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Abstract

Cone-beam computed tomography (CBCT) typically suffers from scattered X-rays leading to

inaccuracies of CT numbers and artifacts, such as cupping or streaks. A vast variety of scattered

radiation estimation and compensation techniques exist. The improved primary modulator

scatter estimation (iPMSE) method is based on a spatial modulation of the primary intensity,

shifting this desired signal towards higher spatial frequencies. In contrast, the scattered radiation

generated in the object is composed of mainly low spatial frequencies. With the modulator in

the beam path, seperation of the two signals is possible in either the Fourier- or the image

space. In this thesis, the iPMSE method has been implemented and tested on a CBCT device

for dental applications. While the iPMSE method has many advantages (e.g. robustness, short

computation time), its patch-wise constant approach for the scattered radiation profile may lead

to inaccuracies close to sharp object edges in the projection images. To avoid those, a novel

convolution-based ansatz was developed in this thesis, in which the scattered radiation profile is

estimated by convolving a scatter potential derived from measured intensities with a physically

motivated kernel, yielding a hybrid iPMSE (hiPMSE) method. The method was implemented

and tested on both simulation and measurement data and showed promising results in both

cases where scatter artifacts could be substantially reduced.

Keywords: Cone-beam computed tomography, scattered radiation, artifacts, primary mod-

ulator, scatter kernel



Kurzfassung

In der Kegelstrahl-Computertomographie treten typischerweise gestreute Röntgenstrahlen auf,

die zu Ungenauigkeiten in den rekonstruierten Grauwerten und zu Cupping- und Streifen-

Artefakten führen. Es existieren viele verschiedene Streustrahlschätzungs- und Kompensierung-

stechniken. Eine davon ist die Improved Primary Modulator Scatter Estimation (iPMSE)

Methode, die auf der räumlichen Modulation der Primärintensität basiert und so zu einer Ver-

schiebung dieses Signals hin zu höheren Frequenzen führt. Im Gegensatz dazu besteht die

Streustrahlung, die erst im Objekt entsteht, aus hauptsächlich niedrigen räumlichen Frequen-

zen. Befindet sich der Modulator im Strahlengang, so ist eine Trennung der beiden Signale

nach der Messung entweder im Fourier- oder im Bildraum möglich. In dieser Arbeit wurde die

iPMSE-Methode auf einem Kegelstrahl-Computertomographie-Gerät für dentale Anwendungen

implementiert und getestet. Die iPMSE Methode hat viele Vorteile (z.B. Robustheit, kurze

Berechnungszeit), jedoch führt die Annahme, dass die Streustrahlung auf kleinen Teilbildern

konstant ist, zu Ungenauigkeiten an starken Objektkanten in den Projektionsbildern. Um

diese Ungenauigkeiten zu vermeiden wurde eine neue hybride Methode entwickelt (hiPMSE).

Mit dieser Methode wird die Streustrahlung mittels Faltung eines Streupotentials, das aus den

gemessenen Intensitäten abgeleitet wurde, mit einem Streukern geschätzt. Die neue Methode

wurde sowohl auf Simulations- als auch auf Messdaten implementiert und getestet, und führte

in beiden Fällen zu einer wesentlichen Reduktion von Streustrahlartefakten.

Schlüsselwörter: Kegelstrahl-Computertomographie, Streustrahlung, Artefakte, Primärmod-

ulation, Streukern
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Veröffentlichung dieser Masterarbeit ist auch auszugsweise nicht erlaubt. Die Weitergabe des

Inhalts der Arbeit im Gesamten oder in Teilen sowie das Anfertigen von Kopien oder Abschriften

- auch in digitaler Form - sind grundsätzlich untersagt. Dritten darf dieser Bericht nur mit der

ausdrücklichen schriftlichen Genehmigung der Sirona Dental Systems GmbH zugänglich gemacht

werden. Diese Regelung hat bis zum 26.01.2022 Bestand.



Acknowledgements

I am grateful for Prof. Dr. Rudolf Stollberger’s decision to let me conduct a thesis with an

industrial partner and I am thankful for his supervision of this thesis.

I owe thanks to Dr. Kai Stannigel for his expert guidance and many interesting discussions and

suggestions during the course of this thesis.

I also want to thank my colleagues from the ’research and innovation’ and ’image quality and

algorithms’ groups at Sirona Dental Systems for incorporating me in their team and many shared

meals and discussions.

Prof. Dr. Marc Kachelrieß and Joscha Maier from the German Cancer Research Center (DKFZ)

in Heidelberg has to be thanked for suggesting to combine primary modulator scatter estimation

with a convolution-based method and for many fruitful discussions. I also owe thanks to Joscha

Maier for conducting the Monte-Carlo simulations.

I would like to thank my parents, Roswitha and Franz, for their financial and emotional support

during the last years. Thank you for giving me the opportunity to study. I am very grateful. I

also would like to thank my sister Julia, my brother Maximilian and my grandmother Rosa for

their support.



Scattered radiation reduction in digital volume tomography

Contents

1 Introduction 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Background 12

2.1 Interaction of X-rays with matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Lambert-Beer’s law of attenuation . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Photoelectric absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Rayleigh scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Compton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5 Scatter analysis of the human head . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Fundamentals of Computed Tomography . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Measuring of line integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Cone-beam computed tomography scanner setup . . . . . . . . . . . . . . 20

2.2.3 Image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Artifacts due to scattered radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Contrast loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2 Cupping and streak artifacts . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.3 Impact of scatter on noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Methods and Materials 29

3.1 Improved primary modulator scatter estimation (iPMSE) . . . . . . . . . . . . . 29

3.2 Convolution-based scatter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Hybrid primary modulator scatter estimation (hiPMSE) . . . . . . . . . . . . . . 34

3.3.1 Validation procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Brent’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Nelder-Mead downhill simplex algorithm . . . . . . . . . . . . . . . . . . . 38

3.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Devices and measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.2 Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Results 42

4.1 Monte-Carlo simulations of two phantoms . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1 Water cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Water phantom with inserts . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Improved Primary Modulator Scatter Estimation (iPMSE) . . . . . . . . . . . . 49

4.2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

– vi –



4.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Hybrid Primary Modulator Scatter Estimation (hiPMSE) . . . . . . . . . . . . . 56

4.3.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Discussion and Outlook 68

5.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Improved Primary Modulator Scatter Estimation (iPMSE) . . . . . . . . 68

5.1.2 Hybrid Primary Modulator Scatter Estimation (hiPMSE) . . . . . . . . . 68

5.1.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Possible directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Scattered radiation reduction in digital volume tomography

List of Figures

1.1 Primary modulator scatter estimation. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Interaction propabilities per unit length for water for photoelectric absorption

(τPhoto), Rayleigh scattering (σRayleigh) and Compton scattering (σCompton) . . . 13

2.2 Photoelectric absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Rayleigh scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Differential Rayleigh scatter cross sections for water at room temperatur . . . . . 15

2.5 Compton scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Differential Compton scatter cross sections for water at room temperature . . . . 17

2.7 Simulated primary and scatter distribution for a human head . . . . . . . . . . . 18

2.8 Scatter-to-primary ratio for a simulated human head . . . . . . . . . . . . . . . . 19

2.9 A typical cone-beam computed tomography setup . . . . . . . . . . . . . . . . . . 20

2.10 A state-of-the-art digital volume tomography device . . . . . . . . . . . . . . . . 21

2.11 The Fourier slice theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.12 Fan-beam geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.13 Cone-beam projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.14 Feldkamp-David-Kress reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Contrast loss due to scatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.16 Cupping artifact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.17 Illustrated primary and scatter signals . . . . . . . . . . . . . . . . . . . . . . . . 27

2.18 Streaks and cupping artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Outline of the primary modulator scatter estimation measurement setup . . . . . 30

3.2 Individual components of the iPMSE and the hiPMSE method. . . . . . . . . . . 31

3.3 Scatter potential Φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Golden section search: successively bracketing of a minimum. . . . . . . . . . . . 37

3.5 Inverse parabolic interpolation: convergence to a minimum. . . . . . . . . . . . . 38

3.6 Nelder-Mead downhill simplex algorithm: reflection, expansion and contraction. . 39

3.7 Copper checkerboard modulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Water cylinder: MC-simulated primary and scatter intensities. . . . . . . . . . . 43

4.2 Water cylinder - Model 1: Convolution-based scatter estimate and difference to

reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Water cylinder - Model 1: Profile through normalized scatter kernel K2. . . . . . 44

4.4 Water cylinder - Model 1: Top: Line profiles through the MC-simulated primary

and scatter intensities, through the convolution-based scatter estimate and the

scatter potential. Bottom: Scatter-to-primary ratio from MC simulations. . . . . 45

– viii –



4.5 Water cylinder - Model 2: Convolution-based scatter estimate and difference to

reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.6 Water cylinder - Model 2: Top: Line profiles through MC-simulated primary and

scatter intensities, through the convolution-based scatter estimate and the scatter

potential. Bottom: Scatter-to-primary ratio from MC simulations. . . . . . . . . 46

4.7 Water phantom: MC-simulated primary and scatter intensities. . . . . . . . . . . 46

4.8 Water phantom - Model 1: Convolution-based scatter estimate and difference to

reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.9 Water phantom - Model 1: Profile through the normalized scatter kernel K2 =

f(~cfit). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.10 Water phantom - Model 1: Top: Line profiles though MC-simulated primary and

scatter intensities, through the convolution-based scatter estimate and the scatter

potential. Bottom: Scatter-to-primary ratio from MC simulations. . . . . . . . . 48

4.11 Water phantom - Model 2: Convolution-based scatter estimate and difference to

reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.12 Water phantom - Model 2: Top: Line profiles of MC-simulated primary and

scatter intensities, through the convolution-based scatter estimate and through

the scatter potential. Bottom: Scatter-to-primary ratio from MC simulations. . . 49

4.13 Jaw phantom: Simulated intensities. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.14 Jaw phantom - iPMSE: Estimated intensities. . . . . . . . . . . . . . . . . . . . . 51

4.15 Jaw phantom - iPMSE: Behavior of the cost function for a patch in the tissue-like

area for different scatter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.16 Jaw phantom - iPMSE: Top: Line profiles of simulated and estimated primary

and scatter intensities. Bottom: Estimated scatter-to-primary ratio. . . . . . . . 52

4.17 Jaw phantom - iPMSE: A scatter affected and a scatter corrected slice of the

reconstructed volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.18 Jaw phantom - iPMSE: Left: Scatter free reference. Right: Difference of scatter-

corrected and scatter-free images in relation to the maximum of the scatter free

reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.19 Jaw phantom - iPMSE: Line profiles through the scatter-affected, the scatter-

corrected and the reference slice of the three respective reconstructions. . . . . . 53

4.20 Water cylinder: Measured intensities. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.21 Water cylinder - iPMSE: Estimated intensities. . . . . . . . . . . . . . . . . . . . 55

4.22 Water cylinder - iPMSE: Top: Line profiles of estimated primary and scatter

intensities. Bottom: Estimated scatter-to-primary ratio. . . . . . . . . . . . . . . 55

4.23 Water cylinder - iPMSE: A scatter affected and a scatter corrected slice of the

reconstructed volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.24 Water cylinder - iPMSE: Line profiles through the scatter-affected and the scatter-

corrected reconstructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.25 Water cylinder: Simulated intensities. . . . . . . . . . . . . . . . . . . . . . . . . 57



4.26 Water cylinder - hiPMSE: Estimated intensities. . . . . . . . . . . . . . . . . . . 58

4.27 Water cylinder - hiPMSE: Top: Line profiles of simulated and estimated primary

and scatter intensities. Bottom: Estimated scatter-to-primary ratio. . . . . . . . 58

4.28 Water cylinder - hiPMSE: A scatter affected and a scatter corrected slice of the

reconstructed volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.29 Water cylinder - hiPMSE: Line profiles through the scatter-affected, the scatter-

corrected and the reference slice of the three respective reconstructions. . . . . . 59

4.30 Water phantom - hiPMSE: A scatter affected and a scatter corrected slice of the

reconstructed volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.31 Water phantom - hiPMSE: Left: Scatter free reference. Right: Difference of

scatter-corrected and scatter-free images. . . . . . . . . . . . . . . . . . . . . . . 60

4.32 Water phantom - hiPMSE: Line profiles through the scatter-affected, the scatter-

corrected and the reference slice of the three respective reconstructions. . . . . . 60

4.33 Water phantom - hiPMSE: Estimated parameters. . . . . . . . . . . . . . . . . . 61

4.34 Water cylinder (measured) - hiPMSE: Estimated intensities. . . . . . . . . . . . . 62

4.35 Water cylinder (measured) - hiPMSE: Estimated kernel parameter σest. . . . . . 62

4.36 Water cylinder (measured) - hiPMSE: Top: Line profiles of estimated primary

and scatter intensities. Bottom: Estimated scatter-to-primary ratio. . . . . . . . 63

4.37 Water cylinder (measured) - hiPMSE: A scatter affected and a scatter corrected

slice of the reconstructed volume. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.38 Water cylinder (measured) - hiPMSE: Line profiles through the scatter-affected

and the scatter-corrected reconstructions. . . . . . . . . . . . . . . . . . . . . . . 64

4.39 Bucket 1 with teeth and implants: Measured intensities. . . . . . . . . . . . . . . 64

4.40 Bucket 1 with teeth and implants - hiPMSE: Estimated intensities. . . . . . . . . 64

4.41 Bucket 1 with teeth and implants - hiPMSE: Top: Line profiles of estimated

primary and scatter intensities. Bottom: Estimated scatter-to-primary ratio. . . 65

4.42 Bucket 1 with teeth and implants - hiPMSE: A scatter affected and a scatter

corrected slice of the reconstructed volume. . . . . . . . . . . . . . . . . . . . . . 65

4.43 Bucket 1 with teeth and implants - hiPMSE: Line profiles through the scatter-

affected and the scatter-corrected reconstructions. . . . . . . . . . . . . . . . . . 66

4.44 Bucket 2 with teeth and implants: Measured intensities. . . . . . . . . . . . . . . 66

4.45 Bucket 2 with teeth and implants - hiPMSE: Estimated intensities. . . . . . . . . 66

4.46 Bucket 2 with teeth and implants - hiPMSE: Top: Line profiles of estimated

primary and scatter intensities. Bottom: Estimated scatter-to-primary ratio. . . 67

4.47 Bucket 2 with teeth and implants - hiPMSE: A scatter affected and a scatter

corrected slice of the reconstructed volume. . . . . . . . . . . . . . . . . . . . . . 67



Scattered radiation reduction in digital volume tomography

1
Introduction

1.1 Introduction

Computed tomography (CT) is a non-invasive imaging modality employing X-ray projection

images from different angles to reconstruct sectional images of the attenuation coefficient of the

imaged patient or object. Since its invention in the 1960s, several generations of CT machines

have been developed, all with the aim of reducing scan time and patient dose and increasing

accuracy and image quality. CT imaging for dental diagnostics and radiation therapy employs

cone-beam CT (CBCT) with two dimensional detectors with the objective of acquiring a com-

plete volume in a single rotation [1].

