
Mario Rohrhofer, BSc MSc

Dynamic Simulation of a Domestic
Refrigeration Appliance

DOCTORAL THESIS

in fulfillment of the requirements for the academic degree

Doktor der technischen Wissenschaften

submitted to

Graz University of Technology

First Reviewer and Supervisor

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Sanz
Institute of Thermal Turbomachinery and Machine Dynamics,

Graz University of Technology

Second Reviewer

Ao.Univ.-Prof. Mag.rer.nat. Dr.techn. Wolfgang Ring
Institute for Mathematics and Scientific Computing,

University of Graz

Graz, March 2017

Contents

Affidavit iii

Acknowledgement v

Abstract vii

Kurzfassung ix

List of Figures xi

List of Tables xv

List of Abbreviations xvii

List of Notations xix

I Introduction 1
1 Refrigeration Cycle in Domestic Appliances . 1
2 Computer-aided Simulation . 3
3 The ECO-COOL Research Project . 4
4 IPSEpro . 7
5 Objectives and Contents of this Thesis . 8

II Solving Differential-Algebraic Equations 11
1 Differential-Algebraic Equations . 11

1.1 Solvability and the Index . 12
1.2 Numerical Methods . 16

2 The Initialization System . 20
2.1 Consistent Initialization . 21
2.2 Block Decomposition . 23

2.2.1 Maximal Transversal Algorithm . 24
2.2.2 Block Triangular Algorithm . 24

3 Regularization of the Initialization System . 25
3.1 Echelon Analysis . 26

3.1.1 Structurally settable Variables . 27
3.1.2 Numerically settable Variables . 28
3.1.3 Further Considerations . 31

3.2 Adjoint Echelon Analysis . 33
3.2.1 Structurally removable Equations . 34
3.2.2 Numerically removable Equations . 35
3.2.3 Further Considerations . 35

3.3 A priori Model Analysis . 36
4 Improvements in DASSL . 39

4.1 Block Decomposition . 40
4.2 Integration Termination Criteria . 41

III Modelling 45
1 The Domestic Refrigeration Appliance . 45
2 Modules of IPSEpro . 47

i

Contents

3 Model Structure in IPSEpro . 48
4 Globals . 50
5 Connections . 51

5.1 Stream . 51
5.2 Stream_H . 52
5.3 HeatFlux . 52

6 Units . 53
6.1 Heat Exchangers . 53

6.1.1 Single-phase . 56
6.1.2 Two-phase . 57

6.2 Accumulator . 59
6.3 Compressor . 60

6.3.1 Shell . 62
6.3.2 Compression . 63
6.3.3 Oil Sump . 64

6.4 Capillary . 66
6.5 Temperature Sensor . 68
6.6 Integral Control . 69
6.7 Compartment, Wall and Air Pad . 70
6.8 Geometry . 71

7 Dynamic Link Library: HTX.dll . 71
7.1 The Interface . 71
7.2 Class Hierarchy . 72
7.3 Long-living Objects . 75

8 Numerical Issues . 76
8.1 Reasons for the Rejection of an Integration Step 76
8.2 Functional Discontinuities & Non-Differentiabilities 77
8.3 Limitation of the two-phase Heat Transfer Coefficient 79
8.4 Spatial Discretization . 80

9 Flow Sheet Model in PSE . 81
9.1 Setting up a Flow Sheet . 82
9.2 Refrigeration Appliance Model . 85

IV Dynamic Validation 87
1 Nonlinear Regression . 87

1.1 Steady-State Stage . 89
1.1.1 The Gauß-Newton Method . 89
1.1.2 Global Minima . 91
1.1.3 Fitted Parameters and Results . 92

1.2 Dynamic Stage . 94
2 Comparison with the VBA model . 95

V Dynamic Simulation Results with IPSEpro 101
1 Refrigeration Appliance Model . 101
2 Optimal Number of Revolutions of the Compressor . 120

VI Conclusion and Outlook 125

Bibliography 129

ii

Affidavit
Eidesstattliche Erklärung

I declare that I have authored this thesis independently, that I have not used other than the declared
sources/resources, and that I have explicitly indicated all material which has been quoted either liter-
ally or by content from the sources used. The text document uploaded to TUGRAZonline is identical
to the present doctoral thesis.

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die
angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich
entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdoku-
ment ist mit der vorliegenden Dissertation identisch.

Graz, March 20, 2017 Mario Rohrhofer

iii

iv

Acknowledgement

I would like to thank you for reading this thesis. This means that the hard work was not in vain. I
hope that the explanations are written clear enough so that you can benefit.

Raimund Almbauer for the scientific talks and teaching me thermodynamics. Furthermore, for creating
a pleasant environment for research and letting us freely elaborate the topics of the research programs
which improved my autonomy a lot.

Erhard Perz who made me become a much better programmer, encouraged me to develop the Echelon
Analysis and always was there to help me whenever I got stuck.

My supervisor Wolfgang Sanz for letting me freely carry out research and giving me advice during the
writing process such that the quality of this thesis surely increased.

Wolfgang Ring for improving my writing and teaching me a lot about mathematics. This not only
includes theorems and proofs but also how to approach problems. Furthermore, for co-supervising this
thesis and verifying that the mathematical deductions are correct.

My colleagues from the research group "thermodynamics" for the advice and whiteboard sessions
whenever things were unclear and for all good moments we had.

My family and friends for the unrestricted support all along the way. Especially, I would like to thank
my mother for all the energy and work she invested into her sons.

And finally, my girlfriend Conny who helped me realizing my goals - not only in research.

This thesis was written as part of the ECO-COOL project. This research project was financed by
the FFG (Österreichische Forschungsförderungsgesellschaft), SFG (Steirische Wirtschaftsförderung),
KWF (Kärntner Wirtschaftsförderungsfonds) and Standortagentur Tirol. Furthermore I would like
to thank the partners in industry Secop Austria GmbH, Liebherr-Hausgeräte Lienz GmbH as well as
SimTech GmbH.

v

vi

Abstract

In practice, domestic refrigeration appliances are investigated and optimized with respect to energy
efficiency performing expensive and time consuming experiments in the laboratory. In order to shorten
this process and reduce the costs for experiments, a simulation tool can be deployed. Therein, the setup
of the model or values of parameters can be changed more easily. Therefore, in the ECO-COOL research
project at the Graz University of Technology, dynamic mathematical models of domestic refrigeration
appliances were developed, implemented, dynamically validated and investigated. A deeper insight into
the considered appliances was gained and parameter studies showed potentials to increase the energy
efficiency. However, the downside of this research code, in which the appliance model is coupled with
the numerical solver and only given on a source code level, is the difficult operability for people who
did not participate in the model and code development process.

To obtain a sustainable simulation tool applicable also for manufacturers, the models are trans-
ferred into the commercial software IPSEpro from SimTech GmbH. These models form a system
of Differential-Algebraic Equations (DAEs). In this thesis, established numerical methods for solving
DAEs are given and the problems of consistent initialization and regularization of the initialization
system are discussed. Further, the component and flow sheet models implemented in IPSEpro are
presented in detail. For the dynamic model validation, a semi-automatized parameter fitting proce-
dure is applied and the appliance model is compared with dynamic measurements and the results from
the original research code. Finally, a detailed insight into the simulation results of IPSEpro is given
and a new parameter study, which investigates the effect of the chosen number of revolutions of the
compressor on the energy consumption, is presented.

vii

viii

Kurzfassung

In der Praxis werden Haushaltskühlgeräte mittels teuren und zeitaufwendigen Experimenten unter-
sucht, um in Hinblick auf ihre Energieeffizienz optimiert zu werden. Um diesen Prozess zu verkürzen
und die Kosten für Experimente zu reduzieren, können stattdessen Simulationswerkzeuge verwendet
werden. Darin lassen sich der Modellaufbau und Werte für Parameter leichter verändern. Daher
wurden im Forschungsprojekt ECO-COOL an der Technischen Universität Graz dynamische mathe-
matische Modelle von Haushaltskühlgeräten entwickelt, implementiert, dynamisch validiert und unter-
sucht. Ein tieferer Einblick in die betrachteten Geräte konnte gewonnen werden und Parameterstudien
zeigten Potentiale, um die Energieeffizienz zu steigern. Jedoch liegt ein Nachteil dieses universitären
Forschungscodes, in dem die Gerätemodelle mit dem numerischen Löser gekoppelt und nur im Quell-
code gegeben sind, in der schwierigen Bedienbarkeit für Personen, die nicht in die Modell- und Code-
entwicklung eingebunden waren.

Um ein nachhaltiges Simulationswerkzeug, das auch von Geräteherstellern verwendet werden kann, zu
schaffen, werden die Modelle in die kommerzielle Software IPSEpro von SimTech GmbH portiert. Die
Modelle bilden dabei ein System von differential-algebraischen Gleichungen. In dieser Arbeit werden
etablierte numerische Methoden zum Lösen solcher Systeme vorgestellt und die Probleme von konsis-
tenter Initialisierung und der Regularisierung des Initialisierungssystems behandelt. Weiters werden die
Komponenten- und Fließbildmodelle, wie sie in IPSEpro aufgebaut sind, detailiert präsentiert. Für die
dynamische Validierung wurde eine semiautomatische Parameteranpassung gewählt und das Geräte-
modell wird mit dynamische Messdaten und Resultaten des ursprünglichen Forschungscodes verglichen.
Schlussendlich wird ein detailierter Einblick in die Simulationsresultate von IPSEpro gegeben und eine
neue Parameterstudie, die den Einfluss der gewählten Kompressordrehzahl auf den Energieverbrauch
untersucht, präsentiert.

ix

x

List of Figures

I.1 Schematic illustration of the refrigeration cycle. 2

I.2 Two-phase flow patterns. 5

I.3 A two-phase flow pattern map. 5

I.4 Schematic of the VBA cycle simulation tool. 6

II.1 Flow sheet of a Splitter-Mixer system . 29

III.1 Setup of a domestic refrigeration appliance. 46

III.2 Screenshot of the module MDK. 47

III.3 Screenshot of the module PSE. 48

III.4 Component hierarchy in IPSEpro. 49

III.5 Simple model in IPSEpro. 49

III.6 Selection of Unit icons. 54

III.7 Flow sheet arrangement of the heat exchangers . 55

III.8 Flow sheet arrangement of the accumulator . 59

III.9 Schematic of a compressor . 61

III.10 Flow sheet arrangement of the compressor components 61

III.11 Density at Shell and Compressor inlet over four on-off-cycles. 63

III.12 Capillary design. 66

III.13 Flow sheet arrangement of the capillary . 66

III.14 Flow sheet arrangement of the TemperatureSensor-Unit 68

III.15 Flow sheet arrangement of the I_Control-Unit . 69

III.16 Schematic flow sheet arrangement of the Compartment and Wall Units. 70

III.17 Excerpt of the class hierarchy in the HTX.dll . 73

III.18 Density of Isobutane (R600a) for various pressures from 1 bar to 4 bar. 78

xi

LIST OF FIGURES

III.19 k/αo over inner HTC αi for various αo . 79

III.20 HTC and heat flux over Condenser-Units . 80

III.21 Enthalpy and pressure at condenser outlet over number of finite volumes. 81

III.22 Flow sheet model of the refrigeration appliance. 84

III.23 Relative deviation of the correct filling quantity of refrigerant. 86

III.24 Step size selected by DASSL during one periodic on-off-cycle. 86

IV.1 Temperature of the condenser pipe wall and refrigerant and HTC over Units. 93

IV.2 Steady-state Ts-diagram. 93

IV.3 Values calculated in IPSEpro with the Gauß-Newton and manual fitted parameters
and measured with Tamb = 25 ◦C. 96

IV.4 Values calculated in IPSEpro and VBA and measured with Tamb = 25 ◦C. 99

IV.5 Values calculated in IPSEpro and VBA and measured with Tamb = 43 ◦C. 100

V.1 Compartment Air and Sensor Temperature. 101

V.2 Stored Mass. 102

V.3 Mass flows. 102

V.4 Heat Transfers. 104

V.5 Ts-diagrams for one on-off-cycle. Part 1. 106

V.6 Ts-diagrams for one on-off-cycle. Part 2. 107

V.7 Values for various ambient temperatures. 108

V.8 Mass flow ṁfeedS at the inlet of each Condenser-Unit and through the capillary. . . . 109

V.9 Pressure p in each Condenser-Unit. 110

V.10 Pressure drop ∆p in each Condenser-Unit. 110

V.11 Temperature t in each Condenser-Unit. 111

V.12 Pipe temperature tp in each Condenser-Unit. 111

V.13 Heat transfer coefficient α in each Condenser-Unit. 111

V.14 Specific enthalpy h in each Condenser-Unit. 112

xii

V.15 Specific inner energy u in each Condenser-Unit. 112

V.16 Heat flux Q̇ in each Condenser-Unit. 112

V.17 Vapor quality x in each Condenser-Unit. 113

V.18 Flow quality ẋ in each Condenser-Unit. 113

V.19 Vapor void fraction ε in each Condenser-Unit. 114

V.20 Density ρ in each Condenser-Unit. 114

V.21 Mass m in each Condenser-Unit. 114

V.22 Mass flow ṁfeedS at the inlet of each Evaporator-Unit. 115

V.23 Pressure p in each Evaporator-Unit. 115

V.24 Pressure drop ∆p in each Evaporator-Unit. 116

V.25 Temperature t in each Evaporator-Unit. 116

V.26 Pipe temperature tp in each Evaporator-Unit. 117

V.27 Heat transfer coefficient α in each Evaporator-Unit. 117

V.28 Specific enthalpy h in each Evaporator-Unit. 117

V.29 Specific inner energy u in each Evaporator-Unit. 118

V.30 Heat flux Q̇ in each Evaporator-Unit. 118

V.31 Vapor quality x in each Evaporator-Unit. 119

V.32 Flow quality ẋ in each Evaporator-Unit. 119

V.33 Vapor void fraction ε in each Evaporator-Unit. 119

V.34 Density ρ in each Evaporator-Unit. 120

V.35 Mass m in each Evaporator-Unit. 120

V.36 Results for the refrigeration appliance model using various NOR. 121

V.37 Compartment temperature for various NOR. 123

V.38 Sensor temperature for various NOR. 123

xiii

xiv

List of Tables

III.1 Key data of the refrigeration appliance. 45

III.2 Excerpt of the most important external function names and corresponding classes. . . 73

IV.1 Measuring data. 88

IV.2 Uncertain parameters. 88

IV.3 Stationary fitted parameters by the Gauß-Newton method, measurement and calcu-
lated values . 92

IV.4 Gauß-Newton and manually fitted parameters and respective steady-state values . . . 94

IV.5 Steady-state measured and calculated values for ambient temperatures 25 ◦C and 43 ◦C. 98

IV.6 Compressor operation times for ambient temperatures 25 ◦C and 43 ◦C. 98

xv

xvi

List of Abbreviations

ANN Artificial Neuronal Network

COP Coefficient of Performance

DAE Differential-Algebraic Equation

DASSL Differential Algebraic System Solver

DLL Dynamic Link Library

BDF Backward Differentiation Formula

FPD Frictional Pressure Drop

HTC Heat Transfer Coefficient

IPSEpro Integrated Process Simulation Environment

IVP Initial Value Problem

MDK Model Development Kit

MDL Model Description Language

ODE Ordinary Differential Equation

NOR Number of Revolutions

PDE Partial Differential Equation

PSE Process Simulation Environment

VBA Visual Basic for Applications

xvii

xviii

List of Notations

Roman Letters

A Area [m2]

A Linear mapping

cp Isobaric heat capacity [J/(kg K)]

D Diagonal matrix

d Diameter [m]

dH Hydraulic diameter [m]

e Euler number

F System of functions

f Function

G Mass flow per area [kg/(m2 s)]

G System of functions

g Acceleration due to gravity [m/s2]

g Function

H Enthalpy [J]

h Specific enthalpy [J/kg]

h Step size

I Identity

J Jacobian matrix

k Thermal transmittance [W/(m2 K)]

l Length [m]

M Matrix corresponding to an elementary
row transformation

M Molar mass [kg/mol]

m Integer

m Mass [kg]

ṁ Mass flow [kg/s]

n Integer

n Number of revolutions [1/s]

Nu Nusselt number [−]

P Permutation matrix

P Power [W]

p Pressure [Pa]

Pr Prandtl number [−]

Q Permutation matrix

Q̇ Heat flux [W]

Q̇0 Cooling capacity [W]

r Radius [m]

rH Half the hydraulic diameter [m]

r Residual

R Vector of residuals

Re Reynolds number [−]

S Entropy [J/K]

S Sensitivity matrix

s Specific entropy [J/(kg K)]

T Temperature [K]

t Time [s]

U Inner energy [J]

u Specific inner energy [J/kg]

V Volume [m3]

v Velocity [m/s]

V̇ Volume flow [m3/s]

W Matrix of weights

x Scalar or vector

x Vapor quality [−]

ẋ Flow quality [−]

y Scalar or vector

z Scalar or vector

xix

List of Notations

Greek Letters

α Heat transfer coefficient [W/(m2 K)]

∆p Pressure drop [Pa]

η Dynamic viscosity [N s/m2]

η Efficiency [−]

λ Thermal conductivity [W/(m K)]

ρ Density [kg/m3]

σ Surface tension [N/m]

Miscellaneous Symbols

♦ End of an example

∂f
∂x Partial derivative of f wrt. x

C Complex numbers

N Natural numbers

R Real numbers

R+ Positiv real numbers

Rn Real, n-dimensional vector space

Rn×m Space of n × m matrices with real coeffi-
cients

A Set of active variables

B Set of visited variables

Ck Hölder space of k times continuously
differentiable functions

E Set of indices (equations)

F Feasible set

H Set of hidden constraints

I Set of inactive variables

L Set of indices

N Set of not explored indices
(variables/equations)

O Landau symbol

R Set of removable settings

Rs Set of structurally removable settings

S Set of settable variables

Ss Set of structurally settable variables

T Set of calculable variables

V Set of indices (variables)

∇ Gradient

∇2 Hessian matrix

‖ · ‖ Norm

‖ · ‖2 Euclidian norm

Subscripts

drain At outlet

feed At inlet

l At the lower two-phase boundary

sat At saturation

v At the upper two-phase boundary

x Partial derivative with respect to x

Superscripts

′ Derivative

> Transpose

xx

I. Introduction

The worldwide energy consumption is increasing. Studies, see [48], reveal that approximately 15 % of
the electric energy in households within the European Union is spent for cooling. In [47], the authors
claim that the average energy consumption of a domestic refrigeration appliance is about 1 kWh per
day. For Germany, having about 40.7 million private households, this yields an energy consumption
of 22 TWh (in 2011) per year, see [2]. Therefore, household cooling has an enormous potential to save
energy.

In the 1990’s an energy consumption labelling system was introduced in the European Union, see [27].
The labelling system was supposed to influence the buying behavior and thus force the manufacturers
to improve their appliances. Additionally, refrigeration devices shall be forbidden from being sold if
their energy efficiency is too poor. Originally, the scale included the Roman letters A to G where
A indicates the least energy consumption. Due to technical improvements and a considerably better
energy efficiency many new appliances reached the category A. As a consequence, this category
was successively subdivided to guarantee an easier comparability of the energy consumption. These
additional categories are marked with A and have one or multiple "+" attached. Nowadays, in domestic
refrigeration appliances the category A+++ is already reached and it is just a matter of time until further
developments will lead to the introduction of the next category.

The progression of the labelling system shows that the technical improvements exceeded the original
expectations. But still, the process of increasing the energy efficiency of refrigeration appliances is far
from being over. However, finding new potentials becomes more challenging and nowadays focus is
laid on the dynamic behaviour of refrigeration appliances. A computer-aided simulation seems to be a
promising method to reach this goal. Once the simulation is established, not only the dynamic effects
and sensitivities can be better understood but also parameter variations can be performed easier and
mathematical optimization methods can be applied to locate energy consumption minima.

1. Refrigeration Cycle in Domestic Appliances

In this thesis the dynamic behavior of vapor-compression refrigeration cycles in domestic appliances,
in which the phase of the refrigerant changes, is investigated. Since these are the only refrigeration
cycles considered in this thesis, the term vapor-compression is omitted in the remaining text. For a
general review of the research in this field we refer to [4]. Typically, the refrigeration cycle consists of
the four main components: compressor, condenser, expansion device and evaporator. In the considered
appliance the expansion device is a capillary and the refrigerant is Isobutane (R600a). We explain the
refrigeration cycle by means of figure I.1 where a Ts-diagram of an idealized cycle in steady-state and
the flow sheet are depicted.

In the investigated cycle, the superheated refrigerant is sucked by the compressor and compressed to a
higher pressure (1→ 2). The superheated vapour is discharged into the condenser with a temperature
above ambient. There the refrigerant condenses (2→ 5) passing the two-phase region (3→ 4). Within
this region the temperature of the refrigerant, referred to as saturation temperature, remains equal if
the pressure drop is neglected. Additionally, the heat transfer to the ambiance increases significantly,
see [103]. Next, the subcooled refrigerant passes the capillary. The component of the capillary can
also be used as an internal heat exchanger which shifts the capillary outlet from (6) to (6a). On
the one hand, this increases the cooling capacity of the evaporator, defined in equation (1.1) below,

1

I. Introduction

and on the other hand, shall prevent that non-superheated refrigerant enters the compressor. For a
detailed discussion we refer to [38]. In the capillary the pressure is decreased such that the saturation
temperature is below the desired compartment temperature. This allows the refrigerant to absorb
heat in the evaporator (6→ 7) and thus cool the compartment. Finally, the internal heat exchanger is
passed again (7 → 8) and the refrigerant returns to the compressor where it exchanges heat with the
compressor shell (8→ 1) before it is compressed.

-50

-30

-10

10

30

50

70

90

0.5 1 1.5 2 2.5 3

T
em

p
er

at
u
re

[°

C
]

Specific entropy [kJ/kg K]

T ambient

T compartment

htot = const.

cooled

expansion

evaporator

condenser

without HTX
with HTX

htot = const.

1

2

3 4

5

6 7

8

5a

6a

(a) Ts-diagram, [38].

compressor

capillary/HTX

evaporator

condenser

5

6a 7

8 1

2

(b) Flow sheet.

Figure I.1.: Schematic illustration of the refrigeration cycle.

If different refrigeration cycles have to be compared in terms of efficiency, it is not sufficient to measure
their total energy consumption. Since the energy consumption depends e.g. on the size of the appliance,
a different quantity has to be chosen. Following [38], this quantity is the dimensionless Coefficient of
Performance (COP) ε which is the ratio between the output and input of a process. In refrigeration
the output is the cooling capacity Q̇0 [W]. In the steady-state case the cooling capacity is defined as

Q̇0 = ṁ(h7 − h6) (1.1)

where ṁ is the mass flow and h6, h7 are the enthalpies at the respective points in figure I.1, i.e. at
evaporator inlet and outlet. The input is the electric power Pel [W] consumed by the compressor. For
a steady-state refrigeration cycle this yields

εs =
Q̇0

Pel
. (1.2)

The coefficient is bounded from above by the COP of the theoretical Carnot-cycle εcarnot where
compression and expansion is isentropic and the heat is transferred at constant temperature. The
Carnot-COP reads as

εcarnot =
Tevap

Tcond − Tevap
=

1

ηcarnot
(1.3)

where Tcond and Tevap are the saturation temperatures in the condenser and evaporator, respectively,
and ηcarnot is the Carnot-efficiency. The above formula implies that the COP can be increased if
the temperature difference is decreased. However, Tcond has to exceed the ambient temperature to
enable heat exchange and Tevap has to stay below the desired compartment temperature. Thus, the
Carnot-COP is bounded from above as well.

In contrast to the above assumptions, a domestic refrigeration appliance is never at steady-state except
it is turned off. Nowadays there are two ways how refrigeration appliances operate. First, the compres-
sor is able to change the Number of Revolutions (NOR) depending on the demanded cooling power.

2

2. Computer-aided Simulation

For models using a so-called variable speed compressor we refer to [54, 102]. Second, the NOR is fixed
and the compressor operates intermittently such that the compartment temperature stays within a
certain range. In this thesis, only the second compressor type is investigated. In the considered do-
mestic refrigeration appliance, the compressor operates only with an a priori prescribed NOR and the
temperature in the compartment is measured by a sensor. If the lower or upper temperature threshold
is reached, the compressor is turned off or on, respectively. Thus, the Ts-diagram in figure I.1a depends
on the operating point and varies over time. The evolution of the Ts-diagram in the validated model
for one compressor on-off-cycle is illustrated in figures V.5 and V.6. Due to the operating mode, also
the concept of energy efficiency has to be adapted. For dynamic refrigeration cycles the COP is defined
as

εd =

∫
Q̇0dt∫
Peldt

. (1.4)

2. Computer-aided Simulation

In practice, domestic refrigeration appliances are investigated and optimized with respect to energy
efficiency performing expensive and time consuming experiments in the laboratory. The experiments
are typically done in a climatic chamber where first the appliance and measuring instruments have to
be set up. If the ambient temperature does not change and the compartment door is never opened,
the refrigeration cycle of the appliance reaches a (time) periodic cycle in which the compressor on-
off-duration remains equal and the measured values repeat for each cycle. Only after a periodic cycle
evolved in the appliance, the measurements are recorded and energy efficiency is investigated. However,
the time it takes to reach a periodic cycle depends on the initial states in the appliance and may take
up to days.

In order to shorten this process and reduce the costs for experiments, a simulation tool can be de-
ployed. Therein, the setup of the model or values of parameters are changed more easily, and the
simulation time, at least for the models in this thesis, is considerably less than real time. Therefore,
since the late 1970s, simulation tools have been implemented to support the research in refrigeration
systems and since the late 1980s also in domestic refrigeration appliances. Since the compressor oper-
ates intermittently in the investigated appliance, a steady-state model is not sufficient to predict the
dynamic behavior and energy efficiency. Thus we focus only on dynamic models. Simultaneously with
the performance of the computers also the complexity and accuracy of the models increased.

In the historical development of refrigeration system simulation, the heat exchangers turned out to
be the crucial part and three model types evolved. First, in the lumped parameter models the heat
exchangers are assumed to be 0-dimensional point masses. These simple models are applied in [16,
20, 67, 91, 106] (latest in 2005). Second, in the moving boundary models the heat exchangers are
subdivided into three parts of variable size which represent the liquid, two-phase and vapour region,
see [37, 49, 81, 116] (latest in 2002). Third, the most sophisticated models use a distributed parameter
approach where the heat exchangers are 1-dimensional spatially discretized. These more complex
models were applied in [14, 64, 47, 83, 117] (latest in 2008). The compressor models are usually given
by simple empirical correlations such as proposed in [50, 63, 76] (latest in 2012). Even nowadays, a
fully 3-dimensional spatially discretized model which also incorporates the movement of the valves and
the piston is too time consuming and therefore not applicable in refrigeration appliance simulation.
Often also the capillary models use simplified empirical models as presented in [45, 46, 68, 119] (latest
in 2010). Historical overviews of models and simulation can be found in [5, 21, 47, 81].

3

I. Introduction

3. The ECO-COOL Research Project

The ECO-COOL research project is carried out from July 2013 until June 2017 at the Graz University
of Technology. Not only three institute of the University, namely the Institute for Internal Combustion
and Thermodynamics, the Institute of Thermal Turbomachinery and Machine Dynamics and the Elec-
tric Drives and Machines Institute are involved in this project but also partners from industry which
are Secop Austria GmbH, Liebherr Hausgeräte Lienz GmbH, Infineon Technologies Austria AG and
SimTech GmbH. The aim of the project is the "development of the first fully integrated and controlled
cooling cycle for the usage in household cooling appliance"1. To reach this goal, one objective is to
develop and investigate dynamic models of the refrigeration cycle and a refrigeration appliance model
wich is validated with measurements. In the following the component models and numerical solvers
elaborated in the research project but also their limitations are outlined shortly. This also provides
the basis of this thesis.

In the ECO-COOL research project, the component models are implemented in Visual Basic for
Applications (VBA), C and Matlab and are merged to a cycle simulation tool in VBA. A distributed
parameter approach using the finite volume method is applied to the heat exchangers, see [6, 7, 8]. The
compressor is split into three components: shell, compression and the oil which is used to lubricate and
cool the compressor. The compression is described by empirical correlations, see [84, 85], and the oil
as in [81]. The capillary is simulated using an Artificial Neuronal Network (ANN) based on a complex
one-dimensional model, see [38, 41, 42]. For the compartment a lumped parameter model is chosen
which neglects the temperature stratification and the insulation is spatially discretized. The individual
component models were validated with measurements. The validated cycle simulation and results are
presented in [39, 40, 43]. Two different appliances are investigated therein and it was shown that the
models fit the dynamic measurements well. Furthermore, parameter studies are performed to identify
potentials to increase the energy efficiency.

The by far most complex models in the VBA simulation tool are the heat exchangers, i.e. condenser
and evaporator. The reason lies in the operating points of the heat exchangers which are mostly in
the two phase region and the fact that the two-phase boundaries are crossed multiple times during the
simulation. The heat exchangers are spatially discretized by the finite volume method, the theory of
which is presented in e.g. [61]. In contrast to other publications, see [47, 107, 118] (latest in 2008),
the pressure drop was not neglected. Since the velocity changes of the refrigerant are small in a
domestic refrigeration appliance, the momentum balance reduces to an algebraic equation describing
the pressure drop caused by friction, also referred to as Frictional Pressure Drop (FPD). In the
literature, the Heat Transfer Coefficient (HTC) in the two-phase region between the refrigerant and
the pipe wall is often determined by empirical correlations, e.g. [81] (2002) applies correlations from
Shah proposed in [98] (1988), [47] (2008) uses correlations from [52] (2003) and [114] (2000) for the
two-phase HTC for condensation and evaporation, respectively. In the VBA models, in the single
phase region the FPD and the HTC between the refrigerant and the pipe wall, appearing in the energy
balance of the refrigerant, are obtained from empirical correlations, see [28]. These correlation are
substituted by highly complex models in the two-phase region. These complex models are based on
flow patterns. In tubes, the geometry or topology of the flow, referred to as flow pattern or flow
regime, depends on the tube geometry, mass flow, vapor quality and other physical properties. Two-
phase flow patterns as they appear in heat exchangers are illustrated in figure I.2. In the literature,
see [36, 89, 112] (earliest in 2003), so called flow pattern maps, see figure I.3, have been developed. For
the map, transition curves between patterns are proposed which depend on physical properties, tube
geometry, mass velocity G and vapour quality x. A given point (G, x) then defines a unique point
in the flow pattern map and the corresponding pattern. For each flow pattern, models for the HTC
and FPD have been established in the literature, see [90, 103, 113] (earliest in 2003), which are not
1Project title of the ECO-COOL research project. Homepage: https://ecocool.tugraz.at/index.html (March 20, 2017)

4

3. The ECO-COOL Research Project

necessarily continuous across the transition curves. To guarantee an at least continuous model some
sort of interpolation has to be applied wherever jump discontinuities appear. This also includes the
two-phase boundaries.

(a) In horizontal evaporator tubes.

(b) In horizontal condenser tubes.

Figure I.2.: Two-phase flow patterns, [3].

Figure I.3.: Two-phase flow pattern map, [89].

Furthermore, some physical properties are not defined in the two phase region, e.g. the thermal con-
ductivity λ, the isobaric heat capacity cp or the dynamic viscosity η. If these properties are calculated
from pressure p and temperature t, a jump discontinuity emerges at the saturation temperature tsat
for any given pressure less than the critical pressure. Since these properties are used in the HTC and
FPD models, the model developer has to make sure that a continuous description is achieved such that
no convergence issues emerge when the model is solved.

5

I. Introduction

Besides the model development also mathematical solvers were elaborated for the VBA cycle simulation
tool which shall be explained shortly. A description of the calculation schemes can be found in [40]
for the cycle simulation and in [7] for the heat exchangers. In figure I.4 the refrigeration appliance
model flow sheet and the calculation procedure are depicted. In the VBA implementation, during each
integration step each component model is solved independently using boundary conditions from the
other components. These boundary conditions are taken from the previous integration step. Although
not implemented, this procedure allows a parallel treatment of the components at each time step.

capillary tube
suction line

HTX

evaporator

door heating

condenser

compartment

filter/drier

accumulator

suction line

compartment

condenser
door heating
filter/drier

compressor

capillary tube
suction line

HTX

evaporator
accumulator
suction line

shell
oil

compressor

shell oil

interaction of components

chronology of

module-calls

heat transfer logic refrigerant
heat transfer to

ambient

𝑡𝑛𝑒𝑤 =
𝑡𝑜𝑙𝑑 + ∆𝑡

Figure I.4.: Schematic of the VBA cycle simulation tool, [40].

In the VBA tool, the component models compressor, capillary and compartment are calculated fairly
straight forward and therefore not presented in detail here. However, the heat exchangers turned out
to be more challenging. In each integration step a boundary value problem of Partial Differential
Equations (PDEs) coupled with algebraic equations has to be solved which is handled by a shooting
method. For a deeper insight into this kind of problems and available numerical methods, we refer
to [18]. In the VBA model, the chosen boundary values for the heat exchanger are the mass flows
ṁin, ṁout at inlet and outlet, respectively, and the specific enthalpy hin at the inlet. Let pin be the
pressure at the inlet, ϕ : R3 → R with ϕ(pin, hin, ṁin) = ṁout and let the given boundary conditions
be marked with a superscript b. Then we look for a root of the function Φ : R→ R with

Φ(pin) = ϕ(pin, h
b
in, ṁ

b
in)− ṁb

out. (3.1)

In the VBA implementation, the pressure pin is iterated using the bisection method until |Φ(pin)| < ε
for ε > 0 is satisfied. Hence, for given boundary conditions hbin, ṁb

in at the inlet, the pressure pin
at the inlet is adjusted until the mass flow ṁout at the outlet fits the boundary condition ṁb

out. For
one evaluation of ϕ, the finite volume model of the heat exchanger has to be solved. Since the triple
(pin, h

b
in, ṁ

b
in) is given, the volumes can be treated sequentially. The inlet of the heat exchanger is also

the inlet of the first finite volume, i.e. (pin, h
b
in, ṁ

b
in) = (p1

in, h
1
in, ṁ

1
in) where the superscript indicates

the index of the volume. Hence, the inlet of the first volume is fully defined and solving the equations
for the first volume yields (p1

out, h
1
out, ṁ

1
out) at the outlet which equals the inlet of the second volume

(p2
in, h

2
in, ṁ

2
in). Repeating this for all volumes leads to (pout, hout, ṁout) at the outlet of the heat

exchanger.

6

4. IPSEpro

Above for each volume, a system Ψ of coupled nonlinear equations has to be solved . Since the
coupling of the variables within Ψ is sufficiently weak, a simple sequential algorithm is applied. Let
Ψ = (ψ1, . . . , ψn) : Rn → Rn and the variables be x ∈ Rn. In the heat exchanger models, the system
for a volume has the structure

ψ1(x1)
ψ2(x1, x2)

...
ψn−1(x1, . . . , xn−1)
ψn(x1, . . . , xn)

 =

x2

x3

...
xn
0

 . (3.2)

By fixing x1, the equations can be evaluated sequentially from ψ1 to ψn. Thus the above system is
solved by iterating x1 using the regular falsi method until |ψn(x1, . . . , xn)| < ε for given ε > 0. All
together, this approach allows to evaluate the equations successively and needs no derivatives.

Although, in the first place the shooting method may seem to be more easily comprehensible, especially
when implementing complex models for the HTC and FPD, the huge disadvantage is that the kind of
boundary condition have to be known a priori. If the boundary condition alters, i.e. different variables
are selected, the shooting method may have to be reformulated and the structure of the system Ψ,
which is ordered manually in the VBA simulation tool, may change. Furthermore, the numerical
method and the model equations are coded within the same procedure which can make it harder to
understand the model for someone who was not part of the development team.

In the VBA tool, an appropriate graphical user interface, in which the flow sheet of the refrigeration
cycle model is illustrated, is missing. The corresponding graphic from figure I.4 was created manually.
The connections between the component models are only visible on a source code level. Even a small
change in the structure of the model may require major adaptations in the code. Additionally, due to
the sequential formulation of the numerical method, reversion of the direction of the mass flow, models
consisting of parallel heat exchangers and splitter-mixer problems can not be implemented. Therefore,
in order to obtain a sustainable tool applicable for refrigeration appliance manufacturers, porting the
models into a commercial software which does not exhibit these disadvantages is necessary.

4. IPSEpro

The commercial software Integrated Process Simulation Environment (IPSEpro), developed and dis-
tributed by SimTech GmbH from Graz, Austria, was chosen since it fulfils the demanded requirements
and the company participates in the ECO-COOL research project. Other possible software tools are
Matlab Simulink from The MathWorks Inc. or Dymola (based on Modelica) from Dassault Systèmes.
IPSEpro consists of several modules of which the Model Development Kit (MDK) and Process Simu-
lation Environment (PSE) are the two most important. Screenshots of these modules are illustrated
in figures III.2 and III.3. In IPSEpro, the mathematical description of the component models, setting
up a flow sheet model and numerical solution are well separated. First, in MDK the components and
their mathematical models are described, second, in PSE the component models are arranged in a
flow sheet and the boundary conditions are specified and third, in the mathematical solver kernel the
system of equations is solved using appropriate numerical methods.

Until the beginning of the ECO-COOL research project only steady-state simulations together with
validation and optimization problems could be handled in IPSEpro. Since simulating the dynamic
behaviour of the refrigeration cycle is the goal, first an appropriate numerical solver had to be incor-
porated and the framework for dynamic simulations had to be developed. The framework includes,

7

I. Introduction

among others, data management, performance, visualizations of the time evolution of variables, time
tables for forcing terms and their processing, error handling and of course adaptations in the graphical
user interface. These elements have been implemented in IPSEpro during the ECO-COOL research
project but will not be explained in detail in this thesis.

When a dynamic model such as the refrigeration cycle has to be solved, a system of PDEs coupled with
algebraic equations emerges. In IPSEpro, only first order derivatives are provided which we always
interpret as the derivative with respect to time. This implies that the spatial derivatives have to be
handled by the model developer. Consequently, the numerical solver in the kernel has to deal with a
system of Differential-Algebraic Equations (DAEs).

5. Objectives and Contents of this Thesis

First, we summarize the objectives of this thesis. The first and most general objective is to

1. build an easily useable simulation tool for a better understanding of the refrigeration appliance.

We define three other objectives which are necessary to achieve this general objective. Each of the
following objectives is handled in one chapter and they are presented in the corresponding order.

2. a solver for DAEs has to be incorporated into the commercial software IPSEpro,

3. the refrigeration appliance models from the VBA model have to be transferred into IPSEpro and

4. the dynamic models have to be validated with measurements.

In chapter II, established numerical methods to solve Initial Value Problems (IVPs) involving DAEs
are presented. In the literature, see e.g. [11, 55, 59, 62, 69, 79, 115] (latest in 2012), the problem of
finding consistent initial values is addressed. In this thesis a similar approach as proposed in [115] is
chosen and the initialization system F is solved once at the initial time before the DAE-solver is called.
Typically, the component models in MDK are underdetermined, i.e. more variables than equations are
defined, which allows a more general application of the component models. Consequently, the flow
sheet model in PSE is underdetermined as well and boundary conditions, referred to as settings, have to
be prescribed with given values such that F is solvable. In large systems this may become a nontrivial
task. Therefore, a regularization method, referred to as Echelon Analysis, for underdetermined systems
is elaborated, see section II.3. Regularization in this context means formulating the flow sheet model
(structure and boundary conditions) in such a way that the numerical method in the kernel is able to
handle the emerging system of equations not considering convergence or accuracy issues. This implies
that F has to be square and the Jacobian non-singular. The Echelon Analysis finds in underdetermined
systems the variables which can be set, i.e. serve as a boundary condition, such that the degree of
freedom is reduced successively and the Jacobian does not become globally singular. In particular this
regularization method can be applied to dynamic but also to steady-state systems.

