

FPGAs are not only used in development but also in consumer products with low

market volume such as early products and niche products. This is because the per-

unit cost of an ASIC is comparatively high for small production values. An example

for such products are digital oscilloscopes.

2.3.3 NFC Technology

The Near Field Communication (NFC) technique gives a way to send data over short

distances (up to 10 cm). NFC is based on a set of standards and specifications known

as Radio Frequency IDentification (RFID) or ISO/IEC 14443 A and B. Like the

RFID standard NFC operates in the industrial, scientific and medical (ISM) radio

band of 13.56 MHz. This communication uses direct links without any networking

mechanisms such as routing. The standards specify three different data rates of

106 kBit/s, 212 kBit/s and 424 kBit/s. Most of the devices deployed only support

106 kBit/s. A data exchange format for NFC (called NDEF - NFC Data Exchange

Format) is used. These NDEF-messages can be composed of more NDEF-records

which contain the data.

As NFC is based on RFID there are passive tags which are powered through the

RF-field emitted by the reader.

The fact that an element of the communication can be powered with the EM-field

is especially beneficial as, in our case, the security controller can be run with that

energy. This is helpful as in some use cases the controller is mounted on a battery-

driven mobile device. If then the device begins to move a voltage spike could disrupt

25

2 Related Work and Background

the functionality of the controller. If the controller is powered via the EM-field a

voltage spike is unlikely to happen.

2.3.4 Commonly Used Terms

Birthday attack: This kind of attack exploits mathematics from the birthday prob-

lem. This states that it is likely for a relatively small group of persons that

two of them have their birthday on the same date. In other words it says that

for splitting a group of inputs to a larger set of outputs it is likely that at least

two of them fall into the same output category. This problem is related to the

pigeonhole principle.

Dictionary attack: This attack is used to retrieve weak passwords. These are pass-

words that come from a relatively small set of possibilities - like a dictionary.

There are also dictionaries of weak passwords available on the internet11.

Eavesdropping: When eavesdropping one tries to get to secret information shared

by others. During that the communication of the other parties is not disturbed.

Man-in-the-Middle: The Man-in-the-Middle (MitM) attack is a form of attack in

which the adversary can read or alter the content of the messages. This is a

entity that is in the middle of the communication between two parties. This

entity is able to do anything he likes to the packets. One simple form is to

alter or not deliver it.

Phishing: This term describes the attempt to get to personal data with the help of

faked websites, email, or short messages.

Pigeonhole principle: This principle states that, if one wants to classify at least

n+ 1 items into n states, at least one state contains more than one item.

PLC: A Programmable Logic Controller is a device that is intended to control auto-

mated electromechanical processes. That means that it is connected to sensors

and actuators to perform a controlling mechanism on industrial machinery.

Relay attack: A relay attack is a kind of Man-in-the-Middle attack. In this scenario

the MitM does not necessarily alter or read the messages. This kind of attack

can be used to respond like another person’s identity card. The attacker

initiates the communication, relays the messages to the other person’s card

and relays the response back to the system.

11 http://weakpass.com/ - accessed on 27.8.2016

26

http://weakpass.com/

2 Related Work and Background

Skimming: Skimming is another form of a MitM attack. Here the attacker listens to

the targets communication, records enough data to pretend to be this person.

This can also be seen as illegal copy of an electronic document.

Worm: A worm in the computer is a malware program that stands alone, unlike a

virus. This malware can do significant harm to all digital systems.

27

3
Design

Within this chapter an analysis of the project yields us a rough design. The further

analysis of this design gives specific requirements for the used protocol. Building on

top of these requirements a demonstrator is designed that contains the fundamental

functionalities to get to the vision of the motivation (Section 1.2). This chapter

furthermore describes the design of the underlying protocol for authenticated key

exchange. After the detailed description of the protocol the prototypical designs of

the implementation are explained. This chapter concludes with the design of the

evaluation phase.

3.1 Application Scenarios

This section is dedicated to describe the scenarios that are mentioned in the Moti-

vation (Section 1.2). The configuration and authentication of users is a vital part

in these schemes.

3.1.1 Future Industry

The “Industrial Internet Consortium”12 states that:

The Industrial Internet will dramatically improve productivity and ef-

ficiencies in the production process and throughout the supply chain.

12 http://www.iiconsortium.org/ - accessed on 13.9.2016

28

http://www.iiconsortium.org/

3 Design

Processes will govern themselves, with intelligent machines and devices

that can take corrective action to avoid unscheduled breakdowns of ma-

chinery. Individual parts will be automatically replenished based on real

time data.

They say that new instruments will interlink millions of things and that “customiza-

tion [of products and production processes] will be automatic”. In state of the art

industries the production flow is basically static as illustrated in Figure 3.1. The

raw material is fetched from a warehouse or some other form of storage. It is then

placed in the input of the production street. There, highly specialized machinery

treats the incoming items and forms new components, which in turn should be the

input to another process. To connect the apparatuses conveyor belts are used that

are capable of transporting a huge amount of products very efficiently. At the end

of this course the produced goods are packaged and transported to another storage

place, ready for shipment.

Figure 3.1: A static production line. Goods are transported on a certain path between ma-
chines.

With the increasing power of digital information processing and the development

of better communication possibilities, it is only natural that also the production

machinery gets digitalized. More sensors on the appliances can give better insight

on the process, thereby provide information for analysts that can work up even

better ways of producing the goods. In recent years the consumer demand for more

individualized products rose to a new level. This trend requires the company to get

more flexible in producing new components. That implies on the other hand that the

efficiency of the machinery decreases as lower production volume generates less data

29

3 Design

for analysis. Even more noticeable is the fact that for reconfiguration some machines

need to be stopped, the flow of items need to be rerouted or postponed, and the

machine itself needs to be reconfigured by a trusted engineer. This reconfiguration

does not even imply that, for some products it may be necessary to skip some

machines, or to change their position in the street. This is illustrated in Figure 3.2

Figure 3.2: New production process with “Industrie 4.0” in mind. Everything can communi-
cate with everyone and goods can be transported in any way between the machines.

With the usage of new technology this problem of reconfiguring machines and di-

recting the flow of goods between the appliances can be solved. Therefore the

apparatuses need to be equipped with means to communicate with each other. “In-

dustrie 4.0 ” is the key under which these changes are described. In the near future

the customers want to have even more possibilities to individualize their products.

To comply with these wishes, a better way to transport goods between machines and

to configure those machines needs to be developed. We envisioned a facility that

uses a completely automatized production floor. Robots carry any item between

the machines to provide a maximum of flexibility for the workflow. The robots can

furthermore configure the machines that process the items. Every machine senses

the operating parameters and can send this data to a central server that calculates

even better configurations for the next time this setting is chosen. The communi-

cation between the machines and robots should be easily usable, stable, secure, and

not interfere with the communication of other machine-robot pairs. That implies a

short-ranged, wireless transmission technology. One of the best solutions to this is

the usage of Near Field Communication (NFC).

An advantage that comes with the use of NFC is that also human engineers and

service technicians can use this technology to operate the service interface of the

30

3 Design

appliances. This means that the worker can use his NFC-enabled smartphone to

configure any machine in the facility. This furthermore improves the situation in

the way that, for machines that need an engineer in order to be allowed to start,

the technician needs to be present to give the command to start up.

On the down side of this arrangement is that any person owning a NFC-enabled

phone could read configuration data and, in the worst case, also sabotage the whole

facility. To counter that encryption and authentication processes need to be estab-

lished. With that only authorized personnel is able to decrypt the received data.

3.1.2 Smart Home

Nowadays many new homes are becoming so called “Smart Homes”. That idiom

describes a house where almost anything can be controlled by a smartphone or tablet

computer. The “COYERO” project 13 of CISC Semiconductor operates in this field

and aims to connecting people with local services, the car-charging mechanism and

their homes. The owner of such a “smart home” can for example switch on the lights

in every room, operate the door locks, change the state of the security measures, set

the heating or air conditioning, open the garage door, and much more. It is easy

to see what benefits can come with that if everything works properly. In the case

that something is misconfigured it can also make life more difficult, uncomfortable,

or even dangerous. With all appliances in the home connected to the Internet, it

is easy to imagine someone hacking into the system and generating havoc. This

attacker can set the heating and air conditioning to full load, switch the lights

randomly, lock all doors, signal the police that an intruder has broken into the

home, and blocking the real owner from getting access to all functions. Thinking

of such an attack it is just clear that all connected items must be secured and

that only authenticated persons get access to the settings. Another possibility to

ease the threat of an attacker is the use of NFC as a second way to configure the

appliances. With NFC being a short ranged communication medium it is assured

that the person attempting to change settings is directly in front of the device.

Therefore the settings made with this method are higher in priority than other

settings. The only thing needed to get everything back to order is a NFC-enabled

phone. If the configuration is already stored on the phone (for example the devices

were initially configured with the phone) the user just needs to touch the devices

and insert the password to authenticate himself. After that the connection between

the device and the phone is secured and the configuration can be transmitted. To

get an even better protection a security controller can be used as a trusted anchor

to secure all data. This controller can also be directly powered with the field of the

NFC-communication. That ensures that the high priority configuration data can

13 http://www.coyero.net/ - accessed on 13.9.2016

31

http://www.coyero.net/

3 Design

always be received.

This method of configuring devices is also favorable for “normal” homes. As an

example one can think of configuring a WiFi-router to allow a new device in the

wireless network. For some models configuring can only be done via cable. This

method is highly unpractical as it is likely that guests may want to use the network

and therefore it needs to be reconfigured every so often. With the configuration

done over NFC this can be done by adjusting the saved configuration on the phone,

authenticating the user with the administrator password, and touching the router

with the cell phone.

3.1.3 Next Generation Research

Wireless sensor networks are widely used in research. These networks consist of

sensor nodes that are connected with each other. These devices usually consist of

a microcontroller, sensors, an antenna, and a battery or a mechanism for energy

harvesting. They furthermore have the requirement to last for months without

maintenance. In research the sensor nodes get reprogrammed very often to support

different studies. Therefore, they need to be collected, connected to the computer,

the software replaced and distributed again. If the nodes support the wireless trans-

mission of a new program only one node needs to be collected. This results in a

serious vulnerability. If a node gets reprogrammed by an attacker and can trans-

mit this “update” to the other nodes the adversary can take the whole system.

To counter that we have envisioned a possibility that the nodes can be equipped

with a security controller. This controller is usually powered down in order to not

use any energy. If a software update has to be made, it can be transmitted with

NFC technology. Thereby the secure controller can be powered with the HF-field

and perform the energy consuming calculations without drawing any of the needed

energy from the other controller’s resource. As the user gets authenticated in the

update-process, a malicious attacker cannot overwrite the program. When the re-

programming is done the security controller can again be powered down to save

energy.

After that the update can be transmitted within the network to update all nodes.

To secure also this part of the update process, the secure controller only needs to

verify the received data. This can be done by calculating the hash of the received

program and comparing it with a signature generated by the first controller that got

the update from the user.

32

3 Design

3.2 Design Analysis

Within the IoSense project smart sensors are used as a central topic. This is a very

vague definition as basically everything can be seen as a sensor. Some are just that,

sensors, other can be as complex as smartphones or robots. This thesis focuses on

the configuration of such sensors.

To see the wider picture we thought of a newly designed smart factory as already

described in Section 1.2. The machines are able to communicate with each other,

the transport of items between machines is done with robots, everything can be con-

trolled by configuring the machines and robots. Furthermore, we envisioned that

with all the gathered data, optimization techniques coming from computational in-

telligence can improve the efficiency quickly. In such a factory different end products

can be designed by reconfiguring some machines and rerouting the item-flow.

Then we thought of how the configuration of robots and machines can be done. Ana-

lyzing that situation and adding knowledge we gathered from the RoboCup Logistics

League we came to a conclusion that reliable configuration of machines and robots

should be done with the Near Field Communication (NFC) technology. This is be-

cause the communication with moving machines is better with a contactless channel,

but WiFi has a very big radius and will be used by the machines to communicate

with the central computer. When the configuration data is also transferred via this

channel more latency is introduced, furthermore many machines are affected if only

one machine is to be configured. This gets even worse if the machines are configured

by the robots delivering and gathering items. The best solution is therefore a stable,

wireless communication technique with a short range or that is very directed. With

that in mind NFC is the logical conclusion.

Having that, it is just reasonable that a human operator or service technician will

configure the machines or robots. Therefore he only needs a NFC-enabled smart-

phone. With that a user can set up the configuration data on the phone (e.g. when

a machine fails and it must not be switched on until a technician inspected it) or

get the configuration from a central place - maybe the server running the optimiza-

tion algorithms. This leaves us with an (potentially untrusted) human in charge to

configure a production facility.

To face this problem we decided that a secured and authenticated channel must be

used if the technician configures the machine. As described earlier (Section 2.1.2)

passwords are a good start. With the use of the password an authentication is done,

and with a key exchange the communication is secured. As the trust on the machines

comes from a security controller - usually they have very limited resources in terms

of memory and processing speed - we wanted an efficient protocol. This protocol

should handle both, authentication and security, in one step with one exchange of

messages. A possible process of configuring a machine is depicted in Figure 3.3.

33

3 Design

(a) The user thinks of a new configuration (b) The configuration gets packaged

(c) The user has to authenticate himself against
the machine

(d) The configuration gets sent to the machine

Figure 3.3: Information flow from the idea of a configuration to the machine

34

3 Design

3.3 Demonstrator

The demonstrator application will be a form of authenticated Echo-Service. This

will be demonstrated by simulating an Infineon-type security controller running a

SPAKE-implementation as a machine, and by connecting to this microcontroller

with the computer. Figure 3.4 shows how the commands and requests are sent from

the user to the machine and how the data is sent back. This process is invoked for

every communication and is omitted in the rest of the diagrams.

Figure 3.4: Design of the communication between user and machine.

The use cases depicted in Figure 3.5 show the critical tasks to be performed by the

user and the machine. With these a communication between the two parties can be

established and the machine can be configured. In this scenario the user wants to

configure the machine to be able to communicate with another user. In Figure 3.6

the calculation of the masked public keys is depicted and in Figure 3.7 the mask is

subtracted and the second part of the Diffie-Hellman key exchange is performed.

