
Lukas Gressl, BSc

Design and Implementation of a Java Card
Cross-Compilation Framework

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Software Engineering and Management

submitted to:

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Andreas Lessiak, NXP Semiconductors Austria GmbH

Graz, December 2016

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all ma- terial which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present masters thesis.

Date Signature

1

Kurzfassung

Smart Cards und Embedded Systems im Allgemeinen werden für unsere heutige stark
vernetzte Welt immer wichtiger. Für beinahe jeden Einsatzbereich, z.B. Finanztransaktio-
nen, Identifizierung, etc., existiert bereits eine Vielzahl von speziellen Smart Card Appli-
kationen. Da Smart Card Chips von Hersteller zu Hersteller unterschiedlich sind, müssten
diese Applikationen für jede Chipart adaptiert und extra kompiliert werden. Daher wur-
de ein System angestrebt, das diese Applikationen von der Hardware unabhängig macht
und somit auf unterschiedlichen Smart Cards ausgeführt werden kann. Durch die Java
Card Virtual Machine und deren Laufzeitumgebung wird ein solches System realisiert,
indem es den Code zur Laufzeit interpretiert. Jedoch wird durch diese Interpretation die
Ausführungszeit der gesamten Applikation erhöht. Die Performance der Applikationen ist
ein wichtiger Faktor in vielen Einsatzgebieten und daher versucht man alternative Metho-
den für deren Ausführung zu finden.

Das Ziel dieser Masterarbeit war, Java Card Applikationen vor derer eigentlichen
Ausführung zu kompilieren, anstatt sie während der Laufzeit zu interpretieren. Nach einer
Recherche ähnlicher Projekte wurde ein open-source Framework gefunden, mit dem Java
Applikationen zu nativem Maschinencode kompiliert werden können. Dieses Framework
übersetzt den byte code der Applikation in C Source Code und verwendet anschließend
einen Standard-C Compiler zur weiteren Kompilierung. Dieses Framework wurde als Ba-
sis verwendet und so modifiziert, dass Klassen der Java Card Laufzeitumgebung sowie
Applets nativ kompiliert werden können.

Der Übersetzungsprozess musste dahingehend verändert werden, dass das erzeugte Pro-
gramm den Speicheranforderungen der angestrebten Hardwareumgebung entspricht. Des
Weiteren musste der Lebenszyklus der Objekte an die Spezifizierung von Java Card ange-
passt werden und ein Java Card Betriebssystem implementiert werden. Die Korrektheit
des Übersetzungsprozesses wurde durch eine spezielle Applikation, die die Eigenschaften
der Java Card Programmiersprache testet, verifiziert. Zusätzlich wurde die Laufzeit der
kompilierten Applikationen mit der Laufzeit ihrer Interpretation verglichen. Es zeigte sich,
dass in Abhängigkeit vom Ausmaß des Einsatzes nativer Funktionen nativ kompilierte Ap-
plikationen bis zu 21-mal schneller als deren interpretierte Versionen laufen.

Um die Einsetzbarkeit des Frameworks besser zu zeigen, wurde eine Referenz-Applikation,
die im Bereich der Finanztransaktionen eingesetzt wird, nativ kompiliert. Obwohl diese
Applikation native Funktionen im hohem Maße eingesetzt hat, konnte die Ausführungs-
zeit um 27% reduziert werden. Im letzten Kapitel der Masterarbeit wird noch auf den
Einfluss des Kompilierungsprozesses auf die verschiedenen Sicherheitsmechanismen ein-
gegangen und die Einschränkungen des Frameworks sowie zukünftige Ziele und mögliche
Weiterentwicklungen beleuchtet.

2

Abstract

Smart cards and embedded systems gain more and more importance in our today’s highly
connected world due to their enormous field of application. For each area of operation,
there exists a range of specialized smart card applets. As the smart card chips differ from
manufacturer to manufacturer, each applet would have to be adapted and particularly
compiled for the card’s distinct hardware. Therefore, a system was desired to gain inde-
pendence of the underlying hardware, such that an applet can be executed on multiple
different smart cards. The Java Card virtual machine and runtime environment offers
such an approach. It takes applets written in Java Card and executes them by interpret-
ing their code during runtime. This method makes the Java Card applet independent from
the hardware of the smart card, however, the interpretation during runtime slows down
the applet’s execution speed. As performance is critical in most of the smart card’s fields
of application, an alternative approach is desired.

The goal of this thesis was to find a feasible way to compile Java Card applets in
advance. Investigating similar projects, a open source framework capable of ahead-of-time
compilation of Java applications was found. This framework translates Java byte code
to C source code which is then compiled using a standard C compiler. This open source
project was used as a basis for building an ahead-of-time compiler framework able of
precompiling Java Card runtime classes and applets executable on smart card chips.

Therefore, the framework’s translation process had to be modified in such a way that
it produces an executable small enough to fulfil the targeted system’s memory restrictions.
Furthermore, the object life cycle of the overall system had to be modified to meet Java
Card ’s specification as well as an small Java Card operating system had to be imple-
mented. The correctness of the final framework’s compilation process was verified utilizing
a dedicated applet that tests all the features provided by the Java Card programming
language. Furthermore, the performance of the precompiled applets was compared to the
execution speed of their interpretation performed by a Java Card virtual machine. De-
pending on their utilization of native methods, the precompiled applets run up to 21 times
faster than their interpreted versions.

To further evaluate the feasibility of the proposed framework, a reference applet, used
in the field of financial transactions, was compiled and the gained speed up was measured.
Even though this applet heavily relies on native function calls, the execution time was
decreased by 27%. Finally, a security evaluation of the produced executable was performed
and the framework’s restrictions as well as future goals and development were outlined.

3

Danksagung

Diese Masterarbeit wurde im Jahr 2016 am Institut für Technische Informatik an der
Technischen Universität Graz, in Kooperation mit NXP Semiconductors Austria GmbH,
durchgeführt.

Mein besonderer Dank gilt Herren MSc Matvey Mukha und Dipl.-Ing. Andreas Lessiak
von NXP Semiconductors Austria GmbH. Herr Mukha hat mich in der technischen Um-
setzung meiner Masterarbeit maßgeblich unterstützt. Herr Lessiak unterstützte mich in
der Dokumentation, sowie der Formulierung der Arbeit. Des Weiteren bedanke ich mich
bei Herrn Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger, der mir bei der Finalisierung
dieser Arbeit geholfen hat.

Mein weiterer Dank gilt meiner Familie, die mich während des Verfassens dieser Arbeit
unterstützt hat. Besonders bedanke ich mich bei meiner Mutter, Frau Mag. Bettina Gressl,
meinem Vater, Herrn Dipl.-Ing.- Dr. techn. Franz Gressl, sowie bei Frau Dipl.-Ing. Lisa
Maria Mitterhuber, für das sorgsame Korrigieren meiner Masterarbeit.

Graz, Dezember 2016 Lukas Gressl

4

Contents

1 Introduction 10
1.1 Motivation . 10
1.2 Document Structure . 11
1.3 Background . 11

1.3.1 Terminal to Smart Card Communication Protocol 12
1.3.2 Basic Concepts of Compilers and LLVM Compiler Framework 12
1.3.3 Java and Java Card . 15
1.3.4 The Java Card Open Platform System 17

2 Related Work 19
2.1 Standalone AOTCs . 19

2.1.1 GCJ . 19
2.1.2 Toba . 20
2.1.3 Java-through-C Compilation . 22

2.2 Mixed Mode AOTCs . 24
2.2.1 Design and Optimization of a Java Ahead-of-Time Compiler 25
2.2.2 Bytecode-to-C Ahead-of-Time Compilation 28
2.2.3 TurboJ . 32
2.2.4 A Method-Based Ahead-of-Time Compiler for Android 35
2.2.5 A Selective Ahead-Of-Time Compiler on Android Device 39

2.3 Practical Research . 40
2.3.1 LLVM Java Frontend . 41
2.3.2 GCJ . 41
2.3.3 VMKit . 42
2.3.4 RoboVM . 43
2.3.5 XMLVM . 43

2.4 Conclusion . 46

3 Design of the Framework 47
3.1 Hardware Setup . 47
3.2 Framework Modification steps . 48

3.2.1 XMLVM Capabilities and Minimization of used Java Runtime . . . 48
3.2.2 Boarding on STM32 and Modification of Memory Allocation 51
3.2.3 Boarding to the NXP Chip and Adaptation of Object Lifecycle . . . 53
3.2.4 Java Card Runtime/Framework API and Applet 56

5

3.3 Conclusion . 60

4 Implementation of the Framework 61
4.1 XMLVM Conversion Process . 61

4.1.1 Intermediate Representation . 61
4.1.2 Creation of C Files . 64
4.1.3 Memory management of XMLVM 72
4.1.4 Testing of XMLVM conversion process 72

4.2 Java Card Cross-Compilation Framework Modification 73
4.2.1 Reducing the Memory Requirements 73
4.2.2 Boarding to STM32 Discovery Board 77
4.2.3 Boarding to the NXP Chip . 84
4.2.4 JCOS and TestApplet . 91

4.3 Resulting Compilation Process . 97

5 Evaluation 98
5.1 Performance Evaluation and Testing . 98

5.1.1 JCF Translation Testing . 98
5.1.2 Performance Measurements and Code Size Comparison 100

5.2 Security Evaluation . 103

6 Conclusion and Future Work 105
6.1 Restrictions . 105
6.2 Conclusion . 106
6.3 Future Work . 106

6

List of Figures

1.1 Structure of c-APDU [33, p.422] . 12
1.2 Structure of r-APDU [33, p.422] . 12
1.3 LLVM framework’s implementation of Three Phase Design [23] 13
1.4 The two parts of the JCVM[24, p. 8] . 16
1.5 Installation process in JC [24, p. 9] . 17
1.6 Architecture of the JCOP OS [24] . 18

2.1 Base class to subclass mapping in Toba [32, p. 3] 21
2.2 Normalized speedup of Toba [32, p. 8] . 22
2.3 Benchmark scores achieved by the single execution methods. Sieve, Loop,

Logic, String, Float and Method are single tests of Embedded CaffeineMark
[39, p. 165] . 24

2.4 Mixed mode method call interface [19, p. 172] 26
2.5 Performance evaluation of the standard C , the Java operand stack and the

mixed call interface in partial AOT environment [19, p. 174] 27
2.6 Performance gain achieved by Java optimizations: Null Check Elimination,

Bound Check Elimination and Object Copy Propagation [19, p. 174] 28
2.7 Speedup achieved by DVM with AOT compilation compared to DVM with

JIT compilation measured by multiple benchmarks [31, p. 1052] 32
2.8 Superiority of virtual and static method inlining over static method inlining.

Testcases come from the EEMBC benchmark [31, p. 1053] 32
2.9 TurboJ’s components and their interactions during compile- and runtime

[43, p. 120] . 34
2.10 Icing’s performance evaluated with CaffeineMark 3.0 and BenchmarkPi [42,

p.21] . 38
2.11 Selective AOTC’s speedup measured with CaffeineMark and BenchmarkPi

[25, p.5f] . 40
2.12 Latest commit message in aot branch . 43
2.13 Cross-compilation flow of XMLVM framework [46] 44

3.1 Simplified class diagram of test project . 49
3.2 Step 1 modification flow . 50
3.3 Changes in Step 1 to project layout . 51
3.4 Test project extended with TestRamFlash test case 52
3.5 Step 2 modification flow . 53
3.6 Changes to project layout performed in Step 2 54

7

3.7 Test project extended with TestCounter test case 55
3.8 Step 3 modification flow . 56
3.9 Changes to project layout performed in Step 3 56
3.10 Test applet extended with test case for transient array and adapted excep-

tion handling test case . 58
3.11 Step 4 modification flow . 59
3.12 Changes to project layout performed in Step 4 59

4.1 Memory layout of XMLVM produced C code 72
4.2 Memory layout of Java Card object life cycle simulation 83
4.3 Memory layout of Java Card object life cycle simulation 90
4.4 Execution Flow Diagram of the Java Card OS 95
4.5 Execution Flow Diagram of the Java Card OS 96
4.6 Execution Flow Diagram of the Java Card OS 97

5.1 Table of r-APDUs of interpreted and compiled TestApplet 100
5.2 Time measurements of SHA512 execution 101
5.3 Code size considering the TestApplet . 102
5.4 Time measurements of the reference banking applet 103
5.5 Time measurements of the reference banking applet 103

8

List of Tables

1.1 Supported and unsupported features of Java Card [18] 16

4.1 C structures generated by XMLVM representing Java structures 64
4.2 Naming Convention of XMLVM . 65

9

Chapter 1

Introduction

As each of the topics discussed in this thesis, such as compilers, smart cards and virtu-
al machines offers a huge research field on its own, this chapter aims at providing the
reader with the necessary background information as well as explaining the goal and the
motivation for this master thesis.

1.1 Motivation

As the smart card (SC) technology becomes more and more powerful and such devices
become ever more applicable, its influence on our every day’s life increases steadily. Nowa-
days, SCs are deployed in many different fields of application that range from personal
identification to banking and from medical healthcare to tourism. This huge variety of
applications, which all have different requirements on the SC, is provided to the customer
through the implementation of specialized SC applets [33].

To decrease the amount of programming effort, which comes with each applet, the
SC software is typically split into multiple layers. Each layer provides functionality to
the layer on top of it and thus, offers an interface that encapsulates the details of its
implementation. The applets form the peak of this hierarchy. To become independent of
the SC’s hardware, the applets are typically written in Java Card . The compressed code of
the applet (known as byte code), which is loaded to the SC, is then interpreted by a virtual
machine running on the card. As the interpretation process is cumbersome and does not
allow much optimization of the applets’ code, it heavily decreases its performance [24].

The virtual machine of Java mitigates this performance loss by means of Just-in-
Time compilation. However, as only parts of the code are visible to this compilation
process, the range of the optimizations is limited. Furthermore, code optimization and
compilation is much more demanding than mere interpretation and thus, its utilization
must be well-considered. Especially for very time critical applets in the field of e.g. banking,
this additional overhead might cause issues [31].

To overcome the virtual machine’s interpretation process, the applet can also be com-
piled to native machine code ahead-of-time. This compilation would be performed before
the applet is being loaded to the SC. Android, as an example, introduced a similar ahead-
of-time compilation process, called ART, which compiles Android applications during their
installation process to mitigate the performance loss caused by the byte code’s Just-in-

10

CHAPTER 1. INTRODUCTION 11

Time compilation or interpretation [5].
The goal of this thesis was to find a framework that is suitable for compiling Java byte

code into native code and modify it to produce machine code executable on a SC. The
capability of this framework will be determined by implementing a test project covering
the features of the Java Card programming language. Afterwards, the framework will be
further adapted to compile Java Card applets. The resulting framework is referred to as
the Java Card Cross-Compilation Framework (JCF). Additionally, an evaluation will be
performed that shows the performance difference of an interpreted applet in comparison
to a natively compiled applet. Furthermore, the impact of the precompilation on the
security mechanisms implemented by the Java Card virtual machine is discussed. In the
last chapter of this thesis the advantages and disadvantages of the JCF as well as its future
development is outlined.

1.2 Document Structure

The thesis is split into the following chapters. Chapter 1 explains the basic concepts of
compilers and gives an overview about state of the art compilation strategies. Furthermore,
it provides a short overview of Java Card and introduces the reader to the Java Card Open
Platform System.

In Chapter 2 several papers considering the Ahead-of-Time compilation are summa-
rized and their impact on the design choices of the JCF are explained. Furthermore, the
results of a practical research on open-source frameworks and compilers are described in
this chapter.

In Chapter 3 the design of the modification process is explained that changes the
open-source framework found during the practical research into the resulting JCF.

Chapter 4 explains in detail the translation process of the found open-source framework
and the modifications introduced in Chapter 3.

In Chapter 5 the testcases, with which the resulting compilation process is tested, are
explained in more detail. Furthermore, the performance impact caused by the precompi-
lation of the Java Card applets is evaluated. In this chapter an evaluation on the security
mechanisms of the Java Card Virtual Machine is performed as well.

In Chapter 6 a conclusion of the thesis is drawn and the future work is outlined.

1.3 Background

The topics discussed throughout this thesis build upon different techniques and technolo-
gies in the fields of compilers, programming languages (such asJava and Java Card),
operating systems (OS), Virtual Machines (VM) and Central Processing Units (CPUs).
This section is targeted on introducing the reader to these topics and on providing some
basic background information about these technologies. These topics are referenced by the
projects presented in Chapter 2, as well as by the JCF presented in this thesis. Further-
more, also the communication protocol of smart cards is shortly introduced, as it serves
as interface between the terminal an the smart card itself.

CHAPTER 1. INTRODUCTION 12

1.3.1 Terminal to Smart Card Communication Protocol

The basic protocol, which is used to establish a connection between a smart card and
a terminal, is the Application Protocol Data Unit (APDU). This APDU is independent
from the lower layer of the communication and therefore, can be utilized for both contact-
based and contactless communication. There exist two types of APDUs, one for sending
commands from the terminal to the smart card (c-APDU), and one for sending responses
from the smart card to the terminal (r-APDU). Each c-APDU contains a header, which
is mandatory, and a body, which is optional. The header consists of the following bytes.
The CLA, the INS, the P1 and the P2 byte. Furthermore, the c-APDU might contain
an additional body, which contains one or more bytes. The length of this data section is
indicated by a mandatory LC field put between the P2 byte and the data field. Furthermore,
the c-APDU might contain an Le field at the end of the data field, which indicates the
expected length of the r-APDU. The r-APDU only consists of an optional response body
and a mandatory response trailer. The response body (data field) is followed by the
response trailer and contains one or more bytes. If the c-APDU contained a Le field, the
length of this response body would correspond to the expected length. The response trailer
uses two bytes and is used to send the status word from the smart card to the terminal
[11]. Figure 1.1 and 1.1 show the structure of the c-APDU and the r-APDU.

Figure 1.1: Structure of c-APDU [33, p.422]

Figure 1.2: Structure of r-APDU [33, p.422]

1.3.2 Basic Concepts of Compilers and LLVM Compiler Framework

A compiler translates a computer program, which is written in a high level programming
language, into machine code, which can be executed by the computer. This process is
typically split into the following phases: lexical analysis, a syntax analysis, type checking,
intermediate code generation, register generation, machine code generation, assembly, and
linking. In the first phase, the lexical analysis, tokens are generated from the source code.

CHAPTER 1. INTRODUCTION 13

They correspond to symbols such as variable names, keywords or numbers. During the
syntax analysis or parsing the tokens are taken and arranged into an abstract syntax tree
(AST), which represents the program’s structure. In the type checking phase, the AST is
checked for consistency requirement violations. After the type checking, the intermediate
representation (IR) is generated, which is machine independent. In this phase most of the
optimizations are carried out as well. In the register allocation phase the symbolic names of
the IR are replaced with number corresponding to registers in the target CPU. During the
machine code generation, the IR is translated to the actual assembly of the target machine.
This assembly code is then further translated to binary representation and the addresses
of the various variables and functions are calculated. The lexical analysis, syntax analysis
and the type checking are referred to as the compiler’s frontend. The register generation,
machine code generation, assembly and linking are called the compiler’s backend. Dividing
the compiler’s workflow into frontend, IR and backend is commonly known as the Three-
Phase Design [23]. The IR is the interfacing language linking the frontend and the backend,
thus allowing the combination of various frontends with different backends [30].

The Low Level Virtual Machine (LLVM) infrastructure project consists of highly mod-
ular and reusable toolchains, as well as compilers. Although its name suggeststhat the
LLVM framework is a virtual machine (VM), it has not much in common with tradition-
al VMs, but only supports the libraries to create them. Because of its modular design,
various frontends and backends exist that are able to interact with each other. Therefore,
when adding a new programming language or a new targeting system to the framework
only the necessary front- or backend must be implemented. The rest of the framework can
still be used with the LLVM IR as an interface. Also the already existing optimizations
on the IR can still be used. Figure 1.3 depicts the interaction of LLVM front- with LLVM
backends. Furthermore, the IR is written in a very assembly like way targeted on being
well readable by humans [37], [23].

Figure 1.3: LLVM framework’s implementation of Three Phase Design [23]

Compared to the GNU framework, the LLVM compiler framework provides signifi-
cantly less frontends. However, the GNU framework does not provide an interface between
front- and backend as stable as LLVM’s IR. Furthermore, the LLVM framework is consid-
ered to be much better extensible, in a stable manner than the GNU’ framework. Out of
these reasons the LLVM framework was considered as an probable compiler for Java to
native compilation. A possible frontend for Java was searched for in section 2.3.1 [7].

CHAPTER 1. INTRODUCTION 14

Just in Time and Ahead of Time Compilation Strategies

With the Ahead Of Time (AOT) compilation, a complete program is compiled before
being executed. The compilation unit, which determines what is being compiled by the
compiler, can be as big as a whole file or module, but usually a method is chosen as the
unit size. As the AOT-compilation is performed before the program’s execution, a range
of performance demanding optimizations can be applied. Furthermore, the program is
optimized based on information collected from the full amount of the source code. Thus,
these optimizations are considered to be more sophisticated than those performed by a
Just In Time compiler, which only has limited information about the program [14].

The greatest difference between the AOT compilation and the Just In Time (JIT) com-
pilation is that a JIT compiler (JITC) compiles the code during runtime. JIT compilation
is usually used in combination with an interpreter. The interpreter interprets provided
source code or byte code from the syntax tree directly, thus generating machine instruc-
tions. Therefore, the interpreter may need to interpret the same piece of code multiple
times and thus, producing unnecessary overhead. To mitigate this performance loss, code
sections, which are executed many times, are compiled by the JITC. As the compilation
needs more performance than the interpretation, the emitted machine code is cached for
future access. Therefore, only frequently executed source code/byte code is JIT-compiled.
With this technique the interpretation can be skipped by directly executing the cached
machine instructions. [30], [14].

The compilation unit of the JITC must be limited as it greatly determines the overall
performance of the JIT-compiled program. Therefore, this compilation unit usually does
not exceed the size of a single method or a trace, which is a linear instruction sequence
within a method with one entry and multiple possible exit points. Greater compilation
units would increase the time the program spends for compilation. Thus, the program’s
execution would be delayed. This decreased compilation unit also limits the optimization
that the JITC is able to perform. JITCs are further divided into method-based and trace-
based JITCs.[14].

A method-based JITC focuses on the compilation of whole methods using a single
method as a compilation unit. During runtime, the compiler detects methods that are
frequently executed and marks them as so called hot methods. These methods are compiled
and optimized in a standard way using the method’s control flow graph. As also AOTCs
use single methods as their compilation units, the same optimizations can be theoretically
used in method-based JITCs. In practice only fast optimizations are chosen to lower the
compilation’s impact on the program’s execution speed. The optimized machine code is
cached and accessed whenever this method is executed. An additional advantage of the
method-based JITC is that because of the compilation of single methods/functions at a
time, the interaction between interpreted and compiled code is easy, if both use the same
calling interface or convention [14].

A trace-based JITC performs its compilation on a trace based compilation unit. Traces
are generally not limited by single methods, but may span over a multitude of them.
Furthermore, a trace does not have to include all branches in a single or multiple functions.
As only parts of methods/functions are compiled, it is not guaranteedthat its behaviour
always follows the already compiled trace. Therefore, JITC places a guard on the compiled
trace checking if the execution’s behaviour leads to a branch leaving the trace. If this is

CHAPTER 1. INTRODUCTION 15

the case, the interpreter mode is fallen back to or, if the branch leads to a compiled trace,
the JITC changes to this targeted trace [14].

1.3.3 Java and Java Card

Java is nowadays one of the most popular programming languages. It is a general purpose
object oriented language. It was invented to address the up coming issues introduced
by the popularization of the World Wide Web. As from that on, software was built for
networked consumer devices, it was necessary to gain independence from the device’s
hardware architecture and operating system (OS). This independence was gained by using
a dedicated virtual machine, the Java Virtual Machine (JVM) that is responsible for
executing Java programs. A Java program comes in form of Java byte code, which is a
compressed representation of the Java source code. This byte code is packed into .class

files by the Java compiler. Besides this byte code instructions, the .class file also contains
additional information, such as references to linked classes. These references are dissolved
at runtime using so-called dynamic binding [24], [26].

Inside the JVM the Class Loader loads the Java classes into the memory that is
divided by the JVM into several sections. The program counter (PC) register stores the
address of the JVM instruction currently executed. As the JVM supports multi-threading,
each thread contains its own PC register. The JVM stack also exists on a per thread basis.
It is analogue to the C stack and contains the stack frames (also called the operand stack).
The operand stack is used for storing variables and partial results. Every instruction in
the byte code takes operands from this stack and pushes its results back on the operand
stack. Therefore, it also resembles the general purpose registers of a native CPU. For each
called method a new frame is created .The heap is shared by all JVM threads. In Java all
objects, which are allocated with the new keyword, are automatically placed in the heap
memory section of the JVM. The allocation and deallocation of the objects are managed
by the Garbage Collection (GC). Furthermore, the JVM also contains a method area, in
which the constant pool, the field data and the method data is stored. It is shared among
all threads and is analogue to the text segment of a C program. The constant pool is a
representation of the constant pool table, which stores constant values already known
at compile time (such as String variables or pre-initialized arrays). Additionally to the
Java stack there also exists a native method stack, which allows Java methods to access
compiled methods written in another language (such as C). Such method calls are realised
using a Java Native Interface (JNI) [12], [26].

Java uses a syntax similar to C++, but was designed to be more programmer friendly.
In contrast to C++, it does not support pointers as data types, does not allow multi-
inheritance and forbids operator overloading. Furthermore, only primitive data types are
passed by value. Objects are passed by reference. Another Java feature isthat the program-
mer does not have to take care of freeing allocated memory. The memory management is
left to the JVM, which automatically deallocates memory no longer referenced using the
GC [24].

CHAPTER 1. INTRODUCTION 16

Nowadays, Java is also available for smart cards in the form of Java Card . Java Card
can be seen as a subset of Java, meaning that it does not support all its features. Generally
speaking, the development of the Java Card programming language was mainly influenced
by its targeting platform’s resource restrictions. Table 1.1 depicts a range of supported
and unsupported features of JC [24].

Supported Java properties Unsupported Java properties

primitive types: byte, boolean, short, int primitive types: long, double, float

Classes: Object and Throwable Dynamic Class Loading

Exceptions Finalization

Interfaces Threads

Dynamic Object Creation Object Cloning

Generics Variable-length Argument Lists

Table 1.1: Supported and unsupported features of Java Card [18]

Figure 1.4: The two parts of the JCVM[24, p. 8]

Furthermore, Java Card also comes with its own version of the JVM, the Java Card
VM (JCVM). The JCVM is, in contrast to the JVM, divided into two separate parts, an
on-card and an off-card one. As indicated by its name, the on-card part of the JCVM is
located on the SC. It is responsible for executing the applet, which is provided by the
off-card part in form of .cap files. The cap stands for converted applet. This execution is
performed by interpreting the byte code contained in the .cap files. Furthermore, it also
takes care of the object and memory management. The off-card part, which is situated on a
workstation or desktop, converts the .class files generated by the Java compiler into .cap

files. Figure 1.4 shows the two parts of the JCVM and their interaction. The conversion tool
checks, whether the features used in the applet are supported by Java Card , performs the
dynamic class loading including class reference dissolving and static variable initialization.
Furthermore, it optimizes the encoding of the byte code instructions to make them more
memory efficient. Additionally, Java Card also supports the installation of applets after the
smart card’s distribution. This includes loading the byte code to the smart card, replacing

CHAPTER 1. INTRODUCTION 17

the references of already installed classes with the according addresses and initializing
necessary data structures. Figure 1.5 shows the installation of an applet on a distributed
smart card [24].