Either by not following the Echelon Analysis or on purpose, the settings can lead to a (partially)
overdetermined system. In this case no further setting would lead to a regular system which implies
that the Echelon Analysis is not applicable. To handle this case, the Adjoint Echelon Analysis, see
section II.3.2, is designed. In a (partially) overdetermined system this analysis returns the settings
which can be removed so that the degree of overdetermination is reduced by one and the system does
not become globally singular.

8

5. Objectives and Contents of this Thesis

In chapter III, the commercial software IPSEpro is shortly presented and its model structure is ex-
plained. Then the component models used for the simulation of the domestic refrigeration appliance are
given. As in the VBA model the heat exchangers turned out to be the more challenging components.
In particular, numerous discontinuities in the models of the HTC and FPD had to be identified and
treated appropriately. In section III.8 these problems are discussed more detailed. Since the complex
models of the HTC and FPD could not be implemented in MDK directly, they are outsourced in a
Dynamic Link Library (DLL) which is written in C++. The object oriented structure is described in
section III.7. For a comprehensive introduction to programming in C++, we recommend [25, 26, 70, 99].
Finally, a strategy for setting up the flow sheet model of the refrigeration appliance is proposed and
the model itself is presented.

When the component and flow sheet models are developed and the dynamic simulation can be per-
formed successfully for a sufficiently large domain of boundary conditions and parameters, the refrig-
eration cycle model has to be compared with measurements. If the results are not satisfying, either
the uncertain parameters appearing as settings or the model setup have to be adjusted. This task is
referred to as model validation and is done in chapter IV. Since the compressor operates intermittently,
the validation has to be done in a dynamic way. This means that the time evolution of the respective
variables has to coincide with the measurements which significantly increases the challenge of the task.
Since the compressor operates intermittently the on-off-durations are also of importance, implying
that the logic of the appliance and the temperature sensor in the compartment have to be modelled
correctly. In the VBA model the dynamic validation was performed manually and took several months.
Within this thesis a semi-automatized approach for fitting the parameters is applied, i.e. a subset of
the parameters is fitted automatically to steady-state measurements and the few remaining ones are
adjusted manually such that the results coincide with the dynamic measurements.

Finally, in chapter V the results of the refrigeration appliance model set up in IPSEpro are presented
for the periodic on-off-cycle. The local distribution of refrigerant as well as the heat transfers are
discussed. Further, the time-evolution of the Ts-diagram and the behaviour of the appliance model
for various ambient temperatures are shown and results of the one dimensional spatially discretized
heat exchangers are investigated.

Once a model is validated, the optimization process can start. Primarily, the energy consumption of the
refrigeration appliance is of importance, but also the manufacturing costs should not be disregarded.
A complete and comprehensive optimization of the investigated appliance would go beyond the scope
of this thesis and is left as an outlook for future work. Still, in section V.2 a parameter study was
performed in which the NOR of the compressor was varied.

9

10

II. Solving Differential-Algebraic Equations

Differential-Algebraic Equations (DAEs) arise naturally in mathematical models describing physical
systems. DAEs are systems which consist of differential and algebraic equations. The differential part
describes the time evolution of the dependent variables. The algebraic part either can emerge from
constraints on the differential variables or from equations describing variables whose derivatives do not
appear explicitly in the system. Systems in which the algebraic part is significantly higher than the
differential part arise e.g. from the models developed in chapter III. The DAE endowed with initial
values forms an Initial Value Problem which is solved by an appropriate numerical method.

Within this chapter, first basic definitions and properties of DAEs are presented. For a general overview
and introduction into the field we refer to [1, 11, 35, 92]. After introducing numerical methods to solve
these systems, the problem of consistent initialization is discussed and methods are presented to obtain
a regular initialization system. Of course, also the stability of a solution is of interest but a full analysis
of this topic would go beyond the scope of this thesis. Therefore, we refer to [57] in which the classical
concepts of stability of Ordinary Differential Equations (ODEs) are generalized to DAEs.

1. Differential-Algebraic Equations

Definition 1.1 The general (nonlinear) Differential-Algebraic Equation (DAE) system is defined as

F (t, x, x′) = 0 (1.1)

where F : R2n+1 → Rn, t ∈ R is the independent variable, x, x′ : R → Rn are the dependent variables
and ∂F/∂x′ is (potentially) singular. For reasons of clarity we write x instead of x(t) which will only
be used if the time dependence has to be emphasized. Endowing (1.1) with initial values (x0, x

′
0) is

referred to as Initial Value Problem (IVP), i.e.

F (t, x, x′) = 0,

x(t0) = x0,

x′(t0) = x′0.

(1.2)

In many applications not all time derivatives of the variables xi appear in the DAE system explicitly
and some equations are free of derivative. Then the variables and equations can be separated into
two parts: The differential variables y ∈ Rnd and algebraic variables z ∈ Rna with nd + na = n which
together yield the vector x = (y, z) and the differential equations f(t, y, y′, z) : R2nd+na+1 → Rp and
algebraic equations g(t, y, z) : Rnd+na+1 → Rq with p+ q = n. Then (1.1) can be rewritten as

F (t, x, x′) =

[
f(t, y, y′, z)
g(t, y, z)

]
= 0. (1.3)

If the system in (1.1) can be written as

A(t, x)x′ + ϕ(t, x) = 0 (1.4)

with A,ϕ : Rn+1 → Rn, the system is denoted as linearly implicit. Furthermore, the DAE is referred
to as semi-explicit nonlinear if it has the form

y′ = f(t, y, z),

0 = g(t, y, z).
(1.5)

11

II. Solving Differential-Algebraic Equations

1.1. Solvability and the Index

From [57] we have the following definition of a solution.

Definition 1.2 Let (1.1) with sufficiently smooth F be given. Then the function x : R → Rn is a
solution of (1.1) if x ∈ C1(R,Rn) and x satisfies (1.1) pointwise. The function x is a solution of the
initial value problem (1.2) if it is a solution of (1.1) and satisfies the initial values in (1.2).

Definition 1.3 An initial value (x0, x
′
0) is denoted as consistent if it satisfies (1.1) at time t0 and

the corresponding IVP (1.2) has at least one solution.

In [59], the following definitions for the solvability of a general DAE are given which guarantees the
existence of solutions x of solvable DAEs, that the value x0 = x(t0) uniquely defines x and that no
bifurcation of the solutions, see e.g. [110], occurs.

Definition 1.4 The DAE in (1.1) is solvable on a subset Ω ⊂ Rn+1 if, for some r ≥ 1, there is an
r-parameter family of solutions x(c) with t ∈ R and c ∈ Rr such that

1. (t, x(c)) ∈ Ω,

2. If x̂ is any solution whose traces lies in Ω, then x̂ = x(ĉ) for some ĉ,

3. The graph of x(c) is an (r + 1)-dimensional manifold in Rn+1.

Definition 1.5 The DAE in (1.1) is smoothly solvable on [t0, T] if there exists a m ∈ N such that
F has m continuous derivatives and the nonlinear system of "derivative equations"

F (t, ξ0, ξ1) = 0,

d

dt
F (t, ξ0, ξ1, ξ2) = 0,

...(
d

dt

)m
F (t, ξ0, ξ1, · · · , ξm+1) = 0

(1.6)

when viewed as relating the independent symbols t, ξ0, ξ1, · · · , ξm+1 can be solved on [t0, T] for ξ1 in
terms of ξ0 and t, i.e. ξ1 = φ(t, ξ0) where the mapping φ is Lipschitz continuous. Here d

dt indicates
the total (or material) derivative.

In [11], the following characterization for the solvability for one type of DAEs is given.

Theorem 1.6 The linear constant coefficient DAE

Ax′ +Bx = ϕ(t) (1.7)

with A,B ∈ Rn×n and ϕ : R→ Rn is solvable if and only if f(λ) = det(λA+B) is not identically zero.

Next we define the index of a DAE. The index enables a classification of DAEs and plays an important

12

1. Differential-Algebraic Equations

role when numerical methods are applied. Loosely speaking, the (differentiation) index can be seen
as a measure of the distance from the DAE to an ODE. Over the years multiple indices have been
defined from which we only present two, the differentiation and perturbation index. For a review on
all indices, we refer to [66]. From [11] we cite

Definition 1.7 Let the DAE system be given by (1.1). Then the differentiation index νd is the
number of times that all or a part of the equations must be differentiated with respect to time in order
to determine x′ as a continuous function of x and t.

In particular the differentiation index equals the integer m in definition 1.5. From [35] we cite

Definition 1.8 Let the DAE system be given by (1.1). Then it has perturbation index νp along a
solution x(t) for t ∈ [0, tmax], if νp is the smallest integer such that for all functions x̂(t) having a
defect

F (t, x̂, x̂′) = δ(t), (1.8)

there exists an estimate on [0, tmax]

‖x̂(t)− x(t)‖ ≤ C

(
‖x̂(0)− x(0)‖+

vp−1∑
i=0

max
0≤ξ≤t

‖
(
d

dt

)i
δ(ξ)‖

)
(1.9)

whenever the right hand side is sufficiently small.

The perturbation index measures the sensitivity of the solution with respect to perturbations. In [31],
the relation between these two indices was investigated. For general DAEs we obtain νd ≤ νp ≤ νd + 1.
If the derivatives in the system result from total differentials of functions, e.g. conservation of mass
or energy, then νd = νp holds. From this point on, only the differentiation index νd of a DAE is
investigated and the short notation index ν is used instead.

Definition 1.9 The index is referred to as uniform if it is independent of the evaluation point.

Next, we characterize index 1 systems. The implicit function theorem plays an important role in
several proofs. We cite this theorem from [53].

Theorem 1.10 (Implicit Function) Let X,Y, Z be finite dimensional vector spaces. Let φ ∈ C1(U,Z)
with a neighbourhood U ⊂ X × Y of a root (a, b) of φ. Let ∂φ

∂Y (a, b) be invertible. Then there are
neighbourhoods U ′ ⊂ X of a and U ′′ ⊂ Y of b and a ψ ∈ C1(U ′, U ′′) such that the set of roots of φ
which lies within U ′ × U ′′ ⊂ U equals the graph of ψ, i.e.

φ(x, y) = 0, (x, y) ∈ U ′ × U ′′ ⇔ y = ψ(x), x ∈ U ′. (1.10)

Theorem 1.11 Let the semi-explicit DAE be given by (1.5). Then the system has index 1 if and only
if ∂g/∂z is regular. In particular, the system can be reduced to an ODE for the variable y only.

Proof. The index is the number of differentiations w.r.t. time of a subset of the equations necessary
to obtain an explicit ODE. Differentiation of the second row in (1.5) yields

0 = gt(t, y, z) + gy(t, y, z)y′ + gz(t, y, z)z
′.

13

II. Solving Differential-Algebraic Equations

If and only if gz = ∂g/∂z is regular, the above equation can be rewritten to

z′ = −gz(t, y, z)−1 (gt(t, y, z) + gy(t, y, z)f(t, y, z)) .

Above we used the first row of (1.5) to replace y′. Consequently, one differentiation was necessary to
obtain an ODE. The second statement is proved using the implicit function theorem. Since ∂g/∂z is
regular, a mapping ψ exists such that the second row of (1.5) can be replaced with z = ψ(y). Finally,
substituting this result into the first row, we obtain

y′ = f(t, y, ψ(y)).

Theorem 1.12 Let the implicit DAE be given by (1.3). Then the system has index 1 if ∂f/∂y′ and
∂g/∂z are regular.

Proof. If ∂f/∂y′ is regular, the implicit function theorem can be applied. A mapping ψ exists such
that the first row of the system in (1.3) can be rewritten to

y′ = ψ(t, y, z)

0 = g(t, y, z).

Hence the implicit system was reduced to a semi-explicit system and theorem 1.11 yields that it is
index 1 if ∂g/∂z is regular which is an assumption.

From [32] we cite the following theorem without proof.

Theorem 1.13 Let the implicit DAE be given by (1.1) and A = ∂F/∂x′ and B = ∂F/∂x where
A,B ∈ Rn×n. Let A be singular and suppose a nonsingular T ∈ Rn×n exist such that

TA =

[
A1

0

]
(1.11)

with a p× n matrix A1 of rank p. Furthermore let the matrix[
A1

B2

]
(1.12)

be nonsingular where

TB =

[
B1

B2

]
. (1.13)

Then the system has index 1.

Example 1.14 In [79], the system
x′ + y′ = a(t),

x+ y2 = b(t)
(1.14)

with x, y ∈ R and a, b : R → R is presented. This system has index 1 almost everywhere. First, we
apply theorem 1.13 to prove that ν = 1 almost everywhere. Let T ∈ R2×2 be the identity. Then[

A1

B2

]
=

[
1 1
1 2y

]
. (1.15)

14

1. Differential-Algebraic Equations

This matrix has full rank for y ∈ R\{ 1
2}. Hence, for all points (x, y) ∈ R×R\{ 1

2} the system has index
1. Second, we show the same result by differentiating the second equation with respect to time, i.e.

x′ + 2yy′ = b′(t). (1.16)

Replacing the second row in (1.14) and rewriting the system yields

x′ = a(t)− b′(t)− a(t)

2y − 1
,

y′ =
b′(t)− a(t)

2y − 1
.

(1.17)

The variables (x′, y′) are uniquely determined for all (x, y) ∈ R× R\{ 1
2}. This yields the same result

as above. ♦

In the above example, the index was determined with moderate effort. For larger systems it is not
applicable anymore to do this by hand. Therefore algorithms have be developed to determine the
index of arbitrary DAEs. We mention two which work on a structural (symbolic) level. This means
that they can be performed a priori and without knowledge of numeric values. In [79], the developed
graph-theoretical algorithm was initially designed to determine consistent initial values of the system,
a problem which will be discussed in section 2.1. The algorithm identifies subsets S of equations which
have to be differentiated since the so gained, additional equations have to be fulfilled by the initial values
as well. A side effect is the determination of the structural index νs. In [105], a structural algorithm is
developed to analyse the DAE and one result is the structural index as well. Both algorithms operate
on a structural level, thus the structural index is a lower bound of the respective differentiation index.
In [79], an example of the form (1.5) is presented in which the Jacobian ∂g/∂z becomes numerically,
but not structurally singular which implies that z′ can not be determined uniquely and thus at least
one more differentiation is necessary. This numerical singularity can not be recognized by structural
algorithms, hence νs ≤ ν holds. In [88], a structural analysis method for DAEs is presented, namely
the Σ-method. If the method succeeds, an upper bound of the index is obtained.

Next, we briefly discuss systems with index ν > 1. Such systems are referred to as higher index
systems. In [11], the following proposition is given.

Proposition 1.15 Assume that F (t, x, x′) is solvable and has index ν. Then

x′ = z,

0 = F (t, x, z)
(1.18)

is semi-explicit and has index ν + 1.

Proof. The first row determines x′. Since F (t, x, x′) has index ν, ν differentiations are required to
determine z uniquely. Thus, differentiating once more yields z′.

Example 1.16 (Plane Pendulum) In [59], the plane pendulum with one mass swinging on a rigid
shaft is described by the system of equations

x′′ = λx,

y′′ = −λy − g,
1 = x2 + y2.

(1.19)

Here, g represents the gravitational acceleration, (x, y) ∈ R2 the position of the mass and λ ∈ R is a
Lagrange multiplier. This system has index ν = 3. ♦

15

II. Solving Differential-Algebraic Equations

From a numerical point of view a DAE with smaller index is easier to handle. In [30], a method is
described to reduce the index of a system. Intuitively this is achieved by differentiation of equations
identified by the algorithms of [79]. Unfortunately, then the original constraints do not have to be
fulfilled exactly anymore. Let a general system of the form (1.1) be given. Then we solve an extended,
semi-explicit system instead, i.e

x′ = f̃(t, x) + g>x (t, x)µ,

0 = g(t, x).
(1.20)

Above, f̃ is the transformed system gained from the original system (1.1) by differentiating a subset of
equations in order to reduce the index, g represents the differentiated equations in a non-differentiated
form and µ is a Lagrange multiplier. We cite the following two results without proof from [11].

Theorem 1.17 Let the system be given by (1.20) and ∂g/∂x have full rank. Then the system has
index 2.

Theorem 1.18 Let the system be given by (1.20), ∂g/∂x have full rank and let g(t, x) = 0 characterize
the solution manifold of (1.1). Then the only solutions of (1.20) are µ = 0 and x which is a solution
of

x′ = f̃(t, x),

0 = g(t, x).
(1.21)

The last assumption in the above theorem implies, that a solution x̂ at time t̂ satisfying (1.1) also
satisfies g(t̂, x̂) = 0 for fixed t̂. For further readings concerning index reduction methods, we refer
to [10, 35, 79, 100, 105]. In the next section we elaborate numerical methods to solve the IVP from
(1.2).

1.2. Numerical Methods

Within this section we present the linear multistep methods. First, we derive the methods on equidis-
tant grids for ODEs and then extend the results to DAEs with index 1 and arbitrary grids. We follow
[18]. Let the explicit ODE endowed with initial conditions be given by

x′ = f(t, x),

x0 = x(t0)
(1.22)

where t ∈ I ⊂ R, x ∈ Rn and f : Rn+1 → Rn. Let x(t) ∈ C1(I,Rn) be a solution of (1.22). Let
the discrete times be tk ∈ I for k = 0, ..., N and the step size h = tk − tk−1 be uniform for all time
steps. Let D = {t0, ..., tN}, then we look for a discrete function xh(t) : D → Rn that approximates the
solution x(t) on the grid, i.e.

xh(tk) ≈ x(tk) for tk ∈ D. (1.23)

In the remainder we use the shorthand notations xh(tk) = xk and f(tk, xk) = fk. The general linear
multistep method with d steps is defined as

d∑
j=0

αd−jxk−j = h

d∑
j=0

βd−jfk−j . (1.24)

The coefficients αj , βj ∈ R for j = 0, ..., d are fixed and we require αd 6= 0 and |α0|+ |β0| > 0. If βd = 0
the method is referred to as explicit, otherwise implicit.

16

1. Differential-Algebraic Equations

Example 1.19 The simplest methods are the one-step explicit and implicit Euler -methods. In the
explicit case we have αd = 1, αd−1 = −1, βd = 0, βd−1 = 1. This yields the recursion formula

xk = xk−1 + hfk−1. (1.25)

For the implicit method, the coefficients are αd = 1, αd−1 = −1, βd = 1, βd−1 = 0 and we obtain

xk = xk−1 + hfk. (1.26)

♦

We cite the following first result from [18], see Satz 7.3 for the proof which is an application of the
Banach fixed-point theorem.

Theorem 1.20 (Existence and Uniqueness) Let f : Rn+1 → Rn be Lipschitz continuous, i.e.

‖f(t, x)− f(t, x̃)‖ ≤ L‖x− x̃‖ (1.27)

for all x, x̃ ∈ Rn and t ∈ R. Then there exists for

h =
|αd|
|βd|L

(1.28)

and arbitrary initial values x0, ..., xd ∈ Rn a unique xh(t) : D → Rn which fulfills (1.24).

From a numerical method we expect that the error of the approximation decreases with the step size
and vanishes in the limit. This motivates the following definition.

Definition 1.21 (Convergence) Let x(t) ∈ C1(I,Rn) be a solution of (1.22). A multistep method
converges to a solution if

lim
h→0

xh(tk) = x(tk) (1.29)

for all grid points tk ∈ D and the initial values x0, ..., xd ∈ Rn of the multistep method satisfy

lim
h→0

xh(t0 + ih) = lim
h→0

xi = x0 (1.30)

for all i = 0, ..., d− 1. It is convergent if it converges for arbitrary IVPs with sufficiently smooth right
hand side.

Since the above definition may be hard to prove, appropriate conditions, easier to verify, have to
be elaborated which then imply convergence. To simplify the notations, we define the shift-operator
Ex : I → Rn as

(Ex)(t) = x(t+ h) (1.31)

and the characteristic polynomials

ρ(ξ) =

d∑
j=0

αjξ
j and σ(ξ) =

d∑
j=0

βjξ
j . (1.32)

Then the general linear multistep method from (1.24) can be rewritten as

ρ(E)xk−d = hσ(E)fk−d. (1.33)

The above equation is also referred to as (inhomogeneous) linear difference equation.

17

II. Solving Differential-Algebraic Equations

Definition 1.22 (Consistency) If for all x(t) ∈ C∞(I,Rn)

ρ(E)x(t)− hσ(E)x′(t) = O(hp+1) (1.34)

holds uniform for all t ∈ I, h > 0, a linear multistep method is consistent with order p.

Next we consider stability. Recall the definition for ODEs.

Definition 1.23 (Stability of the ODE) Let the IVP from (1.22) be given and x(t), x̃(t) ∈ C1(I,Rn)
be solutions of the ODE for initial values x0, x̃0 ∈ Rn. If for arbitrary ε > 0 there exists a δ > 0 such
that

‖x0 − x̃0‖ < δ (1.35)

implies
‖x(t)− x̃(t)‖ < ε, (1.36)

the IVP is stable. If there exists a δ > 0 such that

lim
t→∞

‖x(t)− x̃(t)‖ = 0, (1.37)

it is asymptotically stable. Otherwise, instable.

Definition 1.24 (Stability of the difference equation) Let the homogeneous linear difference equation
be given by

ρ(E)xk = 0 (1.38)

with αj ∈ R for j = 0, ..., d and given initial values x0, ..., xd−1 ∈ Rn. Then the difference equation is
stable if there exists a constant M > 0 such that ‖xk‖ ≤M for k ∈ N. If

lim
k→∞

xk = 0, (1.39)

it is asymptotically stable. Otherwise, instable.

We cite the following theorem from [18], see Satz 3.40 and Satz 3.33 for the proof.

Theorem 1.25 (Dahlquist Root Condition) Let λ ∈ C be a root of the characteristic polynomial ρ(ξ)
of the linear difference equation. Then the difference equation is stable if |λ| ≤ 1 holds for all λ and
|λ| = 1 only for simple roots. If |λ| < 1 for any root, it is asymptotically stable.

Definition 1.26 (Stability of the general multistep method) The general linear multistep method is
stable if the corresponding homogeneous linear difference equation is stable.

We cite the following very important theorem. The proof is given in [18], Satz 7.23.

Theorem 1.27 (Lax-equivalence) A stable, consistent linear multistep method is convergent. In par-
ticular, let (1.22) be given, with f(t, x) ∈ Cp(Rn+1,Rn), p ≥ 1 and the solution x(t) ∈ C1(I,Rn).
Assume that the stable linear multistep method is consistent with order p. Let the initial values be
x0, ..., xd−1 ∈ Rn and the starting error

ε0 = max
0≤l≤d−1

(xl − x(tl)). (1.40)

18

1. Differential-Algebraic Equations

Then there exist constants C, ε̂, ĥ > 0, such that for h ≤ ĥ, ε0 ≤ ε̂ the discretization error is

‖εk‖ = ‖xk − x(tk)‖ ≤ C(ε0 + hp). (1.41)

for k = 0, ..., N .

Hence the order of convergence depends on the consistency, the smoothness of the right hand side
and the initial values chosen to start the recursion with. Instead of proving convergence, usually
stability and consistency are shown and the Lax-equivalence theorem is applied. There are two types
of multistep methods, the ones named after John Couch Adams and the Backward Differentiation
Formulas (BDFs). We only discuss the latter. The general formula for the BDFs reads as

d∑
j=0

αd−jxk−j = hfk (1.42)

where we used the normalization βd = 1.

Lemma 1.28 The d-step BDF is stable if and only if d < 7.

This proposition can be shown by evaluating the roots of the corresponding characteristic polynomial
ρ(ξ) for d < 7 and is left to the reader. A proof for the instability for d ≥ 7 can be found in [34]. The
one-step BDF is the implicit Euler method, see example 1.19. In practice, a new time step tk−1 → tk is
often computed by a predictor-corrector scheme. In the predictor-stage the new solution xk at time tk
is predicted by x0

k. The value x
0
k can be calculated e.g. by using information of the derivatives of pasts

steps or by applying polynomial interpolation of order l to the previous solutions xk−l−1, ..., xk−1 and
evaluating the polynomial at tk. Then x0

k serves as the starting value for the corrector-stage where a
system of (nonlinear) equations has to be solved by a Newton-type iteration. We derive the iteration
for implicitly given ODEs. Let the IVP from (1.22) be written as

F (t, x, x′) = 0,

x0 = x(t0)
(1.43)

with F : R2n+1 → Rn. We apply the BDF method to the above system. First, substituting x′k = fk in
(1.42) yields

d∑
j=0

αd−jxk−j = hx′k. (1.44)

Inserting this into the implicit ODE leads to

F

tk, xk, 1

h

d∑
j=0

αd−jxk−j

 = 0 (1.45)

which has to be solve with respect to xk at each time tk. The above system is also referred to as
corrector equation. The system is a composition of the mapping g : Rn → Rn × Rn with

g(xk) =

(
xk

1
h

∑d
j=0 αd−jxk−j

)
(1.46)

and the implicit ODE. Hence, Newton’s method can be applied to F (tk, g(xk)) : Rn → Rn for fixed
tk. Let the iteration index be i, then the update formula reads as

xi+1
k = xik + ∆xi. (1.47)

19

II. Solving Differential-Algebraic Equations

with
∆xi = −J−1

x (F)(tk, x
i
k) · F

(
tk, g(xik)

)
(1.48)

Applying the chain rule yields the Jacobian

Jx(F)(tk, x
i
k) =

(
∂F

∂x
,
∂F

∂x′

)
·
(

1
αd
h

)
(tk, x

i
k) =

(
∂F

∂x
+
αd
h

∂F

∂x′

)
(tk, x

i
k). (1.49)

The termination criteria of the iteration with ε, δ > 0 read as

‖F (x)‖2 < ε and ‖∆x‖ =

(
n∑
ι=1

∣∣∣∣∆xιxι

∣∣∣∣2
) 1

2

< δ. (1.50)

Theorem 1.29 Newton’s method converges locally quadratic.

A proof of the above statement can be found in [19], page 101f. The above theorem yields that the
initial value x0

k has to lie in a ε-neighbourhood of the solution and the Jacobian has to be invertible
such that convergence is achieved. Next we extend the BDFs to DAEs. We cite a convergence result
of the BDF methods for index 1 DAEs from [11]. A proof can be found therein.

Theorem 1.30 Let (1.2) have uniform index 1 on an interval I ⊂ R. Then the d-step BDF method
with fixed step size h and d < 7 converges with O(hp) if the starting error ε0 = O(hp) and Newton’s
method at each step is solved with O(hp+1) accuracy.

Convergence results are also available for semi-explicit index 1, 2 and 3 DAEs as well as for constant
coefficient linear DAEs with arbitrary index. To improve the robustness of the BDF, adaptive time
stepping and order selection have been proposed. For a description of a systematic way to construct
variable step size formulas we refer to [96] and in [71] control mechanisms for the step size are discussed.
It can be shown that variable step size BDF methods converge for index 1 DAEs if their implementa-
tion is stable for standard ODEs, see [11]. An implementation of these extensions is the Differential
Algebraic System Solver (DASSL) of [80] which is used to solve the models described in chapter III.
DASSL utilizes adaptive time stepping and order selection coupled with a Predictor-Corrector-Scheme
and an integration error control. A detailed description is also given in [11].

But the BDFs are not the only numerical methods to solve DAEs. We highlight two more without
giving any details. First, implicit Runge-Kutta methods can be applied to DAEs, see [35]. For these
methods also an implementation is available in Fortran and C++, namely RADAU5. And second, a
newer approach using Taylor series expansion presented in [73, 74, 75, 87, 88] allows to solve DAEs of
arbitrary index but requires time derivatives of the equations.

2. The Initialization System

A crucial point in solving the IVP in (1.2) is already reached at the very beginning. Consistent initial
values have to be provided such that the IVP has a solution. On the one hand, many DAE solvers
have serious problems when inconsistent initial values are given, see [11, 115]. Finding such values
might be the most challenging part of solving a system of DAEs. On the other hand, it is known that
DAE-solvers tend to be robust if the initial values are consistent. This reflects the emphasis which the

20

2. The Initialization System

task of finding such values has to receive. To obtain initial values, we choose a similar approach as in
[115], set up a system of equations at initial time t0 and solve it with Newton’s method. If this idea
can not be applied and the integration method has to be started directly with possibly not consistent
initial values, we refer to [55, 108]. A method for finding consistent initial values for DAEs with index
ν = 1 is described in [12], with index ν ≤ 2 in [58] and for general problems in [79].

Without loss of generality, let the DAE be given in the form of (1.3), i.e.

f(t, y, y′, z) = 0,

g(t, y, z) = 0
(2.1)

where y, y′ ∈ Rnd and z ∈ Rna , f(t, y, y′, z) : R2nd+na+1 → Rp and g(t, y, z) : Rnd+na+1 → Rq with
nd + na = n and p+ q = n. Our aim is to obtain the initial values (y0, y

′
0, z0) by solving

f(t0, y0, y
′
0, z0) = 0,

g(t0, y0, z0) = 0.
(2.2)

The above system is referred to as initialization system.

2.1. Consistent Initialization

Given initial values satisfying the initialization system does not imply that the corresponding IVP has
a solution. If so, the initial values are not consistent, see definition 1.3 and example 2.2 below. A
necessary condition for consistent initial values is given in the following statement.

Theorem 2.1 (Necessary Condition) If a vector (t0, y
′
0, y0, z0) is a consistent initial value, then it

fulfills the initialization system.

Proof. This is an immediate consequence of definition 1.3.

The initialization system consists of 2nd + na variables and nd + na equations since t = t0 is fixed.
Hence, the system has nd degrees of freedom and therefore nd variables have to be initialized, i.e.
provided as given values. For ODEs initializing is trivial since an arbitrary vector y0 ∈ Rn will be
consistent but for DAEs finding consistent initial values can be a challenging task. In contrast to the
literature, we only allow differential variables y0 or their derivatives y′0 to be initialized. This restriction
reduces the set of possible initializations and a sharper distinction between differential and algebraic
variables is achieved. The initialization system in (2.2) together with nd initializations of either the
differential variables or their derivatives is then solved by Newton’s method. The iteration matrix J
is given by

J(t, y, y′, z) =

∂f
∂y′

∂f
∂y

∂f
∂z

0 ∂g
∂y

∂g
∂z

Ĩ1 Ĩ2 0

 (t, y, y′, z) (2.3)

where Ĩ1 + Ĩ2 = I, the identity matrix in Rnd×nd . Obviously, Ĩ1 and Ĩ2 have to be chosen such that J
is regular at least in a neighbourhood of the solution. The convergence of Newton’s method applied
to a continuously differential function is guaranteed in a neighbourhood of (t0, y0, y

′
0, z0). Hence

starting values for Newton’s method, referred to as estimates, sufficiently close to the solution have to
be provided. Though, the example below demonstrates that a solution of the initialization system is
not necessarily consistent.

21

II. Solving Differential-Algebraic Equations

Example 2.2 Let the DAE system with index 2 be

x′ = y,

x = g(t).
(2.4)

The differential variable x is determined by the function g(t) : R→ R for all time and if x′ is initialized
with an arbitrary value c ∈ R, the initialization system can be solved uniquely. Still, only the value
c = g′(t0) is consistent for x′0. ♦

The above example demonstrates that hidden constraints can appear which have to be satisfied by
the initial values such that they are consistent. Hidden constraints emerge from existing equations by
differentiation with respect to time. We follow [79] in which the Pantelides algorithm is proposed to
identify subsets of equations which have to be differentiated and added to the initialization system in
order to obtain consistent initial values. Let ξ = (y′, z) and ϕ(t, y, ξ) be a subset of equations of (2.2)
consisting of 1 ≤ k ≤ n equations. If

rank

(
∂ϕ

∂ξ

)
< k, (2.5)

these equation have to be differentiated with respect to time yielding new variables ζ which are deriva-
tives of ξ with respect to time. The differentiated equations are hidden constraints and added to the
set H. After identifying all subsets ϕ(t, y, ξ) for which (2.5) holds for minimal k, the equations ϕ(t, y, ξ)
are replaced with their time derivatives and the emerging system is rewritten such that only first order
derivatives occur. Then the procedure is repeated for the transformed system until no further singular
subsystems are found.

After the above algorithm terminated, all differentiated equations in H are added to (2.2) and the
augmented initialization system is given by

f(t0, y0, y
′
0, z0) = 0,

g(t0, y0, z0) = 0,

h(t0, y0, y
′
0, z0, ζ0) = 0.

(2.6)

Let the hidden constraints from H be collected in h = (h1, ..., hm) : R2nd+na+1+d → Rm and all new
variables be gathered in ζ0 ∈ Rd. Then nd + d−m variables have to be initialized such that the above
system becomes regular. Solving (2.6) yields consistent initial values, see [79], and we have

Theorem 2.3 (Sufficient Condition) If a vector (t0, y
′
0, y0, z0, ζ0) fulfills the augmented initialization

system then (t0, y
′
0, y0, z0) is a consistent initial value.

Corollary 2.4 Let the implicit DAE be of the form (2.1). If for arbitrary given y0 ∈ Rnd the
initialization system (2.2) is solvable with respect to (y′0, z0) and the Jacobian given in (2.3) is regular,
the system has at most index 1. Furthermore, the initial values (y0, y

′
0, z0) are consistent.

Proof. If y0 ∈ Rnd is initialized, the Jacobian of (2.3) is given by

J =

∂f
∂y′

∂f
∂y

∂f
∂z

0 ∂g
∂y

∂g
∂z

0 I 0

 . (2.7)

Hence y can be removed from the system. This yields

Ĵ =

(
∂f
∂y′

∂f
∂z

0 ∂g
∂z

)
. (2.8)

22

2. The Initialization System

Since J is assumed to be regular, also ∂f/∂y′ and ∂g/∂z are regular and which guarantees an index-1
DAE systems, see theorem 1.12. For the second statement, let ξ = (y′, z) and ϕ(t, x, ξ) = (f, g)(t, x, ξ),
i.e. the whole system consisting of n equations. The regularity of Ĵ is equivalent to rank(∂ϕ/∂ξ) = n
and hence no hidden constraints exist.

In process models the initialization system is often sparse. In [23], a method is described to decompose
sparse systems of equations into smaller ones which are then solved sequentially. Hence, the size of
each subsystem is smaller from which further robustness and the reduction of computational costs is
expected. The method is described for linear systems but can be applied to nonlinear systems as well.
Following [23] we explain the method below.

2.2. Block Decomposition

It is assumed that a sparse nonlinear system of the form

F (x) = 0 (2.9)

has to be solved with F : Rn → Rn and x ∈ Rn. The goal is to find permutation matrices P and Q
such that a system in lower block triangular form is gained, i.e.

PFQ =

B11

B21 B22

...
. . .

Bm1 Bm2 · · · Bmm

 . (2.10)

If a system can not be decomposed into a block triangular form, it is said to be irreducible, otherwise
reducible. If the form above is the final result, each block Bii is square and irreducible. Given the
lower block triangular form, instead of computing the solution of (2.9) we solve (2.10) sequentially
beginning with B11 and substituting the results into the "lower" blocks. This procedure brings several
benefits. Solving (2.10) sequentially is expected to need less Jacobian evaluations since variables are
already substituted into lower blocks. The Jacobian for each block is smaller which reduces the effort
of its factorization. Furthermore, the error bounds have to be satisfied by less variables which implies
that the portion of each variable becomes more significant.

For some classes of problems the block decomposition is not applicable, e.g. for systems gained from the
method of lines. There, the spatial derivatives of PDEs are discretized utilizing finite differences. The
resulting systems are irreducible. Also if the system is rather dense, there may be hardly any benefits.
We follow the approach of [23] and divide the computation of the blocks into two steps. First, a row
permutation is performed to obtain a maximal transversal. Here, the transversal is defined as the set
of non-zero elements on the main diagonal. The transversal is referred to as maximal if it contains the
maximal number of non-zero main diagonal elements which can be obtained by (row) permutation.
Hence, in the first step the goal is to find a row permutation P1 such that the number of non-zero
main diagonal elements in F is maximal. Second, a symmetric permutation Q is applied to P1F to
achieve the actual block structure. Together, this yields PFQ := Q>P1FQ. Both algorithms operate
on a symbolic level, meaning that only the position of the variables in the system is of importance.
Therefore the ideas can be applied to linear and nonlinear systems. Only a symbolic portrayal of the
system in (2.9) is required. If the system is nonlinear, the symbolic portrayals of the system and the
Jacobian are equivalent. We only present the basic ideas of the two steps and refer to the literature
for further details.

23

II. Solving Differential-Algebraic Equations

2.2.1. Maximal Transversal Algorithm

The algorithm was originally proposed in [56] where it is applied to the assignment problem. This
problem occurs e.g. in economics but the same ideas can be applied to problems in graph and games
theory or finding a maximal transversal. The algorithm can be implemented in a breath-first or depth-
first search and is described in a column orientation. Therefore, row permutations are used to attain
the desired from. The two main requirements the algorithm has to fulfill are:

1. at each step one additional non-zero element is placed onto the diagonal and

2. all prior diagonal elements are preserved.

The algorithm starts from the first diagonal element in the first column and sequentially fills the main
diagonal. The second point from above does not prohibit the exchange of rows in the already established
region as long as the diagonal structure is preserved. Placing an element onto the diagonal is called
an assignment. If a step fails and no assignment is made, the matrix is structurally (symbolically)
singular. Nevertheless, the algorithm performs n steps but can leave empty spaces on the diagonal
indicating structural singularities. If all non-zero diagonal elements are filled, the matrix is said to be
structurally regular. The number of non-zero diagonal elements is referred to as structural rank. A
detailed presentation of a general assignment algorithm would go beyond the scope of this thesis and
we refer to [56] or [23], p. 109ff.

Example 2.5 To demonstrate the principles of the maximal transversal algorithm, a simple example
is given. In equation (2.11) below, the steps of the algorithms are illustrated.

×
× ×
× ×

 (1)−−→

× ×
×

× ×

 (2)−−→

× ×
×

× ×

(3)−−→

× ×
×

× ×

 (4)−−→

× ×
×

× ×

 .

(2.11)

In the first step (1), the rows 1 and 2 are interchanged to place a non-zero element on the diagonal entry
of the first row. In the second step (2), a non-zero diagonal entry in the second row already exists and
hence no permutation is performed. To assign a non-zero diagonal entry in the third row, in step (3)
the rows 1 and 3 are exchanged. Finally in step (4), no permutation can be found to obtain a non-zero
diagonal entry in the last row without violating the second requirement of the algorithm. Thus the
system is structurally singular. In this example the permutated row sequence after the algorithm reads
as (3, 1, 2, 4). ♦

2.2.2. Block Triangular Algorithm

We assume that the maximal transversal algorithm was performed and the matrix is not structurally
singular. Then a row permutation P1 was found and we already computed P1F having no zeros on
the main diagonal. Next, a symmetric permutation Q is required to obtain the final form as desired in
(2.10). Combining the permutations yields P = Q>P1 yields the initial goal, i.e. PFQ := Q>P1FQ.
An advantage of symmetric permutations is that they preserve the maximal transversal, i.e. the main
diagonal. In this case, it is convenient to regard P1F as the adjacency matrix of a directed graph.

24

3. Regularization of the Initialization System

Then the symmetric permutations correspond to relabelling the nodes of the graph. This approach
seems to be more illustrative than thinking of permuting certain equations and variables at the same
time.

