




Abstract

The purpose of this Master’s thesis is the development and evaluation of a highly
concurrent lock-free task-parallel and data flow oriented measurement and control
software for the automation of automotive test benches. To efficiently transfer the massive
amount of data that is generated during vehicle-testing an intrusive bounded lock-
free causal FIFO queue algorithm was developed. The algorithm is especially designed
to reduce the heap, the cache and the main memory contention. Thus the queue is
particularly suitable for the deployment in data flow oriented software applications.
Additionally the queue facilitates intra-process as well as inter-process communication,
even between 32-bit and 64-bit processes, by allowing data throughput ratios close to the
machine’s maximum main memory bandwidth.

The developed software design scales well with the progressive increase of the core count
in future CPUs and the applied implementation techniques best exploit the features of
modern processor architectures. Indeed, the design is applicable for a wide range of
measurement and automation tasks and it is not limited to automotive testing purposes
only.
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Kurzfassung

Das Ziel dieser Masterarbeit ist die Entwicklung und Evaluierung einer hochgradig
nebenläufigen, blockierungsfreien, aufgabenparallelen und datenflussorientierten Mess-
und Regelungs-Software für die Automation von Automotive-Prüfständen. Um die
enorme Menge an Daten, welche während eines Testlaufs generiert werden, effizient zu
verarbeiten wurde ein “intrusive bounded lock-free causal FIFO” Queue-Algorithmus
implementiert. Der Algorithmus wurde entwickelt um speziell die Beanspruchung von
Heap, Cache und Hauptspeicher zu reduzieren. Aus diesem Grund ist die Queue beson-
ders für den Einsatz in datenflussorientierten Anwendungen geeignet. Die entwickelte
Queue kann nicht nur zur prozessinternen Kommunikation verwendet werden, son-
dern auch für die Kommunikation zwischen mehreren Prozessen. Die Queue erlaubt
außerdem die Kommunikation zwischen 32-Bit und 64-Bit Prozessen und der erreichte
Datendurchsatz ist nahe an der Grenze der auf dem Rechner maximal verfügbaren
Hauptspeicherbandbreite.

Das entwickelte Softwaredesign skaliert hervorragend mit dem fortschreitenden Anstieg
der Prozessorkernanzahl in zukünftigen Prozessoren. Weiter ermöglichen die eingeset-
zten Implementierungstechniken die effiziente Nutzung der Funktionen und Ressourcen
moderner Prozessorarchitekturen. Das Softwaredesign kann für verschiedenste Mess-
und Automatisierungsaufgaben verwendet werden und ist nicht auf den Automotive-
Testing Bereich beschränkt.
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1 Introduction

The rapid moving components and the massive data traffic in modern vehicles provide
plenty of interesting and challenging problems to the field of automotive testing. One
of these challenges is the accurate measurement of vehicle states during a test run
and the test automation itself. In order to be well-equipped for testing forthcoming
vehicle generations with even faster moving mechanical parts and increasingly high data
traffic, the purpose of this Master’s Thesis is the design and the evaluation of a highly
concurrent software system for automotive testing and test automation. The software
system should best exploit the hardware parallelism of modern CPUs, it should be
flexible in test automation and easy to maintain. Figure 1.1 schematically illustrates a
typical automotive test bench environment and outlines the scope of this work.

Conditioning

Sensor 
Network

Actuators

Real Time 
System

Test Bench 
Operator

Runtime Environment
(scope of this work)

Data
Persistence

Figure 1.1: Automotive test bench setup. A typical automotive test bench setup consists of a sensor net-
work, actuators, the device under test and a supply infrastructure, which provides conditioned
oil, gas, water, air and electricity for all other test bench components. The components are
interconnected via a field bus system an the Runtime Environment is responsible for monitoring,
controlling, measuring and visualizing the system states during the test execution.
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1 Introduction

This work is conducted in cooperation with the company KS Engineers 1, which delivers
solutions in the fields of automotive engineering, industrial automation and building
facilities. For automotive industry KS Engineers designs and builds test benches for re-
search and development purposes as well as for end of line testing. These test benches are
automated with the company-developed automation software, Tornado (Tornado System
2016), which provides measurement, control and report functions. The development
of the Tornado System started in the early 90’s and over time it evolved to the high
performance measurement and automation system, which today is used by leading man-
ufacturers and suppliers for testing their products (References 2016). The Tornado System
can be configured for various testing purposes including the testing of transmissions,
gearboxes, power trains, combustion and electric engines (e.g. car, truck, ship, racing),
battery testing/simulation, testing of whole vehicles and more. The data accumulated
during the test execution is managed by the automation software. It is also possible
to integrate third-party tools for this purpose. In order to be geared up for testing the
forthcoming vehicle technologies with its increasing data traffic, the next generation
measurement and automation software system should be designed and evaluated.

Prospect

The summary of the related work in chapter 2 starts with an overview of the hardware
and software aspects in the parallel programming domain, followed by the explanation
of the fundamental laws of parallelism. Chapter 2 closes with the description of the well
established parallel programming concepts and the fundamentals of lock-free program-
ming.

Chapter 3 explains the automotive testing problem domain and the developed software
design. In order to develop a suitable software design we decided to use the systems
engineering approach (Haberfellner, 2015). We started to precisely analyzed the problem
domain and its environment. For this purpose we elaborated several different aspects of
the domain by creating

a) a data oriented view (see data flow diagram in figure 3.3),
b) a component oriented view (see domain model in figure 3.1) and
c) a software developer’s view (see architectural stack in figure 3.2)

. Each view revealed new constraints and/or supplemented the other views. This made
the identification of the main issues easier and allowed us to address them in the
subsequent design and development phases. Creating the views, the software design
and the implementation was an iterative process. Whenever something was unclear or
underspecified the corresponding components were refined.

The problem origin is in the field of automotive testing and automotive test automation.
However, to finally obtain a software design that is applicable for a wide range of
measurement and automation systems, we generalized the functionality and data flow.

1www.ksengineers.at

2

www.ksengineers.at


During the development we focused on the common problems: The increase of the
application’s parallel portion and the efficient inter-thread communication and data
buffering.

It turned out that the developed software design is best implemented using first in -
first out (FIFO) queues for the data and task synchronization. Thus chapter 4 introduces
a universal fine-grained queue interface and an intrusive bounded lock-free causal
FIFO queue algorithm. Both are especially designed to best support the data flow
oriented software design described in chapter 3. The developed queue is an universally
applicable synchronization mechanism that is suitable for intra-process and inter-process
communication, even between 32-bit and 64-bit processes.

The queue was especially designed to reduce the cache and main memory contention,
which is confirmed by the measurement results in chapter 6. The results show that the
queue algorithm allows data throughput ratios close to the test platform’s maximum
main memory bandwidth. Finally, chapter 7 discusses the software design decisions and
the results of the performance tests.
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2 Related work

2.1 The free lunch is over. Yet, in the jungle, we are
fighting for the next free lunch!

In 2005 Herb Sutter described, in ”The Free Lunch Is Over” (Sutter, 2005), that the times
for software developers were going to become harder. Since the launch of microprocessors
in the early 1970s the number of transistors doubled roughly every two years following
Moore’s law (Moore, 1965). With the transistor’s doubling also the available processing
power doubled. Every new hardware release directly boosted the performance of single-
threaded applications. Encouraged by Amdahl’s law (Amdahl, 1967), which stated that
the maximum theoretical speedup through parallelization is limited by the sequential
portion of an application, the hardware vendors focused on making single-threaded
applications faster by increasing the clock speed, the cycle performance and the cache
sizes. Around 2004 the processors achieved a single core performance of up to ∼ 4 GHz.
From a technical and economic point of view it was no longer affordable to further
increase the single core speed, because of power consumption and power dissipation.

Still, the exponential increase of transistors continued and the hardware industry started
to build multi core processor. It turned out that multiple cores running at a lower fre-
quency were able to execute more instructions per chip per cycle at the same power
budget than a single core processor at higher frequency. However, the hardware evo-
lutions no longer brought significant performance gain to single-threaded applications
and the software industry saw their products performance to stagnate or to become
even slower. The free lunch was over (Sutter, 2005) and the software developers were
faced with the non trivial problem to transform single-threaded programs into parallel
executable multi-threaded applications.

The introduction of multicore processors was just the starting point for building massively
parallel mainstream computer systems. With the integration of central processing units
(CPUs) and compute-capable graphics processing units (GPUs) onto the same die the
time of heterogeneous multicore processors began. The lowest level of heterogeneity is
achieved by a) the integration of multiple cores with the same instruction set architecture
(ISA). In this case some cores are more complex (more internal concurrency) to boost
the performance of sequential program fractions, while the other smaller cores increase
the throughput of the scalable parallel program fractions. The smaller cores are also less
power hungry, which improves the performance per watt. The integration of cores with
b) different ISAs increases the level of heterogeneity. In this case one or more general
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2 Related work

purpose cores share a die with special purpose processing units, such as signal processing
units (SPUs) and GPUs, which can run certain kinds of code faster and more power
efficient. Since 2009, GPUs are commonly used to execute mainstream code, instead of
doing graphics calculations only.

With the integration of hundreds and thousands of (heterogeneous) cores onto one die
we started to reach physical limits. Due to the power consumption and the thermal
heat dissipation it is no longer possible to power all transistors at the same time, which
is denoted as the dark silicon problem. Of course, we could (indeed we do) continue
to integrate more transistors onto one die, but if we are not able to use the additional
processing capabilities we still have reached the end of multicore scaling (Esmaeilzadeh
et al., 2011).

The field of multicore processors is a hot research area where scientists and the industry
are trying to push the limits. New memory technologies such as 3D stacking, optical
interconnects and memristors are explored to make the devices smaller, more energy
efficient and to optimize the memory latency and memory throughput. Novel scheduling
algorithms try to address the memory bottlenecks and power consumption by optimizing
the task assignment to cores. Power optimization techniques such as near threshold oper-
ation, dynamic voltage/frequency scaling and clock/power gating make their way into
mainstream processors. (Henkel et al., 2015) (Wang, Kenli Li, and Keqin Li, 2016) (Vajda,
2011)

To overcome the end of multicore scaling we must invent groundbreaking technologies
or other possibilities to boost the performance of our processing intensive and (hopefully)
highly parallel applications. This is, were cloud computing comes in. At roughly the same
time, when the industry started to build heterogeneous processors, cloud computing
made its way to the mainstream via Amazon Web Services, Microsoft Azure, Google
App Engine, Verizon and many others. From a developers point of view, the cloud
offers hardware (or infrastructure) as a service with apparently endless scalability, while
the requirements on an application running in the cloud are even tighter compared to
those applications running on multicore processors only. Next to exploiting the features
and resources of local heterogeneous multicore processors, the cloud application must
also be able to efficiently utilize distributed cores and distributed memory systems. The
configuration details of the cloud should be on the one hand transparent to the application
and the code, but on the other hand the advanced user may want to govern the data
traffic and/or may want to assign the cores manually for performance optimizations.

The transparent utilization of local and distributed heterogeneous hardware as well
as the programming language support and the code portability depict a fascinating
research area for the operating system vendors, the compiler community and the software
developers. In order to successfully shift towards highly parallel applications that run on
heterogeneous and/or distributed system, we have to efficiently exploit the ”hardware
jungle” (Sutter, 2012b). Yet, in the jungle, we are fighting for the next free lunch.
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2.2 Laws of parallelism

2.2 Laws of parallelism

Amdahl’s law

Amdahl’s law (Amdahl, 1967) states that the maximum theoretically achievable speedup
through parallelization is limited by the sequential portion of an application, no matter
how much cores are available for the computation. Amdahl published his findings in
1967 to encourage the improvement of single-threaded hardware performance for large
scale computing. Mathematically the law is expressed by

Speedup =
1

1− P + P
N

(2.1)

where P denotes the parallel portion of the application and N is the number of available
hardware cores. For an infinite number of cores the equation simplifies to Speedup =
1/(1− P). Hence, every application with a sequential portion has an upper speedup
limit independent of the core count.

Gustafson’s Law

Gustafson’s law (Gustafson, 1988) was formulated in 1988 and was contradictory to
Amdahl’s law. Gustafson experimentally showed that practical applications with a
sequential portion between 40% to 80% scale well with the increasing number of cores.
He obtained speedup factors larger than 1000 by using 1024 processing cores, while
according to Amdahl’s law a program with a sequential fraction of 80% could run
roughly five times faster at maximum. Gustafson concluded that the parallel portion
of the evaluated programs scales with the increase of the problem size and that the
sequential parts (input/output (IO), initialization and startup, sequential bottlenecks,...)
remain constant in the problem size. Mathematically this observation is expressed as

Speedup = N − (N − 1) ∗ np (2.2)

where np is the sequential portion of the program and N is the number of available cores.
The law suggests that independent of the sequential program fraction an infinite speedup
can be obtained. This is, of course, contradictory to Amdahl’s law.

The equivalence of Amdahl’s law and Gustafson’s law

Amdahl’s law and Gustafson’s law seemed to be adversary until, in the year 1996, Shi
proved the equivalence of the two laws and showed that they are both expressing the
same inherent law of parallelism (Shi, 1996). Shi mathematically showed that the parallel
program fraction in Amdahl’s law is not equivalent to the parallel fraction in Gustafson’s
law, which was continuously misinterpreted. He showed that there is a mathematical
relation which transforms the sequential portion from Gustafson’s law to Amdahl’s law.

7
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This proved that the two equations are equivalent and that both are expressing the same
law, but in different formulations. Amdahl predicts that the maximum speedup is limited
by the sequential program fraction, while Gustafson pretends endless scalability. Shi
concluded that the speedup factor depends on the application’s properties and that it
is not possible to reliably determine the sequential fraction of a particular program by
measuring. The basic fact of both laws remains: we have to tackle the sequential program
portions to achieve a close to linear speedup with the increasing number of cores. (Shi,
1996) (Vajda, 2011)

Amdahl’s law for multicore processors

In 2008 Hill and Marty published a theoretical survey about the applicability of Amdahl’s
law to multicore processor architectures (Hill and Marty, 2008). To investigate the impact
of the core count and the architectural layout they defined an abstract mathematical
model with the base core equivalent (BCE) as the smallest available processing unit. A
multicore processor model contained a total number of n BCEs and multiple BCEs could
be clustered to a more powerful core with the approximated processing performance
per f (r) ≈

√
r, where r depicted the number of BCEs in the cluster. The model did not

include the interconnection hardware, the memory system and dynamic power effects.
Hill and Marty analyzed three processor architectures, the results are illustrated in
figure 2.1:

• A symmetric multicore chip consisting of homogeneous cores
• An asymmetric multicore chip built of heterogeneous cores with the same ISA
• An hypothetical dynamic multicore chip that is able to dynamically harness all

cores for either sequential or parallel program execution

The mathematical model of the symmetric multicore chip was defined as

Speedupsymmetric( f , n, r) =
1

1− f
per f (r) +

f
per f (r)∗ n

r

(2.3)

where f was the parallel program fraction. In this model r clustered BCEs with the
performance per f (r) executed the sequential program portion 1− f , while n

r BCEs ran
the scalable parallel fraction f with the performance per f (r) (all cores run with per f (r)
in the symmetric case). The speedup of the symmetric model is limited by the sequential
program fraction 1− f , as predicted by Amdahl.

In the asymmetric multicore scenario 1 + n− r BCEs with performance 1 were available
for the execution of the parallel fraction. The single more powerful core with performance
per f (r) could execute both, the sequential and the parallel program parts. For this case
the speedup can be expressed as

Speedupasymmetric( f , n, r) =
1

1− f
per f (r) +

f
per f (r)+n−r

(2.4)
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2.2 Laws of parallelism

Figure 2.1: Speedup according to Amdahl’s law on multicore processor. Speedup of (a, b) symmetric, (c,
d) asymmetric, and (e, f) dynamic multicore chips with n = 16 BCEs (a, c, and e) or n = 256

BCEs (b, d, and f). In the equations and graphs continuous approximation was used instead of
rounding down to an integer number of cores. Image source: ”Amdahl’s Law in the Multicore
Era” (Hill and Marty, 2008).

The graphs (c)(d) in figure 2.1 reveal that in the asymmetric multicore scenario there
exists a sweet spot for each application type, where the speedup reaches a maximum.
Additionally the speedup obtained by an asymmetric chip is always larger or equal to
the maximum speedup in the symmetric scenario. The model shows that asymmetric
architectures can relax the impact of Amdahl’s law, but different applications may have
different sweet spots. Thus a static asymmetric multicore design is not sufficient to satisfy
all kinds of applications.
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Hence, Hill and Marty analyzed the speedup of a hypothetical dynamic multicore chip.
This chip could use the performance per f (r) of r BCEs in its sequential operating mode
and the performance of all n BCEs in its parallel mode for the code execution. The
mathematical model of such a chip is defined as

Speedupdynamic( f , n, r) =
1

1− f
per f (r) +

f
n

(2.5)

The graphs (e)(f) in figure 2.1 show that in the dynamic scenario all application types
would scale well with the increasing number of cores and that the obtained speedup
results are always greater or equal to the asymmetric multicore speedups. Such a
dynamic architecture would not be limited by Amdahl’s law. However, (today) we do
not know how to build such dynamic multiprocessor architectures, but techniques such
as frequency/voltage scaling, thread-level speculation or helper threads could imitate
such a dynamic system behavior (Vajda, 2011).

Hill and Marty wanted to encourage the community to continue with the research in
boosting both the parallel as well as the sequential core performance. Especially with the
idea of a dynamic multicore chip, they inspired to think outside the box.

2.3 Parallel programming

Due to the stagnating technology scaling in 2004 (see section 2.1) it became necessary to
build multi-threaded applications to profit from the improvements in multicore archi-
tectures. In this section we give an overview of the fundamental parallel programming
concepts, the available synchronization primitives and the hardware components and
features of common multicore architectures that are crucial for the implementation of
parallel applications.

2.3.1 Problem decomposition

When building parallel applications we want to execute as many instructions in parallel
as possible and try to minimize the sequential fraction in our applications. Thus, when
(re)designing an application we start with the identification of the exploitable concurrency
in our problem domain (top-down approach). Once we have identified the parallel
fractions we map them into our program domain by creating for example architecture
diagrams, data flow diagrams and class diagrams, which can be used for the subsequent
system implementation (bottom-up approach). The diagram in figure 2.2 illustrates the
finding concurrency design space and highlights its place in the pattern language presented
in (Mattson, Sanders, and Massingill, 2004).