In contrast to classical single-slice CT with a fan beam, CBCT with a flat-panel imager or

an image amplifier typically suffers from larger amounts of scattered radiation due to greater

irradiated volumes. The extent of scatter is much larger than in the single-slice case and can

even exceed the primary signal behind strongly absorbing structures [2]. Scatter in turn violates

the assumed linear relationship between measured projection values and the line integrals of

attenuation coefficients along an intersection path and leads to decreased image quality and

therefore to a loss of information and diagnostic usability. Although different in physical origin,

scatter artifacts resemble those known from beam hardening. In projection images scatter leads

to a loss of contrast and in volume data the presence of scatter manifests itself in cupping and

streak artifacts and inaccuracies of CT numbers [3][4].

In the dental community CBCT is known as digital volume tomography (DVT) and it has

manifold applications in dentistry and orthodontics. The main indication is implantology but a

DVT scan is justified whenever sectional images may offer new insights that were not available

with conventional X-ray imaging [5]. Scatter is, along with beam hardening, among the biggest

sources for degraded image quality. Thus, the prevention and correction of artifacts due to

scatter is a major challenge in CBCT and DVT and a fast and accurate method to do so is

desirable [2].

Scatter correction methods can generally be divided into five approaches:

� physical scatter rejection

� analytical modeling

� Monte Carlo (MC) simulations

– 9 –
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� scatter measurements

� primary modulation

Physical scatter rejection techniques aim at lowering the amount of scatter impinging on the

detector by means of an anti-scatter grid (ASG), an air gap, collimation or a bow-tie filter

[2]. These techniques can significantly lower the amount of scattered radiation reaching the

detector, but usually additional correction is needed. The use of an ASG lowers both the

scatter and primary radiation reaching the detector and thus radiation dose must be raised to

achieve the same noise level as without ASG. In analytical modeling methods a scatter potential

derived from measured intensities is convolved with a scatter kernel to yield the desired scatter

distribution [6–10]. As with all scatter estimation techniques, the estimated scatter is then

simply subtracted from the total signal. From a physical point of view, MC simulations are

the most accurate scatter estimation techniques since the complete imaging process is modeled

[11]. However, this high accuracy comes at the cost of a high computational burden that is

clinically not acceptable. MC simulations are therefore often implemented with a low number

of simulated photon trajectories and combined with other approaches to lower the amount of

calculation time [9][12]. Scatter can also be directly measured behind strong absorbers where no

primary signal can reach the detector. With the use of a beam-absorber array (BAA) the scatter

signal can partly be measured and partly be interpolated under the assumption that scatter is

predominately a low-frequency background signal with little to no spatial information about the

object being imaged [13]. An excellent overview of current approaches in scatter correction is

given by Rührnschopf and Klingenbeck in [2] and [14].

Recently, a promising hybrid method named the Primary Modulator Scatter Estimation

(PMSE) technique has been proposed [15]. This method aims at simultaneously measuring

the scatter and primary intensities without increased patient dose or scan time and, compared

to other methods, low computational cost. The key element of PMSE is a primary modulator

of spatially varying attenuation. The modulator is mounted between the X-ray source and the

object of interest, resulting in a shift of the incident signal to higher spatial frequencies. While

the primary signal, which is party of the signal that is not scattered, retains this modulation

until it impinges on the detector, the scatter signal, which originates in the object, loses the

high frequency modulation due to the scatter process and displays a mainly low-frequency back-

ground signal. Figure 1.1 illustrates this situation. Separation of the two desired signals has

been demonstrated using either a Fourier-based approach [15] or an image-based approach. The

present work is based on an image-based approach which is named the Improved Primary Mod-

ulator Scatter Estimation technique (iPMSE). This method has the advantage of being able to

cope with highly irregular modulator patterns [16][17].

– 10 –
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Figure 1.1: The primary modulator is mounted between the X-ray source and the object, resulting in a shift
of the incident primary signal to higher spatial frequencies. The scatter signal IS does not show
this modulation when it impinges on the detector due to the braod point spread function of the
underlying scatter process. The measured signal on the detector is the sum of both the modulated
primary radiation and the scattered radiation: IM = MIP + IS [16].

1.2 Objective

The main goal of this thesis is to implement and further enhance the iPMSE technique in the

context of dental DVT and to assess the achievable image quality enhancements of this method.

Furthermore, a general quantification of scatter magnitudes and scatter effects for typical dental

DVT geometries and objects should be carried out.

While the iPMSE method has many advantages, its patch-wise constant approach for the

scattered radiation profile may lead to inaccuracies close to sharp object edges in the projec-

tion images. In order to avoid those and to incorporate the physics of scatter generation, a

convolution-based approach has been developed. This approach estimates the scattered radia-

tion profile by convolving a scatter potential derived from measured intensities with a physically

motivated kernel. This novel method is titled Hybrid Primary Modulator Scatter Estimation

technique (hiPMSE).

This thesis is structured as follows: In section 2, a brief introduction to the principles of

CT with a focus on scattered radiation is given. Section 3 introduces the concepts of the

iPMSE and hiPMSE methods and explains their practical implementation. Subsequently, the

capability of scatter correction of both algorithms is assessed for both simulation and measured

data in section 4. Section 5 concludes with a discussion of achieved image quality improvements,

practical problems and possible directions for future work.
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Scattered radiation reduction in digital volume tomography

2
Background

This chapter gives a short overview on the interaction of X-rays with matter and especially

the formation of scatter. Furthermore, the basic principles of acquiring sectional images from

projection images and the occurence of artifacts due to scatter are explained. The purpose of

this chapter is to provide a brief introduction necessary for the understanding of this thesis. The

interested reader is advised to consult standard references, for example from Buzug [1] or Hsieh

[18].

2.1 Interaction of X-rays with matter

In medical X-ray imaging the energy of photons ranges from about 20keV up to about 140keV

[18], depending on the application and the interaction properties of the imaged materials. In this

energy range there are three fundamental ways in which X-rays can interact with matter: pho-

toelectric absorption, Rayleigh scattering and Compton scattering. These interactions result in

an attenuation of the incident beam during penetration of a medium. Although not relevant for

the medical imaging energy range, but mentioned for the sake of completeness, pair production

contributes to the attenuation of X-rays for photon energies above 2 · 511keV. Lambert-Beer’s

law of attenuation considers the combined effect of these processes to predict the radiation inten-

sity after X-rays have passed through layers of known thickness and materials. During some of

these afore-mentioned processes electrons are freed from the shell of atoms, leaving these atoms

ionized. The use of ionizing radiation is a clear disadvantage of X-ray CT compared to other

imaging modalities (e.g. magnetic resonance imaging (MRI) or ultrasound imaging) as it has

both deterministic (i.e. tissue reactions) and stochastic (i.e. increased cancer risk) effects.

2.1.1 Lambert-Beer’s law of attenuation

When travelling through a slice of matter with a known thickness dx, a number of photons dN

are removed from the initial photon number N due to absorption or scattering. The number

of interacting photons at a given position x, Nint(x), is proportional to the number of incident

photons N and to the thickness dx [4].

dN(x) = −Nint(x) = −µ(x)N(x)dx (2.1)
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µ is called the linear attenuation coefficient and describes the propability of a photon beeing

removed from the incident beam. Its unit is m−1.

Integration of Equation 2.1 yields the famous law of Lambert-Beer (Equation (2.2)), which

can be used to determine the number of photons after a beam has travelled a certain length x

[4].

N(x) = N0 · e−
∫ x
0 µ(x′) dx′ (2.2)

As mentioned before, the attenuation coefficient is composed of the sum of the different interac-

tion probabilities for photoelectric absorption, Rayleigh scattering and Compton scattering. µ

is a material characteristic and thus a function of position x and also the energy of the incident

X-rays [4].

µtotal = τPhoto + σRayleigh + σCompton (2.3)

Figure 2.1 displays the probabilities of interaction per unit length for the three different interac-

tion processes for water as well as the total attenuation coefficient as a function of X-ray energy.

It is apparent that in the diagnostic energy range above 50keV Compton scattering is the most

prevalent form of X-ray-matter interaction.

Figure 2.1: Interaction propabilities per unit length for water for photoelectric absorption (τPhoto), Rayleigh
scattering (σRayleigh) and Compton scattering (σCompton). µtotal depicts the total linear atten-
uation coefficient for water. With increasing energy, the total linear attenuation coefficient
declines; in other words, low energy photons are attenuated more than high energy ones. Figure
taken from [4].
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2.1.2 Photoelectric absorption

When the energy of an X-ray photon exceeds the binding energy of an electron in a certain

absorber atom shell, EB, the entire energy of this photon can be absorbed by an atom. In this

process an electron of a lower shell is kicked off the atom and can then travel as a free electron

through the material [1]. This so-called photoelectron, with an energy of T = E−EB, is ejected

from the shell leaving behind a ionized atom. The free spot in the atomic shell is filled with

an electron either from an outer shell or with free electrons in the absorber medium. An outer

shell has a higher binding energy and thus characteristic X-ray photons may also be generated

which can in turn again ionize absorber atoms [4]. The photoelectric effect, discovered by Albert

Einstein in 1905, produces a positive ion, a photoelectron and characteristic radiation [18]. The

incident X-ray photon transfers all of its energy to the freed electron and is therefore destroyed.

This process is illustrated in Figure 2.2.

The linear absorption coefficient τPhoto depends on the energy E of the incoming photon and

the absorbers atomic number Z [1].

τPhoto = k
ρ

A

Z4

E3
(2.4)

where k is a constant and depends on the atomic shells involved in this process, ρ is the absorber

material density and A is the atomic weight. Absorption shows strong Z4 dependence [1]. This

dependence is the reason for the usage of high Z materials such as lead for X-ray shielding or

ASGs [4].

Figure 2.2: The process of photoelectric absorption illustrated. An electron is liberated from an inner shell
and this vacancy is quickly filled with an electron from a higher shell with higher binding energy.
The difference energy between those shells is emitted as characteristic radiation. The incident
photon is completely destroyed. Figure taken from [4].

2.1.3 Rayleigh scattering

Rayleigh scattering is also known as elastic or coherent scattering. It occurs with particles with

significantly smaller diameters than the incident radiations wavelength. The incident and the
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scattered waves have equal wavelength, but the direction of the scattered wave differs from the

direction of the incident wave [1]. The incident radiation sets the electrons of a particle in

oscillation, causing them to emit radiation of the same wavelength as the incident wave. The

two waves combine and form the scattered wave. The incident X-ray photon keeps all of its

energy and no ionization occurs [4]. This process is illustrated in Figure 2.3.

The differential Rayleigh scatter cross sections for water at room temperature are shown

in Figure 2.4. One can observe that Rayleigh scattering occurs in direction of the deflected

incoming radiation producing a slightly broadened X-ray beam [18]. With increasing photon

energy the probability for forward scatter also increases.

Figure 2.3: The process of Rayleigh scattering illustrated. The resulting scattered wave oscillates at the same
frequency as the incident wave, no transition of energy occurs. Figure taken from [4].

Figure 2.4: Differential Rayleigh scatter cross sections for water at room temperatur as a function of scat-
tering angle θ and various photon energies. Figure taken from [4].