To find Q, first, Tarjan’s strongly connected components Algorithm, presented in [101], is applied.
This algorithm finds the strongly connected components in a directed graph and these components
Ci correspond to the blocks Bii from equation (2.10). To do so, the algorithm tries to find maximal
closed paths through the nodes. A closed path is a sequence of connected nodes starting and ending
at the same node. The smallest set containing a closed path is a single node. Given the strongly
connected components, the nodes have to be relabelled such that the final form as desired in equation
(2.10) is achieved. Therefore, first, the nodes corresponding to one component are gathered such that
the indices of the nodes are consecutive and second, a block Bii must precede Bjj if component Cj is
connected to Ci. For a detailed description of the whole algorithm we refer to [23] p. 114ff and [101].

Example 2.6 The block triangular algorithm is illustrated by means of equation (2.12). Therein
the system on the left hand side corresponds to P1F and the strongly connected components are
{1}, {2, 3, 5} and {4}. In step (1) the nodes are relabelled such that the indices of the nodes in a
component are consecutive. The nodes 4 and 5 are interchanged yielding the (sorted) components
C1 = {1}, C2 = {2, 3, 4} and C3 = {5} which are framed in the second matrix of (2.12). In step (2) the
nodes are reordered such that the lower block triangular form is achieved. Since C2 is not connected
to any other component, it becomes first. Component C3 is only connected to C2 yielding that C3 has
to follow C2. Finally, C1 is connected to C2 and C3 implying that it has to be last. Consequently, the
relabelling of the nodes reads as {2, 3, 4} → {1, 2, 3}, {5} → {4} and {1} → {5} and on the right hand
side of (2.12) the final form Q>P1FQ is given.

× × ×
× ×
× × ×
× ×
× ×

 (1)−−→

× × ×
× ×
× × ×
× ×
× ×

 (2)−−→

× ×
× × ×
× ×
× ×

× × ×

 (2.12)

♦

3. Regularization of the Initialization System

Consistent initial values are obtained from the augmented initialization system. If an automatic dif-
ferentiation software is not available to compute the hidden constraints in H, at least the initialization
system has to be solved. Corollary 2.4 guarantees consistency if all states can be initialized. The con-
ditions of this corollary hold e.g. for the models developed in chapter III. However, the initialization
system for general DAEs is underdetermined and has nd degrees of freedom. Therefore, nd variables
have to be initialized and there are (

n

nd

)
=

n!

(n− nd)! · nd!
(3.1)

combinations of initialized variables if we neglect the restriction that we only allow differential variables
to be initialized. Most certainly not all combinations will result in a solvable, i.e. regular, initialization
system. The regularity of the Jacobian, at least in a neighbourhood of a solution, is essential when
the initialization system (2.2) has to be solved using Newton’s method. Therefore, we developed a
method, the Echelon Analysis from below, to reduce the set of combinations to those which yield a

25

II. Solving Differential-Algebraic Equations

non-singular Jacobian and hence a solvable system. Since the Echelon Analysis is independent of the
initialization system, we formulate it for arbitrary underdetermined systems.

We distinguish between three types of singularities. The first are those which occur only in a specific
region of the domain. E.g. if the temperature T has to be calculated from the enthalpy H and a given
pressure p. If the point (p,H) lies within the two-phase region,

∂T (p,H)

∂H
= 0 (3.2)

holds. Thus the Jacobian becomes singular only in this region. This kind of singularity is denoted as
local singularity. To deal with such problems, further knowledge of the investigated system is required
and is not handled here.

The second type of singularities remains valid over the whole domain, referred to as global singularity.
Regard the equations

−m1 +m2 +m3 = 0,

m2 +m3 = 0.
(3.3)

This system is underdetermined and has one degree of freedom. Hence, one variable has to be pre-
scribed. Prescribing the value of a variable is referred to as setting the variable. Setting m2 or m3 leads
to a regular Jacobian. If m1 is set, the Jacobian of this system becomes singular for any (m2,m3) ∈ R2

since the rows are linearly dependent.

The third type are structural singularities which have been defined in the last section. They are
completely independent of numerical values of the coefficients. Redundant settings can be made and
the system is overdetermined in some subsystem leading to a structural singularity, e.g. for a system
of the form

×
× ×

× ×
×

 . (3.4)

In section 3.1, we assume that the system is underdetermined and free of structural and global singu-
larities. A method is described which determines a subset of the variables from which one can be set
such that the degree of freedom is reduced by one and the resulting system is not structurally or glob-
ally singular. In section 3.2 and 3.3, systems containing a structural or global singularity, respectively,
are investigated and methods for resolving the singularities are presented. We derive all methods for
general systems.

3.1. Echelon Analysis

The first case considered occurs when the system is underdetermined and further settings are required.
With equation (3.3) we demonstrated that the settings can not be chosen arbitrarily. We present a
general approach and algorithms, referred to as Echelon Analysis, to determine in an underdetermined
system the set S of variables from which one can be set such that the degree of freedom is reduced by
one and the Jacobian does not become globally or structurally singular. Settings which lead to a local
singularity can not be identified since this is process-dependent. If a variable from S is set, the set S
is not necessarily valid anymore and the Echelon Analysis has to be repeated for the system endowed
with one more setting.

We assume that A : Rn → Rm with n > m is given and has maximal structural rankm in the sense that
the maximal transversal algorithm finds m diagonal elements. Hence the system is underdetermined,

26

3. Regularization of the Initialization System

has d = n − m degrees of freedom and d variables have to be set to obtain a square system. Then
applying the Echelon Analysis and setting one variable at a time yields an iterative procedure leading
to a system which is not globally or structurally singular in d steps, see algorithm 3.9 on page 33.

The Echelon Analysis, i.e. finding the set S of variables from which one can be set, is split into two
steps. First, we identify settings which do not lead to a structurally singular system. This yields the
set of structurally settable variables Ss. Second, we analyse which variables in Ss can not be set since
the remaining system would become globally singular, e.g. m1 in (3.3). The variables in the final set
S ⊆ Ss are called (numerically) settable or possible settings.

3.1.1. Structurally settable Variables

First we extend A by d artificial zero rows to obtain a square system Ã. Then the maximal transversal
algorithm described in section 2.2.1 is applied to Ã and we obtain P1Ã. Since we assumed that A has
maximal structural rank exactly d diagonal entries are zero, i.e void, and the corresponding rows are
the artificial zero rows added before. If the zero rows are replaced by rows with only one element on
the main diagonal, the system becomes structurally regular. On a symbolic level this act is equivalent
to setting these variables. Consequently, already d structurally settable variables are found.

If row k is a zero row, variable k is structurally settable. If row i has an entry in column k, these
two rows could be interchanged to fill the diagonal entry in row k. This preserves the length of
the transversal but row i is now a zero row. Hence, variable i is structurally settable as well. This
considerations yield the following algorithm which operates on P1Ã.

Algorithm 3.1 Let Ss be the set of structurally settable variables, N the set of not explored variables
and B the set of visited variables.

1. Set Ss = ∅, N = ∅ and B = ∅.
2. Find all zero diagonal entries and add the corresponding variables to Ss and N .
3. do
4. Select v ∈ N and add v to B.
5. Find all rows i in which v occurs.
6. If i /∈ B, add the variables i to Ss and N .
7. Remove v from N .
8. while N 6= ∅.

Theorem 3.2 The set Ss gained with algorithm 3.1 is maximal in the sense that Ss contains all
structurally settable variables.

Proof. The maximal transversal algorithm is based on row permutations P1. The length of the transver-
sal is unique but the ordering of the rows not necessarily. To preserve the length of the transversal,
two nonzero rows i and j can only be interchanged if row i has an element in column j and vice versa.
Assume that row i is a zero row and j nonzero, which implies that in row j a diagonal element exists.
Then row i and j can be interchanged if row j has an element in column i. Thus, algorithm 3.1 records
all row indices in which the zero rows could occur such that the transversal remains maximal. These
indices correspond to the structurally settable variables.

27

II. Solving Differential-Algebraic Equations

Theorem 3.3 Let T be the set of all variables which do not appear in Ss. Structurally, all variables
in T can be calculated.

Proof. Assume that the system A has d degrees of freedom and Ss contains k variables. The proof of
theorem 3.2 yields that algorithm 3.1 detects k rows from which l = k − d are non zero rows. In the
remaining n− k rows no variables from Ss occur since otherwise these rows would have been recorded
by the algorithm. Hence, by removing these l rows and k columns from P1A a (n−k)× (n−k) system
remains, all rows have a diagonal entry and thus the system has structural rank (n− k).

An implementation of the block triangular algorithm described in [22] and [24] is capable of identifying
the variables in T . The block triangular algorithm can be applied to P1A even if the system is
underdetermined. In the implementation a node i is labeled as invalid if the transversal is empty in
the i-th entry. In matrix terms this means that in column i the diagonal element is zero. Furthermore,
nodes which depend on an invalid node are treated equally, i.e. rows in which an invalid column
occurs are removed from the system. Hence, for a structurally singular, underdetermined system this
implementation yields the block decomposition of the structurally regular subsystem and numerical
methods can be applied to calculate the valid variables.

Similar considerations for the determination of Ss can be found in [17]. There the problem is investi-
gated from a graph point of view. The maximal transversal algorithm is applied and then the paths
from variables which do not occur on the main diagonal are followed. This yields the same result as
algorithm 3.1. In [17] only a structural analysis is presented to determine the set of variables from
which one can be set such that the degree of freedom is reduced by one. An equivalent example to
(3.3) is used to demonstrate the limitations of a pure structural approach, i.e. variables can occur in
Ss yielding a structurally regular but numerically (globally) singular system if they are set. In the
following, we present the second step of the Echelon Analysis which overcomes the limitations of a
pure structural approach.

3.1.2. Numerically settable Variables

Let the set Ss of structurally settable variables be given. We recall the system from (3.3), i.e.

−m1 +m2 +m3 = 0,

m2 +m3 = 0.
(3.5)

In this example the variable m1 is structurally settable but still a global singularity occurs if m1 is set,
independent of the prescribed value. Therefore we are looking for a subset S ⊆ Ss whose elements do
not lead to a global singularity.

First, we start with the case where all equations in the system A are linear. Assume that A ∈ Rm×n
with n > m is linear and has rank m. From the proof of theorem 3.2 we obtain that algorithm 3.1
finds the rows and columns of a structurally singular k×k subsystem of P1Ã where k is the number of
structurally settable variables. Only this smaller system is of further interest since the other variables
can already be calculated from the remaining equations. We define the subsystem As ∈ Rl×k of P1Ã.
Here, l = k − d is the number of equations when neglecting the zero rows. As is gained by deleting
the zero rows and all rows and columns of P1Ã which are not recorded by algorithm 3.1. Applying the
Gauß-Jordan elimination yields the unique reduced row echelon form Ar equivalent to As. A proof for
the uniqueness of the reduced row echelon form can be found in [15]. If in Ar there is a row j in the
system having only one entry in column i, then the corresponding variable vi can not be set. If we set

28

3. Regularization of the Initialization System

vi, the variable can be substituted by its prescribed value. Thus, the i-th column is removed from the
system and row j becomes a zero row. This leads to a singular system for any prescribed values and
hence a globally singular system.

Theorem 3.4 Assume that the reduced row echelon form Ar of As ∈ Rl×k with l < k is given. All
variables in Ss which occur as a single entry in a row of Ar lead to a global singularity when they are
set. We collect them in the set G. Then the set of possible settings is S = Ss\G.

Proof. The statement follows directly from the considerations above.

𝑚5 𝑚1 𝑚2 𝑚3

𝑚4

𝑚1 = 𝑚2
𝑚2 = 𝑚3 +𝑚4 𝑚3 +𝑚4 = 𝑚5

Splitter Mixer

Figure II.1.: Flow sheet of a Splitter-Mixer system.

Example 3.5 (Splitter-Mixer) Assume that the steady-state mass flow has to be calculated in a
splitter-mixer-system. The flowsheet of the system is illustrated in figure II.1. The mass balances
reduce to algebraic equations. The system can be written as

m1 = m2,

m3 +m4 = m2,

m3 +m4 = m5

(3.6)

where m3 and m4 are mass flows in the split region, m1, m2 before the splitter and m5 after the mixer.
Hence the system has two degrees of freedom. The Jacobian is given by

J =

 1 −1
−1 1 1

1 1 −1

 . (3.7)

All variables are structurally settable and the Gauß-Jordan Algorithm transforms the system into the
reduced row echelon form

J̃ =

 1 −1
1 −1

1 1 −1

 . (3.8)

Since no rows with only one entry occur, all variables in Ss are possible settings, i.e. S = Ss. Setting
m5 leads to

J =

 1 −1
−1 1 1

1 1

 and J̃ =

 1
1

1 1

 . (3.9)

Again all variables are structurally settable, i.e. Ss = {m1,m2,m3,m4} but now the reduced row
echelon form J̃ reveals that m1 and m2 can not be set and we obtain S = {m3,m4} (Ss. ♦

Next we extend this results to nonlinear systems. When solving the initialization system the regularity
of the Jacobian is of importance. The main difference to the linear case is that the entries in the

29

II. Solving Differential-Algebraic Equations

Jacobian can depend on the point in which they are evaluated. Since we are interested in settings
which do not cause a global singularity the problem can we handled by applying a symbolic Gauß-
Jordan algorithm. We only have to take care of identities which the following example shows. Identities
occur frequently in flow sheet models.

Example 3.6 Let the following system of equations with three degrees of freedom be given as

−x1 + y1x2 + y2x3 = 0,

y3x2 + y4x3 = 0,

y1 − y3 = 0,

y2 − y4 = 0.

(3.10)

Assume that we set y1 = a and y2 = b. Then one degree of freedom is left and with the ordering
(x1, x2, x3, y3, y4) we obtain

J =

−1 a b

y3 y4

−1
−1

 (3.11)

and the symbolic Gauß-Jordan algorithm yields

J̃ =

1 ay4

y3
− b

1 −y4
y3

1
1

 . (3.12)

The considerations so far would yield that x1, x2 and x3 can be set. Unfortunately, if x1 is set, a global
singularity emerges. Using the identities, row 3 and 4 in equation (3.10), we obtain ay4

y3
−b = ab

a −b = 0.
Thus, the first row in the above system has only one entry which yields that x1 can not be set. If the
identities are erased from (3.10) in advance, we obtain

−x1 + y1x2 + y2x3 = 0,

y1x2 + y2x3 = 0.
(3.13)

Choosing the same settings, the transformed Jacobian reads as

J̃ =

(
1

1 −b
a

)
. (3.14)

Thus, removing the identities from the system yields the correct results. ♦

The above example demonstrates that a symbolic Gauß-Jordan elimination alone does not necessarily
achieve the desired result on its own but some information from the equations has to be incorporated
in advance. Furthermore, the symbolic algorithm can be written in the way that equations do not
have to be given as explicit as above. Let

f(z1, z2, z3, z4) = z3z1 + z4z2. (3.15)

Then (3.13) can be written as
−x1 + f(x2, x3, y1, y2) = 0,

f(x2, x3, y1, y2) = 0.
(3.16)

If y1 and y2 are set, the Jacobian is

J =

(
1 ∂f

∂x1

∂f
∂x2

∂f
∂x1

∂f
∂x2

)
(3.17)

30

3. Regularization of the Initialization System

and the reduced row echelon form has the same structure as in (3.14). Hence for implicitly given
equations even an explicit derivative is in some cases not required.

The disadvantage of the symbolic Gauß-Jordan elimination is the difficulty of implementation and, as
stated in [29], the potentially high costs of dealing with symbolic entries. Normalization of quotients
and cancelations have to be performed and entries have be checked if they are zero. Besides the
computational cost, implementing a symbolic Gauß-Jordan elimination is a nontrivial task. Therefore,
we present some ideas to extend the usual Gauß-Jordan algorithm for linear systems to Jacobians
arising from systems with linear and nonlinear parts.

First, only the linear equations can be regarded. Recall theorem 3.3, there is a subset T of variables
which can be calculated although the system is structurally singular. We exploit this fact, calculate
these variables and substitute the results into the singular part of the system. Obviously, the less
degrees of freedom the more variables are found in T . Hence symbolic, i.e. state dependent, coefficients
in the remaining Jacobian can become constant for every evaluation point. In (3.11) this is made
visible by replacing y1, y2 by a, b, respectively. Consequently, the first row no longer depends on the
evaluation point. This implies that by calculation and substitution of variables in T the amount of
linear equations in the singular subsystem can be increased and thus the result of the nonsymbolic
Gauß-Jordan elimination can be improved.

Second, partially also symbolic entries can be handled by the elimination. Assume that a row with
only one entry is given. Then this row can be used to erase the respective column entry in all other
rows independent of their values. Regard

J =

 × ×
a

× b c

 (3.18)

with given a, b, c ∈ R. The ×-entries denote a non constant entry in the Jacobian. Whatever value is
obtained in J1,2 we can multiply the second row with the same value and subtract it from the first one
providing a zero entry in J1,2. Thus another row with a single entry is found and the procedure can
be repeated. Although not all entries in the Jacobian are constant this procedure yields

J̃ =

 × a
b c

 (3.19)

which implies that again the first two variables can not be set.

3.1.3. Further Considerations

The results gained from the algorithms above are valid until a new variable is set. Then the procedure
has to be repeated to ensure correct results. Let the system have more than one degree of freedom. If the
singular subsystem can be split into two independent, i.e. decoupled, parts, one setting can be selected
from each part simultaneously and no recalculation of S is required. To obtain the decoupled parts,
methods from graph theory may be applied, e.g. an algorithm for finding connected components may
be used. Furthermore, for each decoupled part the degree of freedom can be determined. Algorithm
3.1 first searches for zero diagonal entries in P1Ã. We gather the corresponding variables in the set I,
the starting point for the set Ss and determine in which connected component the variables from I
occur. For each appearance the degree of freedom of the component is increased. This procedure may
lead to a better understanding of the singular system.

31

II. Solving Differential-Algebraic Equations

Up to now general systems have been investigated. We neglected the distinction between differential
and algebraic variables in the initialization system. As a final point of this section, special considera-
tions for the initialization system are made. We assume that the underlying DAE of (2.1) can also be
underdetermined which implies that algebraic variables have to be set and differential variables have
to be initialized. In section 2.1 it was mentioned that we demand that each differential variable or its
derivative must be initialized but not both. This makes space for further restraints of possible set-
tings which reduces the set S. For an underdetermined system the degree of freedom and the number
of missing initializations is known. If all differential variables are initialized properly, only algebraic
settings are missing. Thus all differential variables can be removed from S. Vice versa, if the degree
of freedom is equal to the missing initializations no algebraic setting will lead to a correctly initialized
system and these variables have to be removed from S. Furthermore, a differential variable x must be
initialized if its derivative x′ can be calculated, i.e. x′ ∈ T , and vice versa. If a variable x has to be
initialized, all variables y have to be removed from S which are connected to x via a single variable
function

x = f(y). (3.20)

Example 3.7 In [11], p. 138, the system

−y′1 + y′2 + y1 = g1(t),

y2 = g2(t)
(3.21)

is presented as a counter example in which the developed simple algorithm therein for finding consistent
initial values fails. The second equation yields y2(t0) and the hidden constraint y′2(t0) = g′2(t0). Thus,
only y1 or y′1 can to be initialized arbitrarily to obtain consistent initial values but y′2(t0) can not. The
algorithm in [11] and also the Echelon Analysis do not detect this hidden constraint. The Echelon
Analysis only guides to a regular initialization system which does not imply consistent initial values.

Still, if we start without any initializations and run the Echelon Analysis, we obtain y2 ∈ T and
S = {y1, y

′
1, y

′
2}. By the restriction that each differential variable or its derivative have to be

initialized, y′2 and one of {y1, y
′
1} have to be initialized leading to a regular system for any given

values. Still, only y′2 = g′2(t0) yields a solution (x, y)(t) ∈ C1(I,R2) of the IVP, see definition 1.2, and
hence consistency. Although there is no solution of the IVP for y′2(t0) 6= g′2(t0), if y′2(t0) ∈ Uε(g′2(t0)),
DASSL is able to solve the system and (x, y)(t) equals a solution (x̂, ŷ)(t) for t > t0. The solution
(x̂, ŷ)(t) corresponds to the consistent initial value y′2(t0) = g′2(t0). Therefore, whenever derivatives of
a differential variables have to be initialized there is only one consistent value which can be determined
from hidden constraints. ♦

Example 3.8 (Mass-Spring-Damper) Regard

∆x = x− x0,

F = d∆x′ + c∆x,

F = m(g − v′),
v = x′.

(3.22)

Here x0 represents the position of the suspension, x the position of the mass, ∆x the deflection, v
the velocity, m the weight of the mass, c the stiffness of the spring, d the damping constant, F the
force and g the gravitational constant. This system describes the motion of a damped spring and we
assume that m, c, g and d are given. If the suspension x0 is set constant, x and ∆x are only shifted
by the constant x0 and we obtain the hidden constraint ∆x′ = x′. Four equations and four variables
{F, x,∆x, v} remain. Three variables are differential variables. No more algebraic settings are required
but all differential variables have to be initialized but it is not possible to prescribe the state for each
differential variable. The very first initialization can be chosen randomly. Assume that x was chosen.
Thus, ∆x can be calculated and ∆x′ has to be initialized. This implies that algebraic variable F is

32

3. Regularization of the Initialization System

prohibited and so is v′. Therefore v must be initialized which prohibits x′. The latter one would also
be removed from S since the corresponding x is already initialized. Consequently the first initialization
determines what choice has to be made for all others. Assume that the initializations are x, v, ∆x′.
The value for x can be chosen arbitrarily. Since x0 constant, we obtain ∆x′ = v. These two variables
have to be initialized with the same value to obtain consistent initial values. Hence, if the Echelon
Analysis returns that a derivative has to be initialized, there is only one value which is consistent and
yields a solution y(t) ∈ C1(I,Rn) of the IVP. ♦

We summarize the procedure presented in section 3.1 in the following theorem.

Algorithm and Theorem 3.9 Let A : Rn → Rm with n > m have structural rank m, be globally
non-singular and the degrees of freedom be d = n−m. Let S be gained by the Echelon Analysis. Then
the procedure

1. for i = 1, ..., d
2. Find the set S for the system A.
3. Set one variable from S and update A.
4. end

yields in d steps a structurally and globally non-singular system Ã : Rm → Rm consisting of the system
A endowed with d additional settings. In particular, for i > 1 the set Si found in the i-iteration is a
subset of the set Si−1 from the previous iteration.

Proof. This is an immediate consequence from theorem 3.2 and 3.4.

3.2. Adjoint Echelon Analysis

In the following we consider overdetermined systems. At first we do not distinguish between differential
and algebraic variables. Moreover, the overdetermination does not have to occur for the whole system
but can also be caused by a subsystem as presented in (3.4) on page 26. This system is structurally
singular and bearing an over- and underdetermined part. If the system contains an overdetermined
part, we call this a conflict. An overdetermined subsystem A : Rn → Rm has more equations than
variables, i.e. m > n holds. We assume that the equations are set up in a proper way such that they
are free of conflicts. Then conflicts can only occur by too many settings. Symbolic rows with only one
variable are equivalent to settings since there are just two ways to generate such a row. These are

x = a and x = g(t) (3.23)

with a ∈ R or g : R→ R given. The first one corresponds to a setting the second one is a forcing term
which can be treat equally for a fixed time. From now on a setting is interpreted as an equation added
to the system. The goal is to find a set R of equations from which one can be removed from the system
such that one conflict is solved. The set R can contain other equations than those corresponding to a
setting but only the latter ones are of importance.

We subdivide the procedure of finding R, referred to as Adjoint Echelon Analysis, into two parts.
First the structural part is performed in which a set Rs is found consisting of equations which can be
removed such that the structural rank of the system remains equal. An equation e ∈ Rs is referred
to as structurally removable. The second part determines R ⊆ Rs in which no equation causes a
global singularity when it is removed. We call these equations (numerically) removable. For the sake

33

II. Solving Differential-Algebraic Equations

of presentation, we assume that a system A ∈ Rm×n with m > n is given, the equations are set up
properly and no underdetermined part exists. Hence the system contains d = m− n conflicts.

3.2.1. Structurally removable Equations

We extend the system by d artificial zero-columns and perform the maximal transversal algorithm
first. The system is not structurally regular and d rows occur having zero main diagonal entries. In
particular, after the algorithm the first n rows have non-zero main diagonal entries and the rows from
n+ 1 to n+ d = m do not. Contrary to the underdetermined case no zero rows occur. Here, each row
which does not have a diagonal entry has entries in other columns. The matrix P1A has a transversal
with length n but the arrangement of the rows is again not unique. Obviously, by removing the last
d rows having no diagonal entry, a structurally regular system emerges. Assume that row i is one of
these rows and has entries in columns j and k. Then row i can be interchanged with either row j of
k and the length of the transversal is preserved. Thus, removing one of the other two rows preserves
the structural rank. These considerations yield the following algorithm.

Algorithm 3.10 Let Rs be the set of structurally removable equations, N the set of not explored
equations and B the set of visited equations.

1. Set R = ∅, N = ∅ and B = ∅.
2. Find all zero diagonal entries and add the corresponding rows to Rs and N .
3. do
4. Select row e ∈ N and add it to B.
5. Add all column indices j occurring in e to Rs and N if j /∈ B.
6. Remove e from N .
7. while N 6= ∅.

Theorem 3.11 The set Rs gained with algorithm 3.10 is maximal in the sense that Rs contains all
structurally removable equations.

Proof. Assume that P1A is structurally singular. Let ri be a structurally removable row which was not
detected by Algorithm 3.10. Then ri has an entry on the diagonal due to point 2 of Algorithm 3.10. A
row ri is structurally removable if the length of the transversal is preserved when it is removed. Hence,
there must be another row rj having an entry in column i such that ri can replace rj . If not, ri is
not structurally removable. The length of the transversal is preserved if row rj has no diagonal entry
in P1A. If rj has a diagonal entry, a row rk has to exist which can replace rj which has no diagonal
entry. In general, a sequence of permutations has to be performed but only a row in P1A without a
diagonal entry can fill the zero diagonal entry. Due to point 2 of Algorithm 3.10 this row was detected
and thus all above mentioned rows including ri. This is a contradiction to the assumption.

Although the system is overdetermined it is still possible to find variables which already can be calcu-
lated correctly. This means that the results for these variables remain equal after solving the conflicts.
The block triangular algorithm from [24] does not yield the same results. As mentioned in section
3.1.1 the implementation labels a node as invalid if a diagonal element is zero for an equation in a
block. The overdetermination yields n rows with transversal entries for n variables. Hence blocks can
be found as if the d rows without diagonal element would have been removed from the system and they
are labeled invalid. Therefore the result of the algorithm is not reliable in the overdetermined case.
Nevertheless, by collecting all variables which occur in the equations of Rs in the set I and staring

34

3. Regularization of the Initialization System

algorithm 3.1 with Ss = I instead of the empty set yields all variables which can not be calculated
reliably. Consequently, also the variables are known which can be calculated including the required
equations. We gather these variables in the set T .

3.2.2. Numerically removable Equations

The next step is to identify equations which would lead to a globally singular Jacobian if they are
removed from the system. As mentioned above the set Rs also contains equations which are not
settings. We are only interested in settings which can be removed but the following identification is
done for the whole set. Let the system have d conflicts, Rs consist of k equations with l = k − d
variables. This yields a system As ∈ Rk×l. The adjoint (transposed) system A>s ∈ Rl×k with l < k
is underdetermined. As in section 3.1.2, we ask which columns can be removed from the system such
that no global singularity emerges. Hence this problem can be solved again by transforming the system
to the reduced echelon form with the Gauß-Jordan elimination and subsequent search for rows with a
single value.

This can be interpreted as follows. The rows and columns of A>s correspond to the variables and the
equations, respectively. A value aij in column j of row i means that variable vi has coefficient aij
in equation ej . If this is a single entry in row i then only ej is left in which vi can be calculated.
Therefore ej must not be removed from the system. We present these considerations with the aid of
the following example.

Example 3.12 (Splitter-Mixer) We regard the Splitter-Mixer presented in example 3.5. Recall

m1 −m2 = 0,

m3 +m4 −m2 = 0,

m3 +m4 −m5 = 0

(3.24)

and assume that m1, m3 and m5 are set which makes it overdetermined. The Jacobian and its adjoint
are

J =

1 −1
−1 1 1

1 1 −1
1

1
1

 and J> =

1 1
−1 −1

1 1 1
1 1
−1 1

 . (3.25)

Applying, the Gauß-Jordan elimination to J> yields

J̃> =

1 1

1 −1
1 −1

1 −1
1

 . (3.26)

Thus equation 5 can not be removed from the system which corresponds to the setting of m3. ♦

3.2.3. Further Considerations

The set R contains all equations which can be removed. This also includes equations not corresponding
to a setting which of course is not applicable unless used during the model development phase. We

35

II. Solving Differential-Algebraic Equations

only suggest settings which can be removed. By nature flow sheet models are underdetermined after
being set up. When the advice of the Echelon Analysis is followed no conflicts emerge. If the Echelon
Analysis is not available, then in large models one might loose the overview of which variables already
can be calculated. Setting one of the variables in T yields a conflict. A benefit of the Adjoint Echelon
Analysis is that it can be applied to underdetermined system as well. Furthermore, for determined
systems the Adjoint Echelon Analysis turned out to be a useful tool when a change in the setting
structure is requested. In cases where good values for a variable in T exist, we can set it and obtain
information which settings are in conflict with the desired one. Hence by removing another setting the
structure was changed.

Finally we discuss aspects when distinguishing between algebraic and differential variables. Obviously,
if a differential variable and its derivative are initialized at the same time, one of them has to be
released since this situation is not allowed. This has highest priority. Furthermore, if the differential
variable is initialized and the corresponding equation occurs in R but the derivative lies in T , then
this variable has to remain initialized and hence can be removed from R, and vice versa. This may
be done iteratively since after fixing an initialization the set T can become larger and thus further
variables which have to remain initialized may be found.

We summarize the procedure presented in section 3.2 in the following theorem. The proof follows
directly from theorem 3.11 and the considerations from section 3.2.2.

Algorithm and Theorem 3.13 Let A : Rn → Rm with m > n have structural rank n. Let the
equations be set up properly and the system have d = n−m conflicts emerging from settings. Further
let R be gained by the Adjoint Echelon Analysis. Then the procedure

1. for i = 1, ..., d
2. Find the set R for the system A.
3. Remove one setting from S and update the system A.
4. end

yields in d steps a structurally and globally non-singular system Ã : Rn → Rn. In particular, for i > 1
the set Ri found in the i-iteration is a subset of the set Ri−1 from the previous iteration.

3.3. A priori Model Analysis

So far we assumed that the equations are set up in a proper way. We drop this assumption and present
a method to identify sets of dependent equations. Let A ∈ Rm×n with m ≤ n and let the rows be
linearly dependent. Hence, A does not have maximal row rank, i.e. rank(A) = l < m holds. The
goal is to find maximal, decoupled subsystems Ri = {r1, ..., rk} of rows in A such that there exists an
α ∈ Rk \ {0} satisfying

k∑
j=1

αjrj = 0. (3.27)

This implies that the rows in Ri are linearly dependent and no setting structure can lead to a regular
system. In this case, the equations have to be revised. If, on the one hand, all equations in Ri occur
within the same component then the corresponding component model contains an error. If, on the
other hand, they are distributed over the flow sheet model then the arrangement of the components
has to be investigated. The maximality of the subsystem Ri is of importance if

dim span(Ri) < k − 1. (3.28)

36

3. Regularization of the Initialization System

In this case also a subset Rs ⊂ Ri can be found which satisfies (3.27) with α 6= 0 as well.

Applying the Gauß-Jordan elimination to A yields d = m − l zero rows. Hence, we have d degrees
of freedom. The zero rows imply that there exist at most d dependent subsystems and the rows
transformed into zero rows are part of these subsystems. Which rows of Ri are transformed into zero
rows depends on the ordering of the columns.

To find a maximal, dependent subsystem, the adjoint system A> is investigated. We perform the
Gauß-Jordan algorithm which yields an equivalent system Ã>. Since

rank(A) = rank(A>) = rank(Ã>) = l < m (3.29)

holds we obtain n − l = n −m + d zero rows in Ã>. Therefore in l rows m different column entries
are found. In other words m equations exist to calculate l variables. This corresponds to a (partial)
overdetermination. In sparse systems usually this overdetermination does not involve all l nonzero
rows. With the following algorithm it is possible to determine the minimal set of rows containing more
column than row indices. This information is provided by the sets Vi and Ei corresponding to the row
and column indices, respectively.

Algorithm 3.14 The algorithm operates on Ã>.

1. Add all rows with more than one column entry to L.
2. do
3. Select r ∈ L and add it to a new Vi
4. Add all occurring column indices c in r to a new Ei and N .
5. do
6. Select c ∈ N .
7. Add all rows from L with an entry in c to Vi.
8. Add all new column indices within these rows to Ei and N .
9. Remove c from N .

10. while N 6= ∅.
11. Remove all rows in Vi from L.
12. while L 6= ∅.

Lemma 3.15 Let (Vi, Ei) be a pair gained from algorithm 3.14. Then |Vi| < |Ei| holds.

Proof. The algorithm only notes rows with multiple entries. Each subsystem represented by the pair
(Vi, Ei) is fully decoupled from the remaining system since there are no connections via column entries.
|Vi| > |Ei| can not hold since the Gauß-Jordan elimination is performed in row orientation. Assume that
|Vi| = |Ei|. On the one hand, if this subsystem is singular then zero rows would have been produced by
the Gauß-Jordan elimination and hence |Vi| is reduced. On the other hand, if the subsystem is regular,
it is equivalent to the identity. Then the elimination would have provided this and these entries would
not have been recorded by the algorithm.

Theorem 3.16 Let A ∈ Rm×n have rank l < m and let Ei for i = 1, ..., τ be provided by algorithm
3.14. Further let Ri be the set of rows corresponding to Ei, i.e. Ri = {rj ∈ A : j ∈ Ei}. The sets Ri are
linearly dependent and maximal in the sense that there is no other row r in A such that r ∈ span(Ri).
In particular, these sets are decoupled and can be treated independently.

37

II. Solving Differential-Algebraic Equations

Proof. The Gauß-Jordan elimination can be written as a sequence of elementary row transformations
Mι, i.e.

Ã> =

(
κ∏
ι=1

Mι

)
A> = MA>.

We assumed that rank(A) = l < m which implies that A> has a nontrivial kernel. Thus β ∈ Rm \ {0}
exists such that

0 = M(A>β) = (MA>)β.

Algorithm 3.14 yields pairs (Vi, Ei) for i = 1, ..., τ and hence a decomposition ofMA> into independent
parts. With suitable row and column permutations Pr and Pc based on the results of the algorithm,
MA> can be written as

PrMÃ>Pc =

1
. . .

1
B1

. . .
Bτ
0

.

Here Bi denotes the i-th block corresponding to (Vi, Ei). Obviously, the entries of a β ∈ ker(A>) which
correspond to columns not occurring in a block are zero. Furthermore the kernel of A> can be written
as the direct sum, i.e.

ker(A>) =

τ⊕
i=1

Ui

and the elements of each subspace Ui ⊂ Rm have only nonzero entries in those corresponding to Ei.
Lemma 3.15 yields |Vi| < |Ei| for each block Bi which implies that di = |Ei|− |Vi| vectors can be found
spanning Ui. Hence any linear combination of these vectors yields a β ∈ ker(A>). We choose a β ∈ Ui
with maximal nonzero entries and finally obtain

0 = (MA>)β = M(A>β) = (β>A)M>.

Since M> is regular β>A = 0 holds. This corresponds to a linear combination of the rows of A and
yields that the rows corresponding to Ei are linearly dependent. The maximality follows directly from
the decomposition achieved with algorithm 3.14.

Example 3.17 Let the following system and reduced echelon form be given as

A =

1

1 1
1 1 1

1 1 1
1

 and Ã =

1

1
1 −1

1 1

 (3.30)

Investigation of the adjoint system yields

A> =

1 1 1

1 1 1
1 1
1

1

 and Ã> =

1 −1

1 1
1

1

 . (3.31)

Algorithm 3.14 provides E1 = {1, 2, 5} which are the dependent rows. ♦

38

4. Improvements in DASSL

Example 3.18 Assume that we have a stationary closed cycle model and each component contains
the mass conservation law, i.e

0 = min −mout. (3.32)

Given four components we obtain the following system matrix

A =

1 −1

1 −1
1 −1

−1 1

 . (3.33)

Applying the Gauß-Jordan elimination yields

Ã =

1 −1

1 −1
1 −1

 . (3.34)

The zero row reveals that one equation is dependent. From the adjoint system we obtain

A> =

1 −1
−1 1

−1 1
−1 1

 and Ã> =

1 −1

1 −1
1 −1

 . (3.35)

Algorithm 3.14 yields V1 = {1, 2, 3} and E1 = {1, 2, 3, 4} which implies that all four equations belong
to the same dependent subset. ♦

Algorithm 3.14 operates on Ã> which implies that only one Gauß-Jordan elimination for the adjoint
system has to be performed. For testing of the implementation one might consider the comparison
with Ã to evaluate if the zero rows occur only in the sets Ei. The above algorithm is formulated for
arbitrary linear systems. For the regularization of the initialization system, the algorithm is applied
to the Jacobian J of the system. If in J the coefficients are non-constant and a symbolic Gauß-Jordan
elimination is not available, PrMJ̃>Pc does not have exactly the form presented in the proof of theorem
3.16. Rather blocks occur which fulfill |Vi| = |Ei| since a full elimination is not possible. Furthermore,
the developed algorithm can be used if a local singularity emerges. In this case the Jacobian becomes
singular in a point. Hence all coefficients are given and we can determine the equations which are
responsible for the singularity. In either case, the algorithm does not provide information of how to
solve the problem, i.e. singular subsystem, since this is usually process dependent and has to be treated
individually. However, the algorithm indicates the equations causing the problem which is supposed
to accelerate the task of resolving the problem.

4. Improvements in DASSL

Once consistent initial values are available, the integration is performed by numerical solver DASSL.
Over the years three variants have been developed, namely DASSL, DASPK and DASKR. The differ-
ences mainly concern the methods for solving the linear system arising at each integration step during
the Newton iteration. In DASSL a dense direct linear solver is implemented. In DASPK the precondi-
tioned Krylov iterative GMRES (Generalized Minimal Residual) is used and in DASKR the user can
choose between the algorithms. Furthermore, in the latter variant also a mechanism to calculate con-
sistent initial values is provided. To do so, either x0 or x′0 has to be known and the converse variable is

39

II. Solving Differential-Algebraic Equations

determined. Despite the variants which have been released over the years, we use the original version
DASSL and implemented own improvements which do not effect the BDF method or step size control.
First of all, as described in section 2, an initialization system is set up and solved to achieve consistent
initial values. This is done outside DASSL and could therefore also be used as a stand-alone program.
As in DASPK and DASKR, the method for solving the linear system was changed which we explain
below.

4.1. Block Decomposition

Let the fully implicit system of differential-algebraic equations be given by

F (t, x, x′) = 0. (4.1)

In order to minimize the memory allocation all systems are assumed to be sparse and represented as
such. In each time step the (nonlinear) system from (1.45) on page 19 has to be solved and the Newton
method is applied. As for the initialization system the block decomposition presented in section 2.2
can be applied to reduce the computational cost. Of course the decomposition does not have to be
performed in each time step but can be calculated once before the integration is started. In contrast
to the initialization system, this system is has less variables since there is no division of the differential
variables into two parts. Thus, we expect the block size to be larger. Then in each time step, each
block is solved sequentially using Newton’s method.

In flow sheet models variables occur which are constant over time, e.g. the mixture of a working fluid
or the geometry of a tank. Such variables can be calculated in the beginning and do not change over
time. Calculating such variables at each time step is therefore not necessary. Furthermore, there are
variables which are only calculated explicitly from other state variables, e.g. the entropy. One might
be interested in its value but usually it is not used to calculate a state point. Hence we distinguish
between three types of variables. Constant, if they only have to be calculated by the initialization
system and remain constant over time, dynamic, if they have to be determined in each integration
step and post calculation variables which are computed only when an output is required. Hence less
variables are passed to DASSL which saves computational time and we except a gain in stability. The
determination of the type of each variable is done blockwise as described in the following algorithm.