Figure 1.5: Installation process in JC [24, p. 9]

A very important difference between Java and Java Card is its object life-cycle. As
mentioned before, Java places class instances (objects) onto the heap. As the heap resides
in the device’s Random Access Memory (RAM), which is a volatile storage, these allocated
objects are only present as long as the device is powered. However, in Java Card a dis-
tinction is made between persistent and transient objects. The data of persistent objects
is allocated in non-volatile memory, which means that its information is preserved over
multiple applet executions. Even if a power loss occurs during the applets execution, these
objects should be accessible when the applet is run again. Additionally Java Card knows
transient objects. These objects do not differ from the life-cycle of persistent objects, but
their data is not preserved over multiple applet executions [18], [26].

1.3.4 The Java Card Open Platform System

As described in the master thesis of Andreas Lessiak, the Java Card Open Platform JCOP
was presented in 1998 as the first smart card operating system developed by the IBM BlueZ

CHAPTER 1. INTRODUCTION 18

Secure Systems team. It was steadily improved by IBM since then. NXP obtained a license
for its source code in 2007 and since then NXP develops its own version of JCOP. Figure
1.6 shows the architecture of the JCOP OS [24].

Applet

JCOP OS

HAL

PAL

SCAL

Hardware Platform

Java Card
Runtime

Environment

Java Card API

Java Card Virtual Machine

Global
Platform Card

Manager

Java

Java
C

asm

C
asm

Figure 1.6: Architecture of the JCOP OS [24]

The architecture of NXP’s JCOP basically consists of three layers. Starting from the
smart card’s hardware, the first layer is the Hardware Abstraction Layer (HAL). This HAL
serves as an interface to the hardware and maps generic functions to it. It is used by the
layer on top, the JCOP OS layer, to interact with the smart card’s physical parts and
guarantees hardware independence. It is written in assembler (asm) [24].

The JCOP OS itself comprises the Java Card Runtime Environment (JCRE), the
Java Card Virtual Machine (JCVM), the Java Card Application Programming Interface
(JCAPI) and the Global Platform Card Manager (GPCM). The JCRE is responsible for
everything related to the runtime, such as handling the applet lifetime, object sharing,
etc. The JCVM’s main task is the interpretation of the Java Card byte code. This inter-
pretation is very performance demanding. Therefore, this part of JCOP is mostly written
in asm as well. The GPCM manages the card’s life-cycle, the upload, the installation and
the deletion of applets as well as their security domains. This part is mainly written in
Java Card . The JCAPI provides the necessary functionality of the OS to the applet layer,
which is defined by the Java Card specification and is completely written in Java Card
[24].

The layer on top of the JCOP OS is the applet layer. This layer consists of the user
written applets, which are loaded on the smart card and executed by the JCOP OS. The
programs in this layer are purely written in Java Card [24].

Chapter 2

Related Work

The first step of this master thesis was to find related projects aiming on ahead-of-time
(AOT) compilation of Java. This research includes both a practical and a theoretical
approach. This chapter describes the single projects and frameworks, which have been
investigated during this phase. The first section of this chapter contains the theoretical
research part of the thesis. During this phase many papers and projects addressing the
task of compiling Java byte code to native machine representation were examined. The
most important works are described in here.

As depicted by Chih-Sheng Wang et al., AOT compilers (AOTCs) can be divided into
two classes. The standalone-mode class consists of AOTCs, which produce a standalone
executable. This means that Java programs converted with such compilers are compiled as
a whole. Therefore, no interactions with the underlying VM are needed. The second class
is the so-called mixed-mode class. AOTCs in this class only partly compile Java programs
in advance. This means that the AOT compiled classes of the program must interact with
classes interpreted or compiled during runtime, as well as with the VM [42].

The papers found during this research were classified into standalone and mixed-mode
AOTCs.

2.1 Standalone AOTCs

Standalone AOTCs compile whole applications to native machine instructions. The com-
pilers described in the following sections compile Java programs. Compared to mixed mode
AOTCs they are usually capable of performing better optimizations as every aspect of the
program is under the control of the AOTC. However, this method prohibits the interaction
with any VM present on the target device [43].

2.1.1 GCJ

When it comes to Java to native AOT-compilation, GCJ of the GNU-compiler collection is
the best known compiler front-end for this job. GCJ is able to generate Java byte code, but
also native code from Java source code. According to GCJ’s manual, it is not only capable
of compiling Java source but also byte code [9]. The compiler comes with a runtime library
called libgcj, which contains garbage collection, a byte code interpreter as well as the core
class libraries. GCJ can be used to produce pure or mixed native/interpreted applications.

19

CHAPTER 2. RELATED WORK 20

Furthermore, it is utilized in major GNU/Linux distributions to support programs such
as OpenOffice and Eclipse [44].

In an article of 2003, Per Bothner [3, p.1] describes the principle of GCJ as “radically
traditional by simply viewing Java as any other object-oriented programming language
and compiling it as such”. As GCC was already well established and used as a compiler
for multiple other programming languages such as C , C++, Fortran, Pascal, etc., GCJ
builds on GCC for providing the compilation infrastructure. Therefore, GCJ basically
represents the Java program as an AST by utilizing the same structures, which GCC uses
as well. Furthermore, it represents each Java construct as it would be represented, if it
were written in C++. GCC then takes care of the rest [3].

Therefore, GCJ is able to make use of the already existing optimization techniques of
GCC, such as loop optimization and register allocation. As the whole Java application is
considered, GCC’s optimization is capable of performing more time-consuming optimiza-
tion than JITCs. Furthermore, GCJ profits of faster startup speed. Per Bothner also states
that the code size of the created executable is not that much bigger than the size of the
corresponding byte code. This is because the class files containing the byte code do not
only contain instructions but also symbolic information, which is not necessary for ELF
executables or libraries [3].

Java supports executing code written in other languages via calling the Java Native
Interface (JNI). This JNI is also supported by GCJ. Furthermore, it also offers another
interface called the Cygnus Native Interface (CNI), which can be seen as alternative to
JNI. Instead of using a table of functions, such as in the JNI, the CNI is based on the idea
that Java is a mere subset of C++. Therefore, GCC uses the same calling conventions for
both languages. Thus the CNI does not need to transform Java calls to native functions
or vice versa [3].

In his article, Stefan Krause performed benchmarks comparing Java applications,
which were AOT-compiled, to their pendants running on a JVM and to C implemen-
tations resembling these Java applications. The AOTCs tested with these benchmarks
were GCJ and ExcelsiorJet, which is a commercial AOTC [8]. The JVMs, on which the
Java applications were run, were JET 5, JET 6, Apache Harmony’s VM, and others. Over
all, four benchmarks were performed. In one of these benchmarks, GCJ was run without
checking array bounds, nor array storage. The benchmarks show that in all four tests GCJ
was able to achieve a top four ranking [21].

GCJ is one of the most elaborate AOTCs targeting on Java to native compilation. It
is a front-end to the GNU-compiler framework. Thus, it makes use of many of its compiler
optimizations. As it is well known and a very sophisticated AOTC, it was taken into
further consideration for the practical research.

2.1.2 Toba

In their paper, Todd A. Proebsting et al. propose an AOTC called Toba capable of compil-
ing Java applications to standalone executables by translating byte code to C files, which
are then compiled using a C compiler. This generated C files are linked with the Toba
runtime-system forming an executable. The concepts of the translation process and the
generated code are well explained in their paper. The following paragraphs only summarize
the most important design choices [32].

CHAPTER 2. RELATED WORK 21

For renaming Java methods and fields to C functions and variables, Toba removes not
supported characters and adds hash-code suffixes to enable Java’s method overloading.
Thus, all the fields and methods of the different Java classes can live in the same name-
space [32].

Primitive types in Java are mapped one-to-one to C types. Objects are referenced
via pointers. Each class is translated to a special structure. This structure holds a table
of function pointers pointing to the class’ virtual methods, an indicator if the class is an
array and their static fields. Each class method table contains both the methods of the
inherited class and the methods added by the class. This mapping is shown in Figure 2.1
[32].

Array classes also have a length and a vector of elements added to their structures.
The objects are translated into structures containing a pointer to their class structure as
well as their virtual fields. Class structures are only allocated once, object structures per
class instantiation [32].

Figure 2.1: Base class to subclass mapping in Toba [32, p. 3]

To generate the C code from the Java byte code, the Toba translator turns all stack
accesses in the byte code to local variables in C . The generation of the C code for these
variables is naive. Therefore, Toba relies on the optimization of the C compiler. After the
local variables are determined, Toba generates C code for each instruction one at a time.
All unconditional direct jumps of Java become gotos to the according labels. Indirect
jumps are resolved by using a switch-case structure, which models the branches in the
Java code. The right case is chosen by setting a program counter variable [32].

Exception handling is solved by setting another local program counter variable and
a jmpbuf structure before the code section enclosed by a try-catch is executed. If a
exception is triggered, Toba solves this by using setjmp and longjmp instructions and
restoring the previously saved jmpbuf. Furthermore, given the type of exception and the
program counter, Toba checks if the current function can handle the exception. If this
is the case, the execution jumps to the appropriate exception handler. Otherwise, the
previous jmpbuf is restored, with which the longjmp was performed [32].

Garbage collection is performed using a modified version of the Boehm-Demers-Weiser
algorithm. Threads are implemented by using Solaris threads. Java’s ability, which allows
threads to suspend each other and to send asynchronous exceptions, is solved by using
UNIX’s signal mechanism to handle asynchronous events. The monitors associated with
the Java threads are modelled using a special structure in Toba consisting of a lock, a
reference counter and the identity of the thread holding the lock [32].

CHAPTER 2. RELATED WORK 22

The benchmarks used show that the generated code of Toba runs 2.6 to 4.2 times
faster than interpreted and 1.5 to 2.5 times faster than the byte code JIT-compiled by the
JVM. Figure 2.2 depicts the normalized speedup achieved by Toba compared to the other
systems [32].

Figure 2.2: Normalized speedup of Toba [32, p. 8]

With their paper, Proebsting et al. show that translating Java byte code to C and
utilizing an existing C compiler and a self written runtime environment to produce an
executable is a feasible way of running Java applications outside a JVM environment.
This process comes with no restrictions on the Java’s language capabilities. Unfortunately
they do not mention if or what optimizations their system performs during the translation
step. Therefore, it is not certain to what extend the speed-up achieved by Toba is due
to the underlying optimization techniques of the C compiler. A large performance gain is
certainly achieved by omitting the interpretation or JIT-compilation of the JVM. As the
authors did not target embedded systems, the size of the produced executables is quite
big. The size of the benchmarks which were used for measuring the speedup of Toba range
from 200 KB up to 869 KB. However, this does not include the runtime system library,
which contains 915 KB of code. The Toba framework can still be found at its developers’
webpage1, but as its maintenance stopped in the year 1998 and it only targets Java version
1.1, it was not taken into consideration for a practical review.

2.1.3 Java-through-C Compilation

With their paper, Ankush Varma and Shuvra S. Bhattacharyya propose a Java to C com-
piler producing executables small enough to be run on embedded systems. It compiles
all classes including the necessary runtime classes and comes with its own runtime envi-
ronment, which makes any JVM unnecessary. The described compiler is built on some of
Toba’s concepts, which is described in section 2.1.2, but the authors put much effort in
decreasing the large runtime Toba comes with. The compiler takes class files as its input
and converts them to C code, which is then compiled by a C compiler. To convert the

1Toba webpage:http://www.cs.arizona.edu/projects/sumatra/toba/

CHAPTER 2. RELATED WORK 23

Java byte code to an intermediate representation, the authors utilize Jimple. Based on
this intermediate representation, the C code generation is performed [39].

To achieve the compilation of an executable small enough to be deployed on an embed-
ded system, certain restrictions were defined. Therefore, the Java-through-C compiler does
not support reflection or dynamic loading, nor threads. As the executable runs on a user
process, programs, which rely on the JVM as a buffer between them and the underlying
system for security reasons, are not supported either. In their paper, the authors gave a
detailed description about what concepts and data structures were used to depict Java’s
object model, which provides a set of features describing object types and operations.
These structures are very similar to those proposed by Todd A. Proebsting et al. [32]. The
most important are summarized in the following paragraphs [39].

Similar to Toba [32], the Java-through-C converter removes characters in method
names not supported by C and uses unique hash-codes as suffixes, which allows all the
converted methods to exist in the same name-space [39].

Also the data layout is obviously strongly influenced by Toba [32]. Primitive types in
Java are mapped to their equivalents in C . Java objects are transformed into pointers
pointing to a instance structure. This structure holds all virtual fields of the object plus
a pointer to the class structure. The class structure holds all static fields of the Java
class, a class descriptor table, which contains the class-name, its size and a pointer to the
super class, a method table, which holds the function pointers, and a class variables table,
which contains all the static fields of the represented class. The method table has a special
structure allowing polymorphism and method overloading [39].

To allow for dynamically created arrays, a special object was created. Therefore, all
arrays share this class. Furthermore, native C functions were written to provide the basic
array functionality. As any class may implement multiple interfaces, polymorphic method
calls are not handled via a pointer, as it would be the case with a base class, but instead
performs a per-class lookup taking the hash-code of the interface method and returning a
pointer to the appropriate function to call [39].

Exception handling is transformed by using setjmp and longjmp instructions with an
emulated exceptional program counter, which is updated whenever a branch is executed,
containing instructions corresponding to the exception. Furthermore, also user written
native code is packed into the resulting C code. Considering the memory management,
the developers utilize Boehm-Demers-Weiser conservative garbage collection [39].

Considering code pruning of Java code, an algorithm was developed allowing the Java-
through-C compiler to omit not only whole classes, but also unused class fields and meth-
ods. As memory space is very limited in embedded systems, compiling all classes referenced
in a Java program was no option. The code pruning is based on the Soot framework, which
creates a call graph of the application, which was trimmed using a Variable Type Analysis.
The outcome of this analysis was used to compute a set of required entities, from which
a dead-code elimination was performed. The result of this elimination is an application,
which uses a minimal set of classes, methods and fields and thus, allows the application
to be translated to a C program fitting on an embedded system [39].

The results of the Java-through-C compiler were evaluated using the Embedded Caf-
feinMark and the Linpack benchmark. The Embedded CaffeinMark consists of six testcases
dedicated on measuring various aspects of Java applications. The Linpack benchmark anal-
yses and calculates linear equations and linear least-square problems. The other execution

CHAPTER 2. RELATED WORK 24

methods, the Java-through-C compiler was compared against, were JVM in interpreter-
and JIT-mode as well as the GNU gcj. The results showed that, the compiler proposed
in this paper performed much better than JVM in interpreter- or JIT-mode in all test-
cases but one. Considering the comparison to gcj, the Java-through-C compiler produced
slightly faster code in all but one test-case. This performance gain is visualized by Figure
2.3. As far as the code-size is concerned, the resulting executable produced by gcj is at
least ten times bigger than the one produced by the compiler proposed in this paper, when
considering the CaffeinMark benchmark [39]. The Java-through-C compiler shows a very
promising approach to natively compile Java for embedded systems. As it is stated in the
paper [39, p. 1 f.]:

“We show that a C -based optimized compilation strategy can meet the size
constraints inherent in embedded systems and provide performance comparable
to the best of other implementations without sacrificing Java functionality.”

Figure 2.3: Benchmark scores achieved by the single execution methods. Sieve, Loop, Logic,
String, Float and Method are single tests of Embedded CaffeineMark [39, p. 165]

Especially due to their code pruning method, a vast code-size reduction without many
restrictions concerning the functionality was achieved.

2.2 Mixed Mode AOTCs

In contrast to standalone AOTCs, the mixed mode AOTCs do not compile the whole
Java program including all referenced classes to native machine code. Instead, only certain
classes or only methods are compiled, which makes it necessary to integrate AOT-compiled
parts of the program with the interpreted/JIT-compiled part. The advantage of this is
that the resulting programs are much more memory efficient as Java byte code is more
compact in respect to native processor instructions. To maximize the effect of the AOTC,
only methods consuming a lot of the program’s runtime should be pre-compiled [42].

The following sections summarize projects, in which mixed mode AOTCs were designed
and implemented. Most of them focus on mobile devices with Android used as platform.

CHAPTER 2. RELATED WORK 25

2.2.1 Design and Optimization of a Java Ahead-of-Time Compiler

In their paper, the authors discuss an AOT compilation process, which builds upon the
conversion from Java byte code to C . This paper considers two different ways of compiling
a Java program into native machine code. The Combined Compilation and the Separate
Compilation. With the Combined Compilation, the Java program is compiled as one ex-
ecutable, which omits linking the program at runtime. The drawback of this approach is
that all the Java classes must be present at compile time as the program is already linked
in this phase. Therefore, inserting a new class into an AOT compiled program, which
already runs on an embedded system, requires the whole executable to be recompiled and
replaced. With the Separate Compilation, each class can be compiled on its own. Thus,
inserting a new class can be accomplished without replacing the other parts of the exe-
cutable. The new class is simply compiled and loaded to the system while running the
program. As the linkage is performed during runtime, the new class can be integrated
without relinking the whole executable. For this runtime linkage the authors propose an
indirection table, which includes an entry for each unresolved reference. Each of these ref-
erences is then replace by the real address of the referenced field or method, be it a static
or object field/method. Furthermore, they point out that this runtime resolution would
slow down the execution by adding a lot of access overhead. Due to the expectation that
the compiled program does not change frequently and the direct calling of methods and
fields is much faster, the authors took the Combined Compilation approach [19].

Method Call Interface: As the compiler focuses on a hybrid environment, which allows
interpreting byte code and executing it using an AOT compiled middleware, an efficient
method calling interface had to be defined. The caller function in the interpreter mode
pushes the parameters used by the callee on the caller’s operand stack. This stack is
provided to the callee via a pointer in such a way that the callee can now copy the
variables from the operand stack and assign them to its local variables. This is possible,
as the number of parameters is known before runtime. The return value is also pushed to
the caller’s operand stack. Therefore, the caller can retrieve it, after the callee returned.
The second proposed method, the standard C mode, uses the normal C function calling
convention. Hereby, the local variables of the caller are used as parameters of the callee
and a local variable of the callee is used as return variable. However, this method creates
much overhead, if an interpreted method calls an AOT compiled method, as the arguments
stored in the operand stack must be copied to the C stack or to register. The developers
chose a mixture of both method calling interfaces allowing the usage and the benefits of
both. AOTC-to-AOTC calls are solved using the standard C function call interface. The
Interpreter-to-AOTC calls provide a pointer to the operand stack. Figure 2.4 depicts a
very simple example of this mixed call interface [19].

CHAPTER 2. RELATED WORK 26

Figure 2.4: Mixed mode method call interface [19, p. 172]

Optimization: For optimization, the authors do not only rely on the optimization meth-
ods provided by the utilized gcc compiler. Additionally, java-specific optimization, such
as eliminating redundant null pointer checks and array bound check as well as method
inlining were implemented. The method inlining aims towards minimizing the method
calling overhead by inlining small static and final methods. This optimization directly
puts the methods’ bodies at the places they are invoked. Static and final methods are
perfectly suited for inlining, as the callee is known and no derived class can override them.
A further optimization is the object copy propagation. In the AOT compiled Java program
many copies between the operand stack and the local C variables are performed. A lot
of these copies are redundant and will be removed by the compiler optimization of gcc.
As the AOT compiler also includes garbage collection, a reference C variable is updated
whenever a Java object reference is copied. Such a copy statement also demands a Java
stack frame save, which is performed by copying the reference C variable onto the stack
frame. The example provided by the authors:

s0 ref=l1 ref;
frame[0]=s0 ref;

would be optimized to this piece of code:

frame[0]=l1 ref;

As gcc is not always able to remove these unnecessary statements, the authors imple-
mented their own object copy propagation, which is performed during Java byte code to
C translation [19].

Performance Evaluation: The design choices implemented by the authors were com-
pared to the proposed ones. This evaluation was performed by using the Embedded Mi-
croprocessor Benchmark Consortium (EEMBC). Using the Combined Compilation, the

CHAPTER 2. RELATED WORK 27

compiled executable is 5% faster than a program compiled with Separate Compilation.
This speed up is due to not needing an indirection table for looking up functions. For
evaluating the performance of the mixed call interface, the authors compared it to the
standard C function and the Java operand stack call interface using two different envi-
ronments. In the first environment, the full AOTC environmnent, both application and
the middleware are AOT compiled. The tests show that in this environment the standard
C function is faster than the Java operand stack call interface. However, the mixed call
interface mitigates the performance loss [19].

In the second environment, the partial AOT environment only the middleware is AOT
compiled, which means that the function parameters must be copied from the provided
operand stack. Also the return value must be pushed on this stack. As expected, the Java
operand stack outperforms the standard C function call interface in this environment. In
this scenario the mixed call interface provides similar performance as the Java operand
stack call interface does. This second performance evaluation is depicted by Figure 2.5
[19].

Figure 2.5: Performance evaluation of the standard C , the Java operand stack and the
mixed call interface in partial AOT environment [19, p. 174]

Furthermore, also the Java optimizations implemented by the authors were tested on
performance gains. To not influence the results, the compiler optimizations of gcc were
turned off. Turning on all Java optimizations, the average performance boost is 65%. From
all these optimizations, the object copy propagation proofed to be the most efficient one
providing a speed up of 25%. Figure 2.6 shows the performance gain of the single Java
optimizations achieved on the benchmark tests. Considering the compiler optimization,
the standard optimization (gcc flag -O2) made the execution four times faster. Flag -O3 (-
O2 and also function inlining) showed no performance increase, compared to the standard
optimization, at all [19].

CHAPTER 2. RELATED WORK 28

Figure 2.6: Performance gain achieved by Java optimizations: Null Check Elimination,
Bound Check Elimination and Object Copy Propagation [19, p. 174]

Conclusion: This paper shows a sophisticated approach for Java byte code to native
compilation. Due to using the implemented Java optimizations in combination with the C
compiler optimizations, the authors were able to achieve a major speed up for applications
running on embedded systems. Such optimizations should also be taken into consideration,
when looking for an appropriate framework for natively compiling Java Card applets.
Furthermore, the authors point out that AOT compiling Java byte code to native machine
instructions, by first converting it to C , is a very promising approach for embedded Java
acceleration [19].

2.2.2 Bytecode-to-C Ahead-of-Time Compilation

In this paper, the authors present a very efficient way for AOT compilation for the Dalvik
Virtual Machine (DVM) employed by Android. The motivation behind creating this com-
piler is that the existing Just-in-Time compilers (JITC) used by Android are not able
to produce well optimized machine code. Although the DVM uses dexopt for byte code
optimization by statically linking the application during installation time, the JITC is not
able to perform fast execution. The JITC, which compiles the byte code during runtime, is
trace based. This means that the compiler only compiles paths in the program code, which
are known to be hot traces. However, for producing high performance code, the traces are
too short. Also the Android RunTime (ATR), introduced with Android version 4.4, is not
able to produce high performing executable code. Although it is able to precompile appli-
cations during installation phase and thereby reducing the compilation overhead during
runtime, it only performs weak method-based optimizations. The AOTC, as proposed by
the authors, aims on converting hot methods of the pre-installed applications as well as
the framework, to C . Afterwards, these converted parts are compiled together with DVM
source code [31].

CHAPTER 2. RELATED WORK 29

The compilation and the optimization of the hot methods is performed on a server,
rather than on the target device. The flow of the compilation is as follows:

• Optimization of the byte code with dexopt

• Translation of optimized byte code to C

• Update of DVM source code with translated methods

• Compilation of DVM together with translated methods

• Installation of DVM on device

The AOT compiled methods in the Android framework classes are then marked and loaded
in the zygote process, where they are linked to the appropriate native code [31].

The zygote process creates and initializes the DVM on the device’s startup. Whenever
an application starts, a new process is forked from this zygote process and thus, creating
a new DVM. This new DVM comes with all the necessary classes and resources needed by
any application. As Android runs on a Linux kernel, Copy on Write (COW) is performed.
This means that pages are initially shared by all processes. A page is only copied to a
new memory address, when one of the processes attempts to modify it. As the Android
libraries are not writeable, this means that all zygote processes share the same copy of the
system classes and resources [29]. Furthermore, the heap is shared by all forked processes
[31].

With this approach, the AOT compiled methods do not have to be relinked with the
native code of the framework classes at runtime. However, for the application classes,
marking and linking of AOT-compiled methods must be done, whenever it is loaded by
a forked process. This means that also the memory overhead is reduced, as native code
of the AOT compiled methods of the framework classes are shared by all processes and
therefore, only instantiated once. A problem is that the DVM JITC is not invoked by the
zygote process and thus, no native code is stored in the heap memory. If during runtime
the JITC compiled the traces for the same hot methods of the framework classes, which
were already AOT-compiled, they would be allocated as duplicates in the heap. Therefore,
the authors check during the execution of the application, if a method is already AOT
compiled and call the linked native code of the method [31].

The AOTC starts after the optimization performed by the statically linkage of dexopt.
As the optimized byte code is translated, no constant pool (CP) lookup must be performed,
as the CP resolution was already performed by the dexopt. Byte codes, which access an
object-field or a virtual method via the virtual method table (VMT), also include a special
index. At this index in the CP, the field or method name is stored. With this name, the
offset in the object or in the VMT can be obtained respectively. The dexopt pre-fetches
these offsets and replaces the indices to the CP with the offsets directly in the byte code.
This optimized byte code is then translated into an intermediate representation (IR) and
a control flow graph (CFG) is produced by the AOTC. Based on the IR and the CFG the
Java specific optimizations are performed, before it is converted into the final C code [31].

In Android, the byte code is interpreted by the DVM interpreter and thereby executed.
Each Java thread is assigned an interpreter stack, which is divided into stack frames. For
each method, a new stack frame is created. Furthermore, the interpreter stack also holds

CHAPTER 2. RELATED WORK 30

virtual registers used for computation as well as a status information, which is needed for
garbage collection, method invocation and exception handling. On a method call, the stack
frame of the caller is pushed to the interpreter stack, the caller’s program counter (PC) is
saved on the caller’s frame and the arguments are passed by copying the according virtual
registers of the caller to the registers of the callee. The return value is also passed using the
virtual register of the caller and the callee. In the conversion to the C code, each virtual
register is translated using a C variable. As the DVM’s virtual registers can hold values of
different types, the used C variables depend on these types. Therefore, the authors used
structures containing elements for the basic types (int, float, double, long) and a pointer
for object reference. For example, v0 reg.i represents a local variable storing an integer.
The status information is replaced by a special environment variable, which is used for
accessing the interpreter stack (called ee) [31].