2.1.4 Compton scattering

Compton scattering can be seen as a mixture of scattering and photoelectric absorption [1]. It

is the most important interaction mechanism in tissue-like materials for diagnostically relevant

radiation [18]. Compton scattering is an inelastic process in which the wavelength and energy

of the incident photon are altered. The incoming photon, which has considerable higher energy

than the binding energy of an electron it interacts with, transfers a portion of its energy to the

electron, liberating it from its shell. These electrons are often called secondary electrons or recoil
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electrons. Thus, a Compton interaction produces a positive ion, a recoil electron and a scattered

photon with less energy than the incoming one (see Figure 2.5). The recoil electron and the

scattered photon may again ionize atoms if their energy is sufficient high. In contrast to Rayleigh

scattering, where only forward scatter occurs, Compton scattered photons may be deflected in an

arbitrary direction. Low-energy photons are primarily backscattered, while high-energy photons

have a higher propability for forward scatter. Because of this wide deflection angle, the scattered

photon provides little to no spatial information about the location of interaction [18]. Figure

2.6 shows the differential cross sections for Compton scatter as a function of scatter angle and

various photon energies.

Figure 2.5: The process of Compton scattering illustrated. An incident photon ejects an electron from it’s
shell. The resulting scattered wave oscillates at a lower frequency as the incident wave, indicating
that a transition of energy has occured. Figure taken from [4].

2.1.5 Scatter analysis of the human head

In [4] Wiegert performed a detailed scatter analysis of the human head conducting Monte-Carlo

simulations. These results may be used to develop tailored scatter correction algorithms for

neurological and dental applications. A voxelized CT data set from a helical CT scan has been

used to compute simulated projection images of scatter and primary radiation of the human

head. A flat-panel C-arm system with a source-detector distance (SDD) of 117 cm and a source-

object distance (SOD) of 76.5 cm was assumed. The simulated tube voltage was set to 100kV,

after prefiltration to remove low-energy photons, the mean photon energy has been found to be

68keV. No ASG was used in this study. From now on the primary signal will be associated with

the symbol IP while the scatter signal will be depicted by IS . Together, these signals form the

total measured intensity:

IM = IP + IS (2.5)

The results from this study can be seen from three different viewing directions in Figure 2.7.

The images (d) to (f) depict the resulting normalized primary radiation IP and the images (g)
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Figure 2.6: Differential Compton scatter cross sections for water at room temperature as a function of scatter
angle θ and various photon energies. Figure taken from [4].

to (i) show the detected normalized scatter IS . As can be seen from the scatter images, the

scatter distribution is somewhat smaller in the middle of the head phantom. Although scatter

arises in this region, the increased penetration path length leads to increased attenuation in

these regions. Therefore, the highest amount of scatter can be found near the boundaries of

the head. These boundaries are indicated by the red lines in all images. In subfigure (i) it can

be seen that in the region behind the air cavities of the nose the amount of detected scatter is

slightly larger than in the surrounding areas due to a lack of absorption. A general observation

valid for all three different views is that the detected spatial distribution of the scatter is flat

and smooth with very limited information about the imaged object.

Figure 2.8 shows an important quantity to assess the problem of scatter in X-ray projection

images. This is the scatter-to-primary ratio (SPR), defined as the quotient of detected scatter

to detected primary in each pixel:

SPRi =
IS,i
IP,i

(2.6)

In regions with high SPR the interesting primary signal lies in the range of the scatter signal or

can even be exceeded by the scatter signal. This usually results in severe artifacts due to violation

of certain assumptions made in the reconstruction. In contrast to the scatter distribution,

the SPR shows strong spatial variation because of its dependency on the reciprocal primary

radiation. Behind strongly absorbing structures (e.g. bones or in the middle of the head), where

only little primary radiation but a comparatively high amount of scatter reaches the detector,

the SPR can be as high as 1 or even above this value. In more lateral regions the SPR drops

to less than 50%. It can be noted that the effect a certain amount of scatter will have on
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reconstructed volumes strongly depends on the amount of primary detected within an area. A

certain scatter level may not cause any harm in regions of low SPR, while the same amount of

scatter may lead to strong artifacts in regions of high SPR. This means that in areas of high

SPR accurate scatter correction is more important than in areas with lower SPR. It may also

be noted, and this is especially interesting in the context of dental DVT, that the SPR reaches

its highest values in the area of the mouth, more precisely behind teeth and the chin.

Figure 2.7: Results of a high-photon MC simulation study of a human head phantom. Images (d) to (f)
depict the resulting normalized primary radiation IP and the images (g) to (i) show the detected
normalized scatter IS. Figure taken from [4].
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Figure 2.8: Scatter-to-primar ratio (SPR) for three exemplary views of a human head phantom. In contrast
to the smooth scatter distribution, the SPR shows strong spatial variation. Figure taken from
[4].

2.2 Fundamentals of Computed Tomography

2.2.1 Measuring of line integrals

Equation (2.2) rewritten in X-ray intensities instead of photon numbers reads

I = I0 · e−
∫∞
−∞ µ(s) ds. (2.7)

The X-ray intensity after passing through an object on a straight line decreases exponentially,

whereby the exponent is the negative sum of all attenuation coefficients µ along this line. In

Equation (2.7) I denotes the X-ray intensity in a single detector pixel, I0 the intensity prior to

attenuation and s parametrizes the straight photon trajectory. This describes an ideal situation

where only photons of the same energy occur. X-ray tubes in practical CT machines always emit

a polychromatic spectrum I0(E) and one has to integrate over all occuring energies to account

for the energy-dependence of the linear attenuation coefficient

I =

∫ Emax

0
I0(E) · e−

∫∞
−∞ µ(E,s) ds dE. (2.8)

In practice only Equation (2.7) is used and this leads to one of the biggest sources of degraded

image quality, the beam hardening effect. In X-ray CT one is interested in the spatial distribution

of the attenuation coefficient. Normalizing both sides of Equation (2.7) with I0 and computing

the logarithm yields the line integral of the linear attenuation coefficient along a straight X-ray

trajectory through the object or patient being imaged.

p = −log

(
I

I0

)
=

∫ ∞
−∞

µ(s) ds (2.9)
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p is then often called a projection measurement. Between −log
(
I
I0

)
and

∫∞
−∞ µ(s) ds now exists a

linear relationship and this is the basis for image reconstruction. Scatter represents an additional

signal that adds to the primary signal and this leads to non-linearity in the afore-mentioned

relationship. Equation (2.9) no longer holds and artifacts arise.

2.2.2 Cone-beam computed tomography scanner setup

In CBCT and DVT an X-ray tube and an X-ray detector rotate isocentrically around an object

of interest to acquire a number of projection images in small angular increments. The goal of

image reconstruction techniques is to compute stacks of sectional images, often called a volume,

from these projection images. A typical CBCT setup can be seen in Figure 2.9. Figure 2.10

shows a state-of-the art DVT device with a flat-panel detector.

Figure 2.9: A typical CBCT setup. Both the detector and the X-ray source rotate around the
object. Figure taken from http://opticalengineering.spiedigitallibrary.org/data/

Journals/OPTICE/22109/037004 1 1.png.

2.2.3 Image reconstruction

CT aims at reconstructing the 2D distribution of the linear attenuation coefficient within an

object. This is then often called a slice1. A vast variety of different image reconstruction

techniques exists. These techniques can be divided into analytical and iterative reconstruction

algorithms. This section covers the very basics of analytical image reconstruction. Starting

with the most common method in commercial CT scanners, the filtered backprojection (FBP),

additional extensions will be introduced in order to expand the classical FBP method from

parallel-beam geometry to cone-beam geometry. To this day, the majority of commercial CBCT

1 See the word tomography: from Greek tomos (slice) and graphein (write).
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Figure 2.10: A state-of-the-art DVT device. The patient is positioned between the rotating source-detector
assembly and bites a block to prevent motion during data acquisition. Figure with kind permis-
sion by Sirona Dental Systems GmbH, Bensheim, Germany.

and DVT devices employ variants of the FDK algorithm published by Feldkamp, David and

Kress in 1984 [19]. The following derivations are based on the presentation in [20].

2D fan-beam reconstruction

For the following derivation parallel-beam geometry with a single row detector is assumed. A

single measurement from a specific angle θ, called a projection, contains a number of transmitted

normalized intensities at different detector pixel positions t. If sorted in a single matrix, these

measurements from all angles are called a sinogram.

Consider a single line out of a set of lines, as depicted in Figure 2.11. At a certain projection

angle θ and at detector position t, Equation (2.9) may be rewritten as

pP (θ, t) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(y cos θ − x sin θ − t) dx dy (2.10)

where the Dirac delta function is used to parametrize this line and the superscript P indicates

that this projection is parallel. This function pP (θ, t) is known as the Radon transform2 of the

function f(x, y) = µ(x, y). The Fourier slice theorem states that the values of the 1D Fourier

transform of a parallel projection of an object f(x, y) taken at an angle θ, F1p
P (θ, t), correspond

to a radial line in the 2D Fourier transform F2f(u, v) of said object at the corresponding angle

θ (see Figure 2.11).

F1p
P (θ, ρ) = F2f(−ρ sin θ, ρ cos θ) (2.11)

2 The Radon transform is an integral transform and was introduced by the Austrian mathematician Johann
Radon in 1917. Original German paper title: Über die Bestimmung von Funktionen durch ihre Integralwerte
längs gewisser Mannigfaltigkeiten.
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As can be seen in Figure 2.11, it is sufficient to acquire projections in an angular interval of

Figure 2.11: The Fourier slice theorem. Left: a parallel projection pP (θ, t) of the object f(x, y) = µ(x, y).
Right: The 1D Fourier transform of the projection corresponds to a radial line of values in the
2D Fourier space of the object. Figure taken from [20].

length π to cover the whole 2D Fourier space of the object. With the Fourier slice theorem

and with the usage of polar coordinates instead of Cartesian coordinates, the object function of

interest, µ(x, y), can be obtained by employing the 2D inverse Fourier transform

µ(x, y) =
1

2

∫ 2π

0

∫ ∞
−∞
F1p

P (θ, ρ)ej2πρ(y cos θ−x sin θ)|ρ| dρ dθ. (2.12)

Equation (2.12) can be further simplified:

µ(x, y) =
1

2

∫ 2π

0

∫ ∞
−∞

∫ ∞
−∞

pP (θ, t)e−j2πρt dt ej2πρ(y cos θ−x sin θ)|ρ|dρdθ (2.13)

=
1

2

∫ 2π

0

∫ ∞
−∞

pP (θ, t)

∫ ∞
−∞
|ρ| ej2πρ(y cos θ−x sin θ−t) dρdtdθ (2.14)

=

∫ 2π

0

∫ ∞
−∞

pP (θ, t)gP∞(y cos θ − x sin θ − t) dtdθ (2.15)

=

∫ 2π

0
(pP ∗ gP∞)︸ ︷︷ ︸
Filtering

(θ, y cos θ − x sin θ) dθ

︸ ︷︷ ︸
Backprojection

(2.16)

gP∞ is often called a ramp filter, referring to its shape in the Fourier domain

gP∞(t) =
1

2

∫ ∞
−∞
|ρ|ej2πρt dρ. (2.17)

This filtering step prevents blurring in the resulting 2D distribution µ(x, y) since it accentuates

higher frequencies in the Fourier domain and damps lower frequencies. To conclude, the projec-

tion data are first ramp-filtered and then back-projected onto the image plane. Backprojection

can be understood as the adjoint operation to projection, i.e. a projection value is smeared out

over the image points along a ray. While continuous derivations are useful for understanding

the matter, in a practical system one needs to discretize the above equations.
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Modern CT devices do not emit parallel X-rays, but divergent rays that emerge in a single

point, namely the X-ray source. Figure 2.12 displays the projection setup for fan-beam geometry.

The X-ray source rotates around the object in a circular trajectory with radius R. An emitted ray

is characterized by the projection angle β and the fan angle γ, which is spanned by the respective

ray and the central ray of a projection. The original FBP algorithm has to be adapted to meet

this changed geometry setup. With flat detectors X-rays are sampled equidistantly along the

a-axis. This is referred to as a virtual detector and it is aligned perpendicular to the central ray

in the center of rotation. The true detector coordinates further away from the center of rotation

are obtained by simply scaling a. With this geometry setup a projection ray is described by a

duplet (β, a).

Figure 2.12: Fan-beam geometry. Figure taken from [20]

The filtered projection p̃F (β, a) with F referring flat detector geometry is computed by using

the same filter kernel as for the parallel-beam case and a pre-weighting factor cos γ

p̃F (β, a) = (p(β, a) cos γ) ∗ gP∞(γ) (2.18)

Backprojection is achieved by

µ(x, y) =

∫ 2π

0

R2

U(x, y, β)2
p̃F (β, a(x, y, β)) dβ (2.19)

whereby U(x, y, β) is the distance from the X-ray source to a point (x, y) projected onto the

central ray.

3D cone-beam reconstruction

In traditional fan-beam CT adjacent slices are reconstructed consecutively, whereas with CBCT

with a 2D detector a complete volume can be reconstructed directly from the 2D projection data.

This situation is illustrated in Figure 2.13. It is important to understand that reconstruction

with the FDK algorithm is only exact in the central plane of the cone-beam [19]. According

to the Tuy-Smith-condition, exact reconstruction of an object point requires that all planes
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Figure 2.13: Cone-beam projection. Note the variable change for the radius of the circular trajectory from
R to D. Figure taken from [4].

intersecting the object at the position of this point also intersect the source trajectory [21]. This

condition is clearly violated for circular trajectories and therefore reconstruction is only exact

for the central plane. As can be seen in Figure 2.13, the FDK method makes use of a virtual

detector positioned parallel to the original detector in the coordinate origin. A single ray can

now be parametrized by the projection angle β and the virtual detector coordinates a and b.