Algorithm 4.1 Determination of the calculation type of each variable. Let m be the number of blocks
found, A and I be the sets of active and inactive variables per block, respectively. Active variable are
those occurring in Bii, inactive those in any Bij with j < i. Hence, inactive variables are already
calculated when block Bii has to be solved.

1. for i = 1, ...,m

2. if a differential variable occurs in Ai then
3. all v ∈ Ai are dynamic.
4. if a post calculation variable occurs in Ii then
5. all v in the corresponding block are dynamic (iterative update)
6. if no differential variable occurs in Ai but a dynamic or post calculation variable in Ii then
7. all v ∈ Ai are post calculation.
8. if no differential or post calculation variable occurs in Ai and Ii then
9. all v ∈ Ai are constant.
10. end for

40

4. Improvements in DASSL

The only delicate part in the algorithm above is point 4. If a post calculation variable occurs in the
inactive part of a dynamic block then this variable vi and all others in the block Bii in which vi is
active have to become dynamic as well. Furthermore, a reinvestigation of the block Bii is necessary to
make sure that no post calculation variables are in the inactive set Ii. This is an iterative procedure.

The evaluation of the variable types not only has computational benefits - since the system solved by
DASSL becomes smaller - but also the user may gain a better understanding of the model and the
effects of the settings. It can happen that variables become post calculation which one would have
expected to be dynamic and vice versa. Furthermore, if Newton’s method does not converge, the
block decomposition can ease the search for the origin of the problem. Usually, a single block can be
identified which does not converge. Hence less equations have to be investigated in order to find the
problem.

4.2. Integration Termination Criteria

When DASSL is started we need to provide the starting and ending point of the integration. For many
applications this is sufficient but there are problems in which the integration has to be stopped during
the simulation interval but the time is a priori not known, e.g. if the equations of the model have to
be altered. Such needs can emerge if a valve closes and the model is split into two independent parts
or a flow reversal takes place and a splitter becomes a mixer and vice versa. In this case, only the
condition but not the time for termination of the integration is known.

This condition may be written as a zero-crossing function c(t, x(t)) : R × Rl → R and a root finding
algorithm is used to locate the time at which the integration has to be stopped. We shall use the short
notation c(t) to emphasize the time dependence. The time derivative is gained by applying the chain
rule, i.e.

c′(t) = ct(t) + cx(t)x′(t), (4.2)

where cx(t) ∈ R1×l and x′(t) ∈ Rl×1. In DASSL a new step size h is predicted and a step from tk
to tk+1 is performed which corresponds to solving (1.45). If Newton’s method converges and the step
is accepted, a reevaluation of c(t) is required. If the sign of c(t) changes, a condition became active
and the time at which it occurs has to be found. In this case we say that the corresponding condition
becomes active. In the explanations below we follow [13].

An inexact Newton method is used if several conditions became active within the last integration step.
The focus lies on finding the time at which the first condition becomes active. Let ci(t) for i = 1, ..., d
be the zero crossing function representing the i-th condition which became active. Newton’s method
for any ci(t) can be written as

t∗i = tk+1 −
ci(tk+1)

c′i(tk+1)
. (4.3)

Replacing the derivative by the backward difference yields

t∗i = tk+1 −
ci(tk+1)(tk+1 − tk)

ci(tk+1)− ci(tk)
=
ci(tk+1)tk − ci(tk)tk+1

ci(tk+1)− ci(tk)
(4.4)

and we choose the minimum, i.e. t∗ = mini t
∗
i . This yields the new step size h = t∗ − tk and we let

DASSL repeat the step. If still more than one ci(t) crosses zero, we set tk+1 = t∗. Otherwise, if no
condition becomes active, we set tk = t∗. This procedure is performed until only one ci(t) remains
which crosses zero in the interval [tk, tk+1]. From that point on, we can apply any root finding algorithm
to this single function ci(t).

41

II. Solving Differential-Algebraic Equations

We present one algorithm which converges with cubic speed and convergence is guaranteed. Assume
that c(t) is the only function which crossed zero in the interval [tk, tk+1]. Given the values c(tk),
c(tk+1), c′(tk) and c′(tk+1) we obtain enough information to fit a third order polynomial p. As a short
notation we write ck = c(tk) and c′k = c′(tk). Since sgn(c(tk)) 6= sgn(c(tk+1)) holds and p is continuous
at least one root can be found. In particular p has at most three roots and at least one is real. To
circumvent the search for the roots of p a polynomial interpolation of the inverse of c(t) is applicable.
Let t(c) be the inverse of c(t). Then four values of this function are given by tk = t(ck), tk+1 = t(ck+1),
t′k = 1/c′k and t′k+1 = 1/c′k+1. The inverse cubic polynomial has the form

t(p) = ãp3 + b̃p2 + c̃p+ d̃ (4.5)

and the coefficients are gained by solving
c3k c2k ck 1
c3k+1 c2k+1 ck+1 1

3c2k 2ck 1 0
3c2k+1 2ck+1 1 0

ã

b̃
c̃

d̃

 =

tk
tk+1

1/c′k
1/c′k+1

 . (4.6)

Finally we obtain the new time t∗ by evaluating (4.5) at 0, i.e.

t∗ = t(p = 0) = d̃, (4.7)

the last coefficient. Given the new evaluation time the DASSL step is repeated and the interval is
updated via tk = t∗ if the condition is not active at t∗ or tk+1 = t∗ otherwise. This procedure is
applied until tk+1 − tk < δ or |ck+1| < ε for given δ, ε > 0.

Next we answer the question what can be done if a condition becomes active and inactive again
within the same time interval [tk, tk+1]. This implies that DASSL would miss the activation of the
condition since the step size was chosen too large. We assume c(t) ∈ C1(R,R), the space of continuously
differentiable functions. In this case the corresponding function c(t) crosses zero twice and thus has
an extremum. Hence, c′(t) changes sign within [tk, tk+1]. By adding the derivative to the set of zero
crossing functions the problem can be solved. If, during the search for a root of c′(t), it is revealed
that c(t) became active, we pursue only c(t) anymore. If c(t) has an extremum but does not become
active, the integration is resumed by DASSL without any changes.

Finally, we investigate the case when a termination criterion c(t) is used describing the boundary of
the domain of a function in the system. E.g. let a function be given by

f(x, y) =
√
x− y (4.8)

and the condition by
c(t) = x. (4.9)

As long as x ≥ 0 holds the integration is performed but has to be stopped if x becomes negative since
the square root is not defined. If x becomes negative, Newton’s method does not converge since an
error in (4.8) arises which stops the iteration. Thus c(tk+1) can not be evaluated either and we do not
know that actually the condition is becoming active. In this case DASSL will reduce the step size h
until no errors occur which implies c(t) > 0. The same behaviour will repeat until x(tk) is very close to
0 and the step size becomes less than the minimum and DASSL aborts with the corresponding error.
What can be done is to check |ck+1| < ε for given ε > 0 which avoids missing that a condition becomes
active. This implies that the step size control is left with DASSL. Otherwise, we can use the fact that
c′(tk) is known and predict c(tk+1), i.e.

cp(tk+1) = c(tk) + c′(tk)h. (4.10)

42

4. Improvements in DASSL

If sgn(c(tk)) 6= sgn(cp(tk+1)), we may assume that the error in the Newton iteration occurs due to
exceeding the termination criterion c(t). We choose

h = − c(tk)

c′(tk)
, (4.11)

set t∗ = tk+h and repeat the DASSL step. If the Newton iteration converges we set tk = t∗. Otherwise
we obtain an upper bound for tk+1 and have to choose the next t∗ via e.g. bisection or leave the choice
with DASSL.

43

44

III. Modelling

Within this chapter we present the component models of the refrigeration appliance which were de-
veloped in MDK and the flow sheet model set up in PSE. During the ECO-COOL research project
a new, independent model library, named Eco-Cool-Lib, was implemented. But first, the investigated
domestic refrigeration appliance is presented and we give an introduction into IPSEpro and its model
architecture.

1. The Domestic Refrigeration Appliance

We begin this chapter with the introduction of the investigated domestic refrigeration appliance. In
table III.1 the key data is given. The appliance is an upright freezer and its class is SN-T (subnormal-
tropical) which means that it is designed for ambient temperatures of 10 ◦C to 43 ◦C. The energy
consumption is approximately 0.645 kWh per day and the energy label is A. The refrigerant is Isobu-
tane (R600a), also known as Methylpropane.

Table III.1.: Key data of the refrigeration appliance.

Gross/net capacity 162/158 L
Energy consumption 235 kWh/a
Energy efficiency index 43.9
Climate class SN-T (subnormal-tropical)
Freezing capacity 19 kg
Door heating Available
Type Upright freezer
Compressor cooling capacity
(ASHRAE −23.3 ◦C / 55 ◦C) 167.0 W

In figure III.1 the setup of an appliance is illustrated and in the following the design of the investigated
freezer is described. First, there is a casing (1) and a door (2). If the door is opened we see the interior,
also called the compartment (3). This is the place to store food and drinks. Between the casing and
the compartment, the insulation is situated and therein the evaporator. Different from figure III.1,
where a plate evaporator is depicted, the evaporator (8) is wound vertically around the compartment
in the investigated freezer. In the evaporator the temperature of the refrigerant is less than the desired
compartment temperature such that heat is absorbed and the interior is cooled. In some appliances
an accumulator is built in at the end of the evaporator. The accumulator collects the liquid share of
the refrigerant. In the optimal case only superheated fluid leaves the accumulator which increases the
cooling capacity and prevents that liquid refrigerant enters the compressor.

The counterpart of the evaporator is the condenser (5) which is installed free-hanging at the back of
the appliance. The condenser gives off heat to the ambiance. In the investigated freezer, we have a
black fin condenser whose tubes are made of steel. The fins increase the surface area and thus more
heat is transmitted. In freezers, often the end part of the condenser tube is led around the frame of
the door to prevent that it freezes on. The disadvantage of this design, named door heating, is that
the condenser tube also heats the compartment. At the end of the condenser, the filter/dryer (6) is

45

III. Modelling

Figure III.1.: Setup of a domestic refrigeration appliance, [81]. 1 - Casing, 2 - Door, 3 - Interior/Com-
partment, 4 - Compressor, 5 - Condenser, 6 - Dryer, 7 - Capillary, 8 - Evaporator.

installed. Its purpose is to filter the possibly impure refrigerant and to remove water. Although water
is not supposed to enter the refrigeration cycle during the operation, it can enter the cycle in the
manufacture. If water flows into the capillary, it freezes, blocks the mass flow and can cause damage
in the refrigeration cycle.

The capillary (7) itself, a very thin, long tube, is situated between the condenser and evaporator
and expands the refrigerant. This means that the pressure of the refrigerant is decreased and thus
likewise its temperature. The pressure drop depends on the length and the diameter of the tube.
Additionally the capillary is connected to the suction line, the tube between the evaporator and the
compressor, which enables heat exchange. This internal heat exchanger increases the cooling capacity
of the appliance and shall prevent that non-superheated refrigerant enters the compressor.

Finally, the compressor (4), including the engine, is typically located at the back of the appliance
beneath the condenser. The compressor sucks vaporized refrigerant from the evaporator into its shell
and from there into the cylinder where the refrigerant is compressed such that the temperature is above
ambient temperature. If the engine is switched off, the oil used to lubricate and cool the compressor
is collected at the bottom of the shell which is referred to as oil sump. On the one hand the oil can
absorb and desorb refrigerant and on the other hand the oil may enter the refrigeration cycle if it is
sucked in by the compressor. The sorption process depends among other parameters on the interface
between oil and refrigerant. If the engine is switched on, the oil is distributed in the shell and hence
the interface to the refrigerant is increased. If oil gets into the refrigeration cycle, the heat transfer
is affected. Since the models of the effect of the oil on the heat transfer are uncertain, see [81], this
influence is neglected and only the sorption process is modelled in this thesis.

46

2. Modules of IPSEpro

2. Modules of IPSEpro

IPSEpro consists of several modules from which the two most important are the Model Development
Kit (MDK) and Process Simulation Environment (PSE). Screenshots of these two modules are given in
figure III.2 and III.3. First, the MDK consists of the model editor and the model compiler and is used
to develop component model libraries. In the model editor the component models are described. An
Icon is designed for each component model, the occurring variables are defined and the mathematical
equations are formulated. The equations have to be written in the syntax of the Model Description
Language (MDL) provided by IPSEpro. In the MDL each equation receives a label separated by a
double dot and the end is indicated by a semicolon. An illustration is given below. It has to be
emphasized that the lines written with the MDL are not assignments as in programm languages like
C++ but represent actual equations. Also the sequence in which the equations are listed does not
influence the solution. When the component models are fully described, the model compiler has to
be invoked which translates the models into a binary format. This increases the performance when a
model is solved in PSE.

Model Description Language Sample
f1: feed.mass = drain.mass;
f2: feed.mass*(feed.h - drain.h) = k*A*(t-t_out);
f3: feed.p - delta_p = drain.p;
f4: drain.t = t;

t1: test (mass >= 0.0) warning "mass flow negative";

Second, in PSE the component models from a model library can be arranged as a flow sheet model.
Per drag and drop the icons of the component models can be taken from a list, arranged and connected
in the flow sheet editor. Then the boundary conditions and parameters have to be specified which is
done directly in the flow sheet editor. After the simulation, results are displayed beside the component
models.

Figure III.2.: Screenshot of the module MDK.

47

III. Modelling

Figure III.3.: Screenshot of the module PSE.

Third, having set up a valid flow sheet model, a mathematical solver kernel is called. Therein, the
equations from MDK are gathered in a system of equations which is solved by appropriate numerical
methods. The solution process is split into two stages. First, in the analysis phase the system is
checked for errors and decomposed as described in section II.2.2. Second, in the numerical solution
phase the system is solved. Next we introduce the model structure in IPSEpro. This concerns first
and foremost the model development in MDK.

3. Model Structure in IPSEpro

In IPSEpro, there are three types of components: Units, Connections and Globals. First, the Units
represent equipment such as heat exchangers, pipes or compressors. Second, the Connections indicate
the link between Units and allow transfer between the connected Units. The transferred quantities
can be e.g. mass, heat, or information. Third, the Globals enable to share information between Units
or Connections on a higher level accessible to multiple Units and Connections. The structure which
is common to all component types is presented first and then specific features are discussed. For a
deeper insight we refer to [95].

A component consists of items and equations. The items are the basic elements which appear in the
equations and comprise variables, parameters, switches, tables and external functions. These elements
then can be arranged in equations which have to be written in the syntax of the MDL. Together, they
form the mathematical model of the component. If the flow sheet model in PSE is set up and the
numerical solver is called, the mathematical model is incorporated into the system of equations. The
Units are the only components able to have more than one mathematical model. The number of items
and equations can differ within each mathematical model. Thus, in PSE the flow sheet model can be
conserved for several models. However, changing the mathematical model of a Unit may require an
alternation of the settings, respectively boundary conditions.

48

3. Model Structure in IPSEpro

The only items discussed in detail in this thesis are the external functions. Through a C-interface,
functions of the form f : Rn → R can be called from a DLL. For the refrigeration appliance model,
several calculations had to be outsourced which are too complex to be implemented in MDK itself.
A detailed description of the developed HTX.dll , written in C++, and external functions used for
the refrigeration appliance model is given in section 7. The advantages of this interface are, first,
that models which are too complex to be implemented with the MDL can still be handled by IPSEpro,
second, that variables are avoided which do not have to be given explicitly and, third, that the numerical
stability is potentially increased since less variables are iterated.

Unit

Global

Connection

Figure III.4.: Component hierarchy in IPSEpro.

The interaction of components takes place through referencing. Referencing means that a compo-
nent uses items of another component within its equations. There are three rules which have to be
considered. First, Units can reference from Connections and Globals and, second, Connections can
reference only from Globals, but not vice versa. Third, referencing is only possible from components
which are attached. This hierarchy is illustrated in figure III.4. In MDK, a Global can be added to
the list of items in Units and Connections which is sufficient to enable referencing from the Global.
A Connection can be attached to a Unit in PSE if the Unit is equipped with terminals. There are
two types of terminals, inlet and outlet, and plugging a Connection to two terminals of the same kind
is prohibited. In the Unit, each terminal obtains a name, depicted between square brackets in figure
III.5, and the type of the pluggable Connections is specified. Through the terminal the Unit is able
to reference items of a Connection. Referencing an item in an equation is done just like accessing a
member in object oriented programming. The name of the reference, Global or terminal, is followed
by a dot and the desired item name. The syntax of the MDL reads as

ReferenceName.ItemName. (3.1)

[feed]

Unit

Connection Connection

[drain]

P
T
h

mdot

P
T
h

mdot

T
kA

T_out
delta_p

Inlet
Terminal

Outlet
Terminal

1 # Equations of Unit
2 f1: feed.mdot = drain.mdot;
3 f2: feed.mdot*(feed.h - drain.h)
4 = kA*(T-T_out);
5 f3: feed.p - delta_p = drain.p;
6 f4: drain.T = T;

1 # Equations of Connection
2 f1: T = Composition.t_ph(p, h);

Figure III.5.: Simple model in IPSEpro.

49

III. Modelling

In the remainder of this thesis, whenever equations of the components are given this syntax of the
MDL is substituted by the expression

ItemNameReferenceName. (3.2)

Applying this to the MDL sample of figure III.5, the first equation reads as

ṁfeed = ṁdrain. (3.3)

Example 3.1 The above general explanations shall be concretized with the steady-state model illus-
trated in figure III.5. In this model, there exists one Global, named Composition, which is referenced
by the Connection and has one external function t_ph. The external function takes two arguments,
pressure and enthalpy, and returns the temperature. Which working fluid is used is neglected in this
simple example but the Global seems to be an appropriate location to specify it. The Connection
itself has four variables which are the pressure p, temperature T , enthalpy h and the mass flow ṁ.
The only equation of the Connection references the external function of the Global and expresses a
thermodynamic equation of state.

The Unit represents an element through which a working fluid flows and heat is exchanged with an
ambiance. The variables are the temperature of the working fluid T , the ambient temperature Tout,
the product of the thermal transmittance and the surface area kA and the pressure drop ∆p. The
names of inlet and outlet terminals are feed and drain, respectively. Thus the describing equations
read as

ṁfeed = ṁdrain, (3.4)
ṁfeed(hfeed − hdrain) = kA(T − Tout), (3.5)

pfeed −∆p = pdrain. (3.6)

The last equation

Tdrain = T (3.7)

emphasizes that the temperature in the interior of the element is assumed to equal the outlet tem-
perature. This equation as well as the variable T can be omitted if T is substituted by Tdrain in
equation (3.5). If the model is set up as is in figure III.5, the system consists of 6 equations and 12
variables which leaves 6 degrees of freedom. Hence 6 variables have to be set to obtain a square system.
Obviously, these settings can not be chosen arbitrarily. ♦

Within this chapter the units of all variables are assumed to be SI-units. In IPSEpro, different units
were applied due to readability and numerical concerns. Correction factors can be seen in some
equations in MDK to compensate the deviation from the SI-units or to scale the equations. Considering
the numerical tolerances, see equation (1.50) in section II.1.2, a similar magnitude of each equation is
of advantage. In the following the component models developed in MDK are described.

4. Globals

The first type of components which are presented are the Globals. These components are used if
information has to be shared on a higher level or if the same information is used by several components.
In the refrigeration cycle model, the working fluid does not change which makes its definition in one
place ideal. Therefore, the Global Composition was introduced. The Composition has one switch

50

5. Connections

to specify the name of the working fluid. Depending on the chosen name, the variable FluidID is
determined. Several external functions are defined for calculating physical properties. For a full list
of available functions we refer to the Eco-Cool-Lib library. The external functions are connected to a
DLL which calls the programm Refprop, see [60]. To obtain the values for the correct fluid in Refprop,
the variable FluidID is passed.

The Global Wall holds geometrical and physical properties, such as specific heat capacity c, density
ρ and thermal conductivity λ, of the Wall -Units which are used for the insulation and compartment
walls. Physical properties of the heat exchanger pipe walls are kept in the Global Metal. Finally, the
Global Geometry manages the geometrical properties of the heat exchangers, such as inner and outer
radius, volumes and various surface areas. Since a Global can have only one mathematical model
and properties like area or volume depend on the geometry of the element, the Geometry_-Unit was
introduced to calculate the variables in the Geometry-Global for various geometries.

5. Connections

The Connections are used to enable transfer between Units. In the flow sheet model they are rep-
resented by lines of different colour. The simplest transfer is the transport of information as im-
plemented in the Control - and Temperature-Connection. First, the Control-Connection (dark blue)
was designed to transfer one arbitrary value x to control the NOR of the compressor. There, the
Temperature_Sensor-Unit passes the measured temperature to the I_Control-Unit which controls the
Number of Revolutions (NOR) of the compressor. In general, the variable x in the Control-Connection
changes its meaning depending on the Unit it is attached to.

Second, the Temperature-Connection (orange) has two variables T_feed and T_drain and is only
used by the heat exchanger Units, Condenser and Evaporator. If the Temperature-Connection is
attached, heat conduction in the pipe wall is enabled. To calculate the heat transfer, the Connection
needs the wall temperature of the contiguous component. Hence each Unit has to pass its temperature
to the Connection. The suffixes of the two variables indicate the terminal name of the Unit to which
the Connection is attached to.

5.1. Stream

The Stream-Connection (green) transports a working fluid which implies mass transfer. In the Stream,
six variables are defined: pressure p, temperature T , enthalpy h, density ρ, entropy s and mass flow ṁ.
The Stream references external functions from the Composition-Global to formulate three equations
of state, i.e.

T = TComposition(p, h), (5.1)
ρ = ρComposition(p, h), (5.2)
s = sComposition(p, h). (5.3)

In many flow sheet models the flow direction does not change. In these cases, the Stream is always
interpreted as the outlet of the upstream Unit. Typically, in the Units the change of state is described
by referencing items of the incoming and outgoing Stream and on the Stream itself the equations of
state are formulated, see example 3.1. Due to readability, the reference of the Composition is neglected
in the remainder. Thus, the equation of state connecting temperature, pressure and enthalpy is written

51

III. Modelling

as
T = T (p, h)

(
= TComposition(p, h)

)
.

5.2. Stream_H

The heat exchangers Units, condenser and evaporator, are one-dimensional spatially discretized by
the finite volume method and a first order upwind scheme is applied to determine the states on the
outlet of the Units. This yields that the state of the volume, i.e. the Unit, equals the state on the
outlet. It is assumed that the pressure p inside the Unit always equals the one at the outlet-terminal
side but the enthalpy h on the surface, i.e. the Connection, has to depend on the flow direction. To
guarantee that the correct surface enthalpy in the energy equations are used, the Stream_H -Connection
(green) was introduced. It generalizes the Stream-Connection by a flow dependent enthalpy h. Since
Connections can not reference to Units, two further variables h_feed and h_drain are available.
As in the Temperature-Connection, the suffixes indicate the terminal name of the Unit to which the
Connection is attached to and the Unit passes its enthalpy to the respective variable of the Stream_H.
Since the Units represent discrete volumes, a jump discontinuity in the enthalpy h is expected at
the flow turning point. To avoid problems in Newton’s method, linear interpolation is applied in an
ε-neighbourhood of the zero flow. Hence, the enthalpy on the Connection is defined as

h =

h_drain, if ṁ > ε,
h_feed, if ṁ < −ε,
h_feed+ (h_drain− h_feed) ṁ+ε

2ε , else.
(5.4)

The equations of state equal the ones from the above Stream, i.e.

T = T (p, h), (5.5)
ρ = ρ(p, h), (5.6)
s = s(p, h). (5.7)

5.3. HeatFlux

The last form of transport between Units modelled in the Eco-Cool-Lib library occurs through heat
exchange. To ensure conservation in the energy equations of two contiguous Units, the heat flux Q̇
will be calculated in a HeatFlux -Connection (dark red). Hence, Q̇ is determined only once to make
sure that the same value appears in the energy equations. The thermal transmittance k is determined
by a combination of heat transfer coefficients α, thermal conductivities λ and distances d. For the
HeatFlux -Connection, this yields

k =
1

d1
p1

+ d2
p2

(5.8)

where di = 1 and pi = α, or di = d and pi = λ for i = 1, 2 holds. These values have to be passed from
the Units to which the Connection is attached. Then, the heat flux is given by

Q̇ = kA(T_feed− T_drain) (5.9)

where the two temperatures are determined by the Units as for the Temperature- and Stream_H-
Connection. Whenever Q̇ is used in the energy balance of a Unit the correct sign has to be considered.

52

6. Units

6. Units

The Units mostly describe pieces of equipment. For each Unit an icon has to be designed in MDK
which is used as a representative for the mathematical models in PSE. A selection of Unit icons is given
in figure III.6. The Units are the only components able to have more than one mathematical model.
Most of the Units in the Eco-Cool-Lib library have a steady-state and a dynamic model. Since these
models just differ whether time derivatives appear or not, only the dynamic models are presented.

As described in section 3, a Unit, which is supposed to be connected to others, has to be equipped with
terminals. A name and the type of Connection which can be plugged have to be specified. Generally,
inlet and outlet terminals are denoted as feed and drain, respectively. A naming convention is chosen to
distinguish between the pluggable Connections. The type of Connection is incorporated in the terminal
name as a suffix. The suffixes are equal for inlet and outlet terminals. For the outlet terminals the
possibilities are drain, drainS, drainH, drainT , drainC which stand for the Stream-, Stream H -,
HeatFlux -, Temperature- and Control -Connection, respectively. If a terminal name differs from the
ones above, an explanation will be given, e.g. if terminals for multiple Connections of the same type
are used in a Unit. In figure III.6, the terminal names are given in square brackets.

6.1. Heat Exchangers

First, we start with one of the more challenging models. The heat exchangers, such as the condenser
and evaporator of a refrigeration appliance have to cover a large range of physical parameters. This
range includes operating points in the single and two-phase region. Several equations, such as the
conservation laws, hold in both regions but the density ρ, the Heat Transfer Coefficient (HTC) α and
the Frictional Pressure Drop (FPD) ∆p are determined by different sets of equations for each region.
For a more detailed description of the Condenser- and Evaporator-Unit, we refer to [111]. We present
the equations independent of the operating point first.

The heat exchangers are assumed to be horizontal tubes. A distributed parameter approach is applied
to the heat exchangers. The spatial discretization is handled by a one dimensional finite volume
approach. Each volume is represented by one Unit. The Unit is subdivided into the working fluid
flow region and the pipe wall which are treated independently. It is assumed that, first, the working
fluid exchanges heat with the pipe wall and, second, the pipe wall exchanges heat with two contiguous
Units. Furthermore, if the Temperature-Connections are attached, heat conduction is included in the
pipe wall model. The variables associated with the pipe wall are indicated with a subscript p, e.g. for
the pipe temperature we have Tp. For the working fluid flow, a first-order upwind scheme was applied.
The upwind scheme implies that the state in the interior equals the state at the outlet. For a deeper
insight into the theory of finite volume methods, we refer to [61, 94]. In figure III.7 typical flow sheet
arrangements of evaporator and condenser are illustrated. In the refrigeration appliance the evaporator
is situated inside the insulation which covers the compartment. The condenser is installed free-hanging
at the back of the appliance which implies the condenser exchanges heat with the ambiance but also
a heat input into the insulation is assumed.

The ordinary differential equations resulting from the conservation of mass and energy for the working
fluid read as

dm

dt
= ṁfeedS − ṁdrainS , (6.1)

dU

dt
= αA(Tp − T) + ṁfeedShfeedS − ṁdrainShdrainS (6.2)

53

III. Modelling

[feedH]

[drainH]

[feedT]

[feedS]

[drainT]

[drainS]

(a) Unit Condenser.

[feedH]

[drainH]

[feedT]

[feedS]

[drainT]

[drainS]

(b) Unit Evaporator.

[feed] [drain]

[feedC]

(c) Unit Compressor.

[feed] [drain]

[feedSuc] [drainSuc]

(d) Unit Capillary.

[feedH]

[feedT]

[feed]

[drainh]

[drain]

[feedOil]

[feedh]

(e) Unit Shell.

[drainT] [drainS]

(f) Unit Oil Sump.

[feedH]

[drainH]

[feedT]

[feedS]

[drainT]

[drainS]

(g) Unit Accumulator.

[drainH]

[drainC]

(h) Unit Sensor.

[drainC] [feedC] IC

(i) Unit I_Control.

Geometry

(j) Unit Geometry.

Figure III.6.: Selection of Unit icons.

54

6. Units

(a) Evaporator-Units between the insulation (diagonally striped, pink Units) of the compartment.

Ambient

(b) Condenser-Units connected on the one side to the ambiance and on the other side to the insulation
(diagonally striped, pink) of the compartment with an air pad (diagonally striped, blue) in between.

Figure III.7.: Typical flow sheet arrangement of the heat exchangers in the refrigeration appliance.
Appearing Connections are StreamH (green), HeatFlux (dark red) and Temperature
(orange). Arrows indicate the expected direction of the flux.

with the mass m, mass flow ṁ, inner energy U , surface area A, temperature T , pipe temperature Tp,
specific enthalpy h and HTC α. The inner engery can be expressed in terms of the specific inner energy
u and the mass, i.e. U = mu. Substituting this in the energy equation and applying the product rule
yields

m
du

dt
+ u

dm

dt
= αA(Tp − T) + ṁfeedShfeedS − ṁdrainShdrainS . (6.3)

Since the velocity changes are small in the considered models, the momentum balance reduces to an
algebraic equation describing the pressure drop ∆p caused by friction, i.e.

pdrainS = pfeedS −∆p (6.4)

where the FPD ∆p is determined by empirical correlations, see the subsection 6.1.1 and 6.1.2. It is
assumed that the pressure p in the interior equals the one at the outlet terminal, i.e.

p = pdrainS . (6.5)

Loosely speaking, the pressure in the attached StreamH-Connections is determined by equation (6.4).
To obtain a unique thermodynamic state a second state variable has to be given. In this case the
enthalpy is chosen which also appears in the energy equations of the contiguous Units. Since further
considerations are necessary, we postpone the determination the enthalpy in the StreamH-Connections
and refer to equation (6.30). Next, the pipe wall is modelled. Neglecting heat conduction, the energy
equation for the pipe wall is given by

ρpcpVp
dTp
dt

= Q̇drainH − Q̇feedH − αA(Tp − T). (6.6)

The volume Vp, heat capacity cp and density ρp of the pipe wall are fixed quantities independent of
the temperature held by the Geometry- and Metal-Global. The heat fluxes, Q̇drainH and Q̇feedH , are

55

III. Modelling

determined in HeatFlux-Connections. Concluding the part of the model which is independent of the
operating point, for the working fluid we have the algebraic equations

h = u+
p

ρ
, (6.7)

T = T (p, h), (6.8)
m = ρV. (6.9)

Furthermore, there are several equations passing variables to Connections. We do not present these
identities here and refer to the library. The models for the density, HTC and FPD depend on the
operating point. We start with the single-phase region.

6.1.1. Single-phase

Let the state of the working fluid be either in the liquid or vapor region. Then the density is given by
the equation of state which references an external function calling Refprop, i.e.

ρ = ρ(p, h). (6.10)

The FPD ∆p is determined by the Darcy–Weisbach equation

∆p

l
= f

ρ

dH

v2

2
(6.11)

with the length of the volume l, the hydraulic diameter dH , the friction factor f and the velocity
v. The friction factor f is calculated differently for laminar and turbulent flows. The dimensionless
Reynolds number Re is used to distinguish between the two types of flow. It is defined as

Re =
ṁdH
Aη

(6.12)

with the mass flow ṁ, flow area A and dynamic viscosity η. For Re < 2300 the flow in a pipe is laminar
and for Re > 104 fully turbulent, see [28]. The friction factors for each type of flow are

flaminar =
64

Re
(6.13)

and

fturbulent =
0.3164

4
√

Re
. (6.14)

If 2300 ≤ Re ≤ 104 holds, the flow type depends on further parameters, e.g. the geometry or the tube
surface roughness, and is hard to determine properly. Therefore, linear interpolation between flaminar
and fturbulent is applied.

The last variable which has to be determined is the HTC α between the working fluid and the pipe
wall. We follow [28] and define the dimensionless Nusselt number

Nu =
αdH
λ

(6.15)

where λ is the heat conductivity. In the literature, correlations for the Nusselt number are given and α
is obtained from the above equation. In general, it has to be distinguished between natural and forced
convection. However, in the heat exchanger models always forced convection is assumed. Hence the
correlations are of the form

Nu = f(Re,Pr) (6.16)

56

6. Units

with the Reynolds number Re defined in equation (6.12) and the dimensionless Prandtl number

Pr =
ηcp
λ

(6.17)

where cp is the isobaric heat capacity. As for the pressure drop, different correlations have been
proposed for laminar and turbulent flow and linear interpolation is applied if 2300 ≤ Re ≤ 104 holds.
For laminar flow the Nusselt number is approximated by

Nulaminar = 1.615

(
Re Pr

d

l

) 1
3

. (6.18)

In [33], Gnielinski proposed for turbulent flow

Nuturbulent =
(ξ/8)RePr

1 + 12.7
√
ξ/8

(
Pr2/3 − 1

) [1 +

(
dH
l

)2/3
]

(6.19)

with the Darcy friction factor
ξ = (1.8 log10 Re− 1.5)

−2
. (6.20)

6.1.2. Two-phase

If the working fluid is two-phase, the models are much more complex. We start with the density. It is
obtained by the interpolation

ρ = ερv + (1− ε)ρl (6.21)

between the densities ρl and ρv at the lower and upper phase boundary, respectively. Above, ε is the
vapor void fraction which is defined as the ratio between the cross-sectional area filled with vapor Av
and the total area A, i.e.

ε =
Av
A
. (6.22)

The vapor void fraction is obtained from empirial correlations and calculated in an external function
of the HTX.dll . The function call in MDK reads as

ε = ε(p, ρl, ρv, ẋ, G) (6.23)

where G is the mass flow per (cross-sectional) area given by

G =
ṁfeed

A
(6.24)

and ẋ is the flow quality defined as

ẋ =
ṁv

ṁl + ṁv

with the mass flows ṁl, ṁv of the liquid and vapour share. If the velocities of the vapor and liquid
share are equal, the flow quality ẋ equals the vapor quality x. We shall, however, drop this assumption
and derive a relation between x and ẋ. To guarantee a continuous extension of the vapor quality to
the single phase region, it is defined as

x =
h− hl
hv − hl

(6.25)

57

III. Modelling

where hl and hv are the specific enthalpies at the lower and upper phase boundary, respectively. The
original definition of the vapor quality holds in the two-phase region only, i.e.

x =
mv

ml +mv
.

where mv and ml are the mass of the vapor and liquid share, respectively. Applying equations (6.9)
and (6.22), the numerator in the above equation can be rewritten as

mv = ρvVv = ρvAvl = ρvεAl = ρvεV.

Here, Vv denotes the volume filled with vapor, A the cross-sectional area and l the length of the tube.
Applying the same transformation to the denominator and utilizing (6.21) yields

x =
V

V
· ερv

(1− ε)ρl + ερv
=
ερv
ρ

where the vapor void fraction ε depends on ẋ, see (6.23). Outside the two-phase region we naturally
set ẋ = x. Hence, the continuous relation between x and ẋ is given by

x =

{ ερv
ρ , if 0 ≤ ẋ ≤ 1,
ẋ, else

. (6.26)

The choice to let ẋ decide which equation is applied has a specific reason which results from Newton’s
method. In the implementation of equation (6.23), the variable ẋ decides how to calculate ε. The
vapor void fraction is either determined by correlations given below or set to 0 or 1 if ẋ ≤ 0 or ẋ ≥ 1,
respectively. In either case, if the working fluid is single-phase, ∂ε/∂ẋ = 0 holds. If the working fluid
is two-phase, the partial derivative of equation (6.26) with respect to ẋ equals 0 as well. Assume
that x, and not ẋ, would be used in the conditional statement and the operating point is close to the
two-phase boundary. Then, during the Newton iteration a situation can occur in which ẋ > 1 or ẋ < 0
but 0 < x < 1 holds. This yields a singular iteration matrix and Newton’s method fails to converge.
To avoid this problem, ẋ is chosen in all conditional statements.

The correlations to calculate the vapor void fraction are presented next. We follow [36] wherein a
more detailed description can be found. If the liquid and vapor phase flow with the same velocity, the
homogeneous vapor void fraction εhom is given by

εhom =
1

1 + 1−ẋ
ẋ

ρv
ρl

. (6.27)

The Rouhani–Axelsson drift flux model for horizontal tubes, see [112], is applied for the nonhomoge-
neous vapor void fraction εra, i.e.

εra =
ẋ

ρv

(
(1 + 0.12(1− ẋ)

[
ẋ

ρv
+

1− ẋ
ρl

]
+

1.18(1− ẋ)(gσ(ρl − ρv))0.25

Gρ0.5
l

)−1

. (6.28)

The drift flux model is implemented in the Evaporator-Unit. The LMε model, a combination of the
above correlations, reads as

εlm =
εhom − εra

ln(εhom)− ln(εra)
. (6.29)

In [36], the authors argue that the LMε model covers a larger pressure range. As proposed, we use
the above combination in the Condenser-Unit. This concludes the discussion of the required variables
and the calculations to obtain the density of the two-phase working fluid.

The models for the FPD ∆p and HTC α are based on flow pattern maps, as explained in chapter I.
Depending on physical properties, the geometry, the mass flow per area G and the flow quality ẋ, a

58

6. Units

flow pattern forms in the tubes which influences ∆p and α. For each flow pattern different empirical
correlations have been established in the literature which are not necessarily continuous across the
pattern boundaries. We implement the flow pattern map developed in [36] for condensation and
for evaporation the extended version proposed in [112]. In the latter the boundaries of the dryout
regime were calculated using the approach of [72] due to stability reasons during Newton’s method.
Furthermore, the transition curves Gdryout and Gmist were not derived but we used the definitions of
ẋdi and ẋde (flow quality boundaries of the dryout pattern) directly to decide which flow pattern is
apparent.

The FPD models were taken from [89] and [90]. These models are based on the extended flow pattern
maps of [112] and hence cover the flow pattern map for condensation also - as aimed by the authors.
Consequently, only one FPD model for both condensation and evaporation has to be implemented.
The HTC is calculated as in [103] and [113] for condensation and evaporation, respectively.

Finally, we determine the enthalpies hdrainS and hfeedS in the StreamH-Connections. Assume that
the refrigerant is two-phase. The transported energy through the mass transport from one Unit to the
next reads as

ṁlhl + ṁvhv = ṁ(1− ẋ)hl + ṁẋhv

= ṁ(hl + ẋ(hv − hl)).
(6.30)

Since in the StreamH only the total mass flow ṁ is defined, the enthalpies hdrainS and hfeedS have to
be calculated accordingly. If the velocities of the vapour and liquid share are equal or the refrigerant
is single phase, x = ẋ holds and we obtain hdrainS = hfeedS = h, the enthalpy of the refrigerant in
the interior. In the validated model of chapter IV and V the outlet enthalpy is, however, determined
using the vapour quality. This has an impact on the local mass distribution in the system but e.g. the
parameters fitted with steady-state measurements remain equal.

6.2. Accumulator

Figure III.8.: Typical flow sheet arrangement of the accumulator between the evaporator and the in-
ternal heat exchanger and situated inside the insulation of the compartment (diagonally
striped, pink). Appearing Connections are StreamH (green), HeatFlux (dark red) and
Temperature (orange). Arrows indicate the expected direction of the flux.