After the calculation of the masked public keys these are exchanged. This is done

by the user sending his masked key Xs which invokes the storage of this key in

the machine. After that, the user requests the remote masked public key which is

answered by the machine with Ys as payload.

The combination of the described use-cases enables the password-based authentica-

tion and key exchange. This is performed to connect to the machine and establish

a trusted connection. This process is shown in Figure 3.8.

After this the secured connection is established and critical operations can be per-

formed. Within the context of SPAKE a critical operation is the configuration of

users on the machine. This must only be done by trusted users.

For the demonstrator another ”critical” operation is introduced. This is a com-

mand that takes user-payload and also returns payload. For simplicity reasons this

35

3 Design

Figure 3.5: Use Cases of a communication between user and machine.

Figure 3.6: Calculation of the masked public key of user and machine.

is an echo-service that can only be called if the user is authenticated otherwise the

echo-request will fail. After the user has performed the needed operations he should

disconnect from the controller.

36

3 Design

Figure 3.7: Calculation of the shared secret between user and machine.

Figure 3.8: Establishment of a secured connection between user and machine.

Initial Configuration

To be able to connect to the secure element at startup, a default configuration is

needed. With this information a first key establishment can be performed. After

that the name of the machine can be changed and another user can be defined. With

this the authentication at the first login is disabled as this information is publicly

available. This however does not disable the normal key exchange. For this an

algorithm such as ECDH (Elliptic Curve variant of the Diffie-Hellman key exchange

Section 2.2.6) can be chosen.

37

3 Design

3.4 Authentication

The selection of the communicating parties is done by using the names of the user

and the remote party - in the used case a machine. To generate a key a shared

secret (a password) must be known to both parties. This can be hardcoded in the

machine or can be transmitted to it via a secured channel or another transport

vector like VLC (Visible Light Communication). On the other side, the user-side,

the password must be entered by the engineer. Using this technique only users

which have access to the password can connect to the machine. The authentication

process does use the password in the key exchange process to calculate a mask for

the ECDH (Elliptic Curve Diffie-Hellman)-algorithm. The final key generation uses

the usernames of both parties, the transmitted masked points, the password, and a

generated pre-shared secret to generate the secure session key. If the password of

the user and the password stored in the machine does not match, the key will be

different and no communication is possible. The authentication of the user against

the machine is done by providing the right password in the process. If the password

stored in the machine and the entered do not match the resulting key is different and

the encrypted communication cannot proceed. The authentication of the machine

against the user can be obtained if for every machine a new password is used.

Another method of mutual authentication is the use of a second shared secret used

for one mask.

3.5 Key Transfer

The used algorithm to transfer the key material is the SPAKE2-algorithm proposed

in [AP05]. This method allows for exchanging a strong shared key based on a

weak shared secret e.g.: a password. This is done with a form of ECDH (Elliptic

Curve Diffie-Hellman) algorithm as introduced in Section 2.1.1. In this version the

transmitted key-point is masked with another point derived from the username of

the transmitting party and the shared secret. The algorithm works as follows:

� Given are an elliptic curve and the according parameters (a, b, p, G) and an

hash algorithm H, as well as the names of the connecting parties.

� User A selects a random number x and calculates the point X = G · x.

User B generates another Point Y in the same manner with the random number

y.

� User A calculates the mask with an given point M that is associated with user

A and the password. Xmask = M · password.

38

3 Design

User B calculates the mask Ymask with the given point N that is associated

with user B and the password in the same manner.

� User A generates the masked point X∗ = X +Xmask.

User B generates the masked point Y ∗ = Y + Ymask.

� User A sends the masked point X∗ and receives the masked point Y ∗ generated

by user B.

� User A calculates the pre-shared secret KA by subtracting the mask of user

B and multiplying the result with x. KA = (Y ∗ − N · password) · x. The

subtraction is achieved by calculating the inverse element modulo p and adding

it.

User B generates KB in the same way. In an honest execution KA equals KB.

� To generate the shared keys SKA and SKB a hash is calculated with the names

of A and B, the masked points X∗ and Y ∗, the password, and the calculated

pre-shared secrets KA or KB respectively.

The operations +, · and Inv(. . .) are used according the rules for Elliptic curves.

For better visualization of the algorithm see Table 3.1.

public Information: a, b,G,M,N,H
private shared Information: password

User A User B

x = rand() y = rand()
X = G · x Y = G · y

X∗ = X +M · password Y ∗ = Y +N · password
X∗
→
Y ∗
←

KA = (Y ∗ + Inv(N · password)) · x KB = (X∗ + Inv(M · password)) · y
SKA = H(A,B,X∗, Y ∗, password,KA) SKB = H(A,B,X∗, Y ∗, password,KB)

Table 3.1: Visualization of the SPAKE2 Algorithm using Elliptic curves.

As described in [AP05] the calculated keys SKA and SKB are the same, as, in an

honest execution of the protocol, the points KA and KB are equal. The points KA

and KB are equal to G · x · y.

The public information in this algorithm is the information about the used curve

(the parameters and the generator point), the used key-derivation-function H (in

this implementation a hash-function), and the Points associated with the user (M)

and the machine (N).

When looking at the algorithm one can see that the basic Diffie-Helman key exchange

39

3 Design

is extended with the addition of the mask before sending the public key (X∗ =

X + M · password), and the removal of the mask as first step after receiving the

remote public key (· · ·+ Inv(N · password) . . .).

Reference Implementation

When looking at the implementation found at 14 one can see that the points M

and N are chosen statically, the curve cannot be selected, the password cannot be

changed, and the user and the machine only support one connection. In a real-world

environment a single user may want to connect to multiple devices which in turn

gets used by multiple users. Furthermore, a user may be required to change the

password and the used cryptographic curve as sometimes a curve is shown not to

be secure for certain applications. Furthermore, this library uses the generated key

as an ephemeral key which means that the process of connecting needs to be done

again when the session expires. One could use the generated key as a shared secret

which is used to generate the ephemeral session keys. As a final point the authors

of the code claim to have implemented SPAKE2 from [AP05]. This is not the case

as the authors of the code do not even use the hash-function to generate the key

(SPAKE1). SPAKE2 also uses the password in the hash function to generate a

concurrent version of SPAKE.

In the implementation these features will also be found. Because of this we cannot

test the implemented algorithm against the reference.

3.6 Different Designs

In the many cycles of the Softwaredevelopment many different designs of the SPAKE-

algorithm have been developed. The class-diagram for the conceptual evaluation for

the SPAKE protocol is depicted in Figure 3.10. This implementation enables the

user to test the key exchange rigorously. It consists of users and machines which

can have an arbitrary number of connections to the other class. With the use of the

OpenSSL-EC, -SHA, and -Rand libraries the crucial parts of the SPAKE protocol

are built.

The second development-iteration uses the class-diagram shown in Figure 3.11. In

this iteration the developed software should be easily portable to the security con-

troller of Infineon. As this controller has a hardware-acceleration for Elliptic Curve

Cryptography (ECC) special data-types, defined in Figure 3.9, must be used. Fur-

thermore, classes are not supported, therefore the SPAKE-implementation has all

necessary functions in one file. The helper-functions and the implementation of the

14 https://weave.googlesource.com/weave/libuweave/+/HEAD - accessed on 17.06.2016

40

https://weave.googlesource.com/weave/libuweave/+/HEAD

3 Design

interface, which should behave like the real crypto-processor, use the functionalities

of the OpenSSL. As the secure memory is limited in size memory-optimizations have

to be made. Therefore only two connections per user or machine are possible.

Figure 3.9: Datastructure for storing long integers and the ECC related data.

The next development step is the implementation with the tool that yields the micro-

controller code. In this implementation the interface functionalities are performed

by the processor-specific asymmetrical crypto-lib. Furthermore the hashing and

random-number-generation is done by the processor. As this implementation-phase

yields code that can be executed on the hardware-controller (or the emulator), many

more optimizations are needed. This includes the minimization of memory usage as

well as the reduction of additional features. As the implementation should reflect the

communication on the machine-side, the userside-related functions are omitted. The

resulting diagram is shown in Figure 3.12. Aside from this SPAKE-implementation

additional functionalities need to be implemented to be able to communicate with

the user. To do this Application Protocol Data Units (APDUs) are defined. The

instructions for the communications are:

setMachine: With this command the machinename can be changed - if the user is

already authenticated and the connection is encrypted.

setUser: This command can configure the currently not used user. So if user 1 calls

this command user 0 is configured. The configuration-data is in the payload

of the message. Also this command can only be called if the calling user is

already authenticated and the connection is encrypted.

setUserMessage: This command is called to start an authenticated session. Within

the payload of the command the masked public key of the user is transmitted.

41

3 Design

getMachineMessage: This is the request command for the masked public key of

the machine. In the answer of the transceive-operation the requested data is

transmitted.

After all steps are taken the communication can be switched to be encrypted. The

cryptographic key can be derived from the exchanged credentials, the connecting

user and the password of the user. If any of these parameters is wrong the key is

different and the communication cannot be done encrypted. If this happens the

authenticated key-exchange needs to be performed again.

42

3
D
esign

Figure 3.10: Software design for the conceptual evaluation of the SPAKE protocol.

43

3
D
esign

Figure 3.11: Software design when implementing with the processor interface in mind.

44

3
D
esign

Figure 3.12: Part of the design of the SPAKE algorithm when implementing for the microcontroller. Here only the part for the machine is
implemented.

45

3 Design

3.7 Evaluation

The evaluation of the implementation on the secure element is performed by testing

it against the prototypical implementations. The test against the reference imple-

mentation of Google cannot be performed as described in Section 3.5. As a next

step the correct functionality can be tested with defined test cases that include the

correct usage of a user and the transmission of corrupted or wrong messages. This

tests how the cryptocontroller handles corrupted data.

As another metric of the implementation, the time of the calculation is measured.

This will be done in different ways. Firstly, the time from sending the data to receiv-

ing the result is measured. Subtracting the time used for sending and receiving an

echo command gives the time the simulator spends in the calculation of the “useful”

part of the application.

Multiple measurements have to be taken to get accurate values. This is because

the laptop-computer, on which the simulation is performed on, will likely do other

tasks in the background and does not react as soon as the message arrives. To keep

the background-load of the computer low only the necessary programs should be

started.

A more accurate measurement can be done by tracking the CPU cycles the simulated

processor takes. With this information and the knowledge about the CPU-speed a

better timing profile for the heavyweight functions can be calculated.

To get an even better result of the CPU-cycles an emulator with a FPGA (Field

Programmable Gate Array) can be used. Figure 3.13 shows the setup for the cycle-

accurate emulation. The processor-netlist gives the hardware-configuration of the

security controller to the FPGA. After the hardware is set up the code for the ma-

chine application is loaded. The FPGA has an attached analog front end for the

interfaces (HF and ISO). The HF interface gets the direct input from the EM field

of the card reader. The ISO interface has the pins of the card connected to it.

As the chosen Use Case uses the NFC technology the HF interface is connected.

As a card-interface the REFPICC module connects converts the HF signal to an

EM field. Over this field the data is exchanged with the ISO14443 protocol. The

other communication partner is a card reader with a special firmware that allows

for sending any data. With the use of a proprietary protocol the reader communi-

cates with an application interface (API). This API converts between a XML stream

and the proprietary format. The user-application, which is formed from the second

prototype, communicates with the reader API.

46

3 Design

Figure 3.13: Design of the cycle-accurate evaluation.

In the simulation the code is executed in Keil’s µVision. The reader API connects to

the simulator via a network interface transmitting the APDUs. The user-application

communicates with the reader API with the same XML stream as in Figure 3.13.

47

4
Implementation

A core part of the conducted work is the implementation of the designed proto-

col. This chapter focuses on that. It shows the mathematical concept behind the

SPAKE2 protocol. Furthermore, the specific part how the authentication and key

exchange is done gets explained. After that the implementation is at the focus. The

different implementations during the development process are described. Finally the

implementation of the demo-application is analyzed.

4.1 Mathematical Concept

To evaluate the concept of SPAKE2 as described in Table 3.1, a small proof of

concept is developed. For usability reasons the used numbers are set to small values.

In Figure 4.1 the output of the mathematical concept is shown. In this figure the

curve can be parametrized on will. Furthermore, the points G (generator-point) and

M and N (points associated with the users) can be set freely. The random variables

x and y are set to 3 and 4 respectively, as well as the number generated by the

password is set to 2. This can be done as this is only a proof of concept. During the

execution of the algorithm the points XS and YS are exchanged. These points are

displayed in the plot. When calculating the rest of the algorithm the points O and K

are derived. These points need to be equal (the same key is derived). As this simple

implementation shows, the used concepts can be developed with more advanced

techniques. The next step is the prototypical implementation with OpenSSL. This

mathematical showcase is implemented using GeoGebra.

48

4 Implementation

Figure 4.1: Mathematical proof of the design of the SPAKE-algorithm.

4.2 Authenticate the User

For the authentication of the user a point associated with the user needs to be

generated or stored. The generation of such a point can be achieved by calculating

a hash-function on the username and using the digest as a number. By multiplying

the generator-point G of the curve with that number a point on the curve, defined

by the username, can be generated. The same method (hashing and using the digest

as number) can be used when multiplying the point associated with the user (or the

one associated with the machine) with the password. To not store the password

on the machine in clear text the hash-value can be stored or, even better, a secure

element with secure memory can be used to hold the data.

4.3 Key Exchange

The key exchange follows the SPAKE-algorithm shown in Table 3.1. The parties

generate a random number which is used as the private key in an ECC (Elliptic Curve

Cryptography) system. With this the user and the machine generate the public Keys

49

4 Implementation

X and Y. The points M and N are calculated by multiplying the generator-point G

of the curve with the hash of the own name. The resulting mask is then calculated

by multiplying M respectively N with the hash of the password. In this case the

hash-function is used for key expansion (generating a big number out of a small

value). The masked public key is then generated by adding the mask to the public

key. After the masked keys are sent the mask of the other party is calculated (with

the hash of the remote name and the hash of the password), inverted, and added

to the received key. The resulting point is then multiplied with the own secret key.

This is done according to the Diffie-Hellman key exchange. After this the hash of

the concatenation of the names, the masked keys, the password, and the generated

point is calculated and used as shared key.