Method Call Interface: Similar to Design and Optimization of a Java Ahead-of-Time
Compiler for Embedded Systems, also the authors of this paper introduced a mixed call
interface for being able to perform both AOTC-to-AOTC as well as interpreter-to-AOT
method calls. Considering an ARM CPU, the native code of a call to a function would pass
the first four arguments using physical registers and the rest would be passed using the
native stack. For an AOT-to-AOT method call the standard C calling convention would
be suitable. However, for a interpreter-to-AOT call this would not be possible, as the
interpreter uses the interpreter stack for passing arguments. Therefore, the authors chose to
use the physical registers for passing the first four arguments and the interpreter stack for
passing all other arguments. To make the interpreter-to-AOT call possible, the interpreter
must copy the according arguments from the interpreter stack to the registers before calling
the AOT compiled function. Listing 2.1 shows, how an AOT compiled method invoked
by either an AOT compiled or an interpreted method handles the argument passing. This
produces some overhead, as memory to register copies must be performed. The AOT-
to-AOT call on the other hand is very efficient as only the physical registers are used
[31].

Listing 2.1: AOTC callee method argument copy [p.1051, 31]

int callee AOTCMethod(Env∗ ee, Object∗ a0, int a1, int a2)
{

Frame∗ frame = getFramePointer(ee);
v0 reg.ref = a0;
v1 reg.int = a1;
v2 reg.int = a2;
v3 reg.int = frame[0];
v4 reg.int = frame[1];

//Code of the method

return result;
}

A method call from an AOT compiled method can either be a call to another AOT
compiled method, which would simply invoke the native code of this method, or to a non

CHAPTER 2. RELATED WORK 31

AOT compiled method. In the latter case the method will be called by the interpreter [31].
To make the native code of the AOTC methods accessible to the DVM, it is linked to

its method table by using an AOTC table holding pointers to the native methods. These
pointers are based on the class name and the method table offset, which is obtained during
the dexopt’s static linking. The modification of the method table is done during loading
the framework class, which links the AOTC table with the method table. Furthermore,
also the AOT compiled methods of the application are linked to the DVMs of the single
application processes [31].

Optimization: The authors implemented Java optimizations such as null pointer check
elimination and copy propagation, but also method inlining similar to [19]. Furthermore,
they also implement spill optimization, which helps reducing the slots used for saving
references to possible alive objects. This optimization performs an analysis when the GC
is triggered and thus, makes sure an object is alive before saving its reference.

Performance Evaluation: To evaluate the advantages of the AOTC, the authors used
an analysis tool to decide on hot methods, which should be compiled. The benchmarks
used for evaluating the performance increase of the AOT compilation show that it is able
to produce much better optimized native code than the JIT compilation. The benchmarks
used for the evaluation are the EEMBC, the AnTuTu-UI, the Quadrant-CPU,the Linpack-
single, the Linpack-multi, and the BenchmarkPI benchmark. The most significant speedup
was achieved by using BenchmarkPI, which spends most of its runtime in one single hot
method, which is therefore compiled to native code. The BenchmarkPI is executed six
times faster using AOT compilation than using the standard DVM JIT compilation. Figure
2.7 shows the speedup achieved by the AOT compilation compared to the JIT compilation
in the single benchmarks. Considering the Java optimizations, the method inlining proofed
to have the heaviest impact on the performance, with a speed up of 21% for both static
and virtual method inlining. Static method inlining alone only gave a performance gain of
12%. This performance test was performed using the tests of the EEMBC benchmark. The
optimization comparison is depicted by Figure 2.8. Comparing the DVM AOT compilation
with the compilation performed by Android ’s ART showed that the compiler proposed by
the authors still gives an performance boost of 44% on the average [31].

CHAPTER 2. RELATED WORK 32

Figure 2.7: Speedup achieved by DVM with AOT compilation compared to DVM with
JIT compilation measured by multiple benchmarks [31, p. 1052]

Figure 2.8: Superiority of virtual and static method inlining over static method inlining.
Testcases come from the EEMBC benchmark [31, p. 1053]

Conclusion: This paper shows a way of performing AOT compilation on Android and
gives a good insight into problems concerning the interaction between the native compiled
methods and the DVM. Especially the calling interface for interpreter-to-AOT, which
makes use of the interpreter stack and the virtual registers to achieve the mapping for the
physical registers and the native stack of the ARM CPU, is a useful part also for JavaCard
to native compilation. On top of that, this paper emphasises the importance of the Java
specific optimizations for enhancing the performance even further.

2.2.3 TurboJ

In this paper, the authors describe their design and implementation of an AOTC compiling
Java byte code to native code interacting with an standard JVM and therefore, allowing a
mixed mode execution of interpreted/JIT compiled and AOT compiled classes. As TurboJ
mainly focuses on embedded systems, its main targets are closed applications. This means

CHAPTER 2. RELATED WORK 33

that all necessary classes of the application are already present at compile time. However,
the compiler is able to compile applications, which dynamically load classes from outside
(such as the internet) during runtime, as well. Furthermore, the embedded environment
comes with space and performance constraints both targeted by TurboJ [43].

The limited memory space of an embedded system restricts the amount of classes,
which can be AOT compiled. This method prohibits TurboJ of optimizing the Java appli-
cation to the same extend as standalone AOTCs. However, this means that the compilation
framework does not need to take care of the thread management and the GC, but instead
relies on the VM for performing these tasks as well as object management, class/library
loading and execution of the byte code not compiled in advance. A main goal of TurboJ is,
to be compliant with off-the-shelf VMs. The AOTC converts the Java classes into C files
and so called interlude files, which have a class file format. The C files are then compiled to
native machine instructions using a native C compiler. The interludes are used to call the
natively compiled methods from the JVM. The JVM provides entry points to its services
for the compiled classes [43].

In TurboJ, there are three different types of calling conventions between methods. An
AOT-compiled method calling an AOT-compiled method uses the standard calling conven-
tion of C . An interpreted/JIT-compiled method calling an AOT-compiled method makes
use of the interludes. An AOT-compiled method calling an interpreted/JIT-compiled one
uses special entry points in the VM. An interlude is a class file containing the method dec-
larations of the AOT compiled class with a special attribute added to them. The authors
then made use of the invoker attribute provided by the JVM for each method of a class.
A TurboJ initialization routine sets the attributes to a special TurboJ invoker, for each
interlude. Figure 2.9 visualizes TurboJ’s single components and how they interact during
compile- and runtime [43].

Method Call Interface: For applying the correct calling convention, the caller must
know if the callee is AOT compiled or not. If this information is not known to the caller,
it calls a specific routine which asks the JVM to check the callee’s method’s state. The
VM knows the state as it has all the interludes loaded. After obtaining the information,
this routine converts the method invocation accordingly and saves the method’s state for
future checks [43].

CHAPTER 2. RELATED WORK 34

Figure 2.9: TurboJ’s components and their interactions during compile- and runtime [43,
p. 120]

Optimization: On a whole-program-basis, TurboJ tries to compute the entirety of the
input classes to gather global information. Therefore, it follows all dependencies including
external classes and adds them to the input set. In the case of a closed application, all
referenced classes are available for creating the native code and interludes. If the appli-
cation is not closed, TurboJ makes certain conservative assumptions about the missing
classes. Using this global information, TurboJ performs a range of optimizations. It tries
to identify, if a method is final, which means that it is not overridden by a subclass. If
this is the case, a static method dispatch is used instead of a virtual one. Furthermore,
already at this stage, the AOTC determines what methods to call using the standard C
calling convention, as it knows which methods are AOT compiled and which not. Also
inlining certain methods and determining field offsets can be performed on basis of the
global information [43].

On a class-basis, the AOTC makes use of the field offsets collected on a whole-program-
basis. Usually field references, which are contained in the Java byte code, are converted
to offsets during the constant pool resolution by the JVM. This constant pool, in which
the field offsets are stored, is then used by the getfield quick instruction, which is a
optimization of the getfield instruction. The getfield instruction uses an index into
the constant pool identifying the constant pool item, which is then resolved for retrieving
the field width and offset. The getfield quick instruction directly uses the field offsets,
which are already determined by TurboJ. For the field offsets, which cannot be determined
up front, the AOTC generates routines performed at both class and method initialization,
which try to compute as much field offsets as possible. This field offset resolution “reaps
the same resolve once benefit as the getfield quick optimization” [43, p.124].

On a method-basis, TurboJ avoids the Java-Stack simulation by transforming the byte
code instructions into many small expression trees. On basis of these trees, the TurboJ
performs the conversion to the native C files. The register allocation is left to the C com-
piler. Thus, the simulation of a Java-Stack using local variables can be avoided in most
cases. Similar to the other described projects also the developers of TurboJ made use of
the tighter semantics of the Java byte code for performing specific Java optimizations,
such as elimination of redundant null pointer checks [19] or the optimization of field ac-

CHAPTER 2. RELATED WORK 35

cesses. Considering field access, the developers of TurboJ made use of the Java byte code
to optimize the accesses of fields within an object. TurboJ converts a field access of a
object to an access in an array using the according index. Thus, this.count becomes
this[count offset] in the resulting C file. In contrast to the C compiler, TurboJ knows
that “different fields in different objects cannot reference the same memory location” [43,
p.125]. Therefore, considering accesses of fields within objects, TurboJ optimizes the re-
sulting C code in such a way that it stores accesses to arrays with constant indexes in
separate local variables. This is especially useful, when using object fields as loop invari-
ants. This optimization prohibits unnecessary accesses into the array using the constant
index [43].

Performance Evaluation: Concluding, the authors of the paper compare AOT-compiled
applications with their JIT-compiled and interpreted versions. Using CaffeineMark 3.0
benchmark, they show that the applications compiled with TurboJ perform five times
better than the JIT-compiled and 32 times better than their interpreted versions. This
great impact on the performance is largely traced back to the shape of the resulting C
code. As TurboJ generates code with “sufficient nesting depth” [43, p. 128], the used C
compiler is able to optimize the C code by performing the register allocation [43].

Conclusion: Although the paper was published in the year 1998, it provides a good
overview of obstacles, which need to be tackled when designing a Java byte code to native
AOTC. However, in comparison to the other papers, the authors of TurboJ do not pro-
vide detailed information about how exactly they performed a call from an AOT-compiled
method to an interpreted/JIT-compiled one and vice-versa. They only state having imple-
mented a TurboJ specific routine managing these calls. It would have been very interesting
to get a deeper look into this process. Furthermore, they did not really go into detail about
the performed optimizations, besides the optimization of field accesses. Also, in which way
they use the JVM for GC and object management is not described in detail. Unfortunately,
the project’s webpage http://www.opengroup.org/openitsol/turboj.html is no longer
available [38].

2.2.4 A Method-Based Ahead-of-Time Compiler for Android

In their paper, the authors introduce an AOTC called Icing, which focuses on the compi-
lation of Java classes in Android applications. Icing is a byte code to C converter, which
takes DEX byte codes as input and converts them to C code, which is then compiled
using GCC as C compiler. This method is very similar to the one proposed by Hyeong-
Seok Oh et al. [31]. However, instead of using the interpreter stack for passing arguments
when calling an AOT-compiled method from an interpreted one, Icing makes use of the
Java Native Interface (JNI) library to call the AOT-compiled methods through the DVM.
The goal of the developers was to implement an AOTC, which is capable of reducing the
compilation overhead of the DVM and to perform more aggressive optimizations. As the
resulting native code should execute in cooperation with the DVM, a further goal of Icing
is to avoid compilation of core-library methods [42].

CHAPTER 2. RELATED WORK 36

Hot Method Detection: The conversion process of Icing starts by profiling the meth-
ods of the Android application. The result of this first step is the detection of hot methods,
which means that only methods, which take up a significant amount of the runtime, are
proposed as candidates for the AOT-compilation. Afterwards, the method’s byte codes are
compiled to efficient native instructions. The interaction between the DVM and the native
methods is performed by utilizing a bridge library. To further enhance the performance,
a range of optimizations were implemented. These steps are described by the authors in
much detail. The following paragraphs depict the most important information about the
compilation process of Icing [42].

For profiling the methods in an Android application, Icing combines already existing
tools for measuring the amount of execution time each method consumes during an proba-
ble application usage. To simulate this usage of the application, potential user behaviours
are generated up front. Based on this information Icing tries to detect hot methods. For
each candidate method, Icing runs through its execution flow and calculates the execution
time spent in user-defined methods. The ratio between the runtime spent in user-defined
methods and the total execution time is determined. If it exceeds a predefined threshold,
the candidate method is put into an AOT-list. Furthermore, each of the hot methods in
this AOT-list is examined on its JNI calls. As these kind of calls are very time consum-
ing, Icing tries to avoid converting methods with frequent JNI invocations. To accomplish
this, the ratio between the method execution time and number of these invocations is
determined and again compared to a predefined threshold. If it exceeds this threshold, the
method is removed from the AOT-list. Only the methods contained in the AOT-list are
compiled by Icing [42].

The conversion process of the byte code starts by disassembling the DEX files to
get the necessary information for further generating the C code. In this phase, the JNI
headers are generated for bridging the DVM and the native code as well. Furthermore, the
native methods are chained together in such a way that as many native calls as possible
are produced. This helps in decreasing the overhead of the JNI calls. This is done by
modifying the indirect-jump instruction in such a way that the native code of the callee
is directly jumped to. This short-cut can only be performed, if the callee is marked for
precompilation as well. Therefore, all user-defined methods called from the methods in the
AOT-list are converted [42].

Similar to the AOTC proposed by Hyeong-Seok Oh et al., Icing makes use of a standard
C compiler [31]. Therefore, the compilation part of Icing only consists of converting the
Java byte code to C code. One major part of this process is to reflect the object oriented
features of Java, such as object creation, static/virtual method invocation, etc. These
features were implemented in the bridge library as part of the JNI. Another issue that
had to be tackled by the developers, was the method overloading. In Icing this is solved
by giving each method an unique name by combining the package, the class and the
method name in Java to create a corresponding function name in C . The third obstacle
to overcome, when generating the C code, was to map the virtual registers in the DEX
byte code to C variables. As virtual registers are basically typeless, Icing maps them using
a union of eight basic variable types and a void pointer. Thus, the assignment of a virtual
register to, e.g., an integer and an object in the byte code can be mapped by assigning
the integer variable and the void pointer to the union in C . This is depicted by Listing
2.2 [42].

CHAPTER 2. RELATED WORK 37

Listing 2.2: Union representing a virtual register [p.19, 42]

typedef union jValue{
jboolean z;
jbyte b;
jchar c;
jshort s;
jint i;
jlong j;
jfloat f;
jdouble d;
void∗ l;

} JValue;

Method Call Interface: As Icing uses the JNI interface to call the native compiled
methods, the performance suffers from the overhead of this mechanism. The call-out mech-
anism is used to call a native function from the VM and needs argument passing, native
initialization and returning. Dynamic inlining can be used to reduce this overhead. The
call-back mechanism is used to access resources of the VM from a native function. This
operation produces more overhead than the call-out mechanism. This overhead contains
resolving the offset or the index into the constant pool, before performing the context. Fur-
thermore, also referencing the JNI environment variable may produce additional overhead.
Icing especially tackles the overhead produced by the call-back procedure by implementing
three optimizations: the AOT resolution, caching and method-cloning [42].

Optimizations: As already described in previous papers, instructions such as method
invocations and field accesses use references in symbolic form. These references are usually
converted to indexes by the constant pool resolution during runtime. These indexes point
into the respective constant pool. To reduce this overhead, this resolution is performed
ahead of time. Therefore, the offsets of the variables in their respective constant pools
are already available at execution time. This method is used to speed up the call-back
operations in the generated native code [42].

However, this static constant pool resolution is not applicable for static field accesses
and static method invocations. The standard way of a JNI to access static fields or methods
is to obtain the class name and then to compare the field/method name to obtain its ID.
Icing caches this ID using a hashtable to speed up future static field accesses and method
invocations [42].

Another optimization implemented by the developers is the so called method cloning.
As already mentioned, Icing tries to avoid JNI calls by making the chain of AOT-compiled
methods as long as possible. Furthermore, calling an native method from an native method
is done by using direct jumps, instead of using the JNI interface. However, also calling a
native method from a non-native method creates call-out overhead. This overhead can be
omitted by keeping an AOT-compiled version and a byte code version of the same method.
Thus, a native method can call the AOT-compiled version and a not natively compiled
method can call the byte code version of the method. This enhances the performances
but consumes more memory. Therefore, this optimization can only be used for specific
methods [42].

CHAPTER 2. RELATED WORK 38

(a) Score of CaffeineMark 3.0 using Icing (b) BenchmarkPi comparing Icing to JIT

Figure 2.10: Icing’s performance evaluated with CaffeineMark 3.0 and BenchmarkPi [42,
p.21]

Performance Evaluation: The performance of Icing was measured by using a range
of open source benchmarks. Several version were compared. A version, in which the DEX
byte code was interpreted, one, in which it was JIT-compiled by the DVM, one, in which
the interpretation of the byte code was combined with the AOT-compilation of Icing, and
one, in which the JIT-compilation was combined with Icing. The benchmarks show that
for most tests Icing in combination with interpretation or JIT-compilation achieves a ma-
jor speedup compared to normal execution, even without the removal of hot-methods with
too many invocations. Running the Icing version of the CaffeineMark benchmark with hot
method identification performed 2.83 times better compared to the JIT-compiled version.
This is depicted by Figure 2.10a The Icing version of BenchmarkPI was enhanced by a
factor of 2.1 compared to the JIT-compiled version, which is shown by Figure 2.10b. How-
ever, one testcase shows worse results when applying Icing. This is due to the significant
overhead produced by the JNI calls [42].

Especially interesting results are shown by the comparison of Icing to GCJ. As already
discussed in section 2.1.1, GCJ is a standalone AOTC compiling Java programs to exe-
cutables. As the Java programs targeted by GCJ are executed using a JVM, but Icing
targets Android applications executed by the DVM, the authors chose the CaffeineMark
3.0 benchmark, which was developed for both JVM and DVM. The comparison focused on
both performance and code size. Particularly the resulting code sizes of the AOT-compiled
benchmarks show major differences between Icing and GCJ. Using Icing, the code size in-
creased from 17KB without optimization to 69KB with optimization. However, GCJ blew
up the codes size from 13KB without optimization to 44.1MB with optimization. Further-
more, the authors showed that the performance of GCJ’s AOT-compiled version of the
benchmark was in some cases even worse than when using Icing [42].

Conclusion: Icing shows that using the JNI interface for integrating AOT-compiled
methods into an Android application executed by the DVM is practically usable. Al-
though this invocation method creates considerable overhead, it does not influence the
performance gains achieved by the AOT-compilation severely, when performing a cost-

CHAPTER 2. RELATED WORK 39

model to mark the methods suitable for precompilation. In particular, the comparison of
Icing with GCJ emphasizes the advantage of a mixed-mode to a standalone AOTC. As
in the domain of embedded systems memory is very limited, this advantage is even more
crucial.

2.2.5 A Selective Ahead-Of-Time Compiler on Android Device

In their paper, Yeong-Kyu Lim et al. describe the design and the implementation of an
AOTC, which make use of the already implemented JITC of the DVM. AOTC and JITC
both transform byte code to native processor instructions with the difference that AOTC
compiles the byte code before it is being executed, but JITC compiles the code during
execution. The DVM utilizes a trace-based JITC. At first, the authors extended this trace-
based JITC to a method-based one. This version still suffered from the warming-up delay,
until a method is identified as hot. This disadvantage was overcome by the final AOTC, as
it compiles the identified hot methods in advance. In contrast to the method-based AOTC
developed by Chih-Sheng Wang et al. [42] described in section 2.2.4, the selective AOTC
does not convert the Java byte code to C before compiling it to machine code using GCC,
but instead directly compiles it. The final AOTC consists of three major components: the
Hot Method Profiler, the Static Selective Ahead-Of-Time Compiler, which applies certain
optimizations and the Dynamic Loading and Linking Framework. These components are
described in the following paragraphs [25].

The Hot Method Profiler detects hot methods in application or the Android core frame-
work code by tracing the execution frequency of all methods of a process. It returns a list
of methods, which exceed a predefined threshold of executions [25].

The Static Selective Ahead-Of-Time Compiler builds upon the already existing JITC
of the DVM, which provides both method- and trace-based compilation techniques. The
AOTC uses the method-based compilation and compiles the hot methods provided by the
Hot Method Profiler. As the JITC is optimized for trace-based compilation, the initial
method-based AOTC suffered from branch range and data access range limitation. There-
fore, the compiler was modified in such a way that it generates unconditional instead of
conditional branch instructions supporting a greater range of offset. Furthermore, it rear-
ranges the placement of the data. In its original form the compiler placed the data at the
end of the code section. As the data access instructions are limited to an offset 1020 byte
from the program counter (PC) and the compiled methods might exceed this offset, the
AOTC rearranged the data placement to certain safe-spots within the code.

Optimization: Furthermore the developers implemented several optimizations, such as
the method inlining, array optimization and loop optimization. For the loop optimization
the developers implemented process which moves the loop invariant. Thus, the non chang-
ing computations performed inside the loop are recognised and moved outside the loop’s
scope. The array optimization is a redundancy check performed to avoid unnecessary null
pointer and array-bound checks. The AOT gets the original DEX file containing the byte
codes plus the list of hot methods as input, compiles the byte code of these methods to
platform dependent assembly and adds this assembly to the end of the DEX file. The
output is then an optimized DEX (ODEX) file containing both byte- and assembly code
[25].

CHAPTER 2. RELATED WORK 40

(a) Speed improvement of BenchmarkPi (b) Performance increase of CaffeineMark

Figure 2.11: Selective AOTC’s speedup measured with CaffeineMark and BenchmarkPi
[25, p.5f]

The Dynamic Loading and Linking Framework is the runtime environment, which
makes sure that the AOT compiled code provided by the ODEX file is cached and executed.
Therefore, the linking framework resolves the addresses to the pre-compiled methods and
handles the mode-change among AOT compiled, JIT compiled and interpreted code. The
byte code which is not AOT compiled is interpreted or JIT compiled [25].

Performance Evaluation: The speedup of the Static Selective Ahead-Of-Time Com-
piler was measured using the CaffeineMark and the BenchmarkPI benchmarks, the same
benchmarks Chih-Sheng Wang et al. were using to evaluate Icing as well [42]. Using the
selective AOTC, BenchmarkPI runs 13% faster in average. The CaffeineMark benchmark
performs 5.3% better in average compared to the original version. The performance in-
crease measured by the CaffeineMark benchmark is depicted by Figure 2.11b and the
speedup of the BenchmarkPI is shown by Figure 2.11a [25].

Conclusion: The selective AOTC described in this paper shows a very interesting way
on how to enhance the performance of Android applications on the basis of the already
implemented JITC of the DVM. Yeong-Kyu Lim et al. state that their selective AOTC
produces even more efficient code than Icing [25].

2.3 Practical Research

The first part of this thesis was to find a suitable compiler framework to generate an
executable from a Java application. As already seen during the literature research, there
are different approaches on how to natively compile Java applications. Therefore, both
AOTCs, but also converters transforming Java byte code to other programming languages
such as C , on which already existing compilers can be used, were taken into consideration.
Frameworks translating Java source code to any other programming language were delib-
erately ignored, as compiling Java source code instead of byte code instructions was no
option. The goal was to find a converter/compiler with such a reasonable complexity that
it would feasible to adapt it to convert/compile Java Card applications or modules and to

CHAPTER 2. RELATED WORK 41

execute them on an NXP platform. The following sections describe the single frameworks
that were tried out practically.

2.3.1 LLVM Java Frontend

The first compiler fronted, which was taken into consideration was the LLVM Java Fron-
tend. As its name suggests, it is a frontend for the LLVM compiler framework. According
to its documentation, it translates Java byte code to LLVM byte code and uses the LLVM
backend to perform further compilation. The byte code translation is performed in two
steps. In the first one, the Java basic blocks are transformed to LLVM basic blocks. A
basic block is a line of code sequence without any branches leading into it except the
entry point and no branches leaving it except one exit branch [13]. Furthermore, the Java
operand stack is modelled. Although primitive variable types, such as long and double,
take up two slots in the Java operand stack respectively, the developers decided to only
use one slot in the model. The operand stack is saved by the compiler at the end of each
basic block. For compiling the Java methods, the compiler runs through the list of the
basic blocks and sets the final operand stack of each block as initial information for its
successor [27].

The developers of the LLVM Java Frontend claim that their compiler is able to han-
dle all Java functionality and only lacks exception handling and garbage collection. The
compiler uses the GNU Class Path, which is a free and clean implementation of the stan-
dard core class libraries for compilers and runtime environments for Java. As the LLVM
Java Frontend is outdated (the last commit is from 07-29-2007), it was not possible to
build it with the newest version of LLVM in the trunk (3.9), because a range of class
files were missing. The latest LLVM version containing these class files was built (ver-
sion 2.6). However, building the LLVM Java Frontend with this version lead to the error
messages, which are depicted by listing 2.3. The missing types were removed from LLVM
with version 1.9. As the LLVM Java Frontend is not build-able using a current version of
LLVM and furthermore lacks the support of GC as well as exception handling it was not
considered any further.

Listing 2.3: Error messages building LLVM Java Frontend with LLVM version 2.6

Compiler.cpp: ConstantSInt has not been declared

Compiler.cpp: IntTy is not a member of llvm::Type

Compiler.cpp: ConstantUInt has not been declared

Compiler.cpp: UByteTy is not a member of llvm::Type

2.3.2 GCJ

As already described in section 2.1.1, GCJ is one of the oldest and most sophisticated Java
to native AOTCs. However, a very simple HelloWorld test program depicted in Listing
2.4, which was compiled using GCJ, produced an executable with a size of 15.8 KB. This
has to be considered as a large file. A main goal of the thesis is to find a tool modifiable
to compile JavaCard applications natively. Furthermore, the pre-compiled code has to be
usable from within the JCOP OS. For this purpose, a range of changes would have to be
performed on GCJ. As performing modifications on its compilation process would take an

CHAPTER 2. RELATED WORK 42

expert knowledge of its internal operations, this approach was not considered feasible for
creating a compiler for an NXP platform and JCOP in the first place, even though GCJ
is target-able on embedded systems as well [36].

Listing 2.4: HelloWorld test program

class HelloWorld {
public static void main(String args[]) throws Exception
{

System.out.println(" *** bip bip *****");
}

}

2.3.3 VMKit

The goal of the developers of the VMKit was to create an easy to use common substrate for
creating and developing high-level Managed Runtime Environments (MRE). They created
this development kit, as building a MRE such as the JVM is a very cumbersome task when
considering all features, such as GC and JIT compilation. The VMKit provides a JITC,
a memory manager and a thread manager. For the JIT-compilation VMKit makes use of
the LLVM compiler and its intermediate representation. The LLVM compiler was chosen,
as it does not impose any object model, type system or call semantics. Furthermore, it is
able to generate very efficient code [10].

With this substrate, the developers were able to implement a high level MRE similar to
JVM. This MRE is called J3. Besides this JITC, the J3 also provides an AOTC for Java.
The basic idea was to make use of this AOTC and try to compile a simple Java program
to native code. If this first test was successful, we would proceed with customizing VMKit
to our needs [10].

The first step was to download the latest version of VMKit 2. This version builds
with LLVM version 3.3. After building VMKit, the JIT-compilation was tried in a first
attempt to verify that VMKit works as described. Therefore, the same HelloWorld test
program as in section 2.3.2 was translated to Java byte code using the javac compiler. To
be compatible with the latest version of VMKit, version 1.6 of Java was used. Afterwards,
the emitted .class file was used as input to the j3 VM. As this test was successful, the
AOTC was tried. This compiler comes in form of the llcj program. A first attempt to
AOT-compile the test program with the llcj failed. According to a mail conversation
involving a developer of VMKit 3, the llcj is deprecated and not maintained any longer.
The developer suggested invoking the programs, which would have been invoked by the
llcj by hand. Therefore, the compilation scheme would be using the javac to create the
Java byte code from the test program. This byte code would then be fed to the vmjc

program resulting in a LLVM byte code representation of the test program. The LLVM
byte code would then be linked using the llc linker to generate a native executable.
However, this procedure lead to linking errors in the last step. The solutions to the arising
problems mentioned by the VMKit developer during the e-mail conversation2 were applied.
Furthermore, the extra branch (aot) created by the developers of VMKit to solve the

2SVN repository of VMKit: http://llvm.org/svn/llvm-project/vmkit/trunk/
3See [LLVMdev] VMKit is retired (but you can help if you want!) [28]

CHAPTER 2. RELATED WORK 43

issues in the AOT-compilation was checked out and built. However, using this version of
the VMKit did not solve the errors. Also the example mentioned in the latest commit
message, which is depicted by Figure 2.12, did not AOT-compile the Java test program.
The latest commit messages in the SVN repository shows a TODO list which does not
indicate that the AOT-compilation process was fixed by the developers.

Figure 2.12: Latest commit message in aot branch

Although the latest changes made to the project’s aot are quite recent (September
2014), this version does not provide a stable AOT-compilation as well. Therefore, this
project was not considered any further, as the effort of bringing the AOT-compilation to
a usable state was considered too high for utilizing it as a basis for further modifications
targeting embedded systems.

2.3.4 RoboVM

RoboVM is a commercial framework for implementing truly native applications for both
Apple’s iOS as well as Android. Of this framework, the IDE can be purchased. However,
the underlying software is free to use. This framework also provides an AOTC. The com-
piler was tried using the HelloWorld test program [34]. The pre-built version of RoboVM
can be downloaded from the maven repository4. After adding the needed libraries and
the HelloWorld.class file to the robovm-dist-compiler-1.8.0.jar, the program was
invoked by invoking it with the following command:

$ java -jar robovm-dist-compiler-1.8.0.jar -cp . -home .. HelloWorld

This triggers the compilation of the given .class file. As soon as the output folder
(HelloWorld) is created, this operation can be aborted. The result of this compilation
process is an executable HelloWorld program with a size of 10.7 MB. Such an executable
would be too big to be put on an NXP platform, on which already a JCOP OS is deployed.
Thus, and because RoboVM aims on iOS and Android development, it was not considered
as basis for a JavaCard compiler framework.

2.3.5 XMLVM

The XMLVM project is a flexible cross compilation framework, which aims at transform-
ing byte code instructions of two widely used VMs, the JVM and the Common Language
Runtime (CLR), which is part of the .NET framework. The main goal of this framework is
to translate Android projects to iOS applications and vice versa. Therefore, it is capable

4http://mvnrepository.com/artifact/org.robovm/robovm-dist-compiler/1.8.0

CHAPTER 2. RELATED WORK 44

of transforming byte code in both directions. Java byte code instructions can be translated
to CLR byte code instructions as well as CLR byte code instructions to Java byte code
instructions. To achieve this, the XMLVM project translates the single byte code instruc-
tions into XML tags and utilizes XSL stylesheets for cross-compilation. The first step of
the compilation process is transforming the given byte code into the according XML tags.
Java byte code is transformed to XMLVMJVM tags and CLR byte code is transformed to
XMLVMCLR tags. To compile XMLVMCLR to XMLVMJVM, a special intermediate data
flow analysis format, XMLVMDFA is used. Figure 2.13 depicts the possibilities of cross
compilation with XMLVM [46].

The XMLVMJVM format can be seen as an internal IR forming the connection between
XMLVM ’s frontend and backend, as it allows the translation from the byte code repre-
sentation to various other programming languages, but also to XMLVMCLR. Not depicted
by Figure 2.13 is the possibility to cross compile Java byte code to C files [46].

Figure 2.13: Cross-compilation flow of XMLVM framework [46]

Additionally to the byte code translation, the XMLVM framework offers a range of
compatibility libraries. With these libraries, the framework allows translation from ,e.g.,
C# desktop applications using Windows Forms graphical interface to a Java application
by utilizing these compatibility libraries written in the Java [46].

The XMLVM framework can be used with a range of commands selecting the target
to which a provided program should be translated. The framework recognizes the pro-
gramming language of the input files by investigating the file’ suffices and translates them

CHAPTER 2. RELATED WORK 45

to the chosen target. Of these available targets, the posix target is the most interesting
one for testing XMLVM ’s capability of translating Java applications to an executable C
program. XMLVM ’s documentation describes the posix target as follows:

“posix: The input files are cross-compiled to a self-contained C program that includes
all dependent classes such as java.lang.System.” [45].

As it was uncertain how the XMLVM framework would translate a Java program, a
very simple Java test program was written containing only one main function, in which
two int variables are added. The test class was added to a specific xmlvm.test package
and put into a corresponding folder structure. The XMLVM framework was then called
with the following command:

$ xmlvm.jar --in=./in/xmlvm/test/ --out=./out --target=posix

The --in option must be targeting the folder, in which the Java class files to be
translated are located. Therefore, the Java test program has to be compiled to byte code
before. This process has the effect that in the folder targeted by the --out option a src

and a dist folder is created. In the dist folder only a makefile and an empty build folder
is created. In the src folder, all the Java class files, on which the test program depends,
are transformed to C header and source files. Furthermore, the XMLVM related source
files are put into this folder. To verify, if the translated code would not only build, but
also execute, a simple printf() has been added to the translated main function, which
is located in the xmlvm test HelloWorld.c file, to print out the following char sequence:
"Hello world!\n".

Before being able to build the translated project, the Boehm-Demers-Weiser conserva-
tive garbage collector (bdwgc) has to be downloaded and built. After this last prerequisite,
the translated C program can be built simply by using the makefile. This leads to the C
files being compiled and linked to create an executable called out. Running this executable
produces the output depicted by Listing 2.5 on the console.

Listing 2.5: Console output of executable compiled from XMLVM translated HelloWorld

test program

out/dist/build/$./out

out/dist/build/$ this is a test!

out/dist/build/$

The created executable has a size of 12.8 MB. The huge size of the executable is largely
caused by converting the Java runtime and all the classes from multiple libraries (such as
jaxp.jar, harmony6-build.jar, etc.) it depends on.

Although the executable’s size is the largest compared to the other projects, with
which a compilation of a Java test program was achieved, the way in which XMLVM
translates the single Java class files is very transparent. It is clear what Java class files
were added to the translation process and therefore, it was assumed that downsizing
the amount of translated Java classes would be achievable. Furthermore, a look at the
source code of the framework revealed a well structured design as well as a detailed in-line
documentation. Because of these factors, the XMLVM framework was chosen as basis for
further modifications to adapt the translated code to be executable on an NXP platform.

CHAPTER 2. RELATED WORK 46

2.4 Conclusion

Both literature and practical research yielded a range of interesting projects that gave
certain inputs to both the design and the implementation of the Java Card to ARM
framework. Unfortunately, most of the open source projects examined during the practical
research did not fulfil their developers’ promises. Only the XMLVM and the RoboVM
project were able to compile a small Java project to an executable on x86 out of the
box. As the RoboVM was not build-able from its source code, the XMLVM project was
considered as a basis for further adaptations to natively compile a Java test program and
later a JavaCard application for ARM. This decision was largely influenced by XMLVM ’s
well structured and documented source code as well as its transparency considering what
Java classes are translated and further compiled and linked to the final executable.

Chapter 3

Design of the Framework

The process for creating the JCF on basis of the XMLVM project is divided in several
steps. The final goal of this modification process is to develop a JCF capable of compiling
a Java Card applet along with the Java Card framework, natively utilizing the JCOP
HAL layer and parts of the JCOP OS written in Java Card . These steps are described in
detail in section 3.2

The individual steps of the creation process of the JCF aim at different hardware
platforms. These platforms are described in detail in section 3.1.

It must be pointed out that the JCF is meant as a proof of concept to show that it
is possible to AOT-compile a Java Card applet for an NXP platform and link, as well as
execute it utilizing the already existing infrastructure of JCOP. Therefore, the JCF may
not be seen as a complete framework. Furthermore, the JCF lacks GC and other features
which would be necessary to develop the framework into a readily shippable product. As
the XMLVM project is a standalone AOTC, the JCF is also designed to be an standalone
compiler. This implies that the final JCF is not designed to interpret or JIT-compile
Java Card byte code or to integrate partially AOT-compiled code into interpreted byte
code. Therefore, interaction with a JCVM is not possible with the current state of the
framework.

3.1 Hardware Setup

The single steps of the creation process of the JCF aim at different hardware platforms.
These platforms are:

• Desktop computer

– The desktop computer used as hardware platform runs Ubuntu 14.04 as OS in
32 bit version. This desktop computer is equipped with an Intel i5 processor
and 4 Gbytes of RAM

• STM32F407VG board

– The hardware platform used for intermediate evaluation is the STM32F407VG
[35] board. This board is equipped with the following hardware:

∗ Core: ARM R© 32-bit ARM R© -M4 CPU

47

CHAPTER 3. DESIGN OF THE FRAMEWORK 48

∗ RAM Memory: 192 Kbytes

∗ FLASH Memory: 1 Mbyte

∗ Debug Mode: Serial wire debug (SWD) & JTAG interfaces

∗ Communication Interface: Up to 4 USARTs/2 UARTs (10.5 Mbit/s, ISO
7816 interface, LIN, IrDA, modem control)

• A current Smart Card Chip of NXP Semiconductors Austria GmbH

– This is the final hardware platform on which the natively compiled Java Card
applet will run

∗ Core: ARM R© 32-bit ARM R© SC300 CPU

∗ RAM Memory: 52 Kbytes

∗ FLASH Memory: 2 Mbyte

∗ Debug Mode: ULINK2/ME Cortex Debugger

∗ Communication Interface:DMA controller supporting UART

3.2 Framework Modification steps

The adaptation of the XMLVM project consists of four steps. Each step in this chain
can be seen as prerequisite of its successor step. These adaptations aim at creating a
framework capable of compiling a Java Card applet on an NXP platform. The single steps
are described in the following sections.

3.2.1 XMLVM Capabilities and Minimization of used Java Runtime

The modification process starts with examining the XMLVM project’s capabilities of com-
piling a Java program. Preceding this step, the conversion tool is already tested on basic
Java operations, such as simple integer arithmetic, boolean logic, object instantiation and
bitwise operators. Therefore, in this first step a test project is created which already fo-
cused on the more complex concepts which Java but also Java Card offers. These contain
features such as polymorphism, exception handling, native method invocation, etc. A more
detailed list is depicted below:

• Inheritance

– Interface extending one or multiple interfaces

– (Abstract) classes extending one or multiple (abstract) classes

• Method overloading

• Arrays

• Native method invocation

• Exception handling

– Exception thrown and caught in the same method

CHAPTER 3. DESIGN OF THE FRAMEWORK 49

– Exception thrown in called method and caught in calling method

• Instance of

– Checking, if derived class is from type of base class

– Checking, if base class is from type of derived class

Features such as reflection or threading which are only supported by Java but not
Java Card are deliberately omitted. The project basically consists of three test cases. One
test case which verifies that exceptions can be thrown and caught in the same method
and in a calling method. One test case checks if a DerivedClass extending a BaseClass

is correctly recognized as an instance of the BaseClass, but also if DerivedClass casted
to a BaseClass is recognized as an instance of the DerivedClass. This same test is
performed on a BaseClass implementing a simple Interface. The last test case tests if the
DerivedClass correctly overloads virtual methods of the BaseClass and the Interface.
This test project is depicted in Figure 3.1 as a UML class diagram.

Testcases

Class Inheritance Module

TestInterface2

Main

+uses

+uses

+uses

+uses

+uses

+uses

+calls

+calls +calls

TestExceptionHandling

+testExceptionSameMethod()
+testExceptionDiffMethod()

TestInterface3

TestInterface

TestAbstractBaseClass

TestBaseClass

TestDerivedClass

TestMethodOverloading

+testStaticMethods()
+testVirtualMethods()

TestInstanceOf

+testInstanceOfDerivedToBase(object : TestDerivedClass)
+testInstanceOfBaseToDerived(object: TestBaseClass)
+testInstanceOfAbstractToDerived(object: TestAbstractBaseClass)
+testInstanceOfInterfaceToDerived(object: TestInterface)

Figure 3.1: Simplified class diagram of test project

Furthermore, as already mentioned in section 2.3.5, the amount of the Java classes
converted by the framework must be cut down lavishly. The goal is that at the end of the
minimization process the framework should only convert the following classes:

• From the Java Runtime

– java.lang.Object

– java.lang.String

– java.lang.Throwable

– java.lang.Exception

• From the XMLVM compatibility library

CHAPTER 3. DESIGN OF THE FRAMEWORK 50

– org.xmlvm.XmlvmClass

– org.xmlvm.XmlvmArray

The java.lang.String class will only be used for debugging reasons and exclusively in
the first steps of the modification process. Furthermore, also the classes of the test project
must be converted. As the test project is comparatively, small the utilized GC, the Boehm-
Demers-Weiser conservative garbage collection utilized by the XMLVM framework is also
excluded from the conversion process.

The C standard library is used for providing the basic functionality and to interact
with the OS for memory management, input/output processing, etc. For debugging the
test project a native function utilizing the standard C printf function is used.

To summarize the first step of the modification process, refer to Figure 3.2. It shows the
planned process of minimizing the size of the converted test project by constantly verifying
the correct representation of the Java Card features, by checking the correct execution
of the test project. The first action is to remove the reflection and the multithreading
features. Afterwards, the minimization of the produced executable is targeted.

Conversion verification

Remove reflection

Remove multithreading

Downsize java framework classes

Start of
modicication
process

Step 2

Figure 3.2: Step 1 modification flow

To explain the layout of the produced C project better, Figure 3.3 is utilized.On the left
side, it shows the original layout of the code generated by the unmodified XMLVM frame-
work. The top layer is formed by the TestProject supported by the converted classes of the
Java runtime and certain compatibility classes provided by XMLVM. The native functions
are implemented in the native compat lib. The XMLVM Framework provides additional
functionality and contains the entry point of the executable. Beneath this framework layer,
the standard C library utilizing the Posix system provides basic functionality. The lowest
layer already displays the hardware memory type being utilized. As can be observed, in

CHAPTER 3. DESIGN OF THE FRAMEWORK 51

the first step only Java runtime classes and the XMLVM compatibility classes, as well as
the XMLVM framework, are adapted. The Java runtime classes and the XMLVM com-
patibility classes are changed for minimizing the executable. The XMLVM framework is
used for removing multithreading and reflection.

Step 1

Native compat Lib

Original XMLVM

TestProject

Java Runtime XMLVM compat classes

Native compat Lib

XMLVM Framework

Standard C Lib

TestProject

Java Runtime

Posix

RAM RAM

JCF compat classes

JCF Framework

Standard C Lib

Posix

Figure 3.3: Changes in Step 1 to project layout

3.2.2 Boarding on STM32 and Modification of Memory Allocation

After verifying that XMLVM is able to correctly translate the necessary features, shared
by Java and Java Card , and minimizing the amount of converted Java Runtime classes,
the next step is to move the resulting code to a hardware platform more similar to the NXP
platform. This hardware platform is the STM32F407VG board, which from the hardware
perspective, is similar to the NXP platform.

The second goal of this step is to change the way objects and static class fields are
allocated by the resulting program. As already described in section 1.3.3, one of the main
differences between Java and Java Card is its object lifecycle. As Java Card allocates
objects and class fields on non-volatile memory (FLASH), it must be ensured that these
structures are retrievable after a card reset.

In the converted program, classes and objects are represented by dedicated structures,
static class fields are transformed into global variables. Therefore, in this step the object
and class structures as well as the static class fields are no longer allocated in the stack,
but instead a special array simulating the FLASH memory is used. This also includes
fields holding objects which are translated into global pointer variables and assigned with
the address of the object structure. This array is still placed in the RAM at this point of
the modification process. Another big difference is that assignments of variables located
on the FLASH memory must be performed by special memory writing operations.

Although in this step the FLASH memory is only simulated, the memory allocation as
well as the write operations, performed on the allocated memory, is performed by using

CHAPTER 3. DESIGN OF THE FRAMEWORK 52

functions similar to those provided by the JCOP HAL on the targeting system. These
operations are encapsulated by interface functions which guarantee that in the further
steps the same interface can be used and only the underlying functions must be replaced
with those implemented in the JCOP HAL.

To identify the changes which have to be applied to the conversion process, a test case
is added to the test project. This test case covers the following operations:

• Static class field allocation

• Object allocation

• Assignments:

– Assigning local variable to static class field

– Assigning static class field to local variable

– Assigning local variable to object field

– Assigning object field to local variable

Figure 3.4 shows the extended test project.

Class Inheritance Module

Testcases

Main

+calls

+calls

+calls

TestExceptionHandling

+testExceptionSameMethod()
+testExceptionDiffMethod()

TestMethodOverloading

+testStaticMethods()
+testVirtualMethods()

TestInstanceOf

+testInstanceOfDerivedToBase(object : TestDerivedClass)
+testInstanceOfBaseToDerived(object: TestBaseClass)
+testInstanceOfAbstractToDerived(object: TestAbstractBaseClass)
+testInstanceOfInterfaceToDerived(object: TestInterface)

TestRamFlash

+staticTC: TestClass
+staticInt: int
+TC: TestClass

+locVarToStaticF()
+StaticFToLocVar()
+locVarToObjF()
+ObjFToLocVar()

TestClass

+value: int

+uses

Figure 3.4: Test project extended with TestRamFlash test case

To become more independent from the C standard library concerning the memory
management, an own simplified memory management is implemented, covering the pro-
cesses of allocating memory and copying values from a given memory address to a targeted
memory address. Furthermore, instead of using the standard C printf function the de-
bug information is emitted by using the UART module of the STM32F407VG. The UART
module is accessed by means of functionality provided by the STM32 HAL.

CHAPTER 3. DESIGN OF THE FRAMEWORK 53

The main actions in this step are to replace the used functions of the C standard library
by implementing JCF proprietary functions and to change the object allocation from the
Stack to the FLASH simulating global array. This process is visualized by Figure 3.5.

Implement JCF proprietary functions

Replace standard C lib functions with JCF functions

Conversion verification

Add testcase to test project

Allocation Objects in array simulating FLASH

Conversion verification

Step 1

Step 3

Figure 3.5: Step 2 modification flow

Figure 3.6 depicts the changes to the project layout that need to be performed in this
step. The modifications are performed in the lower layers of the produced C code. The
standard C library is replaced by a JCF proprietary library that utilizes the STM32 HAL
functionality instead of the Posix system. Furthermore, the class and object structures,
as well as the static class fields, are placed in a dedicated array situated in the RAM.

3.2.3 Boarding to the NXP Chip and Adaptation of Object Lifecycle

The next step of the modification process is to transfer the converted test project to
the NXP platform. To finalize the adaptation of the object lifecycle, the memory area in
which the object and class structures are allocated is shifted from RAM to FLASH. To
be more precise, the structures representing the single object as well as the structures
representing the Java classes, are allocated in FLASH. Furthermore, all class fields are
put into persistent memory, as well.

To ensure that once assigned static class fields referencing an object are not newly
assigned after a card reset, the conversion process is modified in such a way that a null
pointer check is performed which prevents overwriting the field. Furthermore, to guarantee
that all allocated objects are accessible after the card is reset, a so called mother object

CHAPTER 3. DESIGN OF THE FRAMEWORK 54

Step 2Step 1

TestProject

Java Runtime JCF compat classes

Native compat Lib

JCF Framework

Standard C Lib

TestProject

Java Runtime

Native compat Lib

Posix

RAM RAM

JCF compat classes

JCF Framework

JCF Mem Lib JCF Comm Lib

STM32 HAL

Object / Class Mem Sec

Figure 3.6: Changes to project layout performed in Step 2

is allocated at the first execution of the program. The mother object will simply be a
reference to the test project. From this reference the object tree is spanned.

Additionally to these modifications to the object lifecycle, also the underlying layer
of the infrastructure is changed in respect to STM32F407VG. To make use of the JCOP
HAL running on an NXP platform, it is initialized in the same way the JCOP OS would
initialize it. But instead of booting the JCOP OS, our converted test project is called
directly. To correctly write to FLASH, the memory copy function provided by the JCOP
HAL is used. The utilization of the JCOP HAL memory functionality is simplified by the
interface implemented in Step 2. Furthermore, also the usage of the UART is adapted to
the JCOP HAL.

A new test case is added which is used for testing whether the static class fields and
object structures are correctly allocated and retrieved after a card reset. This test consists
of a class with an integer counter as its class field and a test case holding an instance of
this class as well as an additional integer counter. The counters are increased during each
execution of the test case. After a card reset both counters must still hold the value they
were set to in the preceding execution. Figure 3.7 depicts the test project with this new
test case.

CHAPTER 3. DESIGN OF THE FRAMEWORK 55

Class Inheritance Module

Testcases

Main

+calls
+calls

+calls

TestExceptionHandling

TestMethodOverloading

TestRamFlash

TestClass

+value: int

+uses

TestInstanceOf

TestCounter

+globalCounter: CounterClass
+staticIntCounter: int
+virtIntCounter: int

+performCounterTest()
+incVirtCounter()

CounterClass

+counter: int

+increaseCounter()

+uses

Figure 3.7: Test project extended with TestCounter test case

In this step the change from the modified Java Runtime to the Java Card Runtime
is prepared as well. This change is performed by adapting the conversion process in such
a way that it does not use the java.lang.String class any longer and by replacing all
strings with char arrays in the test project.

In Figure 3.8 the single actions for the adaptations in this step are pictured. Firstly,
the JCOP HAL functionality must be initialized. Secondly, the JCF proprietary functions,
implemented in the step before, must make use of the functionality provided by the JCOP
HAL. The array, which simulates the FLASH memory section for allocating the objects,
the class representations and the static fields, must be put into real FLASH memory.
Thereafter, a simple reference, called mother object, must be implemented and pointed at
the test project. The last action is to implement a further test case as described above.

Figure 3.9 visualizes these modifications based on the layout of the generated C project.
In this step the adaptations only regard the initialization and utilization of the JCOP HAL,
which replaces the HAL of the STM32. Furthermore, the project uses, additionally to the
RAM, the FLASH memory for persistently allocating objects, class structures and static
class fields.

CHAPTER 3. DESIGN OF THE FRAMEWORK 56

Initiliaze JCOP HAL

Use JCOP HAL functionality in JCF functions

Transfer array simulating FLASH into real FLASH

Implement mother object

Test persistent allocation

Step 2

Step 4

Figure 3.8: Step 3 modification flow

Step 2

TestProject

Java Runtime

Native compat Lib

RAM

Step 3

TestProject

Java Runtime JCF compat classes

Native compat Lib

JCF Framework

JCFMem Lib JCF Comm Lib

RAM

JCF compat classes

JCF Framework

JCF Mem Lib JCF Comm Lib

STM32 HAL

Object / Class Mem Sec

JCOP HAL

FLASH Object / Class Mem Sec

Figure 3.9: Changes to project layout performed in Step 3

3.2.4 Java Card Runtime/Framework API and Applet

After verifying that the JCF is able to convert the test project to a C program, which
complies to the Java Card object life cycle and is executable on an NXP platform, the
Java framework is replaced by the Java Card framework. Considering this replacement,

CHAPTER 3. DESIGN OF THE FRAMEWORK 57

it is important to disentangle the Java Card framework from the Global Platform (GP)
framework, as only the Java Card framework is sufficient for running an applet. If nec-
essary, calls from the Java Card framework to GP will be replaced by stubs. Thus the
outside dependencies to GP will be cut.

As an applet utilizes classes which are not provided by the Java Card framework,
but also by JCOP OS layer, these are converted by the JCF as well. Both the Java Card
framework as well as the JCOP OS classes heavily rely on methods natively implemented in
C. These methods, which are usually provided by the JCOP VM, must now be implemented
and provided by the JCF.

Furthermore, in this step the test project is replaced by using a test applet. Therefore,
the mother object must now reference the applet instead of the test project, as in the steps
before. To run the applet in the same way as it would be executed by the JCOP VM, an
additional layer is developed. This layer (the Java Card OS) is placed between the applet
and the underlying Java Card framework. The main task of this Java Card OS is to:

• receive and dispatch incoming APDUs.

• initialize all data structures and components which are needed by the applet and
the JCOP OS classes.

• install the applet.

• provide the applet with the received APDU and run the applet.

• send response APDU.

To execute these tasks it is necessary that the mother object not only holds a reference
to the applet but also to the APDU object. This object is then provided to the applet
during its execution. Furthermore, a method in the Java Card OS (JCOS) is necessary
for running the applet referenced by the mother object. The applet’s execution is started
by calling a dedicated method from the JCOS. At the end of its execution an appropriate
response APDU is created according to the applet’s behaviour. Furthermore, the JCOS
must make the needed structures the JCOP HAL available to the applet. This is especially
relevant for the native APDU structure.

Furthermore, the JCOS must initialize the HAL of the JCOP subsystem. After this
initialization, it listens for an incoming APDU and provides it to the applet. The applet
processes this APDU and executes its implemented tasks. According to the applet’s be-
haviour the response APDU is created and sent back. Then the JCOS continues listening
for the next incoming APDU.

As the creation of new objects during the execution of the applet is omitted, exceptions
are created as singletons during the initialization of the JCOS. Furthermore, the JCOS
must provide the possibility to create transient arrays. The data of these arrays are stored
in transient memory. This functionality is also provided by the class. These two new
features are tested by two additional test cases. Additionally, a test case is added for
testing receiving and sending of APDUs.

The test cases from the predecessor steps are still maintained. However, instead of
sending debugging information via the UART, the test applet sends response APDU con-
taining information about the result of the single test cases. Figure 3.10 shows the test

CHAPTER 3. DESIGN OF THE FRAMEWORK 58

applet containing the already existing test cases and the new ones. The test project is
replaced by the test applet to run the single test cases.

Testcases

Class Inheritance Module

TestRamFlash

TestMethodOverloading

TestCounter

TestInstanceOf

TestTransientArray

+testTransientByteArray()
+testTransientShortArray()
+testTransientObjectArray()

TestApplet

+install(byte[]: byteArray)
+process(object: APDU)

TestExceptionHandling

JCSystem

+throwIt(short: idx, short: reason)
«byte[]»+makeTransientByteArray(short: length)
«short[]»+makeTransientShortArray(short: length)
«object[]»+makeTransientObjectArray(short: length)

+uses

+calls

+uses

TestAPDU

+testApdu()

Figure 3.10: Test applet extended with test case for transient array and adapted exception
handling test case

In Figure 3.11 this final step’s actions are depicted in a flow diagram. As a first action
the GP dependencies are removed from the single Java Card framework classes. The
Java framework is then replaced by this Java Card framework classes. Furthermore, also
the relevant JCOP classes are added to the conversion process. The produced executable
relies on the implementation of native C functions. The utilized ones are implemented, the
unused ones are stubbed. Before replacing the test project with a real Java Card applet,
the JCOS is implemented. To achieve this goal also the mother object must be extended
as described above. As soon as these targets are achieved, the test project is replaced with
a test applet. This last step is tested by implementing a new test case verifying correct
APDU handling by both the JCOS as well as the test applet.

CHAPTER 3. DESIGN OF THE FRAMEWORK 59

Stub GP dependencies in JavaCard framework

Replace Java with JavaCard framework

Add JCOP Java classes

Implement used native functions

Stub unused native functions

Conversion verification

Conversion verification

Conversion verification

Implement the JCOP OS

Extend the mother object

Implement test applet and replace test project

Implement APDU test case and verify test applet

Step 3 Finish

Figure 3.11: Step 4 modification flow

The impact of the last step’s modifications on the single layers of the generated project
are visualized in Figure 3.12. In this step a new layer is introduced representing the JCOS.
Furthermore, the TestProject is replaced by the TestApplet and the Java by the Java Card
runtime classes. Additionally, the native functions needed by the Java Card runtime must
be implemented in the former native compat lib layer.

Step 3

TestProject

Java Runtime JCF compat classes

Native compat Lib

JCF Framework

JCF Mem Lib JCF Comm Lib

RAM

Step 4

TestApplet

JCF Framework

JCF Mem Lib JCFComm Lib

JCOP HAL

RAM FLASH Object / Class Mem Sec

JCOP HAL

FLASH Object / Class Mem Sec

JC Runtime

Java Card OS

Native JC compat Lib

JCF compat classes

Figure 3.12: Changes to project layout performed in Step 4

CHAPTER 3. DESIGN OF THE FRAMEWORK 60

3.3 Conclusion

With the process described in this chapter and its division into the presented steps, the
final goal of natively compiling a Java Card applet along with the Java Card framework
and executing it on an NXP platform is achieved. Each step makes sure that the already
defined requirements and the features tested in its predecessor step are still fulfilled and
maintained. With the final step a small applet is natively converted, on which a range
of test cases is performed. This last step does not induce that any arbitrary applet is
convertible using the JCF, as the missing native functionality must be implemented first.

Chapter 4

Implementation of the Framework

In this chapter more details about the XMLVM framework and about the modifications
in the single steps of the adaptation process are presented. In Section 4.1 the conversion
process of the XMLVM framework is described. In Section 4.2 the details of the adapta-
tions performed in the steps described in Chapter 3 are explained. Section 4.3 gives an
overview about the whole conversion process of the created Java Card Cross-Compilation
Framework.

4.1 XMLVM Conversion Process

The Java Card Cross-Compilation Framework designed and implemented in this thesis is
based on the XMLVM framework. To understand the adaptations performed for reaching a
compiler framework which is able to compile Java Card code to native machine instructions
targeting embedded systems, the XMLVM conversion process must be understood first.
Certain Java features supported by the XMLVM framework such as reflection and multi-
threading are not explained as these features are omitted completely by the Java Card
Cross-Compilation Framework as Java Card does not support them [18].

4.1.1 Intermediate Representation

The conversion process of XMLVM is split into three parts. In the first phase the XMLVM
framework converts the Java byte code into a dex format. This format is used by the
Dalvik Virtual Machine (DVM) which is running on the Android platform. The byte code
used in the DVM differs in several aspects from the byte code used by the JVM but the
biggest differences are to be found in the register structure and the instruction set.

As the DVM is not a stack-based VM, such as the JVM, but rather a register-based
one, the local variables of a method are assigned to one of the 216 registers. These virtual
registers are type-less. Because of the DVM working with type-less virtual register rather
than manipulating the local variables on the Java stack, which is the case with the JVM,
the op-codes in DVM’s instruction set also differ from those used by the JVM [4].This
pre-conversion from Java byte code to the dex format makes the further conversion to C
code easier, as the machine model and the calling conventions imitate real architectures
and the standard C calling convention [6].

61

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 62

In the second part the dexed Java byte code is represented by the XMLVM proprietary
IR. For this intermediate step the EXtensible Markup Language (XML) is used. This
language was designed for being machine and human readable as well as for storing and
transporting data [41]. Each Java class is represented by a XML file. Listing 4.1 depicts
a Java class (TestClass.java) which is converted. This class contains a final static field,
a static field and a virtual field. It extends a class and overrides one of its methods. It is
itself extended by another Java class. Furthermore it contains a static method in which
an Exception is thrown and caught. In addition, it implements an interface.

Listing 4.1: TestClass which is converted to C using XMLVM

package test.doc;

public class TestClass extends TestBaseClass implements TestInterface
{
public byte virtualField = 0;
public static byte staticField = 0;
public final static byte finalField = 0;

public static void staticMethod(byte b)
{
try

{
staticField = b;
throw new Exception();
}
catch(Exception e)
{

staticField = 1;
}
}

public void virtualMethod(byte b)
{

virtualField = b;
}

private void privateMethod(byte b)
{

virtualField = b;
}

protected void protectedMethod(byte b)
{

virtualField = b;
}
}

The XMLVM proprietary IR of this class can be seen in the Listings 4.2 and 4.3.
Unnecessary information is omitted in this type of representation with “...”. Listing 4.2
shows how a Java method is represented in IR. Each method contains information about
its accessibility, its name, its signature and if it is static. The signature contains the

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 63

parameters as well as the return type. The body of the method contains the single byte
code instructions. In this example the byte parameter is assigned to a local register which
is then assigned to the virtualField field of the TestClass.

Listing 4.2: IR of Java method

<vm:method name=”virtualMethod” signature=”(B)V” isPublic=”true”>
<vm:signature>
<vm:parameter type=”byte” />
<vm:return type=”void” />

</vm:signature>
<dex:code register−size=”1”>
<dex:var name=”var−register−1” register=”1” param−index=”0” type=”byte” />
<dex:iput−byte ”...” type=”byte” name=”virtualField” vx=”1” vx−type=”int”/>
<dex:return−void />

</dex:code>
</vm:method>

Listing 4.3 shows how a Java class is typically represented in the IR. Each class repre-
sentation contains information about the class name, its package, its accessibility, the class
it extends and the interfaces it implements. Furthermore, it contains an entry for each field
holding information about its name, its type, its accessibility and if it is static or not. It
does not store any information whether a field is final. At the end of the IR the referenced
Java classes and their usage within the converted class are listed. Each class contains two
dedicated methods. The <init> method initializes all static fields. The <clinit> method
initializes all virtual fields and is called when a new instance of the class is allocated.

Listing 4.3: IR of Java class

<vm:class name=”TestClass” package=”test.doc” extends=”test.doc.TestBaseClass”
isPublic=”true” interfaces=”test.doc.TestInterface”>
<vm:field name=”virtualField” type=”byte” isPublic=”true” />
<vm:field name=”staticField” type=”byte” isStatic=”true” isPublic=”true” />
<vm:field name=”finalField” type=”byte” isStatic=”true” isPublic=”true” />
<vm:method name=”<init>” signature=”()V” isPublic=”true”>

”...”
</vm:method>
<vm:method name=”<clinit>” signature=”()V” isStatic=”true”>

”...”
</vm:method>

</vm:class>
<vm:references>
<vm:reference name=”java.lang.Exception” kind=”usage” />
<vm:reference name=”test.doc.TestBaseClass” kind=”super” />
<vm:reference name=”test.doc.TestClass” kind=”self” />
<vm:reference name=”test.doc.TestInterface” kind=”interface” />

</vm:references>

The XMLVM framework is furthermore capable of correctly translating Java excep-
tion handling. The information needed for converting a try - catch block to C is also
contained in the IR. In Listing 4.4 the IR of the exception handling performed in the
staticMethod of the TestClass is depicted. An important detail worth mentioning is

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 64

the target value in the dex:catch tag which indicates to which label to jump to, if no
exception was thrown.

Listing 4.4: IR of Exception Handling

<dex:catches>
<dex:entry start=”0” end=”8”>
<dex:handler type=”java.lang.Exception” target=”8” />

</dex:entry>
</dex:catches>
<dex:try−catch>
<dex:try>
<!−− instructions −−>
<dex:new−instance value=”java.lang.Exception” vx=”java.lang.Exception”/>
<dex:throw vx−type=”java.lang.Exception” class=”java.lang.Exception”/>

</dex:try>
<dex:catch exception−type=”java.lang.Exception” target=”8” />

</dex:try−catch>
<dex:label id=”8” />

With the listings in this section the XMLVM proprietary IR of all the important
features of Java Card are described.

4.1.2 Creation of C Files

The XML representations of the single Java classes are converted to C source and header
files using an Extensible Stylesheet Language (XSL) file. This file is used for defining XML
file transformation and representation [40]. Table 4.1 shows how the single structures in
Java (such as classes, objects, fields, ...) are represented in the C files created by XMLVM.
In this section each Java structure representation in the C code is explained in more detail.
Furthermore, the conversion of the exception handling and the instanceof instruction is
described.

Java structure C structure

Local variable
(virtual register)

XMLVMElem{char, int, double, float, short, void*}

Class TIB struct{}
Object ClassName struct{TIB struct* class, obj field1, obj field2, ...}
Static class fields Global variable

Static + virtual
methods

C functions

Table 4.1: C structures generated by XMLVM representing Java structures

Local Variables

Local variables represented in the dexed Java byte code use type-less virtual registers. This
means that a local variable is not bound to any variable type. Therefore, direct translation

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 65

from a Java variable to a C variable is not feasible. To keep the flexibility of the type-less
virtual registers XMLVM uses a designated union in C containing fields for all primitive
types, as well as a pointer which is used for referencing objects. Listing 4.5 depicts this C
union, as well as the mapping of the primitive C types to the primitive Java types. As
unions use the same address in the memory for all its fields each local variable does not use
more memory than the biggest field of the union. In the case of the XMLVMElem this field
is the JAVA LONG l field. Therefore, each local variable takes up 64 bit of memory [15].
Furthermore, referencing an object is performed by using a void pointer to the according
structure. For a better understanding this void pointer is defined as JAVA OBJECT.

Listing 4.5: C structure representing virtual registers

typedef int JAVA INT;
typedef long long JAVA LONG;
typedef float JAVA FLOAT;
typedef double JAVA DOUBLE;
typedef void∗ JAVA OBJECT;

typedef union {
JAVA OBJECT o;
JAVA INT i;
JAVA FLOAT f;
JAVA DOUBLE d;
JAVA LONG l;

} XMLVMElem;

Naming Convention

Java puts classes into different packages. This feature allows two classes with the exact
same name to be present in a Java project as long as they are in different packages. Classes
and also objects are represented in XMLVM as C structures. However, C does not allow
two or more structures of the same name in one executable. Therefore, XMLVM appends
the class name to the package name and uses it to distinguish between classes of the same
name. This name is used not only for class representations but also for methods, fields as
well as objects. Table 4.2 lists examples of this XMLVM proprietary naming convention.
Furthermore, Java also allows methods with the same name but with different parameters
(called Method Overloading). However, C needs every function to have a different name.
Thus, XMLVM appends the parameters to the C function name.

Type Package Java C

Class \
Object

test.doc TestClass test doc TestClass

Field test.doc TestClass.someField test doc TestClass someField

Method test.doc TestClass.someMethod
(int i)

test doc TestClass someMethod int
(int i)

Table 4.2: Naming Convention of XMLVM

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 66

Classes

Java classes and interfaces are represented with an XMLVM proprietary C structure
called TIB. Listing 4.6 shows a simplified form of this structure, only depicting the most
important fields held by the TIB. This TIB is based on the example TestClass Java class
described in Section 4.1.1. The classInitializationBegan and classInitialized flags
are used for indicating the status of the class’ or interface’s initialization. As the TIB

structure only contains flags associated with its Java class or interface, the initialization
is only performed once per structure.

The extends field is used for referencing the TIB structure of the extended class. The
baseType field indicates whether the class is of a primitive type, a class or an interface.
As arrays are also represented using a special Java class, the TIB also contains a field
indicating the type of the array. The array can either hold primitive variables or objects.
In the latter case the array simply stores references to the object structures. Furthermore,
each TIB contains a class field pointing to the Java Class object assigned to the class.

The numImplementedInterfaces indicates how many interfaces a class implements.
XMLVM computes this number by adding up the number of all interfaces the class di-
rectly implements as well as the number of interfaces extended by this interface. In the
implementedInterfaces array the references of all implemented interfaces and extended
interfaces are stored. E.g. a Java class implements interface Int1 which extends two other
interfaces Int2 and Int3. The implementedInterfaces array of the class would contain
references to the TIBs of all three interfaces Int1, Int2 and Int3.

Furthermore, the TIB structure contains both an vtable as well as an itable array
for storing function pointers. In both tables the function pointers are generalized with
the VTABLE PTR. Only if a function is called using the vtable or itable, the selected
function pointer is casted into its correct format. The vtable is needed for realizing Java’s
polymorphism. Java allows that a class extending another class overrides its methods if
they have the same signature. XMLVM represents this by checking which methods of
a class are overridden by a child class and adds them to the vtable of the class. The
vtable of the extending class contains all function pointers of its base class but replaces
the references of the overridden methods with its own functions. The itable is used in
a similar way, but instead of references of overridden methods the references of methods
defined by the interface and implemented by the implementing class are stored.

Listing 4.6: C structure representing a Java class

typedef void (∗VTABLE PTR)();

typedef struct TIB test doc TestClass {
int classInitializationBegan;
int classInitialized;
const char∗ className;
const char∗ packageName;
struct TIB Template∗ extends;
int sizeInstance;
JAVA OBJECT clazz;
JAVA OBJECT baseType;

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 67

JAVA OBJECT arrayType;
int numImplementedInterfaces;
struct TIB Template∗ (∗implementedInterfaces)[1];
VTABLE PTR vtable[vtableSize];
VTABLE PTR itable[itableSize];

} TIB test doc TestClass;

In XMLVM each class is converted into a header and a source file. Each source file
contains, defines and initializes the TIB structure representing its class as a global variable.
This variable is already partly initialized before code execution as depicted by Listing 4.7.

Listing 4.7: Initialization of TIB global variable

TIB DEFINITION test doc TestClass TIB test doc TestClass =
{

0, // classInitializationBegan

0, // classInitialized

"test.doc.TestClass", // className

"test.doc", // package

& TIB test doc TestBaseClass, // extends

sizeof(test doc TestClass), // sizeInstance

XMLVM TYPE CLASS //type

};

Furthermore, each source file contains an INIT and an INIT IMPL function. The INIT

function only checks if the TIB is already initialized. If not, it calls the INIT IMPL function
which sets all the fields not already initialized in the global TIB variable. It also initializes
all static fields of the class. Another variable contained by every source file representing an
Java class is the global CLASS variable. This variable is a pointer storing the reference
to a Java Class object which is used for realizing the reflection feature by XMLVM.

Objects and Fields

Similar to the Java class representation, XMLVM also provides a C structure for repre-
senting its objects. This structure contains fields representing the instance fields of the
class. If a class extends another class the instance fields of the base class are also added
to the C structure representing the extending class. Besides these variables the structure
also contains a reference to the global TIB variable of its class. Therefore, it is ensured
that the TIB is only allocated per class and not per instance. Listing 4.8 shows such a
structure representing a Java object. As in Listing 4.6 the TestClass representation is
depicted. The structure holds the reference to the TIB of the TestClass as well as a
C structure holding its only instance field, the virtualField. Furthermore, it contains
the INSTANCE FIELDS test doc TestBaseClass macro which is defined as a C struc-
ture holding the instance fields of the TestBaseClass. With this representation method
XMLVM guarantees that all instance fields of a class are inherited by its extending class.

Listing 4.8: C structure representing the instance of a Java class

struct test doc TestClass {
TIB test doc TestClass∗ tib;

struct {

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 68

INSTANCE FIELDS test doc TestBaseClass;
struct {

JAVA BYTE virtualField ;
} test doc TestClass

} fields;
};

These objects structures are allocated by calling the converted constructor of the class.
In its basic form the constructor performs the following operations:

• Check if class TIB is already initialized

– If not, initialize it

• Allocate a new object structure

• Initialize all the instance fields of the object structure

After creating and initializing the object structure the constructor function returns
a reference to the caller. This reference is either assigned a local variable or a static or
instance field.

As already mentioned, static Java class fields are represented in XMLVM using global
variables. These variables follow the naming convention of XMLVM. To enhance readabil-
ity and to better distinguish instance fields and static fields the name of a global variable
representing a static field is appended with a STATIC keyword. Therefore, the static field
staticField in the TestClass Java class located in the test.doc package is represent-
ed by the global variable with the name STATIC test doc TestClass staticField. By
default all static fields of a Java class become static global variables, although this does
not correspond to their actual accessibility. XMLVM also produces for each static global
variable a PUT and a GET function for modifying and accessing them. As XMLVM does
not store any information about whether a global variable is final or not in its IR, in the
C code this is not represented, either.

Methods

All methods of a Java class are represented by C functions following the naming convention
explained in the Section Naming Convention. Java allows to restrict the access to methods
in the same way as it restricts the access to fields using access modifiers. These modifiers
are not represented in the resulting C file as all methods are represented by ordinary C
functions with no keywords influencing their visibility.

There is one particular difference between the C representation of virtual and stat-
ic methods. Static methods are represented with functions that take exactly the same
parameters as their corresponding Java methods. C functions representing virtual meth-
ods, on the other hand, take one additional parameter. This parameter is a reference to
the object the represented virtual method is called from. Therefore, the virtual method
virtualMethod() shown in Listing 4.1 is represented by the function depicted in Listing
4.9. Note the JAVA OBJECT me which holds previously described reference.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 69

Listing 4.9: C function representing a virtual Java method

void test doc TestClass virtualMethod byte(JAVA OBJECT me, JAVA BYTE n1)
{

//XMLVM_BEGIN_WRAPPER[test_doc_TestClass_virtualMethod___byte]

XMLVMElem r0;
XMLVMElem r1;
r0.o = me;
r1.i = n1;

test doc TestBaseClass virtualMethod byte(r0.o, r1.i);
((test doc TestClass∗) r0.o)−>fields.test doc TestClass.virtualField =

r1.i;
return;
//XMLVM_END_WRAPPER

}

In general all C functions are called directly from the caller. However, if a method is
part of polymorphism, the representing function is called via the function pointer stored
in vtable of the TIB structure representing the class the method belongs to. Listing 4.10
visualizes such a function call.

Listing 4.10: C function call of overriden method

r0.o = NEW test doc TestClass();
(∗(void (∗)(JAVA OBJECT)) ((test doc TestClass∗) r0.o)−>tib−>vtable[6])(r0.o);

Native Function Calls

Java allows interaction with C source code by means of a Java Native Interface (JNI)
library. With the JNI it is possible to call C functions from inside Java methods. This
feature must also be supported by the XMLVM. Therefore, all natively defined methods
(indicated by the native keyword in Java) get declared in the corresponding header file of
the Java class representation. XMLVM searches for C source files starting with native

and ending with a package plus class name corresponding to a converted Java class. If
such a file is found, it is added to the converted C files. The calling convention of these
native functions does not differ from other converted methods.

Exception Handling

The exception handling in the C source code created by XMLVM relies on setjmp.h

standard library. This library is typically used for implementing an exception mechanism.
It consists of a special structure (jmp buf) and two functions (setjmp and longjmp). The
jmp buf is a structure dedicated for storing the program state at a certain point of the
program execution. The setjmp function saves the program’s calling environment by set-
ting up the jmp buf. This function returns 0, if it was called directly and a nonzero value
if it was jumped to by the longjmp function. The longjmp function restores the pro-
gram environment by using the jmp buf which was set up by the setjmp function before.
Furthermore, it lets the execution continue from the corresponding setjmp function.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 70

Using these standard C functions the exception handling is performed. XMLVM uses
macros for encapsulating the logic behind its exception mechanism. With the help of
Listing 4.11 these macros are explained in more detail.

As XMLVM supports also multi-threading the java.lang.Thread class is used for stor-
ing the program state and the exception which is potentially thrown. XMLVM TRY BEGIN

declares a local jmp buf and copies the execution environment stored in the current
thread to it, thus creating a backup. Furthermore, it initializes the jmp buf of the cur-
rent thread which is used during the try - catch block by calling the setjmp function
and checks the function’s return value. If the setjmp returns 0 the code encapsulated
by the XMLVM TRY BEGIN and the XMLVM TRY END is executed. If it returns with a val-
ue that is nonzero, the execution would continue at the XMLVM CATCH BEGIN macro.The
XMLVM THROW CUSTOM macro stores the provided exception using the current thread and
calls the longjmp function using its jmp buf. The execution jumps back to the setjmp

function inside the XMLVM TRY BEGIN which now returns with a nonzero value. As explained
before, the XMLVM CATCH BEGIN macro is now called, which basically marks the beginning
of the XMLVM CATCH SPECIFIC macro. The XMLVM CATCH SPECIFIC macro checks if the ex-
ception stored by the XMLVM THROW CUSTOM macro is of the correct class. If it is of the
correct class, it performs a jump using a goto instruction to the label with the indicat-
ed number. In the case of XMLVM THROW CUSTOM this would be label8. The last macro,
the XMLVM RESTORE EXCEPTION ENV restores the execution environment from before the
try-catch block by replacing the jmp buf of the current thread with the one backed up
using the local by the jmp buf variable in the XMLVM TRY BEGIN macro called at the be-
ginning of the exception handling. The backup of the program state using a local variable
is necessary as it cannot be known whether the execution already resides within another
try-catch block. Hence, every translation of a try-catch block puts a new jmp buf vari-
able on the stack. Depending on the system the jmp buf allocates from 24 up to 64 bytes
of memory [20].

Listing 4.11: Exception Handling in C source code

XMLVM TRY BEGIN(uniqueThreadID)
// Begin try

test doc TestClass PUT staticField(r1.i);
r0.o = NEW java lang Exception();

java lang Exception INIT (r0.o);
XMLVM THROW CUSTOM(r0.o)
// End try

XMLVM TRY END
XMLVM CATCH BEGIN(uniqueThreadID)

XMLVM CATCH SPECIFIC(uniqueThreadID,java lang Exception,8)
XMLVM CATCH END(uniqueThreadID)
XMLVM RESTORE EXCEPTION ENV(uniqueThreadID)
label8:;
java lang Thread∗ curThread uniqueThreadID =
(java lang Thread∗)java lang Thread currentThread ();
r0.o = curThread uniqueThreadID−>fields.java lang Thread.xmlvmException ;
r0.i = 1;

test doc TestClass PUT staticField(r0.i);

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 71

XMLVM EXIT METHOD()

instanceof

Another important feature of both Java and Java Card is the instanceof instruction. It
is represented in the generated C by a call to the XMLVM ISA function. This function is
provided with the object that is to be checked and the class it is to be checked against.
The first parameter is simply a reference to the object structure. The second parameter
is a reference to a java.lang.Class object. Each C source file representing a Java class
contains a global CLASS classname variable which points to a java.lang.Class object.
This java.lang.Class contains a virtual tib field which points to the TIB of the class it
belongs to. This global variable representing the class to be checked against is provided as
second parameter to the XMLVM ISA function. The function checks the TIB of the object
with the TIB referenced by the CLASS classname. If it matches, true is returned. If it
does not match, it loops through the TIBs of the implemented interfaces. If no match is
found, the process examines the TIB of the object’s extended class and its implemented
interfaces. This procedure is repeated until the end of the class hierarchy is reached. If no
match was found, the function returns false.

Array Representation

Java arrays are represented by using a special class. This XMLVMArray class is converted
along with the user written classes and the Java framework classes. Listing 4.12 shows a
simplified representation of this XMLVMArray class depicting its fields and methods.

Listing 4.12: XMLVMArray class for array implementation

final public class XMLVMArray {
private Class type;
private int length;
private Object array;
private XMLVMArray(Class type, int length, Object array) {

this.type = type;
this.length = length;
this.array = array;

}
native static private XMLVMArray createSingleDimension(Class type,
int size);

native static private XMLVMArray createSingleDimensionWithData(Class type,
int size, Object data);

}

The createSingleDimensionWithData creates a new XMLVMArray object, sets the length
and type accordingly and assigns the data reference provided by the caller to the array

field of the XMLVMArray object. The createSingleDimension function allocates type∗size
bytes of memory and zero initializes this area. Then it calls the
createSingleDimensionWithData function with the allocated memory area as data ref-
erence.

Especially the type field of the XMLVMArray is interesting as it utilizes the Java Class

class for defining the type of the elements stored in the array.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 72

4.1.3 Memory management of XMLVM

The C code generated by the XMLVM framework puts all variables and structures into
the RAM. The object structures are allocated in heap section of the RAM. The global
variables representing static fields are put into the data section of the RAM. In this section
also the TIB structures are placed which are also declared as global variables. The local
variables are typically placed in the stack section of the RAM [22]. Figure 4.1 visualizes
this memory layout.

Class object references

Heap
Object structures

itable[] / vtable[]

Global class field variables

Global TIB structures

Local variables

RAM

Stack
Stack

Heap

Uninitialized
data

Initialized
data

Figure 4.1: Memory layout of XMLVM produced C code

Furthermore, the XMLVM make uses the GC implemented by Hans-J. Boehm and
Alan J. Demers.

4.1.4 Testing of XMLVM conversion process

Before the XMVLM framework is adapted to produce C code loadable onto the NXP
platform, the capabilities of the framework are tested by implementing the test project
introduced in Section 3.2.1. This test project uses all the important features of Java
Card such as inheritance, method overloading, native method invocation, instanceof

and exception handling. These test cases are depicted in Figure 3.1 Only after verifying
that all these features are correctly represented in the converted C the adaptations can

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 73

be performed. Basically, this test project contains a Tester class which implements the
static void main(String[] args) function identified by standard Java projects as its
entry point. This Tester class performs all the test cases listed above.

4.2 Java Card Cross-Compilation Framework Modification

After explaining the basic conversion process performed by the XMLVM framework in
Section 4.1 and verifying the correct Java byte code conversion performed by the XMLVM
framework, the modifications characterized in the single steps in Chapter 3 are explained
in more detail in this section.