In principle, the Accumulator-Unit is modelled as the Evaporator described in the last section. They
only differ in how the enthalpy at the outlet is determined. In the refrigeration cycle model, an
Accumulator is added at the end of the evaporator, as illustrated in figure III.8, to guarantee that only
saturated or superheated steam leaves. To ensure this, the Accumulator is designed and situated in
such a way that the gravitational force holds the liquid share of the working fluid inside the component.
This procedure improves the cooling capacity, since the liquid share can still absorb heat. The Stream
H -Connection is attached to enable changing flow directions. Thus, the enthalpy at two possible
outlets has to be determined.

59

III. Modelling

We start with the enthalpy which is passed to the drainH -Connection. We assume that the accumulator
may not be optimal and define an efficiency ξ ∈ [0, 1]. If ξ = 1 holds, the accumulator is optimal and
only saturated (h = hv) or superheated steam leaves. Otherwise if ξ < 1, it is assumed that liquid also
escapes. For the efficiency a linear ansatz was chosen, i.e.

ξ = a+ b
dp

dt
(6.31)

where (a, b) ∈ [0, 1] × R+ are parameters which have to be fit. The second term implies that the
efficiency decreases if the pressure drops and vice versa. If the working fluid is in the two-phase region,
the enthalpy at the outlet is given by

hdrainS = hl + (hv − hl)ξ (6.32)

where hl and hv denote the enthalpy on the lower and upper two-phase boundary, respectively. This
implies that ξ can be interpreted as the flow quality at the outlet. Finally, some sort of interpolation has
to be applied if the working fluid crosses the two-phase boundary to guarantee a continuous model.

If the flow direction changes, the enthalpy on the feedH -Connection is determined by the value passed
from the Accumulator-Unit. We assume that for a vapor quality x ∈ (0, 0.9) only boiling liquid (h = hl)
leaves. Applying linear interpolation for x ∈ [0.9, 1], yields

hfeedS =

h, if x ≤ 0 of x ≥ 1,
hl, if 0 < x < 0.9,
hl + (hv − hl) ẋ−0.9

0.1 , else.
(6.33)

6.3. Compressor

The compressor component is situated between the evaporator and the condenser. Its purpose is to
compress the fluid to a higher pressure such that the fluid temperature is above ambient temperature.
Only then heat is transferred to the ambiance in the condenser. The whole compressor component
consists of many individual parts from which not all are explained in detail here. In figure III.9 a
schematic of a compressor is given and we explain shortly the path of the working fluid through this
component.

The fluid leaving the evaporator enters the shell of the compressor through the suction tube. In the
compressor of the investigated appliance the direct suction element is missing such that the fluid is not
directed solely into the suction muffler. Thus the interior of the shell is filled with (superheated) fluid
and oil which is used to cool and lubricate the compressor. From there the working fluid is sucked
into the suction muffler. When the piston moves back, the suction valve opens and the fluid enters the
cylinder. Near the bottom dead centre this valve closes. When the piston moves forward again, the
fluid is compressed. Close to the top dead centre the discharge valve opens and the compressed fluid is
directed into the discharge muffler, then into the internal discharge line and finally into the discharge
tube which leaves the shell and is connected to the condenser.

In IPSEpro the component is split into three individual parts. First, the Shell -Unit comprises, the
shell wall including all metal parts in the interior, the working fluid on the suction side, located
inside the shell, and on the discharge side, hence in the discharge muffler and discharge line. Second,
the Compressor -Unit handles the actual compression and the consumed electric power. Third, the
Oil_Sump-Unit concerns the oil in the shell used to cool and lubricate the compressor. It is crucial
to add the oil since it absorbs and desorbs working fluid. In figure III.10 the typical arrangement of
these Units is depicted.

60

6. Units

53

KAPPA / DELTA KAPPA / DELTA

3.2
3D sketch, mechanical
data sketch 88

30Clamping sleeve
Piston pin
Piston
Valve plate gasket
Suction valve
Valve plate
Discharge valve
Cylinder head gasket
Clamping element
Fixing element

Direct suction element
Suction muffler
Discharge muffler
Plug casing assembled

Capacitor

Hermetic Terminal
Board assembled

Terminal fence

Hermetic terminal
Suction tube
Shell pressed
Service tube

Bracket
Cover pressed

Conrod
Roller Bearing

Crankcase
Crankshaft

Oilpump
Rotor

Stator screw

Stator assembled
Stator brackets

Spring pins for shell
Suspension spring

Discharge tube
Rubber grommet
Steel pin
Adapter plate

Figure III.9.: Schematic of a compressor, [93]

IC

Figure III.10.: Typical flow sheet arrangement of the compressor components and the I_control Unit.
Appearing Connections are Stream (green), HeatFlux (dark red), Temperature (orange)
and Control (dark blue). Arrows indicate the expected direction of the flux.

61

III. Modelling

6.3.1. Shell

Within this section, the Shell-Unit is presented. The Unit itself is subdivided into three parts. First, the
working fluid on the suction side (inside the shell before compression), second, the shell wall including
all metal parts in the interior and third, the working fluid on the discharge side (inside the discharge
muffler and discharge tube after compression). Three heat transfers are assumed: first, Q̇sw indicates
the heat flux between the fluid suction side and the shell wall, second, Q̇dw between the fluid discharge
side and the shell wall and third, Q̇feedH between the ambiance and the shell wall. Furthermore,
mass transfer is modelled between the suction side fluid and the oil which is caused by absorption and
desorption. Since multiple Stream-Connections are attached to this Unit the usual naming convention
can not be applied anymore. The terminals for the suction side are denoted as feed and drain, for
the discharge side as feedh and drainh, and for the oil side only one terminal feedOil is available.

The differential equations for the fluid on the suction side read as

dm

dt
= ṁfeed − ṁdrain + ṁfeedOil, (6.34)

dU

dt
= ṁfeedhfeed − ṁdrainhdrain

+ ṁfeedOilhfeedOil + Q̇sw

(6.35)

with the heat flux

Q̇sw = αswAsw(Tw − T). (6.36)

The momentum balance reads as

pfeed −∆p = pdrain (6.37)

where ∆p has to be prescribed. Futhermore, the working fluid desorbed from the oil is supposed to
have the same enthalpy as the fluid on the suction side immediately. This is not obvious from the
energy equation above. The algebraic equations for the fluid on the suction side read as

h = u+
p

ρ
, (6.38)

T = T (p, h), (6.39)
ρ = ρ(p, h), (6.40)
m = ρV. (6.41)

Next, the temperature evolution of the shell wall is described by

ρwcwVw
Tw
dt

= −Q̇dw − Q̇sw − Q̇feedH (6.42)

with the volume Vw, heat capacity cw and density ρw of the shell wall. The heat flux between the shell
wall and the working fluid on the discharge side is defined as

Q̇dw = αdwAdw(Tw − Tdrainh). (6.43)

The last term in equation (6.42) implies that the shell wall exchanges heat with another Unit. Usually
this will be the ambiance. The heat flux Q̇feedH is calculated in a Heat Flux -Connection. Finally,
on the discharge side we assume quasi-stationary behavior and no pressure drop. Thus the describing
equations reduce to

ṁfeedh = ṁdrainh, (6.44)

0 = Q̇dw + ṁfeedh(hfeedh − hdrainh), (6.45)
pfeedh = pdrainh. (6.46)

62

6. Units

6.3.2. Compression

The second model takes care of the actual compression. We assume quasi-stationary behavior. Thus
the mass balance reads as

ṁfeed = ṁdrain. (6.47)

The volume flow V̇ is defined as

V̇ =
nVh
60

(6.48)

where Vh is the displacement and n the NOR of the compressor. The NOR are determined by the
I_Control-Unit and we have

n = xfeedC . (6.49)

Considering a volumetric efficiency ηv, the mass flow is given by

ṁdrain = ηvV̇ ρ. (6.50)

Which density ρ is to be taken in the above equation is not addressed precisely in the literature. Since
the density at the inlet of the Compressor-Unit is hard to measure, a density from a different position
has to be chosen. In [85], the authors tested the model using densities at different positions and propose
that the density at the inlet of the Shell-Unit achieves the best results. In figure III.11 the densities at
these mentioned points are illustrated. The values are taken from the validated refrigeration appliance
model presented in chapter IV. It can be seen that the density at the Compressor-Unit inlet is less
than at the Shell-Unit inlet. Using the density at the Shell-Unit inlet yields a higher mass flow.

0.5

1

1.5

2

2.5

3

3.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
e

n
si

ty
 [

kg
/m

³]

Time [s]

Shell Inlet Compressor Inlet

Figure III.11.: Density at Shell and Compressor inlet over four on-off-cycles.

Following [63], isentropic compression is assumed. The authors propose to determine the isentropic
power Pis via

Pis = V̇
κ

κ− 1
pfeed

[(
pdrain
pfeed

)κ−1
κ

− 1

]
(6.51)

63

III. Modelling

with the isentropic exponent at the inlet

κ =
cp(pfeed, Tfeed)

cv(pfeed, Tfeed)
(6.52)

and calculate the enthalpy hdrain at the outlet using the energy equation

Pis = −ṁfeed(hfeed − hdrain). (6.53)

The volumetric efficiency ηv, used in equation (6.50), is defined as

ηv = b1 + b2

(
pdrain
pfeed

) 1
κ

(6.54)

where b1, b2 ∈ R are fitting parameters which have to be adjusted for each compressor type. Finally,
the compressor shaft power P is

P =
1

ηcomb
Pis (6.55)

where the combined efficiency reads as

ηcomb =
1

a1 + a2
pfeed

+ a3
pdrain

. (6.56)

The parameters a1, a2, a3 ∈ R have to be fit for each compressor type.

Since equation (6.51) holds for ideal gas only, a true isentropic compression is not achieved for real gas
such as the refrigerant Isobutane (R600a) with this equation. This equation could be replaced by

sfeed = sdrain.

Loosely speaking, then hdrain is determined by the state equation of the Stream, see (5.3), and the
isentropic power Pis is obtained from the energy equation. Since all parameters ai, bi have already
been fitted for the model including equation (6.51), also in IPSEpro equation (6.51) is used.

6.3.3. Oil Sump

The final model developed for the compressor part describes the oil sump where we follow the work
of [81]. We assume that the oil can absorb working fluid but no heat is exchanged and that desorbed
working fluid has immediately the same enthalpy as the one on the suction side. Let m be the mass of
the working fluid dissolved in oil which itself has constant mass moil. The ratio between these masses
is denoted as µ, i.e.

µ =
m

moil
. (6.57)

The time evolution of µ is described by the ODE

dµ

dt
=

1

τ
(µsat − µ) (6.58)

with time constant τ . The mass ratio at saturation reads as

µsat =
msat

moil
(6.59)

64

6. Units

where the mass of the working fluid at saturation is calculated using the relation

msat =
p

psat
moil

M

Moil(1− p
psat

)
(6.60)

proposed in [77]. In the above equation, M andMoil are the molar masses of the working fluid and the
oil, respectively, p denotes the pressure of the working fluid on the suction side and psat = psat(Toil)
the saturation pressure of the working fluid at temperature of the oil which is assumed to equal the
temperature of the shell wall. Finally the mass flow ṁdrain of working fluid between the suction side
and the oil is given by the mass balance

dm

dt
= −ṁdrain. (6.61)

It remains to provide reasonable values for the time constant τ . To achieve this goal we split the
evaluation into three cases. First, we handle the case in which the compressor is turned off. Here the
mass transfer at the surface of the oil is determined by diffusion which is described by Fick’s law. We
approximate it by equation (6.58) and the time constant is chosen in such a way that it fits the diffusion
model on an interval which is relevant for a refrigeration appliance. This yields τ = 1.9× 105 s. The
other two cases appear when the compressor is switched on. We distinguish between absorption and
desorption. In [81], the same relation for the saturation level of the oil is used to describe the effects
in both cases. We deduce this relation in following lemma.

Lemma 6.1 Let ζ = µ/µsat be the saturation level of the oil. Then

ζ(t) = 1− µsat − µ0

µsat
e−

t
τ (6.62)

is the analytic solution of (6.58) for time independent µsat and initial value µ0 = µ(0).

Proof. Let the differential equation be given by

dµ

dt
= µ′ =

1

τ
(µsat − µ). (†)

Rearranging the terms yields

− µ′

µsat − µ
= −1

τ
.

Integrating from 0 to t leads to

ln((µsat − µ)(t))− ln((µsat − µ)(0)) = − t
τ

which can be rewritten to
µsat − µ(t)

µsat − µ0
= e−

t
τ

with initial value µ0 = µ(0). Thus the analytic solution of (†) reads as

µ(t) = µsat − (µsat − µ0)e−
t
τ .

Finally, division by µsat yields the result.

Measurements were performed to fit the time constant τ in equation (6.62). If the compressor is
switched on, τ = (42.8± 7.0) s and τ =(14.1± 1.5) s for absorption and desorption, respectively, are
proposed in [81]. Consequently, the established model covers all cases but the time constant τ has to
be adjusted whenever the operating mode changes.

65

III. Modelling

6.4. Capillary

The capillary, counterpart of the compressor, is an expansion device. In a refrigeration appliance
it is situated between the condenser and evaporator and its purpose is to decrease the pressure of
the working fluid and thus the temperature of evaporation. Furthermore, the capillary can be used
as an internal heat exchanger between working fluids Fc and Fe which come from the condenser and
evaporator, respectively. This structure has two benefits. First, Fc gets pre-cooled before the expansion
and hence increases the cooling capacity. Second, Fe obtains further energy which can avoid that two-
phase working fluid flows into the compressor. The terminals for Fc are denoted as feed and drain
and for Fe as feedSuc and drainSuc. In figure III.12 two designs of non-adiabatic capillary tubes are
illustrated. Both designs have a countercurrent heat exchanger, but the capillary tube is placed into
or onto the suction line in the A-A or B-B design, respectively.

A

A

B

B

A - A

B - B

(B - B)

3 4

1 2

4 3

2 1

Figure III.12.: Capillary design, [38]. (1) → (2): capillary tube, (3) → (4): suction line. (1) from
condenser (feed), (2) to evaporator (drain), (3) from evaporator/accumulator (feedSuc),
(4) to compressor (drainSuc). A-A: non-adiabatic, coaxial, soldered, B-B: non-adiabatic,
lateral, soldered, (B-B): non-adiabatic, lateral, fixed with foil.

Figure III.13.: Typical flow sheet arrangement of the capillary in an refrigeration appliance. The only
appearing Connections are Streams (green). Arrows indicate the expected direction of
the flux.

We follow the work of [41] in which the non-adiabatic capillary is modelled by an Artificial Neuronal
Network (ANN) which was trained with data from a complex one-dimensional homogeneous model
validated with measurements. For a detailed description of the complex model we refer to [38]. The
reason why the ANN is applied instead of the complex model lies in the high numerical costs of the

66

6. Units

complex model. The ANN calculates values for the mass flow ṁdrain through the capillary and the
enthalpy hdrainSuc at the outlet of the internal heat exchanger on the suction side. The latter was
chosen instead of the heat flux Q̇ because the ANN provided better results with this setting. Since
IPSEpro is equation-based, it is still possible to prescribe the mass flow or enthalpy and obtain another
value from the list of input parameters. This list contains the capillary inlet and outlet pressures pfeed
and pdrain and enthalpies hfeed and hdrain, the radii rCap, rSuc and lengths lCap, lSuc of the capillary
and heat exchanger, respectively, and the inlet pressure pfeedSuc, enthalpy hfeedSuc, outlet pressure
pdrainSuc and mass flow ṁdrainSuc of the suction line. Consequently, the first two equations read as

ṁdrain = ṁ(ANN), (6.63)
hdrainSuc = h(ANN). (6.64)

In the capillary tube and suction line quasi-stationary behavior is assumed. Hence the mass balances
are given by

ṁfeed = ṁdrain, (6.65)
ṁfeedSuc = ṁdrainSuc (6.66)

and the energy balances by

Q̇ = ṁfeed(hfeed − hdrain), (6.67)

Q̇ = ṁfeedSuc(hfeedSuc − hdrainSuc). (6.68)

The energy balances also imply that no heat is exchanged with the ambiance. This assumption is valid
since most of the capillary and suction line are insulated by foam in the refrigeration appliance. In the
suction line, a pressure loss independent of the length and the state of the fluid is assumed. Thus

pdrainSuc = pfeedSuc −∆p (6.69)

where ∆p is supposed to be prescribed.

One negative aspect of an ANN becomes apparent when the input parameters lie outside the trained
region. Since the ANN does not ensure that physical laws are satisfied, non-physical results are possible
especially outside the trained region. Therefore, precautions against such cases have to be taken.

The exceptional cases are dealt with as follows: First, we consider the mass flow calculation. If the
compressor is turned off and the pressure difference pfeed− pdrain becomes small, we calculate a lower
bound ṁmin of the mass flow through the capillary tube. This is necessary because the ANN tends
to predict to small mass flows in this case and thus the pressure equalizing does not take place. As a
lower bound the simple relation

δ = pfeed − pdrain, (6.70)

ṁmin =
sgn(δ)

σ

√
|δ| (6.71)

is used where σ ∈ R+ is a parameter and sgn(δ) denotes the usual "sign". If σ is increased, the mass
flow decreases and the pressure equalizing takes longer. In all cycle simulations, σ = 104 is chosen.

Second, also the enthalpy at the suction line outlet of the internal heat exchanger has to be corrected
in specific cases. On the one hand, if either the mass flow in the capillary tube or in the suction line
becomes too small, the heat transfer has to be turned off smoothly since reasonable values are no
longer achievable. On the other hand, also temperatures have to be observed on each side such that
heat is only transferred from the side with higher to the side with lower temperature. This yields one

67

III. Modelling

condition on each end of the heat exchanger. The first condition at the suction line outlet is given
by

TdrainSuc ≤ Tfeed. (6.72)

Hence a maximal enthalpy ĥdrainSuc at the suction line outlet can be determined, i.e.

ĥdrainSuc = h(pdrainSuc, Tfeed). (6.73)

Since Tfeed > Tsat(pdrainSuc) holds, a unique enthalpy is always guaranteed. The second condition
concerns the enthalpy of the capillary tube outlet. Because expansion and heat exchange take place
simultaneously we can not compare temperatures anymore. Therefore we consider the two extreme
cases in which the heat is exchanged either before the isenthalpic expansion or afterwards. In the first
case we obtain the minimal enthalpy

ȟdrain = h(pfeed, TfeedSuc) (6.74)

and in the second case
ȟdrain = h(pdrain, TfeedSuc). (6.75)

Given these two enthalpies, we take the minimum and determine a maximal enthalpy ĥdrainSuc at the
suction line outlet by utilizing both energy equations.

6.5. Temperature Sensor

IC

Figure III.14.: Typical flow sheet arrangement of the TemperatureSensor-Unit. It exchanges heat with
the compartment (horizontally striped, light blue Unit) and passes information to the
I_Control-Unit. Appearing Connections are Control (dark blue) and HeatFlux (dark
red). Arrows indicate the expected direction of the flux.

Given the Units which describe the compressor, in the following we discuss how it is controlled. Usually,
in a simple refrigeration appliance a sensor measures the temperature Tc in the compartment. In
figure III.14 the typical flow sheet arrangement of the sensor is illustrated. This sensor has its own
temperature Ts and the time evolution is described by the energy equation, i.e.

ρscsVs
dTs
dt

= Q̇drainH

= αA(Tc − Ts)
(6.76)

with the volume Vs, heat capacity cs and density ρs of the sensor, the HTC α, and surface area A.
Since the physical properties of such a sensor are poorly known and also the spatial position in the
compartment has a big influence, an element of uncertainty is added to the system. If Ts reaches one
of the two threshold values, Tmax or Tmin, the compressor has to be turned on or off, respectively.
Therefore, the choice of the parameter ρs, cs and Vs influences the switch-on and switch-off times of
the compressor significantly. The actual controlling part is performed by the I_Control-Unit which
is presented in a general form in the next section. Therefore the temperature of the sensor has to be
passed to the Control-Connection, i.e.

xdrainC = Ts. (6.77)

68

6. Units

6.6. Integral Control

IC

Figure III.15.: Typical flow sheet arrangement of the I_Control-Unit. The Temperature Sensor-
Unit provides its temperature and the I_Control passes the appropriate NOR to the
Compressor-Unit. Only Control-Connections appear (dark blue). Arrows indicate the
expected direction of the flux.

The idea of the I_Control -Unit is the following: if the observed value x reaches a threshold, either
minimum or maximum, the controlled value c will be adjusted. We have

x = xfeedC , (6.78)
c = xdrainC . (6.79)

The challenge lies in detecting the time t at which the observed value reaches a threshold, which is
referred to as event, and a smooth transition between the possible values of c has to be guaranteed.
In IPSEpro, termination criteria are provided as described in section II.4.2. Hence, the time t can be
found at which an event occurs. Unfortunately, IPSEpro is not yet able to react automatically after
the integration terminated. This implies that each time the integration stops the forcing term for
the controlled value c has to be changed and the integration has to be restarted manually. To enable
automatic switching, a new idea is developed which circumvents the use of termination criteria.

Let tk be the last valid time at which the corrector equation, see equation (1.45) in chapter II, was
solved and the integration step was accepted. Let tk+1 be the new suggested time at which the corrector
equation has to be solved again. Let xk = x(tk) and xk+1 = x(tk+1) be the observed values at times tk
and tk+1. If xk+1 lies on the same side of the given thresholds as xk, nothing changes. Otherwise we
assume that the observed value x changed linearly in time and determine the event time t∗ at which
x equals the threshold value θ, i.e.

t∗ = tk + (tk+1 − tk)
θ − xk

xk+1 − xk
. (6.80)

We assume that the control element switched at t∗ and calculate the controlled value ck+1 at time
tk+1. Let δ be the delay time it takes until the controlled value reaches its new operating value σ.
If tk+1 > (t∗ + δ) then ck+1 = σ holds. Otherwise, a smooth transition of the controlled values is
implemented. Let η be the controlled value before the event. Then

ck+1 = η + (σ − η)
(
3τ2 − 2τ3

)
(6.81)

where

τ =
tk+1 − t∗

δ
. (6.82)

If the difference between controlled values is significant, DASSL most certainly will decrease the step
size which achieves a more accurate detection of the event time t∗.

The integral control Unit was originally designed to control the compressor of a refrigeration appliance.
There, the compressor is turned to the maximal NOR if the temperature of the compartment reaches

69

III. Modelling

a maximum and vice versa. Therefore, the logic implemented in the HTX.dll uses the relation

xmax → cmax,

xmin → cmin

and assumes that cmax ≥ cmin. The other possibility of control reads as

xmax → cmin,

xmin → cmax.

To use the same implementation as in the first case, we invert the control values. This is applied in
the I_Control_inv -model which passes the inverse values 1/cmax and 1/cmin to the external function
and inverts the return value as well.

6.7. Compartment, Wall and Air Pad

These Units all have a very similar model structure. We assume that no mass is transported. For the
Wall-Units this is evident because the material is solid. For the Air Pad-Units, situated between the
condenser and insulation of the compartment, only heat transfer is assumed as if the air would not
flow there. The Compartment-Unit is modelled as one single volume. If the door is closed, no mass is
transferred as well. Hence, in the energy balance only the heat transfer and the temperature evolution
remain. This yields

ρcV
dT

dt
=

n∑
i=1

Q̇i (6.83)

where Q̇i is the heat flux in the i-th HeatFlux -Connection. Furthermore, the surface area and the
heat transfer coefficient are passed on to each Connection. In figure III.16 a schematic arrangement is
depicted where the Compartment is surrounded by Wall-Units which represent either the Compartment
wall or the insulation. The type of the Wall-Unit is specified by the physical properties prescribed in
the corresponding Wall-Global.

A
m

b
ie

n
t

Figure III.16.: Schematic flow sheet arrangement of the Compartment (horizontally striped, light blue)
and Wall (diagonally striped, pink) Units. Only HeatFlux-Connections (dark red) ap-
pear. Arrows indicate the expected direction of the flux.

70

7. Dynamic Link Library: HTX.dll

6.8. Geometry

This Unit was added to the library to calculate geometrical properties. If a spatially discretized
component is set up in a flow sheet, often multiple Units have the same geometry. Still, the finite
volume approach allows different geometries for each Unit. In the presented models, a one-dimensional
discretization is applied to the heat exchangers with volumes of the same size. A Global which holds
the geometrical properties ensures that the same values are used by each Unit. Since in MDK a Global
can not have multiple mathematical models, this Unit calculates the properties for various geometries
and passes them to a Global.

One variable which has to be highlighted is the radius_tube of the Geometry-Global. For numerous
empirical correlations used in the heat exchanger Units a radius or diameter has to be given. If the
geometry differs from a cylindric tube, the hydraulic diameter dH is used instead. This generalization
of the tube diameter is defined as

dH =
4A

U
(6.84)

where A is the cross-sectional area and U the perimeter. For turbulent flow the hydraulic diameter
provides a good approximation to calculate various quantities, see [109]. For laminar flow the empirical
correlations can differ from the measurements which is caused by the hydraulic diameter, see [120].
Since all formulas in the HTX.dll use a radius, the variable radius_tube is half the hydraulic diameter.
Note that this is not the hydraulic radius rH which is defined as rH = dH/4.

7. Dynamic Link Library: HTX.dll

Within this section the HTX.dll is described. It was implemented to outsource critical calculations and
is written in C++. A DLL can export functions which can be called outside. These external functions
are incorporated in the models in MDK and executed during the simulation. We present the interface
first and go into detail afterwards.

7.1. The Interface

We start with the C-interface which consists of the functions that can be accessed from outside the
DLL. These external functions have to be declared within the extern "C" scope and provided with
the HTX_API prefix which is defined in the HTX.h-file. This prefix simplifies the exporting function
definition.

For MDK, external functions have to accept and return double-values. The input arguments are set
in the external function declaration in MDK and have to coincide with the argument list of the DLL-
interface. As last input parameter a message handler of type HANDLERPROC is passed which is a function
pointer defined as typedef void (CALLBACK* HANDLERPROC)(int, const char*). The message handler
enables the DLL to write messages into the protocol of PSE. The first argument declares the type of
the message and the second is the message itself. Possible values for the first argument are 0, 1 and
2 which stand for an error, warning or standard message, respectively. In the DLL_Basics.h-file the
enumeration declaration EMsgType is defined. These enumeration declarations shall be used whenever
a message is written to the protocol.

71

III. Modelling

An excerpt of the most important external functions used in MDK is given in table III.2. The prefixes
Co and Ev stand for evaluations which are intended for the condenser and evaporator, respectively. Fur-
thermore, for each input argument the partial derivative of the function with respect to the argument
has to be provided as well. All partial derivative functions us the same naming convention as follows.
Let FuncName be the function name and VarName the argument name. Then the partial derivative
function is denoted as dFuncName _dVarName .

Each calculation is implemented in a separate class, see table III.2. Therefore, the external functions
are brief and always follow the same syntax. The prototype of an external function reads as

1 double HTX_API ExFunc (...)
2 {
3 AFX_MANAGE_STATE(AfxGetStaticModuleState ());
4
5 double RetVal = -1;
6
7 ClassName theClass (...);
8
9 if (theClass.Continue ())

10 RetVal = theClass.PerformCalculation ();
11
12 return RetVal;
13 }

Line 3 has to be added as a very first command to all external functions. This command guarantees
that the correct resource handle is used. In line 7 an instance of a class is generated, which performs
the desired calculation. The parameters of the constructor are all the variables which are necessary to
obtain a result. Within every constructor the method CheckInputData() is called which verifies whether
the input parameters are within the feasible range. If any parameter is outside the range, Continue()
returns false and no calculation will take place. Furthermore, an error message will be printed to the
protocol and Newton’s method aborts. The actual calculation will be done in line 10. If the external
function is a derivative, this line is substituted by

10 RetVal = theClass.NumericalDifferentiation (& theClass.VarName , EVarName);

where &theClass.VarName is a pointer to the public member variable assigned in the constructor with
the corresponding input argument. The second argument is an enumeration declaration corresponding
to the type of variable. Since the magnitude of the variables can differ significantly, different step
sizes for the numerical differential formulas are chosen. The step size is selected according to the
enumeration declaration.

7.2. Class Hierarchy

The actual calculations are wrapped in classes. An excerpt of the class hierarchy is illustrated in figure
III.17. Since several similarities between the calculations become apparent when taking a closer look,
an object-oriented programming approach was chosen. The aim is to reduce the number of duplicated
code lines by a sophisticated structure of classes and polymorphism. The prototype code fragment for
external functions and derivatives shows in line 9 and 10 already two methods which are common.

The DllClass-class constitutes the root for almost all classes used in the HTX.dll and there the two
above mentioned methods are declared. The PerformCalculation()-method serves as a wrapper with
a try-catch-block for the abstract _PerformCalculation()-method which is implemented by derived
classes. The necessity of this structure emerges from exception handling since any exceptions thrown
in a DLL have to be catched and handled there. Otherwise the DLL causes PSE to crash. From this
class the DllBaseClass-, Bdry- and I_Control-class are derived. The last is described in section 7.3.

72

7. Dynamic Link Library: HTX.dll

Table III.2.: Excerpt of the most important external function names and corresponding classes.

Function Name Class Return Value
Co_EpsilonCal Co_Epsilon Vapor void fraction ε by the LMε model
Co_FlowPatternCal Co_FlowPattern Integer of flow pattern by [36]
Co_PressureDropCal Co_PressureDrop FPD ∆p by [90]
Co_HTCCal Co_HTC HTC α by [103]
Ev_EpsilonCal Ev_Epsilon Vapor void fraction ε by the Rouhani–Axelsson model
Ev_FlowPatternCal Ev_FlowPattern Integer of flow pattern by [112]
Ev_PressureDropCal Ev_PressureDrop FPD ∆p by [90]
Ev_HTCCal Ev_HTC HTC α by [113]
Sp_PressureDropCal Sp_PressureDrop FPD ∆p for a single phase fluid
Sp_HTCCal Sp_HTC HTC α for a single phase fluid
CapMflowCal Capillary Mass flow ṁdrain through the capillary
CaphHx_Cal Capillary Exit Enthalpy hdrainSuc of internal heat exchanger
IC_Cal I_Control Controlled value cn+1 of I_Control Unit
IC_EventTime I_Control Time t∗ of last (de)activation event of I_Control Unit

DllClass

Bdry

DllBaseClass

I_Control

Ambiance

Base_Epsilon

Base_FlowRegime

Capillary

Density

DllAdvancedClass

HeatCapacity

Sp_HTC

Sp_PressureDrop

Co_Epsilon

Ev_Epsilon

Co_FlowRegime

Ev_FlowRegime

LiquidDensity

VaporDensity

Base_HTC

Base_PressureDrop

Co_HTC

Ev_HTC

Co_PressureDrop

Ev_PressureDropVaporIsobaricHeatCapacity

VaporIsochoricHeatCapacity

Figure III.17.: Excerpt of the class hierarchy in the HTX.dll . Only the most important classes are
depicted. This illustration was automatically generated by the program Doxygen.

On the one hand, the DllBaseClass-class extends its base class by the framework for calculating phys-
ical properties. Therefore, further member variables are a pointer to an object of the REFPROP-class,
described in section 7.3, and the fluid ID, which corresponds to working fluids available in PSE. The
m_bCalculatePP-variable is used to decide whether physical properties have to be calculated or not.
Usually, an object obtains pressure and temperature and calculates the appropriate properties in the

73

III. Modelling

CalculatePP()-method but in some cases these properties are already available. To minimize the com-
putational effort, in these cases the properties are passed directly to the constructor. Any other derived
class is not mentioned in detail in this thesis.

On the other hand, the DllBaseClass-class can print messages to the protocol of PSE. The standard
scheme to print a message is to first allocate a pointer to a std::string representing the message,
then call the AddMessage(...)-method and finally the SendMessage(...)-method. In the last method
the std::string-pointer is deallocated. All possible output strings are stored in the HTX.rc-file. Each
string has a unique ID. The ID of the desired string has to be passed to AddMessage(...) which first
uses the LoadResourceString(...)-function defined in DLL_Basics.h to access the correct string in the
HTX.rc-file and second appends it to the std::string from above.

From the DllBaseClass-class several classes are derived. First, the SpHTC- and SpPressureDrop-class cal-
culate the HTC and FPD for single-phase working fluids, given in section 6.1.1. Second, the Capillary-
class serves as a wrapper class for the ANN-object, described in section 7.3. Third, the DLLAdvancedClass-
class is the base class for the HTC and FPD calculation in the single and two-phase region. A more
detailed description will be given below. And finally the Base_Epsilon- and Base_FlowRegime-class are
the base classes for the vapor void fraction and flow pattern calculation, respectively.

Four major calculations are available for both, Condenser- and Evaporator-Units, which cover the
whole physical range below the critical pressure. The four calculations comprise the vapor void frac-
tion, the flow pattern, the HTC and the FPD. If the working fluid is single-phase, the calculations for
both Units are equal and in the two-phase region at least the calculation scheme coincides. Therefore,
for each calculation a base class with prefix Base and two derived classes with prefix Co and Ev corre-
sponding to Condenser and Evaporator, respectively, are set up. The base classes are Base_Epsilon,
Base_FlowRegime, Base_HTC and Base_PressureDrop.

Since the calculations for the condenser and evaporator equal in the single-phase region, the Base-
class calculates the values there and performs the interpolation at the boundary of the two-phase
region. Thus, _PerformCalculation() is always implemented in the Base-class. In the Base-class also
common member variables are declared. A constructor is provided which assigns these members and
CheckInputData() is implemented for the assigned variables. The CalculatePP()-method is implemented
as well. For the two-phase region abstract methods are declared, e.g. the EpsilonCal()-method in the
Epsilon-classes. There, the vapor void fraction as described in section 6.1.2 is calculated.

The FlowRegime-classes split the two-phase calculation into two parts. First, the transition curves are
evaluated for the current state in SetUpTransitionCurves() and second, DeterminePattern(...) decides
which pattern is apparent with respect to the mass flow per area G and flow quality ẋ. In the HTC and
FPD calculations discontinuities can occur between the models used for each flow pattern. To avoid
problems in Newton’s method, linear interpolation is applied along the G-axis if the state is close to a
pattern change. For this, the FlowPatternCalculation(...)-method calculates the current flow pattern
and evaluates in CheckInterpolationArea(...) if an interpolation is necessary and which patterns are
involved. The required information is stored in an InterpolationInfo-object. Since the flow pattern
maps are different for the HTC and FPD calculation in the Condenser, the purpose EInterpPurpose is
passed as well to gain appropriate results.

The DLLAdvancedClass-class serves as base class for the HTC- and PressureDrop-classes. The interpola-
tion between flow patterns is implemented in the DLLAdvancedClass-class since it holds for any derived
classes. The PatternInterp()-method uses the above mentioned InterpolationInfo-object to interpo-
late between values gained from the abstract SinglePatternEval(...)-method. In the latter method
the correlations for the flow patterns are evaluated. This method is implemented in the Co/Ev_HTC and
Co/Ev_PressureDrop-classes.

74

7. Dynamic Link Library: HTX.dll

Each of these four classes uses a FlowRegime-object. For the sake of presentation we explain the follow-
ing ideas for the Co_HTC-side only but they hold for all other cases as well. The FlowRegime-object is
used in methods of the Base_HTC- and Co_HTC-class. Since in the Base_HTC-class it is not specified if the
calculation is used for a Condenser or an Evaporator, a standard object-oriented technique is applied.
In the DLLAdvancedClass-class a pointer to a Base_FlowRegime-object is declared, i.e. Base_FlowRegime*
m_ptheFlowPattern. Additionally, the abstract InitFlowPatternObj()-method is declared but imple-
mented in the Co_HTC-class. There the pointer is allocated with new Co_FlowRegime(...). Hence, the
appropriate FlowRegime-object is used always.

7.3. Long-living Objects

Principally, objects exist only during the external function call but in some situations it is convenient
to have objects which live longer. When the HTX.dll is loaded by another programm the code written
in the HTX.cpp-file will be executed. There, the global object CHTXApp theApp is allocated. This object
is deallocated only when the HTX.dll is released. Although it is global, we access it always with
(CHTXApp*) AfxGetApp(). All other objects which are supposed to live longer than an external function
call are member variables of the CHTXApp-class and getter-methods are available to access them. The
ANN-, REFPROP- and WaterGlycol-member objects are given as pointers and are initialized with NULL in
the CHTXApp-constructor. Only if a function requires one of these objects, an instance will be allocated.
Since these objects remain equal for every caller, this procedure is sufficient. If a model uses multiple
I_Control-Units, a different approach has to be chosen. The I_Control-class handles the calculation
for one I_Control-Unit. For every I_Control-Unit one object has to be allocated to avoid accidental
overwriting of crucial data. Therefore, a std::vector<I_Control*>-member is added to the CHTXApp-
class and every I_Control Unit has to be provided with a unique index in PSE. This index allows to
access the corresponding entry in the vector which is resized individually to suit the largest index.

A brief overview of the above mentioned classes shall be given. First, the ANN-object is essential for
the calculations of the capillary. The coefficients of the ANN are read from several text files. To save
computational time, these files are read only once and stored in the ANN-object. Also the evaluation is
handled by this object. The Capillary-object was introduced such that the external functions for the
capillary fit the prototype and thus serves as a wrapper.

Second, the REFPROP- and WaterGlycol objects are necessary to calculate physical properties. The
WaterGlycol-object is allocated only if the working fluid is water-glycol. This object reads tables from
files once and interpolates (linearly) between the given points. There, the physical properties only
depend on the temperature and not a second thermodynamical state value. Only enthalpy, density,
heat conductivity, dynamic viscosity and isobaric heat capacity are provided. Any other working fluid
is handled by the REFPROP-class. When the HTX.dll is loaded, the CHTXApp::InitInstance()-method
is called. There, the PPORCSys.dll is loaded. The DLLHandle-object gives access to this DLL and
has to be passed to the REFPROP-constructor where all necessary function pointers are allocated. The
PPORCSys.dll is released in the CHTXApp-destructor which is called when the HTX.dll is released.

The last long living object is an instance of the I_Control-class. A crucial element in this object is
the simulation time provided by DASSL. Since DASSL uses an adaptive time stepping scheme which
can reduce the predicted time step and repeat the integration step, we have to compare the current
simulation time tc with the last time tl the object was called. If tc > tl, DASSL accepted the last time
step. We store the time tl and other relevant variables which we refer to as valid variables since they
will not change anymore. If tc < tl, the last predicted time step failed and DASSL reduced the step
size. Hence the variables of the last valid time have to be restored. Afterwards the current values at
time tc are calculated. This strategy has to be applied to all models involving the simulation time.

75

III. Modelling

8. Numerical Issues

The calculations performed in the HTX.dll are partially very complex and the devil is in the details.
For each flow pattern a different set of equations and variables is used to calculate the HTC or FPD.
Since the sets are not of the same size, it would have been hard to implement these models in MDK
itself. Smooth extensions must have been found for the sets in regions where they are idle. Therefore,
these complex calculations have been outsourced. In order to find a solution at each integration step,
at least continuous functionals have to be given and numerous issues appeared during the development
process.

8.1. Reasons for the Rejection of an Integration Step

In this section we discuss the two reasons why DASSL may not accept an integration step repeatedly
and the simulation terminates prematurely. The reasons are that, first, Newton’s method failed to
converge or second, the integration error tolerance is not fulfilled. We start with the first reason. Let
F (t, x, x′) : R2n+1 → Rn be the dynamic system with t ∈ R and x ∈ Rn. Then the derivatives with
respect to time are replaced by a BDF-scheme at each time tk+1 = tk + h, see section II.1.2. This
yields a (nonlinear) n × n-system which is solved by Newton’s method. The iteration matrix has the
special form

Jx(F)(tk+1, x) =

(
∂F

∂x
+
αd
h

∂F

∂x′

)
(tk+1, x). (8.1)

If in any equation of F no derivative appears, the second term in the Jacobian is singular. Consequently,
for decreasing step sizes h the iteration matrix becomes ill-conditioned.

Theorem II.1.29 on the convergence of Newton’s method requires that the system F has to be con-
tinuously differentiable and the starting point of the iteration has to lie in an ε-neighbourhood of the
solution. Experience shows that convergence can mostly also be achieved if F is only continuous.
The adaptive time stepping algorithm in DASSL reduces the step size h if Newton’s method does not
converge. Hence, it can be assumed that the second requirement for convergence is fulfilled at the
latest after a finite number of step size reductions. In particular, for every step size we have a different
starting point, iteration matrix and another root. Therefore, the adaptive time stepping increases the
chance of convergence for models with so many non-differentiabilities and hidden discontinuities as in
the developed refrigeration appliance model.

The convergence of Newton’s method is also influenced by the accuracy of the partial derivatives. The
partial derivatives for equations written with the MDL are given analytically. For external functions
numerical derivatives have to be provided which are not exact in the HTX.dll . Therein, the derivatives
are approximated by a central difference scheme. Since the magnitude of the variables is significantly
different, an appropriate step size is chosen for each variable. In general, no inner derivatives have to be
considered when numerical derivatives are evaluated. Since all models in the HTX.dll are established
for positiv mass flow and heat flux, in the constructor the absolute values are assigned. Evaluating
the derivative is a method of each class and is called after the constructor. Consequently, the inner
derivative must be taken into account implying that the numerical derivative has to be multiplied with
the signum of the respective variable.

The second reason why an integration step is rejected becomes apparent when Newton’s method
converges but the integration error tolerance is not fulfilled. In DASSL a predictor-corrector-strategy
is implemented. In the predictor-stage, the new state is predicted by polynomial extrapolation with
the same order as the chosen BDF-method. In the corrector-stage, the system of equations is solved

76

8. Numerical Issues

where the predicted state serves as the starting point of Newton’s method. Let xp, xc ∈ Rn be the
predicted and corrected state, respectively. Then the integration error E(I) is bounded from above
by

E(I) ≤ ‖xp − xc‖2 < tol(I), (8.2)

see [11], where tol(I) denotes the integration error tolerance provided by the user. This upper bound
is used to decide whether an integration step is accepted or not. If the functions are continuous the
distance decreases with the step size. Otherwise, ‖xp − xc‖2 may remain larger than the tolerance for
any time step although Newton’s method converges. To overcome this problem, the Relax Tolerance
Control -option was added to IPSEpro. This enables DASSL to set tol(I) = ∞ if the step size is less
than a given threshold. Since any solution xc is accepted then, the threshold has to be chosen carefully
to guarantee reliable results.

Concluding, we expect the simulation to be successful if the flow sheet model, represented by F , is
continuously differentiable. Since this is not the case in several refrigeration cycle Units, problems with
the simulation and hence premature termination emerged. Since a model is only usable if the simula-
tion can be performed successfully for a sufficiently large domain of parameters, these problems were
investigated and the convergence behavior was improved significantly. Most difficulties appeared in the
heat exchanger models, Condenser and Evaporator. In the following we discuss several discontinuities
and non-differentiabilities existing in the Unit models.

8.2. Functional Discontinuities & Non-Differentiabilities

We start with three external functions, Co_FlowPatternCal, Ev_FlowPatternCal and IC_EventTime, which
return discrete quantities by definition. The first two functions return the integer of the current flow
pattern which is a natural number between 1 and 9. These functions are used in the heat exchanger
Units such that the current flow pattern can be seen by the user. The last function yields the last
time at which the respective I_Control-Unit switched. Since all these functions and the variables to
which the return value is assigned appear in 1 × 1, post calculation blocks, see section II.4.1, the
discontinuities in the variables do not influence the remaining model. Still, these functions cause a
premature termination, if the Relax Tolerance Control-option is not activated.

A discontinuity which emerges from physical properties is not as obvious as the above ones. It occurs at
the lower two-phase boundary and has its origin in the density of the working fluid. At this boundary
the density is not continuously differentiable, see figure III.18.

Due to the finite volume approach in the heat exchanger Units, the volume V is fixed which yields
that the mass m related to the density by

m = ρV (8.3)

is not continuously differentiable at the lower two-phase boundary as well. Thus, the derivative dm/dt
which appears in the conservation law of mass, i.e.

dm

dt
= ṁfeed − ṁdrain, (8.4)

is not continuous. Therefore, a discontinuity in the mass flows ṁfeed and ṁdrain at the interface, i.e.
the Connection, of the finite volume emerges. Since the mass flow appears in several equations such as
the conservation of energy and the external functions of contiguous heat exchanger Units calculating
ε, ∆p and α, these equations are not continuous as well. Consequently, the non-differentiability of the
density has an impact on the whole model. On the one hand, sufficiently small finite volumes have

77

III. Modelling

0

50

100

150

200

250

300

350

400

450

500

550

600

650

80 180 280 380 480 580 680 780

D
e

n
si

ty
 [

kg
/m

³]

Specific Enthalpy [kJ/kg]

1 1.5 2 2.5 3 3.5 4

Figure III.18.: Density of Isobutane (R600a) for various pressures from 1 bar to 4 bar.

to be chosen to guarantee convergence. On the other hand, the Relax Tolerance Control -option has
proved to be useful in this case if the integration error tolerance can not be satisfied.

Next we discuss the calculation of the density ρl on the lower two-phase boundary. This quantity
is needed in equation (6.21) in which the density of the working fluid is determined. Since not all
functions from Refprop are available in this MDK-library, the equation for density of the liquid share
was written as

ρl =

{
ρ(p, h), if ẋ ≤ 0,
ρ(p, hl), else (8.5)

where hl = h(p, x = 0) is the specific enthalpy at the lower two-phase boundary. Thus, the right hand
side depends on four variables which are iterated as well. If ẋ is close to zero, the above formulation
leads to periodic iterations in Newton’s method with a length of up to six iterations until the first
state repeats. This convergence issue was resolved by implementing an external function which only
depends on p and h, i.e.

ρl = LiquidDensityCal(p, h). (8.6)

In this function, the specific enthalpy hl is calculated from the pressure and the minimum of h and hl
is passed to the Refprop-function ρ(p, h).

Next, the physical properties λ, cp, cv and η occur in the models for the HTC and FPD applied in
the heat exchanger Units. These properties are defined in the single phase region only and are not
continuous in the saturation temperature Tsat for any pressure less than the critical pressure. They
are calculated from pressure and temperature T and even a slight deviation from Tsat yields either
values for the liquid or vapor phase. Since the solution of Newton’s method is not exact, T < Tsat can
hold although the state is in the vapor phase and vice versa. This would yield wrong values for these
properties and hence wrong results of any further calculation. To prevent errors, the CalculatePP()-
method in the HTX.dll also regards the flow quality ẋ when these properties are calculated. E.g. if
ẋ > 1 then the maximum of T and Tsat + δ, where δ > 0 is a small offset, is passed to the Refprop
functions. Additionally, if 0 < ẋ < 1 holds, the properties have to be calculated at the lower and upper
two phase boundary. To achieve a continuous function, the properties are then evaluated at Tsat±δ.

Further discontinuities occur in the HTC and the FPD calculation at the two-phase boundary and at
almost every flow pattern change. To ensure continuous external functions, linear interpolation was
applied wherever necessary. Here, one has to mind that the boundary curves of the flow patterns may

78

8. Numerical Issues

intersect in certain cases. The non-differentiable points due to the interpolation do not have such a
big impact on the convergence as those for the density calculation and experience shows that Newton’s
method still converges.

The last discontinuity mentioned emerged in the Compressor-Unit if the inlet is close to or inside the
two-phase region. Such situations may occur in the simulation when the compressor is turning on.
Of course, in reality this has to be prevented since the compressor can be damaged. Nonetheless, in
equation (6.52) the physical properties cp and cv are calculated from pressure and temperature at the
inlet. As mentioned above, these properties have a discontinuity in Tsat. No interpolation is applied,
but the maximum of Tsat + δ and T is chosen always.

8.3. Limitation of the two-phase Heat Transfer Coefficient

Since at the two-phase boundary very steep gradients in the HTC occur, the HTC was bounded. As a
consequence, we expect increased numerical robustness since the initial value xp for Newton’s method
is closer to the solution xc and the integration error tolerance will probably be satisfied with a larger
time step (recall equation (8.2)). To find a good choice for an upper bound we consider the thermal
transmittance k through the pipe wall of a heat exchanger, i.e.

k =
1

1
αi

+ d
λ + 1

αo

(8.7)

where αi is the HTC between the working fluid and the pipe wall, d the diameter and λ the thermal
conductivity of the pipe wall, and αo the HTC between the pipe wall and the ambiance. Each term
in the denominator is referred to as thermal resistance. In our case the pipe wall is usually very thin
such that the middle term is negligible. Division of the above equation by αo yields

k

αo
=

1

1 + αo
αi

. (8.8)

The limit for αi →∞ is given by

lim
αi→∞

1

1 + αo
αi

= 1. (8.9)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

k/
α

o
 [

-]

Inner Heat Transfer Coefficient αi [W/m²K]

10 50 100 500 1000 2000

Figure III.19.: k/αo over inner HTC αi for various αo from 10 W/(m2 K) to 2000 W/(m2 K).

79

III. Modelling

Hence, the thermal transmittance is governed by the largest thermal resistance. In figure III.19, several
graphs of the dimensionless number k/αo are illustrated. In the refrigeration cycle, αo is supposed
to be less than 50 W/(m2 K) which implies that no perceptible changes take place in the thermal
transmittance for αi > 2000 W/(m2 K). Thus, αi was bounded with 2000 W/(m2 K).

In figure III.20 the bounded and unbounded inner HTCs and the resulting heat fluxes Q̇ in the con-
denser are illustrated for a steady-state calculation in which the compressor is turned on. The thermal
resistance of the pipe wall is set constant with d = 7× 10−4 m and λ = 50 W/(m K) and the ambient
HTC has a constant value of 22.5 W/(m2 K). The bound of 2000 W/(m2 K) has a huge impact on
the calculated HTCs but the heat flux Q̇ remains almost equal. The summed up heat fluxes yield
−73.00 W and −73.27 W for bounded and unbounded HTC, respectively. Figure V.27 shows that the
HTC in the evaporator does not exceed 2000 W/(m2 K) during the simulation.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100

H
e

at
 T

ra
n

sf
e

r
C

o
ef

fi
ci

e
n

t
[W

/m
²K

]

Unit Index [-]

bounded unbounded

(a) HTC.

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0 10 20 30 40 50 60 70 80 90 100

H
e

at
 F

lu
x

[W
]

Unit Index [-]

bounded unbounded

(b) Q̇ for bounded and unbounded HTC.

Figure III.20.: HTC and heat flux Q̇ over Condenser-Units in a steady-state point.

8.4. Spatial Discretization

Next we discuss the one dimensional spatial discretization of the heat exchangers. The aim is to find
a good balance between accuracy, stability and numerical costs. On the one hand, the discretization
error is reduced as the number of finite volumes for a fixed total length is increased. On the other
hand, the increase of finite volumes leads to a larger system which has to be solved countless times
and thus the numerical costs grow as well. Since the HTC and FPD depend nonlinearly on the state of
the working fluid and change rapidly, an analytic derivation of error estimates seems to be impossible.
Thus, numerical experiments are performed instead. Let m be the number of finite volumes and let x
be a variable. The exact solution is not known, but from above considerations we deduce that

lim
k→∞

|xm+1 − xm| = 0 (8.10)

has to hold for all variables x. The different numbers of volumes yield different spatial positions of
most of the variables which makes it impossible to compare them. Only the positions of inlet and
outlet remain equal for all m. In the numerical experiments the Condenser-Unit is used. At the
inlet the pressure and enthalpy are prescribed and at the outlet observed. From these two all other
thermodynamical properties can be obtained. The mass flow is set constant and only steady-state

80

9. Flow Sheet Model in PSE

calculations are performed. Furthermore, the HTC between the working fluid and the pipe wall is not
bounded to avoid distortion of the results.

In figure III.21 the results are illustrated. The outlet pressure reaches a limit at m = 50 which
corresponds to a single volume length of 0.4 m. The difference of the outlet enthalpy between 50
and 100 volumes, is 1.4 kJ/kg and between 70 and 100 volumes 0.6 kJ/kg. If the temperature of the
condenser approaches the ambient temperature and hence no heat is exchanged anymore, the error of
the outlet enthalpy diminishes.

Furthermore, we expect to have a larger error in the single phase region since the temperature of the
working fluid changes. In the two-phase region where the temperature remains equal an error can only
result from an inaccurate HTC. In the refrigeration appliance model the working fluid of the evaporator
is expected to be almost entirely in the two-phase region. Therefore, longer volumes are chosen. At
the condenser inlet single phase working fluid is assumed and a tighter spatial discretization is applied.
Although in the refrigeration appliance model an equidistant discretization is chosen, higher accuracy
is expected if the Condenser-Units in the beginning, where the working fluid is still single phase, are
smaller. However, since the HTCs on the outside of the heat exchangers are fit with measurements,
the discretization error can be compensated.

270

272

274

276

278

280

282

284

286

288

290

292

294

296

298

300

4.802

4.804

4.806

4.808

4.81

4.812

4.814

4.816

4.818

4.82

4.822

0 10 20 30 40 50 60 70 80 90 100

Sp
ec

if
ic

 E
n

th
al

p
y

[k
J/

kg
]

P
re

ss
u

re
 [

b
ar

]

Number of finite volumes

Pressure Enthalpy

Figure III.21.: Enthalpy and pressure at condenser outlet over number of finite volumes. Steady-state
calculation with mass flow 0.1877 g/s, enthalpy 661.33 kJ/kg and pressure 4.8249 bar at
condenser inlet, constant total length of 20 m and ambient temperature 25.36 ◦C.

9. Flow Sheet Model in PSE

Concluding this chapter the flow sheet model set up in PSE is presented. The focus not only lies on the
results but also on problems of the whole appliance and how to overcome them. The Echelon Analysis
proved to be a useful tool even for experienced users. It helps when a new flow sheet model has to be
established or an existing one has to be modified.

81

III. Modelling

9.1. Setting up a Flow Sheet

In this thesis only a short guideline is given of how a flow sheet model is set up. For a more detailed
explanation we refer to [82]. If a dynamic calculation is performed, at first the initialization system
is solved, see section II.2.1. Solving this nonlinear system guarantees that the DAE solver does not
have any problems at the initial time. If a dynamic model of a Unit is used, initial values have to be
prescribed for the differential variables. In the heat exchanger Units these variables are the specific
inner energy u, the mass m and the pipe temperature Tp. Since these values may be hard to guess,
the steady-state models of these Units are used to find them. Then, the steady-state solver can be
called. The boundary conditions remain equal and the initial values for u, m and Tp are gained from
the steady-state model.

In IPSEpro, several datasets can be generated for the same flow sheet model. In each dataset the
mathematical models of the Units and boundary conditions can be different. A hierarchy of the
datasets, illustrated in the Dataset Manager in PSE, can be chosen by the user and the results of
one dataset can be used for the start of the next. In the refrigeration appliance model, we use this
framework, establish a steady-state model first and import the results into a dynamic dataset where the
dynamic Unit-models are chosen. Thus, the derivatives of the differential variables can be prescribed
with zero and the dynamic simulation starts from an equilibrium. Since periodic compressor on-off-
cycles form after a few cycles, starting from an steady-state point can be recommended.

In principle, we built a steady-state flow sheet model as simple as possible and extend it step by step.
Hence, dealing with the necessary settings of each Unit is straightforward and the chance of convergence
of Newton’s method is increased. In particular, often the Block Decomposition, presented in section
II.2.2, decomposes the system of equations into smaller parts in simple flow sheet models. E.g. in
a Source-Stream-Sink model, mostly the system can be decomposed into 1 × 1-blocks which usually
have a very large neighbourhood of convergence. Such a simple model combined with an expected
thermodynamic state is a good choice to start with since usually convergence is achieved easily. The
PSE-command Import Estimates loads the results into the estimates of the variables which serve as
the starting values for Newton’s method. Consequently, if the calculation is repeated with the same
model and same boundary conditions, the estimates equal the solution.

Next, a possible approach to obtain a steady-state flow sheet model of a refrigeration appliance is
presented briefly. We start with the simplest model possible which consists of a Source, a Stream and
a Sink. There, the composition of the working fluid has to be set in a Composition-Global and we
choose the thermodynamical state such that it corresponds to the expected compressor outlet. To avoid
problems with the two-phase region, the pressure p, enthalpy h and mass flow ṁ are prescribed in the
source. Import Estimates loads the solution into the estimates. Next the condenser is incorporated.
The geometry and properties of the pipe wall have to be set and we extended the existing model by one
Condenser-Unit. To have good estimates of the physical properties at the in- and outlet we duplicate
the Connection instead of drawing a new one. This procedure increases the chance of convergence in
the next calculations. If the system does not converge, rough estimates in the Condenser-Unit are
often sufficient to obtain a solution. On the one hand, they can be gained from the Connection or on
the other hand by experience. Furthermore, the length of the Unit can be decreased which reduces
the difference between inlet and outlet state. Once the system converged, Import Estimates is applied
again. Then the Unit and the Stream attached to the outlet are duplicated, incorporated between the
first Condenser and the Sink and a new calculation is performed. This procedure is repeated until the
desired number of Condenser-Units is obtained.

The whole compressor consists of three Units: the Compressor, the Shell and the Oil_Sump. The
heat transfer coefficients, areas, the volume and the pressure drop have to be prescribed in the Shell,

82

9. Flow Sheet Model in PSE

fit parameters, the NOR and the displacement in the Compressor and properties of the oil in the
Oil_Sump. The Source is shifted from the Condenser to the Shell inlet, the settings have to be
removed there and set, e.g. at the Stream between the Shell and the first Condenser. If all Stream-
Connections have been duplicated, immediate convergence can be expected. Otherwise the new Units
have to be provided with rough estimates since the default values may be poor.

Including the Capillary can be more demanding than adding the three Units of the compressor. In
the first place, we recommend to build this Unit independently of the already established model and
not to set the mass flow through the capillary or the enthalpy on the suction side outlet. Since these
variables are output values of the ANN, invalid or physically impossible values could be prescribed. A
possible choice of settings are the pressure and enthalpy at the inlet and the pressure at the outlet of
the capillary as well as the pressure, enthalpy and mass flow at the inlet of the heat exchanger on the
suction side. When a solution is obtained, the settings can be shifted in the desired direction such that
the Capillary can be connected to the outlet of the last Condenser-Unit and Shell inlet. Connecting
the Capillary reduces the amount of necessary settings. Hence, e.g. in an arbitrary Unit or Connection
the mass flow and the pressures at the Capillary outlet and at the inlet of the heat exchanger on the
suction side can be set.

The whole evaporator is incorporated as the condenser. If the pressure is prescribed at the capillary
outlet as recommended above, the Evaporator-Units forms a separate block in the system of equations
which is solved after the other Units. Thus, the established models are not influenced by the Evapo-
rators. In the refrigeration appliance model, described in section 9.2, the evaporator is located in the
insulation and exchanges heat with the compartment and ambiance. At this state of the model we
connect the Evaporator to Ambient-Units. The temperature and HTC of the Ambient are chosen such
that the cycle can be closed as easy as possible and afterwards are be replaced by values which allow
the Ambient-Units to be exchanged with Wall- and Compartment-Units.

At this state of the flow sheet model, the working fluid streams from a Source arranged before the suc-
tion side of the Capillary through the internal heat exchanger and the Shell into the Compressor. Then
it is discharged into the Condensers, expanded in the Capillary and streams through the Evaporators
before it vanishes in a Sink. Closing the cycle can be a challenging task and often requires patience.
The states of the "loose" ends have to be brought close such that Newton’s method converges. This
is achieved by changing any settings until these states almost equal. The changes in the settings can
be reversed after the cycle is closed. In a steady-state cycle model, a Connector-Unit has to be used
to connect the loose ends. In the Connector the equations

pfeed = pdrain, (9.1)
hfeed = hdrain (9.2)

are defined. Thus, the states are transferred unmodified but the conservation of mass is decoupled.
As described in example II.3.18 on page 39, a cycle-system without a connector would yield a singular
iteration matrix. Therefore, one mass balance is removed which yields one degree of freedom. E.g.
the mass flow can be set instead or, as it was done in the refrigeration appliance model, the total
mass of refrigerant in the system can be prescribed. In the dynamic dataset the connector has to be
removed again to avoid a leakage of mass. Since the flow sheet can not be changed the Connector
has another model which is extended by the conservation of mass. If all derivatives dm/dt of the
mass are initialized with zero in the dynamic dataset, a singular system emerges which implies that
at least one mass has be initialized instead. Finally, when the cycle is closed, the Compartment and
Insulation is built around the Evaporators before the Temperature Sensor and the I_Control complete
the flow-sheet model. Setting up a steady-state model has another benefit. Since numerous fitting
parameters are validated using steady-state measurements as described in chapter IV, a steady-state
model has to be set up anyway. Hence the steady-state dataset serves as the basis for both, dynamic
simulation and validation.

83

III. Modelling

C
o

m
p

re
ss

o
r

C
o

n
d

en
se

r

C
ap

ill
ar

y

C
o

m
p

ar
tm

en
t

C
as

in
g

Ev
ap

o
ra

to
r

In
su

la
ti

o
n

Te
m

p
er

at
u

re
 S

en
so

r

C
o

n
tr

o
l

Figure III.22.: Flow sheet model of the refrigeration appliance.

84

9. Flow Sheet Model in PSE

9.2. Refrigeration Appliance Model

Within this section the flow sheet model of the refrigeration appliance is presented. The flow sheet can
be seen in figure III.22. The four green arrows do not represent Units but illustrate the flow direction
of the refrigerant. The three frames correspond to the compressor, condenser and casing. First, the
compressor consists of Shell-, Compression- and Oil Sump-Unit. For the arrangement see also figure
III.10 on page 61. Second, the condenser is connected on the one side to the ambiance and on the
other side to Air Pads which themselves are connected to insulation at the back of the compartment.
Between the second and the third row of Condenser-Units, the HeatFlux-Connections overlap such that
only one dark red line is visible in the middle. Third, inside the casing we have the Compartment-Unit
surrounded by six walls. In four walls the evaporator tubes are embedded. The remaining two walls
correspond to the door and the rear. No door heating is modelled in IPSEpro but the condenser
exchanges heat with the rear of the compartment which is not implemented in the VBA simulation
tool. Differently from figure III.8 on page 59, the Accumulator-Unit is not situated at the very end of
the evaporator but two Units before that. Always before and after one or more heat exchanger Units,
green triangular Icons are visible. These triangular Units are referred to as Stream-Conversion and
only used to convert a Stream- into a Stream_H-Connection and vice versa. The state does not change
in these Units. Finally, the Units at the top right and bottom left are presented shortly. At the top
right, the brown Icons correspond to the the Geometry-Units, the orange Icons are used to hold values
of surface areas which appear multiple times and the blue Unit contains variables which are the sum
of others, e.g. the total mass of refrigerant explained below. The dark red Units at the bottom left are
needed to evaluate the penalty terms from section IV.1.1.1. Hence, they do not have any influence on
the model but are necessary for the steady-state parameter fitting, explained in chapter IV

The flow sheet model was set up in a steady-state point. The degree of freedom emerging from the
Connector-Unit was firstly compensated by setting the mass flow in an arbitrary Connection. Although
this yielded convergence the desired total mass of refrigerant was by far not achieved. Consequently,
the mass flow setting was replaced by a Free Equation prescribing the total mass mtot in the system,
i.e. ∑

i∈Components
mi = mtot. (9.3)

The Free Equations are implemented in PSE with the syntax of the MDL. They are independent
of any Component and all variables from the flow sheet can be referenced. Hence, the correct filling
quantity of refrigerant was achieved.

To ensure a conservative model the mass and energy balance was validated for larger groups of Units.
The conservation of energy was only verified in the initial, steady-state point and the residuum re-
mained within the error tolerance. The total mass was prescribed by equation (9.3) for the initial state
and monitored during the dynamic simulation. The difference between the maximal and minimal ab-
solute deviation of the initially prescribed total mass is less than 0.012 %. In figure III.23, the relative
deviation from the correct filling quantity is illustrated. The deviation shows a periodic behaviour. In
comparison, the model developed in VBA gains 0.58 % of refrigerant in approximately 6.2 h simulation
time.

It has to be mentioned that a real shutdown of the compressor could not be achieved since the system
would become singular if the NOR are set to zero. Therefore, a residual NOR of 20 rpm was chosen.
In this case the mass flow reduces to approximately 0.005 g/s and the masses in the condenser and
evaporator remain almost equal over the whole period of 29 min in which the compressor is idle.
Approximately 5 g of refrigerant are transferred from the Accumulator- to the Shell- and Oil Sump-
Unit, see also section V.1. All values are taken from the validated model presented in chapter IV.

85

III. Modelling

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0 5000 10000 15000 20000 25000 30000

R
e

la
ti

ve
 D

ev
ia

ti
o

n
 [

%
]

Time [s]

Figure III.23.: Relative deviation of the correct
filling quantity of refrigerant.

0

10

20

30

40

50

60

70

80

90

100

110

12614 13114 13614 14114 14614 15114

Ti
m

e
 S

te
p

 [
s]

Time [s]

Figure III.24.: Step size selected by DASSL dur-
ing one periodic on-off-cycle.

Next, shortly the chosen iteration parameters are explained. Experience shows that DASSL performs
better if a tighter tolerance for Newton’s method is chosen. The y-tolerance corresponding to ε in equa-
tion (1.50) on page 20 was set to 5× 10−3. The x-tolerance which is equivalent to δ in equation (1.50)
on page 20 was set to 10−3. The integration tolerance is calculated as the product of the x-tolerance
and the integration tolerance correction factor which was set to 500. This factor can be reduced if a
finer resolution in time is demanded. For simpler or problems with less variables we recommend to
take a much smaller quantity, e.g. between 10 and 100. Generally, the smaller this factor is chosen the
smaller the time steps will be. It is not recommended to choose a value below 10 but to decrease the
x-tolerance if the time steps are too large. The initial step size was set to the default value, i.e. 0.1 s.
The Relax Tolerance Control -option was enabled since, among others, the flow pattern number is a
discrete integer quantity. This implies possible jumps which have to be allowed. Since flow pattern
changes are expected to occur only while the compressor is turning on or off, smaller time steps can
be assumed in advance anyway. Therefore we chose 0.1 s as the threshold value.

Finally, we give some information of the DAE system. The flow sheet model consists of 2706 algebraic
and 180 differential variables, 197 algebraic variables are set, 27 differential and 153 derivatives of
differential variables are initialized. This yields a system of size n = 2689. This number disregards
the numerous variables and equations inside the HTX.dll . In the initialization system, the block
decomposition found 1135 blocks and the largest one contains 1555 variables. In the dynamic system,
we have 1114 blocks and the largest consists of 1576 variables and equations; 874 blocks are constant,
2 dynamic, and 238 of type post calculation. All constant and post calculation blocks have size 1× 1.
Since it is possible to initialize the states of all differential variables and the Jacobian is regular in the
initial point, the system has index 1 and all initial values are consistent, see corollary 2.4 in chapter
II.

The dynamic simulation is about 2 to 5 times faster than real time depending on the demanded
accuracy. Here, especially the integration accuracy (integration tolerance correction factor) is crucial
since it has a huge impact on the (time) step size. If the step size is chosen smaller, also the corrector
equation has to be solved more often. Furthermore, the calculation takes longer if the compressor
switches more often. When the compressor switches the step size, depicted in figure III.24, is reduced
to a value below 0.5 s. When the NOR of the compressor do not change for a longer period, i.e.
the simulation approaches a steady state, the step size is increased significantly by DASSL. In the
simulation the step size is bounded by 100 s. If no limit is enforced, the step size would further increase
when the system becomes steady state.

86

IV. Dynamic Validation

Once a model is set up and performs well for a sufficiently large domain of parameters, it has to
be compared with measurements to obtain information of its quality. If the quality is not good
enough, either the uncertain parameters or the model itself have to be reconsidered and potentially
changed. This (possibly iterative) process is referred to as model validation, or simply validation.
Since the compressor of the investigated domestic refrigeration appliance operates intermittently, the
refrigeration cycle is never at steady-state. In this thesis, a case is considered in which the compartment
door is never opened and the ambient temperature Tamb is constant. Thus, a (time) periodic behavior
appears in the refrigeration appliance. This means that the on-off-duration of the compressor remains
equal and the states repeat for each period of time. Therefore, we demand that the results of the
dynamic model have to fit the measurements during this period which increases the challenge of the
task. In this case, we speak of dynamic validation to emphasize the time dependence.

1. Nonlinear Regression

Assuming that the model is set up properly, the uncertain, time independent (constant) parameters
have to be fitted such that the results approximate the time dependent (dynamic) measurements.
This process is referred to as nonlinear regression or parameter fitting. Mathematical methods have
been addressed to the problem of nonlinear regression and fall within the scope of optimization. For a
comprehensive overview, we refer to [9, 97] and [65, 78] for unconstrained and constrained optimization,
respectively.

Although there exist fully-automatic numerical methods to fit constant parameters to dynamic mea-
surements, a different approach was chosen due to two reasons. First, no such method is available in
IPSEpro so far and second, up to now an interface is missing which allows to extract the dynamic
results automatically after a simulation has finished. Nevertheless, a fully-automatic method would be
very time consuming. The simulation starts from a steady-state point, as described in the section III.9,
and has to pass several compressor on-off-cycles until the periodic cycle is reached. In the measure-
ments one cycle takes approximately 42 min and the simulation is 2 to 5 times faster than real time,
depending on how often the compressor turns on or off and the demanded accuracy. This implies that
the evaluation of the system for one single set of parameters may take up to several hours. Therefore,
the nonlinear regression problem was split into a stationary and dynamic stage which are iterated.

A priori the parameters are partitioned into two sets. To the first set Ps, parameters belong which
can be fitted using steady-state measurements, e.g. heat transfer coefficients. In the second set Pd are
those which have to be fitted with dynamic measurements, e.g. parameters having an impact on the
thermal inertia. We assume that the model is asymptotically stable which means that if the boundary
conditions are constant, the same states will occur in the system independent of the initial state after
a sufficiently long time. Then the following strategy is pursued:

1. Fit all ps ∈ Ps automatically and run the dynamic simulation.

2. Compare the dynamic results and measurements. If necessary, adjust pd ∈ Pd manually and
return to 1.

Before the automatic fit of ps ∈ Ps is discussed, the measuring points and uncertain parameters of the

87

IV. Dynamic Validation

refrigeration appliance model are presented. The measuring data are described in table IV.1. Steady-
state and dynamic measurements were performed in a climatic chamber with two different ambient
temperatures, 25 ◦C and 43 ◦C, and the thermostat was set to −18 ◦C. Only the measurements with
25 ◦C ambient temperature are taken to fit the parameters. For the steady-state data, the temperature
sensor was switched off such that the compressor remains switched on. The NOR of the compressor
are 3000 rpm. For a comprehensive description of the measurements and used instruments see [40].

The uncertain parameters are given in table IV.2. The condenser is modelled as a horizontal pipe. In
reality the condenser has fins (cross-bracings) made of metal to increase the area and hence the heat
flux. To compensate this, a factor for the heat flux ηα_Co is fitted. Due to the shape of the condenser
and evaporator, we expect that the real pressure drop deviates from the one of the horizontal model and
introduced the factors η∆p_Co and η∆p_Ev. Since the heat fluxes inside the shell are poorly known,
αDis_Shell is fitted. Further points of uncertainty are αComp_in, αComp_out and αAmb_Shell. The
above parameters can be fitted using steady-state measurements. Three dynamic parameters remain
which are adjusted manually. All parameters can not be chosen arbitrarily but have to stay within
physical limits. Hence, we have 10 parameters and 15 measurement values.

Table IV.1.: Measuring data.

Meas. data Unit Description
P W Electric power of compressor
tShell

◦C Surface temperature of shell
tShell_out

◦C Shell outlet pipe temperature
tCond_in

◦C Condenser inlet pipe temperature
tCond_25

◦C Condenser pipe temperature after 25% length
tCond_50

◦C Condenser pipe temperature after 50% length
tCond_75

◦C Condenser pipe temperature after 75% length
tCond_out

◦C Condenser outlet pipe temperature
tCap_out

◦C Capillary outlet pipe temperature
tEvap_out

◦C Evaporator outlet pipe temperature
tShell_in

◦C Shell inlet pipe temperature
pShell_in bar Shell inlet pressure
pShell_out bar Shell outlet pressure
tComp

◦C Compartment temperature
tAmbient

◦C Ambient temperature

Table IV.2.: Uncertain parameters.

Parameter Unit Description

Ps

αIso_out W/(m2 K) HTC between insulation and ambient
αComp_in W/(m2 K) HTC between compartment and insulation
αDis_Shell W/(m2 K) HTC between discharge side refrigerant and shell wall
αAmb_Shell W/(m2 K) HTC between ambient and shell wall
η∆p_Ev − Factor for the FPD in the evaporator
η∆p_Co − Factor for the FPD in the condenser
ηα_Co − Factor for the heat flux between condenser pipe and ambient

Pd

 (ρcV)s J/K Thermal inertia of the temperature sensor
aAcc − Fit parameter in the accumulator model
bAcc s/bar Fit parameter in the accumulator model

88

1. Nonlinear Regression

1.1. Steady-State Stage

In the first stage a subset Ps of the parameters is fitted automatically using steady-state measurements.
In IPSEpro, the steady-state calculation takes only seconds which guarantees a fast numerical method.
In the set Ps, parameters do not occur which have a big impact on the thermal inertia. Parameters,
such as the product of density ρ, heat capacity c and volume V of the temperature sensor can obviously
not be fitted in this stage. Since it only appears as a factor for the derivative of the temperature, it
has no influence on the steady-state model. The nonlinear regression is done fully-automatic by the
Gauß-Newton method which is described below. It is a method for unconstraint optimization. This
implies that the bounds of the parameters have to be enforced by e.g. penalty or barrier functions. In
this thesis, the penalty function approach was chosen.

1.1.1. The Gauß-Newton Method

Within this section we derive the Gauß Newton-Method and present results for the refrigeration ap-
pliance model. For further details we refer to [19]. First of all, we give the necessary definitions.

Definition 1.1 Let y ∈ RN be the vector of variables, ỹ, b ∈ Rn the observed variables and mea-
surement values, respectively, and x ∈ Rm the uncertain parameters. Let n > m. The steady-state
model is described by the system F : RN+m → RN and let the solution satisfy F (x, y) = 0. Let
R = (r1, r2, ..., rn) ∈ Rn be the vector of residuals rj = wj(ỹj − bj) with weights wj ∈ R. Furthermore
let D ∈ Rn×N with Dy = ỹ and the diagonal matrix W ∈ Rn×n with W = diag(wj).

The steady-state nonlinear regression problem is given by

min
x∈Rm

Φ(x) = min
x∈Rm

1

2
R(x)>R(x) = min

x∈Rm
1

2
(Dy(x)− b)>W 2(Dy(x)− b). (1.1)

The cost functional Φ is a composition of three functions and we have Φ : Rm → RN → Rn → R. Let
R′(x) ∈ Rn×m be the Jacobian matrix of R(x). The optimality condition reads as

0 = ∇Φ(x) = R′(x)>R(x) (1.2)

with ∇Φ(x) ∈ Rm and the Hessian matrix ∇2Φ(x) ∈ Rm×m is given by

∇2Φ(x) = R′(x)>R′(x) +

n∑
j=1

rj(x)∇2rj(x). (1.3)

Since the minimizer has to satisfy the optimality condition, we search for a root of equation (1.2)
using Newton’s method. If we use the first term of the right hand side in the above equation as an
approximation of the Hessian, the Gauß-Newton iteration reads as

xi+1 = xi −
(
R′(xi)>R(xi)

)−1
R′(xi)>R(xi) (1.4)

where i denotes the iteration index. The Jacobian matrix in (1.2) is given by

R′(x) = WD
∂y

∂x
(x). (1.5)

The matrix ∂y
∂x (x) ∈ RN×m is also referred to as sensitivity matrix S. Since the solution y satisfies

F (x, y) = 0, S can be determined analytically. Recall the implicit function theorem from chapter II.

89

IV. Dynamic Validation

Corollary 1.2 Let the assumptions of the implicit function theorem hold and let F (x, y) = 0 with
(x, y) ∈ U ′ × U ′′. Then

∂y

∂x
(x) = −

(
∂F

∂y
(x, y)

)−1
∂F

∂x
(x, y). (1.6)

Proof. The statement is an immediate consequence of the multidimensional chain rule. The implicit
function theorem constitutes that y can be expressed as a function of x. Let y = g(x). Differentiating
the equation F (x, y) = 0 with respect to x yields

∂F

∂x
(x, g(x)) +

∂F

∂y
(x, g(x)) · ∂g

∂x
(x) = 0. (1.7)

Rewriting the equation leads to

∂g

∂x
(x) = −

(
∂F

∂y
(x, g(x))

)−1
∂F

∂x
(x, g(x)). (1.8)

Substituting y again yields the result.

From corollary 1.2 we obtain that the function g : U ′ → U ′′ in the implicit function theorem has not
to be given explicitly to evaluate the sensitivity matrix S. Furthermore, the system of equations from
definition 1.1 fulfills the assumptions of the implicit function theorem. This implies that the results
from the corollary can be used to calculate S analytically. Since in IPSEpro the partial derivatives ∂F

∂y
are already calculated during Newton’s method when the system is solved, only the partial derivatives
with respect to the parameters have to be evaluated. A special version of the calculation kernel of
IPSEpro was written to obtain ∂F

∂x and the mapping D. Hence by solving the system F (x, y) = 0 once,
all necessary terms for the Gauß-Newton step are gained already.

To provide a sufficient descent, a line search method was implemented. Given the correction step

∆x = −
(
R′(xi)>R(xi)

)−1
R′(xi)>R(xi), (1.9)

Armijo’s rule, see [78], reads as

Φ(x+ h∆x) ≤ Φ(x) + σh∇Φ>∆x (1.10)

with the step size h ∈ (hmin, 1) and parameter σ ∈ (0, 1). The step size h is then chosen such that
Newtons’s method used for solving F (x + h∆x, y) = 0, where the previous solution serves as initial
state, converges and Armijo’s rule is not violated.

The Gauß-Newton method is a procedure for unconstrained optimization. Since the parameters have
to satisfy certain bounds such as e.g. non-negativity, constraints emerge which can not be neglected
by the numerical method. Therefore, we introduce penalty terms p(x), see [65]. These terms add a
positive quantity to the cost functional in (1.1) if a parameter approaches a bound. The quantity
has to be chosen sufficiently large such that the minimizer remains within the given bounds. The
Residuum-Unit (depicted on the bottom left in figure III.22) was added to the Eco-Cool-Lib model
library such that the penalty terms are evaluated by IPSEpro directly. Then the form of the cost
functional does not change. Let the function ψ map x to zero if no penalty has to be added to the
cost functional, i.e.

ψ(x) =

x−(xmax−εmax)

εmax
, if x > xmax − εmax,

x−(xmin+εmin)
εmin

, if x < xmin + εmin,
0, else.

(1.11)

90

1. Nonlinear Regression

Here xmin, xmax ∈ R are the lower and upper bound, respectively, and εmin, εmax > 0 are the distances
to the corresponding bound from which on a penalty is added. Finally the penalty term reads as

p(x) = aψ(x)4 (1.12)

with the parameter a > 0 and the respective pseudo measurement is set to zero since we expect to
have a parameter x within the given bounds. In PSE the parameters and the corresponding values in
the Residuum-Units are connected via Free Equations.