The FDK method is also a filtered backprojection method. The pre-weighting factor is

cos γ cosκ =
D√

D2 + a2 + b2
(2.20)

Filtered projections are then computed according to

p̃F (β, a, b) =

(
D√

D2 + a2 + b2
pF (β, a, b)

)
∗ gP (a) (2.21)

The filtering operation is therefore still one-dimensional. A point (x,y,z) is then reconstructed

by

µ(x, y, z) =

∫ 2π

0

D2

U(x, y, β)2
p̃F (β, a(x, y, β), b(x, y, z, β)) dβ (2.22)

Equipped with the above derivations, one is now capable of reconstructing a whole volume from

2D CBCT projection data. Note that in practice corrections for non-circular trajectories (e.g.

elliptical) as well as for scan protocols that do not cover an angular range of 2π have to be

applied. Figure 2.14 summarizes the process of reconstruction with the FDK method.
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Figure 2.14: Cone-beam filtered backprojection with the FDK algorithm. Figure taken from [4].

Pre- and post-reconstruction processing

The measured data have to be pre-processed to represent the intensity values I
I0

needed as input

for the reconstruction process. Before computing the negative logarithm in Equation (2.9),

sensor defects must be repaired. Furthermore, the data must be detruncated, i.e. extrapolated

at the projection image borders. After applying the filtered backprojection, slices are often

corrected for noise with e.g. a bilateral filter and, for viewing purposes, values are clipped to a

certain range (windowing).

Most scatter correction algorithms, also the ones implemented and developed in this thesis,

work on the pre-corrected images before computation of the negative logarithm.

2.3 Artifacts due to scattered radiation

Not all of the x-ray photons that reach the detector are primary photons. A significant portion

of the signal is generated from scattered radiation. Scattered radiation adds a low-frequency

bias to the true attenuation measurements. The minus logarithm operation that is necessary

to convert x-ray photon flux into the line integrals transforms the linear summation into a non-

linear operation. This is due to the fact that log(x+ y) 6= log(x) + log(y) [18]. The larger the

detector, the higher the probability that scattered photons incite it. Thus, the image-degrading

effect of scattered radiation will affect CBCT machines more than classical highly collimated

fan-beam CTs [22]. Scatter represents a major source of image degradation in CBCT systems.

In projection images, scatter leads to a loss of contrast. In volume data artifacts such as

cupping in homogeneous regions of material and streaks between regions of high contrast arise.

Additionally, the signal-to-noise ratio (SNR) decreases when scattered radiation is detected.

– 25 –



2 Background

2.3.1 Contrast loss

In projection images, the additional scatter signal IS leads to a detoriation of contrast (see

figure 2.15). Assume two objects of homogeneous material, one with an extra high contrast

insert. Let the values of the line integrals of only primary radiation be −log(IP ) and −log(IPS)

with scatter added to the primary, and −log(IP,C) and −log(IPS,C) respectively for the case

with a high contrast insert inside the otherwise homogeneous material. In the presence of

scatter contrast in line integral values LIC′ is reduced compared to the scatter free case (LIC)

[4].

Figure 2.15: Curves for line integrals over normalized projection values. Compare the reference point (1)
without scatter and point(2) with scatter added to the primary. Figure taken from [4].

2.3.2 Cupping and streak artifacts

In homogeneous objects the detection of scatter leads to measured signals that are higher than

they should be, and this corresponds to an underestimation of attenuation coefficients, which

leads to the well-known cupping artifact (see figure 2.16).

Figure 2.17 displays two exemplary projections through a homogeneous object with two high

density rods. In view 1 the primary intensity at the detector IP is low because of the incoming

X-ray flux penetrating both high density rods, while the detected scatter is relatively uniform

across the field-of-view (FOV). This leads to a SPR that is greater than 1. In view 2 the

measured IP through the rods is much higher, whereas the detected scatter intensity remains

about the same as in view 1. The scatter adds a larger fraction to the detected total signal in

view 1 and therefore the occurrence of nonisotropic artifacts will be present in reconstructions.

Less attenuation is measured through the rods in view 1 than in view 2 due to the scatter

contribution, and the reconstructed attenuation coefficients will show a dark streak connecting

the rods [3] (see figure 2.18).
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Figure 2.16: Left: Reconstruction of a simulated water cylinder with scatter from monochromatic projections.
An underestimation of attenuation coefficients in the middle of the object occurs due to the
presence of scatter. Right: a line profile through the middle of the water cylinder shows a cup
shape.

Figure 2.17: Illustrated primary and scatter signals for a cylinder with two strongly attenuating rods. After
the penetration of both rods, the incident X-ray flux may be so weak such that it can be exceeded
by the scatter signal, leading to a high scatter-to-primary ratio. The reconstructed attenuation
coefficients will show a dark streak connecting the rods. Figure taken from [3].

2.3.3 Impact of scatter on noise

Two types of noise occur in X-ray projection images. The first noise contribution, which is

rooted in the physics of the image formation process, is image dependent and reflects the sta-

tistical fluctuation of the X-ray photons. It can be considered as Poisson noise. The second is

independent from the image and due to electrical and roundoff error and is often modelled as

Gaussian noise. In many situations, the Gaussian noise is assumed to be negligible small and

therefore only the Poisson part is considered [23].

The presence of scatter also influences the noise in the acquired projection images and re-

constructed slices. Due to the fact that scatter contributes to the overall detected signal, but

carries little to no spatial information of the object, it contributes to the noise but not to the
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Figure 2.18: Reconstruction of a simulated water cylinder with two highly attenuating titanium inserts, a
bone sphere and an aluminium grid from monochromatic projections. Between the titanium
inserts, a dark streaks appears due to scatter. Also, the cupping artifact can be observed in both
the water cylinder and the bone sphere.

wanted primary signal:

SNRi =
IP,i√

IP,i + IS,i
=

√
IP,i

1 + SPRi
(2.23)

The index i here stands for a single detector pixel and SNR denotes the signal-to-noise ratio. In

regions with high SPR, the SNR can be significantly lowered by the scatter signal [18]. The use

of Equation 2.23 is valid only for projection images.
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3
Methods and Materials

This chapter covers the theoretical derivations and implementation details of the methods and

algorithms for scatter estimation and reduction implemented and developed during this thesis.

First, the Improved Primary Modulator Scatter Estimation (iPMSE) technique will be explained.

Afterwards, a framework for convolution-based scatter estimation will be introduced. The third

section explains the novel Hybrid Primary Modulator Estimation Scatter Estimation (hiPMSE)

algorithm, a combination of iPMSE and convolution-based scatter estimation. Due to the fact

that all algorithms mentioned above are formulated as optimization problems, the fourth section

briefly explains the minimization algorithms that were used in this thesis. The last section

concludes with a short description of hardware and devices used for the measurements.

3.1 Improved primary modulator scatter estimation (iPMSE)

With Primary Modulator Scatter Estimation (PMSE) techniques the primary and scatter signals

can be measured simultaneously without increased patient dose or scan time. To achieve this,

a primary modulator, e.g. a checkerboard pattern with alternating attenuation properties, is

inserted between the X-ray source and the object (see figure 3.1). The modulator pattern is

superimposed on the incident primary radiation, shifting this desired signal to higher spatial

frequencies. The key hypothesis states that the high-frequency components of the incident X-

ray spatial distribution do not result in strong high-frequency signals in the scatter due to the

broad point spread function (PSF) of the scatter process. This was previously valiadated with

MC simulations [15]. Under the assumption that scatter is comprised of mainly low-frequency

components separation of the interesting primary and scatter is possible using either a Fourier-

or an image-based approach.

The Fourier-based approach has been proven to work well under ideal conditions (e.g. table-

top CBCT system, perfectly regular modulator pattern, small blurring due to the nearly in-

finitesimal focal spot size), where high scatter correction accuracy can be achieved [15]. In

devices that are used patient-side such as C-arm CT or DVT systems deviations from these

ideal conditions occur. Both the X-ray source and the detector move around the object and this

movement is subject to mechanical inaccuracies, the penumbra effect is present and often the

modulators show manufacturing irregularities, resulting in a violation of the underlying model

assumptions. To overcome these drawbacks, Ritschl et al. developed an image-based approach
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that can deal with nearly any kind of static high-frequency modulation [16].

Figure 3.1: The primary modulator is mounted between the X-ray source and the object, and results in a
spatially high-frequency pattern superimposed on the incident primary radiation. The scatter,
which originates in the object, looses this high-frequency modulation due to the scatter process
and can then afterwards be separated from the total detected signal. Figure taken from [24].

With the modulator in place the total measured signal IM can be modeled as

IM = M · IP + IS (3.1)

where IM , IP and IS are image matrices flattened into a vector and Mi,i = mi is a diagonal

matrix with the transmission values of the modulator. The matrix M can easily be obtained

by acquiring a projection image of the modulator with no object in place and flattening this

image into a vector m. In Figure 3.2 simulated images for an artificial jaw phantom for the

four afore-mentioned components are shown. These images serve as references throughout the

next sections and can be considered whenever IM ,M , IP or IS are mentioned. Both IM and

M are assumed to be normalized by the unattenuated intensity I0 which in turn is assumed to

be constant.

The interesting primary signal IP can now be calculated by inverting M and subtracting the

scatter signal IS from the total signal IM :

IP = M−1 · (IM − IS) (3.2)

Assume that there exists an estimation for the scatter signal Iest
S . The error of this scatter

estimate can be denoted by ∆s = Iest
S − IS and the estimated primary Iest

P amounts to

Iest
P = M−1 ·

(
IM − Iest

S

)
(3.3)

= M−1 · (IM −∆s− IS) (3.4)

= IP −M−1 ·∆s (3.5)
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(a) M (b) IM

(c) IP (d) IS

Figure 3.2: Individual components of the iPMSE and the hiPMSE method. Only IM and M are directly
measurable whereas IP and IS are initially unknown and are to be computed by the algorithm.

As long as there exists a non-zero error ∆s the modulator pattern will remain visible in the

estimated primary signal. The problem of finding the correct scatter estimate can be formulated

as an optimization problem. Due to the fact that the modulator pattern contains strong edges

the spatial gradient of the estimated primary signal ∇Iest
P is an obvious choice for measuring

the visibility of the modulator pattern in the primary estimate. Thus, it can be used as the cost

function in the optimization problem. This cost function CTV (Iest
S ) should reach a minimum

when the optimal scatter values are found and no modulator pattern remains visible in the

estimated primary.

CTV (Iest
S ) = ‖∇Iest

P ‖1 = ‖∇M−1 ·
(
IM − Iest

S

)
‖1 (3.6)

where the subscript TV stands for total variation. Previously, it has been shown that the

use of a L1-Norm leads to convex behavior of the cost function [16][25]. This has also been

validated in the present work. The resulting cost function does not show the typical kink

one would expect when using a L1-Norm due to the fact that this L1-Norm is effectively a

sum of gradient magnitudes. ∇ is an operator giving the magnitude of the gradient of Iest
P as√(

∂Iest
P
∂u

)2
+
(
∂Iest
P
∂v

)2
, where u and v are image coordinates.

The optimization problem is solved patch-wise by calculating one optimal scatter estimation

value for each patch, assuming that the scatter is constant within a subimage. Similar down-

sampling operations are commonly applied in scatter correction methods and justified by the
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fact that the scatter signal is smooth and mainly comprised of low spatial frequencies [6]. The

minimization problem is solved with Brent’s algorithm to find the global minimum (see section

3.4). After the optimal scatter values for all subimages have been found the scatter signal is

upsampled to the original resolution by bilinear interpolation and smoothed by a Gaussian filter

with a kernel width in the range of the patch size. The patch size must be chosen large enough to

contain at least on period of the modulator pattern. One patch has a size of (2du+1)×(2dv+1)

pixels and the patches overlap by du pixels in u-direction and by dv pixels in v-direction. In this

thesis du = dv ∈ [27, 43] with a modulator period of approximately 25 pixels has been used.

3.2 Convolution-based scatter estimation

Convolution methods assume that scatter can be estimated by a spatially invariant convolution

of the primary signal with a scatter kernel. This concept was first introduced by Seibert and

Boone in 1988 and has since served as the basis for many publications [26].

Throughout this thesis, a modified version of the model proposed by Ohnesorge et al. in [6]

is used. The scatter estimation is obtained by convolving a forward scatter fraction Φ = Φ(IP )

with a scatter kernel K:

ICBS (~c) = Φ(IP ,~c) ∗ ∗K(~c) (3.7)

where ∗∗ denotes the 2D convolution that runs over the detector coordinates u and v and

the superscript CB stands for convolution-based. The scatter kernel K is dependent on both

scanner and object geometry and the scatter properties of the object. While convolution based

methods offer the advantage of relatively low computational cost, which is a prerequisite for a

clinically usable scatter estimation algorithms, a drawback of these models is that they contain

a number of free parameters ~c that determine the shape of the scatter kernel and of the scatter

potential. These parameters have to be calibrated in advance by means of dedicated calibration

measurements or by fitting the open parameters to pencil-beam simulations [6][7][27].

The forward scatter fraction, or scatter potential, is given by

Φ(IP , c0, c1) = c0 + c1 · IP log

(
IP
I0

)
(3.8)

This scatter potential indicates how many photons are scattered on their way to the detector

and do not contribute to the primary intensity [28]. The scatter intensity can be divided into

an approximately constant fraction c0, which is mainly associated with Compton scattering,

and a fraction c1 · IP log
(
IP
I0

)
that varies with the detector coordinates, and models Rayleigh

scattering [29]. Note that in practice most commonly the intensity containing scattered and

primary radiation is used instead of IP , which is unknown. Figure 3.3 shows an exemplary

scatter potential for c0 = 0 and c1 = 1. Regions with high attenuation and regions with no
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attenuation do not contribute to the total scatter signal, such that Φ(0) = Φ(I0) = 0.

Figure 3.3: An exemplary scatter potential Φ with c0 = 0 and c1 = 1. The boundary conditions are Φ(0) =
Φ(I0) = 0 according to Equation 3.8.

A vast variety of different scatter kernels has been developed. These kernels have in common

that they all exhibit low-pass characteristic since the resulting scatter estimation should be

smooth and comprised of low spatial frequencies. The most straight-forward kernel is a simple

2D Gaussian kernel with only one open parameter σ:

K1(r, σ) =
1

N1
e−

1
2
( r
σ
)2 (3.9)

where r =
√
u2 + v2 and u and v are detector coordinates. Often the sum of two shifted

Gaussians is used as a scatter kernel [10][28]:

K2(r, σ, b) =
1

N2

∑
±
e−

1
2
( r±b
σ

)2 (3.10)

with normalization constants

Ni =
Ki∫

Ki(u, v) dudv
(3.11)

The kernels presented above are rotationally symmetric. Once all free parameters in the kernel

and the scatter potential have been determined they can be stored in the parameter vector ~c.

Note that the difficulty of the fitting procedure to obtain the unknown parameters increases

with an increasing number of parameters. The final convolution-based scatter estimate ICBS is

then obtained by a 2D convolution of the scatter potential Φ with the scatter kernel K (see

Equation 3.7).
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3.3 Hybrid primary modulator scatter estimation (hiPMSE)

The algorithm introduced here is a combination of the previously presented iPMSE method and

a convolution-based scatter estimation technique. Thus, it is called Hybrid Primary Modulator

Scatter Estimation (hiPMSE). hiPMSE aims at iteratively fitting the unknown parameter vector

~c of a convolution based scatter model such that the estimated scatter shows as small as possible

deviation from the true scatter distribution. The error in the scatter estimation is, as with

iPMSE, again assessed by the visibility of the modulator pattern in the estimated primary

intensity. The gradient-based cost-function that evaluates said visibility of the modulator pattern

is now a function of the open parameter vector ~c, indicating that the hiPMSE method is again

formulated as an optimization problem. The parameters are varied in a way that decreases the

cost function until the modulator in the estimated primary signal vanishes. The cost function

can be expressed as follows:

CCBTV (Iest
S (~c)) = ‖∇Iest

P ‖1 = ‖∇M−1 ·
(
IM − Iest

S (~c)
)
‖1 (3.12)

where the scatter estimate Iest
S is a function of the parameter vector ~c.

The hiPMSE algorithm consists of the following steps:

1. Set iteration counter to i = 0

2. Calculate initial primary estimate without scatter consideration as Iest,0
P = M−1IM and

set it as best known estimate: Iest∗
P = Iest,0

P

3. Calculate value of cost function as CCBTV (0) = ‖∇Iest∗
P ‖1 and initialize the minimum known

cost function value: CCB,minTV = CCBTV (0)

4. Define initial parameter vector ~ci such that the start parameters lie within a physically

reasonable range

5. Repeat steps a) to e) until |CCB,i−1TV − CCB,iTV | < ε

a) Calculate scatter potential with best known primary estimate Iest∗
P and current set

of parameters ~ci: Φ(Iest∗
P ,~ci) = ci,0 + ci,1 · Iest∗

P · log
(
Iest∗
P
I0

)
b) Calculate scatter estimate Iest

S (~ci) = Φ(Iest∗
P ,~ci) ∗ ∗K(~ci)

c) Calculate primary estimate Iest,i
P = M−1 ·

(
IM − Iest

S (~ci)
)

d) Evaluate cost function:

IF CCBTV (Iest
S (~ci)) < CCB,minTV :

Iest∗
P ← α · Iest,i

P + (1− α) · Iest∗
P , CCB,minTV ← CCBTV (Iest

S (~ci)), update ~c

IF CCBTV (Iest
S (~ci)) ≥ CCB,minTV :

update ~c

e) Increase iteration counter: i← i+ 1
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The first primary estimate is calculated with Iest
S = 0 and Iest,0

P represents a simple demodulation

of the measured data without scatter consideration and will therefore show a superimposed

modulator pattern. Alternatively, an initial demodulation with a constant scatter value for one

projection is conceivable in step 2. such that Iest,0
P = M−1 ·

(
IM − IconstS

)
. To this point Iest,0

P

is the best known primary estimate and is therefore saved as such. Afterwards the cost function

is evaluated giving a measure of modulator visibility in the initial primary estimate (step 3.).

After the initialization of the parameter vector ~c (step 4.) an optimization loop is carried out

as long as the changes in the cost function are greater than a certain threshold ε. In this thesis

0.001 < ε < 0.1 has been used.

The goal is to find an optimal set of parameters ~c ∗ that is capable of approximating the true

scatter distribution. The ideal scatter distribution Iest∗
S is found when no modulator pattern

remains visible in the estimated primary intensity. Finding the ideal scatter estimate Iest∗
S is

an iterative procedure in which both the parameter vector ~c and the primary estimate Iest∗
P are

altered. In each iteration a scatter potential Φ and a scatter estimate Iest
S (~ci) must be computed

in order to asses the influence of the current parameter vector ~ci on the primary estimate Iest,i
P

(steps a)-c)). Note that it may be necessary to correct for invalid or negative values in the

scatter potential in case a bad primary estimate is used.

Whenever a better set of parameters is found less modulator pattern is superimposed on the

current primary estimate, the cost function decreases and both the best known primary estimate

Iest∗
P and the minimum known cost function value CCB,minTV are updated. Iest∗

P is updated as a

weighted sum of the new best primary estimate that was found in the current iteration and the

overall best known estimate to this point. This is necessary to prevent oscillation of the primary

estimate between two states in the first few iterations due to wrong initial scatter estimation.

0 < α < 1 is the weighting parameter that controls the speed of the overall cost function decrease

and the rate of convergence of the hiPMSE algorithm. In this study α ∈ [0.5; 0.7] has been found

to work well. The parameter vector ~c is then updated such that the costfunction will potentially

further decrease. The last best known parameter vector is used here as a start value in the next

iteration.

In case that the value of the cost function is equal or greater to the minimal known value

CCB,minTV , implying that the current set of parameters ~ci does not lead to less modulator pattern

in the estimated primary Iest,i
P , no changes in the best known primary estimate Iest∗

P are made

and only the parameter vector ~c is updated. With this approach the modulator pattern in Iest∗
P

vanishes more and more as the iteration counter increases. The algorithm terminates when the

value of the cost function does not change much from one iteration to another. This implies

that also the parameter vector ~c and Iest∗
P do not change much anymore.

The update step of the parameter vector c described in the context of hiPMSE utilizes a mul-

tidimensional Nelder-Mead downhill simplex algorithm (see section 3.4). Since a huge number

of 2D convolutions with kernels of the same size as the data matrix (e.g. 648 x 633 pixels) must

be employed during the hiPMSE procedure the convolutions were implemented in the Fourier

domain for faster computation. Borders were extended by zero-padding and the convolution
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result was cropped to the original image dimensions. In case the X-ray beam is perfectly col-

limated to the detector, zero-padding at the image borders may be the method of choice. It

can be noted that in cases of different collimations other border handling techniques can lead

to more precise scatter estimations.

After the final scatter estimate has been computed potentially zero or negative pixels in the

final primary estimate have been replaced by their neighborhood’s mean value in order to prevent

errors in the following logarithm operation. Furthermore a Gaussian filter with σ = 3 was used

in regions of strong attenuation where the primary signal fell under a certain threshold t to

prevent noise streaks in the final reconstructions. In this thesis t = e−6 was used. These last

two corrections are part of both the iPMSE and the hiPMSE routine.

3.3.1 Validation procedure

To develop and to verify the hiPMSE algorithm polychromatic MC simulations have been carried

out in order to generate a ground truth for both the scatter and primary intensities (IMC
S and

IMC
P ). For simulation data the free parameters of the scatter potential in Equation 3.8 and the

parameters of the kernel in Equation 3.10 were fitted to the MC results in a least-squares sense:

C(~cfit) = ‖IMC
S − ICBS (~cfit)‖22 (3.13)

where

ICBS (~cfit) = IMC
P ∗ ∗K(~cfit) (3.14)

The obtained parameters ~cfit were then used to generate scatter with the convolution based

model and this scatter signal was added to the simulated and modulated primary intensity:

Isim
M = MIsim

P + ICBS (3.15)

The primary intensity Isim
P was simulated with a ray tracing method. Isim

M served as the ”mea-

sured signal” on which the hiPMSE method was implemented and tested. This strategy has

been chosen in order to minimize computation time for generating the simulation data and to

demonstrate the scatter correction capability of convolution based scatter estimation methods.

For real measurement data, where no ground truth was available, correctness of found parameter

values was assessed by inspection of visible modulator remains in projection data and by artifact

reduction capability in volume data.
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3.4 Optimization

All optimization algorithms this thesis utilizes are part of the scipy.optimize package for

Python 3.4.3.5 running under Windows 7 [30]. The methods of Brent and Nelder & Mead find

the minimum of a function of one or more variables without the use of derivatives of the objective

function. Derivative-free optimization methods are particularly useful if the derivatives of an

object function are hard to calculate or do not even exist.

3.4.1 Brent’s method

With the iPMSE method only one scatter value IestS that leads to a modulator free primary

patch must be found. This is equivalent to finding the minimum of a function (the cost function

CTV (IestS )) of one variable. The method of Brent [31] is an appropriate algorithm to address

this problem. Brent’s method uses inverse parabolic interpolation whenever possible to speed

up the convergence of a golden section method. The golden section method to find a minimum

of a function successively brackets the range of values in which the minimum must lie. A

minimum is bracketed when a triplet of points (a < b < c) exists such that f(b) < f(a) < f(c).

The minimum then clearly lies within the interval (a, c). f is evaluated on a new point x to

construct a new bracketing interval from the observed function value at point x. Figure 3.4

exemplifies the successive bracketing of a minimum [32].

Figure 3.4: Golden section search: successively bracketing of a minimum. The original bracketing triplet
consists of points 1,3,2. The function is then evaluated at 4, and this point replaces point 2;
then at 5, replacing 1; then at 6 which replaces 4. After these steps the minimum is bracketed
by points 5,3,6. Figure taken from [32].

With golden section search the minimum is bracketed with greater precision in each iteration.

However, if the objective function is smooth near the minimum (which can be assumed on a well-

behaved function) Brent’s method speeds up the convergence of the golden section algorithm by

fitting a parabola through any three points near the minimum. The minimum of the parabola

is computed to determine a new point of the bracketing interval. Figure 3.5 displays inverse

parabolic interpolation.
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Figure 3.5: Convergence to a minimum by inverse parabolic interpolation. The first parabola (dashed line)
is fitted through the points 1,2,3 which lie on the original function (solid line). The objective
function is then evaluated on the parabolas minimum (point 4), which replaces point 3. The next
parabola (dotted line) is fitted through the points 1,4,2. The minimum of this parabola is at point
5, which is close to the minimum of the objective function. Figure taken from [32].

3.4.2 Nelder-Mead downhill simplex algorithm

With hiPMSE a number of free parameters, depending on the used scatter potential and the as-

sociated scatter kernel, shall be determined. To this day, the downhill simplex method proposed

by Nelder and Mead in 1965 [33] is one of the most commonly used derivative-free optimization

algorithms for multidimensional optimization, that is, finding the minimum or maximum of a

function of more than one independent variable. While this method is robust it is not ideal in

terms of iteration steps [32]. This method has been chosen because it is easy to apply and does

not require much computational power.

The method defines N+1 vertices in the N -dimensional search space. Together these vertices

are called a simplex. Thus, in 2D space a simplex is a triangle and in 3D space a simplex is

equal to a tetrahedron and so on. It is not possible to bracket the optimum and one is therefore

advised to pick an initial guess that is close to the optimum. The starting guess is used to form

the first simplex. In each iteration the algorithm evaluates the objective function at each vertex

of the simplex. These values are ordered from best (lowest score) to worst (highest score). The

simplex is continually refined in each iteration by means of reflection, contraction, expansion of

the worst point or shrinkage of the entire simplex around the best known value. The reflected,

expanded or contracted new vertex lies on a straight line defined by the highest vertex (worst

point) and the centroid for the best side of the current simplex.

Consider a simplex comprised by points (xh, xl, xs). The point with the highest score xh is

reflected through the centroid of the remaining vertices to a point xr (see Figure 3.6 a)). If xr

is less than the second best point xs and greater than the lowest vertex xl, accept this point xr

an move on to the next iteration. If the reflected point xr is lower than the lowest point xl, then

compute the expansion point xe (see Figure 3.6 b). If this point xe is lower than the reflected

point xr, accept xe and go to the next iteration. If the expanded point xe is equal or greater
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than the reflected point xr, then accept xr and move on to the next iteration. If the reflected

point xr is equal or greater than xs compute the contraction point xc that can either lie in- or

outside of the current simplex. For this, either xh or xr are used, depending on which of these

points has the lowest score. If xs ≤ xr < xh compute xc and if xc ≤ xr accept xc and move

to the next iteration. Otherwise, perform a shrink operation. If xr ≥ xh compute xc and if

xc < xh accept xc and move to the next iteration. Otherwise, perform a shrink operation. The

shrink operation contracts the entire simplex towards the best known vertex. The optimization

terminates if either a maximum number of iterations has been reached or all vertices gathered

around the optimum point [32][33].

(a) Reflection: the highest
point xh is reflected through
the centroid of the remain-
ing vertices to a point xr.

(b) Expansion: If the reflected point xr
is lower than the lowest point xl, then
the expansion point xe is computed.

(c) Contraction: If xs ≤
xr < xh compute xc and if
xc ≤ xr accept xc that lies
outside of the current sim-
plex.

(d) Contraction: If xr ≥ xh
compute xc and if xc < xh
accept xc that lies inside of
the current simplex.

Figure 3.6: Nelder-Mead downhill simplex algorithm: reflection, expansion and contraction. Figures taken
from http://docs.chejunkie.com/amoeba-method-algorithm/.

3.5 Hardware

3.5.1 Devices and measurements

All measurements were executed with a laboratory DVT system that is based on a state-of-the-

art DVT machine. The X-ray tube operated at a tube voltage of 85kV and a tube current of

7mA. The tube’s inherent filtration consisted of 2.5 mm Al and 0.3 mm Cu. The tube’s anode

angle is 5◦ with a nominal focal spot value of 0.5. Neither a bow-tie filter nor an anti-scatter-grid
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were used. The device uses a flat-panel CsI detector of an approximate size of 16x16 cm. One

pixel has a size of 240x240 µm. The source-object-distance is 33.3 cm and the source-detector-

distance is 52.4 cm. The primary modulator was mounted to the case of the X-ray tube with

duct tape resulting in a distance from the focal spot to the modulator of about 15 cm. Each

measurement consists of 200 projection images covering an angular range of about 200◦. All

projection images were pre-processed with the device’s inherent correction software.

For each object of interest four independent measurements are necessary. The imaged object

must not be moved between measurement 1. and 2. and the same applies for the modulator in

measurements 2. and 3.:

1. Measurement of the object only: to asses scatter-affected reconstructions

2. Measurement of the object with the modulator in place: input for iPMSE and hiPMSE

methods

3. Measurement of the modulator only

4. Air scan: for normalization purposes

3.5.2 Modulator

A modulator was designed in order to conduct measurements on a state-of-the-art DVT device

that can be used in the iPMSE and hiPMSE methods. The pattern of the modulator, the

modulator period, modulator material and modulator thickness are the main design aspects one

must consider.

Although essentially not required with iPMSE or hiPMSE a checkerboard pattern was the

pattern of choice to generate as little deviation to the theory of primary modulator scatter

estimation. This pattern could possibly also be used with the classical Fourier-based approach

of separating primary and scatter intensities. The side length of one blocker was chosen to be

equal to du = dv = 1 mm or a modulator period of p = 2 mm respectively. The modulator period

mapped on the detector amounted to about 25 pixels or approximately 7 mm. The modulator

material must have a high density or high mass attenuation coefficient such that the modulator

can be thin [34]. The modulator was manufactured on a circuit board using a conventional

etching method with a copper thickness of 210 µm (see Figure 3.7).

The total measured transmission of the modulator was approximately 85%, which is in the

recommended range of transmission values [35].
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Figure 3.7: The copper checkerboard modulator. The total transmission amounted to about 85% of the inci-
dent radiation.
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4
Results

4.1 Monte-Carlo simulations of two phantoms

MC simulations were conducted in order to generate a ground truth for both the scatter and

primary intensities. For one, realistic scatter-to-primary-ratios (SPR) must be available in order

to possibly asses the correctness of the results of both the iPMSE and the hiPMSE method.

On the other hand, for simulation data scatter must be generated manually in a realistic way.

For this, the free parameters of the convolution-based model introduced in section 3.2 were

fitted to the MC-generated scatter intensities such that the obtained parameters ~cfit recreate

the underlying scatter distribution with as little deviation as possible.

Two different models were used in this study:

� Model 1 consists of the scatter potential (see Equation (3.8)) and the scatter kernel from

Equation (3.10), i.e.

Iest
S (~c) = Φ(Iest∗

P ,~c) ∗ ∗K2(~c) (4.1)

� Model 2 is a simplified version of model 1. The parameters of the scatter potential were

set to c0 = 0 and c1 = 1 for ease of computation. Also, a simple 2D Gaussian function

was used as a scatter kernel (see Equation (3.9)), i.e.

Iest
S (~c) = Φ(Iest∗

P ) ∗ ∗K1(~c) (4.2)

Utilization of the second model results in a fitting problem with only one free parameter (the

width σ of the kernel). Both fits can also be seen as a test to verify that the used scatter

potentials and kernels are principally capable of estimating true scatter distributions.

Two different objects were of interest in this study: first, a simple water cylinder was examined.

Secondly, a water phantom with three different inserts (air, aluminium and teflon) was simulated.

All MC simulations were carried out together with the German Cancer Research Center (DKFZ,

Heidelberg, Germany) utilizing an in-house MC simulation environment. The geometry of a

state-of-the-art DVT machine was accurately modeled by employing projection matrices that

were calibrated on a real device.
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4.1.1 Water cylinder

Model 1

Figure 4.1 depicts the results of the MC simulations for the simple water cylinder. The projection

of the cylinder is not exactly upright due to slight errors in the projection matrices from the

device. This does, however, not diminish the validity of these results.

Figure 4.1: Water cylinder: MC-simulated intensities IMC
P and IMC

S .

IMC
P and IMC

S were used to calibrate the open parameters in a convolution-based scatter model

utilizing the cost function in formula 3.13 to obtain ICBS . Specifically, the scatter potential from

formula 3.8 and the scatter kernel K2 from formula 3.10 have been used. This results in a

model with 4 open parameters, two of them (c0 and c1) defining the shape and magnitude of

the scatter potential Φ and the other two (b and σ) influencing the shape of the scatter kernel.

On the left side of Figure 4.2 the resulting scatter distribution ICBS that was generated with the

convolution-based model and the fitted parameters ~cfit can be seen. The right image in Figure

4.2 depicts the deviations of ICBS to IMC
S . The total mean error was 7.63% and mainly stems

from the outer image areas. This may be due to the fact that the scatter potential that was

convoluted with the scatter kernel was extended by zero-padding at the image borders. In table

4.1 the fitted parameter values can be seen. c0 and c1 are dimensionless scaling factors whereas

b and σ are given in units of pixels. The negative sign of the parameter b may look odd, but

does in fact not matter as the kernel is rotationally symmetric. The profile through the middle

of the resulting normalized convolution kernel can be seen in Figure 4.3.

Table 4.1: Individual components of ~cfit for the water cylinder for model 1.

c0 c1 b σ

0.027 0.068 -29.459 63.571

In Figure 4.4 line profiles through the MC-simulated scatter and primary estimates, the con-

volution based scatter estimate and the scatter potential can be seen. The convolution based

scatter estimate shows very little deviation to the MC-based scatter profile. This indicates that
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Figure 4.2: Water cylinder - Model 1: Left: Convolution-based scatter estimate ICBS (~cfit). Right: Difference
to the scatter reference image IMC

S . The difference given above the right image is the total overall
percental difference.

Figure 4.3: Water cylinder - Model 1: Profile through the normalized scatter kernel K2 = f(bfit, σfit).

the convolution-based model is in fact capable of accurately estimating scatter.

Model 2

For the model 2 the originally introduced parameters in the scatter potential were set to c0 = 0

and c1 = 1. In Figure 4.5 the resulting scatter distribution from the simplified Gaussian model

with only one free parameter, σ, is illustrated. The total error to the MC generated scatter

image is 6.99% and thus a bit smaller than in the above case with model 1.

Figure 4.6 shows line profiles through MC-simulated primary and scatter intensities, through

the convolution-based scatter estimate and the scatter potential for the model 2. The fitted

parameter of the 2D Gaussian distribution of the scatter kernel was σ = 608 pixels. While with

both models the MC scatter distribution can be modeled accurately, the used scatter potential

in each model greatly differs. With the model 2 the overall intensity in the scatter potential is

much higher in object regions, and the resulting kernel is about 10 times wider than with model

1. The scatter potential in model 2 does however drop rapidly to the image borders where the
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Figure 4.4: Water cylinder - Model 1: Top: Line profiles through the MC-simulated primary and scatter
intensities, a line profile through the convolution-based scatter estimate generated with least-
square fitted parameters and through the scatter potential. Bottom: Scatter-to-primary ratio
from MC simulations.

Figure 4.5: Water cylinder - Model 2: Left: Convolution-based scatter estimate ICBS (σfit) and difference to
the scatter reference image IMC

S .

X-rays did not penetrate the object but air. The lack of scaling factors c0 and c1 in the scatter

potential may result in a relatively wide kernel compared to model 1 in order to smooth out the

distinct edge in the scatter potential and to lead a smooth and flat scatter distribution.

4.1.2 Water phantom with inserts

Model 1

Figure 4.7 depicts the results of the MC simulations for the water phantom with the three

different inserts.

On the left side of Figure 4.8 the resulting scatter distribution ICBS that was generated with

model 1 can be seen. The right image in Figure 4.8 depicts the deviations of ICBS to IMC
S . It
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Figure 4.6: Water cylinder - Model 2: Top: Line profiles through the MC-simulated primary and scatter
intensities, through the convolution-based scatter estimate generated with model 2 and through
the scatter potential. Bottom: Scatter-to-primary ratio from MC simulations.

Figure 4.7: Water phantom: MC-simulated intensities IMC
P and IMC

S for the water phantom with inserts.

can be noted that both scatter signals are flat and smooth. The main differences occur again

at the image borders and in the top image area. The total mean error was 9.32%. In table 4.2

the fitted parameter values can be seen. A profile through the resulting normalized convolution

kernel is illustrated in Figure 4.9. Compared to the previous kernel parameters of the water

cylinder in section 4.1.1 the scatter kernel is wider and does show effectively no shift in the two

summed Gaussian distributions.

Table 4.2: Individual components of ~cfit for the water phantom for model 1.

c0 c1 b σ

0.009 0.132 0.002 96.477

In Figure 4.10 line profiles through the MC-simulated scatter and primary estimates, the

convolution based scatter estimate and the used scatter potential can be seen. As noted before,
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Figure 4.8: Water phantom - Model 1: Left: Convolution-based scatter estimate ICBS (~cfit). Right: difference
to the scatter reference image IMC

S .

Figure 4.9: Water phantom - Model 1: Profile through the normalized scatter kernel K2 = f(bfit, σfit).

the biggest deviations in the convolution-based scatter distribution to the MC scatter estimate

occur at the image borders.

Model 2

Figure 4.11 shows the resulting scatter distribution of the simplified model 2. The total error

was 5.12% and, as with the water cylinder, again smaller than with the more complex model 1.

At the bottom of the difference image the borders of two inserts can be recognized. Also, the

inserts are bordered by a region of close-to-zero error.

Figure 4.12 depicts line profiles through the MC-simulated scatter and primary estimates, the

convolution based scatter estimate and the used scatter potential. The fitted parameter of the

2D Gaussian distribution of the scatter kernel was σ = 572 pixels and thus a little smaller but in

the same range as above for the water cylinder. Again, the scatter potential is much higher than

the corresponding MC primary intensity and the broad 2D Gaussian kernel is used to flatten

this potential.
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Figure 4.10: Water phantom - Model 1: Top: Line profiles through MC-simulated primary and scatter in-
tensities, through the convolution-based scatter estimate generated with model 1 and the scatter
potential. Bottom: Scatter-to-primary ratio from MC simulations.

Figure 4.11: Water phantom - Model 2: Left: Convolution-based scatter estimate ICBS (~cfit) and difference
to the scatter reference image IMC

S .

It has been shown that both used models are in fact capable of recreating a realistic scatter

distribution from measured data. For both the water cylinder and the water phantom the ob-

tained scatter parameters of the first model were used to generate scatter for non-MC simulated

monochromatic projections. The resulting image was then used to verify both the iPMSE as

well as the hiPMSE methods. Since both scatter models are interchangeable and with com-

parable scatter recreation potential the second model was used to estimate scatter from real

measurement data due to ease of computation.
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Figure 4.12: Water phantom - Model 2: Top: Line profiles of MC-simulated primary and scatter intensities
through the convolution-based scatter estimate generated with model 2 and through the scatter
potential. Bottom: Scatter-to-primary ratio from MC simulations.

4.2 Improved Primary Modulator Scatter Estimation (iPMSE)

The iPMSE technique was first implemented and tested on monochromatic simulation data.

When the algorithm was stable and proven to work well under ideal conditions measurements

were carried out in order to verify the method for real data.

4.2.1 Simulations

Jaw phantom

The iPMSE method was tested on different phantoms and for different amounts of scatter

and worked well independently of the imaged object. The influence of strong object edges on

the estimated scatter value was found to be less significant for simulation data than for real

measurements. This may be due to the fact that in simulation data the modulator edges are

always perfectly sharp. In this section an exemplary simulated measurement of a jaw phantom

will be shown and discussed. The jaw phantom consists of a head-shaped water form (tissue)

with several vertebral bodies, lower and upper jaws and teeth. Most of the teeth are composed

of dentin but some were replaced with titanium in order to emulate dental implants. The

simulated primary signal IP was generated by simply forward projecting a geometrical object,

the jaw phantom, whereby no scatter and only monochromatic X-rays occurred. The scatter

was in this case simulated with the convolution based model that was introduced in section

3.2, specifically the kernel proposed by Zhao (model 1, see formula 3.10), and then added to the

modulated primary intensity. For this, the parameters from table 4.2 were used. The modulation

of the primary signal was achieved by multiplication of the primary image IP with a modulator

of alternating blockers of air (mii = 1) and a blocker material (mii = 0.6). For all simulation

data Poisson noise with N = 10000 was added to the modulated primary signal, leading to a
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signal-to-noise ratio of about 80 in the object. Figure 4.13 shows the simulated images for IM ,

IP and IS .

The estimated primary and scatter signals Iest
P and Iest

S can be seen in Figure 4.14. The patch

size was chosen as du = dv = 43 pixels with a modulator period of approximately 30 pixels.

Figure 4.15 displays the behavior of the cost function CTV (IestS ) (see Equation 3.6) for different

values of IestS for a patch located in a tissue area of the jaw phantom. The usage of a L1-norm

leads to a cost function that is convex, such that only one optimal solution per patch exists. This

is confirmed by the fact that the strength of edges introduced by the modulator is proportional

to the error ∆s [16].

The patch-wise ansatz for the solution of the minimization problem leads to a somewhat

stained appearance of the scatter signal that is not exactly as smooth as the simulated scatter

image. The overall shape of the scatter intensity is, however, reproduced. Figure 4.16 attests

high accuracy to the iPMSE method in this case since the line profiles of the estimations precisely

follow the profiles of the simulated intensities. The SPR reaches values as high as approximately

1.5 behind the strongly absorbing titanium inserts.

Figure 4.13: Jaw phantom: Simulated intensities IM , IP and IS. The primary intensity was generated
from monochromatic forward projections whereas the scatter intensity was generated with a
convolution-based model.

Figure 4.17 displays a scatter affected and a scatter corrected slice of the reconstructed volume.

Note that for all displayed slice images in this work the gray values are arbitrary scaled and

do net represent Houndsfield units. As expected, both the cupping artifact in the homogeneous

water body and streaking artifacts between the titanium insert and teeth are present in the
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Figure 4.14: Jaw phantom - iPMSE: Estimated intensities Iest
P and Iest

S . The yellow line indicates the
location of the line profiles in Figure 4.16.

Figure 4.15: Jaw phantom - iPMSE: Behavior of the cost function for a patch in the tissue-like area for
different scatter values. A global minimum is found at IestS = 0.088.

scatter-affected reconstructions. The scatter corrected slice is almost free of scatter artifacts.

Compared to the scatter-free reference on the left in Figure 4.18 only little deviations occur

as streaks emerging from the titanium teeth. This is also evident from the difference image

on the right side of Figure 4.18 where directed noise structures are visible. The overall noise

level in the scatter-corrected slice is, as with all subtraction-based scatter correction algorithms,

increased. This is due to the fact that the scatter noise remains in the image after scatter

correction [23]. Line profiles through the water shape that are again indicated by the yellow

lines can be seen in Figure 4.19. The scatter-corrected profile shows very little deviations to the

scatter free reference. The cupping artifact along with the deviations from the ideal rectangular

profile shape due to streaks could be almost completely eliminated.

It has been shown that the iPMSE method works well on simulation data and under ideal con-

ditions. Both the prominent cupping and streaking artifacts due to the occurrence of scattered
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Figure 4.16: Jaw phantom - iPMSE: Top: Line profiles of simulated and estimated primary and scatter
intensities. The estimated profiles (solid lines) show very little deviation to the true profiles
(dashed lines). Bottom: Estimated scatter-to-primary ratio.

Figure 4.17: Jaw phantom - iPMSE: A scatter affected and a scatter corrected slice of the reconstructed
volume.

X-rays could be reduced substantially to improve homogeneity and overall visual appearance.

However, the patch-wise approach used in the estimation of the scatter signal leads to a patchy

visual appearance of the estimated scatter intensities. Although the patches overlap by half

the patch size in u- and v-direction, sometimes even neighboring patches show divergent scatter

values. This may be due to the influence of noise or due to the fact that the cost function

does not only detect modulator edges but also sharp object edges. Consequently the estimated

scatter values are influenced by the presence of strong object edges in the projection images.
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Figure 4.18: Jaw phantom - iPMSE: Left: Scatter free reference. Right: Difference of scatter-corrected and
scatter-free images in relation to the maximum of the scatter free reference. The root mean

squared error (RMSE) is defined as RMSE =

√
mean

((
SSC−SRef

max(SRef)

)2)
, where mean() computes

the average value over all pixels of an image.

Figure 4.19: Jaw phantom - iPMSE: Line profiles through the scatter-affected, the scatter-corrected and the
reference slice of the three respective reconstructions. RMSE stands for Root Mean Square
Error and is defined as

Klein addressed this issue in [24] and proposes to overcome this problem with a modified cost

function that considers the estimated gradient of the object.

4.2.2 Measurements

Water cylinder

Figure 4.20 shows measured projection images for a water cylinder with the modulator in place

(IM ) and the modulator M only. The water cylinder occupies almost the complete FOV except

for a small area of air on both sides of the cylinder. The projection image of the modulator M

shows a typical artifact that originates from the relatively small anode angle of 5◦ in combination

with the finite size of the focal spot: a spatially variant blurring of the checkerboard pattern
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can be observed. On the left side of the modulator projection a clear differentiation between the

copper and the air areas of the modulator is possible. The projected modulator pattern exhibits

sharp edges. On the right side of the projection image of the modulator the situation is different.

To the top and to the bottom the projection image of the modulator changes from the ideal

checkerboard pattern to a diagonal stripes pattern. In the middle, however, the checkerboard

pattern can still be observed but with much more blurring and less distinct edges than on the

right side. This problem is inherent to all measurements indifferent of the imaged object.

Figure 4.21 shows the estimated primary and scatter intensities. In this case, the iPMSE

algorithm does not lead to the desired results. First, the scatter estimate Iest
S has a very patchy

appearance. In can be noted that both edges of the water cylinder have great influence on

the scatter estimation. Oscillating estimated scatter values along the left edge of the cylinder

can be observed. In the area of the right image border side of the scatter estimation scatter is

overestimated. Presumably this is due to the fact that the modulator edges are strongly blurred

in this region and the cost function fails to correctly estimate a scatter values due to a lack of

sharp edges. The error in the scatter estimation directly translates into the primary estimation

Iest
P . In regions were the scatter was overestimated the modulator pattern is still visible in the

estimated primary. The line profile (see Figure 4.22) through the scatter image however shows,

except for the area in the far right, a flat behavior of the scatter estimated as expected. The

SPR reaches a maximum of approximately 0.5 which lies, compared to the MC simulations, in

a realistic range.

Figure 4.20: Water cylinder: Measured intensities IM and M .
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Figure 4.21: Water cylinder - iPMSE: Estimated intensities Iest
P and Iest

S .

Figure 4.22: Water cylinder - iPMSE: Top: Line profiles of estimated primary and scatter intensities. Bot-
tom: Estimated scatter-to-primary ratio.

Figure 4.23 shows scatter-affacted and scatter-corrected slices of a reconstruction. As ex-

pected, the patchy appearance of the primary estimation greatly deteriorates image homogene-

ity. The modulator remains in the primary estimate lead to ring artifacts in a reconstructed

slice. The potential benefit from the iPMSE scatter correction is annihilated by the errors in

the scatter- and primary estimations. Comparison of profiles through the reconstructed slices

still suggests that the cupping artifact that is present in the uncorrected slice could be reduced.

This comes at the cost of greatly reduced image homogeneity.
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Figure 4.23: Water cylinder - iPMSE: A scatter affected and a scatter corrected slice of the reconstructed
volume.

Figure 4.24: Water cylinder - iPMSE: Line profiles through the scatter-affected and the scatter-corrected
reconstructions.

In can be noted that in regions were distinct modulator edges are present the TV cost function

works as expected. Problems arise when strong object edges are mistaken for modulator edges

by the cost function and the estimated scatter value tries to compensate for these strong edges.

Also, the strong blurring especially on the right side of the modulator images leads to wrong

scatter values in these regions.

4.3 Hybrid Primary Modulator Scatter Estimation (hiPMSE)

4.3.1 Simulations

In this section the results of the novel hiPMSE method are presented. The method worked well

on simulation data where scatter was generated with the same convolution-based model that

was used in the estimation of the scatter in the hiPMSE method. As for the iPMSE method,
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the simulation data has again been generated according to the procedure described in section

3.3.1. In particular, Model 1 was employed with the obtained parameters from sections 4.1.1

and 4.1.2 respectively to generate a realistic scatter distribution that was subsequently added

to the modulated primary intensity. This total signal IM served as the input for the hiPMSE

method.

Water cylinder

Figure 4.25 shows the simulated scatter and primary intensities as well as the total simulated

intensity IM . The scatter intensity was generated with the parameters from table 4.1. Figure

4.26 shows the corresponding scatter and primary estimations. No modulator is visible in Iest
P

which indicates that the error in the scatter estimation ∆s is relatively small. The corresponding

line profiles can be seen in Figure 4.27. The estimated profiles follow the simulated ones precisely.

The SPR reaches a maximum of about 0.3 in the center of the water cylinder.

Figure 4.25: Water cylinder: Simulated intensities IM , IP and IS.

Reconstructions from both the scatter-affected and the scatter-corrected sinograms are shown

in Figure 4.28. The scatter-affected slice exhibits an underestimation of attenuation values in

the middle of the object due to scatter, which is also evident from the line profile in Figure 4.29.

The scatter-corrected slice does not show this cupping artifact and the profile through this slice

follows the scatter-free reference accurately.

Water phantom

Figure 4.30 shows slices from the scatter-affected and the scatter-corrected reconstructions of

the water phantom with the three inserts. The scatter-affected slice shows a noticeable cupping
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Figure 4.26: Water cylinder - hiPMSE: Estimated intensities Iest
P and Iest

S .

Figure 4.27: Water cylinder - hiPMSE: Top: Line profiles of simulated and estimated primary and scatter
intensities. Bottom: Estimated scatter-to-primary ratio.

Figure 4.28: Water cylinder - hiPMSE: A scatter affected and a scatter corrected slice of the reconstructed
volume.

artifact in the aluminium insert as well as dark streaks between the aluminium and the teflon

insert and between the air and the aluminium insert. In the scatter-corrected slice, none of these

artifacts can be observed. Figure 4.31 depicts a scatter-free reference slice and the deviation

of the scatter-corrected slice to this reference. The line profiles in Figure 4.32 visualize the
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Figure 4.29: Water cylinder - hiPMSE: Line profiles through the scatter-affected, the scatter-corrected and
the reference slice of the three respective reconstructions.

artifact correction potential of the hiPMSE method. The cupping artifact in the aluminium

insert is greatly reduced. The noise level inside the insert increases, which is also evident from

the difference image in Figure 4.31.

Figure 4.33 compares estimated values of the parameter vector ~c ∗ to the simulated reference

values for every projection image. The mean values of the estimated parameters are compared to

the reference values in table 4.3. The parameters c0 and c1 were estimated with great precision

on average, but both show variations over the 200 independent projections. The parameter b

that determines the shift in the summed Gaussians in Equation 3.10 is greatly overestimated,

while the actual width of the Gaussian distributions σ is slightly underestimated. Together these

over-and underestimations seem to cancel each other as the sum of two smaller but displaced

Gaussians exhibits effectively the same kernel width as a Gaussian with larger sigma. The

resulting kernel width is comparable to the simulated one. It must in fact be noted that model

1 is relatively robust and it was observed that different combinations of parameters lead to

a scatter distribution that was capable of completely removing the modulator pattern. These

findings suggest that, for this exact phantom, the cost function does not have a unique minimum.

Figure 4.30: Water phantom - hiPMSE: A scatter affected and a scatter corrected slice of the reconstructed
volume.
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Figure 4.31: Water phantom - hiPMSE: Left: Scatter free reference. Right: Difference of scatter-corrected
and scatter-free images in relation to the maximum of the scatter free reference. The mean

error (ME) is defined as ME = mean
(∣∣SSC−SRef

max(SRef)

∣∣), where mean() computes the average value

over all pixels of an image.

Figure 4.32: Water phantom - hiPMSE: Line profiles through the scatter-affected, the scatter-corrected and
the reference slice of the three respective reconstructions.

Table 4.3: Mean estimated parameters of ~c∗ for the water phantom compared to reference values used for
the simulation.

c0 c1 b σ

ref 0.009 0.132 0.002 96.477

est 0.009 0.135 25.481 91.272

4.3.2 Measurements

For real measurement data model 2 was used in the hiPMSE method. This is partly to lower

computation times, and partly due to non-convergence of the algorithm on certain phantoms.

As shown in Section 4.1, this model nevertheless exhibits accuracy comparable or even better

than model 1 and is therefore well suited to estimate scatter.
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Figure 4.33: Water phantom - hiPMSE: Estimated parameters (solid line) over projection number compared
to simulated parameters (dashed line).

Water cylinder

The measurement data used here is the same that served as input for the iPMSE method in

Section 4.2.2. Please refer to Figure 4.20 for projection images of the object with the modulator

in place and a projection of the modulator. The water cylinder had approximately the same

diameter and was placed in the same geometry setup in both simulation and real measurements.

Estimated scatter and primary signals can be seen in Figure 4.34. There are no modulator

remains visible in Iest
P . In contrast to the classical iPMSE method the resulting scatter image

Iest
S is flat and does not show this patchy appearance. Figure 4.35 shows the estimated parameter

of the scatter kernel σest over all projections. It is not constant due to the fact that the water

cylinder was placed slightly off center and wanders around in the measured projection images.

This implies that also the scatter distribution changes on a projection-to-projection basis. The

mean estimated width of the 2D Gaussian function was σ̄est = 487. This is a slightly smaller

value than suggested by the MC fitted parameter in section 4.1.1 but still in the same range.

It can be noted from Figure 4.36 that the estimated SPR is greater than the SPR in the MC

simulation study of the same object (see section 4.1.1). This may be due to the fact that scatter

is overestimated towards the middle of the water cylinder. Although this overestimation is not

large enough to generate visibly noticeable modulator remains in the projection image, it is large

enough to produce a slight capping artifact in the scatter-corrected reconstructions (see Figure

4.38). Slight ring artifacts in the slice images, which stem from visibly not noticeable modulator

remains, are visible in Figure 4.37 in the center of the water cylinder and these findings support

the theory of slightly overestimated scatter towards the center.

Teeth and implants in small bucket - phantom 1

In lack of a suitable phantom for dental situation imitation a simple phantom was constructed.

The phantom consisted of a small bucket slightly larger than the FOV filled with water with
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Figure 4.34: Water cylinder (measured) - hiPMSE: Estimated intensities Iest
P and Iest

S .

Figure 4.35: Water cylinder (measured) - hiPMSE: Estimated kernel parameter σest.

three teeth that are embedded in plastic and two titanium rods that are typically used in

implantology. In Figure 4.39 the measured projection image IM with the modulator in place

and the projection image of the modulator M are shown. In Figure 4.40 the estimated primary

and scatter intensities can be seen. Again, the estimated width of the 2D Gaussian function

was projection angle dependent due to the changing underlying attenuation situation. The

mean estimated width of the Gaussian function was σ̄est = 630. The estimated primary signal

shows slight modulator remains. Figure 4.41 shows profiles through the scatter and primary

estimation and the estimated SPR. As expected, the SPR reaches highest values behind the

titanium implants where the scatter signal exceeds the primary signal. This in turn leads to

a dark streak connecting the implants in the reconstructions (see Figure 4.42). Slight streak

artifacts are also evident between the titanium implants and the teeth and the teeth only. The

scatter-corrected slice in Figure 4.42 does not show any of these streaking artifacts due to a

lack of scatter in the projection images. This is a prime example of the scatter correction

capability of the novel hiPMSE algorithm introduced in this thesis. The reconstructions do

however show rings in the middle of the bucket due to the modulator remains visible in the
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Figure 4.36: Water cylinder (measured) - hiPMSE: Top: Line profiles of estimated primary and scatter
intensities. Bottom: Estimated scatter-to-primary ratio.

Figure 4.37: Water cylinder (measured) - hiPMSE: A scatter affected and a scatter corrected slice of the
reconstructed volume.

corrected projection images. These modulator remains might be of course ascribed to a slightly

over- or underestimation of scatter or to modulator motion. This motion can occur within a

measurement on a projection-to-projection basis or between measurements. Clearly a modulator

image M that does not exactly match the modulator pattern in the measurement IM will not be

able to completely demodulate said measurement after scatter was subtracted. The line profiles

visible in Figure 4.43 show that the dark streak vanishes in the scatter-corrected slice. It must

also be noted that a slight brightening occurs between the implants.

Teeth and implants in bucket - phantom 2

This measurement is very similar to the phantom in section 4.3.2 except for the considerably

more voluminous bucket and a changed arrangement of teeth and implants. The bucket with

greater diameter resulted in a overall weaker detected signal and a lower SNR due to more
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Figure 4.38: Water cylinder (measured) - hiPMSE: Line profiles through the scatter-affected and the scatter-
corrected reconstructions.

Figure 4.39: Bucket 1 with teeth and implants: Measured intensities IM and M .

Figure 4.40: Bucket 1 with teeth and implants - hiPMSE:Estimated intensities Iest
P and Iest

S .

attenuation (see Figure 4.44). The estimated scatter and primary images can be seen in Figure

4.45. Very little modulator remains are visible which implies a good scatter estimation. The

scatter-corrected projection image Iest
P appears to be much darker as the uncorrected image IM

with identical windowing, which implies a large amount of detected scatter in the uncorrected

case. This is also evident from Figure 4.46 where the scatter signal exceeds the primary signal

except for the outer image areas. The SPR reaches a maximum of about 11 behind the teeth.

Slices of the scatter-corrected and scatter-affected volumes are shown in Figure 4.47. The streak

artifacts between the implants vanish. Also, slight ring artifacts due to modulator remains are
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Figure 4.41: Bucket 1 with teeth and implants - hiPMSE: Top: Line profiles of estimated primary and scatter
intensities. Bottom: Estimated scatter-to-primary ratio.

Figure 4.42: Bucket 1 with teeth and implants - hiPMSE: A scatter affected and a scatter corrected slice of
the reconstructed volume. A linear windowing function was applied to both images in order to
create a visually comparable situation. In both images, the gray value of water has been mapped
to 1 and the gray value of teeth to 2.

visible. The mean estimated width of the Gaussian function was σ̄est = 503.
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Figure 4.43: Bucket 1 with teeth and implants - hiPMSE: Line profiles through the scatter-affected and the
scatter-corrected reconstructions.

Figure 4.44: Bucket 2 with teeth and implants: Measured intensities IM and M .

Figure 4.45: Bucket 2 with teeth and implants - hiPMSE: Estimated intensities Iest
P and Iest

S .
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Figure 4.46: Bucket 2 with teeth and implants - hiPMSE: Top: Line profiles of estimated primary and scatter
intensities. Bottom: Estimated scatter-to-primary ratio.

Figure 4.47: Bucket 2 with teeth and implants - hiPMSE: A scatter affected and a scatter corrected slice of
the reconstructed volume. A linear windowing function was applied to both images in order to
create a visually comparable situation. In both images, the gray value of water has been mapped
to 1 and the gray value of teeth to 2. The region-of-interest (ROI) for teeth was set in the
uppermost tooth, the water ROI was set directly over the aforementioned tooth and was of the
same size.
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5
Discussion and Outlook

This last section critically discusses the achieved results, calls the remaining problems and

suggests solutions to the aforementioned. Moreover, a short outlook to possible future work is

given and other ideas to further improve the methods are presented.

5.1 Summary and Conclusion

The present work deals with the implementation and further development of primary modulator-

based scatter estimation techniques, namely the Improved Primary Modulator Scatter Estima-

tion (iPMSE) and the Hybrid Primary Modulator Scatter Estimation (hiPMSE). The perfor-

mances of the methods was assessed with simulation and real measurement data. The mea-

surements were generated with a laboratory system that is based on a state-of-the-art DVT

system.

With regard to the results that were discovered in this thesis, scattered radiation reduction

for dental DVT devices is found to be a crucial point for image quality improvements.

5.1.1 Improved Primary Modulator Scatter Estimation (iPMSE)

The iPMSE method worked well under ideal conditions, i.e. simulation data (see Figure 4.17).

On real data, problems arose due to modulator blurring. In regions where sharp modulator

edges are present, the method worked as expected and was able to find the scatter estimation

value that leads to a removal of the modulator pattern. However, with too much blurring, the

gradient-based cost function could not find a correct scatter estimation value and overestimated

scatter in these regions (see Figure 4.21). This overestimation leads to modulator remains and

therefore to ring artifacts in the final volume (see Figure 4.23). It is crucial to completely remove

the modulator pattern to really benefit from the achievable scatter correction.

5.1.2 Hybrid Primary Modulator Scatter Estimation (hiPMSE)

The hiPMSE method was first implemented on simulation data. For this, the scatter distribution

was generated with the same model with which it was estimated. To further strengthen the

statement of scatter correction potency, a MC simulation of a full sinogram with the modulator

in place must be carried out. The hiPMSE method’s scatter kernel and potential must then

be calibrated to this truly unknown scatter distribution. In this way, over-fitting of the model
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parameters could be prevented. Nevertheless, the hiPMSE algorithm worked well on both

simulated data with the model 1 and on real data with model 2. The discovered results motivate

for further investigation of the technique. The lack of patchiness and the inherent smoothness

of the obtained scatter distributions are a clear advantage over the classical iPMSE technique.

It was shown that the hiPMSE method has potential especially for dental CBCT.

Traditionally, the acquisition of volume data is a necessary step in implantology [5], and these

metal implants cause, aside from metal artifacts, severe streak artifacts due to scatter. With

the hiPMSE technique, these streaks could be reduced or even completely removed (see Figures

4.42 and 4.47).

Regarding the hiPMSE algorithm itself, several changes could be made in order to further

improve the algorithm. First, more sophisticated scatter kernels and potentials could be used

to increase scatter estimation accuracy [27][36]. Furthermore, the usage of generic optimization

algorithms could be avoided by developing a custom minimizer. This would further speed up

the parameter searching procedure.

Also, a combination of the iPMSE and the hiPMSE methods could be realized. The scatter

corrected and demodulated primary estimate from an iPMSE run would herein serve as the

first primary estimate in the hiPMSE algorithm. As an inital set of parameters in the hiPMSE

algorithm, parameters fitted to the iPMSE generated result could be used. This would further

improve the rate of convergence.

5.1.3 Computation time

For the iPMSE method computation time amounted to about 5 seconds for one projection and

to about 20 minutes for a full sinogram, consisting of 200 projection images on a standard

desktop PC with an Intel Core i5 CPU, operating at 2.8 GHz and with 16 GB of RAM for

non-optimized Python code, employing out-of-the-box optimization routines. For the hiPMSE

method computation time amounted to about 1 to 2 minutes for one projection, and to about 3

to 6 hours for a full sinogram on the same PC. These times are way over clinically and medically

acceptable computation times for a scatter correction algorithm. This is partly due to the fact

that the Python programming language does not make use of multiple CPU cores inherently. It

must however be noted, that these times can be significantly lowered if the code is optimized.

Firstly, a compiled programming language like C or C++ could be used. Secondly, since each

projection is independent of another, multiple projection images could be processed at the same

time. The code can even be parallelized by using modern GPU programming techniques.

5.2 Possible directions for future work

The spatially variable modulator blurring in the projection images leads to wrong scatter es-

timation and therefore modulator remains in the scatter corrected images. These modulator

remains in turn introduce ring artifacts in the reconstructed volumes. Relief could be provided
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by redefining the cost function in such that not only edges are utilized as a measure of scatter

estimation correctness, but also raw data coverage:

CTV,DF (IestS ) = α‖∇M−1 ·
(
IM − IestS

)
‖1 +

β

2
‖(MIestP + IestS )− IM‖22 (5.1)

The subscript DF indicates that also a data fidelity term is considered in the cost function. It

is conceivable that the parameters α and β are spatially variant and adjusted to the underlying

situation. When strong modulator edges are present, the first term of Equation 5.1 is given

more weight and in regions where modulator edges are not reliable, the data fidelity term is

more accentuated. The data fidelity term could also be used in a refined cost function within the

hiPMSE algorithm. Furthermore, boundary constraints could be added such that the primary

must always be greater than zero (IP > 0) and also the scatter must fulfill the same condition

(IS > 0).

With real measurement data a simplified scatter model 2 was used in the hiPMSE algorithm.

This is partly to lower computation times, and partly due to non-convergence of the algorithm

on certain phantoms. Future work should assess this problem and expand the hiPMSE method

for measurement data to the more general model 1.

It must be accepted, that a perfect estimation of a scatter distribution with no deviation (i.e.

no modulator remains) to the true scatter distribution is not easy to achieve in general. From

the results presented in this thesis, it is evident that if only slight modulator remains are present

in the primary estimates, ring artifacts will be introduced in the reconstructed volumes. Also,

the spatially dependent beam hardening of the modulator must be accounted for. Both tasks

could be resolved by the Empircal Cupping Correction (ECCP) algorithm [37].

All subtraction-based scatter removal algorithms suffer from increased noise in the corrected

projection images. With iPMSE and hiPMSE, a very flat scatter distribution is subtracted from

the measured signal. This leads to removal of the overall scatter signal, but not of the scatter

noise which is left in the images. To truly benefit from the scatter correction a dedicated noise

suppression algorithm must be applied. Zhu et al. suggest such an algorithm in [23].

On some measurements, motion of the modulator on a projection-to-projection basis or be-

tween independent measurements could be observed. This is due to the fact that both the

detector and the X-ray source rotate around the object. This motion must be corrected in order

to achieve error free primary estimates and reconstructions [17]. Based on the findings of this

work, a simple registration where only translation is considered, should be sufficient.

The insights of this thesis suggest, that primary modulator based techniques offer an ele-

gant way of scatter estimation. The simultaneous measurement of scattered and primary ra-

diation without increased patient dose or scan time is a clear advantage compared to other

methods. With further development and refinement of the algorithms presented above, the

image-degrading effect of scatter can be further reduced.
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