4.2.1 Reducing the Memory Requirements

In the first step of the modification process the executable produced by the XMLVM
framework is examined. Based on this investigation, the set of converted classes located in
the various libraries is determined and a way to minimize this set is found. As the results
of this first downsizing are not satisfying, the used Java framework classes are modified
and features not supported by Java Card are removed.

Determining and Minimizing Set of converted Classes

Using the XMLVM framework for converting a very simple HelloWorld Java program
produces an executable taking up 12.8MB of memory. Such an executable would be way
too large to be loaded onto an NXP platform as defined in Section 3.1. Therefore, a way
has to be found to minimize this executable. Investigating into the produced C source
files shows that over all 853 Java classes are converted. This includes, next to the Java
classes of the test project, all the classes from the Java framework including the additional
libraries coming with the XMLVM framework.

XMLVM offers the opportunity to define the set of converted Java classes by using
either a so called redlist or a greenlist. The redlist contains classes which must not
be converted. Therefore, XMLVM converts all classes from the various libraries, the Java
framework as well as the user written classes omitting those defined in the redlist. Using
the greenlist XMLVM does not convert any classes but those listed in the greenlist.
Classes which are not converted because of one of the two lists excluding them are called
redtyped.

Furthermore, XMLVM replaces all references to methods or fields of classes which
are excluded from the conversion by calls to a special function printing the name of the
expected methodfield of the redtyped class plus the classes name to the display. This feature
simplifies the debugging.

The first version of the converted Java test project is created by using the unmodified
redlist contained in the XMLVM framework. To minimize the set of the converted classes
the greenlist is used. The initial greenlist only contains the classes of the test project,
the primitive types (double, int, long, float, byte, char, short, boolean and
void) as well as the java.lang.Object (because every class in Java extends the Object

class) and the org.xmlvm.runtime.XMLVMArray class which is used for representing ar-
rays. Trying to convert the test project with this greenlist fails.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 74

The goal now is to find the minimal set of classes needed in the conversion process
to create a compileable and executable program. Therefore, a script is implemented for
automatically extending the set of classes being converted by XMLVM until such an exe-
cutable is created. There are three reason why the creation or execution of the program
might fail. The first reason is that the conversion process stops with an error as a class
marked for conversion extends a redtyped class. The second reason is that the converted
program does not build because a converted class includes a redtyped class. The last reason
is that the program tries to access a fieldmethod of a redtyped class during execution. The
script performs the following task:

• Step 1: Run the conversion process of XMLVM. Check its output

– If it failes because of a redtyped class, add class to greenlist. Go to Step 1

– If it passes continue with Step 2

• Step2: Compile the created C source code

– If a compilation error occurs because of a redtyped class, add class to greenlist.
Go to Step 1

– If the code is built, continue with Step 3

• Step 3: Execute the converted program

– If it tries to access a fieldmethod of a redtyped class, add class to greenlist.
Go to Step 1

– Otherwise, it executes as expected

Using this script the set of classes being converted is reduced from the initial 853
classes to 198 classes. This leads to an executable with a size of 1.8MB which would be
loadable to an NXP platform but is still very large.

After minimizing the size of the executable, the RAM memory consumed by the ex-
ecutable has to be determined. As not only the FLASH memory but also the RAM of
the NXP platform are very limited, this examination is crucial. Therefore, the GC used
by XMLVM is disabled and a counter is introduced which is increased by the amount of
memory allocated by the malloc function. Thus, the amount of heap memory used for
the object creation can be tracked. This method shows that only for the object allocation
241KB of RAM are needed. This exceeds the capabilities of the NXP platform by far.
Further investigation show that, before the first line of the test project is executed, the
program already allocates 227KB of RAM. This leads to the conclusion that the used Java
library has to be adapted.

Adaptation of Java Runtime Classes and Removal of Features

As minimizing the set of converted classes does not lead to the needed result, the features
not supported by Java Card have to be removed. Furthermore, also the Java runtime
library has to be adapted.

As a first step the greenlist is adapted once more. Only the classes of the test project
and the primitive types are allowed to be converted. Additionally, also the Object, the

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 75

Exception, the Throwable and the String class are added to the greenlist. With this
configuration the test project is not convertible as the Object, the String, the Exception
and the Throwable class contain redtyped dependencies. Instead of adding these depen-
dencies as done by the script described in the Section before, the failure causing classes
are adapted.

The Object class as provided by the XMLVM framework contains dependencies to the
Class, the ArrayList and XMLVM proprietary Java classes needed for multi-threading.
The dependencies are removed by modifying the Object class.

The String class is modified in such a way that it only contains the basic fields, a
default constructor and a constructor provided with a char array and the arrayCopy

method. All other dependencies are eradicated. This class is used for printing out debug
information.

The Exception class is left untouched. However, the Throwable class is rid of im-
plementing the Serializable interface and its dependencies to the IOException, the
ObjectOutputStream, the PrintStream as well as the PrintWriter class. With these
small adaptations to the used Java framework, the test project is convertible, but not
buildable, as the Java features multi-threading and reflection depend on classes which are
now redtyped. To make the project work, the support of reflection is disabled by setting the
genReflectionData to false in the XMVLM project. Furthermore, also the whole section
creating the C code representing the reflection in the single source files is removed from
the XSL file. The multi-threading which utilizes the Java Thread class is completely eradi-
cated from the XSL file as well as the supporting C source files provided by XMLVM. This
includes the usage of the functionality provided by the pthread.h library on which the
multi-threading of XMLVM builds. Another issue that needs to be solved is the lack of the
Java Class class. As described in Section 4.1.2, both the representation of the instanceof
instruction as well as the XMLVMArray class for the array representation utilize the Class

class. The XMLVM ISA function which represents the instanceof instruction uses the tib

field of the Class class for checking the type of the provided object. The XMLVMArray class
utilizes the Class class for defining the type of the array. Including the Java Class class
provided by XMLVM to the greenlist is no option as it adds dependencies related to
the reflection feature. Therefore, a new Java class was implemented replacing the Class

class. This new SimpleClass class is depicted in Listing 4.13. It only contains one field
for referencing a TIB, a constructor setting this field as well as a native method decla-
ration for initializing the native layer of the class. The native part of the SimpleClass

class contains TIB global variable structures as well as CLASS variables for the primitive
types. Furthermore, the initNativeLayer() function initializes all the global variables
used for representing the primitive types. With this new SimpleClass replacing the orig-
inal Class class, the XMLVM ISA function and the XMLVMArray class can be built and their
implementation needs no further modifications.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 76

Listing 4.13: SimpleClass class replacing java.lang.Class

public class SimpleClass
{
public Object tib;
native private static void initNativeLayer();
private SimpleClass(Object tib) {
this.tib = tib;
}
}

The last issue caused by rewriting the Java framework classes refers to the exception
handling. The macros used by the XMLVM proprietary representation of the exception
handling, as described in Section 4.1.2, utilize the Java Thread class provided by XMLVM.
More precisely, the Thread class holds two fields, the Object xmlvmExceptionEnv and the
Object xmlvmException field, which are needed for the exception handling. Due to the
removal of multithreading there is only need for one global structure holding these fields.
Therefore, a small C structure was added. It is depicted in Listing 4.14. It only contains
the JAVA OBJECT environment and the JAVA OBJECT exception field.

Listing 4.14: ExceptionContainer replacing java.lang.Thread

typedef struct {
JAVA OBJECT environment;
JAVA OBJECT exception;

}ExceptionContainer;

ExceptionContainer∗ globExceptionCont;

Furthermore, the calls to the Thread class in the C macros are replaced with calls to
the globExceptionCont utilizing its fields.

As the creation of a new local jmp buf variable on each call of the XMLVM TRY BEGIN

macro means a huge stack memory consumption, also this design flaw must be tackled.
After some investigation it can be seen that this local jmp buf variable is only used from
its allocation until the corresponding XMLVM RESTORE EXCEPTION ENV macro is called. This
means that the visibility of this variable can be limited. In C such a scope limitation is per-
formed by using “{ }” brackets surrounding the source code in which the variable should
be visible. This limitation allows the compiler to reuse the stack memory used for the local
variable, as soon as the variable is visible no longer. Thus, the XMLVM TRY BEGIN is added
a “{” and the XMLVM RESTORE EXCEPTION ENV macro is added a “}” bracket. This adap-
tation ensures that large Java methods using multiple nested try-catch blocks will not
exceed the stack memory of the targeted hardware platforms by constantly allocating new
local jmp buf variables. With these adaptations the functionality of exception handling is
ensured.

Performing these adaptations to the code generating as well as the Java framework
classes, enable a minimization of the converted executable. The amount of translated
Java classes is cut down from 198 to 24 classes. This results in the size of the executable
shrinking from 1.8MB to 224.2KB. Further investigation into the memory consumption
shows that the converted program without supporting reflection or multi-threading and
with the reduced set of Java classes only occupies 3154 bytes of RAM for allocating objects.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 77

Testcase Exception Handling

Additionally to the conversion of the exception handling mechanism of Java XMLVM also
supports automatic checks on null pointers and array bounds. Every instruction which
accesses an object is surrounded by a try-catch block. Within this block, it is checked
whether the object is null or not. If it is null a NullPointerException is thrown. Similar
to the null pointer check also the an array access is surrounded by a try-catch block.
Inside this block it is made sure that the index of the accessed element is inside the array’s
bounds. If not an ArrayIndexOutOfBoundsException is thrown. The testcase verifying
the exception handling depicted in Figure 3.1 is extended deliberately trying to access a
null object and an array element using an index which exceeds the bounds of the array.

Conclusion

After performing the described adaptations to the conversion process as well as the Java
framework classes the test project can be converted and compiled to an executable with a
memory usage not exceeding the limits of the targeted platforms. Therefore, the next step
is to board the resulting executable to a ARM based development board. For this step the
STM32F407VG discovery board is used.

4.2.2 Boarding to STM32 Discovery Board

This section describes the modifications on the framework considering further downsizing
of Java class representation as well as changing the class and object allocation to represent
the object life cycle used by Java Card rather than Java.

Minimization of Java Class Representation and Local Variables

The TIB structure used for the Java class representation still contains fields which are
not used or unnecessary. Listing 4.15 partially depicts the changes performed on the TIB

structure. Fields which are removed are crossed out with a red line. Fields that are added
are highlighted in green colour.

The classInitializationBegan and classInitialized field are replaced with one
classInitStatus field holding the status of the TIB. This status indicates whether the
TIB is already initialized, if its initialization is ongoing or if it is not yet initialized. The
className and the packageName fields are removed as they are only used for debugging
reasons but can take up a lot of memory space. Furthermore, also the clazz was removed
as its usage can be substituted by utilizing the global CLASS variables of the single class
representations.

As Java Card does not support a the long, double and float types of Java, also the
local variable representation can be minimized. As already mentioned the local variables
are represented by the XMLVMElem union which reserves the amount of memory necessary
for storing its biggest member. In the case of the XMLVMElem union this is the JAVA LONG l

needing 8 byte of memory. However, the Java Card supported primitive types are all rep-
resented by solely using the JAVA INT i field. Therefore, the XMLVMElem union is adapted
as shown in Listing 4.16. Thus, each represented local variable in the C source code only
takes up 4 byte of memory [15], [24].

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 78

Listing 4.15: C structure representing a Java class

typedef struct TIB test doc TestClass {
int classInitializationBegan;
int classInitialized;
int classInitStatus;
const char* className;
const char* packageName;
struct TIB Template∗ extends;
int sizeInstance;
JAVA OBJECT clazz;
JAVA OBJECT baseType;
JAVA OBJECT arrayType;
int numImplementedInterfaces;
struct TIB Template∗ (∗implementedInterfaces)[1];
VTABLE PTR vtable[vtableSize];
VTABLE PTR itable[itableSize];

} TIB test doc TestClass;

Listing 4.16: Adapter XMLVMElem union

typedef union {
JAVA OBJECT o;
JAVA INT i;
JAVA FLOAT f;
JAVA DOUBLE d;
JAVA LONG l;

} XMLVMElem;

HAL function modification

Boarding the converted program from the x86 platform onto the STM32 discovery board
shows the necessity of replacing the standard C functions with self-written implementa-
tions. The functions that are removed are the printf, the malloc, the realloc, the free,
the memcpy and the memset function. All these functions are replaced but the realloc and
the free function. These functions were omitted as no GC is supported. Once allocated
memory is not freed by the system.

Instead of utilizing the heap memory section of the RAM as performed by the malloc

function, a global array is utilized reserving memory space for allocating up to 1KB of da-
ta. This global array is called gFlashMemArray in reference to its future location in FLASH
memory. Furthermore, a global pointer (pFreeFlashMem) is defined pointing to the end of
the last allocated memory block within the array. In this step of the implementation this ar-
ray is still placed in RAM. The malloc function is replaced by the mem manager MemAlloc

function. This function receives as parameter the amount of bytes to reserve. It checks if
the amount of bytes is still free for allocation in the gFlashMemArray. If the free memory
space in the array is less than needed, a null pointer is returned. If enough space is avail-
able, it increases the pFreeFlashMem pointer by the amount of allocated bytes and returns
the starting address of the allocated block (which is the old address pFreeFlashMem was
pointing to). The memcpy function is replaced by the mem manager MemCpy function. This
function expects a destination and a source pointer and the amount of bytes to be copied.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 79

It checks, if either the destination, or the source address is word aligned (a word equals 4
byte). If not, it copies the single bytes from the source to the destination address, until an
alignment is reached. Then, it copies the data word-wise (4 bytes at a time) until the size
of the remaining bytes is smaller than the word size. These bytes are again copied one by
one. The memset function is replaced by the mem manager MemSet function which receives
a pointer to a destination address, a value to be copied and the amount of bytes to be set
to this value. It always casts the value to a char and sets the amount of bytes provided
to the function to this value starting from the destination address.

For debugging reasons also the standard printf is substituted with a modified imple-
mentation of the printf function developed by Michael Ringgaard. This function sends
the string provided to the function character by character over the UART. The debugging
information sent via the UART is shown using the MiniCom tool. The UART function-
ality is provided by the libraries shipped with the STM32 discovery board. The debug
information is still provided in form of String classes.

With these changes to the usage of the underlying libraries, the changes of the object
life cycle were performable.

Object Life Cycle Adaptation

Java puts objects, class representations, local variables as well as virtual and static fields
into the RAM memory. This means that after a loss of power to the underlying hardware
system all the allocated data is lost. However, Java Card comes with the requirement that
objects, virtual and static fields are preserved on a card reset or power loss. Therefore, these
parts of a Java Card program need to be put into persistent memory. For both the STM32
discovery board as well as the NXP platform this memory type is FLASH. As the XMLVM
framework targets Java applications, the life cycle of Java is preserved by the generated
C executable. This object life cycle now needs to be adapted to the demands of Java
Card . Basically, this means that everything allocated during the program’s execution but
local variables must be shifted from RAM to FLASH memory. As already mentioned, the
gFlashMemArray is used in this step to simulate the FLASH memory section in which the
objects and class representations as well as the static variable representations are stored.
Another goal of this step is to allocated the global variables as well as the C structures
in the gFlashMemArray in such a way that the memory consumption can be determined
more precisely. The new memory functions are further abstracted with C macros which
call the underlying memory functions based on a C define. These macros guarantee that
from a caller perspective the function call never changes, even if the underlying memory
function is replaced in future. The mem manager MemCpy is abstracted by the MEM COPY

and the mem manager MemAlloc function is abstracted by the FLASH ALLOC macro. The
adaptations concern four different aspects of the conversion.

Static and Virtual Field Manipulation: The first modification concerns the assign-
ment of global variables and virtual fields of the object structures. Data stored in FLASH
memory cannot be assigned in the same way as data allocated in RAM. A special FLASH
memory copy function provided by the firmware layer must be utilized. This FLASH
function takes the same parameters as the mem manager MemCpy function. Therefore, the
mem manager MemCpy function is used for simulating the data manipulation in FLASH

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 80

memory. However, in this step the gFlashMemArray is used instead of a real FLASH
memory. Listing 4.17 shows how the manipulation of a object field and of a global variable
must be changed respectively. The assignment of instance fields is performed by XMLVM
by accessing the field via the object structure and using the = symbol for manipulating
its value. This is changed by passing the address of the instance field as destination, the
address value as source and the size of the value as parameters to the memory copy func-
tion. Static fields are exclusively manipulated by calling their generated PUT functions.
Therefore, the generating of PUT functions’ implementation must be changed in a similar
way. However, the static field is passed directly as destination instead of its address. This
difference is caused as the global variable representing the static field is now declared as a
pointer. This modification is explained in the next paragraph.

Listing 4.17: Adaptation of static and virtual field manipulation

//--------------------- Object field manipulation ---------------------//

//old instance field assignment

((test doc TestClass∗) r0.o)−>fields.test doc TestClass.virtualField = r1.i;

//new instance field assignment

MEM COPY(&(((test doc TestClass∗) r0.o)−>fields.test doc TestClass.
virtualField), & r1.i, sizeof(r1.i));

//--------------------- Static field manipulation --------------------//

//old static class field assignment

void test doc TestClass PUT staticField(JAVA CHAR v)
{

STATIC test doc TestClass staticField = v;
}

//new static class field assignment

void test doc TestClass PUT staticField(JAVA CHAR v)
{

MEM COPY(STATIC test doc TestClass staticFinalField, &v, sizeof(v));
}

Assigning a global variable representing a static field or a instance field to a local variable
is still performed by using the = symbol. The adaptations are performed by modifying the
way the XSL file generates the C source code.

Global Variable Allocation: The second change adapts the way global variables rep-
resenting the static class variables of Java are allocated. In XMLVM global variables are
declared in the data section of the RAM. To get a more precise result on how much
FLASH memory the converted project consumes, the global variables are allocated in the
gFlashMemArray in this step. The global variables are changed into pointers holding the
address of the actual variables allocated in the gFlashMemArray. Listing 4.18 visualizes
this change.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 81

Listing 4.18: Adaptation of static field allocation

//--------------------- Static field allocation ---------------------//

//old static field allocation

static JAVA BYTE STATIC test doc TestClass staticFinalField = 0;

//new static field allocation

static JAVA BYTE∗ STATIC test doc TestClass staticFinalField = JAVA NULL;

void INIT IMPL TestClass()
{
...
//allocate static variable and assign default value to it

long long v = 0;
STATIC test doc TestClass staticFinalField = FLASH ALLOC(sizeof(JAVA BYTE));

MEM COPY(STATIC test doc TestClass staticFinalField, &v, sizeof(JAVA BYTE));
...
}

Also this modification is performed by adapting the XSL file.

TIB Structure Allocation: The third modification which needs to be performed is
how the TIB structures representing the Java classes are allocated. XMLVM declares a
global TIB variable for each converted class. Furthermore, this global variable is partly
initialized already on declaration. To simulate the allocation of the TIB structure in the
FLASH memory, the global variable is replaced with a TIB pointer. The initialization is
completely performed in the INIT IMPL function of the class. The partial initialization of
the global TIB structure is depicted in Listing 4.7. In Listing 4.19 the changes performed
to the structure’s allocation and initialization is shown. Fields of the TIB which were also
initialized in the INIT IMPL function by the original XMLVM translation process are still
initialized by this function using, however, the MEM COPY function. The memory for the
TIB structure is allocated using the FLASH ALLOC function in the INIT function.

Listing 4.19: Adaptation of TIB allocation and initialization

//-------------------- Old allocation and initialization --------------------//

TIB DEFINITION test doc TestClass TIB TestClass = {
//Init

}

void INIT IMPL test doc TestClass() {
...
// Initialize vtable for this class

TIB test doc TestClass.vtable[6] =
(VTABLE PTR) &test doc TestClass virtualMethod byte;

...
}

//-------------------- New allocation and initialization --------------------//

TIB DEFINITION test doc TestClass∗ TIB TestClass = JAVA NULL;

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 82

void INIT test doc TestClass() {
if (TIB test doc TestClass == JAVA NULL){

TIB test doc TestClass = FLASH ALLOC(sizeof(TIB test doc TestClass));
INIT IMPL test doc TestClass();

}
}

void INIT IMPL test doc TestClass() {
...
int zero = 0;
// classInitialized

MEM COPY(& TIB test doc TestClass−>classInitialized, &zero, sizeof(int));
// extends

MEM COPY(& TIB test doc TestClass−>extends, & TIB test doc TestBaseClass,
sizeof(TIB DEFINITION TEMPLATE∗));

// Initialize vtable for this class

VTABLE PTR pfunc = test doc TestClass virtualMethod byte;
MEM COPY(& TIB test doc TestClass−>vtable[6], &pfunc, sizeof(VTABLE PTR));
...
}

Even the changes for the allocation and initialization of the TIB are realized by modifying
the XSL file. Through the adaptations performed to the generating process, the TIB struc-
tures representing the Java classes are now allocated in the memory array simulating the
FLASH memory section of the targeted platform.

Object Allocation: The last adaptation, needed for allocating all but the local variables
in the simulated FLASH memory section, targets the object creation. XMLVM allocates
the structures representing the Java objects in the heap section of the RAM by using
the standard C malloc function. This allocation is performed by calling the appropriate
NEW function which represents the targeted Java constructor. Instead of performing the

allocation using the malloc function the FLASH ALLOC macro is utilized. In addition, the
assignment of the tib field of the object structure is changed from assigning with = to
using MEM COPY macro. Listing 4.20 visualizes this change in more detail.

Listing 4.20: Adaptation of object allocation and initialization

JAVA OBJECT NEW test doc TestClass() {
...
//old object allocation

test doc TestClass∗ me = XMLVM MALLOC(sizeof(test doc TestClass));
me−>tib = & TIB test doc TestClass;

//new object allocation

test doc TestClass∗ me = FLASH ALLOC(sizeof(test doc TestClass));
MEM COPY(&me−>tib, & TIB test doc TestClass, sizeof(void∗));

...
return me;
}

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 83

Furthermore, the instance fields assignment to default values must be changed as well.
For this modification the assignment which is performed by XMLVM using the = operator
is also replaced with a call to the MEM COPY macro. The SimpleClass object structure
allocated for each converted Java class has already been changed to the simulated FLASH
memory through the modifications performed in this step. Again, the XSL file is used for
performing the adaptations to the object allocations and initialization.

Testcase FLASH - RAM

A test case is created for checking the adaptations performed in this step. It consists of
a Java class with static and virtual fields and methods manipulating the values of them.
Furthermore, it is verified that the C representations of the static and virtual fields as well
as the TIB structures are allocated inside the gFlashMemArray by checking the addresses
the individual pointers are pointing at.

Conclusion

By performing the adaptations explained in this step the object life cycle is shifted to the
FLASH memory simulated by the gFlashMemArray. Figure 4.2 depicts the new memory
layout in comparison with the old one in more detail. The modifications are verified by
implementing an additional test case. Furthermore, comparing the output of the test
project converted with the modified framework to the output of the test project translated
with the original XMLVM framework shows that both version of the test project produce
identical debug information. Checking the pFreeFlashMem after executing the whole test
project shows that 7216 bytes of memory are allocated. The biggest part of this memory
area is needed for storing the single String objects holding the debug information being
sent via UART. With this step, the boarding to the NXP platform is prepared which is
described in Section 4.2.3

SimpleClass object references

SimpleClass object references

FlashMemArray

Global TIB references

Global class field references

TIB structures

Class field variables
Object structures

itable[] / vtable[]

Global class field variables

Global TIB structures

Local variables

RAM

Stack

Heap

Object structures

itable[] / vtable[]

Local variables

RAM

Stack
Stack

FlashMem
Array

Uninitialized
data

Stack

Heap

Uninitialized
data

Initialized
data

Figure 4.2: Memory layout of Java Card object life cycle simulation

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 84

4.2.3 Boarding to the NXP Chip

This section describes what modifications are performed to execute the generated test
project on the NXP platform. It explains which parts of the JCOP system are used for
providing the necessary functionality to the generated C source code. Furthermore, the
adaptations performed on both the JCOP system and the framework are outlined. These
are needed for realizing the persistent object allocation utilized for realizing the Java Card
life cycle. The modified XMLVM framework in this and the further steps is referred to as
the JCF.

JCOP Initialization and Test Project Execution

As described in section 1.3.4, the JCOP system consists of several layers. As the byte code
usually interpreted by the JCVM is directly converted by the JCF into compilable C source
code, a big part of the OS layer of JCOP is not needed. However, the underlying HAL is
crucial to be properly initialized. It is needed for providing the necessary functionality to
use the UART and manipulate the FLASH memory. Therefore, several parts which are
also performed during the start up of the JCOP OS were taken over and called from a
main function. Similar to a normal C function, an executable loaded to the NXP platform
needs such a main function as its entry point, as well.

This start up routine initializes and checks hardware registers as well as the memory.
Hardware registers must first be checked on consistency. This verification has been per-
formed as certain registers might be manipulated during a hardware-based attack on the
chip. After this check is performed, the memory is initialized. In this phase the address-
es of the RAM and FLASH memory and other memory sections are set. Furthermore,
certain memory regions are cleared in such a way that data from previous executions do
not influence the process. Furthermore, the Memory Management Unit (MMU) as well as
the communication manager are enabled and set up. This initialization routine must be
performed before being able to call the converted test project. Additionally to the above
described initialization routine the UART of the NXP platform is set up as well. Similar to
the version of the converted test project loaded to the STM32 discovery board described in
Section 4.2.2 in this step the UART is utilized for outputting the debugging information,
as well.

After performing the initialization of the JCOP HAL as well as the UART the converted
test project is loaded and executed on the NXP platform. With these few changes to the
framework, the execution of the project is possible as the implemented HAL functions
described in Section 4.2.2 only utilize the structures defined by the framework. Therefore,
no external dependencies are needed. Only the printf function introduced in Section 4.2.2
now calls the UART functionality of the NXP platform instead of the one provided by the
STM32 discovery board.

Realization of FLASH Simulation

In the next step of the modification process the allocation of the TIB structures, the object
structures and the global class field variables must be shifted from the gFlashMemArray to
real FLASH memory. But not only the structures themselves must be put into persistent
memory. After a card reset or a power loss the pointers storing the addresses of the

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 85

individual structures must be retrievable as well. Otherwise, the data of the represented
class or object would be preserved in the FLASH memory, but the program would not
be able to retrieve them as their addresses would be lost. Therefore, the FLASH memory
section is split into several regions. Furthermore, the Java class implementing the main

function must be retrievable. Therefore, its reference must also be preserved in some
way. The next paragraphs explain the changes to the memory layout and to the object
referencing which enable the realization of the Java Card object life cycle.

Memory Sections - Linker Script: JCOP defines a memory region placed in the
FLASH memory for storing objects as well as the Java Card byte code being interpreted
by the JCVM. This region is called pheap. As the object representation generated by the
JCF needs to be stored persistently (as it is stored by JCOP) and no Java Card byte
code is loaded to the NXP platform, the pheap memory section is perfectly suited for the
targeted persistent class and object allocation. With 891KB of space this section is also
big enough. Additionally to the TIB, object structures and the global class field variables
which need to be stored in FLASH, also the pointer variables referencing the individual
TIB structures and the Class objects must be allocated persistently. Therefore, the pheap

is split into several sections.
The first section of the pheap is used for storing the mother object. This section is

called the persMemMORef and is only four bytes big. This is exactly the amount of bytes
needed to store a pointer variable. After this first section the persMemTIBRefs section is
defined. This section is used for storing the pointer referencing the allocated TIB struc-
tures. It offers 1024 bytes of FLASH memory which allows 256 classes to be referenced.
After this persMemTIBRefs section comes the persMemClassRefs section. Similar to the
section before, it is used for preserving addresses of structure. Instead of holding the
references to the TIB structures, it is used for storing the CLASS pointers referenc-
ing the individual SimpleClass objects allocated for each converted Java class. Like the
persMemTIBRefs section it also allows 256 pointers to be stored. The section following
the persMemClassRefs is used for storing various global variables, used by the underlying
framework which must also be stored persistently. This section is called persMemGlobVars

and takes up 1024 bytes of FLASH. The next section is used for storing the global class
variables. They are no longer allocated by the FLASH ALLOC macro and referenced by
pointers but generated as normal variables. They are stored in the persMemStaticFields

section. This section also offers 1024 bytes of memory. How many variables can be stored
in there depends on their individual types. The last memory section defined in the former
pheap region is called persMemObjectTIB. It is used for allocating the TIB and object
structures. This section is the largest one providing 887804 bytes of persistent memory.

These memory sections are defined by adapting the linker script with which the JCOP
system is configured. For every section an individual attribute is added. This attribute is
then assigned to global variables in the C code to tell the linker in which memory section
it must be put. Listing 4.21 depicts an example of how such attributes are used.

Listing 4.21: Example of attribute usage in C code

int gExampleIntVariable attribute ((section("persMemGlobVars")));

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 86

Adaptation of C Code Generation: With the newly defined FLASH memory sec-
tions the generating process of the JCF needs further adaptations. The pointers referencing
the allocated TIB structures are put into the persMemTIBRefs section. Therefore, they can
only be manipulated by using the MEM COPY macro. This is especially important during the
class initialization. Listing 4.22 shows the difference between the old class initialization
and its new implementation.

Listing 4.22: Adaptation of TIB referencing

//-------------------- Old allocation and initialization --------------------//

TIB DEFINITION test doc TestClass∗ TIB TestClass = JAVA NULL;

void INIT test doc TestClass() {
if (TIB test doc TestClass == JAVA NULL){

TIB test doc TestClass = FLASH ALLOC(sizeof(TIB test doc TestClass));
INIT IMPL test doc TestClass();

}
}

//-------------------- New allocation and initialization --------------------//

TIB DEFINITION test doc TestClass∗ TIB TestClass
attribute ((section("persMemTIBRefs"))) = JAVA NULL;

void INIT test doc TestClass() {
if (TIB test doc TestClass == JAVA NULL){

JAVA OBJECT pTemp = FLASH ALLOC(sizeof(TIB test doc TestClass));
MEM COPY(& TIB TestClass, &pTemp, sizeof(JAVA OBJECT));

INIT IMPL test doc TestClass();
}
}

Additionally to this change of the global variables referencing the allocated TIB structures,
the global pointers to the SimpleClass objects representing the individual classes must
be modified as well. These modifications are depicted in Listing 4.23. Each SimpleClass

object pointer is added with the persMemClassRefs attribute. Furthermore, the pointers
are only manipulated using the MEM COPY macro.

Listing 4.23: Adaptation of SimpleClass object referencing

JAVA OBJECT CLASS test doc TestClass
attribute ((section("persMemClassRefs"))) = JAVA NULL;

JAVA OBJECT pTemp = XMLVM CREATE CLASS OBJECT(TIB test doc TestClass);
MEM COPY(& CLASS test doc TestClass, &pTemp, sizeof(JAVA OBJECT));

The next change to the C code generating process is targeted on the global class vari-
ables. In the step in which the FLASH memory is simulated by the gFlashMemArray,
the global class variables are allocated in the FLASH memory and referenced by global
pointers. This change is reverted in the sense of declaring global class variables instead
of pointers. However, these variables are put into the FLASH memory by assigning them
the persMemStaticFields attribute. Therefore, they are no longer allocated using the
FLASH ALLOC but instead directly manipulated via the MEM COPY macro. Listing 4.24 shows

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 87

this modification in detail.

Listing 4.24: Shifting the static field allocation to real FLASH

//--------------------- Static field allocation ---------------------//

//old static field allocation

static JAVA BYTE∗ STATIC test doc TestClass staticField = JAVA NULL;

void INIT IMPL TestClass(){
...
//allocate static variable and assign default value to it

long long v = 0;
STATIC test doc TestClass staticField = FLASH ALLOC(sizeof(JAVA BYTE));

MEM COPY(STATIC test doc TestClass staticField, &v, sizeof(JAVA BYTE));
...
}

//new static field allocation

static JAVA BYTE STATIC test doc TestClass staticField
attribute ((section("persMemStaticFields"))) = 0;

The last change on the conversion process is made to add the information if a static
class field is final or not to the IR. This data is added via a new attribute inside the
vm:field tag of the XML files. Listing 4.25 visualizes how the public final static byte

staticFinalField is represented.

Listing 4.25: IR of staticFinalField

<vm:field name=”finalField” type=”byte” isStatic=”true” isPublic=”true”
isFinal=”true”/>

Based on this new information the C generating process in adapted. As final static
variables are not allowed to be changed during program execution, the value they are
assigned to upon declaration is preserved during the whole program’s life time. Therefore,
in C code they can be declared as const variables. Furthermore, const variables are put
into the TEXT section of the memory along with the program’s native code which is put
into the FLASH memory of the NXP platform. Listing 4.26 depicts the difference between
the old C representation of a final class field and the new one.

Listing 4.26: Representation of final static field in C

//--------------------- Static field allocation ---------------------//

//old static field allocation

static JAVA BYTE STATIC test doc TestClass staticFinalField
attribute ((section("persMemStaticFields")));

//new static field allocation

const static JAVA BYTE STATIC test doc TestClass staticFinalField = 0;

All the modifications described in this paragraph are performed by adapting the XSL file.
For the last adaptation also the scanning process of the byte code needs to be extended.

Mother Object: As already mentioned before, references to objects and TIB structures
need to be persistent beyond the program’s execution. To find the reference to the object

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 88

from which to start the execution, a so-called mother object is added. In this step the
mother object stores the address of the class instance holding the main function used as
entry point to the test project. Furthermore, the static void main(String[] args)

method is replaced by a virtual void main() method. Therefore, the call of this main

function must be adapted in the generated C code. This new call is depicted in Listing
4.27.

Listing 4.27: Creation of mother object and call of main function

JAVA OBJECT motherObject attribute ((section("persMemMORef"))) = JAVA NULL;
...
if(motherObject == JAVA NULL){

JAVA OBJECT pTemp = NEW test doc Main();
MEM COPY(&motherObject, &pTemp, sizeof(JAVA OBJECT));
}
test doc Main main (motherObject);
...

Object and TIB structure allocation: The last persistent memory section defined in
the linker script, which is not yet explained in more detail, is the persMemObjectTIB region.
Similar to the gFlashMemArray used in the Section 4.2.3 the persMemObjectTIB section is
used for allocating the TIB structures as well as the object structures. To simplify things the
gFlashMemArray is put into the persMemObjectTIB section and its size is adapted to fully
cover this section. Furthermore, the pFreeFlashMem pointer indicating the beginning of the
unallocated memory inside the gFlashMemArray is put into the persMemGlobVars section
by using its attribute. With these adaptations only the manipulation of the pFreeFlashMem
pointer must be modified. When allocating a new TIB structure or object it is changed by
using the MEM COPY macro. As the gFlashMemArray is still utilized, the persistent allocation
does not change at all from the caller’s perspective. The FLASH ALLOC macro is still used
for this.

Transient Memory: Another feature of Java Card is the possibility to create tran-
sient arrays. These arrays are not completely stored in FLASH memory as would be the
case when creating an array using the new keyword. The header information of a tran-
sient array, such as its length and its type, is put into persistent memory. However, the
data of the array is stored in the RAM. JCOP uses a dedicated memory section called
the theap for saving the data of such transient arrays. This section is also utilized by
the JCF to realize this feature. Similar to the gFlashMemArray a further array is de-
clared. This gTransientMemArray is put into the theap by utilizing its memory section
attribute. The allocation of space in this memory is performed in the same way as with
the gFlashMemArray by declaring a pFreeTransientMem pointer and setting it to the end
of the already allocated space inside the gTransientMemArray. This pointer is declared as
a global variable and allocated persistently inside the persMemGlobVars memory section.
Thus, after a card reset or power loss the pointer will still reference the end address of the
latest allocated transient memory block in the gTransientMemArray. Thus, the already
reserved memory for the data sections of the single transient arrays is not overwritten.
The gTransientMemArray itself is zero initialized. The described functionality is provided

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 89

by the means of the xmlvm mem manager TransientMemAlloc function. The data stored
in the gTransientMemArray can either be manipulated by using the = operator or by
utilizing the MEM COPY macro.

To create a transient array a new native function is implemented. This function creates
the SimpleArray object representing the Java array in the gFlashMemArray as usual. But,
instead of allocating the memory for storing the data in the persistent memory, it is stored
by allocating space in the gTransientMemArray. Thus, the array object itself outlives the
program’s execution, but the data is lost as soon as the card is reset or the device loses
power.

HAL Function Modification

Because of the changes performed on the TIB, object allocation and referencing, the HAL
functions need to be adapted as well. First of all, the MEM COPY macro needs to be mod-
ified. Until now, a self written mem manager MemCpy function is utilized. However, ma-
nipulating FLASH memory on the NXP platform must be performed by using a dedi-
cated memory copy function. This functionality is provided by the JCOP HAL through
the phScalMem copy function. As this function also takes a destination pointer, a source
pointer and a length value indicating the amount of bytes to copy as parameters, the
MEM COPY macro is used to abstract this function call. Therefore, from a caller’s perspec-
tive nothing changes. However, as data located in the gTransientMemArray does not need
to be manipulated using the special phScalMem copy function, the mem manager MemCpy

function performs a check, whether the provided destination address is located inside the
gTransientMemArray or not. If the destination pointer references an address inside this
array, a normal memory copy, as described in Section 4.2.2, is performed. Otherwise, the
phScalMem copy function is called. Figure 4.3 visualizes all the modifications performed
on the memory layer during this step.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 90

Transient dataFlashMemArray

RAM

Mother Object reference

Stack

FlashMemArray

Local variables

Final global class field variables

Global class field variables

SimpleClass object references

Global TIB references

itable[] / vtable[]

Object structures

TIB structures

FLASH

SimpleClass object references

FlashMemArray

Global TIB references

Global class field references

TIB structures

Class field variables

Object structures

itable[] / vtable[]

Local variables

RAM

Stack
Stack

FlashMem
Array

Uninitialized
data

Stack

FlashMem
Array

Uninitialized
data

Initialized
data

persMem
ClassRefs

persMem
TIBRefs

persMem
MORef

Transient
MemArray

Figure 4.3: Memory layout of Java Card object life cycle simulation

Testcase persistent Counter

To test the realization of the Java Card object life cycle an additional test case is im-
plemented. This test case consists of a TestCounter class which contains one instance
field int counter which is initialized to 0. In each run of the test project this counter is
increased. It is checked at the start up of the test project if the counter is not 0. Thus, it is
verified that its value is retrieved from the persistent memory and not lost in between two
executions. Another test case is added to check the allocation of transient and persistent
arrays. It is checked at the start up of the test project if the data of an already existing
transient array is set to 0 and if the data of an already existing persistent array is not
reset. This test case verifies that the data stored by a persistent array outlives a card reset
but data saved in a transient array, not.

Conclusion

With the adaptations described in this Section, the Java Card object life cycle is finally
represented by the C representation generated by the JCF. This step enables the Java
Card framework translation as well as converting a Java Card applet to native code. This
last step is documented in Section 4.2.4.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 91

4.2.4 JCOS and TestApplet

After successfully boarding the test project to the NXP platform and verifying that the
changes performed to the memory allocation represents the Java Card object life cycle, the
next step is to replace the Java framework with the Java Card framework. Furthermore,
the test project launching the single test cases is replaced with a test applet as utilized
in Java Card . For enabling the interaction with a terminal the receiving, dispatching and
sending of APDUs must be implemented. This is accomplished by implementing a Java
Card Operating System (JCOS).

Java Card Framework

Java Card provides its own framework and API on which the implementation of an applet
is built. In the preceding steps the Java framework is converted, compiled and linked with
the test project to provide it with the necessary classes. As in this step the target is to
replace the test project with a test applet, the Java framework must be replaced with
the Java Card framework. Because of the adaptations of the Java framework provided
by XMLVM performed in Section 4.2.1, the differences to the Java Card framework are
minor.

In Java Card an implementation of an applet is always performed by extending the
Applet class. This Applet class comes with a range of dependencies not needed for the
test project with which the test cases are executed up to this step. Furthermore, JCOP
also provides its own API which is utilized in such an applet implementation. The Ja-
va Card framework as well as the JCOP API partly utilize functionality provided by
the Global Platform (GP) framework. The GP is a public association publishing specifi-
cations for secure smart card chips. In order to not overload the converted applet with
unnecessary functionality of APIs not needed, certain dependencies were cut by modify-
ing the Java Card framework and the JCOP API. The adaptations must be performed
in two classes. In the OsInit class of the com.nxp.id.jcop.os package the calls to the
initialization functions of configuration dependent classes are removed. Furthermore, the
configuration dependent instantiation of Exception classes is omitted. In the Applet class
of the javacard.framework package the final register method is modified. This method
is used to register the applet at the underlying JCVM. In this process the Applet Identifier
(AID) is retrieved from a received APDU and processed. The method is adapted in such
a way that this step is skipped.

Furthermore, the String class is removed from the conversion process. This removal
has the effect that the debugging information is removed from the single test cases. Instead
of printing the String information via UART, the result of a triggered test case is encoded
in a dedicated byte array. This byte array is sent back to the terminal using the response
APDU.

The modified version of the Java Card framework and the JCOP API still contain
a range of dependencies not yet known to the JCF. These dependencies must be added
to the greenlist. The following list shows the packages being added to the conversion
process.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 92

• Packages completely added to the greenlist:

– com.nxp.id.jcop.annotations

– com.nxp.id.jcop.javacard.security

– com.nxp.id.jcopx.security

– com.nxp.id.jcop.os

– javacardx.crypto

– javacard.framework

– javacard.security

Furthermore, a range of different classes extending the Exception class as well as the
SystemUtils class located in the com.nxp.id.jcop.globalplatform.auxiliary package
is added. After adding these classes to the conversion process, a simple test applet is
convertible.

TestApplet

The TestApplet used for replacing the test project from the previous steps must extend
the javacard.framework.Applet class. Therefore, it must at least override the install

and the process method. In the install method the TestApplet instantiates the single
classes of the test cases and calls the register method of its base class. In the process

method the TestApplet receives the APDU from the underlying OS layer by calling the
getBuffer method of the APDU class. It then proceeds to dispatch the received APDU.
Depending on the format of the APDU the selected test case is executed and its result is
sent back. If the format is erroneous or no test case can be selected by the received APDU,
an error code is sent back by the TestApplet.

Mother Object Container

As the TestApplet is now used as the main class from which the execution is started, the
mother object must be adapted as well. There is no longer an instance main method which
triggers the single test cases. Instead, this is performed by the process method of the
TestApplet. To better handle the reference to the instance of the TestApplet the mother
object is extended. In Section 4.2.3 the mother object is introduced as a mere reference
to the main class instance of the test project. In this step a MotherObjectContainer

class is implemented. This class contains an applet field for referencing an applet as
well as an instance field for storing an APDU object. Furthermore, it provides a native
nativeInstallApplet method which calls the install method of a predefined applet.
It also provides a dispatchApdu method which calls the process method of the applet
assigned to the applet field. Furthermore, this dispatchApdu method catches the excep-
tions thrown by the process method and creates a response APDU according to the result
of this method. The MotherObjectContainer class must be added to the greenlist.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 93

Native Function Implementation

The implemented TestApplet is converted with the framework classes indicated by the
greenlist. However, the resulting C project is not yet compilable. This is due to native
methods being declared by the added classes but not yet implemented. Most of these
native methods are not even called during the execution of the TestApplet. Therefore,
these methods are stubbed with C functions not containing any meaningful code. However,
certain native methods must be implemented. The implementations of these methods are
very close to native functions provided by the JCOP OS. These functions are described in
the following paragraphs grouped by their classes.

OSUtils: The short2Object function receives an index and returns the object reference
associated with this index. In this step it is only needed for returning the reference to the
exceptionArray which stores an instance for each Exception class provided by the Java
Card framework and the exceptionReasonArray which holds the reason codes for the
single exception instances.

Applet: The nativeRegister function takes as a parameter the reference of the applet
object to be registered and simply assigns the applet field of the MotherObjectContainer
to this reference.

OsInit: The setSelectionState function sets the global gcSelectonState variable to
the received value. The getSelectionState function returns this value to the calling
function. The setProcessingState function sets the global gcProcessingState variable
to the received value. The getProcessingState function returns this value to the calling
function.

APDU: The nativeGetCurrentAPDU function checks if the apdu field of the
MotherObjectContainer is already set. If not, it creates a new instance of the APDU

class and assigns it to the apdu field. The APDU.getBuffer maps the APDUBuffer char

array of the internal structure of the NativeAPDU provided by the JCOP HAL to a byte
array represented by a SimpleArray object and returns it. The setIncomingAndReceive

function sets the state of the NativeAPDU structure to INCOMING and returns the length
of received APDU’s data . The getCurrentState function simply returns the state field
of the NativeAPDU structure.

APDUObj: The getApduLengthType function returns the apduLengthType field of the
NativeAPDU structure. The setOutgoingAndSend function sets the field of the NativeAPDU
structure according to the provided parameters and sets its state field to OUTGOING. The
setState function sets the state field of the NativeAPDU structure to the provided value.
The getLe function returns the expected length field of the NativeAPDU structure.

JCSystem: The throwIt function receives as parameters the index of the targeted
exception object stored in the exceptionArray array and the reason why this exception is
thrown encoded with a short variable. It checks if the indexed exception exists. If it exists,

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 94

it retrieves the element of the exceptionReasonArray defined by the index parameters
and sets it to the provided reason.

SystemUtils: The setApduSW function receives a status word (SW) to be sent back
with the response APDU. Therefore, it sets the sw field of the NativeAPDU structure to
the provided parameter.

JCOS

The JCOS as explained ins Section 3.2.4 must perform the tasks which are normally han-
dled by the JCOP OS layer. It must receive and dispatch APDUs, initialize the necessary
data structures, install and execute applet and send back the response APDU.

In more detail the JCOS performs exactly the same initialization of the HAL as done
by the main function described in Section 4.2.3 on its initial start up. However, instead
of calling the test project’s main method, it immediately jumps into an endless loop. The
first action inside this loop is to call the receiveData function provided by the HAL which
continuously listens for an incoming APDU. On the first received APDU the initialization
process of the HAL is finished and the NativeAPDU structure is initialized. Afterwards,
the APDU’s format is checked by utilizing the apduDispatch function provided by the
JCOP HAL. If the format is correct, the JCOS checks whether the necessary structures
for running the converted TestApplet are already instantiated.

If not, the JCOS creates a MotherObjectContainer object and assigns its address
to the mother object pointer. Furthermore, it creates the exceptionArray as well as the
exceptionReasonArray. Then it calls the rom init method of the OsInit class. This
method creates one instance for every exception class provided by the Java Card frame-
work and stores them into the exceptionArray at their dedicated indexes. Then it initial-
izes the apdu field of the MotherObjectContainer object by calling the
nativeGetCurrentAPDU function and assigning its return value to this field.

If the necessary structures are already initialized, the dispatchApdu method of the
MotherObjectContainer is called. In this method it is checked whether an applet is al-
ready installed and registered or not. If no applet is installed, the nativeInstallApplet

is called. This method installs the predefined applet by calling its install method. In-
side this method the applet calls the native register function which assigns the instance
of the installed applet to the applet field of the MotherObjectContainer. If the applet
is already installed and registered, the MotherObjectContainer checks if an applet is
selected.

The MotherObjectContainer checks for each APDU, if it is a select command. If a
select command is received the applet is selected by calling the select() method of the
applet. Afterwards, the process method of the applet is called. If an APDU, which is no
select command, is received and no applet has been selected, the MotherObjectContainer
sends back a FILE NOT FOUND status word. The applet selection state is tracked by using a
simple state machine. Figure 4.4 depicts the applet selection as a control flow diagram. This
state is lost on a power loss or card reset. Therefore, at the beginning of each transaction the
applet must be selected. This procedure was implemented, as applets generally require the
select method to be executed before the process method can be run. After a successful

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 95

applet selection, its process method is called with each received APDU. This method is
provided the apdu field of the MotherObjectContainer as parameter.

check APDU

is select
command?

check selection state

select applet

Yes

No

check
Applet
installation

Send response
OR run Applet

is Applet
selected?

continue with Applet execution

Yes

SW FILE NOT FOUND

No

Figure 4.4: Execution Flow Diagram of the Java Card OS

After the applet’s execution, the dispatchApdu method checks if the process function
returned normally or if an exception was thrown. If an exception was thrown, its reason
is set as SW of the APDU. This is accomplished by calling the getReason method of
the exception object. This method accesses the exceptionReasonArray and retrieves the
reason value stored at the index assigned to the exception. This reason value is set as SW
of the APDU by calling the native setApduSW function. If no exception occurred, it is
assumed that the response APDU was properly set up during the process method.

Finally, the state of the JCOS is set to NO PROCESS IN PROGRESS using the native
setProcessingState and to NO SELECTION IN PROGRESS using the native
setSelectionState function. With these last tasks performed, the dispatchApdu method
returns and the JCOS continues with its execution.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 96

Before sending back the response APDU set up by the applet or the
MotherObjectContainer, the value set in the sw field of the NativeAPDU structure is
appended to its data char array. Therefore, also the length must be set accordingly. Af-
ter these final operations the response APDU is sent by calling the sendData function
provided by the HAL. Thereafter, the execution jumps back to the receiveData function
and listens for the next APDU sent to the card. Figure 4.5 depicts the complete execution
flow of the JCOS. The state check Applet selection is a simplified abstraction of Figure
4.4

initialize HAL receive APDU

wait for APDU

Initialize JC OS

is JC OS initialized

No

dispatch APDU

check JC OS

correct APDU format

No

Yes

run Application

send Response APDU

check Applet installation

Yes

is Applet installed

Install Applet

No

check Applet selection

Yes

selection
State ok?

Yes

No

Figure 4.5: Execution Flow Diagram of the Java Card OS

Testcase Exception Handling and APDU

The features of the exceptionArray, the exceptionReasonArray and the APDU handling
are tested by two additional testcases. The first test case deliberately throws exceptions
using their throwIt method and setting reason values. The response APDUs are checked
whether they hold the correct reasons as SWs. The second testcase inverts the data section
of the received APDU and sends the inverted data back to the terminal.

CHAPTER 4. IMPLEMENTATION OF THE FRAMEWORK 97

Conclusion

With this last modification step, it is accomplished to convert a TestApplet extending the
Java Card Applet class and using it to trigger the testcases implemented in the predecessor
steps. Furthermore, the JCOS allows APDU handling similar to how it is performed by
the JCOP OS.

4.3 Resulting Compilation Process

Summarizing, performing the modifications on the XMLVM framework described in this
Chapter, a framework is created capable of translating a Java Card applet plus the Java
Card framework classes it depends on to a C program. Utilizing a rudimentary Java
Card OS, the JCOP HAL is initialized and thus the converted applet and the Java Card
framework classes can make use of the functionality provided by the underlying layers.
This C program is compiled using a standard C compiler. The resulting executable is
small enough to fulfill the memory constrains of an NXP platform. Furthermore, the
object life cycle is modified in such a way that it maps the requirements of the Java Card
specification. In Section 1.3.4, a Figure is depicted which shows the layout of the JCOP
system. In Figure 4.6,this same layout is visualized and furthermore it is indicated which
parts are converted, which are natively implemented and which are omitted completely.

Native

converted

Natively

implemented

Figure 4.6: Execution Flow Diagram of the Java Card OS

The Java Card Runtime Environment which is part of the Java Card framework
is partly converted and partly implemented as native functions. The Java Card API is
converted using the JCF. The GP Card Manager part is omitted in this version of the
JCF but can be converted as well. The JCVM is completely removed.

For additional applets to be converted and natively compiled for an NXP platform,
the Java Card framework classes must be added to the conversion process and their native
function calls must be implemented, if necessary.

Chapter 5

Evaluation

Concluding the thesis, the Evaluation chapter describes both benefits and drawbacks of
precompiling Java Card code using the JCF compared to interpreting it using a VM. The
single aspects of the evaluation are explained in the single sections of this chapter. After
the implementation of the JCF, the performance of the compiled applets is compared to
the performance of the interpretation of their byte code representation using the JCVM.
This comparison and a detailed explanation of the tests performed to verify the correct
translation of the Java Card code can be found in Section 5.1. Furthermore, also the
impact of the translation process on the various security mechanisms provided by the
JCVM is explained in Section 5.2.

5.1 Performance Evaluation and Testing

In this section, the testing of the conversion process of the JCF is explained in more detail.
The tests are basically used to verify that the execution of an applet, which is precompiled
by the JCF, leads to the same result as interpreting its byte code using the JCVM.
Furthermore, the performance of the precompiled applet is compared to the performance
of its interpreted version. In this section, the resulting code size of the compiled applet is
collated with the size of its byte code representation as well.

5.1.1 JCF Translation Testing

In this section, the results of the TestApplet being interpreted by the JCVM are compared
to the results received when executing the natively compiled applet directly on the chip.
The table depicted in Figure 5.1 shows the r-APDUs sent back by the interpreted and
the compiled TestApplet when triggering the single testcases. The Invert APDU testcase
sends an c-APDU containing some data to the card. The TestApplet inverts the data and
sends it back in the r-APDU. The Test Method Overriding testcase checks, if the methods
are correctly overridden by their extending classes. Each method of a class instance in the
hierarchy appends its own specially encoded byte to the data of the r-APDU. This data is
then sent back to the terminal. The Test Instanceof testcase checks if an object is correctly
identified being an instance of a certain class/interface or not. The result of this check is
set to 0x01, if it is true and to 0x00, if it is false. Each result is appended to the data of
the r-APDU. At the end, the results are sent back. The Test Field Inheritance testcase

98

CHAPTER 5. EVALUATION 99

checks, if the single instance fields are inherited from a base class to its extending class.
The values of the single fields of the classes, represented in the class hierarchy, are put into
the data section of the r-APDU and sent back. The Initialize Arrays command initializes
the persistent and transient arrays and creates two instances of the TestCounter class.
The testcases six, seven and eight are triggered two times in a row. In between a card
reset is performed. The Test persistent Arraytestcase returns the data of the persistent
array, the Test transient Array testcase returns the data of the transient array and the
Test persistent Counter testcase increases object fields of the two TestCounter objects
(the first by one, the second by two) and sends back their values. At the first execution
both the arrays contain the initialized values. Test counter one is set to one and test
counter two is set to two. After the reset the persistent array still contains the data it was
initialized with, but the transient array’s data is lost. Therefore, only 0x00 is returned.
Test counter one is now increased to two and test counter two is set to four. The next
three testcases trigger exception handling by causing ISOExceptions that are thrown with
different reason codes. Each of the three testcases additionally checks, whether the JCF
correctly converts the catching of exceptions thrown by a called method. The Test Excep-
tion CLA testcase causes a “CLA not known” error and expects the SW CLA NOT SUPPORTED

(0x6E00) to be returned. The Test Exception INS testcase causes a “INS not known” er-
ror and expects the SW INS NOT SUPPORTED (0x6D00) to be returned. The Test Exception
P1P2 testcase causes a “P1P2 not known” error and expects the SW P1P2 NOT SUPPORTED

(0x6B00) to be returned. The Test finally testcase checks, whether the finally block of a
try - catch block is correctly entered. The Test Nullpointer testcase deliberately access-
es an unassigned object and expects an NullPointerException to be thrown. The Test
ArrayBounds testcase tries to access an element within an array using an index that is out-
side the bounds of the array. The testcase expects an ArrayIndexOutOfBoundsException

to be thrown. As it can be seen in Figure 5.1, both the interpreted as well as the compiled
version of the TestApplet return exactly the same r-APDUs when the single testcases get
triggered.

Additionally to the TestApplet, a banking applet is compiled using the JCF. This
banking applet is used as a reference for benchmarking payment transactions in the in-
dustry. This applet is personalized with key material in a first phase and then performs
asymmetric cryptographic operations for securing the transaction process. This applet is
chosen because of two reasons. Firstly, by being able to compile this banking applet, it can
be shown that the JCF is fully operational and can be used to compile Java Card applets
utilized in the industry. Secondly, banking applets need to meet a very demanding timing
criteria. Thus, it is not only shown that the JCF’s compilation process is fully functional,
but also that the precompiled applet’s performance is superior to its interpreted version.
Therefore, translating such an applet with the JCF can greatly help to meet the given
performance goals.

CHAPTER 5. EVALUATION 100

Figure 5.1: Table of r-APDUs of interpreted and compiled TestApplet

5.1.2 Performance Measurements and Code Size Comparison

To measure the performance increase achieved by the pre-compilation, two applets are
translated using the JCF. Both the execution times of the interpreted applets and the
natively compiled applets are then measured and compared to each other. In each time
measurement, the execution time of the whole transaction is recorded. This execution
time does not include the processing time that is needed by the host. To diminish the
distortions, which might occur in a single transaction, each transaction is measured 20
times and the mean value of the aggregated execution times is calculated. This mean
value is then used for the comparison.

The execution time is affected by two factors. The first factor which must be taken
into account is the communication speed. This speed influences the timing measurement
as complete transactions are measured. To evaluate the impact of the communication
speed on the transactions the interpreted and natively compiled applets are tested using
two different speed adjustments: 0.5 MHz and 6 MHz. The second factor, which only
influences the execution speed of the natively compiled applets, is the optimization level
of the utilized ARM compiler. The used compiler lets you choose from four different
optimization levels. From this range (0 to 3), the optimization levels 0 and 2 are chosen.
Level 0 performs no optimization of the code but only simple source code transformations.
It also does not impact the debug view when executing the code, which, therefore, implies
that every line of source code is compiled. Level 2 performs high optimization of the
source code and is the default optimization level. Additionally to this optimization level
also the Otime compiler option is enabled. This option lets the compiler perform even
more aggressive optimization that also possibly affects the size of the emitted object code.

CHAPTER 5. EVALUATION 101

If the Otime is not set, the compiler automatically optimizes for object code size [2], [1].
Level 2 optimization with Otime compiler option is also used for the underlying layers.

TestApplet and SHA512 Hash Algorithm

The first applet,that is converted performs a SHA512 hashing operation on some received
data. This algorithm is completely implemented in Java Card and was written by Eric
Larchevque, Nicolas Bigot, Nicolas Dorier and Pierre Pollastri. The source code can be
found at their github web page 1. Both the interpreted and the compiled version of the
hashing algorithm are executed for 16 and 80 rounds, respectively. The detailed timing
measurements are shown in Figure 5.2.

Comm speed rounds opt. Lvl time (ms) Comm speed rounds

0.5 MHz 16 O0 385

0.5 MHz 16 O2 169

0.5 MHz 80 O0 1890

0.5 MHz 80 O2 806

6 MHz 16 O0 383

6 MHz 16 O2 167

6 MHz 80 O0 1887

6 MHz 80 O2 801

0.5 MHz 88,86%

6 MHz 88,92%

0.5 MHz 89,01%

6 MHz 89,02%

0.5 MHz 95,11%

6 MHz 95,17%

0.5 MHz 95,31%

6 MHz 95,34%time saving O2 80r: x times faster O2 r80: 21,46

time saving O2 16r: x times faster O2 r16: 20,69

time saving O2 80r: x times faster O2 r80: 21,33

time saving O0 80r: x times faster O0 r80: 9,11

time saving O2 16r: x times faster O2 r16: 20,45

time saving O0 16r: x times faster O0 r16: 9,02

time saving O0 80r: x times faster O0 r80: 9,10

6 MHz 80 17189

time saving O0 16r: x times faster O0 r16: 8,98

0.5 MHz 80 17191

6 MHz 16 3456

Timing Measurements

TestApplet SHA 512 precompiled TestApplet SHA 512 interpreted

time (ms)

0.5 MHz 16 3456

Figure 5.2: Time measurements of SHA512 execution

As it can be seen in the table, the communication speed hardly influences the exe-
cution of the tested hash algorithm. The slower communication frequency merely adds
an static overhead of two to five milliseconds to the overall execution time of the single
transactions. This overhead is independent of how many hash calculations are performed
per transaction or the optimization level of the compiler. However, the optimization level
greatly influences the execution speed of the precompiled test applet. Using level 2 opti-
mization the transaction is more than two times faster compared to its level 0 optimized
version. This big impact on the execution speed is largely caused by the fact that the hash
algorithm is purely implemented in Java Card . Therefore, the whole hash computation,
which makes up most of the execution time, is affected by the optimizations applied to

1SHA512: https://github.com/LedgerHQ/ledger-javacard/blob/master/src-preprocessed/com/

ledger/wallet/SHA512.javap

CHAPTER 5. EVALUATION 102

the natively compiled code. Native functions implemented in a lower layer would not be
affected by the used optimization level. As the implementation of the hash algorithm does
not utilize any native functions for its computations, the precompilation of the Java Card
code greatly improves the performance of the SHA512 implementation. As depicted in
Figure 5.2, the natively compiled applet executes up to 21.46 times faster than the same
applet being interpreted by the JCVM. This means that the compiled applet reduces the
execution time by up to 95.34% of its interpreted version.

Considering the size of the Java Card byte code of the applet and comparing it to the
size of the object code of the natively compiled version, the precompiled applet needs 1.85
times more space than the byte code representation. The exact values for both the byte
code and the object code can be seen in Figure 5.3. Also the code size is largely affected by
the optimization level of the C compiler. Optimization level 2 saves, in this case, 30.24%
of size compared to optimization level 0.

opt. Level

O0

O2

O0

O02

Ratio compiled / BC: 2,41

Ratio compiled / BC: 1,85

Code Size Comparison

TestApplet precompiled TestApplet Bytecode

Size (byte) Size (byte)

31768
13209

24392

Figure 5.3: Code size considering the TestApplet

Reference Banking Applet

The second applet that is used for comparing both code size and execution speed is the
reference banking applet. As described in Section 5.1.1 this applet is personalized with key
material that is then used to perform asymmetric cryptographic operations needed for
secure transactions. Thus, the banking applet knows a personalization and a transaction
phase. The time measurements are only focusing on the transaction phase itself. Figure
5.4 depicts the impact of the precompilation on the transaction’s performance. It can be
seen that the transaction of the compiled banking applet executes 15.38% to 27.27% faster
compared to the interpreted version of the applet. Similar to the SHA512 hash algorithm,
the banking applet benefits from the optimization level of the compiler as well. However,
this optimization has a much lower impact on the banking applet than on the implemen-
tation of the hash algorithm. This is due to the ample utilization of native functions by
the banking applet. All the time consuming cryptographic operations are already imple-
mented in C . Therefore, the native compilation of this applet cannot achieve that much
speedup compared to the SHA512 algorithm which is purely written in Java Card . As
these native functions are provided by the lower layers of the system, the optimization
levels applied to the natively compiled banking applet have a lower performance impact as
well. As the transaction of the banking applet itself also takes less time than the execution
of the SHA512 with 16 or 80 rounds respectively, the communication speed has a greater
impact on the overall performance.

CHAPTER 5. EVALUATION 103

0.5 MHz time saving O0: 15,38% x times faster O0:

6 MHz time saving O0: 18,46% x times faster O0:

0.5 MHz time saving O2: 20,00% x times faster O2:

6 MHz time saving O2: 27,27% x times faster O2:

Timing Measurements

1,38

1,18

1,25

1,23

Banking Applet transaction precompiled Banking Applet transaction interpreted

Figure 5.4: Time measurements of the reference banking applet

As this time measurement shows, the speed up that can be achieved by precompiling
Java Card applets is determined by how much runtime is spent in natively implemented
functions. The more an applet utilizes these functions the less speed up is achieved, as
they are already implemented in C and natively compiled for the chip.

Furthermore, also the code size of the natively compiled banking applet and its byte
code representation is compared. The exact ratios can be seen in Figure 5.5. It can be
recognized that also in the case of the banking applet the size of the object code is greatly
influenced by the optimization level of the compiler. With optimization level 2 the compiler
produces an object code 1.4 times smaller than with level 0.

O0

O2

Ratio compiled / BC: 5,09

Ratio compiled / BC: 3,69

Banking Applet - Code Size Comparison

Figure 5.5: Time measurements of the reference banking applet

5.2 Security Evaluation

This section approaches the lack of security mechanisms that is caused by the translation
process of the Java Card applets. Alternative ideas of how to design and integrate such
mechanisms in the generated code are presented.

JCOP implements a range of features ensuring the security of the overall system. These
security mechanisms are placed both in software as well as in hardware. As the compilation
process proposed in this master thesis only influences the software part, the security of the
hardware is not examined any further. Furthermore, as the code generated by the JCF is
not bound to the targeted system the underlying hardware and its security mechanisms
might change. Considering the software security features the JCOP system provides, it
must be mentioned that most of them are placed in the HAL and the OS layer. As the
functionality provided by the HAL is not changed, the security mechanisms of this layer
are not undermined. However, the security features, which are part of the JCRE and the
JCVM are missing in the C code generated by the JCF.

The most important security feature implemented by the JCVM is the firewall. This
firewall ensures the isolation of installed applets and therefore, is also referred to as the
applet firewall. A JCVM allows more than just one applet to be uploaded and installed.
Because the objects allocated by an applet are put into persistent memory, they might

CHAPTER 5. EVALUATION 104

outlive the applet’s execution time, if not garbage collected by the runtime environment.
Therefore, it must be ensured that each applet is isolated. This means that an applet
cannot access or use the class instances allocated by other applets. Hence, an applet can
only access the virtual methods and fields of objects which reside in its context. This
security mechanism is fundamental. However, there must also exist a way with which
certain dedicated objects can be shared between applets, guaranteeing interoperability.
This functionality is provided by the JCRE by using a concept known as shareable interface
objects. The JC application programming interface (JCAPI) provides an interface called
Shareable. All objects which directly or indirectly implement this interface can pass the
applet firewall [16]. Furthermore, certain class instances of the JCRE are not restricted by
the firewall and, therefore, can be used by all applets [17], [18].

This applet firewall is not represented in the current version of the JCF, but must
be implemented in case that more than one precompiled applet shall be present on the
smart card at a time. Such an isolation of the single applets could be achieved by defining
dedicated memory sections for each applet in which its objects are allocated and a single
memory section in which the shareable class instances of the JCRE are located. Before
accessing any object during applet execution its address would have to be checked. Fur-
thermore, it must be determined if the object is an instance of the Shareable interface.
This approach, however, is a mere idea of how such a firewall could be added to the JCF
and is by no means a design ready for implementation. If the further development of the
JCF will be driven into the direction of a complete OS handling the execution of multiple
precompiled applets, implementing such a firewall is inevitable.

As the JCF translates Java Card classes to C code and this translation process is fully
controllable the software security mechanisms that are implemented in the native part of
the JCOP OS and the HAL can simply be added to the generated C code. Therefore, also
the code written in Java Card could be secured by utilizing these features.

Another security mechanism which is imposed by Java Card is the byte code verifier.
According to the Java Card specification, this verification can be performed either on the
targeted embedded system itself after uploading the byte code or before uploading the
byte code on an external device. This greatly depends on the available memory space of
the targeted system. Considering the JCF the byte code can be verified on an external
device before it is being translated and loaded to the embedded system. The correctness of
the uploaded native code then depends on security of the connection between the external
device and the smart card.

Chapter 6

Conclusion and Future Work

Concluding the thesis, this chapter describes both benefits and drawbacks of precompiling
Java Card code using the JCF, thus, drawing a conclusion of the work. The first section
of this chapter, Section 6.1, outlines the restrictions of the JCF. Building upon these
restrictions, the conclusion, which can be found in Section 6.2, describes the more imminent
further development of the JCF. Furthermore, the possible future development of the
framework is discussed in Section 6.3. The development discussed in this section must be
seen as a long term target.

6.1 Restrictions

The version of the JCF described in this thesis is, of course, restricted. As all Java Card
classes (applet plus runtime environment) are converted to a single C program, the Java
Card applet is bound to the compiled version of the Java Card framework. Furthermore,
loading another applet to the card, without loading the Java Card framework as well, is
not possible at this state. The system at this version allows only one applet to be loaded
and executed on the smart card. Furthermore, the security mechanisms performed by the
JCVM are not yet implemented. These mechanisms are described in more detail in Section
5.2. Furthermore, only partly compiling Java Card classes, such as performed by Mixed
Mode AOTCs, is not possible with the JCF at the current state, as the JCVM is completely
removed from the JCOP OS and thus no interpretation of byte code is possible. Hence,
also an interaction with a present JCVM, as usually performed by Mixed Mode AOTCs, is
not possible. Furthermore, the way of representing the Java Card classes in the resulting
C program greatly differs from their representation by the JCVM, which increases the
effort that would be needed to create a hybrid system, in which Java Card classes are
partly precompiled, but interpreted as well.

Another restriction, which must be mentioned, is that it is not possible to translate
Java Card byte code with the current version of the JCF. The Java Card classes, which
are compiled by the framework, come in form of Java byte code. This actually makes no
difference considering the source code itself, as Java Card byte code is created from Java
byte code and is merely a further compressed format [24]. Thus, there is no difference in
the program flow when comparing an applet’s Java byte code to its Java Card byte code,
as the Java Card byte code is a subset of the Java byte code. However, the JCF would

105

CHAPTER 6. CONCLUSION AND FUTURE WORK 106

not be able to correctly convert an applet’s .cap file at the current state, as Java Card
simply uses different encodings for the byte code instructions [18]. These would not be
understood by the JCF.

6.2 Conclusion

In this master thesis a framework, which is capable of natively compiling Java Card applets
and runtime classes, is presented. This compilation process is performed by converting the
byte code representation to C source code and utilizing a standard C compiler for the
native compilation. The resulting framework is not meant to be a final product. It only
shows that the native compilation of Java Card applets is possible and a performance
improvement can be achieved. However, there are also several drawbacks when AOT-
compiling Java Card applets. The most significant disadvantage of this method is its
additional memory consumption. The JCOP JCVM offers the possibility of storing several
applets at the same time. As the memory capacity of smart cards is generally limited,
the upload of more than one applet, precompiled by the JCF, would exceed the storage
capacity of most of today’s smart card chips. Therefore, such an approach is not feasible
at the moment. Another drawback is the inflexibility of the standalone AOT-compilation
performed by the JCF in its current version. This drawback, which is already outlined in
Section 6.1, must be resolved as well, if the precompilation of applets is to be integrated
into future products.

Furthermore, Section 6.1 outlines that in the current version of the JCF, the Java
Card applets are compiled by converting their Java byte code representation. External
applets are usually represented in Java Card byte code. To enable the precompilation
of such Java Card applets, the JCF would need to be able to convert Java Card byte
code. This modification would have to be seen as an imminent further development, if the
precompilation of applets was targeted.

6.3 Future Work

The further development of the JCF mainly depends on the future improvements of smart
cards. Especially the amount of physical memory, available on next generation smart cards,
plays a major role. Basically, there are two different ways, in which the JCF’s advancement
can proceed.

The first approach is targeted to the near future and aims at natively compiling the
Java Card classes of the JCAPI and the GP API. This approach is interesting as it offers
the possibility of precompiling a huge amount of Java Card source code, present on ev-
ery single smart card. This precompilation would not need any change to the process of
uploading Java Card applets. As the functionality provided by the APIs are fundamental
and, therefore, utilized by every professional applet, a considerable performance improve-
ment could be gained by their precompilation. As the APIs are usually preloaded on the
smart card, the upload of Java Card applets, which is usually performed by external cus-
tomers, would stay the same. However, to realize this approach, the JCVM would need to
be changed in such a way that it is able to interact with the class and object representation
of the JCF. Furthermore, the JCF’s method representation would need to be changed in

CHAPTER 6. CONCLUSION AND FUTURE WORK 107

such a way that the parameters are not provided in the function header, but instead taken
from the JCVM’s operand stack. Hence, also the return value would have to be pushed
on this stack.

The second approach would not only precompile the JCAPI and the GP API classes,
but also partly compile the single applets. This partly compilation would focus on certain
methods of an applet, in which an ample amount of execution time is spent. However, this
approach would make an adaptation of the upload process necessary. Furthermore, the
JCF would need to be changed from a Standalone AOTC to a Mixed Mode AOTC and
the JCVM would have to be changed in such a way that it can call the natively compiled
methods of the applet. The JCOP proprietary class and object representation would be
utilized in the precompiled code as well. Therefore, the JCF translation process would
have to be modified to generate code, which uses this special representation. The partly
compilation of the applets would be used to save memory space.

The two approaches include major adaptations of both the JCVM and the JCF. How-
ever, the first proposed approach would omit modifications to the applet upload process.
Therefore, it would make more sense to track this approach as no adaptations on the cus-
tomer side would be necessary. Furthermore, the adaptations are of less impact compared
to the changes needed to be performed, when following the second approach.

Bibliography

[1] ARM - MDK-ARM C/C++ Compiler. url: http://www.keil.com/support/man/
docs/uv4/uv4%7B%5C_%7Ddg%7B%5C_%7Dadscc.htm (visited on 11/29/2016).

[2] ARM - Optimization levels and the debug view. url: http://infocenter.arm.com/
help/index.jsp?topic=/com.arm.doc.kui0097a/armcc%7B%5C_%7Dcjaieafa.

htm (visited on 11/29/2016).

[3] Per Bothner. Compiling Java with GCJ. 2003. url: http://www.linuxjournal.
com/article/4860 (visited on 07/18/2016).

[4] Comparison of Dalvik and Java Bytecode. 2012. url: https://forensics.spreitzenbarth.
de / 2012 / 08 / 27 / comparison - of - dalvik - and - java - bytecode/ (visited on
10/25/2016).

[5] Seth Cousins. Android to Include Ahead-Of-Time Compiler. 2014. url: https :

//www.infoq.com/news/2014/07/ahead- of- time- compiler- os (visited on
08/17/2016).

[6] Dalvik bytecode. url: https://source.android.com/devices/tech/dalvik/

dalvik-bytecode.html (visited on 10/26/2016).

[7] Jonathan Day. What are advantages and disadvantages of using The LLVM Com-
piler Infrastructure Project as a development infrastructure in comparison to GNU
toolset? 2015. url: https : / / www . quora . com / What - are - advantages - and -

disadvantages-of-using-The-LLVM-Compiler-Infrastructure-Project-as-

a-development-infrastructure-in-comparison-to-GNU-toolset (visited on
08/04/2016).

[8] Excelsior JET. url: http://www.excelsiorjet.com/ (visited on 07/18/2016).

[9] GCJ Guide. url: https://gcc.gnu.org/java/gcj2.html (visited on 07/21/2016).

[10] Nicolas Geoffray, Gaël Thomas, and Julia Lawall. “VMKit: a substrate for managed
runtime environments”. In: ACM Sigplan . . . 45.7 (2010), pp. 51–62. issn: 0362-
1340. doi: 10.1145/1837854.1736006. url: http://doi.acm.org/10.1145/
1837854.1736006%7B%%7D5Cnhttp://dl.acm.org/citation.cfm?id=1736006.

[11] Lukas Gressl. “Data Management of banking applications on smart cards”. In:
(2016).

[12] Sumit Gupta, Nargish Gupta, and Rishabh Gupta. “Objects and Method Calling
in Java Virtual Machine”. In: International Journal of Computer Applications 86
(2014), pp. 34–36.

108

BIBLIOGRAPHY 109

[13] John L Hennessy and David a Patterson. Computer Architecture, Fourth Edition:
A Quantitative Approach. 2006, p. 704. isbn: 0123704901. doi: 10.1.1.115.1881.
url: http://portal.acm.org/citation.cfm?id=1200662.

[14] Masahiro Ide. “Study on method-based and trace-based just-in-time compilation for
scripting languages”. In: (2015).

[15] ISO/IEC 9899: TC3. 2007.

[16] Java Card 3 Platform, Application Programming Interface, Classic Edition.

[17] Java Card 3, Platform Runtime Environment Specification, Classic Edition. Septem-
ber. Oracle, 2011.

[18] Java Card 3 Platform, Virtual Machine Specification, Classic Edition. September.
Oracle, 2011.

[19] Dong-Heon Jung, Soo-Mook Moon, and Sung-Hwan Bae. “Design and Optimization
of a Java Ahead-of-Time Compiler for Embedded Systems”. In: 2008 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing (2008), pp. 169–
175. doi: 10.1109/EUC.2008.80. url: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=4756335.

[20] Peter Klingebiel. C Standard-Bibliothek. 1995. url: http://www2.hs-fulda.de/
%7B~%7Dklingebiel/c-stdlib/setjmp.htm (visited on 11/10/2016).

[21] Stefan Krause. JAVA VS. C BENCHMARK #2: JET, HARMONY AND GCJ.
2007. url: http://www.stefankrause.net/wp/?p=6 (visited on 07/18/2016).

[22] Krishan Kumar. Memory Layout of C Program. url: http://cs-fundamentals.
com/c-programming/memory-layout-of-c-program-code-data-segments.php

(visited on 11/10/2016).

[23] Chris Lattner. LLVM. url: http://www.aosabook.org/en/llvm.html (visited on
08/04/2016).

[24] Andreas Lessiak. “Performance Optimization of the JCOP Java Card Operating
System based on HW/SW Co-Design”. PhD thesis. Technical University Graz, 2008.

[25] Yeong Kyu Lim et al. “A selective ahead-of-time compiler on android device”. In:
2012 International Conference on Information Science and Applications, ICISA
2012 (2012), pp. 1–6. doi: 10.1109/ICISA.2012.6220938.

[26] Tim Lindholm et al. “The Java R© Virtual Machine Specification”. In: (2014), pp. 1–
626. url: http://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf.

[27] LLVM Java Frontend Documentation. url: https://llvm.org/svn/llvm-project/
java/trunk/docs (visited on 07/19/2016).

[28] [LLVMdev] VMKit is retired (but you can help if you want!) url: https://groups.
google.com/forum/%7B%5C#%7D!msg/llvm- dev/1FvBAURb4q0/dwl7Mli3wAgJ

(visited on 07/20/2016).

[29] Activity Manager. Anatomy of Android. 2015. url: https://anatomyofandroid.
com/2013/10/15/zygote/ (visited on 06/21/2016).

BIBLIOGRAPHY 110

[30] Torben Ægidius Mogensen. Basics of Compiler Design. Vol. 3. 2. 2009, pp. 1–23.
isbn: 9788799315406. url: http://www.diku.dk/hjemmesider/ansatte/torbenm/
Basics/basics%7B%5C_%7Dlulu2.pdf.

[31] Hyeong-Seok Oh, Ji Hwan Yeo, and Soo-Mook Moon. “Bytecode-to-C Ahead-of-
time Compilation for Android Dalvik Virtual Machine”. In: Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition (2015), pp. 1048–
1053. issn: 15301591. url: http://dl.acm.org/citation.cfm?id=2757012.
2757057.

[32] TA Proebsting et al. “Toba: Java for applications: A way ahead of time (WAT)
compiler”. In: Proceedings of the 3rd conference on USENIX Conference on Object-
Oriented Technologies (COOTS’97) (1997), pp. 41–54.

[33] Wolfgang Rankl and Wolfgang Effing. Smart Card Handbook. Third Edit. John Wiley
& Sons Ltd, Baffins Lane, Chichester West Sussex, PO19 1UD, England, 2003. isbn:
0470856688.

[34] RoboVM. url: http://docs.robovm.com/index.html (visited on 07/20/2016).

[35] STM32F407VG. url: http://www.st.com/content/st%7B%5C_%7Dcom/en/

products / microcontrollers / stm32 - 32 - bit - arm - cortex - mcus / stm32f4 -

series/stm32f407-417/stm32f407vg.html (visited on 08/27/2016).

[36] G C C Team. The GNU Compiler for the Java Programming Language. 2004. url:
http://gcc.gnu.org/java/ (visited on 07/14/2016).

[37] The LLVM Compiler Infrastructure. url: http://llvm.org/ (visited on 08/04/2016).

[38] Turboj home page. url: http://www.opengroup.org/openitsol/turboj. (visited
on 07/13/2016).

[39] Ankush Varma and Shuvra S. Bhattacharyya. “Java-through-C compilation: An
enabling technology for Java in embedded systems”. In: Proceedings -Design, Au-
tomation and Test in Europe 3 (2004), pp. 161–166. issn: 15301591. doi: 10.1109/
DATE.2004.1269224.

[40] w3c -XSL. url: https://www.w3.org/Style/XSL/ (visited on 10/22/2016).

[41] w3schools.com - XML Tutorial. url: http://www.w3schools.com/xml/ (visited on
10/22/2016).

[42] Chih-sheng Wang et al. “A Method-Based Ahead-of-Time Compiler for Android
Applications”. In: (2011), pp. 15–24.

[43] Michael Weiss et al. “TurboJ a Java Bytecode-to-Native Compiler”. In: LCTES ’98
Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and Tools
for Embedded Systems (1998), pp. 119–130.

[44] Mark Wielaard. A look at GCJ 4.1. 2006. url: http://lwn.net/Articles/171139/
(visited on 07/18/2016).

[45] XMLVM Documentation. url: http://xmlvm.org/documentation/ (visited on
07/20/2016).

[46] “XMLVM User Manual”. In: (2009).