All together the above considerations lead to a fast and robust method for steady-state parameter
fitting. Still a global minimum is not guaranteed when the Gauß-Newton method terminates. To
increase the probability of a global minimum the calculation can be repeated starting with different
sets of parameters and check if the minimizer remains equal. Furthermore in section 1.1.2, a method
is proposed to obtain a global minimum. The method was not yet implemented.

1.1.2. Global Minima

Numerical schemes such as the Gauß-Newton method can get stuck in local minima. Heuristical
searches such as the Genetic Algorithms can be applied instead. There, from an initial population
which consists of (randomly) distributed points, referred to as individuals, new generations are obtained
from cross-over and mutations with the goal to filter the fitter individuals, i.e. parameters yielding a
smaller value of the cost functional. Still, it is not guaranteed that heuristical searches of this kind
find a global minimum.

In the set up as in IPSEpro such heuristics face the problem that often convergence can not be achieved
for the whole population. The reason lies in Newton’s method which is used to solve F (x, y) = 0 and
that initial states are often outside the neighbourhood of convergence. This problem can be solved by
ordering the population such that the distance between two consecutive individuals becomes minimal,
eventually adding intermediate individuals and using the solution of the prior individual as the initial
state for the following. We suggest to apply methods from graph theory to order the population. Let
X be a set of individuals. Then the adjacency matrix A is formed from the Euclidian distances between
the individuals, i.e.

aij = ‖xi − xj‖2 for xi, xj ∈ X . (1.13)

The adjacency matrix describes a graph and we calculate the Minimum Spanning Tree or solve the
Travelling Salesman Problem for a selected individual. It depends on the program’s architecture which
method suits better. For the Travelling Salesman Problem, the Nearest Neighbouring Algorithm is a
very fast heuristic to gain an approximation of the exact solution. For randomly distributed vertices
the Nearest Neighbouring Algorithm provides paths which exceed the Held-Karp lower bound, see [44],
of the Travelling Salesman Problem by 25% on average, see [51]. Given a possible path, the individuals
are evaluated in the corresponding order.

Above we mentioned that adding one ore more intermediate individuals xI may be necessary to obtain
convergence. Intuitively, a straight line connecting two consecutive individuals on which xI is chosen
seems appealing. The straight line is the shortest connection between two individuals. If the bounded
domain F ⊂ Rn of parameters is convex, xI ∈ F holds for any xI on the straight line. Otherwise, a
function f has to be found whose trace lies within F .

91

IV. Dynamic Validation

1.1.3. Fitted Parameters and Results

Within this section we present the fitted parameters and compare the results of the steady-state model
with the measurements and the computed values of the VBA model. After setting up the refrigeration
appliance model, the results may deviate fairly from the measurement data even if physically reason-
able values for the uncertain parameters are chosen. The Gauß-Newton method proved to be still
applicable. In table IV.3 the starting (Start) and final (Fit) parameter values, corresponding results
and measurements are given. It took 54 iterations until the correction step satisfied the error tolerance.
Within the iteration, the dynamic parameters, (ρcV)s, aAcc and bAcc, were already set to their final
value.

Table IV.3.: Stationary fitted parameters by the Gauß-Newton method, measurement and calculated
values for Tamb = 25 ◦C.

Parameter Unit Start Fit Meas. data Unit Start Fit Meas.
αIso_out W/(m2 K) 5 4.80900 P W 142.10 58.60 57.87
αComp_in W/(m2 K) 5 15.1156 tShell

◦C 104.37 62.20 62.25
αDis_Shell W/(m2 K) 10 12.5657 tShell_out

◦C 156.02 67.57 67.28
αAmb_Shell W/(m2 K) 6 10.1078 tCond_in

◦C 150.54 53.11 58.36
η∆p_Ev − 1 2.24868 tCond_25

◦C 123.68 35.65 37.42
η∆p_Co − 1 1.00482 tCond_50

◦C 106.03 36.49 36.57
ηα_Co − 1 4.77346 tCond_75

◦C 102.60 36.44 35.99
tCond_out

◦C 102.50 36.42 35.59
(ρcV)s J/K - 12.65 tCap_out

◦C -10.80 -34.74 -35.73
aAcc − - 0.75 tEvap_out

◦C -13.08 -40.66 -40.78
bAcc s/bar - 100 tShell_in

◦C 64.03 26.54 27.31
pShell_in bar 0.961 0.276 0.238
pShell_out bar 20.989 4.878 4.879
tComp

◦C -7.74 -34.95 -34.85

The temperature at the inlet of the condenser tCond_in shows a larger deviation to the measurement
which can be explained by the spatial discretization. The length of one Condenser-Unit is approxi-
mately 0.5 m and the temperature of the refrigerant in the Unit equals the outlet temperature. Thus
the true inlet temperature is supposed to be higher. To obtain more precise results, one possibility is
to refine the condenser discretization in the beginning and repeat the calculation which was not done
in this thesis.

The fact that the temperature of the Condenser pipe is lower at 25 % length than at 50 % length may
not be obvious in the first place but this results from the non-constant HTC. In the steady-state
result, at 25 % the refrigerant is barely in the vapour phase. There the temperature of the refrigerant
is hardly higher than the saturation temperature but the HTC is much lower than in the two-phase
region. Therefore the pipe temperature, which is measured, is lower at this point than in the region
where the refrigerant is two-phase. This is illustrated in figure IV.1 where the same settings are taken
as described in section III.8.3 and III.8.4, the HTC is unbounded and the condenser is discretized with
100 Units.

In figure IV.2 the Ts-diagram of the refrigeration cycle in steady-state is illustrated. We have to
mention that this is an extreme state which is never reached in a household since the compressor
does not operate continuously there. The Ts-diagram deviates from the ideal illustration in section
I.1. First, the refrigerant is not subcooled in the condenser. If the heat flux between the condenser

92

1. Nonlinear Regression

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

25

30

35

40

45

50

55

60

65

0 10 20 30 40 50 60 70 80 90 100

H
TC

 [
W

/m
²K

]

Te
m

p
e

ra
tu

re
 [

°C
]

Unit Index [-]

Pipe Refrigerant HTC

Figure IV.1.: Temperature of the condenser pipe wall and refrigerant and HTC over Units.

and the ambient is increased, the compartment temperature decreases. Second, the refrigerant in
the evaporator is not superheated. Thus, cooling potential is wasted since the refrigerant exiting the
evaporator could still absorb heat from the compartment. If the compressor operates intermittently, a
typical strategy is to switch off the compressor if two-phase working fluid starts to exit the evaporator.
In the internal heat exchanger, where the heat flux is 36.10 W, the refrigerant is fully vaporized which
avoids that a liquid fraction enters the compressor. Finally, the compression is not isentropic as it is
explained in section III.6.3.2.

Figure IV.2.: Steady-state Ts-diagram. Condenser (red), evaporator (dark blue), compressor (light
blue), shell (turquoise), capillary and internal heat exchanger (yellow). Horizontal lines
represent the ambient (red) and compartment (blue) temperature.

93

IV. Dynamic Validation

1.2. Dynamic Stage

In this stage the three parameters in the subset Pd are adjusted manually. In principal the Gauß-
Newton method is capable of fitting constant parameters to dynamic measurements automatically.
Only the computational effort for a single evaluation increases significantly and the sensitivity matrix
can only theoretically be calculated analytically anymore. Even if an implementation would already
be possible in IPSEpro, the calculation times would be too long.

In the dynamic validation process, describing the dynamic behavior of the temperature sensor is a
crucial part. First, the switching logic and the temperature measured by the sensor is not fully revealed
by the manufacturer. In this refrigeration appliance an integral controller was used which implies that
the two thresholds, lower and upper compartment temperature limit, have to be determined. The
values are set to −20 ◦C and −20.5 ◦C for upper and lower threshold, respectively. Second, the product
(ρcV)s is uncertain and this thermal inertia of the temperature sensor has a huge impact on the
operation times of the compressor. Since the compartment is modelled as a point mass the temperature
stratification is neglected. Consequently, the actual temperature of the surrounding air differs between
the model and the reality. Additionally the sensor is in contact with the compartment wall which
leads to further heat fluxes. Therefore, (ρcV)s is fitted such that the operation times of the model
coincides with the reality. In the refrigeration appliance a temperature probe was positioned close to
the temperature sensor. In figure IV.3e, the calculated and measured temperatures are compared.

The two other parameters concern the accumulator. In the investigated refrigeration appliance no
typical accumulator is built in. Still, such a Unit had to be incorporated in the IPSEpro and VBA
models. The reason lies in the design of the evaporator in the appliance. There the evaporator is wound
vertically around the compartment. Hence some sort of accumulation of liquid refrigerant is expected
in the "bottom" part. Since the heat exchangers are modelled as horizontal tubes this accumulation
effect is lost and an additional component which compensates this insufficiency has to be built in.
Its effect is not known and therefore has to be fitted. In IPSEpro a different approach was chosen
than in the VBA model. See section III.6.2 and 2 for the approach applied in IPSEpro and VBA,
respectively.

Table IV.4.: Gauß-Newton (G.N.) and manually fitted parameters and respective steady-state values
for Tamb = 25 ◦C.

Parameter Unit G.N. Manual Meas. data Unit G.N. Manual
αIso_out W/m2K 4.80900 5 PComp W 58.60 58.78
αComp_in W/m2K 15.1156 8 tShell

◦C 62.20 63.99
αDis_Shell W/m2K 12.5657 15 tShell_out

◦C 67.57 66.94
αAmb_Shell W/m2K 10.1078 9.76 tCond_in

◦C 53.11 52.90
η∆p_Ev − 2.24868 2 tCond_25

◦C 35.65 35.78
η∆p_Co − 1.00482 1 tCond_50

◦C 36.49 36.61
ηα_Co − 4.77346 4.7 tCond_75

◦C 36.44 36.56
(ρcV)s J/K 12.65 6.38 tCond_out

◦C 36.42 36.54
aAcc − 0.75 0.75 tCap_out

◦C -34.74 -35.18
bAcc s/bar 100 100 tEvap_out

◦C -40.66 -40.59
tShell_in

◦C 26.54 26.31
pShell_in bar 0.276 0.278
pShell_out bar 4.878 4.894
tComp

◦C -34.95 -34.26

94

2. Comparison with the VBA model

First, the strategy recommended in the beginning of this chapter was pursued. The steady-state mea-
surements with Tamb = 25 ◦C were taken only to fit the parameters. In table IV.4 the fitted parameters
and respective steady-state results can be seen in the Gauß-Newton (G.N.) columns. In figure IV.3,
six dynamic values are compared with measurements. The graphs corresponding to parameters in the
Gauß-Newton column are yellow-dashed and the measurements are red-dotted. Although the steady-
state results are very good, see table IV.3, the temperature of the shell surface deviates by 2 ◦C, see
figure IV.3b. The reason lies in the assumption that the parameter αAmb_Shell is constant. Con-
sidering the models for natural convection, a temperature dependence in the HTC may be expected.
Because the shell surface temperature is higher in the steady-state case than in the dynamic case, the
HTC is assumed to be higher as well. Consequently, a lower (constant) HTC has to be prescribed
in the dynamic case if the temperature has to fit the measurements. To achieve better results in
the dynamic case, subsequently αAmb_Shell was also adjusted manually. Furthermore, αDis_Shell was
increased as well such that the refrigerant discharged from the Compressor Unit passes more heat to
the shell wall. Thus, in the condenser less heat has to be exchanged with the ambiance and ηα_Co
was slightly decreased. The manually changed parameters and corresponding steady-state results are
given in table IV.4, column Manual, and the dynamic results are illustrated as blue graph in figure
IV.3. Noticeable is the big difference in αComp_in and (ρcV)s between the automatic and manual fit.
Both parameters are only about half as large now. The HTC αComp_in occurs in the energy equation
of the Compartment-Unit and influences the heat flux between the insulation respectively temperature
sensor and the compartment. Hence it also appears in the energy equation of the Temperature Sensor
Unit, i.e.

(ρcV)s
dTs
dt

= αComp_inAs(Tc − Ts) (1.14)

where Tc is the temperature of the compartment and As the surface area of the sensor. Multiplying
both parameters by 2 yields the same result. Still they have been adjusted in the final manual fit since
the on-off-duration of the compressor was approximated better. The difference of the steady-state
compartment temperatures is only 0.69 ◦C between the automatic and manual fit. In the periodic cycle,
the compressor is switched on 13 (12.66, 13.04) min and off 29 (28.72, 29.15) min in the measurement
(G.N., Manual). Hence the time period of one cycle is 42 (41.38, 42.19) min.

The dynamic results are illustrated in figure IV.3. In figure IV.3a, the blue graph coincides with the
measurements well and the on-off durations of the compressor fits the measurements. In all three
graphs shortly after the compressor switched on, the power consumption is not smooth. This results
from the non-monotonically drop of the pressure at the inlet of the compressor, see figure IV.3d.
Although not as distinct as in the measurements, the change in the monotonicity of the graph is
seen also in the simulation. The calculated values of the shell surface temperature, see figure IV.3b,
fall in the first seconds after the compressor switched on. The reason lies in the large amount of cold
refrigerant entering the shell in this period. In figure IV.3c, the pressure at the outlet of the compressor
is illustrated. If the compressor is idle, the simulated pressure deviates from the measurement since the
compressor is not switched off completely in the simulation but a residual NOR of 20 rpm is chosen.
Therefore also the pressure equalizing between condenser and evaporator does not take place. Finally,
in figure IV.3f the condenser pipe temperature at 50 % length is depicted. The comparison suggests
that the thermal inertia of the pipe wall may be higher in reality than in the simulation.

2. Comparison with the VBA model

Within this section we compare simulation results gained with IPSEpro and the VBA-tool with the
measurements. The refrigeration appliance was investigated for the ambient temperatures 25 ◦C and
43 ◦C. The models in IPSEpro and VBA are not exactly the same. There are five major differences

95

IV. Dynamic Validation

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

P
o

w
e

r
[W

]

Time [s]

Measurement GN Manual

(a) Compressor electric power.

37

38

39

40

41

42

43

44

45

46

47

48

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

Measurement GN Manual

(b) Shell surface temperature.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

Measurement GN Manual

(c) Pressure at compressor inlet.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

Measurement GN Manual

(d) Pressures at compressor outlet.

-22.5

-22

-21.5

-21

-20.5

-20

-19.5

-19

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

Measurement GN Manual

(e) Sensor temperature.

Manual
25

27

29

31

33

35

37

39

41

43

45

0 500 1000 1500 2000 2500

C
o

n
d

e
n

se
r

[°
C

]

Time [s]

Measurement GN Manual

(f) Condenser Pipe temperature at 50% length.

Figure IV.3.: Values calculated in IPSEpro with the Gauß-Newton (yellow-dashed) and manual (blue)
fitted parameters and measured (red-dotted) with Tamb = 25 ◦C.

96

2. Comparison with the VBA model

between the IPSEpro and VBA model. First, the heat exchangers are spatially discretized with 100
volumes in VBA. Second, the door heating is modelled in VBA but not in IPSEpro. Conversely,
a (heat flux) coupling between the condenser and the backside of the appliance is implemented in
IPSEpro but not in VBA. Third, the whole compressor, involving Shell, Compressor and Oil_Sump
Unit, is modelled differently. It is assumed that the refrigerant entering the shell has immediately
the same temperature as the shell wall. The outlet temperature Tout of the shell is calculated by the
correlation

Tout = eTin + fTin

(
pout
pin

)κ−1
κ

(2.1)

where the subscripts in and out indicate the states at the shell in- and outlet, respectively, and e, f ∈ R
are parameters which have to be fitted with measurements for each compressor type. Fourth, a different
ansatz for the efficiency ξ ∈ [0.5, 1] of the accumulator is deployed, i.e.

ξ = 1− aQ̇. (2.2)

Above, a ∈ R+ is a fit parameter and Q̇ the heat flux between refrigerant and pipe wall in the
accumulator. Since the above correlation yielded unsatisfying results in IPSEpro, a different approach
was chosen there, see section III.6.2. Fifth and last, the internal heat exchanger on the suction side is
discretized with k = 15 evaporator volumes in the VBA model. We explain the model by the notations
from section III.6.4. Let hdrainSuc be the outlet enthalpy of the internal heat exchanger on the suction
side gained from the ANN. Then hdrainSuc is only used to calculate the heat flux Q̇, i.e.

Q̇ = ṁfeedSuc(hfeedSuc − hdrainSuc). (2.3)

The heat flux is limited if physical laws are violated as described in section III.6.4. Then an equal
share Q̇/k is added to the pipe wall of each of the 15 volumes. Due to the thermal inertia of the
pipe wall, less heat is transferred to the refrigerant on the suction side for the first period after the
compressor. This implies that the outlet enthalpy of the internal heat exchanger on the suction side
does not equal the return value from the ANN in the VBA model. However, the results approximate the
measurements better. Finally, the whole dynamic validation including fitting all uncertain parameters
was done manually and only dynamic measurements were used by the developers of the VBA model.

In table IV.5, the steady-state measured and calculated values in IPSEpro and VBA are given for
ambient temperatures 25 ◦C and 43 ◦C. Of course the steady-state point in which the compressor is
continuously switched on is an extreme point and the compressor models are evaluated at a point
where their fit parameters are not validated themselves. Still, the shell surface temperatures fits the
measurements well. The simple compressor models used in both simulation tools are not sufficient to
predict the compressor outlet temperature satisfyingly. In the fitting point with an ambient tempera-
ture of 25 ◦C, IPSEpro performs better but an almost equally large deviation from the measurement
emerges at 43 ◦C. We assume that some of the parameters depend on the temperature in reality. Since
they are set constant in the model, a gap is expected if the temperature changes.

Next we discuss the dynamic results. We start with 25 ◦C ambient temperature. In table IV.6, the
on-off-durations of the compressor are given. In VBA model the compressor is switched on 0.83 min
longer than in the measurement, see row Comp.-On, and switched off 1.98 min shorter, see row Comp.-
Off. Hence the whole on-off-duration deviates by 1.15 min. In comparison, in IPSEpro the deviation is
0.29 min. These deviations are also visible in figure IV.4 which is described in the following. We start
with the power of the compressor, see figure IV.4a. The power in the VBA model has its maximum
later than in IPSEpro. Again this can be explained with the single oscillation in the pressure at the
compressor inlet. In figure IV.4c, it can be seen that the amplitude of this oscillation is the largest
in VBA. The consumed electric power P is reduced during this oscillation due to efficiency ηcomb
defined in equation (6.56) on page 64. Next we compare the temperature sensor, see figure IV.4e.
In VBA the lower and upper thresholds are set to −21 ◦C and −19.5 ◦C, respectively. Hence the

97

IV. Dynamic Validation

Table IV.5.: Steady-state measured and calculated values for ambient temperatures 25 ◦C and 43 ◦C.

Meas. data Unit 25 [M.] 25 [IPSEpro] 25 [VBA] 43 [M.] 43 [IPSEpro] 43 [VBA]

PComp W 57.87 58.78 59.27 74.62 83.08 78.55
tShell

◦C 62.25 63.99 60.33 83.99 83.57 84.23
tShell_out

◦C 67.28 66.94 57.82 92.67 100.39 83.78
tCond_in

◦C 58.36 52.90 52.47 85.41 85.39 78.24
tCond_25

◦C 37.42 35.78 34.75 59.19 57.76 54.60
tCond_50

◦C 36.57 36.61 34.71 56.68 57.57 54.57
tCond_75

◦C 35.99 36.56 34.67 56.02 57.52 54.53
tCond_out

◦C 35.59 36.54 34.78 55.06 57.50 54.68
tCap_out

◦C -35.73 -35.18 -37.61 -28.55 -24.54 -28.65
tEvap_out

◦C -40.78 -40.59 -39.12 -32.50 -29.76 -30.44
tShell_in

◦C 27.31 29.74 28.77 43.73 42.72 43.54
pShell_in bar 0.238 0.278 0.276 0.375 0.470 0.428
pShell_out bar 4.879 4.894 4.651 7.939 8.282 7.717
tComp

◦C -34.85 -34.26 -35.18 -24.60 -23.57 -26.02

Table IV.6.: Compressor operation times for ambient temperatures 25 ◦C and 43 ◦C.

Meas. data Unit 25 [M.] 25 [IPSEpro] 25 [VBA] 43 [M.] 43 [IPSEpro] 43 [VBA]

Comp.-On min 13.00 13.04 13.83 28.00 30.56 27.83
Comp.-Off min 29.00 29.15 27.02 13.50 12.61 15.53
Total min 42.00 42.29 40.85 41.50 43.17 43.36

thermal inertia has to be reduced, compared to the value in IPSEpro, such that the sensor reaches the
thresholds after the same time periods. Thus the graph shows a larger deflection in the VBA model.
Depicted in figure IV.4b, the shell surface temperatures coincide with the measurements equally well.
Finally the condenser pressure and pipe temperature at 50 % length are illustrated in IV.4d and figure
IV.4f, respectively. It can be seen that in both figures the VBA graphs overshoot the IPSEpro results
and the measurements. A reason may be the thermal inertia. If it would be increased in the VBA
model, we expect that the green-dashed graph IV.4f shows less deflection. The more slowly increasing
temperature enables the refrigerant to transfer more heat to the pipe and thus the maximal pressure
of the refrigerant in the condenser, see figure IV.4d, is decreased.

To conclude this chapter, we investigate the measured and calculated values for an ambient temperature
of 43 ◦C which are illustrated in IV.5. The furthest deviation from the measurement emerges in the
pressure at the compressor inlet, see figure IV.5c. Both simulation tools predict the pressure about
0.1 bar too high. Furthermore, the on-off-durations of the compressor do not fit as good as with
25 ◦C ambient temperature, see table IV.6. Although the accumulated times are almost equal in
both simulations, IPSEpro predicts longer on- and shorter off durations than the VBA model and the
measurements. Since the electric power consumed by the compressor nearly coincide in IPSEpro and
VBA, see figure IV.5a, the total energy consumption per day is too large in IPSEpro compared with
the other two values.

98

2. Comparison with the VBA model

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

P
o

w
e

r
[W

]

Time [s]

Measurement VBA IPSEpro

(a) Compressor electric power.

37

38

39

40

41

42

43

44

45

46

47

48

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

Measurement VBA IPSEpro

(b) Shell surface temperature.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

Measurement VBA IPSEpro

(c) Pressure at compressor inlet.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

Measurement VBA IPSEpro

(d) Pressures at compressor outlet.

-22.5

-22

-21.5

-21

-20.5

-20

-19.5

-19

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

Measurement VBA IPSEpro

(e) Sensor temperature.

IPSEpro
25

27

29

31

33

35

37

39

41

43

45

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

Measurement VBA IPSEpro

(f) Condenser pipe temperature at 50% length.

Figure IV.4.: Values calculated in IPSEpro (blue) and VBA (green-dashed) and measured (red-dotted)
with Tamb = 25 ◦C.

99

IV. Dynamic Validation

0

10

20

30

40

50

60

70

80

90

100

110

0 500 1000 1500 2000 2500

P
o

w
e

r
[W

]

Time [s]

IPSEpro Measurement VBA

(a) Compressor electric power.

69

70

71

72

73

74

75

76

77

78

79

80

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

IPSEpro Measurement VBA

(b) Shell surface temperature.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

IPSEpro Measurement VBA

(c) Pressure at compressor inlet.

0

1

2

3

4

5

6

7

8

9

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

IPSEpro Measurement VBA

(d) Pressures at compressor outlet.

-21.5

-21

-20.5

-20

-19.5

-19

-18.5

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

IPSEpro Measurement VBA

(e) Sensor temperature.

42

44

46

48

50

52

54

56

58

60

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

IPSEpro Measurement VBA

(f) Condenser pipe temperature at 50% length.

Figure IV.5.: Values calculated in IPSEpro (blue) and VBA (green-dashed) and measured (red-dotted)
with Tamb = 43 ◦C.

100

V. Dynamic Simulation Results with IPSEpro

Within this chapter the results of the refrigeration appliance model gained with IPSEpro are presented.
First, the validated model is discussed and a deeper insight into the dynamic behaviour than in chapter
IV is given. The results are not compared with measurements. Afterwards, a parameter study is
performed in which the NOR of the compressor is varied to locate an energy consumption minimum.

1. Refrigeration Appliance Model

Within this section we present the results of the refrigeration appliance model in detail. We focus as
in chapter IV on the periodic cycle of the appliance. In the following figures always the periodic cycle
is depicted. The compressor switches on at time t = 0 s and off at t = 768 s where a delay of 15 s is
assumed until the new NOR is reached. It switches on again after 2531 s. First, the actual compartment
air temperature and the one measured by the sensor are investigated. Then the distribution of mass
in the system and the heat transfers are discussed before the time evolution of the Ts-diagram is
examined. Next, the behaviour of the refrigeration appliance model for different ambient temperatures
is presented. Finally, the heat exchangers, condenser and evaporator, and the graphs of their variables
are shown and explained in detail. We start with the compartment.

Compartment Temperature

The sensor used for the control of the compressor measures the temperature of the compartment.
Since the probe has a considerable thermal inertia, the actual compartment air temperature is not
monitored. In figure V.1, the actual and measured temperature of the compartment are illustrated
and an obvious deviation is noticeable. This effect can be exploited to change the on-off-duration of
the compressor. Either by adjusting the switching thresholds or the thermal inertia of the probe, the
energy consumption of the appliance is influenced. In [43], a parameter study is presented which was
performed with the VBA model.

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

Air Sensor

Figure V.1.: Compartment Air and Sensor Temperature.

101

V. Dynamic Simulation Results with IPSEpro

0

1

2

3

4

5

6

7

0 500 1000 1500 2000 2500

M
as

s
[g

]

Time [s]

Condenser Shell Oil

(a) In the condenser, shell and dissolved in the oil.

50

55

60

65

70

75

80

85

0 500 1000 1500 2000 2500

M
as

s
[g

]

Time [s]

Evaporator Accumulator

(b) In the evaporator and therein in the accumulator.

Figure V.2.: Stored Mass.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000 2500

M
as

s
fl

o
w

 [
g/

s]

Time [s]

Compressor Capillary

(a) Through the compressor and capillary.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 500 1000 1500 2000 2500

M
as

s
fl

o
w

 [
g/

s]

Time [s]

Oil

(b) Between the oil and refrigerant inside the shell.

Figure V.3.: Mass flows.

Distribution of Mass

Next the local distribution of refrigerant in the appliance is investigated. The total filling quantity is
86 g and in figure V.2 the stored masses in the components are illustrated. Additionally, in figure V.3
the mass flows through the compressor and capillary and the mass flow between the suction side in
the shell and the dissolved refrigerant in the oil are shown. The major part of refrigerant is stored in
the evaporator and therein in the accumulator, see figure V.2b. It is assumed that the gravitational
force holds the refrigerant in the vertically wound evaporator.

Shortly after the compressor switched on, a peak in the mass flow ṁComp through the compressor is
reached, see figure V.3a. Since the mass flow ṁCap through the capillary increases more slowly, mass is
stored in the condenser as shown in figure V.2a. The refrigerant stored in the condenser comes from the
evaporator and the shell and is also desorbed from the oil. Almost 60 s after the compressor switched

102

1. Refrigeration Appliance Model

on, ṁCap surpasses ṁComp and mass is transferred from the condenser back into the evaporator. In
figure V.3b, the mass flow ṁOil caused by sorption is given. Positive values imply desorption, negative
values absorption. After a peak in the beginning, the mass flow is less than 0.01 g/s. In total, about
3 g of refrigerant are desorbed from the oil while the compressor operators.

When the compressor switches off, the condenser is almost emptied, see V.2a, since ṁComp is reduced to
a minimum immediately but refrigerant flows still through the capillary due to the pressure difference
between condenser and evaporator. In the first seconds after the shut down also a (negative) peak in
ṁOil is visible, see figure V.3b. Since ṁOil < 0 holds while the compressor is in idle mode, refrigerant
is absorbed by the oil and before the compressor turns on again almost 6 g of refrigerant are dissolved
in the oil. Finally, during the switch-off period, mass is transferred from the evaporator to the shell
caused by the residual NOR which had to be chosen such that the simulation could be performed.

Heat Transfers

Next, the heat transfers illustrated in figure V.4 are discussed. Each graph is described by two names.
These names are the components whose heat exchange is represented by the graph. The following
convention is chosen for the sign of the transferred heat: if heat is transferred from the first to the
second component, the flux is negative. Otherwise it is positive. In figure V.4a, the heat transfers
in the condenser are shown. Right after the compressor switched on, the heat flux Q̇rp between the
refrigerant and the pipe wall becomes huge. This results from the high HTCs in the two-phase region
and that the temperature Tp of the pipe wall increases more slowly than the one of the refrigerant due
to the thermal inertia of the pipe wall. Because of the slower rise of Tp and the lower HTC, the gradient
of the heat flux Q̇pa between the pipe wall and the ambiance (orange graph) is lower compared to the
one of Q̇rp. The thermal inertia of the pipe wall leads to a smaller Q̇pa in the beginning, but this is
made up by the fact that after the compressor switched off, heat is still transferred to the ambiance.
Finally, Q̇rp becomes positiv right after the compressor switches off. Thus the refrigerant absorbs
heat from the pipe wall since the temperature of the refrigerant decreases, due to the pressure drop,
faster than Tp. In [43], a parameter study, performed with the VBA model, is presented in which
the condenser pipe mass and hence the thermal inertia is increased. The authors claim, that if the
condenser pipe mass is multiplied by 5 or 20, the energy consumption is decreased by 5 % or 17 %,
respectively.

In figure V.4b, the heat transfers concerning the evaporator and the compartment are depicted. The
heat transfer Q̇ia between the insulation and the ambiance rises while the compressor operates. Due
to the coupling with the condenser, the air pad between the condenser and insulation is heated up
and hence Q̇ia is larger. Next, the refrigerant absorbs the most heat after the compressor switched on.
This implies that the appliance operates at highest efficiency in this period since the current COP

εc(t) =
Q̇0(t)

Pel(t)
(1.1)

is the largest. As in the condenser, the sign of the heat flux for the refrigerant changes when the
compressor is switched off. Thus the refrigerant in the evaporator heats the pipe wall. In figure V.4c,
the heat transfer in the internal heat exchanger of the capillary is shown. It can be seen, that it is
turned off when the compressor is idle since the ANN does not yield reasonable values in this case.
The heat flux corresponds to the mass flow through the capillary illustrated in figure V.3a.

Finally in figure V.4d, the heat transfers inside the shell are shown. Since the areas and HTCs between
the components are set constant, the heat transfers solely depend on the temperature differences. When
the compressor is switched on, two-phase cold refrigerant is sucked from the evaporator. Partly because

103

V. Dynamic Simulation Results with IPSEpro

-300

-275

-250

-225

-200

-175

-150

-125

-100

-75

-50

-25

0

25

0 500 1000 1500 2000 2500

Tr
an

sf
e

rr
ed

 H
e

at
 [

W
]

Time [s]

Refrigerant-Pipe Pipe-Ambiance

(a) In the condenser.

-25

0

25

50

75

100

125

150

175

0 500 1000 1500 2000 2500

Tr
an

sf
e

rr
ed

 H
e

at
 [

W
]

Time [s]

Refrigerant-Pipe Compartment-Insulation Insulation-Ambiance

(b) Between the refrigerant and the pipe wall in the
evaporator, compartment and insulation as well as
between the insulation and the ambiance.

0

10

20

30

40

50

60

70

80

90

100

0 500 1000 1500 2000 2500

Tr
an

sf
e

rr
ed

 H
e

at
 [

W
]

Time [s]

Suction Line-Capillary

(c) In the internal heat exchanger.

-120

-100

-80

-60

-40

-20

0

20

40

60

0 500 1000 1500 2000 2500

Tr
an

sf
e

rr
ed

 H
e

at
 [

W
]

Time [s]

Shell-Suction Shell-Discharge Shell-Ambiance

(d) In the Shell.

Figure V.4.: Heat Transfers.

the heat transfer in the capillary heat exchanger is still off. Hence, the refrigerant entering the shell
absorbs heat from the shell wall. Shortly after only superheated warm refrigerant leaves the capillary
heat exchanger. Thus less heat is transferred from the shell wall to the suction side refrigerant. The
graph of the heat flux between the shell wall and the ambient (orange) corresponds to the temperature
of the shell wall since also the ambient temperature is set constant. Finally, the refrigerant on the
discharge side has a higher temperature than the shell and heats the shell.

Evolution of the Ts-diagram

In the figures V.5 and V.6 the time evolution of the Ts-diagram for selected time instants is given. The
depicted points (cycle markers) indicate the state in the connections, thus at the inlet and outlet of the
Units and not in the interior. Hence, the pair (T, s) corresponds to the flow. The points are connected
by straight lines and do not necessarily represent the physical path. We start to investigate the

104

1. Refrigeration Appliance Model

evolution of the Ts-diagram with figure V.5 corresponding to the switch-on period of the compressor.

In figure V.5a, the compressor is about to turn on. The major part of the refrigerant is stored in the
evaporator, see figure V.2b. The compartment temperature Tc (blue horizontal line) is approximately
−15 ◦C, compare with figure V.1. The heat transfer Q̇Cap in the internal heat exchanger is turned off.
In figure V.5b, the compressor starts to turn on. Recall that in the simulation it takes 15 s until the new
NOR is reached. The mass flow in the compressor increases and the condenser is being filled up. Also
Q̇Cap is turned on. This is visible by a second yellow line. Nevertheless, two-phase refrigerant streams
into the shell. In figure V.5c the compressor reached the operational speed of 3000 rpm. The condenser
is already filled. The inlet of the evaporator is subcooled for a short moment which results from the
heat transfer Q̇Cap. The difference in the enthalpy and entropy between the evaporator inlet and outlet
starts to increase. The inlet of the shell is barely superheated. In figure V.5d, the condenser reaches it
maximal filling quantity, but the refrigerant at the outlet is not subcooled. The inlet of the evaporator
is two-phase again. The refrigerant at the outlet of the internal heat exchanger on the suction line
is now superheated and its temperature TSuc is close to the ambient temperature TAmb. Next we
consider figure V.5e. There the saturation temperature inside the condenser is already above 40 ◦C
and the mass of stored refrigerant decreases again, compare with figure V.2a. The first four Units of the
condenser are superheated now and the inlet of the evaporator is subcooled again. Both condenser and
evaporator are fully spanned. The pressure drop is clearly visible in the evaporator. The refrigerant
at the condenser outlet is not subcooled and at the outlet of the evaporator not superheated. Thus
refrigerant leaves the evaporator which could still absorb heat from the compartment. Furthermore, Tc
has already decreased and is about −18 ◦C. At the suction line, TSuc > TAmb holds and TSuc is close
to the temperature of the shell. This is possible due to the temperature at the condenser outlet which
is above TAmb. From then on the process cycle starts to move rightwards in the Ts-diagram as can be
seen in figure V.5f. 386 s after the compressor startet, Tc dropped below −20 ◦C in the compartment.

We proceed with figure V.6 where the process is illustrated when the compressor shuts down and is
idle. In figure V.6a, the Ts-diagram just before the compressor starts to shut down is shown. The
compartment temperature Tc has already decreased below −25.5 ◦C. In figure V.6b the NOR of the
compressor is decreasing to 20 rpm. The circulating mass flow in the refrigeration cycle drops. Hence,
the refrigerant inside the internal discharge line of the compressor gives off more heat to the shell and
the condenser inlet temperature is lower. Since the mass flow in the capillary is now higher than the
one in the compressor, the condenser empties. Also Q̇Cap drops and the inclination of the yellow line
(capillary) changes from left to right. This implies that the enthalpy and entropy at the evaporator inlet
rise. The whole cycle starts to collapse. Due to the small mass flows, Q̇Cap is turned off (manually)
shortly after, see figure V.6c. This is visible since the right yellow line now vanished. Therefore the
expansion in the capillary is isenthalpic and the shell inlet temperature drops from over 30 ◦C to about
−20 ◦C. The condenser further empties. In figure V.6d, only the last Unit of the condenser, the
dryer, is two-phase. Also superheated refrigerant flows into the evaporator. This evolution proceeds
and superheated refrigerant flows through most of the volumes in the heat exchangers, see figure V.6e.
Recall that in the Ts-diagram the flow is illustrated. Finally, in figure V.6f the process cycle is collapsed
as at time t = 0 s and the Tc starts to rise slowly until the compressor is switched on again.

Various Ambient Temperatures

Next, the dynamic behaviour of the validated refrigeration appliance model for various ambient temper-
atures is discussed shortly. In chapter IV, the model is compared with measurements for the ambient
temperatures 25 ◦C and 43 ◦C and results are given in figure IV.4 and IV.5, respectively. In figure
V.7, the same variables are illustrated except that the temperature of the condenser pipe wall at 50 %
length is substituted by the compartment air temperature. In figure V.7a the compressor power is

105

V. Dynamic Simulation Results with IPSEpro

(a) The compressor turns on. t = 0 s. (b) t = 5.76 s.

(c) t = 15.14 s. (d) t = 45.99 s.

(e) t = 135.19 s. (f) t = 386.16 s.

Figure V.5.: Ts-diagrams for one on-off-cycle. Part 1. Condenser (red), evaporator (dark blue), com-
pressor (light blue), shell (turquoise), capillary and internal heat exchanger (yellow). Hor-
izontal lines represent the ambient (red) and compartment (blue) temperature.

106

1. Refrigeration Appliance Model

(a) t = 761.16 s. (b) t = 779.91 s. The compressor is turning off.

(c) t = 782.54 s. The heat transfer in the internal heat
exchanger has been turned off.

(d) t = 789.97 s.

(e) t = 833.16 s. (f) t = 1266.06 s. The compressor will switch on again
at t = 2531.68 s.

Figure V.6.: Ts-diagrams for one on-off-cycle. Part 2. Condenser (red), evaporator (dark blue), com-
pressor (light blue), shell (turquoise), capillary and internal heat exchanger (yellow). Hor-
izontal lines represent the ambient (red) and compartment (blue) temperature.

107

V. Dynamic Simulation Results with IPSEpro

0

10

20

30

40

50

60

70

80

90

100

110

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

P
o

w
e

r
[W

]

Time [s]

16 [°C] 25 [°C] 32 [°C] 38 [°C] 43 [°C]

(a) Compressor electric power.

20

25

30

35

40

45

50

55

60

65

70

75

80

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

16 [°C] 25 [°C] 32 [°C] 38 [°C] 43 [°C]

(b) Shell surface temperature.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

P
re

ss
u

re
 [

b
ar

]

Time [s]

16 [°C] 25 [°C] 32 [°C] 38 [°C] 43 [°C]

(c) Pressure at compressor inlet.

0

1

2

3

4

5

6

7

8

9

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

P
re

ss
u

re
 [

b
ar

]

Time [s]

16 [°C] 25 [°C] 32 [°C] 38 [°C] 43 [°C]

(d) Pressures at compressor outlet.

-22

-21.5

-21

-20.5

-20

-19.5

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

16 [°C] 25 [°C] 32 [°C] 38 [°C] 43 [°C]

(e) Sensor temperature.

-27

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

16 [°C] 25 [°C] 32 [°C] 38 [°C] 43 [°C]

(f) Compartment temperature.

Figure V.7.: Values for various ambient temperatures.

108

1. Refrigeration Appliance Model

shown. We see that for lower ambient temperature TAmb, the maximum compressor power is smaller,
the switch-on time is shorter and the switch-off time is longer. In figure V.7b, the surface temperature
TShell of the compressor shell is given. The difference |TShell − TAmb| increases superlinearly with
TAmb. In figures V.7c and V.7d the suction and discharge pressure, respectively, are shown. Both
pressures decrease monotonically with the ambient temperature. Finally, in figures V.7e and V.7f, the
sensor TSens and compartment air TAir temperature are illustrated. It can be seen that the difference
between the maximal and minimal compartment air temperature increases as TAmb decreases. Since
the pressure in the evaporator is less for smaller TAmb, the saturation temperature in the evaporator
is smaller as well. Thus, the compartment is cooled faster which yields a lower TAir. Due to the
thermal inertia of the sensor, TAir is less for smaller TAmb when the compressor switches off. After the
compressor switched off, TAir < TSens holds. Hence, TSens still decreases and the minimal temperature
reached by the sensor is less for smaller TAmb. Finally, this implies that it takes longer for smaller
TAmb until the upper temperature threshold is reached. This longer period allows TAir to be higher
for smaller TAmb when the compressor switches on again.