4.4 Design Flow

In Figure 4.2 the path from the source-code to the executable file on the hardware

is shown. The C89-code consists of multiple files that implement an operating

system and the applications for the secure element. This is developed in Keil’s

µVision. With the Keil C251 Compiler the C-code is converted to the optimized

Assembly-code. The next step towards the final code is performed by the Keil A251

Assembler. This process results in an hex-file suited for the processor. The secure

element features a MMU (Memory Management Unit). Therefore, a configuration

file for the memory must be provided to a Postlocator -application. This application

defines where the used variables are placed in the memory. It also defines which

variables are placed in the RAM, ROM, or in the NVM (Non Volatile Memory -

Flash). The hex-file and the file containing the memory information are then used

by one of the three following applications:

Keil Simulator: The simulator takes the files and executes the final application on

the computer. This tool is used in the early development process as it can be

used quickly and one does not need additional hardware. The simulation is

very slow compared to the other two scenarios but features excellent debugging

possibilities.

Keil X51 Emulator: The emulation of the final application is done as an intermedi-

ate step between the simulation and the execution on the intended hardware.

The emulator connects to an FPGA board that emulates the intended hard-

ware. This process is faster and can unveil more errors. It has only limited

debugging possibilities.

SolidFlash: The SolidFlash application is used to get the hex-file to the microcon-

troller. The execution on this hardware is the fastest of the three possibilities

50

4 Implementation

but has no default debug functionalities. If one wants to debug on this hard-

ware special commands are needed to get the wanted data.

Figure 4.2: Toolchain for the software development process.

51

4 Implementation

4.5 Implementation Environments

This section describes briefly what libraries and implementation environments are

used within the implementation of the SPAKE algorithm.

4.5.1 Used Libraries

The library used in most modern crypto software on a computer is the OpenSSL-

library. This is a free library to perform Transport Layer Security (TLS) formerly

Secure Sockets Layer (SSL). This library contains the code to get, create, and save

certificates and to perform basic cryptographic functions.

Within this library many cryptographic schemes are provided. This library features

modern crypto-schemes like RSA, ECC, AES, DES, DH, SHA, X509, and many

more. Furthermore, some older schemes like MD5, Camellia, ChaCha (Salsa20),

and others are featured to be able to communicate with older systems.

As the OpenSSL library is open source, many bugs have been reported and fixed,

making it to a safe to use library. Nevertheless, some bugs can be found. The last

one was the “Heartbleed”-bug ([DKA+14]). Persons exploiting this bug could read

parts of the working memory of other computers, getting access to private data

such as cryptographic keys of certificates, usernames, and passwords. This bug was

fixed in April 2014, showing that even this well understood and widely used library

is not perfectly secure.

4.5.2 Used Applications

Eclipse C++ is used to implement the first prototypical version of SPAKE. To

perform the cryptographic challenges an OpenSSL library is needed.

The second prototype (the one that uses the microcontroller’s data types) is also

being programmed in Eclipse C++ and further developed in Microsoft Visual Studio

Express 2012. The definition of the interface and datatypes of the microcontroller

is given by Infineon. In the background the OpenSSL calculates the cryptographic

operations which are provided by the interface.

The implementation for the security controller is done using Keil’s µVision5 and

Infineon-type operating systems and emulators for the security controller. With

this simulation the cryptographic operations are calculated with a Infineon-type

crypto-library, that is fitted to the operations on the security controller.

The demonstrator is developed in Microsoft Visual Studio Express 2012 on the

basis of the second prototype. This version uses the Windows sockets from the

Ws2 32.lib library. The developed application connects to a Infineon reader with

52

4 Implementation

a simulator for the contactless interface of a smart card. This reader connects to the

simulation of the crypto-processor’s contactless interface. This simulation is done

within Keil’s µVision.

4.6 Prototypical Implementation

The first implementation in C++ is done by generating a class for users and one

for machines. The needed data for a connection is stored in a struct. The used

data for a connection is the secret number x or y, the transmitted masked Points

X∗ and Y ∗, the used curve, the username or machine-name, the hashed password

(only for the machine), and for convenience the generated KA or KB. Every user

and machine has an array of these structs for storage of the different connections.

The machine stores additionally its own name, and the user stores his username

and, for convenience, the hashed password.

In Listing 4.1 the class of the user is defined. It contains an array of “Connections”

to different machines. Furthermore, the possibilities of the user are defined with the

function headers. The machinename is then used as a key to find the connection to

the correct machine. Therefore these names must be unique.

1 class User

2 {

3 typedef struct Connection{

4 char* machinename;

5 int curve;

6 EC_POINT* X_s;

7 EC_POINT* Y_s;

8 EC_POINT* K;

9 BIGNUM* x;

10 } Connection;

11 private:

12 char* username;

13 char* hashedpassword;

14
15 Connection* connections;

16 unsigned numConnections;

17 public:

18 User();

19 User(char* user , char* pwd);

20 User(const User& u);

21 virtual ~User();

22 void changePassword(char* pwd);

23 void changeUsername(char* user);

24 char* getHashedPassword ();

25 char* getUsername ();

26
27 int setConnection(char* machinename , int curve);

28 int changeCurve(char* machinename , int curve);

29 EC_POINT* generateXs(char* machinename);

30 int generateK(char* machinename , EC_POINT* Y_s);

31 int deleteConnection(char* machinename);

32 int initConnection(char* machinename);

33
34 char* debugGetKey(char* machinename);

35 void debugPrintConnections ();

36 BIGNUM* getX(char* machineneame);

37
38 int getCurve(char* machinename);

39 };

Listing 4.1: The definition of the “User”-class

53

4 Implementation

To support multiple connections to machines but not overwrite old data due

to wrong usage the “setConnection”-function checks the current connections for

matches. This is shown in Listing 4.2.

1 int User:: setConnection(char* machinename , int curve){

2 if(curve ==0){

3 printf("User:setConnection Error: curve is not set\n");

4 return 0;

5 }

6 Connection* oldconnections = new Connection[numConnections];

7 for(unsigned i=0; i<numConnections;i++){

8 oldconnections[i]= connections[i];

9 }

10 delete [] connections;

11 connections = new Connection[numConnections +1];

12 for(unsigned i=0;i<numConnections;i++){

13 connections[i]= oldconnections[i];

14 if(connections[i]. machinename == machinename){

15 printf("User:setConnection Error: Connection already exists\n");

16 delete [] connections;

17 connections=new Connection[numConnections];

18 for(unsigned j=0;j<numConnections;j++)

19 {

20 connections[j]= oldconnections[j];

21 }

22 delete [] oldconnections;

23 return 0;

24 }

25 }

26 delete [] oldconnections;

27 connections[numConnections].X_s=NULL;

28 connections[numConnections].Y_s=NULL;

29 connections[numConnections].K=NULL;

30 connections[numConnections].curve=curve;

31 connections[numConnections]. machinename=machinename;

32 BIGNUM* r = BN_new ();

33 getRandBN(r);

34 connections[numConnections].x=r;

35 numConnections ++;

36 return 1;

37 }

Listing 4.2: A new connection gets initiated. If the machinename is already found

the operation is terminated and the old state is reset.

The deletion of a connection between user and machine is also an operation that is

necessary for complete testing of an industrial environment. The code in Listing

4.3 shows this operation. One can also see that the memory management is done

within the function. This is necessary as C/C++ does not take care of that.

1 int User:: deleteConnection(char* machinename){

2 if(numConnections ==0){

3 printf("User:deleteConnection Error: No Connections\n");

4 return 0;

5 }

6 bool found=false;

7 Connection* oldconnections = new Connection[numConnections];

8 for(unsigned i=0; i<numConnections;i++){

9 oldconnections[i]= connections[i];

10 if(connections[i]. machinename == machinename){

11 found=true;

12 }

13 }

14 if(!found){

15 printf("User:deleteConnection Error: No Connection to %s found\n",machinename);

16 delete [] oldconnections;

17 return 0;

18 }

19 delete [] connections;

20 bool deleted=false;

21 connections = new Connection[numConnections -1];

54

4 Implementation

22 unsigned added =0;

23 for(unsigned i=0;i<numConnections;i++){

24 if(oldconnections[i]. machinename != machinename){

25 connections[added]= oldconnections[i];

26 added ++;

27 }else{

28 if(oldconnections[i].X_s){EC_POINT_free(oldconnections[i].X_s);}

29 if(oldconnections[i].Y_s){EC_POINT_free(oldconnections[i].Y_s);}

30 if(oldconnections[i].K) {EC_POINT_free(oldconnections[i].K);}

31 BN_free(oldconnections[i].x);

32 deleted=true;

33 }

34 }

35 if(! deleted){

36 // printf ("User:deleteConnection Error: No connection to %s found\n",machinename);

37 delete [] connections;

38 connections = new Connection[numConnections];

39 for(unsigned i=0;i<numConnections;i++){

40 connections[i]= oldconnections[i];

41 }

42 delete [] oldconnections;

43 return 0;

44 }

45 delete [] oldconnections;

46 numConnections --;

47 return 1;

48 }

Listing 4.3: An old connection is deleted. Therefore the remaining connections must

be copied to a smaller memory.

In Listing 4.4 the generation of the masked public key by the user is shown. This

function starts by generating a EC GROUP from a curve identifier. From the

generator point (G) and the secret of the user (x) the public key (X) is calculated.

The function getPoint(. . .) generates a number based on the first parameter. This

function calculates a new point using this number, the curve parameters, and a

point on the curve as starting point. In the implementation the point on the curve

is the ordinary generator point, but as some other schemes use two generator points

on a curve, this parameter is added.

1 EC_POINT* User:: generateXs(char* machinename){

2 if(numConnections >0){

3 for(unsigned i=0;i<numConnections;i++){

4 if(connections[i]. machinename == machinename){

5 if(connections[i]. curve ==0){

6 printf("User:generateXs Error: curve not specified\n");

7 return NULL;

8 }

9 if(connections[i].X_s==NULL){

10 printf("Connection not initialized properly\n");

11 return NULL;

12 }

13 if(connections[i].Y_s==NULL){

14 printf("Connection not initialized properly\n");

15 return NULL;

16 }

17 if(connections[i].K==NULL){

18 printf("Connection not initialized properly\n");

19 return NULL;

20 }

21 EC_GROUP* c;

22 if((c=EC_GROUP_new_by_curve_name(connections[i].curve))==NULL){

23 printf("User:generateXs Error: group generating not possible\n");

24 EC_GROUP_free(c);

25 return NULL;

26 }

27 EC_POINT* G = EC_POINT_new(c);

28 if(0== EC_POINT_copy(G,EC_GROUP_get0_generator(c))){

29 printf("User:generateXs Error: copy returned with an error\n");

30 EC_POINT_free(G);

31 EC_GROUP_free(c);

32 return NULL;

55

4 Implementation

33 }

34 EC_POINT* X = EC_POINT_new(c);

35 if (0== EC_POINT_mul(c,X,NULL ,G,connections[i].x,NULL)){

36 printf("User:gemerateXs Error: Mul1 returned with an error\n");

37 EC_POINT_free(G);

38 EC_POINT_free(X);

39 EC_GROUP_free(c);

40 return NULL;

41 }

42 EC_POINT* M = EC_POINT_new(c);

43 getPoint(username , c,G,M);

44 BIGNUM* pw = BN_new ();

45 getBN(hashedpassword ,pw);

46 EC_POINT* X_i = EC_POINT_new(c);

47 if (0== EC_POINT_mul(c,X_i ,NULL ,M,pw,NULL)){

48 printf("User:generateXs Error: Mul2 returned with an error\n");

49 EC_POINT_free(G);

50 EC_POINT_free(X);

51 EC_POINT_free(X_i);

52 EC_POINT_free(M);

53 BN_free(pw);

54 EC_GROUP_free(c);

55 return NULL;

56 }

57 EC_POINT* X_s = EC_POINT_new(c);

58 if(0== EC_POINT_add(c,X_s ,X_i ,X,NULL)){

59 printf("User:generateXs Error: Add1 returned with an error\n");

60 EC_POINT_free(G);

61 EC_POINT_free(X);

62 EC_POINT_free(M);

63 EC_POINT_free(X_i);

64 BN_free(pw);

65 EC_GROUP_free(c);

66 return NULL;

67 }

68
69 if(0== EC_POINT_copy(connections[i].X_s ,X_s)){

70 printf("User:generateXs Error: Copy of X_s returned with an error\n");

71 EC_POINT_free(G);

72 EC_POINT_free(X);

73 EC_POINT_free(M);

74 EC_POINT_free(X_i);

75 EC_POINT_free(connections[i].X_s); connections[i].X_s=NULL;

76 BN_free(pw);

77 EC_GROUP_free(c);

78 return NULL;

79 }

80
81 EC_POINT_free(G);

82 EC_POINT_free(X);

83 EC_POINT_free(M);

84 EC_POINT_free(X_i);

85 BN_free(pw);

86 EC_GROUP_free(c);

87 return X_s;

88 }

89 }

90 printf("User:generateXs Error: No connection to machine %s found\n",machinename);

91 return NULL;

92 }

93 printf("User:generateXs Error: No connections found\n");

94 return NULL;

95 }

Listing 4.4: generation of the masked public key of the user.

When the generation of the masked public key (XS) is finished it is sent

to the machine and its masked key is requested. After that key is received the

shared secret (K) is calculated. The function performing that is shown in Listing 4.5.

1 int User:: generateK(char* machinename , EC_POINT* Y_s){

2 if(numConnections >0){

3 for(unsigned i=0; i<numConnections;i++){

4 if(connections[i]. machinename == machinename){

5 if(connections[i].X_s==NULL){

6 printf("User:generateK Error: Connection not initialized properly\n");

7 return NULL;

8 }

56

4 Implementation

9 if(connections[i].Y_s==NULL){

10 printf("User:generateK Error: Connection not initialized properly\n");

11 return NULL;

12 }

13 if(connections[i].K==NULL){

14 printf("User:generateK Error: Connection not initialized properly\n");

15 return NULL;

16 }

17 EC_GROUP* c;

18 if((c=EC_GROUP_new_by_curve_name(connections[i].curve))==NULL){

19 printf("User:generateK Error: group generating not possible\n");

20 EC_GROUP_free(c);

21 return 0;

22 }

23 if(0== EC_POINT_copy(connections[i].Y_s ,Y_s)){

24 printf("User:generateK Error: copy of Y_s returned with an error\n");

25 EC_POINT_free(connections[i].Y_s);

26 connections[i].Y_s=EC_POINT_new(c);

27 EC_GROUP_free(c);

28 return 0;

29 }

30 EC_POINT* G = EC_POINT_new(c);

31 if(0== EC_POINT_copy(G,EC_GROUP_get0_generator(c))){

32 printf("User:generateK Error: copy returned with an error\n");

33 EC_POINT_free(G);

34 EC_POINT_free(connections[i].Y_s);

35 connections[i].Y_s=EC_POINT_new(c);

36 EC_GROUP_free(c);

37 return 0;

38 }

39 EC_POINT* N = EC_POINT_new(c);

40 getPoint(machinename , c,G,N);

41 BIGNUM* pw = BN_new ();

42 getBN(hashedpassword ,pw);

43
44 EC_POINT* Ki = EC_POINT_new(c);

45 if (0== EC_POINT_mul(c,Ki ,NULL ,N,pw ,NULL)){

46 printf("User:generateK Error: Mul1 returned with an error\n");

47 EC_POINT_free(G);

48 EC_POINT_free(connections[i].Y_s);

49 connections[i].Y_s=EC_POINT_new(c);

50 EC_POINT_free(N);

51 EC_POINT_free(Ki);

52 BN_free(pw);

53 EC_GROUP_free(c);

54 return 0;

55 }

56 if(0== EC_POINT_invert(c,Ki,NULL)){

57 printf("User:generateK Error: Invert returned with an error\n");

58 EC_POINT_free(G);

59 EC_POINT_free(connections[i].Y_s);

60 connections[i].Y_s=EC_POINT_new(c);

61 EC_POINT_free(N);

62 EC_POINT_free(Ki);

63 BN_free(pw);

64 EC_GROUP_free(c);

65 return 0;

66 }

67 EC_POINT* Ki2 = EC_POINT_new(c);

68 if(0== EC_POINT_add(c,Ki2 ,Ki,Y_s ,NULL)){

69 printf("User:generateK Error: Add1 returned with an error\n");

70 EC_POINT_free(G);

71 EC_POINT_free(connections[i].Y_s);

72 connections[i].Y_s=EC_POINT_new(c);

73 EC_POINT_free(N);

74 EC_POINT_free(Ki);

75 EC_POINT_free(Ki2);

76 BN_free(pw);

77 EC_GROUP_free(c);

78 return 0;

79 }

80 if (0== EC_POINT_mul(c,connections[i].K,NULL ,Ki2 ,connections[i].x,NULL)){

81 printf("User:generateK Error: Mul2 returned with an error\n");

82 EC_POINT_free(G);

83 EC_POINT_free(connections[i].Y_s);

84 connections[i].Y_s=EC_POINT_new(c);

85 EC_POINT_free(N);

86 EC_POINT_free(Ki);

87 EC_POINT_free(Ki2);

88 BN_free(pw);

89 EC_GROUP_free(c);

90 return 0;

91 }

92

57

4 Implementation

93 getRandBN(connections[i].x);

94 EC_POINT_free(G);

95 EC_POINT_free(N);

96 EC_POINT_free(Ki);

97 EC_POINT_free(Ki2);

98 BN_free(pw);

99 EC_GROUP_free(c);

100 return 1;

101 }

102 }

103 printf("User:generateK Error: No connection to machine %s found\n",machinename);

104 return 0;

105 }

106 printf("User:generateK Error: No connections found\n");

107 return 0;

108 }

Listing 4.5: With the parameters of the connection and the received key the shared

pre-secret (K) is calculated.

The Listing 4.6 shows the definition of the “Machine”-class. For connecting to the

user the machine needs to store other information (not only the username but also

the (hashed) password). The other function definitions are almost identical to the

ones from the user.

1 class Machine

2 {

3 typedef struct users{

4 char* username;

5 char* hashedpassword;

6 BIGNUM* y;

7 int curve;

8 EC_POINT* K;

9 EC_POINT* X_s;

10 EC_POINT* Y_s;

11 } StrUsers;

12 private:

13 char* machinename;

14 StrUsers* users;

15 unsigned int numUsers;

16 public:

17 Machine(char* name);

18 virtual ~Machine ();

19 Machine(const Machine& m);

20
21 char* getMachinename ();

22 int addUser(char* name , char* hpwd);

23 int deleteUser(char* name);

24 int updateUserPwd(char* name , char* hpwd);

25 int setUserCurve(char* username , int curve);

26 EC_POINT* generateKey(char* username , EC_POINT* X_s);

27
28 char* debugGetKey(char* username);

29 void debugPrintUsers ();

30 BIGNUM* getY(char* username);

31 };

Listing 4.6: The definition of the “Machine”-class

The establishment of new connections and the deletion of old ones, and the

calculation of the own public key and of the preshared secret is similar to the ones

of the “User” (Listings 4.2, 4.3, 4.4, and 4.5). The code for the calculation of the

preshared secret and the session key can be found in the Appendix Section A.1,

Listing A.2.

The calculation of the session key is done the same way by the user and the

machine. The code for that is shown in Listing 4.7.

58

4 Implementation

1 char* Machine :: debugGetKey(char* username){

2 if(numUsers >0){

3 for(unsigned i=0;i<numUsers;i++){

4 if(users[i]. username == username){

5 if(users[i].X_s!=NULL && users[i].Y_s !=NULL && users[i].K != NULL && users[i].curve !=0){

6 char* o = new char[SHA224_DIGEST_LENGTH *12+6];

7 char* md = getHash(users[i]. username);

8 strcpy(o,md);

9 strcat(o,"-");

10 delete []md;

11 md=getHash(machinename);

12 strcat(o,md);

13 strcat(o,"-");

14 EC_GROUP* c;

15 if((c=EC_GROUP_new_by_curve_name(users[i]. curve))==NULL){

16 // printf (" Machine:debugGetKey Error: generating group not possible\n");

17 EC_GROUP_free(c);

18 delete [] o;

19 return NULL;

20 }

21 delete []md;

22 md = getHash(streamPoint(c,users[i].X_s),NULL ,true);

23 strcat(o,md);

24 strcat(o,"-");

25 delete []md;

26 md = getHash(streamPoint(c,users[i].Y_s),NULL ,true);

27 strcat(o,md);

28 strcat(o,"-");

29 delete []md;

30 md = getHash(users[i]. hashedpassword ,NULL ,false);

31 strcat(o,md);

32 strcat(o,"-");

33 delete []md;

34 md = getHash(streamPoint(c,users[i].K),NULL ,true);

35 strcat(o,md);

36 o=getHash(o,NULL ,true);

37 EC_GROUP_free(c);

38 delete []md;

39 return o;

40 }

41 printf("Machine:debugGetKey Error: Not all steps to generate key taken\n");

42 return NULL;

43 }

44 }

45 printf("Machine:debugGetKey Error: No connection to user %s found\n",username);

46 return NULL;

47 }

48 printf("Machine:debugGetKey Error: No connections found\n");

49 return NULL;

50 }

Listing 4.7: Calculation of the session key as done by the machine. It is calculated

the same way by the user.

To establish a connection between an user and a machine the user needs to get the

memory for the saved variables and initialize the values. The machine also needs

to acquire the used memory, initialize it and set the used cryptographic curve. To

perform the key exchange the user generates the X∗ (in the code XS). This is then

given to the machine which calculates the key. As a by-product Y ∗ (YS in the code)

is calculated. This is given to the user, which can complete the computation of the

key. The final key can then be calculated by concatenating the names of the parties,

the transmitted keys, the password, and the generated key. This concatenation can

then be hashed and the digest is used as key.

In our implementation the items of the concatenation are hashed at first to get an

input of fixed length.

As input to the mathematical functions on the EC-points, the algorithm uses the

names of the user and the machine. To expand these inputs the hash of the values

59

4 Implementation

is calculated and interpreted as number (this is a practical way for key-expansion).

This method yields a big enough number to be useful for ECC.

This algorithm can then be tested with many scenarios. These include the normal

use with only one user and one machine, the use of multiple users with multiple

machines, the case if a user wants to connect multiple times to the same machine,

etc. To test many different scenarios a randomized test was generated which

generates randomly valid commands and tries to use this command. One very

interesting fact is that even if a user can guess the password of another user

he cannot connect to the machine if the second user has already initialized the

connection to the machine.

One of the tests simulating normal use is shown in Listing 4.8. In this test two

users connect to two machines. They use different curves for encryption. This test

prints the session-keys from the four connections at the end. Not shown is the test

if these are equal.

1 void SPAKE_test_2 (){

2 printf("\n\nTest 2\ nnormal use\n");

3 User* u1 = new User("User1","password1");

4 User* u2 = new User("User2","@home");

5 Machine* m1 = new Machine("Machine1");

6 Machine* m2 = new Machine("Machine2");

7
8 connectUserAndMachine(u1 ,m1,NID_secp224k1);

9 connectUserAndMachine(u1 ,m2,NID_secp224k1);

10 connectUserAndMachine(u2 ,m1,NID_secp224r1);

11 connectUserAndMachine(u2 ,m2,NID_secp224r1);

12
13 performExchange(u1,m1);

14 performExchange(u1,m2);

15 performExchange(u2,m1);

16 performExchange(u2,m2);

17
18 printKeys(u1,m1 ,"11");

19 printKeys(u1,m2 ,"12");

20 printKeys(u2,m1 ,"21");

21 printKeys(u2,m2 ,"22");

22
23 delete(u1);

24 delete(u2);

25 delete(m1);

26 delete(m2);

27 }

Listing 4.8: A sample test containing normal usage.

A more rigorous test is the random generation of valid commands and sending that

to the system. This test is shown in Listing A.1.

The code for generating the machine-side of the key exchange (calculating the public

key and calculating the shared key) is basically the same as on the user-side. It can

be found in Listing A.2.

As this rigorous tests performed as expected the next step is the implementation

of the interface to of the crypto-processor. This interface should perform as the

processor but in the background the OpenSSL-library is working. With this interface

the SPAKE-implementation can be changed to work on the crypto-processor. This

60

4 Implementation

gives the advantage that the implementation stays debug-able while simulating the

crypto-processor.

4.7 Transitional Implementation

As the final implementation should be deployed on an Infineon-type cryptoprocessor,

a specification of the usable functions and used data-types had been provided. These

functions do not contain a way to invert EC-points, therefore this function had

to be developed. The prototypical implementation had to be changed to use the

provided interface and used data-types. As the software is still executed on a Laptop-

computer, the functions, which should be performed by the crypto-hardware, had

to be implemented using the OpenSSL library. Therefore a conversion from the

OpenSSL data-types to the ones used by the hardware and vice versa had to be

developed. The structure of the used datatypes is depicted in Figure 3.9.

The new data-flow looks as follows:

� The simulation calls functions provided by the SPAKE implementation (and

some helper functions to emulate the communication).

� The SPAKE implementation uses the interface and the helper functions (e.g.:

point inversion, hashing data, allocating memory, ...).

� The interface calls the helpers for converting the provided data-types to the

OpenSSL-types, uses the OpenSSL, and converts back the results.

The processor’s crypto-library supports many different ECC functions. Only the

ones needed were implemented in the interface to the OpenSSL. The code in Listing

4.9 shows the conversion from processor-specific data types to the OpenSSL ones,

the use of the OpenSSL EC-Point multiplication, and the conversion back to the

specific data structure.

1 CLIB_STATUS ECC_DHMask(ECCCPARM huge *ecccp // [in] ECC parameters , defining the

ECC curve

2 , CLONG huge *k1 // [in] Secret scalar value of party 1

3 , CLONG huge *k2 // [in] Secret scalar value of party 1

4 , AFFINEPOINT huge *P // [in] Public point provided by 2nd

party

5 , CLONG huge *mem // [in] Temporary working memory

6 , AFFINEPOINT huge *S // [out] SharedSecret ->X will be the

shared secret integer.

7)

8 {

9 BIGNUM *k_1 ,*k_2 ,*k,*a,*b,*p,*x,*y;

10 EC_GROUP *c;

11 EC_POINT* p1;

12 k_1 = BN_new ();

13 getBN(*k1,k_1);

14 k_2 = BN_new ();

15 getBN(*k2,k_2);

16 k = BN_new (); //k1+k2

17 BN_add(k,k_1 ,k_2);

18 BN_free(k_1);BN_free(k_2);

19 a = BN_new (); //ecccp ->CoefA

61

4 Implementation

20 getBN(ecccp ->CoefA ,a);

21 b = BN_new (); //ecccp ->CoefB

22 getBN(ecccp ->CoefB ,b);

23 p = BN_new (); //ecccp ->Modulus

24 getBN(ecccp ->Modulus ,p);

25 x = BN_new (); //P->X

26 getBN(P->X,x);

27 y = BN_new (); //P->Y

28 getBN(P->Y,y);

29
30 c = EC_GROUP_new_curve_GFp(p,a,b,NULL);

31 BN_free(a);BN_free(b);BN_free(p);

32
33 p1 = EC_POINT_new(c);

34 EC_POINT_set_affine_coordinates_GFp(c,p1,x,y,NULL);

35 if(0== EC_POINT_mul(c,p1,NULL ,p1,k,NULL))

36 {

37 printf("Error");

38 }

39 BN_free(k);

40 EC_POINT_get_affine_coordinates_GFp(c,p1,x,y,NULL);

41 getCLONG(x,&S->X);

42 getCLONG(y,&S->Y);

43 BN_free(x);BN_free(y);

44 EC_POINT_free(p1);

45 EC_GROUP_free(c);

46 return CLIB_STATUS_SUCCESS_UNSPECIFIC;

47 }

Listing 4.9: Implementation of the Multiplication of ECC points with a scalar with

OpenSSL. The scalar is inserted as a sum to get additional security.

The crypto-library is intended to perform operations common in smart cards.

Therefore not all operations (like the point inversion) are available to programmers.

As the implemented protocol needs an inversion step to unmask the public key, this

has to be implemented. The code performing the inversion is shown in Listing 4.10.

1 CLIB_STATUS ECC_Invert(ECCCPARM huge *ecccp // [in] ECC parameters , defining the

ECC curve

2 , AFFINEPOINT huge *P // [in] Affine point P to be inverted

3 , AFFINEPOINT huge *Po // [out] Resulting affine point Po=P^(-1)

4)

5 {

6 INT16 l;

7 UINT16 t;

8 if(ecccp ->Modulus.BytesAllocated != P->Y.BytesAllocated){

9 return CLIB_STATUS_ERROR_PRECOND_FAIL;

10 }

11 l = ecccp ->Modulus.BytesAllocated;

12 copyClong(P->X,&Po->X);

13 copyClong(P->Y,&Po->Y);

14 t=0;

15 for (l--;l>=0;l--){

16 if(t==0)

17 Po->Y.Data[l] = ecccp ->Modulus.Data[l] - P->Y.Data[l];

18 else

19 Po->Y.Data[l] = ecccp ->Modulus.Data[l] - P->Y.Data[l] - 1;

20 t=(ecccp ->Modulus.Data[l] - P->Y.Data[l]) >>8;

21 }

22 return CLIB_STATUS_SUCCESS_UNSPECIFIC;

23 }

Listing 4.10: Implementation of the point inversion for Points on a GF(p) field.

A common part in the protocol is the generation of a number from a string. To do

this a hash-algorithm that returns a digest of the optimal length (the length of the

curve modulus) is used. This operation is shown in Listing 4.11. One can see that

the “getHash” function is called twice. In the first run this function returns the

length of the hash digest.

62

4 Implementation

1 CLIB_STATUS getNumberFromString(UINT8 *str , CLONG *cl)

2 {

3 UINT16 len;

4 UINT16 inlen =0;

5 UINT8 *md;

6
7 inlen = strlen(str);

8 if(CLIB_STATUS_SUCCESS_UNSPECIFIC != getHash(NULL ,0,NULL ,&len)){

9 return CLIB_STATUS_ERROR_UNSPECIFIC;

10 }

11 md = (UINT8*) malloc(sizeof(UINT8)*len);

12 if(CLIB_STATUS_SUCCESS_UNSPECIFIC != getHash(str ,inlen ,md ,&len)){

13 free(md);

14 return CLIB_STATUS_ERROR_UNSPECIFIC;

15 }

16 memcpy(cl->Data ,md,len);

17 free(md);

18 cl->BitLength = len*8;

19 return CLIB_STATUS_SUCCESS_UNSPECIFIC;

20 }

Listing 4.11: Generation of a big number from a string.

The machine-part of the communication consists of three functions: the

“generateMachineMessage”-, “generateMachineSharedSecret”-, and the

“generateKey”-function.

As the crypto-processor has very limited resources in terms of memory, the amount

of users per machine (as well as the amount of machines per user) has been reduced

to two. Furthermore, as the targeted processor has hardware security-features in

place, the password can be saved in clear on the memory. The definition of these

stripped down “classes” can be seen in Listing 4.12.

1 typedef struct _SPAKE_HANDLE{

2 ECCCPARM ecccp;

3 CLONG secret;

4 AFFINEPOINT X_s;

5 AFFINEPOINT Y_s;

6 AFFINEPOINT K;

7 } SPAKE_HANDLE;

8
9 typedef struct _SPAKE_User{

10 UINT8 *username;

11 UINT8 *password;

12 SPAKE_HANDLE *connections [2];

13 UINT8 *machinenames [2];

14 } SPAKE_User;

15
16 typedef struct _SPAKE_Machine{

17 UINT8 *machinename; // string

18 SPAKE_HANDLE *connections [2];

19 UINT8 *users [2];

20 UINT8 *passwords [2];

21 } SPAKE_Machine;

Listing 4.12: Definition of the “Machine” and “User” in the transitional

implementation.

The functionalities for converting between the internal data types and the OpenSSL

ones, and the obtaining of the curve parameters is shown in Section A.2. Because this

implementation should be executable by the crypto-processor, a further implemen-

tation is made. This implementation is written with an emulator of the processor.

This development should yield a binary file that can be uploaded directly to the

processor.

63

4 Implementation

4.8 Changes for the Security Controller

In the implementation for the security controller the functions for the user-side of

the communication have been omitted as the controller should secure the machine-

side of a communication. Furthermore, the memory usage has been reduced as

better improvements are possible due to the fact that the used memory needs to

be allocated at compile time and therefore the addresses are fixed. To be able to

communicate the simulation-layer has been changed to an intermediate layer that

converts between the SPAKE-functions and the sent and received APDUs (Applica-

tion Protocol Data Unit). The communication interface has six functions that are

used to perform the exchange and configure the algorithm. These commands are:

Set Machine: This command sets the machinename. It can be called if the user is

authenticated.

Set User: This command sets the username and password of the one of the users

of the machine.

Set UserMessage: This command is to set the masked public key of the user.

Get MachineMessage: This command is a request for the masked public key of

the machine.

Authenticate: With this command the session key is calculated. After that the

communication can be performed encrypted and the critical commands can

be used. If the user is not authenticated the sending of such a command

results in an “error”-return message.

Disconnect: This command terminates the connection and deletes the session key,

the public keys and the private key.

Echo: The payload is replied if the user is authenticated.

One more command is added to this list for the demonstration application. This

debug-command allows the authenticated user to read out the derived key that can

be used for the encryption. This command needs to be removed in a deployed

version. This can be done by inserting a compile-switch.

In Figure 4.3 the sequence to configure the machinename, the other user of the

machine, or both is shown. This command-sequence performs the key exchange

with authentication, encrypts the messages, sends the configuration data - here

also other commands such as the authenticated echo-service can be executed, and

disconnects from the machine.

64

4 Implementation

Figure 4.3: Steps to configure the machineame and users on a machine.

4.9 Implementation of the Demonstrator

The demonstrator consists of two applications. The first one is the readily imple-

mented algorithm that is executed on the simulator. This program performs the

machine-side of the key exchange. The second application is made of the transi-

tional implementation that is made beforehand (Section 4.7). The secure element

calculates the machine-side of the communication. It also cannot initiate a commu-

nication to the other side. The functions for the user-side of the communication is

performed by the other program on a computer. On top of this a user interface (UI)

is implemented that can take commands from the operator and initiate the opera-

tions and messages necessary for the protocol. These messages are then converted

to an XML-string that is sent to the interface-simulator which converts this string

to APDUs (Application Protocol Data Units). The simulator of the secure element

executes the code that would normally be run on the secure element. This execution

results in another message that is sent to the user. The interface-simulator takes

this message and converts it to an XML-string and sends this to the user where it

is parsed and used by the program.

The user can activate the secure element (getting the device into operating distance),

perform a key agreement with his password, configure the machine (users and ma-

chinename) if the authentication is good, execute the dummy echo-command, and

disconnect again. Furthermore, the debug command can be used to get to - other-

wise secret - material and the current state of the users can be displayed.

The implementation of the demonstrator uses the functions described in Section 4.7.

65

4 Implementation

The biggest difference is that the commands for the machine are not sent to the func-

tions implemented in that section, but are sent to the “reader API”. Additionally

the calling of those functions is not done in a fixed sequence but the operator of the

program can initiate the functions. This can be seen in Listing A.5. The “authdis”-

macro performs an authentication and disconnects again (this command is to test

the time it takes to disconnect an authenticated user).

All functions that communicate with the secure element need to take the following

steps:

� Ask the user for data that specifies which of the possible users should be taken.

� (Optionally) Ask the user for the password.

� Generate the XML-string that is sent to the reader API.

� Transmit the generated string and wait for an answer from the reader

(transceive).

� Extract the result of the answer. Determine if this command was handled as

expected.

As an example the “echo”-command is shown in Listing 4.13. The string in

Line 7 specifies the APDU header. This is manipulated with the “setUser”- and

“setLength”-functions. The message that is sent to the reader is composed in lines

19 to 24. After that the transceiving is performed. Depending on the “debug”-

variable this part is done in various cycles (to get more accurate measurements).

In line 49 the result of the (last) transceive command is extracted and handled.

1 void echocommand(char* userbuffer , char* tempbuffer , char* inbuffer , int debug)

2 {

3 char* message;

4 unsigned long duration;

5 char stringfront []=" <?xml version =\"1.0\" encoding =\"UTF -8\"?><call

method =\" TransceiveData \"><data >";

6 char stringback []=" </data ><calcCRC >false </calcCRC ><disableCheckCRC >true </ disableCheckCRC >

<typeOfFrame >standard </ typeOfFrame ></call >";

7 char echo[] = "00 CF0000000000";

8 unsigned int messagesize = strlen(stringfront) + strlen(stringback) + 14;

9 int i;

10
11 getMoreData("Echo request from which User?",1,userbuffer ,USERSIZE);

12 if(userbuffer [0]== ’0’){setUser(echo ,0);}

13 else if(userbuffer [0]==’1’){setUser(echo ,1);}

14 else {printf("User can be ’1’ or ’2’\n");return ;}

15 getUserData("What message to send?",1,userbuffer ,USERSIZE);

16 for(i=0;i<strlen(userbuffer);i++)

17 sprintf(tempbuffer +(i)*2,"%02X",userbuffer[i]);

18 setLength(echo ,strlen(userbuffer));

19 message = (char*) malloc(sizeof(char) * (messagesize + 2* strlen(userbuffer) + 1));

20 memcpy(message ,stringfront ,strlen(stringfront));

21 memcpy(message+strlen(stringfront),echo ,strlen(echo));

22 memcpy(message+strlen(stringfront)+strlen(echo),tempbuffer ,2* strlen(userbuffer));

23 memcpy(message+strlen(stringfront)+strlen(echo) +

2* strlen(userbuffer),stringback ,strlen(stringback));

24 message[strlen(stringfront)+strlen(echo) + 2* strlen(userbuffer) + strlen(stringback)]=’\0’;

25 if(debug){printf("Message :\n");

26 printf(message);

27 printf("\n");}

66

4 Implementation

28 clearBuffer(inbuffer ,MESSAGESIZE);

29 if(debug >1)

30 {

31 int t=debug;

32 unsigned long avg=0;

33 unsigned long min=ULONG_MAX;

34 unsigned long max=0;

35
36 for(;t>0;t--)

37 {

38 transceive(message ,strlen(message),inbuffer ,& duration);

39 avg+= duration;

40 if(duration <min){min=duration ;}

41 if(duration >max){max=duration ;}

42 }

43 printf("Min: %d\nAverage: %d\nMax=%d\n",min ,avg/debug ,max);

44 }else{

45 transceive(message ,strlen(message),inbuffer ,& duration);

46 }

47 free(message);

48 message = 0;

49 extractResult(inbuffer);

50 if(debug){printf("Result :\n");

51 printf(inbuffer);

52 printf("\n");}

53 printAsciiString(inbuffer);

54 if(debug){printf("Duration of command: %d\n",duration);}

55 clearBuffer(inbuffer ,MESSAGESIZE);

56 }

Listing 4.13: Code that is executed to perform the “Echo”-command.

The APDU-header-strings of all the commands are shown in Listing 4.14. In the

header the first two hex-characters (one byte) determine the class of command. The

second byte is the command itself. After this the two parameters and the length of

the payload are placed. The last two bytes determine the requesting user. After this

command-header the payload is added. Normally the payload consists of only one

field or multiple fields of fixed length - like a key consisting of X- and Y-coordinates

with 256 bits each. The “set user”-command has two fields of variable length.

Therefore the length of the first field must be added as parameter. To raise an error

if this is forgotten the characters in the string are set to invalid values.

1 /*Echo command - data must be requested by the user*/

2 char echo[] = "00 CF0000000000";

3 /*Set user message command - length is always 0x42 bytes (2 for additional data , 0x40 for the key)*/

4 char setuserpubkey [] = "00 C30000420000";

5 /*Get machine message command - length always 2*/

6 char getmachinepubkey [] = "00 C20000020000";

7 /* Perform Authentication - length always 2*/

8 char authenticate [] = "00 C40000020000";

9 /* Perform the debug command - length always 2*/

10 char debug[] = "00 CE0000020000";

11 /*Set machine name command - the machinename must be requested from the user*/

12 char setmachine [] = "00 C00000020000";

13 /*Set user command - username and password must be requested; replace xx by length of username */

14 char setuser [] = "00 C1xx00070000";

15 /* perform the disconnection - length always 2*/

16 char disconnect [] = "00 C50000020000";

Listing 4.14: APDU headers for the different commands.

The user interface of the demonstrator is a classical console window. The commands

can be entered by the user via the keyboard. Figure 4.4 shows the console after per-

forming an authentication and two “Echo”-commands.

The first red marker indicates the issuing of an authentication step. This is followed

by the announcement that user “1” should perform the selected action (first yellow

67

4 Implementation

marker). As the exchange of the public keys has not happened yet the necessary

commands are executed beforehand (results at the first two purple markers). The

third purple marker shows the result of the authentication request. For debug pur-

poses the exchanged keys and the calculated session key are displayed. The second

red marker points at the issuing of the “Debug”-command. Also this one is called

by user “1” (second yellow marker). This command returns the session key on the

secure element. The big blue arc connects the two corresponding session keys. These

must be equal as the subsequent communication will be encrypted with this key.

After that the third red marker indicates the call of the “Echo”-command from

user “1”, who is already authenticated. The small blue arc connects the outgoing

message and the incoming one. These are also equal. At last the fourth red marker

issues another “Echo”-command. This time it is called by user “0” (green marker).

As this user is not authenticated the command returns with “not authenticated”

(light blue arc).

Figure 4.4: Console window of the demonstrator. The interesting parts, which are described
in the text, are marked.

68

5
Performance Evaluation

This chapter describes the performance evaluation process and shows the results of

the measurements. It ends with the interpretation of the results.

5.1 Process

The evaluation starts with the measurement of the duration of the different com-

mands. As the secure element is simulated the execution is slower than it would be

with the real hardware. Furthermore, the computer also executes the user-side of

the protocol and the task may be interrupted at any time by the operating system.

Accounting for this many measurements are taken. The amount of measurements

depends on the variation in execution-time.

The unauthenticated “Echo”-command does use much computation time on the

secure element and can therefore be used as a reference for how long the communi-

cation and other overhead takes. With this data the calculation time of the secure

element can be approximated.

As a second step the simulation can be set to show the CPU-cycles of the secure

element. With the knowledge of the CPU-frequency a more accurate estimation is

possible. This approximation must also be taken with care as the simulation does

not need to be accurate as some commands need to be executed on the hardware

but not in the simulation. These can only be found if the implementation is ported

to a hardware element or emulation of the element on an FPGA.

69

5 Performance Evaluation

5.2 Results

The first measurements are taken from the demonstrator. There the time is mea-

sured from the beginning of the command-transmission to the reader API until the

end of the reception of the answer message. These measurements are affected by

different processes on the computer. Furthermore, the simulation of the processor

is usually slower than the execution would be at a hardware element.

Table 5.2 shows the results of the measurement of the timing of the commands that

do not have to calculate any cryptographic operations. The results of the other com-

mands are shown in Table 5.3. As expected these commands take one to two orders

of magnitudes longer to compute. The commands with the “-a” added are executed

while the user was authenticated. The tables show that this does not change the

execution time for the “simple” commands. The only difference is in the “debug”

command as only for this operation long execution times are expected which get

omitted if the user is not authenticated.

In Table 5.1 the durations of the “echo”-command with some selected payload

lengths are shown. These lengths are chosen as it is expected that the time con-

sumption will rise linear with the payload length and these measurements span the

possible range of lengths to show if the assumption is broken. Furthermore, mea-

surements with 32 and 64 bytes are taken as these are common payload-lengths

within the protocol.

characters/time [µs] echo echo-a

1 4148 4368
4 4548 5234
32 8240 13266
40 9329 15634
64 12472 22368
100 17173 32704
140 22648 44215
180 27840 55176
200 30371 61087
240 35773 72422

Table 5.1: Mean durations of the Echo command with different message lengths.

Every command has been measured 500 times to get reasonably good results. Fig-

ures B.1, B.2, B.3, and B.4 show the results of those measurements. In the first

figure all commands are depicted. One can see that the debug command takes

about ten times longer than the “simple” commands and that the computationally

70

5 Performance Evaluation

expensive functions are still one order of magnitude slower. The other three figures

show the commands in a higher resolution.

The functions using cryptographic elements (generating the machine-side message,

calculating the shared point, calculating the shared key) are also measured in CPU-

cycles. The results are shown in Table 5.4. As these functions work with randomized

values and the generation of random values can vary in time the exact amount of

cycles can vary, but the approximated timing will still stay within that range.

71

5
P
erform

an
ce

E
valu

ation
time [µs] echo echo-a send send-a user user-a machine machine-a disc disc-a

min 4133 9009 20843 19976 10360 10423 9748 9826 9338 2024
average 4645 17354 21844 20740 11888 12121 11430 11490 10883 7801

max 8021 57838 24075 23981 14949 14875 15425 14216 14736 17046

Table 5.2: Time measurements of different commands that do not calculate much.

time [µs] get get-a auth auth-a debug debug-a

min 2840533 2835791 2840194 2835209 3831 196075
average 2880437 2879542 2879424 2876860 4288 207929

max 2925237 2937215 2891951 3948819 8145 236325

Table 5.3: Time measurements of different commands that perform cryptography.

Command CPU cycles Time [sec]

generateMachineMessage 1.75 · 106 0.035

generateMachineSharedSecret 1.76 · 106 0.035

generateKey 1.3 · 106 0.026

Table 5.4: CPU-cycles and timing of cryptographic heavy functions.

72

5 Performance Evaluation

5.3 Interpretation

The results of Figure 5.1, which is created from Table 5.1, can be understood in the

way that the basic transmission of data takes in average eleven microseconds. One

can also see that the transmission duration is linear proportional to the sent data. If

the user is authenticated it takes approximately twice as long, because the same data

needs to be returned as well. When looking at the trend line this becomes obvious.

The gradient of the authenticated slope is 284 µs
character

whereas the unauthenticated one

is 132 µs
character

. The slight more than doubled slope-pitch of the authenticated command

also expresses the time needed to copy the characters from the input to the output.

This speed of transmission can be converted into a data rate of about 60 kbit
s

. Also

the constant time of the authenticated one is 135 µs longer than the unauthenticated

one. This can be explained because of the additional operations like copying the

data from input to output and resetting the transmission length.

Figure 5.1: Comparison between different payloads of the authenticated and not-
authenticated Echo-command.

This data can be used as baseline for measurement of the other commands as the

echo-command does only do the minimum of required operations.

To compare the echo- against the send-command (sending the user-key to the ma-

chine and saving it) the unauthenticated echo with a payload of 64 bytes can be

taken as baseline. This is because the unauthenticated echo sends the packet with

the payload and receives an empty packet with “not authenticated” as return and

the send-command sends a packet header with the point as payload and gets “good”

as return.

The echo command uses about 10 ms of time for data transmission. The send com-

mand about 18 ms. This means that the execution of the command on the secure

element uses about 8 ms.

A more complex command is the “get-command”. This sends an empty packet and

receives 64 bytes of the machine-key. That means that the communication time is

73

5 Performance Evaluation

again comparable to the echo-command with 64 bytes of data. Furthermore, some

data has to be saved to the NVM taking about 16 ms. The rest of the time is the

calculation of the cryptographic functions. This means that these functions take up

about 2.8 seconds of time in the simulation.

Another interesting function is the “debug”-command. This command can be com-

pared to an unauthenticated echo-command with a payload of 32 bytes. In this

function the session key of the user is calculated out of the previously received and

calculated data. When assuming the transmission takes 7 ms and the complete pro-

cess uses about 208 ms the resulting time to calculate the message digests is 201 ms

in the simulation.

As these timings are very long for these kinds of operations the amount of processor-

cycles was measured. With the knowledge of the processor speed the timing can be

calculated. As the simulation may behave in a different way than the real hardware

also these results need to be taken with a grain of salt. But they should be more

accurate than the results of the first measurement.

When looking at the “get”-command it performs the “generateMachineMessage”

function at it’s heart. This function would only take 0.035 seconds to compute on

the hardware but uses approximately 2.8 seconds in the simulation. That tells us

that the simulation speed is 80 times slower than real time for ECC-functions.

The “debug”-command uses the “calculateKey” function which takes 0.026 seconds

in CPU-time and 0.201 seconds in the simulation making the simulation only 7.7

times slower for the hash-function. The interesting part of the “debug”-command is

the difference of time between the authenticated and not authenticated user. This

can be explained by the fact that only a authenticated user is allowed to see the de-

bug output. This is because the session key, which is sent as reply to the command,

cannot be calculated for an unauthenticated user. Thus the command returns with

an error code.

As the time used to communicate is not likely to reduce when switching to a real

hardware, but the calculation time is reduced drastically, as shown with the CPU-

cycle measurements (Table 5.4), the strength of this algorithm gets visible. The

implemented protocol only needs two messages to be sent. The protocol overhead

can be reduced even more if the calculation of the machine-key is started after the

user-key is received and the key is replied instead of the standard-“OK”-message.

Other protocols that also perform authentication establish a secured channel at first

and perform the authentication step separately, requiring many more messages to be

sent. With the use of SPAKE2 that time can be used to transmit the configuration

data instead.

74

6
Conclusion and Future Work

In the following sections a conclusion of this thesis and the limitations of the imple-

mented protocol are described. This chapter furthermore describes the possibilities

if this work is combined with the works of my colleagues in the project and what

further work can be done to improve the implemented protocol.

6.1 Conclusion

This thesis motivates with a future production facility built on the vision of “In-

dustrie 4.0”. That enables producers to manufacture high quality products that are

fully customizable at low cost. In this scenario the production goods are transported

by robots between the machines. These in turn are configurable by the robots or a

main computer system that keeps track of all items. Robots are used to keep the

item flow variable at all times. In such an environment a good way of configuring

devices (machines or robots) is via the NFC technology. As sometimes a human

engineer needs to configure a device this engineer must be authenticated against it

and vice versa. Furthermore, the communication must be secured with encryption

to counter a possible adversary.

Also the other visions from the smart home and the fields of the sciences are insepa-

rable connected to the security features brought from an authenticated key exchange

to weaken the threat caused by the connection of everyday appliances to the Inter-

net.

This work’s main focus is on the authentication and key exchange for the encryption

75

6 Conclusion and Future Work

in such a system. It gives a design that is based on the SPAKE2 algorithm from

[AP05]. This design is then implemented in multiple steps and evaluated. This

protocol’s strength is in its little communication cost as it only needs two messages

to perform an authenticated key exchange. After that the secured communication

can be performed.

6.1.1 Limitations

The security of the SPAKE protocol is only given under the random oracle model.

This proof of security is weaker than one that does not need a random oracle (stan-

dard model of cryptography).

Because of the limited memory of the security controller the amount of users is

reduced to two. This can be improved by using strong cryptographic methods and

storing the encrypted material on an external memory. That would add longer

latency for the system as it may need to search through encrypted memory.

6.1.2 Combination With Other Work

When looking at the motivation (Section 1.2) and the works of my colleagues from

the “IoSense” and “Semi40” projects one can see how this vision can become reality

in the near future.

The other members of the “IoSense” team from TU Graz and Infineon Technologies

Graz have been working on other methods for configuring smart sensors with NFC-

enabled devices, implementing a method for securely storing the configuration data

in a backend-server, transmitting it to a portable device with NFC-technology, and

transmitting the secured data to the smart sensor. As a robot can be seen as a

smart, portable sensor with attached actuators this method can be used as a second

way of configuring the devices.

The colleagues from the “Semi40” project are also working on a way of securely

connecting machines with each other in an “Industrie 4.0” fashion. This research

can be used to build a prototypical smart production floor.

6.2 Future Work

The next development steps should be that the algorithm is tested on an FPGA

development board. After those tests are concluded, and possible bugs are fixed,

measures to get the algorithm running on the secure element can be taken. Further

testing is then to be carried out.

76

6 Conclusion and Future Work

Additionally more improvements and developments can be made. These include:

1. Replacement of the “debug” and “echo” commands with more useful com-

mands.

2. Functionalities to receive and verify configuration data for a host machine can

be implemented.

3. Combination of the developed algorithm with other works from the “IoSense”

project to get closer to the “TrustWorSys” demonstrator.

4. The users can be redefined to have different access rights. Furthermore, a way

to support more users can be implemented.

5. Evaluation of the implementation against other mechanisms that perform an

authenticated key exchange.

6. With minor changes this algorithm can be used to authenticate machines

against each other. It can be evaluated if this algorithm is usable for this

kind of authentication.

77

Bibliography

[Abd14] Michel Abdalla. Password-based authenticated key exchange: an

overview. In International Conference on Provable Security, pages 1–9.

Springer, 2014.

[AP05] Michel Abdalla and David Pointchevall. Simple Password-Based En-

crypted Key Exchange Protocols. In Lecture Notes in Computer Sci-

ence, pages 191–208. Springer Science + Business Media, 2005.

[BM92] Steven M. Bellovin and Michael Merritt. Encrypted key exchange:

password-based protocols secure against dictionary attacks. In Proceed-

ings 1992 IEEE Computer Society Symposium on Research in Security

and Privacy. Institute of Electrical & Electronics Engineers (IEEE),

1992.

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated

Key Exchange Secure against Dictionary Attacks. In Advances in Cryp-

tology — EUROCRYPT 2000, pages 139–155. Springer Science + Busi-

ness Media, 2000.

[BR00] Mihir Bellare and Phillip Rogaway. The AuthA Protocol for Password-

Based Authenticated Key Exchange. In IEEE P1363, pages 136–3,

2000.

[BY15] Jonghyun Baek and Heung Youl Youm. Secure and Lightweight Authen-

tication Protocol for NFC Tag Based Services. In 2015 10th Asia Joint

Conference on Information Security. Institute of Electrical & Electron-

ics Engineers (IEEE), May 2015.

[CFA+05] Henry Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja

Lange, Kim Nguyen, and Frederik Vercauteren. Handbook of Elliptic

and Hyperelliptic Curve Cryptography (Discrete Mathematics and Its

Applications). Chapman and Hall/CRC, 2005.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptogra-

phy. IEEE Trans. Inform. Theory, 22(6):644–654, nov 1976.

78

Bibliography

[DKA+14] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman,

Michael Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro

Beekman, Mathias Payer, and Vern Paxson. The Matter of Heart-

bleed. In Proceedings of the 2014 Conference on Internet Measurement

Conference, IMC ’14, pages 475–488, New York, NY, USA, 2014. ACM.

[DOW92] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authen-

tication and authenticated key exchanges. Designs, Codes and cryptog-

raphy, 2(2):107–125, 1992.

[DS81] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in Key

Distribution Protocols. Commun. ACM, 24(8):533–536, August 1981.

[GL06] Rosario Gennaro and Yehuda Lindell. A Framework for Password-based

Authenticated Key Exchange1. ACM Trans. Inf. Syst. Secur., 9(2):181–

234, May 2006.

[GMS15] Jorge Granjal, Edmundo Monteiro, and Jorge Sa Silva. Security for the

Internet of Things: A Survey of Existing Protocols and Open Research

Issues. IEEE Communications Surveys & Tutorials, 17(3):1294–1312,

2015.

[HK99] Shai Halevi and Hugo Krawczyk. Public-key Cryptography and Pass-

word Protocols. ACM Trans. Inf. Syst. Secur., 2(3):230–268, August

1999.

[HVM04] Darrel Hankerson, Scott A. Vanstone, and Alfred J. Menezes. Guide to

Elliptic Curve Cryptography. Springer, 2004.

[JGQ16] Oliver Jensen, Mohamed Gouda, and Lili Qiu. A secure credit card

protocol over NFC. In Proceedings of the 17th International Conference

on Distributed Computing and Networking - ICDCN '16. Association

for Computing Machinery (ACM), 2016.

[JZ15] Rong Jin and Kai Zeng. SecNFC: Securing inductively-coupled near

field communication at physical layer. In 2015 IEEE Conference on

Communications and Network Security (CNS). Institute of Electrical &

Electronics Engineers (IEEE), Sep 2015.

[Kar11] Stamatis Karnouskos. Stuxnet worm impact on industrial cyber-

physical system security. In IECON 2011 - 37th Annual Conference of

the IEEE Industrial Electronics Society. Institute of Electrical & Elec-

tronics Engineers (IEEE), nov 2011.

79

Bibliography

[KI03] Kazukuni Kobara and Hideki Imai. Pretty-Simple Password-

Authenticated Key-Exchange Under Standard Assumptions. Cryptol-

ogy ePrint Archive, Report 2003/038, 2003. http://eprint.iacr.

org/2003/038.

[Kip06] Rudolf Kippenhahn. Verschlüsselte Botschaften: Die Geheimschrift Des

Julius Caesar, Geheimschriften Im I. Und II. Weltkrieg, Das Codebuch

Des Papstes, Enigma. Nikol, Hamburg, 2006.

[Kra03] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’approach to authen-

ticated Diffie-Hellman and its use in the IKE protocols. In Annual

International Cryptology Conference, pages 400–425. Springer, 2003.

[LB16] Christian Lesjak and Eugen Brenner. Securing Smart Service Connec-

tivity for Industrial Equipment Maintenance - A Case Study. 2016.

[Les16] Christian Lesjak. Secure Smart Service Connectivity for Industrial

Equipment Maintenance. PhD thesis, Graz University of Technology,

2016.

[LHH+15] Christian Lesjak, Daniel Hein, Michael Hofmann, Martin Maritsch, An-

dreas Aldrian, Peter Priller, Thomas Ebner, Thomas Ruprechter, and

Gunther Pregartner. Securing smart maintenance services: Hardware-

security and TLS for MQTT. In 2015 IEEE 13th International Con-

ference on Industrial Informatics (INDIN). Institute of Electrical &

Electronics Engineers (IEEE), Jul 2015.

[LHW15] Christian Lesjak, Daniel Hein, and Johannes Winter. Hardware-security

technologies for industrial IoT: TrustZone and security controller. In

IECON 2015 - 41st Annual Conference of the IEEE Industrial Elec-

tronics Society. Institute of Electrical & Electronics Engineers (IEEE),

Nov 2015.

[LMQ+03] Laurie Law, Alfred Menezes, Minghua Qu, Jerry Solinas, and Scott

Vanstone. An Efficient Protocol for Authenticated Key Agreement.

Designs, Codes and Cryptography, 28(2):119–134, 2003.

[LRB+14] Christian Lesjak, Thomas Ruprechter, Holger Bock, Josef Haid, and Eu-

gen Brenner. ESTADO - Enabling Smart Services for Industrial Equip-

ment through a Secured, Transparent and Ad-hoc Data Transmission

Online. The 9th International Conference for Internet Technology and

Secured Transactions (ICITST-2014), 2014.

80

http://eprint.iacr.org/2003/038
http://eprint.iacr.org/2003/038

Bibliography

[LRH+14] Christian Lesjak, Thomas Ruprechter, Josef Haid, Holger Bock, and

Eugen Brenner. A secure hardware module and system concept for local

and remote industrial embedded system identification. In Proceedings of

the 2014 IEEE Emerging Technology and Factory Automation (ETFA).

Institute of Electrical & Electronics Engineers (IEEE), Sep 2014.

[Mer79] Ralph Charles Merkle. Secrecy, Authentication, And Public Key Sys-

tems. PhD thesis, Stanford University, Stanford, CA, 1979.

[PP09] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook

for Students and Practitioners. Springer, 2009.

[PZ00] Mohammad Peyravian and Nevenko Zunic. Methods for Protecting

Password Transmission. Computers & Security, 19(5):466 – 469, 2000.

[TWMP07] David Taylor, Tom Wu, Nikos Mavrogiannopoulos, and Trevor Perrin.

Using the Secure Remote Password (SRP) Protocol for TLS Authenti-

cation. Technical report, nov 2007.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific american,

265(3):94–104, 1991.

81

A
Listings

A.1 Prototype

1 void SPAKE_test_random(unsigned runs , bool runTillFound=false){

2 User** users = new User *[0];

3 Machine ** machines = new Machine *[0];

4 unsigned numUsers = 0;

5 unsigned numMachines = 0;

6
7 srand(time(NULL));

8 unsigned char percent = 0;

9 bool check =(! runTillFound);

10 do{

11 if(runTillFound ==false){

12 printf("|");

13 for(int i=0;i<98;i++){printf("_");}

14 printf("|\n");

15 }

16 for(unsigned z=0;z<runs;z++){

17 if(runTillFound ==false){

18 if((int)(((float)z/(float)runs)*100) >percent){

19 percent =(unsigned char)(((float)z/(float)runs)*100);

20 printf("*");

21 if(percent ==99){printf("\n");}

22 fflush(stdout);

23 }

24 }

25 unsigned r = rand()%14;

26 switch(r){

27 case 0: // add User

28 {

29 User** tu = new User*[numUsers];

30 for(unsigned i=0;i<numUsers;i++){

31 tu[i]=users[i];

32 }

33 delete [] users;

34 users = new User*[numUsers +1];

35 for(unsigned i=0;i<numUsers;i++){

36 users[i]=tu[i];

37 }

38 delete [] tu;

39 char* u=new char [21];

40 gen_random(u,20);

41 char* p=new char [11];

82

A Listings

42 gen_random(p,10);

43 User* nu = new User(u,p);

44 users[numUsers] = nu;

45 numUsers ++;

46 delete [] p;

47 break;

48 }

49 case 1: // remove User

50 {

51 if(numUsers >0){

52 unsigned j=rand()%numUsers;

53 // printf (" %d\n",j);

54 User** tu = new User*[numUsers];

55 for(unsigned i=0;i<numUsers;i++){

56 tu[i]=users[i];

57 }

58 delete [] users;

59 users = new User*[numUsers -1];

60 for(unsigned i=0;i<numUsers;i++){

61 if(i<j){users[i]=tu[i];}

62 if(i==j){

63 delete []tu[i]->getUsername ();

64 delete(tu[i]);}

65 if(i>j){users[i-1]=tu[i];}

66 }

67 delete [] tu;

68 numUsers --;

69 }

70 break;

71 }

72 case 2: // add Machine

73 {

74 Machine ** tm = new Machine *[numMachines];

75 for(unsigned i=0;i<numMachines;i++){

76 tm[i]= machines[i];

77 }

78 delete [] machines;

79 machines = new Machine *[numMachines +1];

80 for(unsigned i=0;i<numMachines;i++){

81 machines[i]=tm[i];

82 }

83 delete [] tm;

84 char* m=new char [21];

85 gen_random(m,20);

86 Machine* nm = new Machine(m);

87 machines[numMachines] = nm;

88 numMachines ++;

89 break;

90 }

91 case 3: // remove Machine

92 {

93 if(numMachines >0){

94 unsigned j=rand()%numMachines;

95 Machine ** tm = new Machine *[numMachines];

96 for(unsigned i=0;i<numMachines;i++){

97 tm[i]= machines[i];

98 }

99 delete [] machines;

100 machines = new Machine *[numMachines -1];

101 for(unsigned i=0;i<numMachines;i++){

102 if(i<j){machines[i]=tm[i];}

103 if(i==j){delete []tm[i]->getMachinename ();delete(tm[i]);}

104 if(i>j){machines[i-1]=tm[i];}

105 }

106 delete [] tm;

107 numMachines --;

108 // printf (" %d\n",numMachines);

109 }

110 break;

111 }

112 case 4: // change Userpassword

113 {

114 if(numUsers >0){

115 unsigned j=rand()%numUsers;

116 char* p=new char [21];

117 gen_random(p,20);

118 users[j]->changePassword(p);

119 delete [] p;

120 }

121 break;

122 }

123 case 5: // set Connection

124 {

125 if(numUsers >0 && numMachines >0){

83

A Listings

126 unsigned i=rand()%numUsers;

127 unsigned j=rand()%numMachines;

128 unsigned k=rand()%2;

129 users[i]->setConnection(machines[j]->getMachinename (),k==0? NID_secp224r1:NID_secp224k1);

130 }

131 break;

132 }

133 case 6: // initConnection

134 {

135 if(numUsers >0 && numMachines >0){

136 unsigned i=rand()%numUsers;

137 unsigned j=rand()%numMachines;

138 users[i]->initConnection(machines[j]->getMachinename ());

139 }

140 break;

141 }

142 case 7: // addUser

143 {

144 if(numUsers >0 && numMachines >0){

145 unsigned i=rand()%numUsers;

146 unsigned j=rand()%numMachines;

147 machines[j]->addUser(users[i]->getUsername (), users[i]->getHashedPassword ());

148 }

149 break;

150 }

151 case 8: // setUserCurve

152 {

153 if(numUsers >0 && numMachines >0){

154 unsigned i=rand()%numUsers;

155 unsigned j=rand()%numMachines;

156 machines[j]->setUserCurve(users[i]->getUsername (),

users[i]->getCurve(machines[j]->getMachinename ()));

157 }

158 break;

159 }

160 case 9: // performExchange

161 {

162 if(numUsers >0 && numMachines >0){

163 unsigned i=rand()%numUsers;

164 unsigned j=rand()%numMachines;

165 int work=performExchange(users[i],machines[j]);

166 if(work){

167 char* a = new char [10];

168 gen_random(a,9);

169 check = printKeys(users[i],machines[j],a);

170 delete [] a;

171 }

172 }

173 break;

174 }

175 case 10: // deleteConnection

176 {

177 if(numUsers >0 && numMachines >0){

178 unsigned i=rand()%numUsers;

179 unsigned j=rand()%numMachines;

180 users[i]->deleteConnection(machines[j]->getMachinename ());

181 }

182 break;

183 }

184 case 11: // updateUserPwd

185 {

186 if(numUsers >0 && numMachines >0){

187 unsigned i=rand()%numUsers;

188 unsigned j=rand()%numMachines;

189 machines[j]->updateUserPwd(users[i]->getUsername (),users[i]->getHashedPassword ());

190 }

191 break;

192 }

193 case 12: // deleteUser

194 {

195 if(numUsers >0 && numMachines >0){

196 unsigned i=rand()%numUsers;

197 unsigned j=rand()%numMachines;

198 machines[j]->deleteUser(users[i]->getUsername ());

199 }

200 break;

201 }

202 case 13:

203 {

204 if(numUsers >0 && numMachines >0){

205 unsigned i=rand()%numUsers;

206 unsigned j=rand()%numMachines;

207 unsigned k=rand()%2;

208 users[i]->changeCurve(machines[j]->getMachinename (),k==0? NID_secp224r1:NID_secp224k1);

84

A Listings

209 }

210 break;

211 }

212 default:

213 {

214 printf("%d\n",z);

215 break;

216 }

217 }

218 }

219 }while(!check);

220
221 for(unsigned i=0;i<numUsers;i++){

222 delete [] users[i]->getUsername ();

223 delete users[i];

224 users[i]=NULL;

225 }

226 delete [] users;

227 for(unsigned i=0;i<numMachines;i++){

228 delete [] machines[i]->getMachinename ();

229 delete machines[i];

230 machines[i]=NULL;

231 }

232 delete [] machines;

233 }

Listing A.1: Random valid commands are generated and sent to the machines and

users.

1 EC_POINT* Machine :: generateKey(char* username , EC_POINT* X_s){

2 if(numUsers >0){

3 for(unsigned int i=0; i<(numUsers);i++){

4 if(users[i]. username == username){

5 if(users[i].curve ==0){

6 printf("Machine:generateKey Error: No Curve defined\n");

7 return NULL;

8 }

9 EC_GROUP* c=NULL;

10 if((c=EC_GROUP_new_by_curve_name(users[i]. curve))==NULL){

11 printf("Machine:generateKey Error: error generating group\n");

12 EC_GROUP_free(c);

13 return NULL;

14 }

15 if(0== EC_POINT_copy(users[i].X_s ,X_s)){

16 printf("Machine:generateKey Error: copy of X_s returned with an error\n");

17 EC_POINT_free(users[i].X_s);

18 users[i].X_s=EC_POINT_new(c);

19 EC_GROUP_free(c);

20 return NULL;

21 }

22
23 EC_POINT* G = EC_POINT_new(c);

24 if(0== EC_POINT_copy(G,EC_GROUP_get0_generator(c))){

25 printf("Machine:generateKey Error: copy of G returned with an error\n");

26 EC_POINT_free(users[i].X_s);

27 users[i].X_s=EC_POINT_new(c);

28 EC_POINT_free(G);

29 EC_GROUP_free(c);

30 return NULL;

31 }

32
33 EC_POINT* Y = EC_POINT_new(c);

34 if (0== EC_POINT_mul(c,Y,NULL ,G,users[i].y,NULL)){

35 printf("Machine:generateKey Error: Mul1 returned with an error\n");

36 EC_POINT_free(users[i].X_s);

37 users[i].X_s=EC_POINT_new(c);

38 EC_POINT_free(G);

39 EC_POINT_free(Y);

40 EC_GROUP_free(c);

41 return NULL;

42 }

43
44 EC_POINT* N = EC_POINT_new(c);

45 getPoint(machinename , c,G,N);

46 BIGNUM* pw = BN_new ();

47 getBN(users[i]. hashedpassword ,pw);

48 EC_POINT* Yi = EC_POINT_new(c);

49 if (0== EC_POINT_mul(c,Yi ,NULL ,N,pw ,NULL)){

50 printf("Machine:generateKey Error: Mul2 returned with an error\n");

51 EC_POINT_free(users[i].X_s);

52 users[i].X_s=EC_POINT_new(c);

53 EC_POINT_free(G);

85

A Listings

54 EC_POINT_free(Y);

55 EC_POINT_free(N);

56 EC_POINT_free(Yi);

57 BN_free(pw);

58 EC_GROUP_free(c);

59 return NULL;

60 }

61
62 EC_POINT* Y_s = EC_POINT_new(c);

63 if(0== EC_POINT_add(c,Y_s ,Yi,Y,NULL)){

64 printf("Machine:generateKey Error: Add1 returned with an error\n");

65 EC_POINT_free(users[i].X_s);

66 users[i].X_s=EC_POINT_new(c);

67 EC_POINT_free(G);

68 EC_POINT_free(Y);

69 EC_POINT_free(N);

70 EC_POINT_free(Yi);

71 BN_free(pw);

72 EC_GROUP_free(c);

73 return NULL;

74 }

75 if(0== EC_POINT_copy(users[i].Y_s ,Y_s)){

76 printf("Machine:generateKey Error: Copy of Y_s returned with an error\n");

77 EC_POINT_free(users[i].X_s);

78 users[i].X_s=EC_POINT_new(c);

79 EC_POINT_free(users[i].Y_s);

80 users[i].Y_s=EC_POINT_new(c);

81 EC_POINT_free(G);

82 EC_POINT_free(Y);

83 EC_POINT_free(N);

84 EC_POINT_free(Yi);

85 BN_free(pw);

86 EC_GROUP_free(c);

87 return NULL;

88 }

89
90 EC_POINT_free(N);

91 EC_POINT_free(Y);

92 EC_POINT_free(Yi);

93
94 // Second part

95 EC_POINT* M = EC_POINT_new(c);

96 getPoint(users[i].username , c,G,M);

97 EC_POINT* Ki = EC_POINT_new(c);

98 if (0== EC_POINT_mul(c,Ki ,NULL ,M,pw ,NULL)){

99 printf("Machine:generateKey Error: Mul3 returned with an error\n");

100 EC_POINT_free(G);

101 EC_POINT_free(M);

102 EC_POINT_free(Ki);

103 BN_free(pw);

104 EC_GROUP_free(c);

105 return NULL;

106 }

107 if(0== EC_POINT_invert(c,Ki ,NULL)){

108 printf("Machine:generateKey Error: Invert returned with an error\n");

109 EC_POINT_free(G);

110 EC_POINT_free(M);

111 EC_POINT_free(Ki);

112 BN_free(pw);

113 EC_GROUP_free(c);

114 return NULL;

115 }

116 EC_POINT* Ki2 = EC_POINT_new(c);

117 if(0== EC_POINT_add(c,Ki2 ,Ki,users[i].X_s ,NULL)){

118 printf("Machine:generateKey Error: Add2 returned with an error\n");

119 EC_POINT_free(G);

120 EC_POINT_free(M);

121 EC_POINT_free(Ki);

122 EC_POINT_free(Ki2);

123 BN_free(pw);

124 EC_GROUP_free(c);

125 return NULL;

126 }

127
128 if (0== EC_POINT_mul(c,users[i].K,NULL ,Ki2 ,users[i].y,NULL)){

129 printf("Machine:generateKey Error: Mul4 returned with an error\n");

130 EC_POINT_free(G);

131 EC_POINT_free(M);

132 EC_POINT_free(Ki);

133 EC_POINT_free(Ki2);

134 BN_free(pw);

135 EC_GROUP_free(c);

136 return NULL;

137 }

86

A Listings

138 getRandBN(users[i].y);

139 EC_POINT_free(Ki2);

140 EC_POINT_free(Ki);

141 EC_POINT_free(M);

142 EC_POINT_free(G);

143 BN_free(pw);

144 EC_GROUP_free(c);

145 return Y_s;

146 }

147 }

148 printf("Machine:generateKey Error: Username %s not found\n",username);

149 return NULL;

150 }

151 printf("Machine:generateKey Error: No users connected\n");

152 return NULL;

153 }

Listing A.2: Machine part of the key exchange. The own public key is generated in

the beginning, then the shared secret is calculated.

A.2 Transition

1 UINT8 getBN(CLONG cl // [in]

2 , BIGNUM* bn // [out]

3)

4 {

5 unsigned char data [64+1];

6 UINT16 i=0;

7 UINT8 t[3];

8 UINT8 te;

9 for(i=0;i<65;i++){data[i]=0;}

10 t[0]=t[1]=t[2]=0;

11 for(i=0;i<cl.BitLength /8;i+=2)

12 {

13 te=cl.Data[i];

14 sprintf(t,"%02X" ,(unsigned char)te);

15 data[i]=t[0];

16 data[i+1]=t[1];

17 }

18 BN_bin2bn(cl.Data ,cl.BitLength /8,bn);

19 return 0;

20 }

21
22 UINT8 getCLONG(BIGNUM* bn // [in]

23 , PCLONG cl // [out] // empty on call

24)

25 {

26 UINT16 bnlen = getDataLength(bn);

27 if(cl->BytesAllocated < getDataLength(bn))

28 {

29 printf("error\n");

30 return 1;

31 }

32 BN_bn2bin(bn,cl ->Data);

33 if (bnlen == 0) {bnlen = 1;}

34 cl->BitLength = bnlen *8;

35 return 0;

36 }

Listing A.3: Conversion between CLONG and BIGNUM.

The AFFINEPOINT consists of two CLONGs. This conversion is not performed

in a function.

1 int getECCCPARAMFromCurve(PECCCPARM ecccp , int curve){

2 BIGNUM *x,*y,*a,*b,*p,* order;

3 EC_GROUP *c;

4 EC_POINT *G;

5 c = EC_GROUP_new_by_curve_name(curve);

6 G = EC_POINT_new(c);

7 if(! ecccp || !ecccp ->Basepoint.X.Data)

87

A Listings

8 {return 0;}

9 EC_POINT_copy(G,EC_GROUP_get0_generator(c));

10 x = BN_new ();

11 y = BN_new ();

12 EC_POINT_get_affine_coordinates_GFp(c,G,x,y,NULL);

13 getCLONG(x,&ecccp ->Basepoint.X);

14 getCLONG(y,&ecccp ->Basepoint.Y);

15 BN_free(x);BN_free(y);

16
17 ecccp ->Characteristic = 0;

18
19 a = BN_new ();

20 b = BN_new ();

21 p = BN_new ();

22 EC_GROUP_get_curve_GFp(c,p,a,b,NULL);

23 getCLONG(a,&ecccp ->CoefA);

24 getCLONG(b,&ecccp ->CoefB);

25 getCLONG(p,&ecccp ->Modulus);

26 BN_free(a);BN_free(b);BN_free(p);

27
28 order = BN_new ();

29 EC_GROUP_get_order(c,order ,NULL);

30 getCLONG(order ,&ecccp ->BasepointOrder);

31 BN_free(order);

32 return 1;

33 }

Listing A.4: Obtaining the ECCCPARM data from the OpenSSL curve identifier.

A.3 Demonstrator

1 void demo()

2 {

3 SPAKE_User* u = getUser ();

4 SPAKE_User* u2 = getUser ();

5 AFFINEPOINT data;

6 CLONG sessionkey;

7
8 /* primary names and passwords */

9 char machinename [61] = "GenericMachine";

10 char name [61] = "GenericUser";

11 char password [61] = "GenericPassword";

12 /* communication buffer */

13 char timeout []="<call method =\" SetProperty\"><CommTimeout >3500 </ CommTimeout ></call >";

14 char inbuffer[MESSAGESIZE]={0 x00};

15 /* variables for running */

16 int run = 1;

17 char userbuffer[USERSIZE] = {0x00};

18 char tempbuffer[USERSIZE] = {0x00};

19 int state0 = 0,state1 =0;

20
21 int debug =0;

22
23 viewTooltip ();

24
25 setUsername(u,(UINT8 *)"");

26 setPassword(u,(UINT8 *)"");

27 setUsername(u2 ,(UINT8*)name);

28 setPassword(u2 ,(UINT8*) password);

29 allocAffinepoint (&data ,32); // helper

30 allocClong (&sessionkey ,32);

31 clearBuffer(inbuffer ,MESSAGESIZE);

32 if(! connectToCard ())

33 {

34 printf("Could not connect to Reader !\n");

35 }

36
37 /*reset the card*/

38
39 printf("starting card ...\n");

40 resetcommand(inbuffer ,&state0 ,&state1 ,debug);

41 clearBuffer(inbuffer ,MESSAGESIZE);

42 transceive(timeout ,strlen(timeout),inbuffer ,NULL);

43
44 while(run)

88

A Listings

45 {

46 clearBuffer(inbuffer ,MESSAGESIZE);

47 clearBuffer(userbuffer ,USERSIZE);

48 getMoreData("ready to take orders.",1,userbuffer ,USERSIZE);

49 switch (userbuffer [0])

50 {

51 case ’0’: // exit program

52 getMoreData("Exit program? y/n",1,userbuffer ,USERSIZE);

53 if(userbuffer [0]==’y’)

54 run =0;

55 else if(userbuffer [0]==’n’)

56 break;

57 else

58 printf("no clear answer - assumed no\n");

59 break;

60 case ’r’: // reset card

61 resetcommand(inbuffer ,&state0 ,&state1 ,debug);

62 break;

63 case ’e’: // echo command

64 echocommand(userbuffer ,tempbuffer ,inbuffer ,debug);

65 break;

66 case ’s’: // calculate X_s and send it

67 sendcommand(userbuffer ,tempbuffer ,inbuffer ,&state0 ,&state1 ,u,u2,debug);

68 break;

69 case ’g’: // request Y_s - key gets calculated

70 getcommand(userbuffer ,tempbuffer ,inbuffer ,machinename ,&state0 ,&state1 ,u,u2,debug);

71 break;

72 case ’a’:

73 authenticatecommand(userbuffer ,tempbuffer ,inbuffer ,machinename ,&state0 ,&state1 ,u,u2,debug);

74 break;

75 case ’d’:

76 debugcommand(userbuffer ,inbuffer ,debug);

77 break;

78 case ’m’:

79 setmachinecommand(userbuffer ,tempbuffer ,inbuffer ,machinename ,&state0 ,&state1 ,debug);

80 break;

81 case ’u’:

82 setusercommand(userbuffer ,tempbuffer ,inbuffer ,&state0 ,&state1 ,u,u2,debug);

83 break;

84 case ’x’:

85 disconnectcommand(userbuffer ,inbuffer ,&state0 ,&state1 ,debug);

86 break;

87 case ’c’:

88 printf("Machinename :\n%s\n",machinename);

89 printf("User 0:\n");

90 printf("name:\n%s\npwd:\n%s\n",u->username ,u->password);

91 printf("secret :\n");printClong(u->connections [0]->secret);printf("\n");

92 printf("X_s:\n");printAffinepoint(u->connections [0]->X_s);

93 printf("Y_s:\n");printAffinepoint(u->connections [0]->Y_s);

94 printf("K :\n");printAffinepoint(u->connections [0]->K);

95 printf("\nUser 1:\n");

96 printf("name:\n%s\npwd:\n%s\n",u2->username ,u2->password);

97 printf("secret :\n");printClong(u2->connections [0]->secret);printf("\n");

98 printf("X_s:\n");printAffinepoint(u2 ->connections [0]->X_s);

99 printf("Y_s:\n");printAffinepoint(u2 ->connections [0]->Y_s);

100 printf("K :\n");printAffinepoint(u2->connections [0]->K);

101
102 getMoreData("change? y/n",1,userbuffer ,USERSIZE);

103 if(userbuffer [0]== ’y’){

104 getUserData("What is the name of the Machine?" ,1,machinename ,61);

105 getUserData("What is the name of User 0?",1,name ,61);

106 getUserData("What is the password of User 0?",1,password ,61);

107 setUsername(u,(UINT8 *)name);

108 setPassword(u,(UINT8 *) password);

109 getUserData("What is the name of User 1?",1,name ,61);

110 getUserData("What is the password of User 1?",1,password ,61);

111 setUsername(u2 ,(UINT8*)name);

112 setPassword(u2 ,(UINT8*) password);

113 }

114 else if(userbuffer [0]==’n’)

115 break;

116 else

117 printf("no clear answer - assumed no\n");

118 break;

119 case ’i’:

120 authdis(userbuffer , inbuffer , debug);

121 break;

122 case ’t’:

123 printf("Debug level\n0: no debug\n1: debug output enabled\nn: perform command n times\n");

124 getUserData("Set the new value for the debug variable:" ,1,userbuffer ,61);

125 debug=atoi(userbuffer);

126 break;

127 case ’o’:

128 setCommunicationtimeout(userbuffer ,inbuffer);

89

A Listings

129 break;

130 default:

131 viewTooltip ();

132 break;

133 }

134
135 }

136
137 CloseConnection ();

138 freeClong (& sessionkey);

139 freeAffinepoint (&data);

140 deleteUser(u);

141 }

Listing A.5: Main function of the demonstrator application. The “classes” of the

users are instantiated here and all commands from the user are handled

in this function.

90

B
Figures

Figure B.1: Timings of 500 measurements of different commands.

91

B Figures

Figure B.2: Timings of 500 measurements of the challenging commands.

Figure B.3: Timings of 500 measurements of the debug-command.

92

B Figures

Figure B.4: Timings of 500 measurements of the simple commands.

93

	List Of Figures
	List Of Abbreviations
	Introduction
	Introduction to the Project
	Motivation
	In Industry
	At Home
	In Science

	Configuring Devices
	Why Using Passwords
	What To Consider Using Passwords
	Why Exchange Keys
	What To Consider Exchanging Keys

	Password-based Authentication
	Exchanging Keys
	Contribution of the Thesis
	Outline

	Related Work and Background
	Related Work
	Key Agreement
	Password-based Authenticaion
	Authenticated Key Exchange
	Internet of Things

	Background
	Cryptography
	Symmetric Cryptography
	Asymmetric Cryptography
	Cryptographic Hash
	Message Authentication Code
	Diffie-Hellman

	Prerequisites
	Secure Element
	Field Programmable Gate Array
	NFC Technology
	Commonly Used Terms

	Design
	Application Scenarios
	Future Industry
	Smart Home
	Next Generation Research

	Design Analysis
	Demonstrator
	Authentication
	Key Transfer
	Different Designs
	Evaluation

	Implementation
	Mathematical Concept
	Authenticate the User
	Key Exchange
	Design Flow
	Implementation Environments
	Used Libraries
	Used Applications

	Prototypical Implementation
	Transitional Implementation
	Changes for the Security Controller
	Implementation of the Demonstrator

	Performance Evaluation
	Process
	Results
	Interpretation

	Conclusion and Future Work
	Conclusion
	Limitations
	Combination With Other Work

	Future Work

	Bibliography
	Listings
	Prototype
	Transition
	Demonstrator

	Figures