To solve a problem in parallel, we first have to decompose it. The two fundamental
decomposition techniques are task (or functional) decomposition and data decomposition. The
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Figure 2.2: Overview of the finding concurrency design space in the pattern language for parallel pro-
gramming (Mattson, Sanders, and Massingill, 2004). Images source: ”Patterns for Parallel
Programming” (Mattson, Sanders, and Massingill, 2004).

target of task decomposition is the division of tasks or functions into smaller partitions
that run in parallel (with more or less dependencies). Functional decomposition can be
separated into static and dynamic decomposition techniques and is directly supported
by the operating system and the hardware via thread-level parallelism.

If the partitioning of tasks or functions is known at the design time, then the functions
can be statically decomposed and the system design targets to support the parallelization
of that functions. The problem with static decomposition is that it does not scale, if the
core count increases. Dynamic task decomposition, of course, scales well if new resources
are added. A simple dynamic decomposition technique is to launch a new thread for
each new task/function that should be executed. However, on processors with only a
view cores or massive task parallelism this might lead to performance issues for the
whole system because of oversubscription (Iancu et al., 2010). In such cases it would be
better to combine static and dynamic decomposition techniques by using a thread pool
that implements a work stealing algorithm (or a similar userspace technique). The thread
pool would only launch a maximum number of tasks, which prevents oversubscription
and additionally eliminates the thread creation and destruction overhead.

Data decomposition aims to execute the same function on multiple data sets in parallel. This
is generally required for graphics calculations, vector/matrix operations and applications
were a function should be applied on all elements of an array. If the elements can be
processed independently, then all functions can be calculated simultaneously on different
cores. Data parallelism with smaller data sets is natively supported by SIMD instructions
on mainstream CPUs, while larger data sets can be more efficiently processed on GPUs.

The pipeline pattern is an example where data decomposition and static function decom-
position are combined. A pipeline is structured into stages and in general a stream of
data elements is shifted through the pipeline stages. At each stage a function is applied
to the data element at that stage. The functions on each stage may be different and can be
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processed in parallel on multiple cores. In software a stage is usually implemented as a
thread and buffers are used to synchronize the stages. Thus the pipeline pattern (Mattson,
Sanders, and Massingill, 2004) is closely related to the pipes and filters pattern (Buschmann,
Henney, and D. C. Schmidt, 2007).

This section provided an overview of the basic decomposition techniques and also
described some patterns and use cases. A comprehensive pattern language for parallel
programming can be found in the ”Patterns for Parallel Programming” (Mattson, Sanders,
and Massingill, 2004), the POSA series (especially (Buschmann, Henney, and D. C.
Schmidt, 2007) and (D. Schmidt et al., 2000) ) and, of course, the web.

2.3.2 Synchronization primitives

So far we have discussed how problems are decomposed into simpler/smaller chunks
that can be executed in parallel on the available resources. However, to generate the final
result we have to synchronize the execution of these chunks in some way and the tasks
must also be assigned to the processor resources. This is what modern operating systems
were made for. A modern multicore operating system enables software applications
to efficiently utilize hardware resources and additionally provides several layers of
abstraction, which easies the software development and data synchronization. From a
software developers perspective the most important operating system features are the
thread scheduling, the balanced thread assignment to the available hardware cores as
well as the physical and virtual memory management. Covering all those topics would go
far beyond this work. An extensive survey about modern operating systems is provided
by the equally named book from Andrew S. Tanenbaum (Tanenbaum, 2001). Here, we
only want to discuss the inter-thread synchronization mechanisms, which are vital for
programming cache-coherent shared-memory multicore processors.

Blocking synchronization

The traditional method to synchronize the access on shared resources in multi-threaded
applications is the utilization of blocking primitives, which include locks, critical sections,
semaphores, condition variables or more advanced mechanisms such as monitors, futures
and promises. However, these primitives have several drawbacks. Whenever a lock is
exclusively owned by one thread, then all other threads that attempt to acquire the lock
are blocked and have to wait until the owner releases the lock. This property might lead
to subtle error conditions like deadlocks, livelocks or priority inversion. If the system
is properly designed then these failures can be avoided. Nevertheless, even in correctly
implemented and well designed systems blocking synchronization primitives limit the
system performance on multicore architectures by increasing the sequential portion of
the application due to the following reason:
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[a] Lock-overhead: Acquiring and releasing locks are generally expensive operations
that have to be frequently executed. Additionally, locks require memory resources
that have to be allocated, initialized and destructed.

[b] Lock-contention: If the contention on a specific lock is high, then the task switching
overhead due to thread suspension influences the overall system performance.
Moreover, suspended threads can not do any work at all and the highly contented
lock may serialize the execution of several threads, which might drastically increase
the sequential program portion.

[c] Locks are typically used to build critical code regions that linearize the execution of
code lines or whole methods, instead of just synchronizing the access to memory
regions.

Let us consider an unbounded FIFO queue to map the above listed items onto a common
problem. The queue q should support the following two methods:

• q.enq(x) enqueues the value x. The method will always succeed, because the queue
is unbounded and we assume that the system never runs out of memory.
• q.deq(y) dequeues the value y. The method only succeeds if the queue is non-empty.

To synchronize the access to the queue we can either use a coarse grained or a fine
grained locking approach. If we decide to use the coarse grained approach a single lock is
responsible for the entire synchronization. This drastically increases the sequential portion
of the application by serializing all method calls (item [b]). On the other hand there is
only one lock, which reduces the number of acquire/release operations (item [a]).

In the fine grained locking scenario we use multiple locks to lower the contention between
enqueue and dequeue operations. Compared to the coarse grained case, this scenario
decreases the sequential program fraction (item [b]), but increases the number of ac-
quire/release calls (item [a]). Implementing fine grained locking algorithms is generally
more complex. These two examples show that a trade-off between lock-overhead and
lock-contention is required.

However, if locks are used then item [c] can only be addressed by optimizing the method
implementations to require as little cycles and memory operations as possible, which
reduces the runtime of a single method call. Thus a thread can execute the method
faster, which lowers the probability that a thread owning the lock is preempted by the
scheduler, which consequently reduces the probability that another thread is blocked
due to a pending method call.

Non-blocking synchronization

Non-blocking synchronization primitives do not suffer from the problems explained
in the previous section. As the name already implies, a non-blocking synchronization
mechanism does not block the execution of other threads that compete for the same
resource. Thus, even if a thread is preempted, it is guarantied that the rest of the system
can make progress. This is established by using low level primitives, so called atomic
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operations, which serialize the access to a memory region, instead of serializing the
execution of multiple code lines. Thus non-blocking algorithms can significantly increase
the parallel fraction of applications, which facilitates the efficient resource utilization on
multicore chips and hence yields performance improvements and enhanced scalability.

However, the implementation of correct non-blocking data structures and algorithms is
by far more complex and error-prone, which justifies the existence of blocking primitives.
All blocking primitives rely on non-blocking primitives as there basic building blocks.
Atomic instructions do not only synchronize the access to a single memory location,
but they can also be used to enforce the synchronization of large data sets based on the
memory ordering policies provided by the processor architecture. Atomic instructions can
further be used to enforce a weaker memory ordering, which may reduce the contention
on the caches and the interconnection infrastructure.

2.4 Lock-free programming

2.4.1 Hardware basics

The block-diagram in figure 2.3 schematically illustrates the components of a modern
multicore processor. The processor has four cores with two hardware threads per core,
an out of order execution engine and several load and store buffers to hide the latency of
memory operations. The cores communicate over the shared L3 cache and the system
bus connects the cores and other SoCs integrated on the die.

The four cores support the same ISA and hence it does not matter on which core a
program or the operating system is executed. However, if some programs are able to
exploit data parallelism, then these applications may use program libraries or compilers,
which automatically harness the GPU to execute certain operations and code sequences
massively parallel.

Today’s general purpose cores use inherent hardware parallelism to speedup single
threaded programs by implementing super-scalar pipelining, instruction reordering,
out-of-order execution, branch prediction and simultaneous multi-threading (SMT). SMT
addresses the problem of limited instruction level parallelism in legacy applications by
enabling the simultaneous execution of two or more instructions streams per core. This is
achieved by the integration of one or more hardware threads, which share the ALUs, the
out-of-order execution unit, the L2 cache and several other resources on the same core.

To outline the expended effort of the hardware vendors to provide massive hardware
parallelism, we take a look at the Intel Itanium II processor from the year 2002, which
is illustrated in figure 2.4. The Itanium II processor consisted of 211 million transistors,
but only one percent of all transistors on the die were used to manipulate the data.
The remaining 99% were responsible for latency hiding by efficiently moving the data
through the processor.
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Figure 2.3: Block-diagram of a modern multicore processor. The block-diagram illustrates an example of
a modern multicore processor. The processor has four cores with two hardware threads per
core, an out of order execution engine and several load and store buffers to hide the latency of
memory operations. Each hardware thread has a private L1 cache. The ALUs, the L2 cache and
several other resources are shared between the two hardware threads on a single core. The last
level cache is shared between all cores and the processor maintains full cache coherency.
The system bus connects the cores to the peripherals and to the other SoCs on the die. As
the diagram depicts the last level cache and the system bus are highly contended resources
and hence they are common bottlenecks in todays data hungry applications. In most modern
processors the MMU is integrated to allow the parallel access to the main memory and I/O
devices. The integrated GPUs are not as powerful as their parents located on the graphic cards,
but cheaper and ready to be harnessed for data parallel computations.

The processor in figure 2.3 implements a cache-coherent non-uniform memory access
(NUMA) memory architecture. Non-uniform memory access means that the access time
to data depends on the relative location of that data to the core. Data that is located in
the L1 cache can be for example faster accessed than data located in the L2 cache or
the main-memory. Cache-coherent means that the data coherency is maintained via a
cache coherence protocol and that all cores access the same main memory. Examples of
other memory architectures are a) unified memory access architectures, b) NUMA RAM
architectures and c) incoherent disjoint memory architectures (Sutter, 2012b).

A common cache coherency protocol is the MESI protocol: MESI is the acronym for the
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Figure 2.4: Intel Itanium II processor: The figure illustrates an Intel Itanium II processor that consists of
211 million transistor. ∼ 85% of the transistors are used for implementing the caches. 99% of
all transistors on the chips are responsible for data moving and latency hiding, while only 1%
of the implemented transistors on the die do data transformations. Images source: (Patterson,
2004)

cacheline state names in this protocol: Modified-Exclusive-Shared-Invalid. The states and
the corresponding processor interactions of the MESI protocol on and Intel 64 and IA-32

architecture are illustrated in figure 2.5. A cache is structured into chucks of a certain size,
so called cachelines. A typical cachline size is 64 byte, which depicts the smallest entity
that can be written or loaded from the main memory. The cache coherency mechanism is
transparent to the software.

The cache coherency protocol alone is not sufficient to maintain a consistent view of the
main memory content. An additional policy is required, which defines the ordering of
how cores and processors are allowed to issue store and load operations to a specific
memory location. This policy is referred to as the memory model, the memory ordering or
the memory-ordering model. However, operations can only be ordered if they are indivisible.
Thus the hardware supports atomic operations that establish the basis of the memory
model. The atomicity of operations is achieved by the following three interdependent
mechanisms (Intel 64 and IA-32 Architectures Software Developer’s Manual 2016):

• Guarantied atomic operations: Atomicity of load and store operations can be
guarantied if the affected data is correctly aligned and does not exceed a certain size.
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Figure 2.5: MESI cache line states: The table illustrated the cache coherency protocl that is defined for
the current Intel 64 and IA-32 architecture. The cache is structured into equally sized chunks,
which are called cachelines. A cachline is the smallest entity that can be written or loaded from
the main memory. The cores, however, are able to address single bytes and bits in one cacheline.
Images source: (Intel 64 and IA-32 Architectures Software Developer’s Manual 2016)

On Intel architectures the following operations can be always executed atomically:

– Reading or writing a byte
– Reading or writing a word aligned on a 16-bit boundary
– Reading or writing a doubleword aligned on a 32-bit boundary

While on newer Intel architectures the memory model was extended to also support
guarantied atomicity for:

– Reading or writing a quadword aligned on a 64-bit boundary
– 16-bit accesses to uncached memory locations that fit within a 32-bit data bus
– Unaligned 16-, 32-, and 64-bit accesses to cached memory that fit within a

cache line

• Bus locking: If the LOCK signal is issued then all requests to the system bus (or an
equivalent link) of other bus participants are blocked. The processor automatically
asserts the LOCK signal during memory critical operations. The LOCK signal can
also be manually asserted for special instructions (usually read-modify-write) to
synchronize the access to shared memory regions.
• Cache locking: The cache coherency protocol ensures that atomic operations can

be carried out on cached data structures.

The strictest memory consistency model that is available in todays multiprocessors is
called sequentially consistent. A memory model or a system is sequentially consistent if

”... the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor
appear in this sequence in the order specified by its program.” (Lamport, 1979)

In other words, this memory model provides a sequential view of a multi-threaded
program as if all issued instructions where executed in some particular sequence by
a single thread. A sequential view makes it easy for software developers to reason
about a particular program outcome, which makes the sequentially consistent model
popular. However, a lot of synchronization between the cores and processors is required
to maintain a sequentially consistent memory model. Thus modern CPUs implement
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weaker models per default, which allows performance enhancing operations such as
instruction reordering or out-of-order execution. Figure 2.6 illustrates a possible outcome
of a write ordering on a multicore system that implements a weak memory ordering
model.

Figure 2.6: Example of write ordering in multiple-processor systems. Images source: (Intel 64 and IA-32
Architectures Software Developer’s Manual 2016)

The following scenario describes a possible reordering of write and read operations
to different memory locations within the same program: A write operation is cached
in the core’s store buffer. Before this write operation is issued, the core could already
have finished a read operation that occurs later in the program order, which effectively
reorders a read operation with an older write operation to a different memory location.
A sequential consistent memory ordering policy would not allow such a reordering.

2.4.2 Software basics

The default memory ordering of the processors is weaker than a sequentially consistent
ordering, which is usually not sufficient to safely synchronize the access to shared
resources in multi-threaded applications on a multicore processor. Thus the hardware
provides mechanisms to influence (weaken or strengthen) the memory ordering. This
mechanisms include atomic operations and special instructions, so called memory fences
(e.g. SFENCE, LFENCE, MFENCE), that enforce a specific memory ordering.

The commonly supported atomic operations are atomic loads, atomic stores and read-
modifiy-write (RMW) operations. Atomic loads and stores where already discussed in
section 2.4.1. From a software developers point of view atomic loads/stores can be used
for two purposes. On the one hand they allow atomic reads/writes to a specific memory
location and on the other hand they can be used like memory fence instructions to enforce
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a memory ordering onto other memory operations. (For details regarding memory fences
and instruction ordering with atomics please consider the software developer’s manual
of your hardware vendor and/or your programming language specification.)

Atomic loads and stores, however, are not sufficient to synchronize the access to re-
sources that are concurrently modified by multiple threads. In such situations the RMW
instructions must be used. The most commonly supported RMW operations are:

• Test and set (T&S): The T&S instruction atomically reads a memory location, sets
the memory location to one and returns the previously read value of the memory
location. The T&S instruction is generally used to implement locks.
• Compare and swap (CAS): The compare-and-swap (CAS) instruction atomically

compares the value of a memory location with a supplied value and, if the values
are equal, the content of that memory location is swapped with a second supplied
value. CAS operations are used to implement locks as well as lock-free algorithms.
The CAS instruction is the only operation in this list that is sufficient to implement
lock-free algorithms.
• Load-linked and store-conditional: This instructions implement a more pipeline

friendly version of the T&S instruction. Hence, these two operations are also used
to implement locks.

At least one RMW operation must be supported by the processors ISA to enable the
synchronization of multi-threaded applications. The blocking primitives (locks, critical
sections, semaphores, ...) rely on the above listed low level atomic operations or memory
fence instructions.

Linearizability

The term linearizability was defined by Herlihy and Wing in 1990 for concurrent objects
to formally and informally argue about the correctness of concurrent object oriented
programs (Herlihy and Wing, 1990).

• The principle concept of linearizability is that each method call should appear to
take effect instantaneously at some point between its invocation and response.
• Linearizability has also the non-blocking property, which states that a pending in-

vocation of a method is never required to wait for another bending invocation to
complete (Herlihy and Shavit, 2008).

Atomic operations are linearizable by its nature. They are indivisible and have a success-
or-fail definition. Thus atomic operations take effect instantaneously and always return
without blocking the execution of other invocations. Lock-based methods instead are
not linearizable: A lock-based method appears to take effect instantaneously (the critical
code region serves as a linearization point), but a pending method invocation might block
another method invocation, which does not fulfill the non-blocking property.

Let us consider the FIFO queue again. If we use a blocking primitive to synchronize the
queue access, it is relatively easy to argue about the correctness of the algorithm. As long

19



2 Related work

as the lock that protects the shared resources is owned by a thread, no other thread is
able to access that resource. The critical section of each method can also serve as the
linearization point, which makes the method to apparently take effect instantaneously, but
effectively blocks other threads to not violate the invariants. A non-blocking algorithm
instead must be designed to make all changes visible by executing a single atomic
instruction. If this atomic instruction succeeds, then the protected resources are correctly
updated, otherwise the changes have to be discarded. The atomic instruction does not
block other threads of execution. This atomic instruction serves as the linearization point
in the algorithm.

Some of the modern processors implement also a transactional memory system, which
allows the concurrent execution of several memory operations without blocking other
threads. The hardware makes the memory operations to appear atomically by automati-
cally verifying, if the thread that started the transaction, was the one and only thread
that modified the corresponding memory location at the end of the transaction. If this is
true, then the transaction is valid and all memory locations will be updated. Otherwise
the transaction fails. Algorithms that use hardware transactional memory systems for
data synchronization are also linearizable. It is possible to imitate transactional memory
in software, which is called software transactional memory (STM). If the STM system is
implemented based on non-blocking algorithms, then also the STM system fulfills the
linearizability requirements.

Progress conditions

We can define the following blocking and non-blocking progress conditions for algo-
rithms, data structures and objects (Herlihy and Shavit, 2008):

• Blocking: An object has the blocking progress condition, if a pending method
invocation can block because of another pending invocation. The blocking progress
condition generally results from the use of blocking synchronization primitives
such as locks, critical sections, semaphores, condition variables, monitors, futures
and promises. (A spinlock is also a blocking primitive.)
• Wait-free: A method is wait-free if it guarantees that every call finishes within

a finite number of steps. Wait-freedom is a non-blocking progress condition. A
bounded wait-free method sets a finite upper bound for the number of required
steps. A wait-free method is always lock-free, but not vice versa. Wait-free algo-
rithms are especially interesting in systems were real-time behavior is required,
because a wait-free algorithm guaranties that all threads make progress if they
take some steps. However, wait-free algorithms might lack performance and thus
sometimes weaker progress guaranties are acceptable.
• Lock-free: A method is lock-free if it guaranties that infinitely often some method

call finishes in an finite number of steps. Lock-freedom is a non-blocking progress
condition. Fast lock-free algorithms might be preferable to slower wait-free algo-
rithms, although some threads could starve, which is, however, in most situations
very unlikely.
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In this section we did not claim for completeness, instead we wanted to define the
terminology and the hardware features that are subsequently used in this work to
implement a lock-free highly concurrent software system. The following references
served as the basic literature for writing this section and provide a comprehensive work
of references: (Vajda, 2011), (Sutter, 2012a), (Tanenbaum, 2001) (Herlihy and Shavit,
2008), (Williams, 2012), (Sutter, 2012b), (Wrinn, 2007a), (Wrinn, 2007b) and (Intel 64 and
IA-32 Architectures Software Developer’s Manual 2016).
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The complexity of an automotive test setup can range from a simple component test to
a road simulation test of a four wheel drive vehicle, or the automation of a complete
test field consisting of several different test benches. Considering the overall field of
automotive testing would go far beyond the scope of this work. Thus this work focuses
on the design and the evaluation of a software system for the automation of a single
automotive test bench, as illustrated in figure 1.1. In order to evolve a general software
design that is applicable for a wide range of measurement and automation systems
and not only for automotive testing, the considered functionality and data flows are
generalized. Of course, the examples and considerations always relate to automotive
testing and the experiences gained during the last two decades of development in this
field, are also taken into account. If you are interested in already implemented systems
and the whole range of software functions, please visit http://www.ksengineers.at/en/
Automotive-Testing.

3.1 Domain specification

The core components of the test bench, depicted in figure 1.1, are the real time system
and the runtime environment. Both units are responsible for managing and controlling the
main data traffic on their specific layer. The data flow diagram in figure 3.3 illustrates
the generalized data flow of the runtime environment (RTE) during the test execution.
Of course, before the Test Bench can be started the start-up engineer (and/or the test
bench operator) have to set up the test and measurement specification as well as the test
bench automation. In order to provide a flexible and easy-to-use system configuration all
input/output-signals and states are mapped to user defined variables. These variables
can be used in scripts, equations, calculations and charts like variables in a programming
language. In general each variable represents a physical value, such as time, velocity
or temperature. Thus the user can assign the variable’s unit, sampling rate, aliases
and more. The measurement specification defines the storage format and whether a
variable should be recorded or not. The display specification determines the variables
that should be visualized in diagrams, controls and views during the test execution.
Complex test protocols and the test automation are specified via scripting languages.
The software drivers are responsible for the interaction with the measurement hardware
located at the test bench. During the test execution the test bench operator is able to
change the display and measurement specification. The measurement data and the
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system states are continuously logged either to the local hard disk drive (HDD) or to a
remote database (DB).

3.1.1 Component oriented view

Before the data flow of the runtime environment (RTE) is further examined, the domain
model in figure 3.1 provides a component oriented view of the domain. The separation of
an automotive test bench setup into two layers, as shown in figure 1.1, is also reflected by
the two sub-domains, the test bench environment and the industrial PC with its operating
system.
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Figure 3.1: Domain model of the test bench setup. The testing domain can be separated into two sub-
domains, the test bench environment and the industrial PC. The industrial PC executes a general
purpose operating system and the resources are shared among the runtime environment and all
other running processes. The runtime environment synchronizes its time source with the time
base provided by the real time system, which is located at the test bench environment. In the case
of a hardware or software failure several components, including the real time system and the
runtime environment, can trigger an emergency stop. Hence, the data processing of the runtime
environment must be designed to allow the reaction on important events within an accurate
time slot.

The test bench environment comprises all components to measure and influence the
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physical states of the device under test (DUT), while the industrial PC is responsible for
monitoring, controlling and recording these physical states. The real time system (RTS)
accurately times the control signals and further collects the measurement data, appends
time stamps and sends the packaged data to the runtime environment (RTE). Of course,
the RTS is not the only data source of RTE, because the RTE is also able to directly
fetch data from the sensor network. If the data is retrieved from the sensor network, the
RTE must generate the time stamps by itself. Hence, the runtime system time must be
synchronized with the test bench time.

In order to provide accurate measurement results and correct control signals the data
processing of the RTE must be designed to react on events within an accurate time slot.
The size of such a time slot depends on the defined sampling rate of the variables and the
priority level of the events. In the case of a hardware or software failure the reaction time
must be as short as possible. Next to the RTE and the basic operating system tasks, the
test bench operator can execute several other applications (eg. test data post-processing),
which also occupy the hardware resources of the industrial PC. Nevertheless, the RTE
must remain responsive even in the case of a resource shortage, because if the alive-check
signal between RTE and RTS exceeds a hard time limit, the RTS triggers an emergency
stop (and vice versa). To guaranty a safe operation of the test bench also several other
components can trigger an emergency stop.

3.1.2 Software developer’s view

The architectural stack in figure 3.2 further refines the domain model and provides the
view on the involved components and tools from the perspective of a software developer.
The amount of data traffic that must be processed by the overall system depends on the
testing requirements and is determined by the complexity of the test bench automation
and the required accuracy of the measurement data (sample rate and sample size). In
order to design a highly responsive and flexible software system that scales with the
technological progress in information technology (see section 2.1), it is important to
take the hardware features of modern processors and its interconnection technologies
into account. The hardware layer in figure 3.2 shows these key components. The green
shaded boxes depict the components of a modern CPU that manage the data traffic
inside the processor. The efficient use of these components is crucial for the performance
of a concurrent application and even more important for a software system with high
data traffic, like a measurement and automation system.

The DUT is inter-connected with the control and measurement devices, which are linked
to the IO-cards. The IO-cards use standard bus protocols and/or memory-mapped IO to
make the data available for the software applications. The application layer, especially
the device drivers, utilize functions of the middleware layer to access this data. The
middleware layer forwards the requests to the processor. The processor (green shaded
boxes) manages all data accesses of the application and the data transfer between the
application threads. The application’s data flow must be designed to efficiently use the
processor hardware and should scale well with the future technological evolutions.
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Figure 3.2: Architectural stack of the test bench setup. The illustrated stack depicts the domain compo-
nents from a software developers point of view and is structured into three layers. The arrows
on the right hand side indicate the applicability of different concurrency protocols per layer.
The RTE is located at the application layer and utilizes the operating system components and
the network protocol layer for the interaction with the hardware devices. The IO-cards provide
the interface to the test bench hardware and allow an easy integration of various hardware
devices with different bus protocols.

3.1.3 Data flow oriented view

From the component and developer views we return to the data flow diagram shown in
figure 3.3, where the diagram illustrates the data flow during the execution of a test run.
Here the system is structured into three layers. The test bench layer comprises the device
under test (DUT), the actuators and the measurement hardware. The runtime layer depicts
the core software functions that are required for the measurement and automation tasks.
The persistence layer shows the different data storage opportunities.

The physical states of the DUT and other hardware components are mapped to the
variables of the runtime layer. A runtime variable can represent a measurement value DF1 ,
a control signal DF6 or a variable, which is required for the data exchange between the
software components or in calculations. The software drivers establish the connection
to the hardware devices and encapsulate the protocols from the business logic of the
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RTE. The input data from the test bench DF1 is buffered by the software drivers and
forwarded DF2 to the smart variable pool, which maintains the runtime variables. The set
of all runtime variables represents the physical states of the test bench hardware and the
virtual states of the software itself.

For the automation of a test bench, with a considerable complexity, about 3000 to 6000
variables are required. The sample rate of a single runtime variable can be individually
configured and may range from 1Hz up to 10kHz. The runtime layer receives the data
samples with approximately 800 kSamples

s from the hardware devices DF1 . In general, a
sample consists of a single floating point value with a time stamp and an identification
number, but a sample may also be a vector of several hundred floating point values
or a text of an arbitrary size. The software drivers buffer the samples, which are then
forwarded to the variable pool DF2 . Each sample must be processed by the runtime layer
within an accurate time slot. The processing of a sample includes the updating of the
associated runtime variable together with its alias resolution, filtering and the updating of
all calculations and components, which are referenced by the specific runtime variable. In
order to reduce the computational expense down-sampling is applied. The processing
steps are condensed in the data flow diagram by the Execute Scripts, the Resolve Aliases
and the Smart Variable Pool components. Section 3.2 reveals more details about the data
processing steps.

The measurement specification determines the variables, which should be recorded and
their corresponding storage format and destination. The display specification defines the
views, diagrams, graphs and controls that are displayed during the test execution. Both
specifications may be updated while a test run is active.

In order to reduce the amount of slow write operations the measurement data is only
periodically stored to disk. The slow storage operations should also be decoupled from
the fast data processing steps of the runtime layer. This would yield a more responsive
and predictable system, because the runtime layer data flow is no longer affected by the
non deterministic waiting for completed IO operations.

The set of all runtime variables reflects the hardware and software states of the system
and hence, the variable pool is used by all software components for managing the test
automation and the measurement tasks. The efficiency of the variable pool access will
significantly influence the overall performance of the software system.
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Figure 3.3: Data flow diagram of the runtime environment. The diagram shows the data flow of the
runtime environment. The test bench layer comprises the device under test (DUT), the actuators
and the measurement hardware. The runtime layer depicts the core software functions that are
required for the measurement and automation tasks. The persistence layer shows the different
data storage opportunities.
The runtime environment as a whole initializes the measurement hardware, controls and monitors
the test bench states and is responsible for collecting and storing the measurement data during
the test execution. The test bench operator configures the mapping of input/output-signals and
system states to variables. The variables are maintained by the smart variable pool. Several software
drivers establish the connection to the measurement hardware and the user is able to visualize
and control the interaction of all components by using scripting languages, various build-in
controls like views, charts, controllers, Matlab models and other tools.
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3.2 Software design of the runtime environment

Taking into account the required functionality of the runtime environment (RTE) and the
domain constraints presented in this the previous section, the software design depicted
in figure 3.4 evolved. The class diagram reveals the implementation of the core functions,
the system setup, the system configuration and the data flow dependencies during the
test execution.

At the beginning of a test the System Builder loads the system configuration and per-
forms the construction and initialization of all components. The initialization phase of
an automotive test bench is rather complex, thus the System Builder is implemented
using the builder pattern (Gamma et al., 1994) in combination with a state machine
(state pattern (Gamma et al., 1994)). The software design is targeted towards a flexible
automation system, which can be used for various scenarios. Hence, nearly all data
types inherit from the Configuration Object type. To persistently store the configuration, a
configuration object must be uniquely identifiable. The unique identifiers are also used
during the test execution for the inter-component dependency resolution.

The tasks illustrated at the right bottom corner depict the active system components.
For each connected hardware device located at the test bench, there exists one Driver
Task object that is responsible for the communication. The Driver Task fetches and buffers
the sensor data, which is then forwarded to the Data Processing Task. The Data Processing
Task a) maintains the Smart Variable Pool and manages the triple buffering, b) is the only
task with write-access to the Smart Variable Pool and c) executes all data processors that
are listed in the yellow shaded processor group box. All other tasks are only allowed to
read from the pool. If another task wants to set a variable value, the task must push
an update-request to the Data Processing Task. If a variable update-request, eg. from the
Driver Task, is received, the Data Processing Task starts with checking the type and the time
stamp of the received data. Based on the type, time stamp and sample rate only some or
the complete data processing steps have to be executed. The most important processing
steps are listed in the yellow shaded processor group. The dependences and the execution
order of the processing steps are rather complex and may also dynamically change based
on the system configuration. Thus the pipes and filters pattern (Buschmann, Henney,
and D. C. Schmidt, 2007) represents an accurate method to express these dependencies
in a clear and comprehensible way.

The complexity of a variable update is the main reason, why the Data Processing Task is
the only component with write access to the Smart Variable Pool. All variables that are
affected by a variable update are not allowed to be accessed by any other component
during the update process, because this might lead to broken invariants, which would
further result in undefined behavior. Acquiring exclusive access to all affected variables
would be too expensive. Hence, the triple buffering is implemented. The triple buffering
allows the Data Processing Task to process a variable update, while all other tasks are still
able to read (transactional) from the Smart Variable Pool.
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All tasks can further register for the observation of runtime variables. If a task observes a
variable, the Data Processing Task pushes all state changes of that variable directly to the
observer, which enables the observer to receive all variable updates without performing
a single transactional read. This design reduces the contention and synchronization
overhead on each variable access and further lowers the system load of the Measurement
Task. If the observation of variables would not be possible, the Measurement Task would
have to actively poll the variable states.

The class diagram also depicts that the settings, which can be changed during the test
execution, are linked to the runtime variables and are encapsulated by the Smart Variable
Pool. Thus all configuration updates must also be pushed to the Data Processing Task. So
the Data Processing Task manages all system state changes, which results in a simplification
of the code that is required for handling the order- and timing-dependencies of the state
transitions. Furthermore the debugging of the system is facilitated, because all state
transitions can be easily observed by the developer, displayed by the UITask or logged to
disk.

3.2.1 Data synchronization and task synchronization

In order to choose a suitable synchronization mechanism let us first recall the properties
of the runtime environment (RTE). The RTE is data flow oriented. The physical states
are measured by the sensors and are then transfered to the RTE. Based on the received
data the RTE performs user defined data transformations. The transformation results are
transmitted back to the hardware devices and/or are persistently stored. The amount
of received data (∼ 800 kSamples

s ) is much higher than the Data Processing Task is able
to completely process. Hence, down-sampling is applied and only the transformations,
which are affected by a specific data sample, are recalculated. The storage operations
and the data transmission require significantly more time than the data transformations,
because the data transformations can be completely executed in-memory and do not
comprise IO-operations.

In short, there are two discrepancies. a) The RTE receives more data samples per time
interval, than it is able to completely process and b) the RTE generates more data signals
and measurement data per time interval, than the execution machine is able to store or
transmit back. Both phenomenas can be reduced to the producer/consumer problem. In
scenario a) the hardware devices represent the producers and the RTE is the consumer.
In scenario b) the situation is vice versa. From the perspective of a software developer
the hardware devices are abstracted by the device drivers, which encapsulate the specific
protocols and characteristics of each device and the communication channel. This is an
important and essential simplification, because the term hardware device can now be one
by one replaced by the term device driver, which reduces the complexity of the data flow
inside the RTE. Instead of device specific protocols, the software developer can use the
runtime variables for the communication with the hardware. Furthermore each device
driver can serve as a buffer and data synchronization point.
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Figure 3.4: Class diagram of the runtime environment. The diagram depicts the software design and data
flow dependencies of the runtime environment (RTE). An automation system heavily relies on
the provided sensor data and thus the RTE is designed to be data flow oriented.
The Data Processing Task maintains the Smart Variable Pool and manages all system state tran-
sitions based on the data samples and commands received from the other tasks. The Driver
Tasks establish the connection to the hardware devices at the test bench. The Measurement
Task generates the test and measurement protocols. The Script Execution Tasks control the test
execution and test bench automation. The System Watchdog Task monitors the overall system. In
the case of a software or a hardware failure the System Watchdog Task and the Data Processing
Task are able to trigger an emergency stop independently. If the runtime environment fails,
several hardware devices can also trigger an emergency stop.
All tasks are configurable. The configuration is allowed to be changed during a test run by
the user. At the beginning of a test run the System Builder loads the system configuration and
initializes the software, establishes the communication channels and configures the hardware
devices located at the test bench.

Interposing FIFO queues for the data and task synchronization seems to be the optimal
solution. As the class diagram reflects, input buffers are already provided as a technique
for latency hiding, which is especially important if IO-operations are required. Of course,
the input buffers are also used for latency hiding between different threads of execution
to facilitate parallel data processing. A FIFO queue combines the required buffering and
synchronization capabilities and thus is well suited for the inter-thread communication in
the presented software design. Hence, the next chapter introduces an intrusive bounded
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lock-free causal FIFO queue algorithm, which was especially designed to best support
the data flow oriented software design presented in this chapter.
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4 A universal intrusive bounded
lock-free causal FIFO queue

The software design presented in chapter 3 depends on FIFO queues for the task and
the data synchronization. For the efficient implementation of this design, in this chapter,
we introduce a universal fine-grained queue interface and an intrusive bounded lock-
free causal FIFO queue algorithm. The developed queue emerged to be a fast and
universally applicable synchronization mechanism, which is suitable for intra-process
and inter-process communication, even for the communication between 32-bit and 64-bit
processes. Both, the interface and the algorithm, are especially designed to best support
the data flow oriented software design described in chapter 3.

4.1 A universal fine-grained queue interface design

The universal queue interface design, illustrated in listing 4.1, provides fine grained access
to the queue’s synchronization mechanism and the internal memory buffer. A producer,
making use of this interface, calls the acquire method at first, asking for exclusive access
to a queue buffer region of the desired size. If the call succeeds, the producer continues
with writing its data into the queue buffer utilizing the interface provided by the Entry
data type. After production the data is made visible for consumption by calling the
enqueue method.

As soon as an entry is available for consumption, a call to the dequeue method succeeds
and the caller is granted exclusive access to the data encapsulated by the entry. Calling
the release method frees the reserved buffer region for subsequent data production. To
enable the consumption of multiple consecutive entries the bulk reading operations are
supplied.

Depending on the underlying synchronization algorithm the methods that are responsible
for the data transfer (acquire, enqueue, dequeue and release) could arbitrarily fail. Hence,
these methods return a boolean value, which indicates the success of the operation. The
empty method is allowed to be called by producers and consumers concurrently and
returns true, if no entries are available for consumption.

Listing 4.1: Universal fine grained queue interface

1 c l a s s UniversalQueue {
2 public :
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3 using Entry = my : : Entry ; B see listing 4.3
4 using Bulk = my : : Bulk ; B see listing 4.4
5

6 using value type = Entry : : value type ; B smallest accessible buffer region
7 using v a l u e p t r = value type ∗ ; B pointer type to a buffer region
8

9 UniversalQueue ( const unsigned int32 b uf f e r S i z e , const unsigned int32
sequenceArraySize ) ;

10

11 bool empty ( ) const ;
12

13 bool acquire ( const unsigned int32 requiredMemSize , Entry& entry ) ;
14 bool enqueue ( Entry& entry ) ;
15

16 bool dequeue ( Entry& entry ) ;
17 bool r e l e a s e ( Entry& entry ) ;
18

19 bool dequeue ( const unsigned int32 maxBulkSize , Bulk& bulk ) ;
20 bool r e l e a s e ( Bulk& bulk ) ;
21 } ;

For most software applications the UniversalQueue interface might be too general, which
would result in unnecessary lines of code. For this reason listing 4.2 exemplifies the
implementation of the commonly used push and pop interface by wrapping the Univer-
salQueue implementation. The try push method, in line 18, starts with calling the acquire
method. If the return value is false, a counter is incremented and another attempt is made
until the maximum counter value is reached.

If the call to acquire succeeds, exclusive access to a queue buffer region is granted.
The program then can continue with writing data a into the buffer. Afterwards the
enqueue method is called to release the buffer region and to make the data visible for
consumption.

When building a push/pop wrapper around the UniversalQueue class, the desired wait-
strategy, which fits best your application’s needs, can be chosen. The shown wait-
strategies b c d are all busy-wait implementations that are common for lock-free al-
gorithms. Of course, blocking wait-strategies can also be applied. Providing a generic
interface e moves the selection of the wait-strategy to the application developer. For this
purpose mechanism such as function objects or lambda functions can be used in C++,

or the interface pattern in Java. The other method implementations, not shown in this
listing, follow the same pattern as the try push and push methods and can be realized in
a similar way.

The acquire and enqueue methods, used in the implementation of try push, could be
redirections to functions like mutex.lock() and mutex.unlock(), or they could implement
some other synchronization mechanism, which guaranties the exclusive queue access. The
important observation here is, it does not matter. The entire implementation details are
encapsulated by the UniversalQueue interface. Summing up, the UniversalQueue interface
implementation yields the following benefits:
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• A flexible and stable interface early in the development process, which makes
parallel front-end and back-end development possible.
• The implemented synchronization algorithm is transparent to the client code

– Blocking, lock-free and wait-free synchronization algorithms are applicable
– Various use cases can be supported:
∗ single-producer single-consumer (SPSC)
∗ multiple-producer single-consumer (MPSC)
∗ single-producer multiple-consumer (SPMC)
∗ multiple-producer multiple-consumer (MPMC)

– Algorithmic optimizations can be implemented later in the development
process. Hence, an executable synchronization mechanism can be provided
quickly, if a well known or simple algorithm is implemented at first. The
algorithm may later be changed, extended or improved. This yields an early
executable implementation, which can not only be tested and debugged, but
also benchmarks can be executed to check, if further algorithmic improvements
are required.

Of course, one drawback of the UniversalQueue interface is the overhead due to the
additional method-calls, compared to the push/pop interface. Nevertheless, section 4.1.1
explains the positive performance impacts of the fine grained interface, which outweigh
the influence of the additional function calls.

Listing 4.2: Push and pop queue interface

1 c l a s s PushPopQueue : private UniversalQueue {
2 public :
3 PushPopQueue ( const unsigned int32 b u f f e r S i z e ) ;
4

5 bool try push ( Entry& entry ) ;
6 bool try push ( const s i z e t maxRetries , Entry& entry ) ;
7 void push ( Entry& entry ) ;
8

9 bool try pop ( Entry& entry ) ;
10 bool try pop ( const s i z e t maxRetries , Entry& entry ) ;
11 void pop ( Entry& entry ) ;
12

13 template <typename T>
14 bool try push ( T& waitStrategy , Entry& entry ) ; B e
15 . . .
16 } ;
17

18 bool try push ( const s i z e t maxRetries , Entry& entry ) {
19 Entry e ; B provides access to the queue buffer
20 s i z e t retryCount = 0 ;
21 while ( ! this−>acquire ( entry . GetSize ( ) , e ) ) { B acquire exclusive access
22 ++retryCount ;
23 i f ( retryCount > maxRetries ) {
24 return f a l s e ;
25 }
26 std : : t h i s t h r e a d : : y i e l d ( ) ; B b yielding-wait
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27 }
28 e = entry ; B a copy data into the queue buffer
29 while ( ! this−>enqueue ( e ) ) { B release exclusive access and make the data

visible for consumption
30 ; B c busy-wait
31 }
32 return true ;
33 }
34

35 bool try push ( Entry& entry ) {
36 return try push ( 0 , entry ) ;
37 }
38

39 void push ( Entry& entry ) {
40 while ( ! this−>try push ( entry ) ) {
41 std : : t h i s t h r e a d : : s l e e p f o r (1ms) ; B d sleeping-wait
42 }
43 }
44

45 . . .

The Entry data type, declared in listing 4.3, encapsulates the queue buffer implementation
and is initialized by calling the acquire or dequeue method. The given implementation
provides direct access to the queue’s buffer memory via the GetPtr() method. The GetSize()
method returns the size of the encapsulated buffer region. The private member variables
may be utilized for transporting information a from the acquire method to the enqueue
method, or from dequeue to release. Such a data transfer could be required if a non-
blocking synchronization algorithm is implemented, or if the queue buffer should be
exclusively reserved for client data only.

Listing 4.3: Encapsulation of the queue buffer memory

1 namespace my {
2

3 c l a s s Entry {
4 public :
5 using value type = unsigned char ;
6 using v a l u e p t r = value type ∗ ;
7

8 v i r t u a l unsigned int32 GetSize ( ) const {
9 return pSeqEntry−>s i z e ;

10 }
11

12 v a l u e p t r GetPtr ( ) {
13 return &( pBuffer [ pSeqEntry−>s t a r t I n d e x ] ) ;
14 }
15

16 protected :
17 v a l u e p t r pBuffer ; B pointer to the queue memory buffer
18 SequencePtr pSeqEntry ; B pointer to a sequence array entry
19 unsigned int32 seqNum ; B a absolut sequence position
20 } ;
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21

22 }

Listing 4.4 defines the Bulk data type, which is designed for bulk reading operations
only. The Bulk class publicly inherits from the Entry class and overrides the GetSize()
method. A successful call of the dequeue method initializes a bulk. The bulk then provides
exclusive access to the buffer memory of one or more consecutively enqueued entries. The
presented implementation provides access to a memory bulk, but not to a single entry
within the bulk. Obviously, the class interface can also be extended to provide access
to each single entry’s memory region. Calling the release method releases the exclusive
access to the encapsulated buffer regions and makes the queue memory available for data
production again. The implementations of the bulk-dequeue and the bulk-release operations
are given in listing 4.9.

Listing 4.4: Consumer interface for accessing multiple consecutive queue entries

1 namespace my {
2

3 c l a s s Bulk : public Entry {
4 public :
5 v i r t u a l unsigned int32 GetSize ( ) const override {
6 return bulkSize ;
7 }
8

9 protected :
10 unsigned int32 bulkSize ; B buffer size occupied by the encapsulated consecutive entries
11 } ;
12

13 }

4.1.1 Comparison of queue interfaces

The sequence diagrams, in figure 4.1, illustrate the communication between two producers
and one consumer that utilize the queue interfaces explained above. The sequence
diagram A applies the fine grained interface declared in listing 4.1, while the sequence
diagram B uses the push/pop interface presented in listing 4.2. In both interleavings all
queue accesses are strictly sequential, which in practice could result from implementing
a blocking synchronization mechanism. Furthermore, the initial and the final state of
the queues, QA and QB, are identical for both program executions. At the beginning
the queues are empty. At the end the producers have enqueued their entries, and the
consumers, CA and CB, have consumed the entries produced by P1A and P1B.

Interpreting the length of the lifelines as elapsed time, we see that P2A finishes earlier in
time than P2B. This behavior results mainly due to two reasons:

• In scenario B the producers have to copy 1 their previously produced data into the
queue, while the producers in diagram A can directly access 2 the queue buffer.
Although the producers in A do more methods calls, they still have to execute less
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work, compared to the additional copying overhead in scenario B. The same holds
for the consumers reading the data.
• The second and more decisive reason is that the interface in scenario A provides

a finer grained access to the queue’s synchronization mechanism, which results
in less contention on the queue. Thus allowing the program to execute a larger
portion of its work in parallel.

The impact of the second argument is further emphasized in section 4.2, where a lock-
free synchronization mechanism is implemented to preserve the queue’s invariants,
resulting in an even more parallel program execution.
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Figure 4.1: Sequence diagram of a sequential MPSC run that compares the two queue-interface imple-
mentations. Both sequence diagrams exemplify a possible interleaving of sequential queue
accesses in a MPSC scenario. In the left diagram the interface of listing 4.1 is used, while the
right diagram illustrates the interleaving using the push/pop interface of listing 4.2. The initial
state and the final state of both queues, QA and QB, are identical, but scenario B requires more
time, because of the additional copy overhead and higher contention on the queue QB.
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4.2 An intrusive bounded lock-free causal FIFO queue
algorithm

The queue algorithm shown in this section implements the UniversalQueue interface
defined in section 4.1. All code listings are written in C++11 pseudo code style and are
compilable after applying a few modifications. The presented algorithm has the following
properties:

1. Intrusive: The queue can be used for side by side transfer of both, binary data and
objects, without the necessity of dynamic memory allocation and additional node
handling. There is also no garbage collection required. These properties yield less
contention on the operating system’s heap manager, which increases the parallel
portion of the program.

2. Bounded: The buffer size of the queue is fixed at construction time and write
attempts to a full queue buffer do fail. The buffer in the given implementation
linearizes the enqueued data, resulting in prefetching-friendly and caching-friendly
reading operations of the consumer.

3. MPSC: The queue can be concurrently accessed by multiple producers and a single
consumer at the same time. For example, fife producers are writing into the queue,
while the consumer is reading an already enqueued entry. The algorithm can be
extended to support multiple consumers as well.

4. Lock-free: In order to further increase the parallel portion of the program, a lock-
free synchronization algorithm is implemented and techniques, which reduce the
contention between writes to the queue and reads from the queue, are applied.

5. Causal FIFO: The queue algorithm guaranties a causal FIFO ordering between all
producers.

6. ABA-free: The presented algorithm does not suffer from the ABA problem.
7. Ready for inter-process communication: The properties 1, 2 and 4 guaranty that

the memory regions, responsible for synchronization and data transfer, can be
shared between processes. If the class member alignment is correctly adjusted, it is
even possible to communicate between 32-bit and 64-bit processes (implementation
not shown).

Additionally, the algorithm can be adjusted to support a lock-free MPMC communication
and it can also be optimized for a wait-free SPSC scenario. The required modifications
are not provided in this work. However, after reading this chapter, it should be possible
to accomplish the necessary adjustments. The queue’s performance properties are stated
in the results chapter (see chapter 6).

The explanation of the algorithm is supported by the figures 4.2, 4.3 and 4.4, which
cross-reference each other using the markers 1 to 10 . The sequence diagram (figure 4.2)
depicts the execution of a lock-free program interleaving, which covers the most im-
portant internal state changes of the queue. The current value assignment of all queue
member variables is referred to as the queue state or the internal state of the queue.
The state changes resulting from the method calls are illustrated in figure 4.3 and the
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synchronization relations, responsible for preserving the invariants of the queue, are
shown in figure 4.4. Beside the properties listed above, the queue has to maintain the
following invariants:

• No two threads are allowed to have exclusive access to the same queue buffer
region.
• A producer is only allowed to override a queue buffer region, which is uninitialized

or was already read by the consumer.
• A consumer is only allowed to read a queue buffer region, which was initialized by

a producer.

4.2.1 Queue attributes and member initialization

All queue attributes are declared in listing 4.5. The member variables in capital letters
(SN, PS, WR, EN, DE, RD) are used for synchronization purposes. The explanation of the
public data types can be found in section 4.1 and all other elements will be explained
here.

The queue buffer a is a bounded array of value type’s, which is allocated at construction
time. The data generated by the producers is streamed through the queue buffer, without
requiring dynamic memory allocation. The producer synchronization PS b manages
the exclusive access to the buffer and guaranties the causal FIFO ordering among the
producers. The values of WR c and EN d must be accessed within one single atomic
operation.

To reduce the contention between enqueue and dequeue operations and to prevent cache
ping-pong the sequence array e was introduced. The technique of implementing a se-
quence array was first seen on the web page of Dmitry Vyukov in his multiple-producer
multiple-consumer queue (Vyukov, 2014). The size of the sequence array f determines
the maximum number of simultaneously enqueued entries. Together with the enqueue
position d and the dequeue position g , the sequence array synchronizes the data transfer
between the producers and the consumer.

The read position h points to the buffer position that the consumer is reading next, so
the algorithm utilizes the positions stored in RD h and WR c to obtain the free queue
buffer region. Cache line pads are inserted between the variables that are responsible
for the inter-thread synchronization and around the queue buffer. The cache line pads
prevent false sharing between different threads of execution.

Listing 4.5: Attributes of the intrusive bounded lock-free MPSC causal FIFO queue

1 c l a s s LFBoundedMPSCQueue {
2 public :
3 using Entry = my : : Entry ; B provides access to the queue buffer

memory of an entry
4 using Bulk = my : : Bulk ; B provides access to consecutive entries
5
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6 using value type = Entry : : value type ; B type of the smalltest accessible buffer
region

7 using v a l u e p t r = value type ∗ ; B pointer type to a buffer position
8

9 private :
10 using ProducerSync = s t r u c t {
11 unsigned int32 WR; B c next free buffer position
12 unsigned int32 EN; B d next enqueue position
13 } ;
14

15 using Sequence = s t r u c t {
16 std : : atomic<unsigned int32> SN; B sequence number
17 unsigned int32 s i z e ; B size of the buffer region
18 unsigned int32 s t a r t I n d e x ; B start index of the buffer region
19 } ;
20

21 using SequencePtr = Sequence ∗ ;
22

23 CACHELINE PAD
24 const unsigned int32 b u f f e r S i z e ; B queue buffer size
25 v a l u e p t r b u f f e r ; B pointer to the buffer start position
26 const unsigned int32 slotCount ; B f sequence array size
27 const unsigned int32 slotMask ; B avoids modulo calculations
28 SequencePtr seqArr ; B e sequence array
29 CACHELINE PAD
30 std : : atomic<ProducerSync> PS ; B b producer synchronization
31 CACHELINE PAD
32 std : : atomic<unsigned int32> DE; B g next dequeue position
33 CACHELINE PAD
34 std : : atomic<unsigned int32> RD; B h next read position
35 CACHELINE PAD
36 my : : PaddedMemory paddedMem ; B a queue buffer memory, located at the

heap and enclosed by cache line pads
37 } ;

The queue construction is illustrated in listing 4.6. The buffer size a defines the size
of the memory region that is available for inter-thread communication and can be
initialized to an arbitrary value. The sequence array size b controls the maximum number
of simultaneously enqueued entries and must be a power of two, which yields the
following benefits:

• The sequence counters (enqueue position EN and dequeue position DE) can be
implemented as ever increasing values, which are allowed to overflow. This reduces
the amount of branches in the algorithm and instead of using a modulo operation
for accessing the sequence array entries, a simple masking operation can be applied.
• The enqueue position EN can serve as an alongside counter variable, next to the

write index WR to prevent the ABA problem that is common in lock-free algo-
rithms (Decheva, Pirkelbauer, and Stroustrup, 2010).

When the queue buffer is allocated the cache line pads are added to preventing false
sharing c . To enable full operating speed already at the first access of the queue, each
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memory page of the queue buffer is accessed once d , which forces the operating system
to initialize the memory pages at construction time. After calling the constructor all
members are set to their initial values.

The initial queue state is depicted in figure 4.3 at marker Init. The Sequence Array entries
in that diagram reveal only the sequence number SN. The pseudo code in figure 4.4
shows the usage of the size and startIndex values, while all further algorithmic details can
be found in section 4.2.4.

Listing 4.6: Queue initialization

1 LFBoundedMPSCQueue : : LFBoundedMPSCQueue ( const unsigned int32 bufSize , const
unsigned int32 seqArrSize ) {

2 b u f f e r S i z e = bufSize ; B a
3

4 slotCount = NextPowerOfTwo ( seqArrSize ) ; B b
5 slotMask = slotCount − 1 ;
6 seqArr = new Sequence [ slotCount ] ;
7

8 ProducerSync prodSync ;
9 prodSync .EN = 0 ;

10 prodSync .WR = 0 ;
11 PS . s t o r e ( prodSync , s td : : memory order relaxed ) ;
12

13 DE. s t o r e ( 0 , s td : : memory order relaxed ) ;
14 RD. s t o r e ( 0 , s td : : memory order relaxed ) ;
15

16 for ( unsigned int32 i = 0 ; i < slotCount ; ++ i ) {
17 seqArr [ i ] . SN. s t o r e ( i , s td : : memory order relaxed ) ;
18 seqArr [ i ] . s i z e = 0 ;
19 seqArr [ i ] . s t a r t I n d e x = 0 ;
20 }
21

22 paddedMem = my : : PaddedMemory (
23 b u f f e r S i z e ∗ s i ze of ( value type ) , CACHE LINE SIZE ) ; B c
24 b u f f e r = paddedMem . GetPtr<value type >() ;
25 for ( unsigned int32 i = 0 ; i < b u f f e r S i z e ; i += PAGE SIZE ) {
26 b u f f e r [ i ] ; B d forces a memory page initialization
27 }
28 }

4.2.2 Sending and receiving data via the queue

In figure 4.2 all three producers and the consumer start to access the queue nearly
simultaneously. Producer P1 returns first from its call to acquire 1 and is granted
exclusive access to the green shaded queue buffer region, which is illustrated in figure 4.3
at marker 1 . When calling the acquire method P1 atomically updates WR and EN, which
causes the state change from Init to 1 as depicted in figure 4.3. The atomic variable
updates are highlighted in red color.
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Figure 4.2: Sequence diagram of a lock-free MPSC scenario. The diagram shows the interleaving of mul-
tiple producers and a single consumer communicating via the lock-free queue. The numbered
markers refer to markers in figure 4.3, where the corresponding state changes of the queue are
illustrated and to the markers in figure 4.4, which depicts the synchronization relations.

P1 continues with writing data into the queue buffer. In the meanwhile P3 successfully
acquired a buffer region 2 for production. Producer P2 was unlucky with its call to
acquire 3 , because earlier in the program order P1 updated PS, which yields P2’s call to
the CAS operation, shown in figure 4.4 at marker 3 , to fail. If the CAS operation would
not fail, the queue’s invariants were broken, because P2 would have got exclusive access
to the memory region already owned by P1. Furthermore P2 could also overwrite the
data already produced by P1.

P3 finishes with its data production and makes the entry visible for consumption by
calling enqueue 4 , which changes the sequence number of the second entry from 1 to 2.
Concurrently P2 failed a second time to acquire a buffer region, because the queue ran
out of space 5 . The consumer flops to dequeue P3’s entry 6 , because the FIFO ordering
requires that the entry of P1, which is currently not enqueued, must be consumed before
the entry of P3. After P1 has enqueued its entry 7 , the consumer can dequeue the entry 8

and read it. Afterwards the consumer releases both, the memory region encapsulated by
the entry 9 via updating the read position RD. The sequence array slot is released via
increasing the initial sequence number of the first sequence array entry by the sequence
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Figure 4.3: Illustration of the internal queue states during the program execution shown in figure 4.2.
The shaded queue buffer regions indicate the exclusive ownership by the producer or the
consumer. Font colors that are different from black, signal that the value has changed form the
previous step to the current step. The same font color of two different values in one step points
out that those values where updated within a single atomic operation. The markers on the left
side refer to the markers in figure 4.2 tagging the corresponding method calls that yield the
queue state changes. Furthermore the markers also refer to those in figure 4.4, which illustrates
the synchronization relations of the lock-free algorithm.
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array size. At that point in time no participant has exclusive access to a queue buffer
region, as shown in figure 4.3 at marker 9 , but there is still the entry of P2 ready for
consumption.

At marker 10 the consumer and the producer simultaneously access the queue. However,
both successfully accomplish their operation and also do not influence each other
during the execution, because the dequeuing and enqueuing operations are completely
decoupled. Producer P2 acquires exclusive access to the blue shaded queue buffer region
and the consumer obtains exclusive access to the gray shaded queue region. During the
execution of the acquire method the producer P2 twice modifies the write position. The
first modification of the WR is not shown in figure 4.3, but the pseudo code reveals the
step in figure 4.4 10 at line 14.. After setting the write position to zero, another attempt
to acquire a buffer region is launched, which updates WR in line 6. and then successfully
returns, yielding the final queue state illustrated in figure 4.3 at marker 10 .

4.2.3 The queue invariants and the synchronization relations

The pseudo code in figure 4.4 illustrates the synchronization relations of the lock-
free algorithm and the code further depicts the usage of the sequence array members.
Each atomic-store-release operation synchronizes-with its corresponding atomic-load-
acquire operation, as indicated by the dashed lines.

The write position WR and the enqueue position EN, encapsulated by the producer
synchronization PS, are updated only within the acquire method (line 6. and line 14.). In
order to allow the concurrent access of multiple producers it must be ensured that the
queue invariants hold between the load operation in line 1. and the update operations in
line 6. or 14.. The desired invariants can only be guarantied if WR and EN are updated
in a single atomic operation and if WR and EN were not changed between the load
operation and the update operation. Thus a CAS instruction is required for updating PS.
A CAS instruction atomically executes the following three steps:

1. Load the most recent value of the variable
2. Compare the currently loaded value with the expected value. (The expected values

passed to the CAS operation, are those loaded at the beginning of the acquire
method.)

3. Update the current variable, if the current value is equal to the expected value, else
the operation fails.

The read position RD is only updated by the single consumer inside the release method.
Thus a simple store-release operation is sufficient. The store instruction then synchronizes-
with the load operation in the acquire method (line 2.). The read position RD together
with the write position WR is utilized to obtain the free queue buffer region.

• If there is sufficient buffer space left (line 3.) the sequence number SN of the current
sequence array entry is loaded. This sequence number is required to check, if the
obtained sequence array entry is allowed to be accessed. If access is granted, the
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[ENPos, WRPos] = ATOMIC_LD_ACQUIRE(EN, WR)

[RDPos] = ATOMIC_LD_ACQUIRE(RD)

if (reqSize <= freeSpace(WRPos, RDPos)) then

  [seqNum] = ATOMIC_LD_ACQUIRE(seqArr[ENPos].SN)

  if (inSequence(seqNum)) then

     if (ATOMIC_CMPXCH_REL(EN = ENPos + 1, WR = WRPos + reqSize)) then

       entry.seqNum = ENPos

       seqArr[entry.seqNum].startIdx = WRPos

       seqArr[entry.seqNum].size = reqSize

       return success

     fi

  fi

else

  checkForResetOfWR() and goto line 1. if WR was reset to 0

fi

return failure

ATOMIC_ST_REL(seqArr[entry.seqNum].SN = entry.seqNum + 1)

return success

[DEPos] = ATOMIC_LD_ACQUIRE(DE)

[seqNum] = ATOMIC_LD_ACQUIRE(seqArr[DE].SN)

if (inSequence(seqNum)) then

  entry.seqNum = DEPos

  ATOMIC_ST_REL(DE = DEPos + 1)

  return success

fi

retun failure

startIdx = seqArr[entry.seqNum].startIdx

size = seqArr[entry.seqNum].size

ATOMIC_ST_REL(seqArr[entry.seqNum].SN = entry.seqNum + 1)

ATOMIC_ST_REL(RD = startIdx + size)

return success

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

1.

2.

1.

2.

3.

4.

5.

6.

7.

8.

1.

2.

3.

4.

5.

➊ 

➒  

➋  

➌  

➍ 

➎  

➏ 

➐  

➑  

➓ 

➓ 

➓ 

➎  ➌  

Figure 4.4: Pseudo code demonstrating the lock-free synchronization relations. The pseudo code demon-
strates the information transport between producer(s) and consumer and the implemented
lock-free synchronization algorithm. The dashed lines illustrate synchronizes-with relations.
Operations with acquire-semantics are highlighted in blue, operations with release-semantics
are highlighted in green. Release operations synchronize-with their corresponding acquire
operations. The markers refer to the markers in the figures 4.2 and 4.3.

46



4.2 An intrusive bounded lock-free causal FIFO queue algorithm

CAS operation in line 6. can be executed and on success the caller is awarded with
exclusive access to the requested queue buffer and a sequence array entry.
• If the queue buffer runs out of space, it is necessary to reset the write position WR

to the queue buffer’s front (line 14.). The reset of WR is only allowed under certain
conditions, which are depicted in the slow path b of the code in listing 4.7. If the
reset of the write position succeeds, a new attempt to acquire exclusive access to a
queue buffer region is started, else the acquire method returns without success.

To release the exclusive access obtained by calling acquire, the enqueue method updates
the sequence number of the sequence array entry. This atomic store operation also
synchronizes all write operations done by the producer before. Exactly this happened-
before relation is exploited in the dequeue method by the consumer to synchronize
the produced data for consumption. Indeed, there is only one consumer updating the
dequeue position DE, but the empty method (see listing 4.8), which reads DE, might be
called concurrently. Thus DE still must be atomically accessed.

To release the queue buffer and the sequence array entry after consumption, the consumer
must call the release method. The release method updates the sequence number of the
sequence array entry and the read position. Both update operations synchronize-with
their corresponding load operations at the beginning of the acquire method.

To sum up, in all four methods a single atomic update operation serves as the methods’
linearization point that makes the modifications visible. The concept of linearization points
is explained in section 2.4.2.

Correctness of the algorithm

To explicitly specify the synchronization relations between the method calls the next
listing states a simple scenario, where one producer P communicates with one consumer
C. The queue buffer as well as the sequence array, consist only of a single entry: The
queue buffer entry QBE and the sequence array entry SAE. The listed scenario is cyclic
and shows that the production and the consumption of data can be safely executed based
on the synchronization enforced by the atomic operations. The following scenario is the
only possible sequential interleaving that is allowed by the algorithm. Of course, this is
only a SPSC example, but as already explained, the CAS operations in the acquire method
guaranty that the synchronization also works for multiple producers.

S1. Setup: Setup the queue invariants
S2. P.acquire(QBE, SAE):

a) P loads EN and WR within a single atomic operation
b) P loads RD
c) P checks if there is enough space available
d) P loads SAE.EN
e) P checks if the SAE is allowed to be accessed and if the entry is in sequence
f) P acquires exclusive access to QBE (update WR) and SAE (update EN) by

updating both values within a single atomic operation (linearization point)
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S3. P.write(QBE): P writes data into QBE
S4. P.enqueue(QBE, SAE): P signals C that some data is ready for consumption by

updating SAE.SN (linearization point)
S5. C.dequeue(QBE, SAE):

a) C loads DE
b) C loads SAE.SN
c) C checks if some data is ready
d) C acquires exclusive access to QBE and SAE by updating DE (linearization

point)

S6. C.read(QBE): C reads the data produced by P in step S3.
S7. C.release(QBE, SAE):

a) C releases SAE by incrementing SAE.SN (linearization point1)
b) C releases QBE by increasing RD (linearization point2)

S8. Continue with step S2.

Based on the given scenario we can deduce the synchronization relations, which further
show that the invariants stated on the beginning of section 4.2 are preserved by the
presented queue algorithm. Be aware that all synchronizes-with relations result from
the execution of atomic operations (eg. updating SAE.SN in step [S4.] synchronizes-with
loading SAE.SN in step [S5.b]) and not from the method calls per se. Instead, the method
calls are used to illustrate the happens-before relations (eg. step [S6.] happens-before
step [S7.] or step [S7.a] happens-before [S7.b]) in the program flow.

The parent items in the following listing informally state the invariant and the ordering
requirements, which must be preserved by the queue algorithm. The child items reveal
the ordering and synchronization relations which ensure that the data production and
data consumption is correctly linearized between the threads and that the invariants are
preserved.

• A producer is only allowed to override a queue buffer region, which is uninitial-
ized or was already read by the consumer: This requires Setup or C.read(QBE) to
inter-thread happen-before P.write(QBE):

– Uninitialized region: Setup [S1.] inter-thread happens-before P.write(QBE) [S3.]
– Consumed region: C.read(QBE) [S6.] inter-thread happens-before P.write(QBE) [S3.]
∗ C.read(QBE) [S6.] happens-before C.release(QBE, SAE) [S7.]
∗ C.release(QBE, SAE) [S7.] inter-thread happens-before P.acquire(QBE,

SAE) [S2.]
∗ P.acquire(QBE, SAE) [S2.] happens-before P.write(QBE) [S3.]

+ SAE.SN.store rel [S7.a] synchronizes-with SAE.SN.load acq [S2.d]
+ RD.store rel [S7.b] synchronizes-with RD.load acq [S2.b]
+ The checks [S2.c] and [S2.e] guaranty that P does not access/overwrite

a buffer region exclusively acquired by another thread
+ P acquires exclusive access [S2.f]

48



4.2 An intrusive bounded lock-free causal FIFO queue algorithm

+ P can not write into the queue buffer, without initializing an entry by
successfully calling acquire. The acquire method only returns success-
fully, if the queue is new or if the consumer has released the buffer
region.

• A consumer is only allowed to read a queue buffer region, which was initial-
ized by a producer: This requires P.write(QBE) to inter-thread happen-before
C.read(QBE):

– P.write(QBE) [S3.] happens-before P.enqueue(QBE, SAE) [S4.]
– P.enqueue(QBE, SAE) [S4.] inter-thread happens-before C.dequeue(QBE, SAE) [S5.]
– C.dequeue(QBE, SAE) [S5.] happens-before C.read(QBE) [S6.]
∗ Updating SAE.SN [S4.] synchronize-with loading SAE.SN [S5.b], which

also guaranties the FIFO ordering and ensures that the data previously
written by P is correctly synchronized between all cores and processors.
Hence, a subsequent read operation of QBE always sees the data produced
by P.

• No two threads are allowed to have exclusive access to the same queue buffer
region.

– The precondition for the given algorithm is that there must be exactly one
consumer, thus the consumer side does not require additional synchronization
to prevent two threads from reading the same queue buffer region.

– On the producer side the acquire method checks in step [S2.c], if a free buffer
region is available and the method uses a CAS operation in step [S2.f] to
update EN and WR within a single atomic operation. Thus multiple threads
may call the acquire method concurrently without violating the invariants.

4.2.4 Implementation details

This section reveals the C++11 implementations of the intrusive bounded lock-free causal
FIFO queue algorithm. The code of the acquire and enqueue methods is shown in listing 4.7,
listing 4.8 depicts the implementation of the dequeue and release methods and the bulk
reading operations are stated in listing 4.9.

Listing 4.7: Implementation of the producer interface methods

1 bool LFBoundedMPSCQueue : : acquire ( const unsigned int32 requiredMemSize , Entry&
entry ) {

2 ProducerSync prodSync = PS . load ( std : : memory order acquire ) ;
3 while ( t rue ) {
4 unsigned int32 RDPos = RD. load ( std : : memory order acquire ) ;
5 unsigned int32 WRPos = prodSync .WR;
6

7 unsigned int32 freeMemory = 0 ;
8 i f (WRPos < RDPos ) {
9 freeMemory = RDPos − WRPos − 1 ;

10 } e lse {
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11 freeMemory = b u f f e r S i z e − WRPos ;
12 }
13

14 i f ( requiredMemSize <= freeMemory ) { B c fast path: acquire exclusive access
15 ProducerSync prodSyncUpdate ;
16 prodSyncUpdate .EN = prodSync .EN + 1 ;
17 prodSyncUpdate .WR = WRPos + requiredMemSize ;
18

19 SequencePtr pSeqEntry = &(seqArr [ prodSync .EN & slotMask ] ) ;
20 unsigned int32 seq = pSeqEntry−>SN. load ( std : : memory order acquire ) ;
21 in t32 d i f f = s t a t i c c a s t <in t32>(seq − prodSync .EN) ;
22 i f (0 == d i f f ) {
23 i f ( PS . compare exchange weak ( prodSync , prodSyncUpdate , s td : :

memory order rel ) ) {
24 entry . SetData ( pSeqEntry , WRPos, requiredMemSize , prodSync .EN,

b u f f e r ) ;
25 break ; B caller is granted exclusive access to pSeqEntry and to the buffer from

buffer[WRPos] to buffer[WRPos + requiredMemSize - 1]

26 }
27 } e lse i f (0 > d i f f ) {
28 return f a l s e ; B all sequence array entries are in use
29 } e lse {
30 prodSync = PS . load ( std : : memory order acquire ) ; B the entry pSeqEntry is

already in use, retry to acquire another entry
31 }
32 } e lse { B b slow path: check for a buffer overflow
33 i f (WRPos < RDPos ) {
34 return f a l s e ; B the consumer is ahead of the producers, thus WR is not allowed to be

reset
35 } e lse i f (0 == RDPos ) {
36 return f a l s e ; B the buffer is full, but the reader did not start
37 }
38

39 B If the current thread passed the if-conditions above some other thread may have already
acquired a new entry. If we would now succeed to reset WR to zero, the program would
end up in undefined behavior. Of course, the other thread must have updated PS, which
results in a failing CAS operation in line 44. and the queue invariants are correctly
preserved.

40

41 ProducerSync prodSyncUpdate ;
42 prodSyncUpdate .EN = prodSync .EN;
43 prodSyncUpdate .WR = 0 ;
44 i f ( PS . compare exchange weak ( prodSync , prodSyncUpdate , s td : :

memory order rel ) ) {
45 prodSync .WR = 0 ; B reset succeeded, retry to acquire a buffer region
46 }
47 }
48 }
49 return true ; B acquired exclusive access to a buffer region of the desired size
50 }
51

52 bool LFBoundedMPSCQueue : : enqueue ( Entry& entry ) {
53 entry . pSeqEntry−>SN. s t o r e ( entry . seqNum + 1 , s td : : memory order release ) ;

B Signals the consumer that a new entry is ready for consumption.
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54 entry . ResetData ( ) ;
55 return true ;
56 }

Listing 4.8: Implementation of the consumer interface methods

1 bool LFBoundedMPSCQueue : : dequeue ( Entry& entry ) {
2 const unsigned int32 DEPos = DE. load ( std : : memory order acquire ) ;
3 SequencePtr pSeqEntry = &(seqArr [ DEPos & m slotMask ] ) ;
4 unsigned int32 seq = pSeqEntry−>SN. load ( std : : memory order acquire ) ;
5 const int32 d i f f = s t a t i c c a s t <int32>(seq − ( DEPos + 1 ) ) ;
6 i f (0 == d i f f ) {
7 entry . SetData ( pSeqEntry , DEPos , b u f f e r ) ;
8 DE. s t o r e ( DEPos + 1 , s td : : memory order release ) ;
9 return true ; B caller dequeued and acquired exclusive access to the entry

10 }
11 return f a l s e ; B no entries to dequeue
12 }
13

14 bool LFBoundedMPSCQueue : : r e l e a s e ( Entry& entry ) {
15 unsigned int32 RDUpdate = entry . s t a r t i n d e x ( ) + entry . GetSize ( ) ;
16 entry . pSeqEntry−>SN. s t o r e ( entry . seqNum + slotCount , s td : :

memory order release ) ; B Signal the producers that the entry is
free.

17 RD. s t o r e ( RDUpdate , s td : : memory order release ) ; B Signal the producers that the
buffer region is consumed and free.

18 return true ;
19 }
20

21 bool empty ( ) const { B The empty method may be concurrently accessed by producers and
consumers.

22 const unsigned int32 DEPos = DE. load ( std : : memory order acquire ) ; { B Due to
the concurrent access DE must be atomically loaded (and updated).

23 SequencePtr pSeqEntry = &(seqArr [ DEPos & m slotMask ] ) ;
24 unsigned int32 seq = pSeqEntry−>SN. load ( std : : memory order acquire ) ;
25 const int32 d i f f = s t a t i c c a s t <int32>(seq − ( DEPos + 1 ) ) ;
26 return 0 > d i f f ;
27 }
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Listing 4.9: Implementation of the bulk reading interface methods

1 bool LFBoundedMPSCQueue : : dequeue ( const unsigned int32 maxBulkSize , Bulk& bulk
) {

2 unsigned int32 entryCount = 0 ;
3 unsigned int32 bulkSize = 0 ;
4

5 while ( bulkSize < maxBulkSize ) { B stop if the bulk becomes too large
6 const unsigned int32 DEPos = DE. load ( std : : memory order acquire ) ;
7 SequencePtr pSeqEntry = &(seqArr [ DEPos & m slotMask ] ) ;
8 unsigned int32 seq = pSeqEntry−>SN. load ( std : : memory order acquire ) ;
9 int32 d i f f = s t a t i c c a s t <in t32>(seq − ( DEPos + 1 ) ) ;

10 i f (0 == d i f f ) {
11 i f ( pSeqEntry−>m start Index == 0 && entryCount != 0 ) {
12 break ; B the memory would no longer be consecutive
13 }
14 i f ( entryCount == 0 ) {
15 bulk . SetData ( pSeqEntry , DEPos , m pBuffer ) ; B initialize the bulk
16 }
17 DE. s t o r e ( DEPos + 1 , s td : : memory order release ) ;
18 bulkSize = bulkSize + pSeqEntry−>s i z e ;
19 ++entryCount ;
20 } e lse i f (0 > d i f f ) {
21 break ; B no (more) entries to dequeue
22 }
23 }
24

25 bulk . bulkSize = bulkSize ;
26 return bulk . I s V a l i d ( ) ; B true if line 15. was previously executed
27 }
28

29 bool LFBoundedMPSCQueue : : r e l e a s e ( Bulk& bulk ) {
30 unsigned int32 nextReadPos = bulk . s t a r t i n d e x ( ) + bulk . GetSize ( ) ;
31

32 unsigned int32 seqNum = bulk . seqNum ;
33 unsigned int32 loopCondBulkSize = bulk . GetSize ( ) ;
34

35 while ( loopCondBulkSize != 0 ) {
36 SequencePtr pSeqEntry = &(seqArr [seqNum & slotMask ] ) ;
37 loopCondBulkSize −= pSeqEntry−>s i z e ;
38 pSeqEntry−>SN. s t o r e (seqNum + slotCount , s td : : memory order release ) ;

B Signal the producers that the entry is free.
39 ++seqNum ;
40 }
41

42 bulk . ResetData ( ) ;
43 RD. s t o r e ( nextReadPos , s td : : memory order release ) ; B Signal the producers that

the buffer region is consumed and free.
44 return true ;
45 }
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4.2.5 An alternative lock-free algorithm

During development a second lock-free queue algorithm evolved, because the previously
explained algorithm may end up in a livelock in some situations. Although, there is a
simple solution to prevent livelock situations, we decided to develop an algorithm that
is free of livelocks. The livelock situations, the livelock prevention and the alternative
algorithm are shortly explained in this section.

The second algorithm is quite similar to the first one, but additionally the so called
dynamic buffer size value is maintained (see listing 4.10 at marker a ). The dynamic buffer
size DS is used to prevent livelocks by storing the size of the queue buffer at the point in
time, when the queue buffer overflows. An overflow occurs if the size required by an
entry exceeds the end of the queue’s memory buffer. Such a case was already explained
in section 4.2.2 and depicted in the figures 4.2, 4.3 and 4.4 at marker 10 . The state
transitions from marker 2 to marker 3 in the figures 4.5 and 4.6 also illustrate two
examples of a buffer overflow. The last two figures directly compare the behavior of the
two queue algorithms.

In the case of an overflow the previously presented algorithm, denoted as the standard
algorithm or the standard version, resets the write position WR inside the acquire method,
if some conditions are met (see listing 4.7 and start at marker b ). Instead, the alternative
algorithm only has to check if the consumer has started, if yes, then the producer can
immediately try to reset the write position WR to zero followed by an update of the
dynamic buffer size value. The dynamic buffer size DS is also used by the producers
to reset the read position RD to zero, if no more entries can follow. In the standard
algorithm only the consumer is allowed to modify the read position within the release
method (see listing 4.8 at line 17.).

In short, if the queue buffer overflows, the alternative algorithm sets DS = WR and
WR = 0 and may also update RD = 0, if no more entries can follow. The standard
algorithm instead sets WR = 0, if some conditions are met and RD is only updated by
the consumer within the release method.

Listing 4.10: Member declaration of the alternative queue implementation

1 c l a s s AlternativeLFBoundedMPSCQueue {
2 public :
3 using Entry = my : : Entry ; B provides access to the queue buffer

memory of an entry
4 using Bulk = my : : Bulk ; B provides access to consecutive entries
5

6 using value type = Entry : : value type ; B type of the smalltest memory buffer
region

7 using v a l u e p t r = value type ∗ ; B pointer type to a buffer position
8

9 private :
10 using ProducerSync = s t r u c t {
11 unsigned int32 WR; B next free buffer position
12 unsigned int32 EN; B next enqueue position
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13 } ;
14

15 using ProdConsSync = s t r u c t {
16 unsigned int32 RD; B next read position
17 unsigned int32 DS ; B a dynamic buffer size
18 } ;
19

20 using Sequence = s t r u c t {
21 std : : atomic<unsigned int32> SN; B sequence number
22 unsigned int32 s i z e ; B size of the buffer region
23 unsigned int32 s t a r t I n d e x ; B start index of the buffer region
24 } ;
25

26 using SequencePtr = Sequence ∗ ;
27

28 CACHELINE PAD
29 const unsigned int32 b u f f e r S i z e ; B queue buffer size
30 v a l u e p t r b u f f e r ; B pointer to the buffer start position
31 const unsigned int32 slotCount ; B sequence array size
32 const unsigned int32 slotMask ; B avoids modulo calculations
33 SequencePtr seqArr ; B sequence array
34 CACHELINE PAD
35 std : : atomic<ProducerSync> PS ; B producer synchronization
36 CACHELINE PAD
37 std : : atomic<unsigned int32> DE; B next dequeue position
38 CACHELINE PAD
39 std : : atomic<ProdConsSync> PCS ; B b producer-consumer synchronization
40 CACHELINE PAD
41 my : : PaddedMemory paddedMem ; B queue buffer memory, located at the

heap and enclosed by cache line pads
42 } ;

Comparison of the two algorithms

The basic usage of the dynamic buffer size value is illustrated in figure 4.5. This figure also
directly compares the behavior of the standard and the alternative algorithm. The main
difference between the algorithms can be seen at the end 5 of the illustrated scenarios,
where the producer P1 succeeds to acquire exclusive access to the green shaded buffer
region, if the alternative algorithm is used. However, when using the standard algorithm
the producer P1 fails to acquire the same buffer region, although there would have been
enough buffer space left in step 5 . If the standard algorithm is used, the producer P1
must wait on the consumer to update the read position RD, when reading the yellow
shaded entry, because of the standard algorithm’s convention that only the consumer
is allowed to update the read position. Exactly this convention may lead to a live lock,
which is explained next.
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Figure 4.5: Comparison of the standard algorithm and the alternative implementation. Illustration of the
queue state changes conducted by the standard algorithm and the alternative implementation.
The alternative algorithm additionally maintains the dynamic buffer size value DS. The producer
P3 sets the dynamic buffer size value in the state transition from marker 2 to 3 , which results
in a successful acquire operation of P1 in step 5 . In the standard algorithm instead, the producer
P1 fails to acquire an entry of size five, because RD was not updated by the consumer yet. P1
must wait for the next consume operation to push its data into the queue.
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Livelock and livelock prevention

The source of the livelock in the standard algorithm is the convention that the read
position RD is only allowed to be updated by the consumer inside the release method. The
scenario in figure 4.6 depicts a program flow where the standard algorithm ends up in a
livelock, while the alternative solution can cope with the situation. Both programs again
execute the same method calls, but only P1 using the alternative algorithm succeeds to
acquire an entry in step 4 . This is possible, because the alternative algorithm does not
only reset the write position WR in the case of an overflow 3 , but it also recognizes
that no entries are left for consumption and thus P1 can also immediately reset the read
position RD in step 3 .

A simple solution to prevent the livelock in the standard algorithm is the increase of the
queue buffer size. For the depicted and all other scenarios it would be sufficient to setup
a queue buffer that is two times as large as the maximum entry size. So, in the presented
example the maximum entry size is seven, and if the buffer size would be fourteen,
then there would never occur a livelock in the standard algorithm. In programs where
multiple producers are active, it is recommended to make the queue buffer even larger
to obtain a good data transfer performance. The results in chapter 6 depict not only the
influence of the queue buffer size and the sequence array size on the message transfer
rate and the data throughput, but also compares the performance of the standard and
the alternative algorithm.

Summing up, independent of the buffer size the alternative algorithm can not end
up in a livelock, while there are situations where the standard algorithm may. In the
standard algorithm a livelock can be reliably prevented by acquiring a queue buffer that
is twice as big as the size of the largest entry. From an algorithmic point of view the
contention between producer and consumer as well as the complexity of the alternative
algorithm is much higher compared to the standard version. Furthermore the results
chapter shows that the standard algorithm has better scalability properties and allows
higher throughput ratios. The measurement methods and the measurement results, to
evaluate the performance of the queue algorithms, are presented in the following two
chapters 5 and 6.
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Figure 4.6: Scenario where the standard algorithm ends up in a livelock. Illustration of the queue state
changes conducted by the standard algorithm and the alternative implementation. The alterna-
tive algorithm additionally maintains the dynamic buffer size value DS.
The scenario depicts an interleaving, which leads to a live lock of the standard algorithm.
Although there would have been enough buffer space left, but the read position RD limits the
buffer size to five and RD is only updated by the consumer within the release method. Of course,
there is no entry ready to be dequeued, so there is no entry to be released, which results in the
illustrated livelock situation.
In the alternative version of the algorithm the producer is also allowed to update the read
position RD in the case of an overflow. Thus no livelock occurs. The livelock in the standard
algorithm can be prevented by allocating a queue buffer with a size two times as large as the
largest entry. To benefit from a queue as a synchronization mechanism the buffer size should
be chosen to be a multiple of the entry’s sizes anyhow.
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4.3 Use case examples

This section depicts two examples where the presented queue is used for task synchro-
nization and data transport. The first example in listing 4.11 shows the implementation
of a class for asynchronous file IO. The asynchronous file IO class allows the efficient
separation of the runtime layer data flow from the slow input/output operations on the
persistence layer, as required by the data flow DF8 and DF12 in figure 3.3. Instead of
executing a file output or database operation, a runtime layer tasks can simply write a its
data into the queue. In a second step the data is moved to disk c by another task, which
decouples the slow output operation from the runtime layer. The bulk reading operations
further reduce the amount of file accesses, because several messages/entries might be
combined within one bulk.

Asynchronous read-requests d are stored in the command queue e and can be issued
before the data is required. This allows the requester to continue with its execution, while
the other task completes the IO-operation. The result of the request can be obtained at
any time via the future.

Listing 4.11: Example - Using the queue for asynchronous file IO

1 c l a s s AsynchronousFile : public Task {
2 private :
3 LFBoundedMPSCQueue m outputQueue ; B b
4 LFBoundedMPSCQueue m commandQueue ; B e
5 FILE∗ m f i l e ; B a FILE is faster than a std::fstream
6

7 public :
8 std : : future<CommandResult> OpenFile ( const std : : s t r i n g& f i l e ) ;
9 std : : future<CommandResult> C l o s e F i l e ( ) ;

10 bool IsFi leOpen ( ) ;
11

12 bool P r i n t ( char∗ pFormat , . . . ) ; B a lock-free write into queue buffer
13 bool Pr in tL ine ( char∗ pFormat , . . . ) ;
14

15 std : : future<CommandResult> Read ( const s i z e t length ) ; B d read
length bytes and store result into future

16 std : : future<CommandResult> ReadLine ( const s i z e t lineNumber ) ; B read the line
and store the content in the future

17 std : : future<CommandResult> SeekReadLine ( const s i z e t pos , const s i z e t
length ) ;

18

19 / / . . .
20

21 protected :
22 void Run ( ) override {
23 . . .
24 bIsWorkLeft = t rue ;
25 while ( Task : : Continue ( ) | | bIsWorkLeft ) {
26 i f ( ! bIsWorkLeft ) {
27 std : : t h i s t h r e a d : : s l e e p f o r (20ms) ;
28 }
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29 bIsWorkLeft = ExecuteCommands ( ) ;
30 bIsWorkLeft |= Wri teBuf ferToFi le ( ) ;
31

32 i f ( this−>Task : : Abort ( ) ) {
33 break ;
34 }
35 }
36 . . .
37 }
38

39 bool ExecuteCommands ( ) {
40 my : : CommandEntry entry ;
41 i f (m commandQueue . dequeue ( entry ) ) {
42 this−>ExecuteCommand ( entry ) ; B executes the command and if required, the result

is stored in the std::future
43 while ( ! m commandQueue . r e l e a s e ( entry ) ) {
44 ;
45 }
46 return true ;
47 }
48 return f a l s e ;
49 }
50

51 bool WriteBuf ferToFi le ( ) {
52 const unsigned int32 maxBulkSize = 4096 ;
53 LFBoundedMPSCQueue : : Bulk bulk ;
54 i f ( this−>IsFi leOpen ( ) ) {
55 i f ( m outputQueue . dequeue ( maxBulkSize , bulk ) ) { B c combining messages

into bulks reduces the number of slow file accesses
56 f w r i t e ( bulk . GetPtr ( ) , s i ze of ( LFBoundedMPSCQueue : : Bulk : : value type ) ,

bulk . GetSize ( ) , m f i l e ) ;
57 f f l u s h ( m f i l e ) ;
58 while ( ! m outputQueue . r e l e a s e ( bulk ) ) {
59 ;
60 }
61 return true ;
62 }
63 }
64 return f a l s e ;
65 }
66 } ;

The second example in listing 4.12 illustrates the transfer of objects via the queue. The
universal queue interface is extended a and the new methods now accept generic
ObjectEntry<...> types. The ObjectEntry<...> class inherits from the Entry type b and
provides object-like access to the encapsulated queue buffer memory via the GetObject()
methods c d .

The placement new operator allows the constructions of objects at user defined memory
locations and is thus used to create objects within the queue buffer memory f after
successfully acquiring an entry e of the desired size. The destructor of the object is then
explicitly called in the release method g to correctly perform all clean-up operations. The
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whole life-cycle of the object can be implemented without requiring new allocated heap
memory. This reduces the contention on the heap. Additionally the copy-overhead of
passing objects between threads/tasks is eliminated by the possibility to directly work
on the object that was constructed inside the queue.

The usage of the ObjectQueue is exemplified in listing 4.12 and starts at line 69. with
the declaration of the BaseObject type h . All objects that should be transfered via
the ObjectQueue must inherit from the BaseObject, such as the SpecialObject i . The
SpecialObject is constructed and initialized in the functions starting at line 94. and at line
107.. The first function directly constructs the object in the queue buffer j , because the
initialization phase k is short. The initialization phase of the second function L instead,
requires a long time or may even fail with an exception. Thus the function does not
exclusively acquire a queue buffer region before the initialization is finished and executes
its work on a local object. Afterwards the data is cloned into the queue m .

A consumer task must use the BaseObject type for dequeuing. After dequeuing the
(virtual) methods of the objects l can be called and a dynamic-cast operation o may
be used to make decisions based on the object’s type. As always, after consumption the
entry must be released. The release method explicitly calls the destructor of the object
and releases the exclusive access to the buffer region and the sequence array entry.

Listing 4.12: Example - Transferring objects via the queue

1 template <typename TObject , typename TQueue = LFBoundedMPSCQueue>
2 c l a s s ObjectEntry : public TQueue : : Entry { B b
3 public :
4 using o b j e c t t y p e = TObject ;
5 using o b j e c t p t r = o b j e c t t y p e ∗ ;
6

7 template<typename TDerivedObject>
8 TDerivedObject∗ GetObject ( ) const { B c
9 return s t a t i c c a s t <TDerivedObject∗>(m pObject ) ;

10 }
11

12 o b j e c t p t r GetObject ( ) const { B d
13 return m pObject ;
14 }
15

16 protected :
17 fr iend c l a s s ObjectQueue<TObject >;
18 o b j e c t p t r m pObject ;
19 } ;
20

21 template <typename TBaseObject , typename TQueue = LFBoundedMPSCQueue>
22 c l a s s ObjectQueue : public TQueue { B a interface extension to allow the transfer of

objects
23 public :
24 typedef typename TQueue B a s e C l a s s t ;
25

26 typedef typename B a s e C l a s s t : : va lue type value type ;
27 typedef typename B a s e C l a s s t : : v a l u e p t r v a l u e p t r ;
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28

29 typedef typename B a s e C l a s s t : : Entry Entry ;
30 typedef typename B a s e C l a s s t : : Bulk Bulk ;
31

32 typedef typename ObjectEntry<TBaseObject> ObjectEntryBase ;
33 typedef typename ObjectEntryBase ∗ Objec tEntryBase ptr ;
34

35 template<typename T>
36 bool acquire ( ObjectEntry<T>& entry ) {
37 const unsigned int32 requiredSize = s i ze of ( T ) ;
38 i f ( ! m queue . acquire ( requiredSize , entry ) ) { B e obtain a memory region in the

queue
39 return f a l s e ;
40 }
41 v a l u e p t r pBuffer = entry . GetPtr ( ) ;
42 : : new ( ( void ∗ ) ( pBuffer ) ) T ( ) ; B f placement new: constructs the object T at the

memory position pointed to by pBuffer

43 entry . m pObject = r e i n t e r p r e t c a s t <T∗>( pBuffer ) ; B initializes the entry

44 return true ;
45 }
46

47 bool enqueue ( Entry& entry ) {
48 return B a s e C l a s s t : : enqueue ( entry ) ;
49 }
50

51 bool dequeue ( ObjectEntryBase& entry ) {
52 i f ( ! B a s e C l a s s t : : dequeue ( entry ) ) {
53 return f a l s e ;
54 }
55 typename Entry : : v a l u e p t r pBuffer = entry . GetPtr ( ) ;
56 entry . m pObject = r e i n t e r p r e t c a s t <TObject∗>( pBuffer ) ;
57 return true ;
58 }
59

60 i n l in e bool r e l e a s e ( ObjectEntryBase& entry ) {
61 i f ( entry . m pObject ) {
62 entry . m pObject−>˜TObject ( ) ; B g explicit call of the destructor
63 entry . m pObject = nul lpt r ;
64 }
65 return B a s e C l a s s t : : t r y r e l e a s e ( entry ) ;
66 }
67 } ;
68

69 c l a s s BaseObject { B h
70 protected :
71 / / some d a t a
72

73 public :
74 void CloneInto ( void∗ pTargetBuffer ) const {
75 : : new( pTargetBuffer ) BaseObject (∗ t h i s ) ;
76 }
77

78 v i r t u a l void Foo ( ) { . . . }
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79 v i r t u a l void Bar ( ) { . . . }
80 } ;
81

82 c l a s s S p e c i a l O b j e c t : public BaseObject { B i
83 protected :
84 / / some more d a t a
85

86 public :
87 void CloneInto ( void∗ pTargetBuffer ) const {
88 : : new( pTargetBuffer ) S p e c i a l O b j e c t (∗ t h i s ) ;
89 }
90

91 v i r t u a l void Bar ( ) override { . . . }
92 } ;
93

94 bool ShortProductionTime WriteDirect lyIntoQueue ( ObjectQueue<BaseObject>&
objectQueue ) {

95 ObjectEntry<Spec ia lOb jec t> mySpecialObject ;
96 i f ( ! objectQueue . acquire ( mySpecialObject ) ) { B j construct an object of type

SpecialObject directly in the queue’s memory buffer)
97 return f a l s e ;
98 }
99 S p e c i a l O b j e c t ∗ pSpecObj = mySpecialObject . GetObject ( ) ;

100 DoWorkOn( pSpecObj ) ; B k do some short work on the object
101 while ( ! objectQueue . enqueue ( mySpecialObject ) ) {
102 / / t h e wa i t s t r a t e g y g o e s h e r e
103 }
104 return true ;
105 }
106

107 bool LongProductionTime CopyIntoQueueAfterProduction ( ObjectQueue<BaseObject>&
objectQueue ) {

108 S p e c i a l O b j e c t myStackObject ;
109 DoVeryLongWorkOn ( myStackObject ) ; B L do some long lasting work on the object
110

111 ObjectEntry<Spec ia lOb jec t> mySpecialObject ;
112 i f ( ! objectQueue . acquire ( mySpecialObject ) ) {
113 return f a l s e ;
114 }
115 myStackObject . CloneInto ( mySpecialObject . GetPtr ( ) ) ; B m clone the object into the

queue buffer
116 while ( ! objectQueue . enqueue ( mySpecialObject ) ) {
117 / / t h e wa i t s t r a t e g y g o e s h e r e
118 }
119 return true ;
120 }
121

122

123 bool ConsumeObject ( ObjectQueue<BaseObject>& objectQueue ) {
124 ObjectEntry<BaseObject> baseObjectEntry ; B n The BaseObject must be utilized for

reading
125 i f ( ! objectQueue . dequeue ( baseObjectEntry ) ) {
126 return f a l s e ;
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127 }
128

129 baseObjectEntry . GetObject ( )−>Bar ( ) ; B o Execute a (virtual) method
130

131 i f ( dynamic cast<S p e c i a l O b j e c t ∗>( baseObjectEntry . GetObject ( ) ) ) {
132 B m Do operations based on the specific object type
133 }
134

135 while ( ! objectQueue . t r y r e l e a s e ( baseObjectEntry ) ) {
136 / / t h e wa i t s t r a t e g y g o e s h e r e
137 }
138 return true ;
139 }
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5 Test setup for the queue performance
evaluation

5.1 Test system specifications

The tests were executed on an Intel Core i7-4710MQ CPU codename Haswell which
implements the Intel 64-bit ISA. The Intel Core i7 had 4 cores with 2 threads per core if
Intel-Hyperthreading Technology was enabled. The cores operated at a base frequency
of 2,5 GHz and had a maximum core speed of 3,5 GHz. The CPU had

• a 6 MB 12-way L3 cache
• 4x 256 KB 8-way L2 cache
• 4x 32 KB 8-way L1 instruction cache and
• 4x 32 KB 8-way L1 data cache

The test machine was a laptop with an integrated 16 GB DDR3 dual channel main
memory that operated at a frequency of 800 MHz. Main-memory benchmarks measured
an average mixed (read/write) performance of ∼ 11, 8 GB/s 1 2 3 4. The test machine
ran Windows 7 SP2 in the maximum performance mode, swapping was deactivated
and Intel-Hyperthreading Technology was enabled. During the test execution the cores
operated at their maximum speed.

The executables were generated with Visual Studio 2015 using the MSVC 19.0 compiler.
The generated code was optimized for speed (compiler option /Ob2) and compiled for a
x64 machine.

1https://www.novabench.com/ Measured main memory bandwidth: 10,3 GB/s
2http://www.sisoftware.co.uk/ Measured main memory bandwidth: 13 GB/s
3http://www.userbenchmark.com/ Measured main memory bandwidth: 12,5 GB/s
4http://www.passmark.com/ Measured main memory bandwidth: 11,3 GB/s
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5 Test setup for the queue performance evaluation

5.2 Test scenarios

5.2.1 Single threaded tests

A single threaded test evaluated the runtime of a specific function f by measuring the
time that was required for executing the function f one million times. The final result
depicts the average of five test runs and based on the five test runs also the standard
deviation from the mean was calculated.

Synchronization primitives

The first single threaded test scenario evaluated the runtime of the synchronization cycle
of several synchronization primitives. A synchronization cycle is the phase of acquiring
exclusive access and releasing it again. For a mutex m a synchronization cycle is a m.lock()
followed by a m.unlock(). For an atomic operation a synchronization cycle is the atomic
operation itself. The following primitives were tested:

• Mutex: A windows mutex that is created by the WIN-API function CreateMutex. A
windows mutex switches to the kernel to execute a lock or unlock operation.
• Critical Section: A critical section is initialized by a call to the WIN-API function

InitializeCriticalSection. A critical section is similar to a mutex, but instead of entering
the kernel the critical section used a CAS operation to acquire exclusive access.
If a thread fails to enter a critical section, the thread calls a wait-function on an
associated semaphore (behavior on multiprocessor systems).
• CMPXCH instruction: The CAS operation supported by the Intel 64-bit ISA with

the LOCK signal set.
• Atomic load with sequential consistency: A sequential consistent atomic load

operation, which is equivalent to a MOV instruction on the Intel Core architecture.
• Atomic load with acquire semantics: An atomic load operation that implements

the acquire semantics on the given processor. This is equivalent to a MOV instruc-
tion on the Intel Core architecture.
• Atomic store with sequential consistency using CMPXCH: A sequentially consis-

tent store operation that uses a CMPXCH operation inside a loop.
• Atomic store with sequential consistency using a memory fence: A sequentially

consistent store operation that uses a mfence instruction to guaranty the sequential
consistency. This is equivalent to a MOV instruction followed by a mfence instruction
that enforces the memory synchronization.
• Atomic store with release semantics: A store operation that implements the release

semantics. This is equivalent to a MOV instruction on the Intel Core architecture.
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Method performance

The second single threaded test scenario evaluated the method runtime (acquire, enqueue,
dequeue and release) of four different queue implementations:

1. CritSec Q: Implements the alternative algorithm (maintains the dynamic buffer
size) explained in section 4.2.5 and uses a single critical section to synchronize the
access to the queue methods. (blocking algorithm)

2. Mixed Q: Implements the alternative algorithm (maintains the dynamic buffer size)
explained in section 4.2.5 and uses a single critical section to synchronize the access
to the acquire and release methods, while a wait-free synchronization for the enqueue
and dequeue methods is implemented. (blocking algorithm)

3. DynSize Q: Implements the alternative algorithm (maintains the dynamic buffer
size) explained in section 4.2.5 and uses atomic operations for the entire synchro-
nization. (lock-free algorithm)

4. NoDynSize Q: Implements the standard algorithm (no dynamic buffer size) ex-
plained in section 4.2 and uses atomic operations for the entire synchronization.
(lock-free algorithm)

5.2.2 Multi threaded tests

A multi threaded test evaluated the synchronization performance of a queue implemen-
tation for different operating points. An operating point is determined by the number
of active producers and consumers, the message size, the queue’s buffer and sequence
array size and the number of messages that have to be consumed. The data throughput
and the data latency were evaluated by measuring the time required for sending a fixed
number of messages in different operating points. The final results depict the average of
five test runs and based on the five test runs also the standard deviation from the mean
was calculated for every operating point.

The multi threaded tests integrated the Intel Performance Counter Monitor framework (Will-
halm, Dementiev, and Fay, 2012) and several WIN-API calls to obtain detailed perfor-
mance informations:

• Core utilization per producer- and per consumer-thread
• Data throughput and data latency per producer- and per consumer-thread
• The following parameters were measured over a full test run and depict the

accumulated average of one operating point. The values were measured per core,
per socket and per system. (The test machine integrates only one processor, thus
the per sockt and per system measurements are identical):

– Instructions per cycle
– Cycles per instruction
– Average CPU frequency
– L3 cache misses
– L3 cache hit ratio
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– Cycles lost due to L3 cache misses
– L2 cache misses
– L2 cache hit ratio
– Cycles lost due to L2 cache misses
– System core C states
– System core C states residency
– Bytes read from memory controller
– Bytes written to memory controller
– and more ...
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6 Results

This chapter reveals the performance results of the queue algorithms presented in
chapter 4. Chapter 5 specifies the properties of the test platform and describes the test
setup.

6.1 Single-threaded test results

The main part of this work is about synchronization. Synchronization is only required, if
more than one thread participates in an algorithm. Nevertheless, the first two figures (6.1
and 6.2) present the results of single-threaded experiments. These experiments determine
the best case performance of the test platform’s capability to execute the synchronization
instructions, because if only one thread is active no additional inter-thread synchroniza-
tion is needed. The data in figure 6.1 shows the required time for a synchronization cycle.
For a blocking primitive a synchronization cycle includes a lock operation followed by a
unlock operation and for a non-blocking primitive a single atomic access is considered
as the synchronization cycle.

The two left most bars are the results obtained from testing the blocking synchronization
primitives. The other bars show the results of the non-blocking primitives. Both, a Mutex
and a Critical Section, are kernel objects. A Mutex always performs its lock and unlock
operations in the kernel, while the Critical Section also implements a lock-free user space
synchronization mechanism and the kernel is only entered to suspend the thread, if the
Critical Section can not be acquired. In the single-threaded experiment the locking must
always succeed and the Critical Section never has to enter the kernel. Hence, the Critical
Section requires less time for synchronization compared to the Mutex.

The performance of the non-blocking primitives heavily depends on the progress guaran-
tee they ensure. In general, a) lock-free primitives are cheaper than wait-free primitives,
b) load operations require less CPU cycles than store operations and c) relaxing the
instructions memory ordering reduces the amount of required CPU cycles. (Sutter,
2012a) (Herlihy and Shavit, 2008). This general view is also confirmed by the measure-
ment results shown in figure 6.1. Of course, the results obtained on other platforms
could be completely different form the results presented here, because the performance
of non-blocking instructions entirely depends on the hardware of the test platform.

On the given test platform the following three operations are equally fast and can be
executed in a single CPU cycle:

69



6 Results

27,76

16,72

5,48

0,29 0,29

5,47

22,54

0,29
0,00

5,00

10,00

15,00

20,00

25,00

30,00

[n
s]

 t
im

e
 r

e
q

u
ir

e
d

 f
o

r 
a 

fu
ll 

sy
n

ch
ro

n
iz

at
io

n
 o

p
e

ra
ti

o
n

Synchronization primitive

Mutex Critical Section CMPXCH atomic_load_seq_cst

atomic_load_acquire atomic_store_seq_cst_cmpxch atomic_store_seq_cst_mfence atomic_store_release

Figure 6.1: Comparisoin of the single-threaded performance of blocking, lock-free and wait-free syn-
chronization primitives. The test setup is described in chapter 5. The values represent the
average latency (no payload) of 5 test executions, where 1 million single-threaded synchroniza-
tions were executed. For all tests the, standard deviation from the mean is negligibly small
(data not shown).

• atomic load seq cst: sequentially consistent atomic load
• atomic load acquire: atomic load with acquire semantics
• atomic store release: atomic store with release semantics

All three operations are implemented using a simple MOV instruction and the memory
ordering completely relies on the test platform’s memory model and its cache coherence
protocol. Thus only a single instruction is sufficient to load or store a value and the
memory ordering semantics is automatically ensured by the hardware. An introduction
about memory ordering and cache coherency protocols can be found in the related
work section (see section 2), but for detailed information please consider your hardware
vendor’s software developer’s manual.

The results in figure 6.1 reveal that store operations with a stronger memory order-
ing require significantly more time for synchronization than the store operations with
release semantics. However, there is also a significant difference between the perfor-
mance of the two sequentially consistent store operations (atomic store seq cst cmpxch
and atomic store seq cst mfence). The difference between these operations results from the
underlying synchronization primitives they use. The green bar shows the performance of
a store operation, which uses a compare-exchange instruction (CMPXCH) inside a loop
to achieve the sequentially consistent memory ordering. This type of implementation
results in a program with a lock-free progress guaranty. The other sequentially consistent
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6.1 Single-threaded test results

store operation utilizes a simple MOV instruction followed by an mfence instruction. The
memory fence (mfence instruction) is responsible for ensuring the sequential consistency
by serializing all preceding load-from-memory and store-to-memory instructions, which
requires significantly more time than the CMPXCH instruction on the test platform.
However, the MOV-mfence implementation results in a program with a wait-free progress
guaranty.
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Figure 6.2: Comparison of the single-threaded performance of blocking, mixed and lock-free queue
implementations.The test setup is described in chapter 5. The values represent the average
latency (no payload) of 5 test executions of 16 million single-threaded method calls with
a requested message size of 50 bytes. For all tests the standard deviation from the mean is
negligibly small (data not shown).
The CritSec Q uses a critical section for data synchronization. The Mixed Q only utilizes a critical
section within the acquire and the release methods, while the other two methods are implemented
wait-free. The DynSize Q and the NoDynSize Q are both implemented fully lock-free. The
DynSize Q additionally maintains the dynamic buffer size value (see section 4.2.5) and must
use a CAS operation in its release method.

The bars in figure 6.2 show the required execution time of each queue method for four
different algorithms. The four implementations use diverse synchronization primitives
and/or algorithms. The NoDynSize Q queue is the only queue which implements the
standard algorithm described in section 4.2, while all other queue implementations
maintain the dynamic buffer size value as explained in section 4.2.5. The CritSec Q queue
uses a critical section to synchronize the queue access. The Mixed Q queue combines
the usage of a critical section and a lock-free approach. The DynSize Q queue and the
NoDynSize Q queue are implemented entirely lock-free. The implementation of the
enqueue and dequeue methods are similar for all four tested queues, except the CritSec Q
queue utilizes a critical section for synchronization, which explains the performance
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differences compared to the other algorithms. The implementations of the acquire and
release methods for the CritSec Q queue and the Mixed Q queue are identical, which
results in an identical execution time. The fast code path of the DynSize Q queue’s
acquire method differs only in a single line from the NoDynSize Q queue’s acquire method,
thus the measured values also reveal almost identical execution times. The DynSize Q
queue algorithm may reset the read position in its acquire method. Hence the DynSize Q
queue must use a CAS operation to update the read position in its release method,
which explains the significant better performance of the NoDynSize Q queue’s release
implementation.

6.2 Multi-threaded test results

This section presents the multi-threaded test results, which show the scalability proper-
ties as well as the message and data transfer rations of the different queue algorithms.
All figures (see figures 6.2 to 6.8) illustrate the performance of the four different queue
implementations (DynSize Q, NoDynSize Q, CritSec Q, Mixed Q) and all figures consist
of two diagrams. The diagram on the left hand side shows the experiment results with
sent payload, while the diagram on the right hand side depicts the queue’s performance
without payload, namely the latency. The diagrams have in common that two variables
are plotted on the x-axis. The bottom x-variable always illustrates the amount of ac-
tive producers and the upper variable on the x-axis is changed from experiment to
experiment.

6.2.1 Influence of the queue parameters

Sequence array size

Figure 6.3 illustrates the impact of the sequence array size. The sequence array size determines
the maximum number of entries that can be simultaneously enqueued. The diagrams in
figure 6.3 have in common that the number of messages per seconds decreases with the
amount of producers, because of several reasons:

• There is only one consumer to process the entries created by multiple producers.
Thus the read performance of the queue is a crucial factor to obtain a good MPSC
performance.
• With the number of producers also the contention on the producer side increases.

The write performance of the queue is the second factor, which heavily influences
the overall efficiency of the data transfer.
• The limited number of available hardware threads further degrades the perfor-

mance of the queue, if the amount of active producers increases. Especially the
variation of the graph between 8 producers and 16 producers outlines the effects of
oversubscription. In the case of oversubscription the graphs of the lock-free queues
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Figure 6.3: Multi-threaded message transfer performance depending on the size of the sequence array.
The test setup is described in chapter 5. The results in the left diagram represent the average
number of messages per second of 5 test runs, where 17 million messages with a payload of 64
bytes were sent per test. The diagram on the right side illustrates the results without payload.
The sequence array size and the number of producers are systematically modified. For all tests
the standard deviation from the mean is negligibly small (data not shown).

(DynSize Q, NoDynSize Q) have the same characteristics, while in the experiments
with less producers, the influence of the sequence array size on the NoDynSize Q
queue’s message latency and message transfer rate was negligible.

An upper bound of the lock-free queues’ message transfer rate is reached for a sufficiently
large sequence array size, and remains constant even if the size of the sequence array is
further increased. The sequence array size has very little influence on the NoDynSize Q,
as long as there are enough hardware resources available, which is a hint towards good
scalability properties. Hence, the NoDynSize Q queue may be better suited for programs
where lots of producers are active.

The single-producer and single-consumer experiment emphasizes that the DynSize Q is
well suited for programs where mainly one producer is active. The DynSize Q queue’s
message transfer rate is significantly better for a sufficiently large sequence array size 1

compared to the transfer rate of the NoDynSize Q queue. For smaller sequence arrays the
NoDynSize Q queue performs better 2 . The phenomenon can be also observed in the
remaining SPSC results presented in this section and is labeled with the marker 1 in the
figures 6.3, 6.4, 6.5 and 6.6.

The above described behavior in the SPSC experiments emerges from the algorithmic
advantages of the DynSize Q queue implementation, which can take effect if there is only
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little contention on the producer side. When the DynSize Q algorithm is executed, the
single producer can immediately reset the read position during the overflow handling.
Thus the producer thread does not have to synchronize with the consumer thread in the
case of an overflow, which is the limiting factor of the NoDynSize Q in the SPSC scenario.
The algorithmic details are described in section 4.2.5.

The influence of the dynamic buffer size value is only visible in the experiments with
sent payload, where the contention on the queue’s memory buffer has obviously a
significant impact on the message transfer rate. The additional time required for writing
and reading the payload data reduces the contention on the queue in general, because
the time interval between the method calls, which execute the data synchronization, is
increased. Of course, the reduction of the contention between producer and consumer
in the SPSC scenario results in a notable speed up, if the DynSize Q algorithm is used.
Comparing the SPSC experiments with and without payload we see that the message
transfer rate for a sufficiently large sequence array with sent payload is about ∼ 20%
higher than the maximum message transfer rate without payload.
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Figure 6.4: Multi-threaded message transfer performance depending on the size of the queue buffer.
The test setup is described in chapter 5. The results in the left diagram represent the average
number of messages per second of 5 test runs, where 17 million messages with a payload of 64
bytes were sent per test. The diagram on the right side illustrates the results without payload.
The queue buffer size and the number of producers are systematically modified. For all tests
the standard deviation from the mean is negligibly small (data not shown).

Surprisingly (see section 6.1), the CritSec Q queue performs equally good or even better
than the Mixed Q queue at most measuring points. This observation is common for
all diagrams in this section and may be the consequence of a lower contention and a
reduced over-subscription. If a thread is not able to acquire exclusive access to an entry,

74



6.2 Multi-threaded test results

the CritSec Q queue suspends this thread. The Mixed Q queue algorithm only suspend
threads within the acquire and release method. Especially the consumer thread is not
suspended when trying to dequeue data. Thus the consumer thread always requires its
full time slice, even if no data is dequeued.

Queue buffer size

The graphs shown in figure 6.4 illustrate the influence of the queue buffer size on the
message transfer performance. The queue buffer size determines the maximum number of
entries that can be simultaneously enqueued depending on the sizes of each entry. Thus
the observable effects are approximately equal compared to those in figure 6.3, where the
sequence array size limits the maximum number of simultaneously enqueued entries. Both
figures show, that an infinite huge buffer (sequence array and memory buffer) would not
result in an infinitely high message transfer rate, because the time required for the data
synchronization overhead is the limiting factor.

The single producer results in figure 6.4 at marker 1 further outline the advantages of the
dynamic buffer size value for small queue memory buffers. Using the DynSize Q algorithm
together with a 1024 byte queue buffer, already yields a higher message transfer rate
than the NoDynSize Q algorithm can achieve with a significantly larger buffer. Again, if
multiple producers are active and the contention on the producer side of the queue is
high, the NoDynSize Q queue performs better.

Number of messages to consume

The graphs in figure 6.5 depict the queue’s message transfer performance in different
operating points by varying the number of messages the consumer must successfully
read.

• In the first operating point, where the queue is mostly empty and only a couple
of messages must be consumed, the producers are able to write all their messages
into the queue, which can then be instantaneously consumed. So neither the
producers, nor the consumer have to wait. This results in transfer rates up to
37, 7 million messages per second including payload, or in up to 44, 2 million
messages per second without payload. Of course, if the number of producers is
increased, the contention on the producer side also increases, which yields to failing
CAS operations in the acquire method and degrades the performance. The single-
threaded experiments, shown in figure 6.2, predict a message transfer performance
without payload of approximately 1/(20, 06ns + 5, 63ns) = 38, 92mega Msg/s for
the NoDynSize Q, which is in accordance with the results presented in figure 6.5.
• The second operating point is reached, if about 4, 2 million messages have to be

consumed. At this point the graph starts to flatten and remains constant, even if
the number of messages is further increases. In this operating point the queue is
mainly full, which results in high contention on the producer side. The message
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Figure 6.5: Multi-threaded message transfer performance depending on the amount of send messages.
The test setup is described in chapter 5. The results in the left diagram represent the average
number of messages per second of 5 test runs, with a payload of 64 bytes per message and
a varying number of transfered messages per test. The diagram on the right side illustrates
the results without payload. The number of send messages and the number of producers are
systematically modified. For all tests the standard deviation from the mean is negligibly small
(data not shown).

transfer performance is limited by the capability of the consumer to read the entries.
This operating point also determines the minimum number of required messages
to obtain reproducible results in the other experiments.

6.2.2 The point of maximum performance

So far, the experiments determined the upper bounds of the message transfer rate in
dependence of the queue buffer size and the sequence array size. Also the number of required
messages for obtaining reproducible results was evaluated. In the next experimental setup
the queue buffer size and the sequence array size are chosen to not limit the maximum per-
formance of the algorithms. This test setup (sequence array size = queue bu f f er size =
67.108.864) will reveal the maximum achievable messages transfer performance of the
developed queue algorithms in dependence of the message size.
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Figure 6.6: Multi-threaded message transfer performance depending on the producers’ message size.
The test setup is described in chapter 5. The results in the left diagram represent the average
number of messages per second of 5 test runs, where 17 million messages with a payload of 64
bytes were sent per test. The diagram on the right side illustrates the results without payload.
The message size (the payload) and the number of producers are systematically modified. For
all tests the standard deviation from the mean is negligibly small (data not shown).

Message size

The figures 6.6, 6.7 and 6.8 present the performance values obtained by altering the
message size. In figure 6.6 we can see, that the maximum amount of messages per second
can be transfered by the DynSize Q queue, if the message size is 64 bytes. 64 bytes is also
the size of a cache line on the test platform.

The NoDynSize Q queue reaches its maximum message transfer rate at a message size
of 128 bytes. If the message size of 128 bytes is exceeded, the L3 cache hit ratio starts
to dramatically decrease, which is depicted in figure 6.7. The 128 bytes boarder results
from the adjacent cache-line prefetch mechanism (Hegde, 2008) of the test platform. The
mechanism automatically fetches two adjacent 64-byte cache lines, regardless of whether
the additional cache line has been requested or not. This property is exploited by the
producer and the consumer, because the queue memory buffer is continuously fetched
into the L3 cache. Especially the consumer profits from the adjacent cache-line prefetch
mechanism, because the linear queue buffer and the FIFO ordering, guaranty that the
data from multiple producers is linearized and thus can be efficiently streamed during
reading. However, the only exceptional case, where the L3 cache hit ratio increases for
messages larger than 128 bytes, is the cache hit ratio measured in the SPSC scenario,
when testing the NoDynSize Q queue, the cache performance increases again and only
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starts to degrade at a message size of 1024 bytes.
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Figure 6.7: L3 cache hit ratio depending on the producers’ message size. The test setup is the same as
in figure 6.6. The results in the left diagram represent the average L3 cache hit ratio of 5 test
runs, where 17 million messages with a variable payload were sent per test. The diagram on
the right hand side illustrates the results without payload. The message size (the payload) and
the number of producers are systematically modified. For all tests the standard deviation from
the mean is negligibly small (data not shown).

The latency graph shows that the increase of the message size only influences the
message transfer rate if more than eight producers are active and the performance
suffers due to the over subscription and the high contention on the producer side. This
observation implies that the performance of the queue is not limited by the queue’s
buffering capability and the queue size and sequence array size were correctly chosen
for this experiment.

However, in the experiments with sent payload the message transfer rate decreases
already in the SPSC test case. Although the message transfer rate starts to decrease at
a message size larger than 128 bytes, the data throughput still linearly increases until
an upper bound is reached. The upper bound on the test platform is a throughput
of approximately 9, 1GB/s, which is achieved by the NoDynSize Q algorithm in the
SPSC scenario with a message size of 1024 bytes. Though the message transfer rate in
this operating point is only about 8, 87mega Msg/s, which is ∼ 42, 5% less than the
NoDynSize Q queue’s maximum transfer rate of 15, 42mega Msg/s.

The data latency (throughput without payload) is not influenced by the message size
and increases linearly, even for the blocking queue algorithms and also in the case of
oversubscription (see figure 6.8). This observations confirm that not the queue buffer
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size, but the main memory bandwidth and the data synchronization overhead limits the
maximum message transfer rate and the maximum throughput of the queue. Hence, an
infinitely large queue buffer would not result in infinitely high data throughput.
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Figure 6.8: Throughput depending on the producers’ message size (logarithmic scale). The test setup is
equal to the setup in figure 6.6. The results in the left diagram represent the average throughput
of 5 test runs, where 17 million messages with a variable payload were sent per test. The
diagram on the right hand side illustrates the results without payload. Both diagrams use a
logarithmic scale on the y-axis. The message size (the payload) and the number of producers
are systematically modified. For all tests the standard deviation from the mean is negligibly
small (data not shown).
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The test automation and the measurement tasks in the field of automotive testing are
challenging problems. The high performance demands on the hardware devices and the
software tools are driven forward by the technological change and the evolutions in the
automotive industry. To be well-equipped for testing the forthcoming vehicle generations,
we developed and evaluated a task-parallel and data flow oriented measurement and
automation software. The evolved software design scales well with the proceeding
increase of the CPU core count and the applied implementation techniques best exploit
the features of modern processor architectures. We have yet also developed an intrusive
bounded lock-free causal FIFO queue algorithm to efficiently digest the massive amount
of data that is generated during vehicle-testing. The queue is universally applicable and
is especially designed to increases the parallel portion of data flow oriented software
applications.

7.1 The software design

The design decisions

The class diagram in figure 3.4 illustrates the final design of the software system. Here
we discuss the design decisions we took based on the created domain views.

The data flow diagram (figure 3.3) outlined that the fast data traffic on the runtime layer
must be decoupled from the slow IO-operations of the persistence layer. Otherwise the
data throughput on the runtime layer would be restricted by waiting for the completion
of file or database operations. The decoupling of the fast and slow data traffic was
addressed by the introduction of queues.

The data flow diagram (figure 3.3) and the architectural stack (figure 3.2) revealed that
software drivers are needed to establish the connection to the hardware devices. Each
driver then encapsulates the protocols, the hardware specific timing behavior and the
eventually slow communication channel to the hardware device. Such a design facilitates
a homogeneous data flow between all runtime layer components and thus reduces the
complexity of the software design and the implementation. Again, a queue is required
to decouple the IO-operations.

The domain/component model (figure 3.1) disclosed the time dependency between the test
bench time and the runtime system time and that a time-synchronization is necessary. This
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observation also dictates ordering constraints on the data processing steps, because the
control signals and the measurement data processing have to be accurately coordinated
to obtain consistent results and a stable system.

In the final software design (figure 3.4) various threads (script/driver/user-interface
thread) frequently issue variable or configuration update requests. If a variable is refer-
enced for example by calculations or controllers, then a variable update generally triggers
several other variable updates. In order to preserve a consistent system state it is not
allowed to access the affected variables until the update operation is completed. The
required amount of time to complete the update operation depends on the complex-
ity of its relations and may be significant. The complexity is further increased by the
coordination of the time dependences between the variable updates.

Locking the whole variable pool during the update process was not an option, because
all threads that want to read from the pool would be blocked or suspended, even if the
required variable is not affected by the update in progress. Thus a lot of processing time
would be waisted due to task switching or busy-waiting.

The triple buffered variable pool provides the possibility to execute variable updates
without blocking the reader threads. The data processing task executes the update steps
and modifies the two shadow pools. While the update is in progress, the reader threads
have transactional access to the public variable pool. A completed update operation is
made visible by the wait-free modification of the public variable pool index.

The data processing task is the only thread that is allowed to change variable values or the
system configuration. All other threads have to order modification requests. The requests
are buffered again by applying a queue. This design simplifies the complexity of an
update operation and further easies the software development, because

• the data processing task knows the complete update history. Thus no additional data
synchronization or complex history management is required to correctly organize
the update steps.
• the data processing task is the only thread that can directly modify the variable pool.

Hence, no complex locking strategy is required and the wait-free update operation
of the public variable pool index always succeeds. If multiple threads could modify
the variable pool at least a lock-free strategy would be required. The lock-free index
update would be very likely to fail for complex and long lasting update operations.
This is expected to drastically increase the system work load or might even result
in starvation.
• the data processing task triggers all system state changes, which easies the software

debugging and software maintenance.

The linearization of all update requests via the data processing task yields a lot of benefits.
However, the linearization is also identified as a potential bottleneck of the presented
design. If the execution of update requests determines the main sequential portion of the
data flow on the runtime layer, then this might also determine the maximum performance
of the entire application. At the point of writing we believe that the maximum perfor-
mance will be determined by the speed of the IO operations. However, we also believe
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to our best knowledge that the presented system design, with its entirely lock-free data
and access synchronization, will be sufficiently fast to cope with todays and future data
traffic in automotive testing and test automation (∼ 800 kSamples

s , for further information
see section 3.1.3). Nevertheless, it might be that the sample rate and/or the sample size
would drastically increase in the future and hence, it may turn out that the data processing
task becomes a real bottleneck.

How could that bottleneck be eliminated? To address the problem we have to increase
the parallel portion of the update operation by either parallelizing a single update operation
or parallelizing multiple update operations. A single update would be hard to parallelize,
because the update steps have a strict sequential order that heavily depends on the
user defined configuration. Restricting the configuration flexibility to easy the update
parallelization is not an option. If the parallelization of a single update operation is
not possible, we have to execute multiple updates in parallel. However, previously we
linearized the updates to reduce the synchronization overhead. The linearization of the
update requests, with its associated benefits, is absolutely worthwhile and should not be
sacrificed. Instead, we can use the linear stream of requests to implement speculative
updating. Speculative updating sounds somewhat strange, but it is very likely that
subsequent update requests do not interfere. Thus subsequent update requests can be
processed in parallel and are made visible in sequential order again. Before an update is
made visible, it must be checked if the update interferes with the previous update. In the
case of interference a reprocessing of the request is necessary.

The synchronization of the parallel updates could be established by splitting the data
processing task into a three staged software pipeline. The first stage linearizes and dis-
patches the update requests to N data processing threads of the second stage. The data
processing threads speculatively execute the update request on their shadow pools and
forward the result to the third and last stage. The last stage joins the processing results
and runs the interference check. The N data processing threads parallelize the sequential
portion that we have previously identified as the main bottleneck.

The number of threads N also scales well with the increasing core count of future
processor architectures. Unfortunately each additional thread requires its own shadow
variable pool, which might become a scalability issue even in 64 bit applications and
machines with a huge main memory. Moreover, the pipeline approach is only suitable,
if enough hardware threads are available, so that all other software threads do not lack
resources. At the point of writing four to eight core processor, with two hardware threads
per core, were typically installed. Waisting cores for speculative updating seemed to be a
bad idea at that point.

7.2 The impact of the queue

During the evolution of the software design the efficient buffering and transfer of data
between threads turned out the be a crucial performance factor. For this purpose the

83



7 Conclusion and discussion

intrusive bounded lock-free causal FIFO queue was developed. Here we want to discuss
the impact of that queue on the final application design.

The queue interface is fine grained. Thus one more method call per write/read operation
is required compared to the common push/pop interface. So why did we choose a fine
grained interface? The separation of requesting and releasing the exclusive queue access
into two method calls allows the caller to directly access the queue’s buffer memory
between these calls. Hence, the data no longer has to be copied to and from the queue’s
buffer memory, instead the data can be instantaneously accessed. This drastically reduces
the work load of the whole application. The copy operation is just overhead and would
never contribute to the intended target of the application. Additionally, copying the
data into and out of the buffer is not simply unnecessary work, but it also requires
memory and cache synchronization. In the given application the data traffic and hence
the contention on the main memory and the caches is high anyway. Thus eliminating the
copy operations reduces the contention on the main memory and the caches.

The causal FIFO ordering guaranty of the queue algorithm is required by the data
processing task to ensure a fair treatment of all requests and to reduce the synchronization
overhead due to out-of-order (with respect to time stamps) update requests. The FIFO
ordering also enables the measurement task to write multiple consecutive measurement
lines within a single file access by using the bulk operations. The asynchronous file
implementation (see listing 4.11) exemplifies how the queue can increase the parallel
portion of the program by delegating the expensive string formating to the data sources
(the writers/producers). The data sink (the asynchronous file writer task) only has to
copy the already formatted data from the queue buffer into the file. The examples in
section 4.3 further showed that the queue is universally applicable for the side-by-side
transfer of binary data and objects. The transfer of objects facilitates a homogeneous and
object oriented message transfer between the software components, while the transfer
of binary data allows the parallel creation of binary content (formated measurement
strings) that can be efficiently transfered to files.

7.2.1 Evaluation of the queue algorithms

During the presentation of the queue test results in chapter 6 some phenomenas and
observations were already explained and discussed. Here we outline the correlation
between the test results.

The single threaded experiments in figure 6.2 showed that the implementation of the
NoDynSize Q algorithm is the fastest one among the four tested algorithms, if the
execution time of all four methods is summed up. The multi-threaded experiments then
confirmed that the NoDynSize Q queue scales best with the increasing number of active
producer. Additionally the consumer interface methods of the NoDynSize Q queue are
wait-free and the fastest among the four algorithms. This minimizes the synchronization
workload, which is especially important for the data processing task that already has
a high default workload. The maximum data throughput was also obtained by the
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NoDynSize Q queue. For these reasons we decided to use the NoDynSize Q queue in the
future implementation of the presented software design.

The DynSize Q queue on the other hand also scales well with the increasing number of
active producer. However, the tests revealed that the DynSize Q queue’s strengths are
situated in scenarios with low contention and/or small queue buffers. All experiments
showed that the DynSize Q queue performs best, if only a single producer is active. In
such cases the DynSize Q queue outperforms the NoDynSize Q queue.

In the multiple-producer experiments the NoDynSize Q queue achieves its peak message
transfer rate already with small queue buffers, while the DynSize Q queue instead
requires significantly larger buffers (see figure 6.3). The memory requirements of the
DynSize Q queue might become a scalability issue if a lot of queues are required.

 1x producer / 1x consumer 32x producers / 1x consumer 

  64 Byte/Msg 128 Byte/Msg 1024 Byte/Msg 2048 Byte/Msg 

  Msg/s Byte/s Msg/s Byte/s Msg/s Byte/s Msg/s Byte/s 

DynSize_Q 19,9 mega 1,27 giga 18,1 mega 2,32 giga 7,26 mega 7,43 giga 1,64 mega 3,35 giga 

NoDynSize_Q 13,4 mega 0,86 giga 15,4 mega 1,97 giga 8,87 mega 9,08 giga 2,08 mega 4,26 giga 

Figure 7.1: Extract of operating points of the lock-free queues. The table depicts interesting operating
points of the two lock-free queue algorithms extracted from the results presented in section 6.2.2.
An operating point is determined by the number of active producers and consumers, the
message size, the queue’s buffer and sequence array size, and the number of messages that
have to be consumed. The last three parameters are identical for all operating points in the
table. (Msg/s:Messages per second, Byte/s:Byte per second, Byte/Msg: Byte per message)

The table in figure 7.1 summarizes the main differences between the lock-free queue
implementations in terms of numbers. If only one producer is active the DynSize Q
generally performs better than the NoDynSize Q. Nevertheless, the maximum data
throughput of ∼ 9, 08 GB/s was achieved by the NoDynSize Q in the single-producer
scenario. The L3 cache hit ratio in this operating point is only 67, 76%. The graph in
figure 6.7 depicts that the cache hit ratio decreases with the increase of the message
size. Thus more data has to be transfered between the L3 cache and the random access
memory (RAM). This data transfer bounds the maximum achievable throughput on the
test platform in the given operating point. The average main memory mixed (read and
write) performance of the test machine is ∼ 11, 8 GB/s, which was evaluated out of four
different main memory benchmarks (see section 5 for details). Molka et. al. obtained a
main memory bandwidth of 11,7 GB/s on their test machine with an Intel Sandy Bridge
processor in their survey ”Main Memory and Cache Performance of Intel Sandy Bridge and
AMD Bulldozer” (Molka, Hackenberg, and Schoene, 2014). Thus the measured bandwidth
results on the given test machine are trustworthy. The main memory benchmarks, of
course, simply stream data between the CPU and the RAM. The queue also synchronizes
the data access and guaranties a stronger memory ordering between the streamed
data. Thus the maximum data throughput of the queue is lower than the machines
maximum average throughput. However, with a data throughput of ∼ 9, 08 GB/s the
queue achieves results near to the platform’s maximum performance. Even in the case of
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heavy oversubscription (32x producers / 1x consumer) a data throughput of 4, 26 GB/s
was achieved.

7.3 Summary and future work

To sum up, we have developed an entirely lock-free task parallel and data flow oriented
measurement and automation software, which uses lock-free bounded FIFO queues for
the data and task synchronization. The developed queue algorithm increases the parallel
program portion by minimizing the heap contention and the copy overhead during the
data transfer. The queue was especially designed to reduce the cache and main memory
contention, which is confirmed by the measurement results in chapter 6. The results
show that the queue algorithm allows data throughput ratios close to the test platform’s
maximum main memory bandwidth. Additionally the queue facilitates intra-process as
well as inter-process communication, even between 32-bit and 64-bit processes.

We also identified a potential scalability bottleneck in the system design and suggested
speculative updating as a possible solution. However, the development of an efficient
update interference recognition algorithm is relinquished to future work. The invented
queue algorithm may also be improved by utilizing processors that support hardware
transactional memory. Furthermore, the presented lock-free system design may be
advanced to a wait-free system, which then can be reliably used in applications with
real-time requirements.
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