Next, results of the one-dimensional spatially discretized heat exchangers are presented. In the follow-
ing figures, the shown time interval corresponds to one compressor on-off-cycle as above and each finite
volume, i.e. each Unit, is represented by one graph. The colour of the graphs range from blue (first
volume) to red (last volume). The graphs correspond to the state inside the Unit. The condenser is
discretized by 21 Units and the last condenser Unit (C21) corresponds to the dryer/filter which has a
different geometry than the others. Hence, e.g. the mass differs in this Unit, see figure V.21, but does
not imply a similar deviation in the density, see figure V.20. The evaporator is discretized by 20 Units
and the third last Unit (E18) represents the accumulator. Therefore different states occur in this Unit
and in the remaining two due to the outlet state of the accumulator. We discuss the condenser first.

Condenser

We start with the mass flow ṁfeed at the inlet of each Condenser-Unit illustrated in figure V.8. To
this figure also the mass flow at the outlet of the dryer which equals the mass flow ṁCap through
the capillary is added. Comparing with figure V.3a, in which the mass flow through the compressor
ṁComp and ṁCap are given, the mass flow in each Unit hardly differs from ṁComp. The dryer/filter
has a larger volume than the other Units and acts in a compensatory way. When the compressor is
idle, ṁfeed is reduced to a minimum in all Units.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 500 1000 1500 2000 2500

M
as

s
Fl

o
w

 [
g/

s]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Cap

Figure V.8.: Mass flow ṁfeedS at the inlet of each Condenser-Unit and through the capillary.

109

V. Dynamic Simulation Results with IPSEpro

The pressure in each Condenser-Unit is shown in figure V.9. When the compressor operates, the
pressure rises to about 5.8 bar. The pressure drop, illustrated in figure V.10, is caused by friction. The
mass flow has a large influence on the magnitude of the FPD. Furthermore, the FPD is higher if the
vapour quality x is closer to 1.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.9.: Pressure p in each Condenser-Unit.

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0 500 1000 1500 2000 2500

P
re

ss
u

re
 D

ro
p

 [
b

ar
]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.10.: Pressure drop ∆p in each Condenser-Unit.

Next, the temperature T of the refrigerant and temperature Tp of the pipe wall are discussed. In figure
V.11, T for each Condenser-Unit is depicted. Right after the start of the compressor, the first three
Units are superheated and the fourth one joins later. In the figure all other temperatures are fairly
close. This results from the fact that in the whole two-phase region T only depends on the pressure.
Due to the pressure drop, not all temperatures are equal in the two-phase Units. The temperatures
are monotonically decreasing with the flow direction. This fact does not hold for Tp, see figure V.12.
There are three Units having a remarkably higher and two a lower pipe temperature than the majority
of the Units. This behavior comes from the non-constant HTC illustrated in figure V.13. The HTC is
bounded by 2000 W/(m2 K) as described in section III.8.3. In the single phase region, i.e. the first four
Units, the HTC is relatively low. In the first three Units T is significantly higher than the saturation
temperature Tsat. This together yields a higher Tp for the first three Units. In the next two Units, T
is close to Tsat. Unit C4 is still superheated and C5 is in the interpolation interval between the single-
and two-phase region. This yields a relative low HTC and hence a smaller Tp. The remaining Units
are all two-phase and have a very high HTC which implies that |T − Tp| is small. Therefore, Tp is
higher there than in the Units C4 and C5.

110

1. Refrigeration Appliance Model

20

25

30

35

40

45

50

55

60

65

70

75

80

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.11.: Temperature t in each Condenser-Unit.

20

25

30

35

40

45

50

55

60

65

70

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.12.: Pipe temperature tp in each Condenser-Unit.

0

500

1000

1500

2000

0 500 1000 1500 2000 2500

H
e

at
 T

ra
n

sf
e

r
C

o
ef

fi
ci

e
n

t
[W

/m
²K

]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.13.: Heat transfer coefficient α in each Condenser-Unit.

The specific enthalpy h and specific inner energy u for the Condenser-Units are shown in figures V.14
and V.15, respectively. When the compressor operates, the difference between the values of h and u
at the condenser inlet and outlet increases. The difference between the graphs is influenced by the
heat transferred to the pipe wall. This heat flux Q̇ is depicted in figure V.16. The negative values
during the switch-on period of the compressor imply that heat is transferred from the refrigerant to

111

V. Dynamic Simulation Results with IPSEpro

the pipe wall. When the compressor shuts down, the pressure, and thus the temperature, drops in the
Condenser-Units. Due to the thermal inertia of the pipe wall, Tp decreases more slowly. Thus the heat
flux changes sign and the refrigerant absorbs heat from the pipe wall.

250

300

350

400

450

500

550

600

650

700

0 500 1000 1500 2000 2500

Sp
e

ci
fi

c
En

th
al

p
y

[k
J/

kg
]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.14.: Specific enthalpy h in each Condenser-Unit.

250

300

350

400

450

500

550

600

650

0 500 1000 1500 2000 2500

Sp
e

ci
fi

c
In

n
e

r
En

e
rg

y
[k

J/
kg

]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.15.: Specific inner energy u in each Condenser-Unit.

-30

-25

-20

-15

-10

-5

0

5

10

0 500 1000 1500 2000 2500

H
e

at
 F

lu
x

[W
]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.16.: Heat flux Q̇ in each Condenser-Unit.

112

1. Refrigeration Appliance Model

The vapour quality x, shown in figure V.17, behaves as the specific enthalpy. This is not surprising when
thinking of its definition in equation (6.25) on page 57. A vapour quality x > 1 and x < 0 indicates
superheated and subcooled refrigerant, respectively. As claimed above the first three Condenser-Units
are superheated (almost) right after the compressor switches on and a fourth Unit becomes fully
vaporized a little bit later. Still, as can be also seen in the Ts-diagrams depicted in figure V.5, no
Condenser-Unit becomes subcooled. If the compressor is switched off, the condenser empties and only
superheated refrigerant remains. A similar behaviour as the vapour quality is observed in the flow
quality ẋ, see figure V.18. In the two-phase region ẋ ≥ x holds due to the vapour void fraction model.
In the single-phase region the two quantities are equal by definition.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 500 1000 1500 2000 2500

V
ap

o
r

Q
u

al
it

y
[-

]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.17.: Vapor quality x in each Condenser-Unit.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 500 1000 1500 2000 2500

Fl
o

w
 Q

u
al

it
y

[-
]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.18.: Flow quality ẋ in each Condenser-Unit.

Concluding the condenser, the vapour void fraction, density and mass are presented. Recall section
III.6.1.2, where the vapour void fraction ε is defined as the ratio between the cross-sectional area filled
with vapor Av and the total area A. Hence, 0 ≤ ε ≤ 1 holds and the boundaries are only reached if
the refrigerant becomes single-phase. In figure V.19 the graphs for ε are illustrated. In the two-phase
region, the density ρ, depicted in figure V.20, is an interpolant between the densities ρl, ρv on the
two-phase boundaries and ε determines the share of ρl and ρv. Since the pressure does not change
significantly after the compressor reached 3000 rpm, ρ is strongly linked to ε. Finally, the stored mass
of refrigerant in each Condenser-Unit is shown in figure V.21. As the volume is constant over time,
the graphs correspond to the ones of the density. In the dryer/filter the mass is significantly higher
than in the other Units since it has a different geometry and a larger volume V .

113

V. Dynamic Simulation Results with IPSEpro

0.7

0.75

0.8

0.85

0.9

0.95

1

0 500 1000 1500 2000 2500

V
ap

o
r

V
o

id
 f

ra
ct

io
n

 [
-]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.19.: Vapor void fraction ε in each Condenser-Unit.

0

25

50

75

100

125

150

175

0 500 1000 1500 2000 2500

D
e

n
si

ty
 [

kg
/m

³]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.20.: Density ρ in each Condenser-Unit.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500

M
as

s
[g

]

Time [s]

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

C16

C17

C18

C19

C20

C21

Figure V.21.: Mass m in each Condenser-Unit.

114

1. Refrigeration Appliance Model

Evaporator

In the following the same order of the figures as for the condenser is preserved. Therefore, first the
mass flow ṁ at the inlet of each Evaporator-Unit is discussed. The inlet mass flow of the first Unit E1
(blue dotted) equals the mass flow ṁCap through the capillary. The mass flow of the last two Units
corresponds to ṁComp, see figure V.3a. The artificial accumulator, Unit E18, acts in a compensatory
way. Its inlet mass flow (black dashed) does not show the same behaviour as ṁComp (red line). Since
the outlet enthalpy of the accumulator is prescribed by equation (6.32) on page 60 and thus by the
efficiency ξ gained from equation (6.31), the inlet mass flow has to adjust appropriately because the
inlet enthalpy is more or less fixed by the downstream Unit. Consequently, the same behaviour of the
mass flows may not appear in reality.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000 2500

M
as

s
Fl

o
w

 [
g

/s
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.22.: Mass flow ṁfeedS at the inlet of each Evaporator-Unit.

Next, the pressure in the Evaporator-Units illustrated in figure V.23 is presented. The pressure drop
∆p in each Evaporator-Unit is higher than in the Condenser-Units. The reason lies particularly in the
correction factor η∆p_Ev = 4.7 which was validated in chapter IV. The results are given in figure V.24.
Thus, the model yields a total pressure drop of up to 0.2 bar for the whole evaporator. Also in reality
a higher pressure drop is expected in the evaporator than in the condenser since it is vertically wound
around the compartment and therefore several bends occur. The time evolution of ∆p is linked to the
mass flow. During the switch-off period of the compressor, the pressure in the evaporator slowly rises
due to the heat input from the ambiance.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0 500 1000 1500 2000 2500

P
re

ss
u

re
 [

b
ar

]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.23.: Pressure p in each Evaporator-Unit.

115

V. Dynamic Simulation Results with IPSEpro

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 500 1000 1500 2000 2500

P
re

ss
u

re
 D

ro
p

 [
b

ar
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.24.: Pressure drop ∆p in each Evaporator-Unit.

When the compressor operates, all Evaporator-Units are two-phase. Therefore, the difference in the
temperatures depicted in figure V.25 is caused by the pressure drop from figure V.24. When the
compressor is idle, the pressure drop is reduced to a minimum due to the small residual mass flow and
the temperatures rise with the pressure. However, the Units become superheated and the temperatures
differ in each Unit further on. The temperature Tp of the pipe wall is illustrated in figure V.26. Since
always five Units are connected to one insulation Unit, see the flow sheet in figure III.22, the difference in
Tp are explainable. Each insulation Unit has a uniform temperature. Since the refrigerant temperature
drops along the evaporator due to the pressure drop, the discrete values in the insulation lead to a jump
in the pipe wall temperature every five Units. The HTC between the refrigerant and the pipe wall are
given in figure V.27. Compared to the condenser the values are much lower and are not affected from
the upper bound. As for the pressure drop the graphs correspond to the mass flow. A higher HTC is
achieved in Units with a lower flow quality ẋ. When the compressor is idle, the small mass flow and
the fact that most Units are single-phase induce a small HTC.

-35

-32.5

-30

-27.5

-25

-22.5

-20

-17.5

-15

-12.5

-10

-7.5

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.25.: Temperature t in each Evaporator-Unit.

Next, the specific enthalpy h and specific inner energy u of the Evaporator-Units are discussed. The
corresponding graphs are shown in figure V.28 and V.29, respectively. During the switch-off period of
the compressor, the values of all Units except the Accumulator-Unit E18 are close to each other. In
the accumulator a major part of the refrigerant is stored. Since the volume is fixed, the liquid share in
these Units has to be much higher than in the other Units. This can be seen by a significantly lower
h and u. Furthermore, the outlet enthalpy of the accumulator is calculated differently, see equation
(6.32) on page 60, which yields the gap between the other Evaporator-Units in the graphs when the

116

1. Refrigeration Appliance Model

-32.5

-30

-27.5

-25

-22.5

-20

-17.5

-15

-12.5

0 500 1000 1500 2000 2500

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.26.: Pipe temperature tp in each Evaporator-Unit.

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500

H
e

at
 T

ra
n

sf
e

r
C

o
ef

fi
ci

e
n

ts
 [

W
/m

²K
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.27.: Heat transfer coefficient α in each Evaporator-Unit.

compressor operates. During the switch-on period of the compressor, refrigerant with a vapour quality
x close to 0 leaves the capillary and fills the Evaporator-Units. Due to the heat absorbed from the
insulation and compartment, the enthalpy and inner energy increase with each Unit. The bump in h
and u results from the change in the mass flow. If the mass flow is higher, the enthalpy difference from
one Unit to the next decreases. Thus, these two quantities are inversely proportional.

100

150

200

250

300

350

400

450

500

550

0 500 1000 1500 2000 2500

Sp
e

ci
fi

c
En

th
al

p
y

[k
J/

kg
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.28.: Specific enthalpy h in each Evaporator-Unit.

117

V. Dynamic Simulation Results with IPSEpro

100

150

200

250

300

350

400

450

500

550

0 500 1000 1500 2000 2500

Sp
e

ci
fi

c
In

n
e

r
En

e
rg

y
[k

J/
kg

]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.29.: Specific inner energy u in each Evaporator-Unit.

The heat transfer Q̇ between the refrigerant and the pipe wall is depicted in figure V.30. Positive values
imply that the refrigerant absorbs heat from the pipe wall. When the compressor switches on, for a
short period some Units heat the pipe wall which is visible due to the negative peak at the beginning
of the time axis. The Accumulator-Unit E18 has a higher Q̇ when the compressor operates since it
has a different geometry and a larger surface area than the other Evaporator-Units. Hence, this does
not imply that the heat transfer is higher in the Accumulator-Unit. More likely the opposite is the
case when regarding the HTC in figure V.27. When the compressor switches off, the refrigerant heats
the pipe wall, as shown by the second negative peak.

-5

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500

H
e

at
 F

lu
x

[W
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.30.: Heat flux Q̇ in each Evaporator-Unit.

Next the vapour and flow quality are presented. Their values for each Unit in the evaporator are given
in figure V.31 and V.32. As in the condenser the vapour quality x shows the same behaviour as the
specific enthalpy h. Since the accumulator holds most of the refrigerant the vapour quality for this
Unit is very close to 0. When the compressor operates, 0 ≤ x ≤ 1 yields that the Units are two-phase.
During the switch-off period most of the Units are superheated but still the Accumulator-Unit is filled
with liquid refrigerant. As in the condenser the flow quality is higher than the vapour quality since
it is assumed that the vapour share flows with a higher velocity than the liquid share. Since the flow
quality does not make sense in the accumulator it is omitted in figure V.32.

Concluding the results of the refrigeration appliance model, the vapour void fraction, density and mass
are discussed. The vapour void fraction ε is illustrated in figure V.33. As above, the Accumulator-
Unit has a special position in these graphs. When the compressor is idle, more than 90 % of the

118

1. Refrigeration Appliance Model

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 500 1000 1500 2000 2500

V
ap

o
r

Q
u

al
it

y
[-

]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.31.: Vapor quality x in each Evaporator-Unit.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 500 1000 1500 2000 2500

Fl
o

w
 Q

u
al

it
y

[-
]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E19

E20

Figure V.32.: Flow quality ẋ in each Evaporator-Unit.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

V
ap

o
r

V
o

id
 f

ra
ct

io
n

 [
-]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.33.: Vapor void fraction ε in each Evaporator-Unit.

cross-sectional area of the tube in the accumulator is filled with liquid whereas in the other Units
only vaporized refrigerant is stored. After the compressor switched on, a bigger amount of refrigerant
leaves the accumulator. Thus, ε increases and density and mass decrease. The latter two variables
are illustrated in figure V.34 and V.35, respectively. Shortly after that refrigerant with a low vapour
quality flows into the first Evaporator-Unit and the Units are filled with two-phase refrigerant. At the

119

V. Dynamic Simulation Results with IPSEpro

maximum filling level, less than 45 % of the cross-sectional area are filled with vapour in the first Unit.
This corresponds to a filling quantity of about 15 g. At the same time, ε increases to about 0.4 in the
accumulator before the mass is transferred back. Consequently during the whole simulation a major
part of the refrigerant is located in the accumulator.

0

50

100

150

200

250

300

350

400

450

500

550

600

0 500 1000 1500 2000 2500

D
e

n
si

ty
 [

kg
/m

³]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.34.: Density ρ in each Evaporator-Unit.

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

0 500 1000 1500 2000 2500

M
as

s
[g

]

Time [s]

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12

E13

E14

E15

E16

E17

E18

E19

E20

Figure V.35.: Mass m in each Evaporator-Unit.

2. Optimal Number of Revolutions of the Compressor

Concluding this chapter a first optimization application of the developed and validated model in
IPSEpro is presented. The impact of the prescribed Number of Revolutions (NOR) of the compressor
on the energy consumption is investigated. As for the validation the compartment is empty, the door
is never opened and the NOR is constant for each case. Furthermore, the fit parameters ηv and ηcomb
in the Compressor-Unit remain equal for each NOR. This assumption does not hold in reality. In this
thesis no algorithm is applied to locate the optimal NOR, but 12 discrete values are investigated. If
an optimization with respect to more than one variable is aimed for, we highly recommend to chose
one of the many methods of mathematical optimization referred to in the beginning of chapter IV.

In figure V.36 the results are illustrated. The simulation for each NOR starts from a steady-state point
and is performed until the periodic on-off-cycle is reached. To obtain the energy consumption per cycle,
shown in figure V.36b, the time integral of the electric power P of the compressor was determined for

120

2. Optimal Number of Revolutions of the Compressor

530

535

540

545

550

555

560

565

570

575

580

585

590

595

600

605

610

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

El
e

ct
ri

c
W

o
rk

 p
e

r
D

ay
 [

W
h

]

Number of Revolutions

(a) Electric work per day.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

El
e

ct
ri

c
W

o
rk

 p
e

r
C

yc
le

 [
W

h
]

Number of Revolutions

(b) Electric work per cycle.

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

C
yc

le
s

p
e

r
D

ay
 [

-]

Number of Revolutions

(c) Cycles per day.

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

1.29

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

C
O

P
 [

-
]

Number of Revolutions

(d) Coefficient of Performance εd.

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Ti
m

e
 [

m
in

]

Number of Revolutions

On Off Total

(e) Time per cycle.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

P
e

rc
e

n
ta

ge
 o

f
D

ay
 [

-]

Number of Revolutions

On/24h Off/24h

(f) On/Off-Percentage per day.

Figure V.36.: Results for the refrigeration appliance model using various NOR.

121

V. Dynamic Simulation Results with IPSEpro

the on-period of the periodic on-off-cycle using the midpoint rule and a fixed start up loss of 0.45 Wh
is added. The consumed energy per cycle is minimal if the NOR is 1700 rpm. The number of cycles
per day, illustrated in figure V.36c, is the number of periodic on-off-cycles passed in 24 h. The longer
one cycle takes the less cycles are passed per day. Thus, from figure V.36c we deduce that for NOR
less than 1500 rpm the total time for one on-off-cycle increases significantly. The energy consumption
per day, depicted in figure V.36a, is calculated by multiplying the consumed energy per cycle with the
number of cycles per day. The start up loss, as long as it is not chosen extremely high, does not have a
big impact on the optimum since the number of cycles per day remains almost equal for NOR between
1500 rpm and 3000 rpm. We obtain that for a NOR of 1500 rpm the model predicts the least energy
consumption per day. The consumed energy per day is 10.63 % less for 1500 rpm than for the original
3000 rpm. However, in reality the same improvement may not be achieved due to the assumptions on
the compressor model. In this optimal point also the COP εd defined in equation (1.4) on page 3 is
maximal, see figure V.36d.

In figure V.36e, the on-duration (blue) and off-duration (purple) of the compressor and their sum
(green), i.e. the time it takes until one full cycle is passed, are illustrated. Of course, the on-duration
of the compressor decreases as the NOR increases but the total on-off duration for one cycle is nearly
constant for NOR between 1500 rpm and 3000 rpm. The reason lies in the thermal inertia of the
sensor. In figures V.37 and V.38 the temperature evolution of the compartment air Tc and sensor
Ts, respectively, are illustrated. It can be seen that the time derivative dTc/dt steepens during the
switch-on period of the compressor as the NOR is increased. If the compressor is switched off, the
derivative dTc/dt, determined by the ambient temperature and the quality of the insulation, is almost
equal for all NOR. Due to the thermal inertia of the sensor, Tc is lower for a higher NOR when the
compressor switches off. Consequently, a shorter on- and longer off-duration is achieved for a higher
NOR and the sum is similar for NORs between 1500 rpm and 3000 rpm. If the NOR is chosen less
than 1500 rpm, the on-duration and thus total cycle period starts to increase significantly. Then the
appliance becomes inefficient.

Finally, figure V.36f is discussed. This figure shows the percentage of the on- and off-duration per
day. For a NOR of 1500 rpm the percentages are nearly equal which implies that the compressor
operates about 12 h per day. If the NOR is chosen less, the percentage of the switch-on period of the
compressor increases until the maximum of 1 is reached at a NOR of 878 rpm. Choosing this NOR
implies that the compressor operates 24 h per day. Thus, this is a steady-state point. In this point
the compartment temperature is −20.49 ◦C, just above the lower threshold of −20.5 ◦C specified in
section IV.1.2. The threshold is not reached and therefore the compressor control never switches the
compressor off. The NOR can be further reduced to 855 rpm where the corresponding compartment
temperature is −20.07 ◦C, hence just below the upper threshold of −20 ◦C. If the NOR is further
turned down, the consumed electric power decreases but the target temperature in the compartment
is not achieved anymore. In figure V.36a the lowest depicted NOR is 855 rpm. The NOR of 878 rpm
is not illustrated but the consumed energy per day would be slightly higher than for 855 rpm.

122

2. Optimal Number of Revolutions of the Compressor

-26

-25

-24

-23

-22

-21

-20

-19

-18

-17

-16

-15

0 500 1000 1500 2000 2500 3000 3500 4000

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

3000 2750 2500 2250 2000 1750 1500 1250 1150 1050 1000

Figure V.37.: Compartment temperature for various NOR.

-21.4

-21.2

-21

-20.8

-20.6

-20.4

-20.2

-20

-19.8

-19.6

-19.4

0 500 1000 1500 2000 2500 3000 3500 4000

Te
m

p
e

ra
tu

re
 [

°C
]

Time [s]

3000 2750 2500 2250 2000 1750 1500 1250 1150 1050 1000

Figure V.38.: Sensor temperature for various NOR.

123

124

VI. Conclusion and Outlook

Within this final chapter the main parts of this thesis shall be summarized and once more investigated.
Not only the positive aspects shall be presented but also the shortcomings. Furthermore, we give ideas
and ask questions which emerged during the work for this thesis but are not yet pursued or elaborated.
First, the numerical and then the model issues are discussed.

Numerical Issues

During the work for this thesis, a general purpose numerical solver for DAEs was incorporated into
the commercial software IPSEpro. It is clear that for a commercial software the standards for the
implementation are by far higher than for a typical research code, especially when it is general purpose.
This includes error handling, efficient data management, performance and that the program must not
crash in any case. Besides the incorporation of the numerical solver, the problem of the (consistent)
initialization of the solver, which appears repeatedly in the literature, was handled. So far only
the initialization but not the augmented initialization system is solved at the initial time before the
dynamic solver is called. This procedure is sufficient for the models developed in this thesis since the
emerging system of DAEs fulfills the conditions of corollary II.2.4. However, arbitrary systems with
higher differentiation index can cause problems at the initial time although the initialization system
was solved, see e.g. example II.2.2 or II.3.7. To set up the augmented initialization system, a method
for automatic differentiation of the equations with respect to time and the Pantelides algorithm have
to be implemented.

Further, regularization techniques for the initialization system were elaborated. The initialization
system and flow sheet systems after the set up are underdetermined by nature which motivated the
development of the Echelon Analysis. In large flow sheet models the overview of which variables
can still be set is lost easily, even for experienced users. If a variable is set which already could be
calculated from the equations, a (partial) overdetermination emerges in the system. To resolve this
problem, the Adjoint Echelon Analysis was developed. However by following the Echelon Analysis,
now a structurally and globally nonsingular initialization system is always achieved. Still, the Adjoint
Echelon Analysis turned out to be a useful tool if the setting structure has to be changed. Since these
two analyses are formulated in a general form, they are applicable for purely algebraic systems and
DAEs. During the development of the Echelon Analysis the question arose if it is possible to identify
the possible settings which lead to the minimal size of the blocks found by the block decomposition
from section II.2.2. A smaller size of each block is expected to increase the chance of convergence.
This question was not further investigated yet and is left for future work.

The integration termination criteria from section II.4.2 are implemented already in IPSEpro but are
just the basis of a framework yet to be developed. The idea is that after the integration terminated
due to a condition also an automatic restart shall be possible. At the "breakpoint" of the integration,
the flow sheet model may be transformed arbitrarily. This is relevant if e.g. in a large model a valve
closes and a part of the model becomes idle. Then this part may be excluded from the integration
until the valve opens again. This is also of interest for the refrigeration appliance model since it is
imaginable that a total shutdown of the compressor may be achieved by altering the models during
the dynamic simulation.

Finally, the one-dimensional spatial discretization becomes tedious in IPSEpro if the number of finite
volumes, i.e. Units, increases. At least in IPSEpro it is possible to duplicate an arbitrary number

125

VI. Conclusion and Outlook

of Units, but in the heat exchanger models often convergence is not achieved if too many new Units
are added before the next calculation is performed. Additionally, the appearance of the flow sheet
is affected if a fine discretization is required. Therefore, further work may be invested to ease the
handling of one-dimensional spatial discretization in flow sheet models.

Modelling Issues

Next the models and their implementation in IPSEpro are discussed. Within this thesis it was shown
that also such complex models as for the heat exchangers, presented in section III.6.1, can be handled
by IPSEpro. Implementation of most other component models was fairly straight forward. In the heat
exchanger models, the calculation of the HTC, FPD and vapour void fraction was outsourced into an
external DLL since the models are too complex to be handled by the MDL.

One major issue during the development process, in IPSEpro as well as in the VBA simulation tool, was
the high number of discontinuities and non-differentiabilities emerging in the heat exchanger models.
Some have a physical origin, some are caused by the switch between different empirical models for the
HTC and FPD given for each flow pattern in the two-phase region, see section III.8.2. Interpolation
at the flow pattern boundaries and the two-phase boundary is applied such that at least continuous
external functions for the HTC and FPD are obtained. Still these models and the arising system can
be handled by the numerical methods developed in section II.1.2. Since during Newton’s method, used
to solve the corrector equation at each integration step, all input arguments of the external functions
from section III.7 are iterated and therefore do not necessarily fulfill the equations written in MDK,
problems during the iteration emerged in IPSEpro which are not observed in the VBA simulation tool
since in the VBA tool only one of the variables is iterated at a time. Physical properties such as λ,
cp, cv or η, calculated from pressure and temperature, have a jump discontinuity in the saturation
temperature and are not defined within the two-phase region. Therefore, the temperature passed to
the external functions has to be checked such that correct physical properties are obtained and no
convergence problems occur. However, the equation based approach of IPSEpro enabled to extend
the heat exchanger models with the possibility of changing flow directions which is not available in
the VBA simulation tool. In the validated refrigeration appliance model the flow direction does not
change but it was the case for different sets of uncertain parameters. Furthermore, now also parallel
heat exchangers involving splitting and mixing can be modelled and due to the graphical user interface
of IPSEpro the connections of the component models are clearly visible. This, the fact that in PSE no
model equations have to be considered when the flow sheet is set up and the Echelon Analysis guiding
the user to a regular system are expected to ease modelling the refrigeration appliances; especially, for
someone who did not take part in the component model development process.

In the future, the manufacturers who participate in the ECO-COOL research project aim to use
IPSEpro and the models therein to design, investigate and improve their appliances. Besides that,
the heat exchanger models are also applied within a different field of active research with a different
working fluid. The models are utilized for a liquified natural gas tank system in trucks, see [86]. There,
manufacturers already use IPSEpro to design the heat exchangers between the tank and the engine.

Potential of improvement lies in the shell and evaporator model. Considering the design of a com-
pressor, the Shell-Unit model is very simple and a more sophisticated model should be elaborated.
The implemented evaporator models are developed for horizontal tubes. Since here the evaporator is
vertically wound around the compartment, an accumulator was incorporated to compensate the insuffi-
ciencies of the models. In the literature, e.g. in [3], also models are proposed for vertical tubes. To avoid
the necessity of the accumulator, these models could be added to the MDK-library Eco-Cool-Lib.

126

Validation Issues

The component and flow sheet models developed in IPSEpro were dynamically validated with measure-
ments, see chapter IV, and achieved satisfactory results. In comparison to the VBA models, where the
validation was performed manually, the parameter fitting was semi-automatized. This means that for
the results in this thesis the majority of the uncertain parameters is fitted using a numerical method
and stationary measurements and the few remaining parameters are adjusted manually such that the
model fits the dynamic, i.e. time dependent, measurements. This procedure accelerates the task of
parameter fitting significantly. The numerical method is not implemented in IPSEpro directly but the
scripting interface is used instead. It is written in JavaScript and calls IPSEpro whenever the evalua-
tion of the steady-state model is required but the determination of the descent direction, performed in
an executable written in C++, and the update of the uncertain parameters are done outside IPSEpro.

Nevertheless, the applied numerical method is absolutely capable of fitting all uncertain parameters
automatically to time dependent measurements. Due to the expected long calculation times and the
current lack of an interface of IPSEpro to extract dynamic results automatically, the method is not
implemented yet. In the future also the number of uncertain parameters has to be reduced. Especially,
the HTCs αIso_out, αComp_in and αAmb_Shell may be determined by correlations and the factor
η∆p_Co for the FPD in the condenser can be omitted since its fit is η∆p_Co = 1. Consequently, if also
vertical evaporator models are incorporated, the remaining uncertain parameters may be reduced to
(ρcV)s, ηα_Co, η∆p_Ev and αDis_Shell if we neglect that in the Compressor-Unit also fit parameters
are included.

Optimization Issues

A complete and comprehensive optimization of the investigated appliance was not performed. Only
one parameter study is presented in which the NOR of the compressor is changed, see section V.2. In
this study it is assumed that the fit parameters of the compression model remain equal for all NOR
which does not hold in reality. However, the results indicated that the energy consumption of the
appliance is reduced by about 10 % if a NOR of 1500 rpm instead of 3000 rpm is chosen. Furthermore,
with the VBA model several different parameter studies were performed from which a few are presented
e.g. in [43]. Though a parameter study as investigated in these cases, i.e. varying only one parameter,
shows only the "directional derivative" with resect to the varied variable. To verify the least achievable
energy consumption of the investigated appliance, an optimization problem has to be formulated and
minimized with respect to all chosen parameters.

A further point of interest starting to emerge in refrigeration appliances are variable-speed compressors.
These compressors regulate the NOR depending on the demanded cooling power. Here the question
is how the NOR shall be controlled such that the energy consumption of the appliance is minimized.
This yields an optimal control problem and we refer to [104] for an introduction into the field.

Concluding this thesis, we claim that a sustainable simulation tool was elaborated which goes beyond
the investigation of refrigeration appliances. Due to the general purpose numerical solver, basically
any system which is represented by DAEs with appropriate differentiation index can be handled. Fur-
thermore, both the flow sheet arrangement and the specified working fluid are not fixed and thus the
component models may be used in different research fields as it has already been demonstrated. Conse-
quently, the developed models and numerical methods of this thesis have a large field of application.

127

128

Bibliography

[1] U. M. Ascher and L. R. Petzold. Computer methods for ordinary differential equations
and differential-algebraic equations. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1998.

[2] BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. Stromverbrauch im Haushalt.
Berlin, 2014.

[3] K.J. Bell and A. C. Mueller. Engineering Data Book II. Wolverine Tube, Inc, 2001.

[4] J.M. Belman-Flores, J.M. Barroso-Maldonado, A.P. Rodríguez-Muñoz, and G. Camacho-
Vázquez. Enhancements in domestic refrigeration, approaching a sustainable refrigerator – a
review. Renewable and Sustainable Energy Reviews, 51:955 – 968, 2015.

[5] S. Bendapudi and J. E. Braun. A review of literature on dynamic models of vapor compression
equipment. Technical report, ASHRAE, 2002.

[6] E. Berger, M. Heimel, R. Almbauer, and W. Lang. 1D heat exchanger simulation to capture
the cycling transients of domestic refrigeration appliances working with R600a. In Proc. Int.
Refrigeration and Air Conditioning Conference at Purdue, West-Lafayette, USA. Paper 2452,
2012, 2012.

[7] E. Berger, M. Heimel, S. Posch, R. Almbauer, and M. Eichinger. Transient 1D heat exchanger
model for the simulation of domestic cooling cycles working with R600a. In Proc. Int. Refrig-
eration and Air Conditioning Conference at Purdue, West-Lafayette, USA. Paper 2294, 2014,
2014.

[8] E. Berger, S. Posch, M. Heimel, R. Almbauer, M. Eichinger, and A. Stupnik. Transient 1d heat
exchanger model for the simulation of domestic cooling cycles working with R600a. Science and
Technology for the Built Environment, 21(7):1010–1017, 2015.

[9] D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, Mass., 1995.

[10] W. Blajer. Index of differential-algebraic equations governing the dynamics of constrained me-
chanical systems. Applied Mathematical Modelling, 16(2):70–77, 1992.

[11] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical solution of initial-value problems
in differential-algebraic equations, volume 14 of Classics in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. Revised and corrected
reprint of the 1989 original.

[12] P. N. Brown, A. C. Hindmarsh, and L. R. Petzold. Consistent initial condition calculation for
differential-algebraic systems. SIAM J. Sci. Comput., 19(5):1495–1512 (electronic), 1998.

[13] F. E. Cellier and E. Kofman. Continuous System Simulation. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

129

BIBLIOGRAPHY

[14] Z.J. Chen andW.-H. Lin. Dynamic simulation and optimal matching of a small-scale refrigeration
system. International Journal of Refrigeration, 14:329–335, 1991.

[15] W. Cheney and D.R. Kincaid. Linear Algebra: Theory and Applications. Jones & Bartlett
Learning International Series in Mathematic. Jones & Bartlett Learning, 2010.

[16] J. Chi and D. Didion. A first-principles simulation model for start-up and cycling transients of
household refrigerators. International Journal of Refrigeration, 5(3):176–184, 1982.

[17] R. de Pelegrini Soares and A. R. Secchi. Structural analysis for static and dynamic models.
Mathematical and Computer Modelling, 55(3-4):1051–1067, 2012.

[18] P. Deuflhard and F. Bornemann. Numerische Mathematik 2. De Gruyter Lehrbuch. De Gruyter,
3rd edition, 2008.

[19] P. Deuflhard and A. Hohmann. Numerische Mathematik 1. De Gruyter Lehrbuch. De Gruyter,
3rd edition, 2002.

[20] M. Dhar. Transient Analysis of Refrigeration System. PhD thesis, Purdue University, West
Lafayette, IN, USA, 1978.

[21] G. L. Ding. Recent developments in simulation techniques for vapour-compression refrigeration
systems. International Journal of Refrigeration, 30:1119–1133, 2007.

[22] I. S. Duff. On algorithms for obtaining a maximum transversal. ACM Transactions on Mathe-
matical Software, 7(3):315–330, sep 1981.

[23] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct methods for sparse matrices. Monographs on
Numerical Analysis. The Clarendon Press, Oxford University Press, New York, second edition,
1989. Oxford Science Publications.

[24] I. S. Duff and J. K. Reid. Algorithm 529: Permutations to block triangular form [f1]. ACM
Trans. Math. Softw., 4(2):189–192, 1978.

[25] Bruce Eckel. Thinking in C++, Vol. 1. Prentice Hall, 2 edition, 2000.

[26] Bruce Eckel, Chuck D. Allison, and Chuck Allison. Thinking in C++, Vol. 2. Pearson Education,
2 edition, 2003.

[27] European Union. Directive 2010/30/eu of the european parliament and of the council of
19 may 2010 on the indication by labelling and standard product information of the con-
sumption of energy and other resources by energy-related products. Official Journal of the
European Union, L 153, 53, 18 June 2010. http://eur-lex.europa.eu/legal-content/EN/ALL/
?uri=OJ%3AL%3A2010%3A153%3ATOC, Accessed: 2017-03-09.

[28] VDI e.V. VDI-Wärmeatlas. VDI-Wärmeatlas. Springer Berlin Heidelberg, 2013.

[29] B. Fuchssteiner. Modified Gauss algorithm for matrices with symbolic entries. ACM Commun.
Comput. Algebra, 42(3-4):108–121, 2008.

[30] C. W. Gear. Differential-Algebraic Equation Index Transformations. SIAM J. Sci. and Stat.
Comput., 9(1):39–47, 1988.

130

BIBLIOGRAPHY

[31] C. W. Gear. Differential-algebraic equations, indices, and integral algebraic equations. SIAM J.
Numer. Anal., 27(6):1527–1534, 1990.

[32] C. W. Gear and L. R. Petzold. ODE methods for the solution of differential/algebraic systems.
SIAM J. Numer. Anal., 21(4):716–728, 1984.

[33] V. Gnielinski. Neue Gleichungen für den Wärme- und Stoffübergang in turbulent durchströmten
Rohren und Kanälen. Forsch. Ing.-Wes., 41, No. 1:8–16, 1975.

[34] E. Hairer and G. Wanner. On the instability of the BDF formulas. SIAM J. Numer. Anal.,
20(6):1206–1209, 1983.

[35] E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer Series
in Computational Mathematics. Springer-Verlag, Berlin, 2010. Stiff and differential-algebraic
problems, Second revised edition, paperback.

[36] J. El Hajal, J. R. Thome, and A. Cavallini. Condensation in horizontal tubes, part 1: two-phase
flow pattern map. International Journal of Heat and Mass Transfer, 46(18):3349 – 3363, 2003.

[37] X.-D. He, S. Liu, and H. Asada. A moving-interface model of two-phase flow heat exchanger
dynamics for control of vapor compression cycle. Heat Pump and Refrigeration Systems Design,
Analysis and Applications, AES, 32:69–75, 1994.

[38] M. Heimel. Simulation and experimental validation of adiabatic and non-adiabatic capillary tubes.
PhD thesis, Graz University of Technology, 2015.

[39] M. Heimel, E. Berger, S. Posch, J. Hopfgartner, S. Schlemmer, and R. Almbauer. Calibration
Strategies And Limitations Of Cycle Simulations Representing Complex Domestic Cooling De-
vices. In International Refrigeration and Air Conditioning Conference at Purdue, West-Lafayette,
USA, 2016.

[40] M. Heimel, E. Berger, S. Posch, A. Stupnik, J. Hopfgartner, and R. Almbauer. Transient cycle
simulation of domestic appliances and experimental validation. International Journal of Refrig-
eration, 69:28–41, 2016.

[41] M. Heimel, W. Lang, and R. Almbauer. Performance predictions using Artificial Neural Net-
work for isobutane flow in non-adiabatic capillary tubes. International Journal of Refrigeration,
38:281–289, 2014.

[42] M. Heimel, W. Lang, E. Berger, and Almbauer R. A homogeneous capillary tube model - com-
prehensive parameter studies using r600a. In International Refrigeration and Air Conditioning
Conference at Purdue, West Lafayette, USA, 2012.

[43] M. