
Thomas Ulz, BSc.

Design and Implementation of an
NFC-based Configuration Interface for Smart Sensors

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger
Institute for Technical Informatics

Advisors

 Diplom-Ingenieur

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger
Dipl.-Ing. Holger Bock, Infineon Technologies Austria AG

Graz, September 2016

Abstract

The fourth industrial revolution, named Industry 4.0 by the German government,
introduces industrial cyber-physical systems. Unlike traditional manufacturing devices
that were kept isolated from the Internet, the goal of Industry 4.0 is to connect each and
every device that is involved in the production processes to the Internet. This allows
for machine-to-machine and machine-to-human communication which can be used to
monitor, control, optimize and change production flows. By engaging in the production
flow, highly customized products manufactured to customers’ needs instead of mass
produced items can be crafted.

In the context of this Industry 4.0 movement, the IoSense1 project, in which scope this
master’s thesis was conducted, tries to develop a Flexible Frontend/Backend Sensor Pilot
Line for the Internet of Everything. The smart sensors, produced as part of such a sensor
pilot line, can be used in a variety of domains, such as in smart factories or smart homes.
Independent of the context in which such a smart sensor will be utilized, by enabling
configuration changes throughout the sensor’s whole life cycle, production of the sensor
becomes more flexible. However, if such a configuration interface is integrated into a
smart sensor, security measures need to be taken as potential adversaries could either read
confidential configuration parameters or damage the hardware by applying a malicious
configuration. Furthermore, energy consumption of the configuration interface must
be considered as smart sensors might not be powered during production where initial
configurations are applied. Also, if a smart sensor is operated wireless, energy efficiency
is of utmost importance.

Thus, in this master’s thesis, an NFC-enabled configuration interface for Smart Sensors is
presented. By using NFC technology, the hardware necessary to process configurations
can be powered using the NFC field. To secure the configuration interface and the trans-
ported data, security measures are analyzed in this thesis and applied to the implemented
prototype. The evaluation of this prototype includes a threat analysis which demonstrates
the countermeasures taken concerning various threats. Also, it is shown that the over-
head imposed by applying the implemented security measures is reasonable for realistic
configuration sizes of about 1 kB.

1 IoSense is an EU project funded by ECSEL

Kurzfassung

Die vierte industrielle Revolution, von der deutschen Regierung auch als Industrie 4.0
bezeichnet, führt zu industriell genutzten cyber-physischen Systemen. Anders als bei
traditionellen Produktionsmaschinen, welche oft nicht mit dem Netzwerk verbunden
wurden, ist das Ziel von Industrie 4.0 jede im Produktionsprozess involvierte Maschine
mit dem Internet zu verbinden. Das ermöglicht Maschine-zu-Maschine sowie Maschine-
zu-Mensch Kommunikation, welche genutzt werden kann, um den Produktionsprozess
zu überwachen, regeln, optimieren und zu ändern. Durch das Eingreifen in den Pro-
duktionsprozess wird das Erzeugen maßgeschneiderter Produkte entsprechend von
Kundenanforderungen anstelle von massenproduzierten Artikeln ermöglicht.

Im Kontext dieser Industrie 4.0 Bewegung versucht das EU-Projekt IoSense2, im
Rahmen dessen diese Maserarbeit erstellt wurde, eine flexible Front-End/Back-End
Sensor Pilotlinie für das Internet der Dinge zu entwickeln. Die intelligenten Sensoren,
welche im Zuge solch einer Pilotlinie entwickelt werden, können in einer Vielzahl von
Anwendungsgebieten wie intelligenten Fabriken oder intelligenten Häusern eingesetzt
werden. Unabhängig vom Einsatzgebiet des Sensors sollte dieser über seinen gesamten
Lebenszyklus konfigurierbar sein, um die Produktion flexibler gestalten zu können. Wenn
aber eine Konfigurationsschnittstelle in intelligente Sensoren integriert wird, muss auch
die Sicherheit der Daten berücksichtigt werden. Angreifer könnten diese Schnittstelle
nutzen, um Informationen auszulesen oder den Sensor zu beschädigen. Zusätzlich muss
auch der Energieverbrauch solch einer Konfigurationsschnittstelle bedacht werden, da die
Sensoren zumindest während der Produktionsphase nicht mit Energie versorgt werden
können. Wird der Sensor in einer kabellosen Umgebung eingesetzt, muss Energieeffizienz
ohnehin als sehr wichtiger Punkt betrachtet werden.

Daher wird in dieser Masterarbeit eine NFC-basierte Konfigurationsschnittstelle für in-
telligente Sensoren vorgestellt. Durch die Benützung von NFC kann die Konfigurations-
schnittstelle durch das NFC-Feld mit Energie versorgt werden. Um die Schnittstelle abzu-
sichern, werden geeignete Sicherheitsmaßnahmen implementiert. Der gezeigte Prototyp
wird anhand einer Sicherheitsanalyse evaluiert. Zusätzlich zeigt die Evaluierung, dass
durch die implementierten Sicherheitsmaßnahmen ein vertretbarer Mehraufwand bei der
Datenübertragung von realistischen Paketen mit einer Größe von 1 kB entsteht.

2 IoSense ist ein EU Projekt gefördert durch ECSEL

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other than the
declared sources/resources, and that I have explicitly indicated all material which has been
quoted either literally or by content from the sources used. The text document uploaded
to TUGRAZonline is identical to the present master’s thesis dissertation.

Date Signature

Acknowledgements

At this place, I want to thank all people that have helped, encouraged, guided and advised
me throughout this master’s thesis and my whole studies. First, I want to thank Ass.Prof.
Dipl.-Ing. Dr.techn. Christian Steger from the Institute for Technical Informatics, as
well as Dipl.-Ing. Holger Bock and Dipl.-Ing. Thomas Ruprechter, both from Infineon
Austria, for providing me the opportunity to work in such an interesting and promising
field during my thesis. I also want to thank them for their inputs and guidance while
working on this master’s thesis.

I also want to thank all colleagues at Infineon for their support, feedback and ideas
regarding the concept presented in this work. In particular, I want to thank Andreas
Wallner, MSc and Dipl.-Ing. Dr.techn. Christian Lesjak for introducing me to relevant
concepts and for providing me with valuable input and feedback regarding my work.

Finally, I want to thank my family and friends for their immense support during this
master’s thesis and my whole studies. Without them, achieving all goals set during the
last years would not have been possible. In particular, I want to thank my girlfriend Sarah,
my parents Renate and Johann, and my friends and colleagues Christian, Jakob, Jürgen,
Marco, Michael, and Thomas.

List of Figures

1.1 Four industrial revolutions . 11
1.2 5-level structure for industrial CPS . 12
1.3 Mediator hardware architecture . 13

2.1 Authenticated Encryption modes . 23
2.2 IoT growth . 25

3.1 Bring Your Own Key . 38
3.2 Smart factory scenario . 40
3.3 Autonomous robots . 41
3.4 Smart home scenario . 42
3.5 General system architecture . 43
3.6 Encrypt-then-MAC . 48
3.7 Class diagram backend . 51
3.8 Class diagram SECURECONFIG . 53
3.9 Sequence diagram QR scanning . 54
3.10 Sequence diagram download payload 55
3.11 Sequence diagram NDEF transfer . 55
3.12 Component diagram secure element 56
3.13 State machine secure element . 57

4.1 Development toolchain . 62
4.2 Debugging setup . 63
4.3 Images debugging . 64
4.4 CUTIN module . 65
4.5 SECURECONFIG screenshots . 72

5.1 Security engineering process . 74
5.2 Evaluation packet size . 81
5.3 Evaluation packet size zoomed . 82
5.4 Percentage of overhead . 83

6

List of Tables

2.1 Industrial IoT attacks . 28
2.2 Overview of related work which highlights certain requirements that are

necessary for a NFC-based configuration interface. 36

3.1 NFC protocol structure . 45
3.2 Structure of a C-APDU. 46
3.3 Structure of a R-APDU. 47
3.4 Example C-APDU to select capability container. 47
3.5 Example C-APDU to read data from previously selected file. 47
3.6 Example C-APDU to write data to previously selected file. 47
3.7 Encrypted payload structure . 49

7

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Introduction . 12
1.3 Goals . 14
1.4 Overview . 15

2 Prerequisites and Related Work 16
2.1 Prerequisites . 16

2.1.1 Security Controller (SC) . 16
2.1.2 NFC . 18
2.1.3 Security of NFC . 19
2.1.4 QR Codes . 20
2.1.5 Authenticated Encryption . 21
2.1.6 Android . 23

2.2 Related Work . 24
2.2.1 Internet of Things . 24
2.2.2 Industrial IoT and Industry 4.0 26
2.2.3 Smart Home . 29
2.2.4 Applications of NFC . 30
2.2.5 Bring Your Own Device . 31
2.2.6 Bring Your Own Key . 32
2.2.7 Configuration via QR Codes 32
2.2.8 Configuration via NFC . 33

2.3 Differences to the State of the Art . 34
2.3.1 Approaches using QR codes for configuration 34
2.3.2 Approaches using NFC for configuration 34
2.3.3 Combination of Approaches 35
2.3.4 Overview . 35

3 Design 37
3.1 Application Scenarios . 37

3.1.1 Bring Your Own Key scenario 37
3.1.2 Industry 4.0 . 39
3.1.3 Smart Home . 41

3.2 System Architecture . 43
3.3 Protocols . 44

3.3.1 QR-based . 44
3.3.2 NFC-based . 45

3.4 NFC Type 4 Tag Operations . 46
3.5 Configuration Security Mechanisms 48

3.5.1 Order of Encryption . 48
3.5.2 Version, Validity, and Machine ID 49

3.6 Backend Design . 50
3.7 Mobile Device Design . 51

3.7.1 Class Diagram . 51
3.7.2 Sequence Diagrams . 54

3.8 Secure Element Design . 55
3.8.1 Component Diagram . 55
3.8.2 NDEF State Machine . 57

4 Implementation 58
4.1 Libraries and Third Party Components 58

4.1.1 Mobile Device . 58
4.1.2 Backend . 60
4.1.3 Secure Element . 61

4.2 Development Toolchain . 62
4.3 Debugging Environment . 63
4.4 Hardware Prototype . 64
4.5 Code Samples of Important Concepts 65

4.5.1 NFC Type 4 Tag Operations 65
4.5.2 Authenticated Encryption . 70

4.6 SECURECONFIG User Interface . 71

5 System Evaluation 73
5.1 Security and Risk Analysis . 73

5.1.1 Entities . 74
5.1.2 Assumptions . 75
5.1.3 Assets . 75
5.1.4 Threats . 76

5.2 Evaluation of Packet Sizes . 81

6 Conclusion and Future Work 84
6.1 Conclusion . 84

6.1.1 Limitations . 85
6.2 Future work . 87

1
Introduction

This introductory chapter comprises several parts. First, a motivation for the chosen topic
is given, where the need for the proposed solution will be expressed. In the second part,
an introduction and overview of the existing system that is going to be extended through
the work of this master’s thesis is given. After that, the goals that were defined for this
thesis are listed. The chapter is concluded with an overview of the rest of this document’s
contents.

1.1 Motivation
Today’s economic pressure causes the industry to offer personalized products, specially
manufactured to each customer’s needs. This is in contrast to mass production, where
the goal is to produce as many products at costs as low as possible. Another trend
in manufacturing calls for resource and energy efficient production, as environmental
changes arise. Those two mentioned aspects led to a high-tech strategy by the German
government, which coined the term Industry 4.0. The changes proposed and predicted by
this initiative are also seen as the fourth industrial revolution. An overview of all four of
those industrial revolutions is depicted in Figure 1.1.

The first industrial revolution, taking place in the late 18th century, was driven by the
usage of steam and water powered machines which led to mechanization of production
processes. By using electricity, assembly lines and therefore mass production became
possible in the second industrial revolution which took place at the beginning of the 20th
century. In the early 1970s, automation and the use of computing systems led to the
third industrial revolution. The fourth industrial revolution will be driven by connecting

10

1 Introduction

Figure 1.1: Overview of all four industrial revolutions.

factory equipment to the internet, thus making them cyber-physical systems. In addition
to potentially existing production equipment, also the addition of (wireless) sensors is
envisioned in the Industry 4.0 initiative, thus, including factories into the Internet of
Things.

By connecting factory equipment and sensors to the Internet, new problems arise which
include making machines vulnerable to attacks from arbitrary adversaries. Attacks could
have multiple effects like denial of service or espionage from competitors. Thus, research
is currently trying to find security solutions. Those solutions, amongst others, require
integration of special hardware to make production equipment secure. However, also the
configuration of this security related hardware needs to be done in a secure way.

To enable (on site) configuration of the equipment and sensors even before enabling
any remote connectivity, an NFC-based configuration solution will be proposed in
this work. The focus of this thesis is the security of configuration data, which might
include confidential data such as key material, as well as on the practicability and ease
of configuration. By making the configuration process fail safe as well as secure, any
maintenance worker will be able to configure equipment.

Even before the term Industry 4.0 was coined, Koren et al. [KHJ+99] introduced the term
Reconfigurable Manufacturing System (RMS) which is a vital concept in the Industry 4.0
context. Koren et al. [KHW98] also point out that configuring a manufacturing system
plays an important role in impacting the systems’ performance. Lee et al. [LBK15]
propose a 5-level structure for the development of cyber-physical systems which are used
in the manufacturing process. Among others, the authors highlight configuration as one
of the five proposed levels as shown in Figure 1.2.

11

1 Introduction

Configuration Level

Cognition Level

Cyber Level

Data-to-Information
Conversation Level

Smart Connection Level

Figure 1.2: Five level structure for the development of cyber physical systems which are used in the
manufacturing process as proposed by Lee et al. [LBK15].

1.2 Introduction
The core idea of this master’s thesis is to use the work done by Lesjak et al. [LRH+14],
[LRB+14a], [LRB+14b], [LHH+15], [LHW15] as a basis architecture which will be
extended by a secure configuration capability. The motivation for the work done by
Lesjak et al. is to enable smart maintenance services for existing equipment. The aim
of smart maintenance services is to optimize work-intensive maintenance, repair, and
operations (MRO) tasks. This is done by collecting data from industrial equipment to
anticipate service needs.

The main hardware component, denoted as mediator in the work of Lesjak et al., can be
applied to existing (legacy) factory equipment. A basic overview of its components is
depicted in Figure 1.3. There, various connection interfaces can be seen. The Equipment
Interface is used to connect the mediator’s Equipment Host Controller to any existing
production equipment. Here, a range of physical connectors and protocols such as
Ethernet, USB, serial connection, CAN bus, Profibus, and EtherCAT are supported.
These interfaces are used to collect equipment health and condition information, further
referred to as equipment Snapshot.

The Network Interface will then be used to transmit the collected snapshots to so-called
smart service backends, provided by the equipment vendors. Because those backends
will not be located within the same facility as the hardware the mediator is deployed to,

12

1 Introduction

Mediator

Mediator Host Controller

Security Controller

Equipment
Host Controller

Protected
Processing/Storage

RF
Interface

Network
Interface

Wireless
Interface Wireless

Internet

NFC

Equipment
Interface

Equipment

General-Purpose
CPU/Memory

Protected Execution
and Storage

Remote
Connectivity

Local
Connectivity

Figure 1.3: Architecture overview of mediator hardware element.

the Network Interface needs to support the Internet Protocol (IP) to enable connections to
the Internet.

Local Connectivity is provided by two interfaces. The Wireless Interface can be used to
connect to the mediator via a wireless local area network (WLAN). The RF Interface
offers a near field communication (NFC) interface. Both interfaces for local connectivity
can be used by maintenance technicians to access the mediator.

As can be seen in the architectural overview depicted in Figure 1.3, the mediator com-
prises a Host Controller as well as a Security Controller (SC). The SC provides a number
of security related features, which will be discussed in Section 2.1.1. Because of its secure
nature, the following functions are provided by the SC:

• Secure storage for software and data (includes cryptographic credentials)

• Secure execution of code

• Cryptographically secure random number generator

By using the two mentioned controllers, the mediator’s storage and processing capabili-
ties are split. Communication and the respective protocols are handled on the powerful

13

1 Introduction

general-purpose Host Controller, while the Secure Controller is responsible for providing
a Secure Execution Environment (SEE). All components necessary for implementing a
secure NFC-based configuration interface which can be attached to (legacy) equipment
exist in the mediator hardware.

• The Security Controller’s NFC interface is used for transmitting configurations to
the mediator.

• The Security Controller is used to perform decryption and verification of transmit-
ted configuration packages. Also, key material is stored inside the security con-
troller’s protected storage.

• Also, other confidential configuration parameters can be stored in the security con-
troller’s protected storage.

• The Host Controller and its equipment interface are used to propagate the configu-
ration to the attached manufacturing devices.

Throughout the rest of this thesis, the utilized mediator hardware will be denoted as secure
element to use a more generalized naming.

1.3 Goals
The main goal of this master’s thesis is to design and implement an NFC-based configu-
ration interface. The requirements for that interface are defined in the following list.

Security: Key material and other configuration parameters should be secured in any step
of the configuration process. It must not be possible for adversaries to obtain, read
or manipulate the transported data.

Usability: The implemented software should be easily usable for maintenance workers.
The software should assist the workers in a way such that user errors are limited to
a minimal amount.

Portability: The two components (mobile device and backend) needed for the config-
uration process besides the previously mentioned mediator should not require any
special hardware other than an NFC interface. It should be possible to use com-
ponents off the shelf for all involved parts of the system (of course besides the
mediator).

14

1 Introduction

1.4 Overview
The rest of this work will be structured as follows. In Chapter 2 - Prerequisites and
Related Work, the technical aspects of this master’s thesis will be discussed. All involved
technologies such as NFC, the secure element as well as the necessary cryptographic
principles will be discussed there. Also in this chapter, related work to the topics covered
in this master’s thesis will be given. After that, the design process will be documented in
Chapter 3 - Design. The implementation, as well as the used tools and libraries will be
discussed in Chapter 4 - Implementation. To evaluate the implemented system, a threat
and risk analysis was conducted. The results as well as evaluations with respect to data
size will be presented in Chapter 5 - System Evaluation. In Chapter 6 - Conclusion and
Future Work, known limitations of the implemented solution as well as possible future
work are listed. This master’s thesis then will be completed by a conclusion given in that
same chapter.

15

2
Prerequisites and Related Work

In this chapter, several components and technologies which were used in the implemen-
tation of this master’s thesis are going to be discussed. Also, related work for the topics
involved in this thesis is listed and reviewed. To finish the chapter, differences of the
implementation presented in this thesis to comparable, state of the art solutions are high-
lighted.

2.1 Prerequisites
The (technical) background for the components and technologies that is given in this sec-
tion is essential for understanding the concepts and implementation presented in Chap-
ters 3 and 4.

2.1.1 Security Controller (SC)
Before discussing Security Controllers in detail, the fundamental concept of Security by
Isolation will be discussed.

Security by Isolation

Vasudevan et al. [VOZ+12] propose to split an execution environment into a normal
world and a secure world. The normal world, according to the authors, would represent
a general-purpose execution environment (GPEE) while the secure world would serve as

16

2 Prerequisites and Related Work

a secure execution environment (SEE). The same concept was adapted in many publica-
tions and is also known as dual-execution [SAB15], or red and green worlds [LHW15].
Vasudevan et al. [VOZ+12] identify five security features that enable secure execution for
mobile devices:

Isolated Execution: offers the possibility for application developers to run their code
completely isolated from other code.

Secure Storage: is providing secrecy, integrity and/or freshness for data. This applies
especially when the device is powered off, but also under certain conditions de-
pending on which software currently is loaded.

Remote Attestation: allows remote parties the verification if a particular message
originates from a particular software module.

Secure Provisioning: allows sending data to a specific software module running on a
specific device. The integrity and secrecy of that data are guaranteed.

Trusted Path: protects the communication between a software module and a peripheral
(authenticity and optionally secrecy and availability).

Security Controllers

Security Controllers might store or operate with cryptographic key material or other sen-
sitive data. Therefore, they become an attractive target for attackers. Anderson et al.
[ABCS06] list four types of attacks against which security controllers should be resistant.

Invasive attacks: entail access to the (electrical) internal components of a crypto pro-
cessor. Attackers might, for instance, remove the packaging, drill a hole into a chip
and probe signals on bus lines.

Semi-invasive attacks: do not damage the hardware, but still, involve physical access
to it. Attackers might try to change internal states by, for instance, trying to alter
the state of a flip-flop by inducing power spikes.

Local non-invasive attacks: involve detailed observation of device parameters such
as power consumption. In such an attack, also called side-channel attack, an adver-
sary might precisely measure the power consumption and correlate the trace to the
data processed.

Remove attacks: include the observation of the device’s standard inputs and outputs.
Potential attacking points include timing analysis, the analysis of protocols or the
exploitation of programming interfaces. For instance, timing measures can be used
to correlate the traces to processed data. This particular attack also falls into the
category of side-channel attacks.

17

2 Prerequisites and Related Work

To provide security by isolation, security controllers are conducted as external hardware
modules. However, as only the SEE can be realized on such security controllers, also
communication interfaces to the GPEE will be necessary. Therefore, current SCs offer
interfaces such as USB, I2C or SPI. Also, contactless interfaces such as NFC can be
integrated into security controllers.

2.1.2 NFC
Near Field Communication is a wireless communication technique, based on several
RFID (radio-frequency identification) standards. It operates at a radio frequency of 13.56
MHz, up to a range of approximately 10 cm. Because the NFC standard comprises
various RFID standards, NFC devices are compatible with existing RFID cards and
tags, as Gauthier Van Damme and Karel Wouters [VDWP09] note. The NFC standard
ISO/IEC 18092 or ECMA-340 [fSEC+04] called Near Field Communication Interface
and Protocol-1 (NFCIP-1) defines the NFC interface and communication protocols. Also
in this standard, three supported bit rates are defined: 106, 212 and 424 kbits per second
(kbps).

As mentioned by Roy Want [Wan11], the standard furthermore defines different operation
modes for NFC. According to the standard, devices can communicate in a passive or an
active way. In the passive mode, one device, the initiator, acts as a reader and powers
the passive target device. The initiator powers the target by generating an RF field which
is modulated by the passive device. In active mode, both devices are powered and thus,
can generate their own RF field. Later, a second standard ISO/IEC 21481 or ECMA-352
[fSEC+05] also called NFCIP-2 defined three standard operation modes for NFC devices:

Card Emulation Mode: In this mode, the NFC device emulates a (smart) card. No RF
field is generated by the device; it is operated in passive mode.

Reader/Writer Mode: The NFC device generates an RF field to communicate with a
passive device (smart card, RFID tags). The device, therefore, acts like a normal
active contactless card reader.

Peer to Peer Mode: To communicate actively with a second NFC device, this mode is
used. A master/slave principle is applied where the master (initiator) starts the data
transfer. After that it waits for the slave (target) to respond. The two devices can
communicate with each other both in active or passive NFC mode.

A lot of research regarding the security of NFC was already made in the META[:SEC:]
project by Druml et al. [DMK+13], [DMK+14], and Höller et al. [HDK+14]. Some
principles and associated attacks will be discussed in the following section.

18

2 Prerequisites and Related Work

2.1.3 Security of NFC
To better understand why some of the design decisions in Chapter 3 were made, the
security issues of NFC are highlighted here. The most common (possible) attacks for NFC
communication will be discussed here. The categorization of attacks was also discussed
by Ernst Haselsteiner and Klemens Breitfuß [HB06].

Eavesdropping

The communication between devices in NFC is based on RF waves, as mentioned previ-
ously. Therefore, eavesdropping is an obvious issue for NFC. Attackers can use antennas
and analysis equipment to listen to any data being sent between two devices. However,
as discussed above, the usual communication range for NFC devices is approximately 10
cm. This close proximity implies a low power RF field, which makes NFC communica-
tion harder to attack than other wireless protocols. The distance an attacker needs to be
within to successfully eavesdrop NFC communication actually depends on a number of
parameters such as the quality and characteristics of the attackers RF antenna and receiver,
the setup of the location where the attack would be performed or the power sent out by the
transmitting NFC device. As stated by Haselsteiner and Breitfuß [HB06], approximately
10 m for active and 1 m for passive devices should be considered as a rule of thumb for
possible eavesdropping.

Data Manipulation

For data manipulation, three different scenarios are distinguished:

Data Corruption: If an attacker is not interested in the transmitted data but instead just
wants to disturb the communication, she needs to transmit data for valid frequencies
at the correct time. If the modulation scheme and coding are known, it is easy for
the attacker to calculate these correct times. This attack can be seen as a Denial of
Service (DoS) attack.

Data Modification: If the attacker wants the receiving device to receive valid, but ma-
nipulated data, different steps for data corruption depending on the modulation
scheme need to be taken. One such task, filling a pause, easily can be done by
sending a signal. This changes a zero to a one. To change a one to a zero, a signal
level needs to be reduced, which can be achieved by sending overlapping signals.
As mentioned, depending on the chosen modulation and encoding, this attack is
either feasible for certain bits and impossible for the other bits, or feasible for all
transmitted bits.

Data Insertion: In this scenario, an attacker tries to insert messages into an ongoing
data exchange between two devices. For this to happen, the answering device needs
to take a long time to answer. In the timeslot where no data is transmitted because

19

2 Prerequisites and Related Work

the answering device needs much time, the attacker can send his own data. The
attacker’s data transfer, however, needs to be finished before the original answer is
transmitted. If not, the two RF signals overlap and the data will be corrupted.

Man-in-the-middle

In a man-in-the-middle (MITM) attack, two devices A and B want to communicate with
each other. Without their knowledge, a third party, the attacker E, places itself between
those two parties and communicates with both. So instead of A sending data to B, A
actually is sending data to E, who then forwards the information to B. As both parties do
not know of the man-in-the-middle, E can observe or even manipulate the data between A
and B. For the attacker, it is important that while receiving a message from, for instance,
A, she makes sure that B does not see that same message but rather the message sent by
E. The attacker, therefore, needs to jam the initial signal and send its own signal instead.
NFC however, allows a device to receive and transmit data at the same time. Therefore,
the sender would recognize the attacker’s jamming and immediately terminate the data
transmission. Additionally, NFC is a short-range communication technology. Therefore
MITM attacks on NFC are practically impossible to mount.

Concluding their analysis, Gauthier Van Damme and Karel Wouters [VDWP09] state:

We can conclude that even if the NFC standard foresees some features that
makes the attacker’s life harder, perfect security can only be obtained when
dedicated cryptography is used to establish a secure channel between com-
municating devices.

In [PFT+14], Plosz et al. analyze different wireless communication technologies con-
cerning security vulnerabilities in industrial usage. When discussing possible security
mechanisms defined in the NFC standard, the authors note that many attacks are still pos-
sible. Therefore, in Section 2.1.5, cryptographic principles used in the implementation
done for this master’s thesis are going to be discussed.

2.1.4 QR Codes
A Quick Response (QR) code is a two-dimensional code (matrix barcode) which was
presented by a subsidiary company of Toyota in 1994 as noted by Tan Jin Soon [Soo08].
In many areas, QR codes offer the same features as the well-known barcode technology.
However, it has some major advantages when compared to linear barcodes such as a
much higher data density. In addition to that, QR codes can be read from arbitrary angles.
Depending on the chosen error correction, arbitrary data of up to 2,953 Bytes can be
stored in a QR code.

20

2 Prerequisites and Related Work

2.1.5 Authenticated Encryption
Within the context of this master’s thesis, authenticated encryption is used to provide
confidentiality, integrity and authenticity of data. There exist specialized authenticated
encryption modes for symmetric block ciphers, however, in general, authenticated encryp-
tion can be constructed by combining a encryption scheme and a Message Authentication
Code (MAC). Therefore, before further discussing authenticated encryption, symmetric
cryptography and MACs are going to be discussed.

Symmetric cryptography

Bellare et al. [BDJR97] state the main difference between symmetric (private-key) and
asymmetric (public-key) cryptography:

An encryption scheme enables Alice to send a message to Bob in such a way
that an adversary Eve does not gain significant information about the mes-
sage content. This is the classical problem of cryptography. It is usually
considered in one of two settings. In the symmetric (privatekey) one, en-
cryption and decryption are performed under a key shared by the sender and
receiver. In the asymmetric (public-key) setting the sender has some public
information and the receiver holds some corresponding secret information.

In this master’s thesis, private-key encryption is used to secure the transferred data. One of
the most widely used algorithms in that category is AES (Advanced Encryption Standard).
According to Lu and Tseng [LT02] AES can be used with key lengths of 128, 192 or 256
bit. The authors also note that AES is a block cipher, which means that the algorithm
processes plaintext blocks of 128 bits (16 bytes). Therefore, each block can be represented
by a 4x4 matrix. If less than those 128 bit need to be encrypted, the plaintext will be
padded with zeros. AES comprises four different steps, which, depending on the key
length, are repeated for a certain number of rounds. Those four steps involve:

• SubBytes: Each byte is replaced by another one based on a lookup table.

• ShiftRows: The data in each row is shifted cyclically by a certain offset. For AES,
the first row is unchanged; the second row is shifted by one, the third row by two
and the last row by an offset of three.

• MixColumns: A mixing operation is applied to each of the four columns of the
matrix.

• AddRoundkey: The subkey of the respective round is combined with the already
calculated intermediate result.

21

2 Prerequisites and Related Work

For an AES key with a length of 256 bit, those four steps are repeated 14 times. The
National Institute of Standards and Technology announced AES as being secure even for
confidential government data [Hat03]:

The design and strength of all key lengths of the AES algorithm (i.e., 128, 192
and 256) are sufficient to protect classified information up to the SECRET
level. TOP SECRET information will require use of either the 192 or 256 key
lengths.

Message Authentication Code

Message Authentication Codes (MACs) often are based on hash functions which must
provide the following characteristics: collision resistance, preimage resistance, and
second-preimage resistance [RS04].

• preimage resistance: infeasible to find x′ with y = h(x′) for any given y.

• 2nd-preimage resistance: infeasible to find x′ 6= x s.t. h(x′) = h(x) for given x.

• collision resistance: infeasible to find x, x′ such that h(x) = h(x′).

The purpose of MACs is to ensure that a message came from a given sender (authenticity)
and that the message was not altered by a third party (integrity). In contrast to a simple
hash function, a MAC needs a secret key as well as the message as its input to produce
the MAC value. As will be discussed in Chapter 3, an HMAC (keyed-hash message
authentication code) [KCB97], based on SHA-256 will be implemented in this master’s
thesis.

Authenticated Encryption Modes of Operation

As Bellare and Namprempre [BN00] state, there are different ways to combine encryption
and MAC to achieve authenticated encryption. The three modes, Encrypt-then-MAC,
Encrypt-and-MAC, and MAC-then-Encrypt differ in the order of execution and the input
for the encryption and MAC parts. The respective execution time point can be derived
from the name of those concepts. For instance, in Encrypt-then-MAC, the plaintext is first
encrypted using a private key. The resulting cyphertext and the private key are then used to
calculate the MAC. Figure 2.1 depicts the different modes of operation for authenticated
encryption.

22

2 Prerequisites and Related Work

Plaintext

Ciphertext MAC

Hash function

Encryption Key

(a) Encrypt-then-MAC

Plaintext

Ciphertext MAC

Hash functionEncryption

Key

(b) Encrypt-and-MAC

Plaintext

MAC

Encryption

Plaintext

Key

Ciphertext

Hash function

(c) MAC-then-Encrypt

Figure 2.1: Authenticated Encryption modes of operation.

2.1.6 Android
Android is an operating system for mobile devices, which is developed by Google. The
system is based on the Linux kernel and therefore can provide security features similar
to a Linux system. Because the configuration of devices via NFC in this master’s thesis
will be done using an Android device, application and data security of Android need to be
considered. Enck et al. conducted studies about Android security in general [EOM+09]
and application security in particular [EOMC11]. The authors state, that each Android
application in general runs under their unique user identity, which allows the systems to
limit potential damage to single applications. The second mechanism to protect appli-
cations and data is by securing ICC (inter-component communication). This is done by
mediating ICC, which, for instance, enforces a mandatory access control (MAC) on ICC.
The simplest supported form of MAC is by using permissions for applications.

23

2 Prerequisites and Related Work

2.2 Related Work
In this section, related work to various topics, comprised in the implementation of this
master’s thesis, is given. The related work includes publications concerning Industry 4.0,
the Internet of Things, smart homes, an overview of possible applications of NFC, an
introduction to the concepts of Bring Your Own Device/Key as well as different configu-
ration scenarios using NFC and QR codes.

2.2.1 Internet of Things
The term ubiquitous computing was first coined by Marc Weiser in 1991 [Wei91] when
he stated:

The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from
it. [...] Silicon-based information technology, in contrast, is far from having
become part of the environment. More than 50 million personal computers
have been sold, and nonetheless the computer remains largely in a world of
its own.

In this work, the concept of embedding computers into things used in everyday life is
introduced. Weiser forecasted, that, if the size of computers can be decreased enough,
people will use hundreds of computers instead of a single personal computer.

Hundreds of computers in a room could seem intimidating at first, just as
hundreds of volts coursing through wires in the walls did at one time. But
like the wires in the walls, these hundreds of computers will come to be in-
visible to common awareness. People will simply use them unconsciously to
accomplish everyday tasks.

Based on this vision, the Internet of Things is a more recent interpretation of ubiquitous
computing. The corresponding vision, as discussed by Friedemann Mattern and Christian
Floerkemeier [MF10], foresees the extension of the Internet into the real world, everyday
objects. The authors further state that physical devices, if connected to the Internet, can
be remotely controlled or observed via the Internet, which is offering new opportunities
for individuals and the economy. Mattern and Floerkemeier also define the term smart
objects, which they note will play a huge role in the Internet of Things. In their definition,
smart objects will be using sensors to perceive the environment they are integrated into.
This information can then be communicated using the networking capabilities.

Another term used in the context of Internet of Things are Cyber-Physical Systems
(CPS) which are discussed, for example, by Edward Lee [Lee08]. The author defines a
cyber-physical system as the integration of computation into a physical process. Em-
bedded computers with network capabilities then monitor and even control the physical

24

2 Prerequisites and Related Work

process. Lee postulates, that in order to use the full potential of CPS, new networking
and computing abstractions which consider physical dynamics need to be defined.

In their survey paper, Miorandi et al. [MSDPC12] state that in 2012, 2 billions of people
were using the Internet. However, the authors envision a huge jump in the number of
Internet users, as machines and smart objects start to communicate via the Internet as
well. An estimation by the National Cable & Telecommunications Association3 which is
shown in Figure 2.2 forecasts up to 50 billions of devices connected to the Internet by
2020.

Figure 2.2: Estimated growth of the number of connected devices by the National Cable & Telecom-
munications Association.

As the number of devices connected to the Internet will increase rapidly, so will the
amount of data that is stored, processed and transported. This larger amount of devices,
services and data, however, will make attacking the Internet of Things even more inter-
esting for adversaries. Furthermore, as Jing et al. [JVW+14] state, IoT introduces even
more security problems than the traditional Internet did:

IoT not only has the same security issues as sensor networks, mobile com-
munications networks and the Internet, but also has its specialties such as
privacy issues, different authentication and access control network configu-
ration issues, information storage and management and so on.

3 https://www.ncta.com/

25

2 Prerequisites and Related Work

Roman et al. [RNL11] analyze the current state of the art in security for the Internet of
Things. When discussing technologies to secure IoT at the protocol and network level,
the authors postulate that traditional public-key infrastructures will not scale to the large
number of IoT’s contexts and devices. The authors also state that in addition to security
aspects such as privacy or data integrity, fault tolerance will become more important for
IoT devices. Since billions of devices will produce and consume data, many of them being
highly constraint, finding one weak link to attack might be easy for adversaries. Being in
control of a single device could then lead to failures of many services.

2.2.2 Industrial IoT and Industry 4.0
Karl Steinbuch, a german computer science pioneer, stated in 1966 [Ste66]:

In a few decades time, computers will be interwoven into almost every indus-
trial product.

That vision is becoming reality nowadays as a fourth industrial revolution is said to take
place. The term Industrie 4.0 was coined by the German government in 2011 and is
also known as the fourth industrial revolution. Since then, much research has been done
in that particular field, especially in the context of Internet of Things which is a major
component of the Industry 4.0 concept.

According to Nasser Jazdi [Jaz14], digital factories as envisioned for Industry 4.0 are
characterized by the following features:

• Smart networking: Equipment such as production equipment, sensors, and actua-
tors are constantly connected, either wireless or through wires.

• Mobility: Mobile devices such as tablets or smartphones can be used to access
production relevant information and thus lead to easier diagnosis, maintenance and
operation.

• Flexibility: Flexibility is a major feature of Industry 4.0 as production equipment
as well as maintenance and operation services can be combined from various man-
ufacturers. By using big data, automation can be further assisted.

• Integration of customers: Personalization of products will be provided because of
the flexibility offered by Industry 4.0.

• New innovative business models: As mentioned, flexible and also distributed pro-
duction will become possible in the future. Also, products will be personalized and
modular. Thus, new and innovative business models will result from the Industry
4.0 initiative.

Jazdi also notes that safety and security will become a major concern for smart factories:

26

2 Prerequisites and Related Work

Industry 4.0 brings many challenges that need to be extensively studied in
the research. Many questions arise: How can the reliability and safety of
these products, whose development is distributed, be determined and how
are they certified? Another important task is the subject of data protection
and security. It must be ensured that one’s own know-how and privacy are
protected and remain unaffected. To this end, new concepts and technologies
that allow a trustworthy cooperation of many groups and units are needed.

Sadegi et al. [SWW15] state that industrial IoT is producing a significant amount of
sensitive data which makes them attractive targets of cyber attacks. As the authors note,
cyber attacks on industrial IoT devices are very critical because such attacks could cause
physical damage to production equipment or even threaten human lives. Thus, Sadegi
et al. give a security analysis as well as an outlook for possible solutions regarding a
security framework for industrial IoT systems.

As a possible solution for cyber attacks, John Stankovic [Sta14] proposes to use self-
healing mechanisms for (production) critical systems. The self-healing process involves
the detection of an attack, analysis of the attack, and the deployment of countermeasures
and repairs regarding the diagnosed attack. A major challenge regarding self-healing, ac-
cording to the author, are resource constraint devices which require that all of the steps
mentioned above need to run in a light-weight manner. One possible solution, the down-
loading of new code onto the devices, is presented by Deng et al. [DHM06]. However,
this method is said to be insufficient by Stankovic. He makes the point that downloading
and applying new code itself is prone to security-related attacks. Finally, Stankovic states:

It is likely that significant hardware support [RRC04] will be necessary
for providing encryption, authentication, attestation, and tamper proof keys.
Even if new devices are security-aware, dealing with legacy devices will prove
difficult.

Ning et al. [NLY13] list different attack categories for which the authors state various
types of attacks, the possible consequences of such attacks and potential countermea-
sures. The list of attacks can be seen in Table 2.1.

Claudia Eckert and Niels Fallenbeck [EF15] discuss the utilization of (open) cloud
services in the context of Industry 4.0. The authors highlight the importance of data
protection starting at the point of data acquisition (sensors) via various transport channels
up to the cloud service. The authors further state the importance of security when
considering cloud services that deal with data of potentially competing companies.
Concluding their paper, the authors note that various initiatives have been started to
enhance security in Industry 4.0. Some initiatives include a proposed security framework
for IoT by Cisco4, guidelines from Fraunhofer5 or a project by VTT6.
4 http://www.cisco.com/c/en/us/about/security-center/secure-iot-proposed-framework.html
5 https://www.sit.fraunhofer.de/de/industrie-40/
6 http://www.vttresearch.com/services/digital-society/cyber-security

27

2 Prerequisites and Related Work

Attack
Category Types of Attacks Loss

of Countermeasures

Gathering

Skimming: quickly reading
transmitted messages to collect data

C Encryption and steganography

Tampering: deliberately destroying or
corrupting data

I
Hash functions, cyclic redundancy

checks, and MACs

Eavesdropping: collecting exchanged
messages

C
Encryption, identity-based

authentication, and concealed data
aggregation (CDA)

Traffic analysis: monitoring
exchanged data to determine traffic

patterns
C

Network forensics and misbehavior
detection

Imitation

Spoofing: impersonating a user or
program to obtain unauthorized access

C, I
Identity-based authentication, key

distribution, Internet Protocol Security,
and digital signatures

Cloning: duplicating and rewriting
valid data into an equivalent entity

C Physically unclonable functions

Replay: recording and storing
previously transmitted data to repeat

data or delay the current session
C

Time stamps, time synchronization,
pseudorandom numbers, session
identifiers, and serial numbers

Blocking

Denial of service: Flooding data
streams to deplete system resources or

interfere with communications
A

Firewalls, router control, resource
multiplication, distributed packet

filtering, dynamic en-route filtering,
and aggregate congestion control

Jamming: electromagnetic
interference or interdiction using the

same frequency-band wireless signals
A

Antijamming, active jamming, and
Faraday cages

Malware: Distributing viruses, worms,
Trojan horses, spyware, malicious

adware, and other programs to
interfere with systems

C, A
Antivirus programs, firewalls, and

intrusion detection

Privacy

Individual: Deriving a user’s locations,
preferences, behaviors, and other

private information
C

Aggregated proofs, anonymous data
transmission, CDA, and advanced

digital signatures (e.g., group
signatures)

Group: Deducing an organization’s
commercial interests and espionage

C
Selective disclosure, data distortion,

and data equivocation

Table 2.1: Attack categories, the grouped attacks, possible consequences and potential countermea-
sures as listed by Ning et al. [NLY13]. The used abbreviations in the Loss of column are:
Confidentiality (C), Integrity (I), and Availability (A).

28

2 Prerequisites and Related Work

Da et al. in Internet of Things in Industries: A Survey [DXHL14] give an overview
of the current state of the art in industrial IoT. One section of their work lists enabling
technologies for the industrial Internet of Things which includes RFID/NFC and other
wireless communication techniques and protocols, smartphones and cloud computing as
well as some unexpected technologies such as Barcodes. Also Da et al. highlight the se-
curity challenges that arise through the networking aspect of industrial Internet of Things.
The authors point out that using certain communication techniques such as NFC offers
security-related advantages when compared to other wireless technologies.

2.2.3 Smart Home
In his book Inside the smart home, Richard Harper [Har06] gives a definition of smart
homes:

[...] a home is not smart because how well it is built, nor how effectively it
uses space; nor because it is environmentally friendly, using solar power and
recycling waste water, for example. A smart home may, and indeed often does,
include these things, but what makes it smart is the interactive technologies
that it contains.

As noted by Harper, a smart home is defined by its interactive technologies. He also
states that it is easy to include such technology into newly built houses. However, also
residents of older buildings might wish to make their homes smart. Thus, wireless
technologies to connect devices are proposed in most approaches.

Han and Lim [HL10] suggest to use devices connected using ZigBee [K+03] for efficient
energy management. The authors highlight that smart sensors need to be connected to
controllers in order to manage the energy consumption of a smart home. One important
aspect highlighted by Han and Lim is the security related configuration of devices. They
propose to let devices automatically figure out that they need to work together if possible.
They further state that some sort of trust center is necessary to only let trusted devices
join the network. The authors further discuss that this configuration scenario needs to be
possible with as little user interaction as possible.

Konidala et al. [KKYL11] present a security framework for RFID-based applications in
a smart home environment. The authors note that most approaches only focus on the
pairing and authentication between devices as well as protecting the RFID devices from
malicious readers. Konidala et al. conduct a threat analysis regarding RFID devices in a
smart home environment and propose a security framework that is capable of mitigating
the discussed threats. The authors suggest using electronic product codes (EPC [Bro01])
that are unique identifiers for most security related measures such as authenticating and
identifying the RFID tags.

29

2 Prerequisites and Related Work

2.2.4 Applications of NFC
Near field communication (NFC) is used in a diverse range of businesses and application
domains. Thus, this section gives an overview of some sample use cases that deploy
NFC technology. Nowadays, the most well-known application of NFC is in the payment
sector, as contactless payment is offered by nearly any payment card provider. Also, the
emergence of NFC in current smartphones enables them to be used for mobile payment
use cases. Of course, for this domain, security is of utmost importance. Therefore, much
research is done regarding the security of mobile, contactless payments.

For instance, Pasquet et al. [PRR08] introduce a prototype for mobile payment using
smartphones which complies with European laws. For the implemented prototype, a
security analysis is given by the authors. The authors conclude that providing security on
all levels (physical, software, and protocol) is nearly impossible for a single institution.
Therefore they state, that a collaboration of multiple partners for security relevant (NFC)
projects should be desired.

Another very prominent field for NFC-based solutions are smart homes and the Internet
of Things (IoT). Mohsen and Michael [DM08] state that dummy things can be made
smart things by equipping them, for instance, with RFID. The authors propose a so-called
Smart Home Master-Slave RFID System Architecture which comprises several RFID
readers in a master-slave architecture. The system consists of a master reader, which is
used as a gateway to the Internet, a couple of slave readers which are used to extend the
reading range of the master reader and mobile readers which can be operated at varying
positions in the smart building. The authors note that by using that architecture, a smart
home with up to 100% reader coverage can be build. Using this readers, several smart
services such as shopping, monitoring or healthcare applications become possible.

A third very popular area of operations for NFC is in ticketing [NFC11a]. Ghı̀ron
et al. [GSMM09] present NFCTicketing, an NFC-based ticketing system for public
transportation. In their prototype, the authors use an NFC-enabled mobile device that
also is equipped with a secure element which is used to store ticket information. The
phone’s NFC module is used for purchasing tickets as well as for validating the ticket (by
the ticket inspector). The authors included a user study regarding the satisfaction of users
concerning the NFC ticketing prototype, with more than two-thirds of the participants
stating either excellent or good satisfaction with the proposed technology.

Steffen et al. [SPS+10] discuss use cases, architectures, and realizations of NFC in an
automotive environment. According to the authors, all described use cases have been
implemented (as prototypes) in a BMW vehicle. They list different use case categories:

30

2 Prerequisites and Related Work

• Communication Support: e.g., Bluetooth and WiFi pairing or electronic business
cards (vCards)

• Interaction between the Customer and the Car: e.g., personalization (sound set-
tings, seat and mirror settings, ...) as well as user authentication and car access

• Information Retrieval: e.g., car informations and spare part informations

• Car Key with NFC Interface: e.g., car status, e-ticketing using car key

The presented architecture gives an overview of how the necessary NFC hardware can be
integrated into existing bus systems of current (BMW) vehicles. All use cases mentioned
in their work are also implemented in a prototype based on a series-production BMW.

Lahtela et al. [LHJ08] discuss the applicability of RFID and NFC for the healthcare
sector. By using information technology in healthcare, the safety of patients should be
increased according to the authors. A system based on NFC for the Kuopion University
Hospital is proposed that should decrease medication errors by connecting sensors to
an automatic medication dispenser system. By identifying medication and patients with
RFID tags, pharmacists’ errors could be further minimized and thus, patients’ safety
increased as concluded by the authors.

Other related work includes using an NFC-enabled smartphone for access control, as pro-
posed by Dimitrienko et al. [DSTW12]. The authors use smartphones for access control
instead of the more common approach of using smartcards. Aigner et al. [ADF07] present
an NFC-based system that enables secure virtual coupons. By using virtual coupons,
the problem of customers illicitly copying coupons is mitigated by using passive tags in
coupons. Finally, lecture attendance of students at the Budapest University of Technol-
ogy and Economics is monitored using an NFC-based approach [BSDF12]. NFC enabled
student cards in combination with biometric information were used to track student atten-
dance and to autonomously allow or prohibit students from successfully finishing courses
which required a certain amount of attendance.

2.2.5 Bring Your Own Device
The concept of Bring Your Own Device (BYOD) more or less forced into the minds of
employers by their own employees, as Gordon Thomson [Tho12] states:

Ten years ago, employees were assigned laptops and told not to lose them.
They were given logins to the company network, and told not to tell anyone
their password. End of security training. Today, your ‘millennial’ employees
[...] show up to their first day on the job toting their own phones, tablets, and
laptops, and expect to integrate them into their work life.

31

2 Prerequisites and Related Work

However, this BYOD movement also imposes new security risks for IT networks as the
devices are to a large degree inhomogeneous and therefore managing them, for instance,
via security policies, becomes a hard task. As stated by Miller et al. [MVH12], security
risks do not only include the infection of company networks by malicious applications
coming from employee’s devices. A second factor is that by integrating personal devices
into the network, sensitive data might make its way onto devices from where it can be
synced to arbitrary places on the Internet.

Many publications focus on improving security in the BYOD context. For instance, a
work done by Armando et al. [ACM13] proposes a security framework for mobile devices
that tries to ensure that only applications in line with companies’ security guidelines can
be installed on a mobile device. Instead of using, for instance, static blacklists, the be-
havior of applications is analyzed and validated against security policies. A prototypical
implementation of their proposed framework is presented which is applicable to Android
phones.

2.2.6 Bring Your Own Key
Based on the term Bring Your Own Device, a different concept named Bring Your Own
Key was introduced as noted by Hongwen Zhang [Zha15]. The first use cases for BOYK
were in cloud computing, as motivated by the authors:

[...] if we are encrypting data because we are worried about its security
in an unknown cloud, why then should we trust the same cloud to hold the
encryption keys?

In addition to the key, a more sophisticated approach also suggests to Bring Your Own
Encryption, which is an extension to BOYK. Instead of only using a customer’s own
key for cloud services, also own encryption algorithms can be applied. As Syed and
Ussenaiah [SU15] note, by doing so, only the ciphertext needs to be stored on cloud
service providers’ physical storage. Thus, customer’s have control over their keys and
their own master key, as long as a Hardware Security Module (HSM) is used.

2.2.7 Configuration via QR Codes
As mentioned earlier, QR codes can store arbitrary data, thus making them suitable for
a broad range of use cases where data can be transferred from the QR code to a mobile
device. One such application (which proposes NFC as an alternative) allows customers
to configure individual tickets for public transport [FT11]. In the system proposed by
Finžgar and Trebar, QR codes are used to determine the starting and end point of a ticket.
Based on those locations, the fare is then calculated and billed to the customers.

32

2 Prerequisites and Related Work

In another work, Lee and Han [LH12] state that although a very accurate approach for
indoor localization using Wi-Fi, fingerprinting requires an enormous amount of effort
for calibrating. QR codes are attached at fixed positions within the service area, thus
enabling every user in possession of a smartphone to contribute to the collection of
Wi-Fi fingerprints. When scanning a respective QR code, all Wi-Fi signals, and the
corresponding signal strength as well as the position encoded within the QR code are
sent to a server and used to update the radio map used for Wi-Fi based indoor localization.

Starnberger et al. [SFG09] show the application of QR codes to a system where secu-
rity is of utmost importance: mobile transaction authentication. The authors propose to
use QR-TANs which according to them allows users of untrusted networks and termi-
nals to validate and approve transactions. Security is enabled by a challenge-response
mechanism where the challenge and a nonce is transmitted to the user’s mobile device
by displaying a QR code. The response is then displayed on the mobile device’s screen
and is only a few letter code which users need to type into the terminal to approve the
transaction.

2.2.8 Configuration via NFC
When considering configuration via NFC, a distinction between two different config-
uration processes needs to be made. The first case, where configuration parameters
are transferred from a mobile device to a second device via NFC is the approach that
is similar to the one applied in this master’s thesis. The second method is to store
configuration parameters in an RFID tag from which configuration parameters can be
read by (and applied to) a mobile device.

The first approach where (interchangeable/dynamic) configuration parameters are trans-
ferred from a mobile device to another device is not yet widely discussed in research.
However, a work by Haase et al. [HMEK16] introduces wireless sensor and actuator
configuration via NFC. The authors not only present a theoretical approach on how to
use NFC to configure sensors and actuators but also show a prototypical implementation
of their concept. The prototype comprises an NFC-enabled house chip used in-house
automation and an Android application for the mobile device.

The second type of NFC-enabled configuration is far more widespread than the one dis-
cussed first. Using RFID tags to transfer configuration parameters containing Bluetooth
or WiFi pairing information to a mobile device is a concept used quite often nowadays.
For instance, Matos et al. [MRT12] propose a secure WiFi configuration method using
NFC. In their prototype, the authors demonstrate how to provide an secure NFC side
channel using public key cryptography. Using this side channel, connection information
like credentials and the necessary network ID are transferred.

33

2 Prerequisites and Related Work

In another approach, López-de-Ipiña et al. [LdIVJ07] use NFC in their Touch2Launch
service to configure a Bluetooth connection between a mobile client and a so-called
Sentient Graffiti server. By placing the RFID tags, virtual graffiti (arbitrary messages)
can be placed and read from the associated RFID tags. The corresponding data is stored
in a central unit which can then be queried using the established Bluetooth connection.

A hybrid approach that combines both mentioned configuration types is presented by
Christensen and Wagner [CW08]. In their work, an already existing healthcare framework
(Healthcare@Home) that includes the automatic pairing of wireless sensors with a base
station is extended to support NFC-based configuration. In the discussed use case, the
framework allows inexperienced users to set up a wireless health monitoring system. In
the proposed system, a smartphone is used to pair the wireless sensors with a base station.
To do so, information such as MAC address and public key are read from the wireless
sensor using NFC. This information is then transferred to the base station via the NFC-
enabled smartphone. Using this information, a WiFi or Bluetooth connection between the
sensor and base station can be established.

2.3 Differences to the State of the Art
In this section, the differences of the solution designed and implemented in this master’s
thesis are compared to other, state of the art solutions that were already mentioned in
related work in Section 2.2. The improvements of the presented approach compared to
those other technologies will be highlighted.

2.3.1 Approaches using QR codes for configuration
The approaches presented in [FT11], [LH12] and [SFG09] all use QR codes to transfer
small amounts of data such as geolocations or TANs. All solutions except one do not
consider security at all. In contrast to that, the concept designed and implemented in
this master’s thesis uses QR codes to transfer arbitrary data of a size up to the maximum
allowed for QR codes (see Section 2.1.4 for details). The main improvement, however,
when comparing to those previously mentioned approaches is the consideration of secu-
rity aspects as also confidential data might be stored in a QR code. By encrypting the
data, arbitrary, confidential information can be transferred using QR codes.

2.3.2 Approaches using NFC for configuration
In Section 2.2.8 a wide range of concepts that use NFC for configuration purposes
was presented, such as [MRT12], [LdIVJ07] and [CW08]. Those concepts use NFC
to transfer configuration parameters, mostly between two devices using some sort of

34

2 Prerequisites and Related Work

mobile device for the intermediate transportation. This concept is similar to the one
presented in this thesis. However, the configurations transferred in those approaches
are mostly parameters for device pairings of wireless connections, such as Bluetooth or
WiFi. In contrast to those solutions, the one designed and implemented in this master’s
thesis allows transferring arbitrary configuration parameters, such as production relevant
settings.

One approach presented by Haase et al. [HMEK16] suggests to use mobile phones to
configure wireless sensors and actuators. Although the concept is very similar to the one
presented in this thesis, the work only mentions possible security considerations without
going into detail. In contrast to that, the work done in this master’s thesis presents an
approach where arbitrary configuration data can be transferred using mobile devices in
a secure way. It specifies a methodology on how to secure confidential data while be-
ing transferred and also suggests the inclusion of hardware security elements to further
strengthen the protection of the transported data.

2.3.3 Combination of Approaches
All previously discussed methods either transport configuration data using QR codes or
NFC technology. However, for the transport of information between two devices, the
QR code approach is not practicable as at least one of the two devices would need to be
equipped with a camera. Using NFC might be suitable in a business customer scenario,
but requiring users in a smart home scenario to purchase NFC readers to be able to config-
ure their smart sensors using NFC might not be desired. Therefore, the concept presented
in this master’s thesis suggests combining those two technologies. By using QR codes to
transfer data to a mobile device which then uses NFC to transmit the data to the device
which should be configured, those drawbacks will be mitigated.

2.3.4 Overview
In Table 2.2 an overview of the previously discussed differences to state of the art related
work is given. Certain aspects that are required for an NFC-based configuration interface
for smart sensors are highlighted. In comparison, the approach presented in this master’s
thesis fulfils all listed requirements.

35

2 Prerequisites and Related Work

Related
Work

Arbitrary
Payload

Payload
Secured

Practical
for Smart
Factories

Practical
for Smart

Homes

Additional HW
necessary

[FT11],
[LH12],
[SFG09]

- - - - cameras at devices
to be configured

[MRT12],
[LdIVJ07],
[CW08]

- o o o
NFC reader needed
to transfer payload
to mobile device

[HMEK16] + o + o
NFC reader needed
to transfer payload
to mobile device

Master’s
Thesis + + + + none

Table 2.2: Overview of related work which highlights certain requirements that are necessary for a
NFC-based configuration interface.

36

3
Design

In this chapter, possible application scenarios of NFC-based configuration are presented.
After that, the core system architecture of the NFC-configuration interface developed for
this master’s thesis will be discussed. Based on the general design, the communication
protocol to transfer the configurations will be introduced. Concluding this chapter, the
design of all involved system components is going to be discussed in detail. To address
the design of each system component, standard UML artifacts such as class diagrams,
component diagrams, and sequence diagrams are used [RJB04].

3.1 Application Scenarios
In this section, three exemplary application scenarios for the NFC-based configuration
interface presented in this master’s thesis are discussed. All three application scenarios fit
within the scope of the IoSense project.

3.1.1 Bring Your Own Key scenario
As already introduced in Section 1.2, a hardware component called Mediator was pre-
sented by Lesjak et al. [LRB+14b]. This device can be used to allow the application of
smart maintenance services for (legacy) manufacturing devices. The Mediator hardware
is connected to any existing machine using its equipment interface as shown in Figure 1.3.
Device information such as operating hours or other maintenance relevant information
(called snapshot in that context) are then fetched by the Mediator. This information is
then transmitted using a secured version of the MQTT protocol [LHH+15]. Because

37

3 Design

Cloud
Customer

(Legacy)
Equipment

Broker

Backend

Mediator

Security
Controller

Host Controller
MQTT, TLS

MQTT, TLS

Snapshot

Snapshot

Figure 3.1: Bring Your Own Key scenario. The transferred data needs to be end-to-end encrypted to
not be read by cloud providers or other customers.

MQTT is a publish-subscribe protocol, the information needs to be transferred to a
broker which handles the aforementioned publish-subscribe functionalities. As discussed
by Lesjak et al. [LHH+15], by securing the MQTT protocol with TLS, subscribers to
the topic can be authenticated using certificates. In this scenario, a smart maintenance
provider might have access to maintenance relevant data from multiple customers.

When equipping manufacturing devices with networking capabilities, also production
relevant information could be transferred using the same technology. However, some
information might be confidential and not intended to be read by the smart maintenance
provider. Furthermore, as the data of multiple customers can be processed at a single
broker, also possible competitors’ data could be stored at the same broker. Therefore,
customers might be reluctant to applying this technology because they can not be sure
that their confidential data can not be read by others as the smart maintenance provider
might share the same key for multiple customers and thus, any customer could subscribe
to a competitor’s data and decrypt the provided information.

In this context, a concept named Bring Your Own Key that already was discussed in Sec-
tion 2.2.6 can be applied. If a customer provides and deploys its own keys for encryption
and decryption, no other party will be able to read the transferred information. The sce-

38

3 Design

nario showing this end-to-end encryption is depicted in Figure 3.1. There, confidential in-
formation from a customer’s manufacturing equipment is transferred to an MQTT broker
where no information about other subscribers is known. By providing the keys necessary
for encryption and decryption and by keeping those keys secret, a customer is guaranteed
that no other party will be able to read the information. In such a scenario, the config-
uration of keys can be done using a NFC-based configuration interface. Thus, allowing
customers to deploy keys by simply touching both devices which should be configured to
have the same private key. By doing so, no other party needs to know or process any key,
therefore guaranteeing that the key is only known by the party deploying it to the involved
devices.

3.1.2 Industry 4.0
The second application scenario, smart factories in the context of Industry 4.0, are de-
scribed by Shrouf et al. [SOM14]:

New market requirements and emerging autonomously technologies such as
IoT are shifting the manufacturing companies’ environment toward smart fac-
tories. The basic idea of IoT is a system where the physical items are enriched
with embedded electronics (RFId tags, sensors, etc.) and connected to the In-
ternet.

As noted by the authors, physical items can be equipped with embedded electronics,
which offers a manifold range of possibilities in the Industry 4.0 context. Not only can
the manufacturing devices be connected to each other and the Internet, but also to the
wrought products that are currently produced. Humans that are monitoring, controlling
and maintaining the system are then able to perform all of those activities using wireless
devices such that having direct physical access will not be necessary.

In the context of the IoSense project, a smart sensor should be configured during its
whole life cycle, starting during the manufacturing process. By using an NFC-based
configuration interface, the configuration of smart sensors can be done wireless while
the sensor is assembled, for instance, on a production line. This scenario is depicted in
Figure 3.2 where also the Industry 4.0 vision is illustrated. There, the manufacturing
machines communicate with each other while being monitored, controlled and even
maintained by human workers utilizing the wireless interface. The machines also apply
configurations to the produced items during manufacturing, enabling the products to be
highly customized as envisioned in an Industry 4.0 scenario.

However, the usage of this NFC-based configuration interface, of course, is not restricted
to configuration during the manufacturing process. As previously mentioned, one goal
of the IoSense project is to enable smart sensors to be configurable during their whole
life cycle. By providing technologies to utilize the included NFC interface for applying

39

3 Design

Figure 3.2: Smart factory scenario in Industry 4.0. Machines communicate with each other and are
configured by maintenance workers. The produced sensors are configured using NFC
during the manufacturing process.

configurations, this requirement can be fulfilled.

Another more recent trend in Industry 4.0 research is the integration of autonomous robots
into smart factories. Many research institutions, as well as companies, are doing research
in that context, as Rüßmann et al. [RLG+15] note:

Kuka, a European manufacturer of robotic equipment, offers autonomous
robots that interact with one another. These robots are interconnected so
that they can work together and automatically adjust their actions to fit the
next unfinished product in line.

Plosz et al. [PFT+14] analyzed various wireless technologies concerning industrial usage.
In their analysis, NFC was suggested as being a good choice in that context because
of its short communication range. Therefore, in the scenario depicted in Figure 3.3,
autonomous robots are shown that transport wrought material between manufacturing
machines. As highly customized products will be produced in such a setting, robots need
to configure the manufacturing machines to account for the currently delivered wrought
product.

40

3 Design

Figure 3.3: Smart factory scenario in industry 4.0. Autonomous robots transport wrought material
between manufacturing machines.

Local configuration instead of a central instance that configures all machines needs to be
performed as the travel time of autonomous robots is not deterministic due to unforeseen
events such as an interfering human. Due to its short communication range and due to
that useful security features, as well as to prevent overlapping and hence interfering wire-
less channels, an NFC-based configuration interface can also be used in this application
scenario.

3.1.3 Smart Home
The third presented application scenario is in the context of smart homes where various
devices that are used in everyday’s life need to be configured. Cook et al. [CYHI+03]
present a smart home vision for their project named MavHome:

At 6:45am, MavHome turns up the heat because it has learned that the home
needs 15 minutes to warm to optimal waking temperature. The alarm sounds
at 7:00, after which the bedroom light and kitchen coffee maker turn on.
Bob steps into the bathroom and turns on the light. MavHome records this
interaction, displays the morning news on the bathroom video screen, and
turns on the shower. When Bob finishes grooming, the bathroom light turns
off while the kitchen light and display turn on, and the news program moves

41

3 Design

to the kitchen screen. During breakfast, Bob requests the janitor robot to
clean the house. When Bob leaves for work, MavHome secures the home,
and starts the lawn sprinklers despite knowing the 30% predicted chance of
rain. Because the refrigerator is low on milk and cheese, MavHome places
a grocery order. When Bob arrives home, his grocery order has arrived and
the hot tub is waiting for him.

Figure 3.4: Smart home scenario. Various sensors and actuators can be configured and controlled
wirelessly by the user.

Based on that scenario, devices such as the heater, alarm, coffee maker and so on need to
be configured. For the same reasons as in an industrial context (security due to short com-
munication range and low power consumption), an NFC-based configuration interface
can be used for this configuration tasks.

42

3 Design

3.2 System Architecture
To implement an NFC-based configuration interface, the following three components are
necessary, for which the general system architecture will be discussed in this section.

Device: The device that gets configured and therefore needs to be equipped with a se-
cure element. By utilizing the included NFC interface, configuration data can be
transferred wireless, while by using the equipment interface (see Figure 1.3) any
(legacy) device can be connected with the secure element.

Backend: The backend is used to prepare and manage configuration data. Newly cre-
ated configurations are encrypted and provided for transportation by the backend.
Therefore, also the key material of all managed devices needs to be maintained.

Mobile Devie: The mobile device is used to transport configuration data provided by
the backend to a receiving device.

Payload

Secure
Element

WiFi, 3G, 4G
NFC

Payload

Payload

Figure 3.5: System architecture of NFC-based configuration scenario that is suitable for industrial as
well as for smart home use-cases. QR codes are used to transfer configurations to a mobile
device, while NFC is used to transport configurations to the recipient device.

When deciding on which interfaces to use for data transport, the industrial as well as
the end-user smart home use-cases need to be considered. In an industrial setting, using
NFC to transfer data from a central device that is managing the configurations to a
mobile device and from there using NFC to the device that is being configured might be
suitable. However, when also considering the use-cases related to end-users, a dedicated

43

3 Design

NFC-device would be needed in addition to the mobile device which is used to transport
the configurations. Therefore, the system architecture depicted in Figure 3.5 was chosen.

As can be seen in Figure 3.5, Quick Response (QR) codes are used to transfer configura-
tions to the mobile device, while NFC is used to transport the configurations stored on the
mobile device to the recipient device. The design of both implemented protocols will be
discussed separately in Section 3.3.

3.3 Protocols
The system architecture depicted in Figure 3.5 illustrates the two different transportation
mechanisms used. Because the techniques used to transport the configuration differs re-
garding the respective data transfer direction, separate protocols for QR-based and NFC-
based are introduced in this section.

3.3.1 QR-based
The QR-based transport protocol is used to transfer configuration parameters from a
backend to the mobile device. The proposed protocol is based on JSON and has the
following mandatory fields:

1 {
2 "type" : "inline|url",
3 "title" : "configuration title",
4 "payload" : "..."
5 }

Listing 3.1: JSON package used inside QR-codes.

The title field must contain a descriptive title associated with the configuration
package. Although the title is not transferred when configurations are transported, it
is essential to display this information on the mobile device to be able to distinguish
between multiple configurations. The field type defines if the configuration package is
contained in the QR codes payload (inline) or if the data needs to be fetched separately
from the backend (url).

The reason to allow those two different modes is that if the configuration including the
overhead imposed by this JSON file does not exceed the maximum capacity of a QR
code, no additional connection is needed. This would allow the offline configuration
of devices by just equipping a maintenance worker with a set of printed QR codes. If,
however, the payload is too large to fit in a QR code or an explicit connection to fetch the

44

3 Design

configuration parameters is desired, the second type can be chosen.

Depending on the defined type, the content in the payload field will differ. If the type
is defined as being inline, the payload will directly contain the payload which can
be transferred to the receiving device. In the case of type=url, the payload contains
a URL from which the payload needs to be fetched first. Also, the security measures
applied differ between those two types. The differences will be discussed in Section 3.5.

3.3.2 NFC-based
Configurations are transmitted via NFC using NDEF messages. For devices to support
NDEF, the Type 4 Tag Operations need to be implemented. All operations that are
necessary and their according structure are discussed in Section 3.4. The structure of the
NDEF message embedded in those Type 4 Tag Operations can be seen in Table 3.1.

Mobile Device
Realtime

Cipher
Specs Encrypted Payload MAC

4B 2B (NDEF length - MAC length- 6) B
according to
Ciper Spec B

Table 3.1: Structure of the NDEF message that is sent when configuring a device via NFC.

• Mobile Device Realtime: The real time of the mobile device in milliseconds when
the NDEF package is transmitted. This field is used for security measures and will
be explained in detail in Section 3.5.

• Cipher Specs: The used cryptographic algorithms and corresponding key lengths
when encrypting the payload are specified here, such that the decryption and verifi-
cation can be done with the correct specifications.

• Encrypted Payload: The payload encrypted using the cryptographic algorithm
specified in the Cipher Specs field. The length of the encrypted payload depends on
the chosen algorithms and key lengths for encryption and MAC.

• MAC: The message authentication code (MAC) calculated using the cryptographic
algorithm specified in the Cipher Specs field. The length of the MAC depends on
the chosen algorithm and key length.

45

3 Design

3.4 NFC Type 4 Tag Operations
To transmit data between the mobile device and the secure element, NFC Type 4 Tag
Operations need to be supported by the secure element in order to communicate at a
higher abstraction level. According to the Type 4 Tag Operation Specification [NFC11b],
an NFC Forum Device shall support the commands:

• Select: Selection of applications or files to read/write from/to.

• ReadBinary: Read data from a selected application or file.

• UpdateBinary: Write data to a selected application or file.

These three commands are sent via command APDUs (C-APDU). APDUs (application
data protocol unit) are the transferred packets in the context of smart cards. Replies to
commands are sent via so-called response APDUs (R-APDU). If all three commands are
implemented correctly on a tag, NDEF messages (NFC data exchange format) can be
transferred to and from the tag. A C-APDU is defined as depicted in Table 3.2 while the
structure of a R-APDU is shown in Table 3.3. The general procedure is to always first
select a file and then either read from or write to that previously selected file.

CLA INS P1 P2 Lc (optional) Data (optional) Le (optional)
1B 1B 1B 1B 0B, 1B, 3B Nc B 0B, 1B, 2B, 3B

Table 3.2: Structure of a C-APDU.

• CLA: Instruction class which indicates the class of a command.

• INS: Instruction code which refers to a specific command.

• P1-P2: Instruction parameters 1 and 2.

• Lc: Contains the number of bytes (Nc) of data. If 1 byte is used, Nc is in the range
[1, 255], if 3 bytes are used, the first byte must be zero, therefore Nc is in the range
[1, 65535].

• Data: Nc bytes of data.

• Le: Maximum number of response bytes (Ne) expected. If 0 bytes used, Ne=0. 1
byte denotes a range of 1 to 256 (0 not included). 2 (if Lc was present) or 3 bytes
(if Lc not present) denote the same range as in the 3 byte Lc case.

• Response body: A maximum of Ne bytes response data.

46

3 Design

Response Body (optional) SW1 SW2
≤ Ne B 1B 1B

Table 3.3: Structure of a R-APDU.

• SW1-SW2: Command response code, e.g., 0x9000 is indicating success.

To detect a potential NDEF data transfer, the tag must provide a so-called capability
container (CC) which can be read when sending a ReadBinary C-APDU for file E103h.
The most important fields contained in the capability container include:

• MLe: Specifies the maximum size (in bytes) that can be read from the type 4 tag.

• MLc: Defines the maximum size (in bytes) that can be sent to the type 4 tag.

To read the capability container, the corresponding file needs to be selected first, followed
by a ReadBinary C-APDU. The corresponding SelectFile C-APDU is depicted in Ta-
ble 3.4. To read from a previously selected file, a ReadBinary command needs to be sent.
An example of such a command is shown in Table 3.5. An example C-APDU to write to
the type 4 tag (UpdateBinary, after previously selecting a file with the Select command)
is shown in Table 3.6.

CLA INS P1 P2 Lc (optional) Data (optional) Le (optional)
0x00 0xA4 0x00 0x0C 0x02 0xE103 -

Table 3.4: Example C-APDU to select capability container.

CLA INS P1 P2 Lc (optional) Data (optional) Le (optional)
0x00 0xB0 Offset - - Length Ne

Table 3.5: Example C-APDU to read data from previously selected file.

CLA INS P1 P2 Lc (optional) Data (optional) Le (optional)
0x00 0xD6 Offset Datalength Nc Data -

Table 3.6: Example C-APDU to write data to previously selected file.

47

3 Design

3.5 Configuration Security Mechanisms
In this Section, all implemented security measures are discussed. Those measures include
using authenticated encryption, configuration version management, the limited validity of
configurations, and machine identifiers.

3.5.1 Order of Encryption
As discussed in Section 2.1.5, there are three different modes to implement authenti-
cated encryption: Encrypt-then-MAC, Encrypt-and-MAC, and MAC-then-Encrypt. Hugo
Krawczyk [Kra01] analyses those three methods concerning security when combining ar-
bitrary symmetric ciphers with secure hash functions. He states that although both com-
ponents may be perfectly secure, the combination of them makes the authenticated en-
cryption vulnerable to attacks. However, the author points out that Encrypt-then-MAC is
not vulnerable to attacks when combining certain cryptographic algorithms with specific
(secure) hashes. Two main principles which should be followed to make authenticated
encryption strongly unforgeable [BN00]:

1. Never hash any plaintext, always apply hash functions to ciphertexts.

2. Never use the same key for encryption and hashing.

Nonce Plaintext

Key

Ciphertext MAC

Hash function Encryption

Figure 3.6: Principle of authenticated encryption scheme that implements the Encrypt-then-MAC
method using nonces to generate the MACs.

The first principle is applied by using Encrypt-then-MAC. The second principle will be
satisfied by generating a nonce which is used when calculating the MAC. A (crypto-
graphic) nonce is any arbitrary number which will only be used once. The applied prin-
ciple is depicted in Figure 3.6. As can be seen there, the nonce and plaintext are con-

48

3 Design

catenated and encrypted. The resulting ciphertext and the previously generated nonce are
then used to calculate the MAC, which is attached to the ciphertext.

3.5.2 Version, Validity, and Machine ID
The encrypted payload which is included in the NDEF protocol discussed in Section 3.3.2
actually consists of multiple parts which are shown in Table 3.7. After decrypting the
encrypted payload, the different parameters are used to decide if the configuration will be
accepted.

HMAC Nonce Versi-
on Validity Machine

ID Plaintext

depending on
Cipher Specs B

2 B 4 B 4 B
(Payload Length - 10 -

Nonce Length) B

Table 3.7: Structure of the content contained in the encrypted payload.

• HMAC Nonce: Used to calculate a MAC of the received encrypted payload which
is then compared to the MAC transmitted in the NDEF message. The nonce is
generated at the backend when the MAC is calculated. If the two MACs do not
match, the configuration is discarded.

• Version: The version number must be higher than the current version number. Oth-
erwise the configuration will be discarded. The backend needs to keep track of the
version number of each managed device.

• Validity: The time until which this configuration must be transferred from the mo-
bile device to the machine which needs to be configured. The validity is based on
the mandatory real time of a mobile device which is transmitted when a configu-
ration is fetched from the backend. This means that no validity can be specified
for inline QR codes (see Section 3.3.1). If the Mobile Device Realtime which is
transmitted in the NDEF message (see Section 3.3.2) is larger than the validity
time-stamp, the configuration is discarded.

• Machine ID: If the transmitted machine ID is different from the actual machine ID,
the configuration will be discarded. The machine ID is specified by the backend
when generating the corresponding configuration.

• Plaintext: The actual configuration parameters as key-value pairs.

49

3 Design

3.6 Backend Design
The backend application is implemented as a web application using JavaScript and the
libraries listed in Section 4.1.2. Therefore, the class diagram depicted in Figure 3.7 shows
a class diagram of all implemented classes and the used interfaces provided by those
libraries. The following list gives an overview of each class’ responsibilities:

Main: The web application’s main class which is the entry point of the application when
it is launched. This class also includes the user interface components.

ConfigEntry: One entry of a configuration. It is represented as a key-value pair which
is capable of handling any data that can be serialized to a byte stream.

Config: The class representing a configuration. It consists of at least one configuration
entry. No duplicate keys are allowed in a configuration.

ConfigStorage: All configurations, the corresponding version IDs as well as the en-
cryption keys are stored in this class. The confidential data is kept in a secure
storage by this class.

QRCodeGenerator: This class generates QR codes based on the given information
and the protocol presented in Section 3.3.1.

CryptoJS.AES: This class handles all AES functionalities such as encryption and de-
cryption of given inputs. When encrypting, an initialization vector, as well as a
block cipher mode, need to be specified.

CryptoJS.HMACSHA256: This class provides the MAC functionality based on the
HMAC-SHA256 algorithm. When calculating a hash, the input text, as well as a
nonce, are needed.

pem: Because self-signed certificates are used, the pem module generates a certificate
when the application is started.

express: This module handles all requests such as GET or POST made to the applica-
tion. For each desired request, the method and the corresponding path, as well as a
callback function, need to be specified.

https: The HTTPS module creates the socket needed for a web application. Because
only secure HTTPS traffic is allowed, a certificate is required in addition to the port
when creating the socket.

50

3 Design

Figure 3.7: Class diagram of the backend web application.

3.7 Mobile Device Design
The design of the application developed for the mobile device, SECURECONFIG, will be
discussed using a class diagram as well as sequence diagrams that highlight the invocation
of certain components.

3.7.1 Class Diagram
As the SECURECONFIG application was implemented for Android OS, operating system
specific requirements had to be considered during the design phase. The corresponding
class diagram is depicted in Figure 3.8. The tasks of each class will be explained in the
following list:

51

3 Design

MainActivity: Each Android application needs a main entry point (onCreate) in a main
class. For the SECURECONFIG application, the MainActivity class is this entry
point. The classes responsibilities are mainly the handling of user interface related
events such as button clicks or the pausing and resuming of the application.

ConfigurationListAdapter: To display classes different than Strings in a list, a cus-
tom list adapter class needs to be integrated. The responsibility of this class is to
keep track of the underlying data source and to notify the user interface thread of
changing entries.

IntentIntegrator: To invoke the third party QR code scanner application, a custom in-
tent needs to be implemented which is then passed to the Android operating system.
The scanner application registers for this intent and launches on detection of such
an intent.

IntentResult: If a QR code was scanned successfully by the third party application, the
corresponding text is returned to the calling application as an IntentResult.

Configuration: The class representing the actually transferred configuration. Here, the
encrypted configuration data, as well as metadata such as a title are stored.

ConfigurationStorage: A list of currently stored configurations. This class is respon-
sible for storing all available configurations.

QRCodeParser: This class is used to parse the text that is received when reading a QR
code. The corresponding protocol was already presented in Section 3.3.1.

DownloadConfigAsyncTask: If a configuration needs to be fetched from the back-
end, this class is used. The class implements the interface of an asynchronous task
and therefore can be invoked in the background. The reason for this is that Android
does not allow to start downloads in inside the main thread.

NfcReaderWriter: This class handles the NFC communication with the secure element.
This includes registering a callback function for the detection of new tags as well as
providing read and write operation for such tags. The corresponding protocol was
already presented in Section 3.3.2.

52

3 Design

Figure 3.8: Class diagram of SECURECONFIG Android application.

53

3 Design

3.7.2 Sequence Diagrams
The sequence diagrams shown in this section highlight how certain classes of the class
diagram depicted in Figure 3.8 are created, and corresponding methods get invoked.

The sequence diagram shown in Figure 3.9 illustrates the process of loading a new
configuration into the SECURECONFIG application. For this sequence diagram, a QR
code that contains the configuration payload inline is assumed. As can be seen, the
MainActivity passes an IntentIntegrator intent to the Android OS, which then invokes
the third party QR code scanner (ZXing QR Scanner). The returned result contains the
text contained in the QR code which is then processed by the QRCodeParser. After
successfully parsing the text, a new Configuration is created.

Figure 3.9: Sequence Diagram illustrating the invocation of the third party QR scanner application. In
this sequence diagram, an inline payload is assumed.

For QR codes that do not contain an inline configuration, the sequence diagram shown in
Figure 3.10 illustrates the downloading of a new configuration payload. As the process
of invoking the QR code scanner is the same as for the sequence diagram shown in
Figure 3.9, this process is omitted here. After the QR code was successfully detected,
the received text is parsed by the QRCodeParser. Upon detection of an URL type,
the asynchronous task DownloadConfigAsyncTask is started which downloads the con-
tent in a background thread and also creates the Configuration after the download finished.

The sequence diagram depicted in Figure 3.11 illustrates the process of transferring a
configuration to a previously detected tag. After registering for the event, the Android
operating system notifies the SecureConfig application of a newly detected tag. Imme-
diately after detecting the tag, meta information such as the maximum transmission size
(see Section 3.4) are read from the tag. After that, the writing process is started.

54

3 Design

Figure 3.10: Sequence Diagram illustrating the download process of a configuration’s payload from
the backend.

Figure 3.11: Sequence Diagram illustrating the transmission of a configuration payload to a previously
detected tag using NDEF messages.

3.8 Secure Element Design
For the application implemented on the secure element, the design phase yielded a com-
ponent diagram as well as a state machine which are shown in this section.

3.8.1 Component Diagram
As the application for the secure element was written in C, no class diagram can be pre-
sented. However, the source code still is grouped into logical units. Therefore, those parts
are illustrated as a component diagram depicted in Figure 3.12.

55

3 Design

Figure 3.12: Component diagram of relevant parts of the secure element software.

As the software consists of many components which are necessary for it to run on the
secure element such as command handlers or nonvolatile memory handlers, only the com-
ponents directly involved in the configuration update process are shown. The tasks and
responsibilities of each depicted component are discussed in the following list:

t4top: In this component, the NFC Type 4 Tag Operations (Section 3.4 are implemented.
In addition to the three discussed functions selectFile, readBinary, and updateBi-
nary, also a function responseReady is implemented. This function is used to signal
that a response to a C-APDU is ready to be transmitted.

DataLinkLayer: After an NDEF message was successfully received by the t4top com-
ponent, it passes the content to the DataLinkLayer component where the command
is processed. In this component, the data is encrypted and verified using authenti-
cated encryption.

AES CONFIG: This component actually is a struct which contains all data necessary to
perform AES128 encryptions/decryptions. It contains the data to be en-/decrypted,
the private key, and information such as the block cipher mode of operation.

AES: This component provides the AES en-/decrypt functionality. The component of-
fers an easy to use interface to the AES functionality which is implemented in
hardware on the secure element.

hmacsha256: The hmacsha256 component offers an interface to compute a keyed-
hash message authentication code based on the SHA256 hash algorithm.

56

3 Design

SHAData: This component actually is a struct on which the SHA256 hash algorithm
operates and stores the final result.

sha256: This component is an implementation of the SHA256 hash algorithm. As no
hardware support for this hash algorithm exists at the used security controller, this
is a pure software implementation.

3.8.2 NDEF State Machine
The NFC Type 4 Tag Operations (Section 3.4) need to be sent in a specific sequence
such that an NDEF message is detected. Therefore, the t4top component discussed earlier
contains a state machine which is depicted in Figure 3.13.

Figure 3.13: State machine regarding the different states when implementing the NFC Type 4 Tag
Operations.

As can be seen in the state machine, a read operation without previously select-
ing any file results in the FIRST READ state in which the capability container file
is returned. If a file is selected, it can either be read (READ File) or updated.
In the case of a write operation, multiple updateBinary C-APDUs might be sent
if a message is split into multiple packages. When detecting the final package,
the NDEF message is processed (NDEF PROCESSING). In any case, after send-
ing a response (NDEF RESPONSE READY) the state machine returns to the initial
NO FILE SELECTED state.

57

4
Implementation

In this chapter, the tools used during development as well as the involved platforms and
included libraries are going to be presented. Also, the necessary tools and equipment for
simulation and emulation of system parts during development are going to be discussed
in this chapter. After that, implementation details and code snippets for all three involved
components of the system are shown to highlight important aspects of the implementation.

4.1 Libraries and Third Party Components
The three components of the system, shown in Figure 3.5, will be implemented and exe-
cuted on different platforms, thus requiring the use of multiple programming languages.
Therefore, the development tools and libraries used to develop each system component
will be discussed separately for each element.

4.1.1 Mobile Device
The device which is used to transport configurations from the backend to the secure ele-
ment can be an arbitrary device which fulfils the following requirements:

1. NFC Interface: The device needs to be equipped with an NFC interface to transfer
data to the secure element.

2. Camera: A camera is needed to be able to read configuration QR tags.

58

4 Implementation

3. Network Interface: If configuration data should be fetched from the backend, also
a network interface is needed for the data transfer.

For the prototypical implementation of the data transfer application, a smartphone was
chosen because the necessary hardware is present in nearly all current smartphones. Be-
cause of the openness of the platform, Android was selected. The Android platform and
some of its security features were already discussed in Section 2.1.6. During this master’s
thesis, a Google Nexus smartphone was used for implementation and testing.

Java: Native applications for the Android operating system are mainly developed using
Java. Java offers all features of modern programming languages such as object-
orientation or concurrency. To be executed on Android, Java code is compiled to
bytecode which is then translated into DEX bytecode. This DEX bytecode is then
executed in the Dalvik virtual machine on Android which offers some security-
related advantages, such as executing applications in a Sandbox [EOMC11].

Android Studio: The official IDE which should be used for application development
on Android is called Android Studio. The integrated development environment is
based on the proprietary IntelliJ, however, Android Studio is freely available. The
IDE offers many features related to Android application development such as a drag
and drop user interface designer or templates to create Android applications more
easily. Android Studio also includes a virtual machine where Android and newly
developed applications can be simulated. Also, applications can be executed and
debugged directly on Android smartphones with enabled developer mode and USB
debugging modes.

Gradle: To automate the build process, Gradle is used as default tool in combination
with Android Studio. In a configuration file, tasks such as compile or run can be
specified. For all tasks, dependencies can be defined. Gradle then uses a DAG
(directed acyclic graph) to determine the order of execution. Dependencies of the
implemented application can be listed in the build.gradle configuration file which
are then fetched automatically. Also, Gradle supports incremental builds, meaning
only updated parts of the calculated tree are executed.

ZXing: The library ZXing (zebra crossing) was used to provide QR code reading capa-
bilities to the implemented application. For the library to function properly, the ap-
plication Barcode Scanner needs to be installed on the Android smartphone. When
using ZXing, an intent (IntentIntegrator, see Figure 3.8) is posted by the application
which invokes the standalone QR code scanner. If a code was detected successfully,
the resulting text is returned to the calling application. The library is released under
the Apache license and therefore is open source.

59

4 Implementation

4.1.2 Backend
The backend which creates and stores configurations, creates QR codes and provides po-
tential downloads for configuration payloads is implemented as a web application. To
post no requirements regarding the backend’s hardware, JavaScript was used to develop
the application. Thus, the backend can be executed also on mobile devices such as An-
droid.

JavaScript: The programming language used to implement the backend, JavaScript, is
an interpreted language that is also untyped. JavaScript supports object-oriented
concepts as well as functional programming. Together with HTML and CSS, it is
seen as a core technology of the world wide web. Similar to Java, JavaScript code
is executed in virtual machines. Historically, JavaScript was seen as an interpreted
language used solely for web development. However, nowadays often just-in-time
compilation is applied, which allows using JavaScript for domains such as desktop
application development.

NodeJS: The runtime environment used to execute the backend implementation,
NodeJS is a JavaScript runtime environment based on Googles JavaScript engine.
NodeJS is open-source and cross-platform with many modules of it written in
JavaScript. Also, new modules can be implemented using the JavaScript program-
ming language. NodeJS is capable of asynchronous I/O which is perfect for imple-
menting web applications. A major advantage when compared to other technologies
is the fact that NodeJS can be installed on Android, which allows using mobile de-
vices such as smartphones or tables as backends in the prototype developed in this
master’s thesis.

WebStorm: The integrated development environment (IDE) used to implement the
backend, WebStorm, which is offered by the producers of IntelliJ. WebStorm offers
features such as syntax highlighting and code completion when writing JavaScript
code. It also has an integration for NodeJS which makes application development
using that runtime environment very easy.

Express: To simplify the web application development, Express was used which is
a NodeJS library for the development of web applications. The library offers
lightweight layers which use existing NodeJS functionality to provide an API for
most used web functionalities such as providing files or offering HTTPS support.

pem: To create or import private keys and certificates (which are needed for HTTPS), a
library named pem is used. By integrating this library, self-signed certificates can
be created at startup which are then directly used to enable HTTPS connections
to the backend. Self-signed certificates are used in the prototype implemented in
this master’s thesis because no fixed URL for which a certificate could be ordered
existed.

60

4 Implementation

qr-image: To create QR codes based on the data structure presented in Section 3.3.1,
the library qr-image is used. The library can generate QR codes in many formats
such as png or pdf without requiring additional dependencies.

CryptoJS: For all cryptographic functions such as AES or HMAC-SHA256, the library
CryptoJS which is provided by Google was used. CryptoJS offers implementations
of most cryptographic algorithms in JavaScript using best practices and patterns.
CryptoJS uses specific data types to represent keys and ciphertexts; therefore it also
includes tools to export that data to various formats such as an OpenSSL compatible
form. This library also has no further dependencies.

4.1.3 Secure Element
The secure element which is used in the prototype implemented in this master’s thesis was
already discussed in Section 1.2. As this is a specialized hardware provided by Infineon,
the programming language, development tools and libraries were given.

C89: The programming language used to implement features on the secure element pro-
vided by Infineon is C89, which is one of the most well-known programming lan-
guages. The source code is compiled into an executable, which can then be flashed
to the secure element hardware.

µVision: The integrated development environment used to implement functionality on
the secure element was µVision by Keil. The IDE offers powerful features for
development of embedded software such as the possibility to view and debug the
assembler code generated from the written C source code. If implementing for a
specific hardware such as the secure element used in this master’s thesis, it is possi-
ble to simulate the hardware or use an emulator when debugging. Both methods are
going to be described in Section 4.3. The toolchain to compile, simulate and debug
the written code was provided by Infineon.

Card Emulator: To simulate a mobile device which sends NFC commands to the secure
element’s NFC module, a card emulator was used. To be able to control the card
emulator, a Reader API, and an Infineon internal software (where packets can be
specified and sent at byte level) are used.

FPGA Emulator: A Hitex FPGA (field programmable gate array) emulator was used
to emulate the secure elements hardware. The complete setup of the debugging
process, including a detailed description of the FPGA emulator, will be discussed
in Section 4.3.

61

4 Implementation

4.2 Development Toolchain

C89 Source
Code

µVision

C251
Compiler

A251
Assembler

MMU Config
Infineon

Postlocator

Assembler
Code

FPGA

Hex File

Memory
Locations

Secure
Element

X51 Emulator

SmartCard
Manager

Figure 4.1: The software toolchain used for developing the secure element software.

The software toolchain used during development of the secure elements software compo-
nents is depicted in Figure 4.1. As can be seen there, various tools are used to generate
all necessary artifacts. The C89 based source code is written in µVision which was al-
ready introduced in Section 4.1.3. The included C251 compiler generates assembler code,
which is used by the also included A251 assembler to generate a hex file. Using the pro-
vided MMU configuration, the Infineon postlocator then generates the memory locations
for the respective hardware configuration. The generated hex file and memory locations
can then be used by the X51 emulator which is integrated into µVision to debug the appli-
cation on an FPGA emulator. Also, the generated files can be flashed to a secure element
using a software called SmartCardManager.

62

4 Implementation

4.3 Debugging Environment
To be able to test and debug the implemented features, an FPGA emulator (Hitex Tanto
2) is used. To emulate the correct hardware, a processor-netlist needs to be loaded first.
After the hardware is set up, the application can be loaded onto the emulated hardware.
When using µVision, the compiled file is loaded directly from the IDE. To use NFC
functionality, an analog front end (AFE) is connected to the FPGA. This AFE is then
connected with a REFPICC card-interface. This interface acts as an NFC tag; therefore
it is possible for NFC readers to communicate with it. Figure 4.2 illustrates the whole
debugging setup. As can be seen, there are two possibilities to communicate with the
REFPICC card-interface. Either a mobile device or a card reader can be used to send
NFC commands to the card interface.

FPGA
Analog

Front End

µVision

Application

Processor
Netlist

REFPICC
(Interface)

Card
Reader

Reader API
Control

Application

Figure 4.2: Debugging setup using a FPGA emulator. To send NFC commands to the emulator, either
a smartphone or a card reader can be used.

When using the card reader, a so-called reader API, which is used in combination with
an Infineon internal software, can be used to communicate with the REFPICC interface.
Using this software, it is possible to compose arbitrary APDU packets and send them to
the REFPICC interface. Figure 4.3 shows the debugging setup when using a smartphone
to transfer data and when using a card reader.

63

4 Implementation

(a) FPGA simulator with attached REFPICC in-
terface and a smartphone sending NFC com-
mands.

(b) REFPICC interface used in combination
with the card-reader to transfer data via NFC.

Figure 4.3: Debugging environment using FPGA emulator, card-interface, smartphone, and card-
reader. The FPGA emulator is connected to µVision to allow debugging of the deployed
application code.

4.4 Hardware Prototype
The hardware prototype that was used to verify that the implemented software compo-
nents work as expected on real hardware was developed by Lesjak et al. [LRB+14b].
The hardware module named CUTIN uses an Infineon XMC 4500 as host controller on
an evaluation board. The host controller offers connection interfaces such as USB and
Ethernet, as also depicted in Figure 1.3. This host controller is connected to the secu-
rity controller via I2C. The security controller integrated into the CUTIN module is an
EAL5+ (Evaluation Assurance Level 5+ [MFMP07]) certified security controller by In-
fineon. This controller provides security features such as secure data storage and code
execution by using a self-checking dual CPU concept, integrity checks for data transfers
and caches and encrypted memory and calculations in the CPU according to Lesjak. An
NFC antenna necessary to communicate with the device while also powering it via the
NFC field is integrated into the CUTIN module. The hardware prototype is depicted in
Figure 4.4.

64

4 Implementation

Figure 4.4: The CUTIN hardware prototype comprises a host controller, security controller and an
NFC antenna on an Infineon evaluation board.

4.5 Code Samples of Important Concepts
In this section, code samples of all important concepts which were implemented in this
master’s thesis are shown. The functionality and possibly used libraries for each presented
code snippet will also be discussed.

4.5.1 NFC Type 4 Tag Operations
The NFC Type 4 Tag Operations that were discussed in Section 3.4 were implemented
on the secure element to allow mobile devices to communicate with the tag using NDEF
messages. The implementation was adapted from an earlier version already implemented
on the hardware. A code snippet handling Select can be seen in Listing 4.1. There,
the principle structure, already shown in Table 3.4, is verified and the file identifier is
extracted from the data field. As can be seen in the code, only two files are supported: the
capability container and a file E104 which is specified as being mandatory for NDEF com-
munication. If any other file identifier is provided, the error code 0x6A82 will be returned.

1 // see if select command
2 if (pbAppDataRx[APDU_P1] == 0x00
3 && (pbAppDataRx[APDU_P2] == 0x0C
4 || pbAppDataRx[APDU_P2] == 0x00)

65

4 Implementation

5 && pbAppDataRx[APDU_P3] == 0x02)
6 {
7 // select fileId based on APDU_DATA parameter
8 UINT16 *fileId = (UINT16*) &(pbAppDataRx[APDU_DATA]);
9

10 // only CC and mandatory NDEF file 0xE104 are supported
11 if ((*fileId) == FILE_ID_CC || (*fileId) == 0xE104)
12 {
13 selectedFile = *fileId;
14 *(UINT16*)(*ppbAppDataTx) = ISOSW_SUCCESS;
15 }
16 else
17 {
18 // file id not found
19 selectedFile = 1;
20 *(UINT16*)(*ppbAppDataTx) = 0x6A82;
21 }
22 }

Listing 4.1: Secure Element: Select command which supports CC and mandatory NDEF
file 0xE104.

The code sample shown in Listing 4.2 demonstrates the handling of the ReadBinary
command. Again, only two files (capability container and E104) are handled here. As
can be seen in the code snippet, the 2-byte offset and the data length which will be read
are extracted from the parameters. The file is then read starting from the provided offset,
and the specified number of bytes is returned. Depending on the file size, read access to a
file may be handled by several subsequent ReadBinary commands.

1 if (selectedFile == 0x0000 || selectedFile == 0x0001)
2 {
3 // no application or file was selected, do not return any data
4 *(UINT16*)((*ppbAppDataTx) + dataLength) = ISOSW_NOT_ALLOWED;
5 return CMDHANDLER_PASS;
6 }
7

8 // read offset and datalength from C-APDU
9 dataOffset += pbAppDataRx[APDU_P2];

10 dataOffset += pbAppDataRx[APDU_P1] << 8;
11 dataLength = pbAppDataRx[APDU_P3];
12

13 switch (selectedFile)
14 {
15 case FILE_ID_CC:
16 // capability container, reply the corresponding file
17 file = nvm->bEEDATA_FILE_E103; break;
18 case FILE_ID_NDEF:
19 switch (ndefState) {
20 // according to ndefState, either reply
21 // mandatory NDEF file or no response

66

4 Implementation

22 case NDEF_STATE_FIRST_READ:
23 file = nvm->bEEDATA_FILE_E104; break;
24 case NDEF_STATE_PROCESSING:
25 file = clTxNoResponseYet; break;
26 case NDEF_STATE_HAS_RESPONSE:
27 file = clTxNdefFile; break;
28 case NDEF_STATE_WAIT_FOR_REQ:
29 file = clTxNoResponseYet; break;
30 default:
31 file = nvm->bEEDATA_FILE_E104; break;
32 }
33 break;
34 default: break; // should not reach
35 }
36

37 // copy dataLength bytes of file content starting from offset
38 memcpy(*ppbAppDataTx, file + dataOffset, dataLength);
39 *(UINT16*)((*ppbAppDataTx) + dataLength) = ISOSW_SUCCESS;
40 *pwAppDataTxLen += dataLength;
41 }

Listing 4.2: Secure Element: ReadBinary method which selects the appropriate file
according to the Select command and replies the content starting from offset
with a maximum length which is specified in the C-APDU.

The third Type 4 Tag Operation, UpdateBinary, is demonstrated in the code snippet
shown in Listing 4.3. Again, offset and data length parameters need to be handled as
an NDEF message might be split into several UpdateBinary C-APDUs depending on
its size. All received parts are stored in a nonvolatile memory until the data transmis-
sion is finished. In that case, the handling of the received command and its data is invoked.

1 // read offset and datalength from C-APDU
2 dataOffset += pbAppDataRx[APDU_P2];
3 dataOffset += pbAppDataRx[APDU_P1] << 8;
4 dataLen = pbAppDataRx[APDU_P3];
5

6 pbAppDataRx += (wAppDataRxLen - dataLen);
7

8 // copy the part of the Ndef message into non volatile file
9 if (StoreNdefPartInNV(file, dataOffset, pbAppDataRx, dataLen)

10 != T4TOP_OK)
11 {
12 *(UINT16*)(*ppbAppDataTx) = 0x6A80;
13 return !CMDHANDLER_PASS;
14 }
15

16 // check if last write operation of a split NDEF message
17 // case 1: only NLEN is written with a value > zero
18 if (dataLen == 0x02 && dataOffset == 0x00
19 && *((UINT16*) pbAppDataRx) > 0x00)

67

4 Implementation

20 {
21 ndefState = NDEF_STATE_PROCESSING;
22 DataLinkLayer_ProcessCmd(ORIGIN_CL, &file[5], file[4]);
23 }
24 // case 2: the complete NDEF message was sent in a single APDU
25 else if (dataLen > 0x02 && dataOffset == 0x00
26 && *((UINT16*) pbAppDataRx) == (dataLen - 2))
27 {
28 ndefState = NDEF_STATE_PROCESSING;
29 DataLinkLayer_ProcessCmd(ORIGIN_CL, &file[5], file[4]);
30 }

Listing 4.3: Secure Element: UpdateBinary command. Two cases need to be handled here.
Either an NDEF message is sent in a single C-APDU or the message is split
into multiple C-APDUs.

If all three Type 4 Tag Operations are implemented on the tag, Android allows sending
NDEF messages to such tags. The corresponding code can be seen in the code snippet
depicted in Listing 4.4. As can be seen there, for each NDEF message sent a single
NDEF record of type TNF WELL KNOWN is sent. This indicates that the second identifier,
in this case, RTD TEXT further specifies the payload’s type. NDEF messages can be sent
to already discovered tags, to which a connection needs to be established and closed after
sending.

1 private void write(byte[] payload, Tag tag)
2 throws IOException, FormatException
3 {
4 // create single NDEF record to transmit
5 // add it to a new NDEF message
6 NdefRecord recordNFC = new NdefRecord(
7 NdefRecord.TNF_WELL_KNOWN, NdefRecord.RTD_TEXT,
8 new byte[0], payload);
9 NdefRecord[] records = { recordNFC };

10 NdefMessage message = new NdefMessage(records);
11

12 // get NDEF instance for the discovered tag
13 Ndef ndef = Ndef.get(tag);
14 // connect to tag to enable read/write
15 ndef.connect();
16 // send the prepared NDEF message to the tag
17 ndef.writeNdefMessage(message);
18 // close the connection after sending
19 ndef.close();
20 }

Listing 4.4: Mobile Device (Android): Sending an NDEF message to an already discovered
tag.

68

4 Implementation

To detect tags, applications need to register a callback that is invoked whenever the
desired action is detected by Android OS. As can be seen in Listing 4.5, the event that
application needs to register for is ACTION TAG DISCOVERED.

1 pendingIndent = PendingIntent.getActivity(
2 mainActivity, 0, new Intent(mainActivity,
3 mainActivity.getClass()).addFlags(
4 Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);
5 IntentFilter tagDetected = new IntentFilter(
6 NfcAdapter.ACTION_TAG_DISCOVERED);
7 tagDetected.addCategory(Intent.CATEGORY_DEFAULT);
8 writeTagFilters = new IntentFilter[] { tagDetected };

Listing 4.5: Mobile Device (Android): Registering in Android OS to be notified of newly
detected tags.

As mentioned before, to detect tags the application needs to register for the event of a
newly detected tag. As soon as the tag is detected, the callback shown in Listing 4.6 is
invoked. In addition to storing the detected tag for possible future write operations, also
the tag information is read in this step. Thus, the method shown in this listing is sufficient
to read NDEF messages from detected tags.

1 public String readFromIntent(Intent intent)
2 {
3 if (NfcAdapter.ACTION_TAG_DISCOVERED
4 .equals(intent.getAction()))
5 {
6 tag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);
7 }
8

9 String action = intent.getAction();
10 if (NfcAdapter.ACTION_TAG_DISCOVERED.equals(action)
11 || NfcAdapter.ACTION_TECH_DISCOVERED.equals(action)
12 || NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action))
13 {
14 Parcelable[] rawMsgs = intent
15 .getParcelableArrayExtra(NfcAdapter.EXTRA_NDEF_MESSAGES);
16 NdefMessage[] msgs = null;
17 if (rawMsgs != null)
18 {
19 msgs = new NdefMessage[rawMsgs.length];
20 for (int i = 0; i < rawMsgs.length; i++)
21 {
22 msgs[i] = (NdefMessage) rawMsgs[i];
23 }
24 }

69

4 Implementation

25 return extractNdefText(msgs);
26 }
27 return null;
28 }

Listing 4.6: Tag is discovered by Android OS and an intent is passed to the application
which is then responsible to read NDEF content.

4.5.2 Authenticated Encryption
Authenticated Encryption is implemented at the backend where the configuration
payload is encrypted, and a MAC is calculated, as well as on the secure element where
the encrypted data is decrypted, and the MAC is verified. The principle that was
implemented is depicted in Figure 3.6. The code snippet depicted in Listing 4.7 shows
the encryption and calculation of the message authentication code in JavaScript. As
discussed in Section 4.1.2, the library CryptoJS is used for all cryptographic functions.
The implementation at the backend is similar to this one, the decryption and MAC
calculation are done by using libraries provided by Infineon.

1 var CryptoJS = require("crypto-js");
2 var AES = require("crypto-js/aes");
3 var HMACSHA256 = require("crypto-js/hmac-sha256");
4

5 // generate nonce, iv and load AES key
6 var nonce = generateNonce();
7 var iv = generateIv();
8 var key = loadAesKey();
9 var plaintext = nonce + text;

10

11 // encrypt nonce+plaintext
12 var encrypted = CryptoJS.AES.encrypt(plaintext, key,
13 {iv: iv, mode: CryptoJS.mode.CBC});
14 var cipherlen = Math.ceil(text.length*2/16)*16;
15 var hexcipher = CryptoJS.enc.Hex.stringify(encrypted.ciphertext)
16 .substring(0, cipherlen);
17

18 // calculate MAC from ciphertext + nonce
19 var MAC = HMACSHA256(encrypted, nonce);
20 var hexMAC = CryptoJS.enc.Hex.stringify(MAC);
21

22 // concatenate ciphertext + MAC
23 var result = hexcipher + hexMAC;

Listing 4.7: Implementation of Encrypt-then-MAC as depicted in Figure 3.6.

The libraries available for the secure element did not include implementations of an
HMAC algorithm (as discussed in Section 2.1.5). Therefore, HMAC-SHA256 was imple-

70

4 Implementation

mented using an existing implementation of the SHA256 algorithm. The corresponding
code sample can be seen in Listing 4.8.

1 // block size in SHA256 is 64 byte, so check key_len
2 if (key_len > 64) return -1;
3 // if key is too short, pad it with zeros
4 memcpy(&padded_key[64-key_len], key, key_len);
5 // XOR padded key with 0x36
6 for (i=0; i < 64; ++i)
7 {
8 work[i] = padded_key[i]ˆ0x36;
9 }

10 // append message to that and apply SHA256
11 sha_256_init(buffer);
12 sha_256_update(buffer, work, 64);
13 sha_256_update(buffer, message, len);
14 sha_256_final(buffer);
15 memcpy(intermediate, buffer, 32);
16 // XOR padded key with 0x5c
17 for (i=0; i < 64; ++i)
18 {
19 work[i] = padded_key[i]ˆ0x5c;
20 }
21 // append previously calculated hash to that and apply SHA256
22 sha_256_init(buffer);
23 sha_256_update(buffer, work, 64);
24 sha_256_update(buffer, intermediate, 32);
25

26 // final result in buffer
27 sha_256_final(buffer);

Listing 4.8: Implementation of HMAC-SHA256 using an existing implementation of the
SHA256 hash algorithm.

4.6 SECURECONFIG User Interface
As already mentioned in Section 3.2, a mobile device is used to transport configuration
payloads from a backend to the secure element. For simplicity reasons, in this master’s
thesis, an Android smartphone is used as a mobile device, as discussed in Section 4.1.1.
This section presents the implemented user interface of the so-called SECURECONFIG

application.

The screenshots shown in Figure 4.5 illustrate the user interface of the SECURECONFIG

application. Figure 4.5(a) illustrates the main screen of the application. In this case, al-
ready three configurations were loaded into the application. By clicking the Add New
button, the QR scanner is launched to read a new configuration. This is shown in Fig-

71

4 Implementation

ure 4.5(b). When long clicking an already existing application, a context menu shown
appears where configurations can be deleted, or details of the selected configuration can
be shown.

(a) Main Screen. (b) QR code scanning.

Figure 4.5: Screenshots demonstrating the user interface of the SECURECONFIG application.

72

5
System Evaluation

In this chapter, the proposed system is going to be evaluated. First, to highlight all assets
and potential threats to them, a thorough security and risk analysis [MLY05, SS04] on
the implemented prototype will be done. In this analysis, countermeasures for the found
threats and attacks as well as potential residual risks are listed. The second part of this
evaluation will analyze the required packet size and compare it to an unsecured transport
of data.

5.1 Security and Risk Analysis
Threat modeling is a critical concept when trying to evaluate the security of a system, as
Myagmar et al. [MLY05] state:

Prior to claiming the security of a system, it is important to identify the threats
to the system in question. Enumerating the threats to a system helps system
architects develop realistic and meaningful security requirements.

The authors highlight that the process of system security engineering is an iterative
one, where all three phases (thread modelling, specifying security requirements, and
developing security mechanisms are repeated until all listed threads are mitigated or
declared as non-amendable (Figure 5.1).

73

5 System Evaluation

Threat Modeling
Security

Requirements
Develop Security

Mechanisms

Figure 5.1: Process of system security engineering, according to Myagmar et al. [MLY05].

5.1.1 Entities
As the first step for the conducted security and risk analysis, the involved entities (E) are
identified. In addition to identifying all entities, assumptions (AS) (numbered for each
entity) regarding them are made as well.

(E1) Secure Element Vendor: The vendor of the secure element is providing the
components to equip devices with a secure NFC-configuration interface. Those
components include the secure element as well as the necessary software for the
configuration process (software for backend, mobile device, secure element). The
secure element vendor also deploys an initial encryption/decryption key at the se-
cure element.

(E2) Device Vendor: The device vendor integrates the preconfigured secure element
into a hardware solution such as a smart sensor or a smart home device. When
integrating the secure element, the device vendor has physical access to potential
(debug-) interfaces of the secure element and the hardware in general. The device
vendor also might change the initial key deployed by the secure element vendor.

(E3) Customer: The customer is using the combined hardware solution as provided
by the device vendor. Customers can either be business customers or private cus-
tomers. Physical access to the hardware and potentially the secure element is pos-
sible by the customer.

(E4) Configuration Changer: The person changing a configuration at the hardware
can either be the customer itself or (most likely in the case of a business customer) a
third party such as a maintenance worker. Also, the person changing configurations
has physical access to the hardware.

(E5) Adversary: A potential adversary might try to attack the system either by utilizing
the wireless interface or by trying to gain physical access to the hardware. All
three components of the system (mobile device, secure element, backend) might be
subjected to potential attacks.

74

5 System Evaluation

(E6) Mobile Device: The mobile device is used by the configuration changer to trans-
port configuration payload from the backend to the receiving secure element and to
deploy the configuration using the NFC interface. An adversary might be able to
get physical access to such a mobile device as well.

(E7) Secure Element: The secure element is integrated into some hardware solution.
It is responsible to maintain the key material and to decrypt and verify new config-
uration data.

(E8) Backend: The backend is used to create and manage configuration packages. The
configurations and the corresponding key material for the encryption of the data are
stored in the backend.

5.1.2 Assumptions
Regarding the previously identified entities, some assumptions are made. The assump-
tions specify the trustworthiness of some entities as well as the security properties of
some components.

(AS1): The secure element vendor is assumed to be trustworthy.

(AS2): The device vendor is assumed to be honest but curious.

(AS3): The customer is assumed to be honest but curious.

(AS4): The configuration changer is assumed not to be trustworthy.

(AS5): The adversary is assumed to be able to conduct online and physical attacks.

(AS6): The mobile device is assumed to offer the possibility to be equipped with a SE.

(AS7): It is assumed that all physical attacks regarding the secure element are infeasible.

(AS8): The backend is assumed to be secured against physical attacks.

5.1.3 Assets
After identifying all involved entities and corresponding assumptions, the assets (A)
which need to be protected are determined.

(A1) Configuration Data: The configuration data that is transferred via the NFC-
based configuration interface proposed in this master’s thesis is considered as the
primary asset. Configuration data might include private keys or sensitive config-
uration data and therefore is considered as confidential. All three components of
the system (mobile device, secure element, backend) access the configuration data.
Therefore, security measures need to be considered for all involved parts.

75

5 System Evaluation

(A2) Key Material: The key material which is needed to encrypt the configuration data
is considered as the second asset. An adversary who has access to the key material
can easily decrypt and read the confidential configuration data that is transferred via
the NFC-based configuration interface.

(A3) Device Functionality: The functionality of devices is considered as third asset
which needs to be protected from adversaries. Functionality can be compromised
by either deploying faulty configurations that disable or even destroy the device
or by denying the device’s service by using the provided NFC-based configuration
interface.

5.1.4 Threats
Considering all identified entities, the corresponding assumptions and the assets which
need to be protected, the system now can be reviewed concerning potential threats (T).
For each threat, countermeasures (C) and/or residual risks (R) are then determined and
listed. The threads are grouped by the corresponding (active) entities (E) which could
cause the related threats. For each threat, all potentially threatened assets are listed as
well. A threat might compromise one or multiple of those listed assets.

(E1) Secure Element Vendor

(T1) The secure element vendor might unintentionally leave back-doors (either in
hardware or software) such as debug interfaces open.
Potentially threatened assets: (A1), (A2), (A3)

(C1) As a countermeasure, the developed hardware and software components are
certified by a third party regarding their security.

(T2) Cryptographic algorithms and security concepts such as authenticated encryp-
tion may not be implemented correctly.
Potentially threatened assets: (A1), (A2), (A3)

(C2) In addition to certifying the software components, only best practices such as
Encrypt-then-MAC are used.

(T3) The secure element vendor might only allow keys up to a certain length which
could be too short to be considered secure. Also, the supported algorithms
might be already broken or not considered as secure (e.g., DES, MD5).
Potentially threatened assets: (A1), (A3)

(C3) Algorithms that are considered secure (such as AES or SHA-256) are used in
combination with keys of a length that is shown to be infeasible to attack at
the moment.

76

5 System Evaluation

(E2) Device Vendor

(T4) The provided secure element might not be integrated correctly into the device
by the device vendor. Thus, making it possible to attack the integrated secure
hardware element through existing interfaces.
Potentially threatened assets: (A1), (A2), (A3)

(C4) To prevent wrongly integrated secure hardware elements, the device vendor
also gets certified by a third party.

(T5) When integrating the secure element, the device vendor might use the provided
security functionality in a wrong way. For example, cryptographic functions
could be called in a not specified order.
Potentially threatened assets: (A1), (A2), (A3)

(C5) To prevent such threats, the provided API must not allow such incorrect calls.

(T6) As the device vendor can change the initial key specified by the secure element
vendor, it is possible that keys are changed such that they become insecure.
For example, the same key could be used for multiple devices or a key could
be chosen such that it can be derived from device parameters such as the name
of the device.
Potentially threatened assets: (A1), (A2), (A3)

(R6) As changing the keys is the device vendor’s responsibility, no countermeasure
can be taken to prevent the deployment of insecure keys.

(E3) Customer

(T7) Also customers are allowed to change keys, which results in the same threat
as threat T5.
Potentially threatened assets: (A1), (A2), (A3)

(R7) As for T5, also for T6 no countermeasure is possible as customer’s can
change keys to arbitrary values.

(T8) As the devices are deployed in a business customer’s premises or anywhere a
private customer wishes, it might be possible that the customer does not pre-
vent physical access to the hardware components. Attackers therefore could
perform any kind of attack that requires physical access to the hardware.
Potentially threatened assets: (A1), (A2), (A3)

(C8) All components (mobile device, secure element, backend) are designed in
such a way that gaining physical access to them does not harm the security of

77

5 System Evaluation

the overall system by, for example, revealing keys. The backend and secure
element are tamper resistant while the mobile device only contains encrypted
data.

(T9) If a customer is also choosing to maintain the backend and therefore be respon-
sible for all keys, it is possible that key material is unintentionally published
or lost in a security breach.
Potentially threatened assets: (A2), (A3)

(R9) If a customer chooses to maintain the key material, no countermeasure can be
taken in order to mitigate the threat of losing key material.

(E4) Configuration Changer / (E5) Adversary with physical access 7

(T10) The person responsible for deploying configurations might try to deploy ar-
bitrary configuration parameters and thus, harm the device. Faulty configu-
rations can, for example, be generated by producing manipulated QR codes
which contain configurations.
Potentially threatened assets: (A1), (A3)

(C10) Authenticated encryption is used to prevent the deployment of untrusted
configurations.

(T11) The person responsible for deploying configurations might try to manipulate
the configuration that is present on the mobile device. Manipulation includes
trying to change certain parameters or to try and change random bits of the
configuration.
Potentially threatened assets: (A1), (A3)

(C11) Authenticated encryption is used to prevent the deployment of potentially
manipulated configurations.

(T12) The person responsible for deploying configurations might try to (intentionally
or unintentionally) deploy outdated configurations.
Potentially threatened assets: (A3)

(C12) By integrating expiry dates and timestamps as well as version numbers into
the configurations, the threat of overwriting configurations with older versions
is mitigated.

7 As the person who changes configurations might be a malicious user, the threats are combined with
those of an adversary with physical access as most threats are overlapping.

78

5 System Evaluation

(T13) The mobile device which is used might be lost by the configuration changing
person. It could also be stolen.
Potentially threatened assets: (A1)

(C13) As a countermeasure, the mobile device’s authentication mechanisms must
be used. Also, by only transferring encrypted configurations to the mobile
device, no confidential data can be read. As also MACs are used, only valid
configurations can be deployed using a lost or stolen mobile device anyhow.

(T14) The person responsible for deploying configurations might try to manipulate
the SECURECONFIG application or the mobile device’s operating system to
try and get access to configurations or to deploy faulty configurations.
Potentially threatened assets: (A1), (A3)

(C14) To prevent application modification, the operating system’s security mecha-
nisms must be used. No bypassing such as rooted Android operating systems
must be allowed. To fully guarantee a non-manipulated application and
operating system, mobile devices which use hardware security mechanisms
such as a secure element must be used.

(T15) As persons who change configurations have physical access to the secure el-
ement, they might try to manipulate the secure element through physical at-
tacks.
Potentially threatened assets: (A1), (A2), (A3)

(C15) The secure element must be tamper resistant to avoid the manipulation of
processed data such as intermediate keys or a final plain- or ciphertext.

(T16) Denial of service regarding the device which should be updated is possible
by either destroying, not updating or repeatedly trying to update the device is
possible.
Potentially threatened assets: (A3)

(R16) There is no possibility to mitigate all possible forms of a denial of service
attack.

(E5) Adversary without physical access

(T17) Denial of service regarding the NFC-based configuration interface is also pos-
sible without having physical access to the hardware.
Potentially threatened assets: (A3)

79

5 System Evaluation

(R17) As mentioned in Section 2.1.3, a denial of service attack on NFC communi-
cation is possible. However, as the communication range of NFC devices is
limited, no countermeasure needs to be taken.

(T18) Without having physical access, sniffing of data transferred using NFC might
be possible, although the communication range is very limited.
Potentially threatened assets: (A1)

(C18) As a countermeasure, the transferred data is secured using authenticated
encryption. Also, the rather short communication range of NFC limits the
risk of this threat.

(T19) A man-in-the-middle attack, although infeasible, is still possible on NFC com-
munication. Because of the wireless nature, no physical access is needed.
Potentially threatened assets: (A1), (A3)

(C19) By using authenticated encryption, the threat of man-in-the-middle attacks is
mitigated. The short communication range of NFC also makes this type of
attack highly unlikely, when compared to other wireless techniques.

(T20) Because configurations are downloaded from a backend, an adversary might
try to manipulate the download of the content.
Potentially threatened assets: (A1), (A3)

(C20) By using HTTPS for downloading configurations from the backend, the
possibility of manipulating the downloaded content is erased.

(T21) As the backend might be accessible from the Internet, adversaries could try to
directly attack the backend to steal key material or confidential configuration
parameters.
Potentially threatened assets: (A1), (A2), (A3)

(C21) As mentioned when listing the entities, the backend is assumed to be secure
against any kind of attack as securing a web application is not the focus of this
master’s thesis.

The result of the conducted security and risk analysis shows that countermeasures are
taken regarding all threats where mitigating the threat through a countermeasure was pos-
sible in the context of this master’s thesis. The residual risks that remain are mainly
threats which arise through misconfiguration of the provided security features or denial of
service attacks. Although it is also possible to mitigate those threats, no countermeasures
were taken in the scope of this master’s thesis.

80

5 System Evaluation

5.2 Evaluation of Packet Sizes
To highlight the effect of the implemented security measures regarding transferred packet
size, an evaluation was done. For this assessment, the algorithms chosen where AES-128
and HMAC-SHA256 which gave the following overheads according to Section 3.3.2 and
Section 3.5:

• The overhead that is added to the plaintext before encryption is applied is 74 Byte.
The transferred nonce needs 64 Bytes while the other fields such as version or
validity account for 10 Bytes.

• The overhead that is applied after encryption for fields such as real-time or cipher
spec is 6 Byte plus the 32 Bytes hash that is produced by the chosen HMAC-SHA256
algorithm.

• Because AES is a block cipher, the plaintext is encrypted in chunks of 16 Bytes
(for AES-128). If the plaintext length in Bytes is no multiple of 16, the plaintext is
padded which additionally increases the packet size.

Plaintext Size in Byte

10 0 10 1 10 2 10 3

T
ra

n
s
m

it
te

d
 S

iz
e
 i
n
 B

y
te

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Plaintext

Secured

Figure 5.2: Comparison of necessary packet size for unsecured plaintext and secured protocol in the
range [1, 4096] Bytes.

Figure 5.2 shows the packet size in bytes that need to be transferred for the unsecured
transmission of plaintext and the secured method which is presented in this master’s

81

5 System Evaluation

thesis. The considered range for the plaintext size is 1 byte up to 4096 bytes as 4 kB is
the maximum size of QR codes as well as the maximum payload size for standard NDEF
messages. As mentioned before, the overhead comprises a static part which is induced by
information such as the nonce, real-time or version number that are added and a variable
part caused by AES being a block cipher. Figure 5.3 highlights this stepwise increase in
overhead as only payload sizes in the range from 1 byte up to 512 bytes are considered for
this plot. One aspect which needs to be noted is that because of the overhead, introduced
by the implemented security mechanisms, a maximum plaintext size of 3974 bytes can
be transferred using NDEF messages and QR codes as a larger plaintext size would lead
to an overall packet size greater than 4 kB.

Plaintext Size in Byte

0 100 200 300 400 500

T
ra

n
s
m

it
te

d
 S

iz
e
 i
n
 B

y
te

0

100

200

300

400

500

600

700

Plaintext

Secured

Figure 5.3: Comparison of necessary packet size for unsecured plaintext and secured protocol in the
range [1, 512] Bytes, highlighting the blockmode of AES.

The overhead in percentage of the overall packet size is depicted in Figure 5.4. The
overhead is calculated according to Equation (5.1). As can be seen there, the overhead
is not negligible as for plaintext sizes of 1024 bytes the overhead would still account for
10% of the overall packet size.

overhead in % =
overhead in bytes

plaintext size in bytes + overhead in bytes
(5.1)

82

5 System Evaluation

Plaintext Size in Byte

10 0 10 1 10 2 10 3

O
v
e
rh

e
a
d
 i
n
 %

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.4: Overhead of securing the payload in percent relative to the unsecured transport of plaintext
data.

83

6
Conclusion and Future Work

This master’s thesis is concluded with this chapter. First, a conclusion which summarizes
the contents of this thesis is given. Also, currently existing limitations of the presented
prototype and concept are given. The chapter ends with an outlook regarding potential
future work which aims at mitigating some limitations as well as enhancing the current
solution.

6.1 Conclusion
In the scope of this master’s thesis, an NFC-based configuration interface for the Internet
of Things (IoT) was presented. As the concept is based on a hardware concept that was
implemented in another thesis, the so-called mediator is presented first. Based on this
hardware platform and the context of the IoSense project, several possible application
scenarios were discussed in this work, highlighting potential use cases of the proposed
NFC-based configuration interface. Before the concept was discussed, also all necessary
prerequisites were reviewed, and related work was discussed. As was shown there, at the
time this master’s thesis was concluded, no similar solution to the one proposed in this
thesis existed.

After the introductory chapters of this work, the design of the NFC-based configuration
interface was discussed. There, the applied security features are highlighted, and reasons
for the chosen techniques are given. After that, the implementation of the prototype
developed in the context of this master’s thesis is illustrated. For each component of the
overall system, implementations of the main parts are discussed. Also, the implemented
user interface is presented. To evaluate the presented protocol and prototype, a thorough

84

6 Conclusion and Future Work

threat and risk analysis was conducted. Also, the overhead imposed by the applied
security mechanisms is analyzed.

Summarizing this thesis, an NFC-based configuration interface for the Internet of Things
(IoT) was presented in this thesis. The proposed concept considers security relevant as-
pects to ensure the confidentiality and integrity of the transferred configuration param-
eters. Thus, also confidential information such as production relevant settings or key
material can be transferred using this concept. The presented mobile device application
ensures a good usability of the developed application to reduce possible human errors
when using the concept presented in this master’s thesis. Also, the third goal defined in
Section 1.3, portability, is accomplished as so-called components of the shelf can be used
for the backend and mobile device components. By conduction a threat and risk analy-
sis, applied countermeasures for all discovered threats are given. Thus, the security of
this system is analyzed and shown. As the evaluation regarding the overhead imposed by
those security measures shows, a nearly negligible percentage of about 10% is imposed
for data packages of 1 kB by the implemented security mechanisms. As confidential data
needs to be transported and also when considering the transfer rates of NFC, this overhead
does not influence the applicability of the concept presented in this master’s thesis.

6.1.1 Limitations
Although the presented concept aims at improving the current state of the art (Sec-
tion 2.3.4, some limitations in the presented concept exist. Most of those limitations
arise from time limitations of a master’s thesis and, therefore, can be easily fixed by fu-
ture work which is discussed in Section 6.2. The nature of limitations discussed in this
section ranges from conceptual decisions up to technical drawbacks of the implemented
prototype.

1. As discussed in Section 5.2, the introduction of security mechanisms induces a cer-
tain threshold. The evaluation reveals that for a plaintext size of 1 kB, the overhead
accounts for roughly 10% of the overall transferred data. The overhead is caused
by the inclusion of several security related fields such as a nonce or machine ID as
well as by using authenticated encryption which requires transmitting an additional
MAC.

2. Based on the core system architecture and the communication protocols introduced
in Chapter 3, the mobile device used for device configuration needs to be equipped
with a digital camera and an NFC interface. The NFC interface is needed to config-
ure devices. However, the additional need for a camera can be seen as a potential
drawback as no simple NFC reader/write can be used as a mobile device in this
setting.

3. By using QR and NFC technology as described in Section 3.2 the maximum con-
figuration package size is restricted to a size of around 4 kB. The implementation

85

6 Conclusion and Future Work

of the security features mentioned in Section 3.5 further decreases the effective
maximum plaintext size to 3974 bytes as discussed in Section 5.2.

4. The application deployed on the mobile device was developed for the Android op-
erating system because of simplicity reasons. However, using Android restricts the
range of mobile devices to such devices that can run the Android operating system.

5. The secure elements software components were developed on a specific Infineon
secure element, thus restricting the applicability of those software components to
exactly that specific hardware element.

6. The backend is implemented in JavaScript using nodeJS functionality and libraries
as discussed in Section 4.1.2. By using those technologies, suitable hardware to
operate the backend on is restricted to those capable of running the necessary soft-
ware.

7. As shown in Section 3.3.2, timestamps are needed to verify the validity of configu-
ration packages. However, for Android systems, there is no way to ensure that the
system time was not modified. The only way is to use the so-called elapsed real-
time which measures the time since the device was booted including sleep phases.
It is not possible to manipulate that counter, however rebooting the device renders
all previously created timestamps as useless. For this reason, when rebooting the
mobile device, all stored configurations are lost.

8. Because private-key encryption is used, a private key which is used for decryption
needs to be present at the secure element before configuring it for the first time.
The private key can be stored in a secure storage, however, by requiring the key
to being present before applying the first configuration may require for the device
manufacturer to deploy those keys.

9. Although authenticated encryption is used to secure the transferred configuration
parameters, no direct authentication of the person and mobile device applying the
configuration is required. Thus, by knowing the private key and the structure used
to represent configuration parameters, an attacker can apply arbitrary configuration
settings.

10. To assemble configurations, a backend software is needed as discussed in Sec-
tion 3.2. However, especially for smart home scenarios, users might not want to
use an additional component when composing and applying configurations.

86

6 Conclusion and Future Work

6.2 Future work
A couple of limitations listed in Section 6.1.1 could be solved by doing further work in
the context of NFC-based configuration. Also, enhancements to the current project state
might be possible. This section lists both, future work with a focus on improving the
limitations listed in Section 6.1.1 as well as possible enhancements.

1. An evaluation concerning energy efficiency needs to be conducted. To do so, energy
measurements at instruction level need to be collected to be able to evaluate the
currently implemented prototype concerning energy consumption.

2. A mechanism for password-based key exchange that was implemented in a second
master’s thesis done in the context of the IoSense project could be integrated into the
proposed NFC-based configuration solution. By incorporating the so-called SPAKE
[AP05] algorithm, the problem of unauthenticated configuration as well as the issue
of initial key distribution could be mitigated.

3. In addition to the QR- and NFC-based approach as presented in Section 3.2 an
approach that only uses NFC could be developed. By doing so, the drawback of
needing a camera in the mobile device when transferring configurations is elimi-
nated.

4. Currently, only configurations that are composed by hand can be applied to devices.
However, it might be useful to be able to copy a device’s configuration, for instance
in the case of a broken down manufacturing device. The copied configuration could
then directly be applied to the new machine replacing the broken one.

5. As mentioned in Section 6.1.1, a dedicated backend is needed to compose con-
figuration packages. However, especially in a smart home scenario, creating and
maintaining configurations directly in the mobile device’s application might be very
useful. Therefore, an application that enables end-users of changing existing con-
figurations could be developed.

6. For the prototype implemented within the scope of this master’s thesis, an Android
smartphone was chosen as a mobile device. To not be restricted by that choice,
a special mobile device that is fulfilling all requirements stated in Section 4.1.1
could be developed. Such a device could be equipped with several security relevant
features that are present in each Android device, such as a non-changeable real-time
clock and an included secure element.

87

Bibliography

[ABCS06] Ross Anderson, Mike Bond, Jolyon Clulow, and Sergei Skorobogatov.
Cryptographic processors-a survey. Proceedings of the IEEE, 94(2):357–
369, 2006.

[ACM13] Alessandro Armando, Gabriele Costa, and Alessio Merlo. Bring your own
device, securely. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, pages 1852–1858. ACM, 2013.

[ADF07] Manfred Aigner, Sandra Dominikus, and Martin Feldhofer. A system of
secure virtual coupons using NFC technology. In Pervasive Computing and
Communications Workshops, 2007. PerCom Workshops’ 07. Fifth Annual
IEEE International Conference on, pages 362–366. IEEE, 2007.

[AP05] Michel Abdalla and David Pointcheval. Simple password-based encrypted
key exchange protocols. In Cryptographers’ Track at the RSA Conference,
pages 191–208. Springer, 2005.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A concrete
security treatment of symmetric encryption. In Foundations of Computer
Science, 1997. Proceedings., 38th Annual Symposium on, pages 394–403.
IEEE, 1997.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition paradigm. In
International Conference on the Theory and Application of Cryptology and
Information Security, pages 531–545. Springer, 2000.

[Bro01] David L Brock. The electronic product code (epc). Auto-ID Center White
Paper MIT-AUTOID-WH-002, 2001.

[BSDF12] Balazs Benyo, Balint Sodor, Tibor Doktor, and Gergely Fördős. Student
attendance monitoring at the university using NFC. In Wireless Telecom-
munications Symposium (WTS), 2012, pages 1–5. IEEE, 2012.

[CW08] Nicolaj Bjerregaard Christensen and Stefan Wagner. Using near field com-
munication technology to achieve near-zero-configuration of sensors. In
Proceedings of the 5th Annual International Conference on Mobile and

88

Bibliography

Ubiquitous Systems: Computing, Networking, and Services, page 38. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2008.

[CYHI+03] Diane J Cook, G Michael Youngblood, Edwin O Heierman III, Karthik
Gopalratnam, Sira Rao, Andrey Litvin, and Farhan Khawaja. MavHome:
An Agent-Based Smart Home. In PerCom, volume 3, pages 521–524, 2003.

[DHM06] Jing Deng, Richard Han, and Shivakant Mishra. Secure code distribution in
dynamically programmable wireless sensor networks. In Proceedings of the
5th international conference on Information processing in sensor networks,
pages 292–300. ACM, 2006.

[DM08] Mohsen Darianian and Martin Peter Michael. Smart home mobile RFID-
based Internet-of-Things systems and services. In 2008 International con-
ference on advanced computer theory and engineering, pages 116–120.
IEEE, 2008.

[DMK+13] Norbert Druml, Manuel Menghin, Daniel Kroisleitner, Christian Steger,
Reinhold Weiss, Armin Krieg, Holger Bock, and Josef Haid. Emulation-
Based Fault Effect Analysis for Resource Constrained, Secure, and Depend-
able Systems. In Digital System Design (DSD), 2013 Euromicro Conference
on, pages 337–344. IEEE, 2013.

[DMK+14] Norbert Druml, Manuel Menghin, Adnan Kuleta, Christian Steger, Rein-
hold Weiss, Holger Bock, and Josef Haid. A flexible and lightweight ECC-
based authentication solution for resource constrained systems. In Digital
System Design (DSD), 2014 17th Euromicro Conference on, pages 372–
378. IEEE, 2014.

[DSTW12] Alexandra Dmitrienko, Ahmad-Reza Sadeghi, Sandeep Tamrakar, and
Christian Wachsmann. SmartTokens: Delegable access control with NFC-
enabled smartphones. In International Conference on Trust and Trustwor-
thy Computing, pages 219–238. Springer, 2012.

[DXHL14] Li Da Xu, Wu He, and Shancang Li. Internet of things in industries: A
survey. IEEE Transactions on Industrial Informatics, 10(4):2233–2243,
2014.

[EF15] Claudia Eckert and Niels Fallenbeck. Industrie 4.0 meets IT-Sicherheit:
eine Herausforderung! Informatik-Spektrum, 38(3):217–223, 2015.

[EOM+09] William Enck, Machigar Ongtang, Patrick Drew McDaniel, et al. Under-
standing Android Security. IEEE security & privacy, 7(1):50–57, 2009.

89

Bibliography

[EOMC11] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri.
A study of android application security. In USENIX security symposium,
volume 2, page 2, 2011.

[fSEC+04] International Organization for Standardization/International Electrotech-
nical Commission et al. ISO/IEC 18092 Information technol-
ogy—Telecommunications and information exchange between sys-
tems—Near Field Communication—Interface and Protocol (NFCIP-1).
ISO/IEC, 18092, 2004.

[fSEC+05] International Organization for Standardization/International Electrotech-
nical Commission et al. ISO/IEC 21481 Information technol-
ogy—Telecommunications and information exchange between sys-
tems—Near Field Communication—Interface and Protocol (NFCIP-2).
ISO/IEC, 21481, 2005.

[FT11] Luka Finžgar and Mira Trebar. Use of NFC and QR code identification
in an electronic ticket system for public transport. In Software, Telecom-
munications and Computer Networks (SoftCOM), 2011 19th International
Conference on, pages 1–6. IEEE, 2011.

[GSMM09] Stefano Levialdi Ghı̀ron, Serena Sposato, Carlo Maria Medaglia, and Alice
Moroni. NFC ticketing: A prototype and usability test of an NFC-based
virtual ticketing application. In Near Field Communication, 2009. NFC’09.
First International Workshop on, pages 45–50. IEEE, 2009.

[Har06] Richard Harper. Inside the smart home. Springer Science & Business Me-
dia, 2006.

[Hat03] Lynn Hathaway. National policy on the use of the advanced encryption
standard (AES) to protect national security systems and national security
information. National Security Agency, 23, 2003.

[HB06] Ernst Haselsteiner and Klemens Breitfuß. Security in near field communi-
cation (NFC). In Workshop on RFID security, pages 12–14, 2006.

[HDK+14] Andrea Höller, Norbert Druml, Christian Kreiner, Christian Steger, and
Tomaz Felicijan. Hardware/software co-design of elliptic-curve cryptog-
raphy for resource-constrained applications. In Proceedings of the 51st An-
nual Design Automation Conference, pages 1–6. ACM, 2014.

[HL10] Dae-Man Han and Jae-Hyun Lim. Smart home energy management sys-
tem using IEEE 802.15. 4 and zigbee. IEEE Transactions on Consumer
Electronics, 56(3):1403–1410, 2010.

90

Bibliography

[HMEK16] Jan Haase, Dominik Meyer, Marcel Eckert, and Bernd Klauer. Wireless sen-
sor/actuator device configuration by NFC. In 2016 IEEE International Con-
ference on Industrial Technology (ICIT), pages 1336–1340. IEEE, 2016.

[Jaz14] Nasser Jazdi. Cyber physical systems in the context of Industry 4.0. In
Automation, Quality and Testing, Robotics, 2014 IEEE International Con-
ference on, pages 1–4. IEEE, 2014.

[JVW+14] Qi Jing, Athanasios V Vasilakos, Jiafu Wan, Jingwei Lu, and Dechao Qiu.
Security of the internet of things: Perspectives and challenges. Wireless
Networks, 20(8):2481–2501, 2014.

[K+03] Patrick Kinney et al. Zigbee technology: Wireless control that simply
works. In Communications design conference, volume 2, pages 1–7, 2003.

[KCB97] Hugo Krawczyk, Ran Canetti, and Mihir Bellare. HMAC: Keyed-hashing
for message authentication. 1997.

[KHJ+99] Yoram Koren, Uwe Heisel, Francesco Jovane, Toshimichi Moriwaki,
Gumter Pritschow, Galip Ulsoy, and Hendrik Van Brussel. Reconfig-
urable manufacturing systems. CIRP Annals-Manufacturing Technology,
48(2):527–540, 1999.

[KHW98] Yoram Koren, S Jack Hu, and Thomas W Weber. Impact of manufacturing
system configuration on performance. CIRP Annals-Manufacturing Tech-
nology, 47(1):369–372, 1998.

[KKYL11] Divyan M Konidala, Dae-Young Kim, Chan-Yeob Yeun, and Byoung-
Cheon Lee. Security framework for RFID-based applications in smart home
environment. Journal of Information Processing Systems, 7(1):111–120,
2011.

[Kra01] Hugo Krawczyk. The order of encryption and authentication for protect-
ing communications (or: How secure is SSL?). In Annual International
Cryptology Conference, pages 310–331. Springer, 2001.

[LBK15] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems
architecture for industry 4.0-based manufacturing systems. Manufacturing
Letters, 3:18–23, 2015.

[LdIVJ07] Diego López-de Ipiña, Juan Ignacio Vazquez, and Iker Jamardo. Touch
computing: Simplifying human to environment interaction through NFC
technology. 1as Jornadas Cientı́ficas sobre RFID, 21, 2007.

[Lee08] Edward A Lee. Cyber physical systems: Design challenges. In 2008 11th
IEEE International Symposium on Object and Component-Oriented Real-
Time Distributed Computing (ISORC), pages 363–369. IEEE, 2008.

91

Bibliography

[LH12] Minkyu Lee and Dongsoo Han. QRLoc: User-involved calibration using
quick response codes for Wi-Fi based indoor localization. In Computing
and Convergence Technology (ICCCT), 2012 7th International Conference
on, pages 1460–1465. IEEE, 2012.

[LHH+15] Christian Lesjak, Daniel Hein, Michael Hofmann, Martin Maritsch, An-
dreas Aldrian, Peter Priller, Thomas Ebner, Thomas Ruprechter, and
Günther Pregartner. Securing smart maintenance services: Hardware-
security and TLS for MQTT. In 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), pages 1243–1250. IEEE, 2015.

[LHJ08] Antti Lahtela, Marko Hassinen, and Virpi Jylha. RFID and NFC in health-
care: Safety of hospitals medication care. In 2008 Second International
Conference on Pervasive Computing Technologies for Healthcare, pages
241–244. IEEE, 2008.

[LHW15] Christian Lesjak, Daniel Hein, and Johannes Winter. Hardware-security
technologies for industrial IoT: TrustZone and security controller. In In-
dustrial Electronics Society, IECON 2015-41st Annual Conference of the
IEEE, pages 002589–002595. IEEE, 2015.

[LRB+14a] Christian Lesjak, Thomas Ruprechter, Holger Bock, Josef Haid, and Eu-
gen Brenner. ESTADO—Enabling smart services for industrial equipment
through a secured, transparent and ad-hoc data transmission online. In Inter-
net Technology and Secured Transactions (ICITST), 2014 9th International
Conference for, pages 171–177. IEEE, 2014.

[LRB+14b] Christian Lesjak, Thomas Ruprechter, Holger Bock, Josef Haid, and Eugen
Brenner. Facilitating a secured status data acquisition from industrial equip-
ment via NFC. Journal of Internet Technology and Secured Transactions
(JITST), 2014.

[LRH+14] Christian Lesjak, Thomas Ruprechter, Josef Haid, Holger Bock, and Eu-
gen Brenner. A secure hardware module and system concept for local and
remote industrial embedded system identification. In Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA), pages
1–7. IEEE, 2014.

[LT02] Chih-Chung Lu and Shau-Yin Tseng. Integrated design of AES (Advanced
Encryption Standard) encrypter and decrypter. In Application-Specific Sys-
tems, Architectures and Processors, 2002. Proceedings. The IEEE Interna-
tional Conference on, pages 277–285. IEEE, 2002.

[MF10] Friedemann Mattern and Christian Floerkemeier. From the Internet of Com-
puters to the Internet of Things. In From active data management to event-
based systems and more, pages 242–259. Springer, 2010.

92

Bibliography

[MFMP07] Daniel Mellado, Eduardo Fernández-Medina, and Mario Piattini. A com-
mon criteria based security requirements engineering process for the devel-
opment of secure information systems. Computer standards & interfaces,
29(2):244–253, 2007.

[MLY05] Suvda Myagmar, Adam J Lee, and William Yurcik. Threat modeling as a
basis for security requirements. In Symposium on requirements engineering
for information security (SREIS), volume 2005, pages 1–8, 2005.

[MRT12] Alfredo Matos, Daniel Romao, and Paulo Trezentos. Secure hotspot authen-
tication through a near field communication side-channel. In 2012 IEEE 8th
International Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), pages 807–814. IEEE, 2012.

[MSDPC12] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich
Chlamtac. Internet of things: Vision, applications and research challenges.
Ad Hoc Networks, 10(7):1497–1516, 2012.

[MVH12] Keith W Miller, Jeffrey M Voas, and George F Hurlburt. BYOD: Security
and Privacy Considerations. It Professional, 14(5):53–55, 2012.

[NFC11a] NFC in Public Transport. Technical report, NFC Forum, January 2011.

[NFC11b] Type 4 tag operation specification. Technical Report T4TOP 2.0, NFC Fo-
rum, 06 2011.

[NLY13] Huansheng Ning, Hong Liu, and Laurence T Yang. Cyberentity security in
the Internet of Things. Computer, (4):46–53, 2013.

[PFT+14] Sandor Plosz, Arsham Farshad, Markus Tauber, Christian Lesjak, Thomas
Ruprechter, and Nuno Pereira. Security vulnerabilities and risks in indus-
trial usage of wireless communication. In Proceedings of the 2014 IEEE
Emerging Technology and Factory Automation (ETFA), pages 1–8. IEEE,
2014.

[PRR08] Marc Pasquet, Joan Reynaud, and Christophe Rosenberger. Secure payment
with NFC mobile phone in the SmartTouch project. In Collaborative Tech-
nologies and Systems, 2008. CTS 2008. International Symposium on, pages
121–126. IEEE, 2008.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Lan-
guage Reference Manual, The. Pearson Higher Education, 2004.

[RLG+15] Michael Rüßmann, Markus Lorenz, Philipp Gerbert, Manuela Waldner, Jan
Justus, Pascal Engel, and Michael Harnisch. Industry 4.0: The Future of
Productivity and Growth in Manufacturing Industries. Boston Consulting
Group, 2015.

93

Bibliography

[RNL11] Rodrigo Roman, Pablo Najera, and Javier Lopez. Securing the internet of
things. Computer, 44(9):51–58, 2011.

[RRC04] Srivaths Ravi, Anand Raghunathan, and Srimat Chakradhar. Tamper resis-
tance mechanisms for secure embedded systems. In VLSI Design, 2004.
Proceedings. 17th International Conference on, pages 605–611. IEEE,
2004.

[RS04] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance. In International Work-
shop on Fast Software Encryption, pages 371–388. Springer, 2004.

[SAB15] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. The
Dual-Execution-Environment Approach: Analysis and Comparative Evalu-
ation. In IFIP International Information Security Conference, pages 557–
570. Springer, 2015.

[SFG09] Guenther Starnberger, Lorenz Froihofer, and Karl M Goeschka. QR-TAN:
Secure mobile transaction authentication. In Availability, Reliability and Se-
curity, 2009. ARES’09. International Conference on, pages 578–583. IEEE,
2009.

[SOM14] Fadi Shrouf, Joaquin Ordieres, and Giovanni Miragliotta. Smart factories
in industry 4.0: a review of the concept and of energy management ap-
proached in production based on the Internet of things paradigm. In 2014
IEEE International Conference on Industrial Engineering and Engineering
Management, pages 697–701. IEEE, 2014.

[Soo08] Tan Jin Soon. QR code. Synthesis Journal, 2008:59–78, 2008.

[SPS+10] Rainer Steffen, Jorg Preissinger, Tobias Schöllermann, Armin Müller, and
Ingo Schnabel. Near field communication (NFC) in an automotive envi-
ronment. In International Workshop on Near Field Communication, pages
15–20, 2010.

[SS04] Frank Swiderski and Window Snyder. Threat modeling. Microsoft Press,
2004.

[Sta14] John A Stankovic. Research directions for the internet of things. IEEE
Internet of Things Journal, 1(1):3–9, 2014.

[Ste66] Karl Steinbuch. Die informierte Gesellschaft. Deutsche Verlags-Anstalt,
1966.

94

Bibliography

[SU15] Sadia Syed and M Ussenaiah. The rise of Bring Your Own Encryption
(BYOE) for secure data storage in Cloud databases. In Green Computing
and Internet of Things (ICGCIoT), 2015 International Conference on, pages
1463–1468. IEEE, 2015.

[SWW15] Ahmad-Reza Sadeghi, Christian Wachsmann, and Michael Waidner. Secu-
rity and privacy challenges in industrial internet of things. In Proceedings
of the 52nd Annual Design Automation Conference, page 54. ACM, 2015.

[Tho12] Gordon Thomson. BYOD: enabling the chaos. Network Security,
2012(2):5–8, 2012.

[VDWP09] Gauthier Van Damme, Karel Wouters, and B Preneel. Practical experiences
with NFC security on mobile phones. Proceedings of the RFIDSec, 9:27,
2009.

[VOZ+12] Amit Vasudevan, Emmanuel Owusu, Zongwei Zhou, James Newsome, and
Jonathan M McCune. Trustworthy Execution on Mobile Devices: What se-
curity properties can my mobile platform give me? In International Confer-
ence on Trust and Trustworthy Computing, pages 159–178. Springer, 2012.

[Wan11] Roy Want. Near field communication. IEEE Pervasive Computing, 3(10):4–
7, 2011.

[Wei91] Mark Weiser. The computer for the 21st century. Scientific american,
265(3):94–104, 1991.

[Zha15] Hongwen Zhang. Bring your own encryption: balancing security with prac-
ticality. Network Security, 2015(1):18–20, 2015.

95

	Introduction
	Motivation
	Introduction
	Goals
	Overview

	Prerequisites and Related Work
	Prerequisites
	Security Controller (SC)
	NFC
	Security of NFC
	QR Codes
	Authenticated Encryption
	Android

	Related Work
	Internet of Things
	Industrial IoT and Industry 4.0
	Smart Home
	Applications of NFC
	Bring Your Own Device
	Bring Your Own Key
	Configuration via QR Codes
	Configuration via NFC

	Differences to the State of the Art
	Approaches using QR codes for configuration
	Approaches using NFC for configuration
	Combination of Approaches
	Overview

	Design
	Application Scenarios
	Bring Your Own Key scenario
	Industry 4.0
	Smart Home

	System Architecture
	Protocols
	QR-based
	NFC-based

	NFC Type 4 Tag Operations
	Configuration Security Mechanisms
	Order of Encryption
	Version, Validity, and Machine ID

	Backend Design
	Mobile Device Design
	Class Diagram
	Sequence Diagrams

	Secure Element Design
	Component Diagram
	NDEF State Machine

	Implementation
	Libraries and Third Party Components
	Mobile Device
	Backend
	Secure Element

	Development Toolchain
	Debugging Environment
	Hardware Prototype
	Code Samples of Important Concepts
	NFC Type 4 Tag Operations
	Authenticated Encryption

	SecureConfig User Interface

	System Evaluation
	Security and Risk Analysis
	Entities
	Assumptions
	Assets
	Threats

	Evaluation of Packet Sizes

	Conclusion and Future Work
	Conclusion
	Limitations

	Future work

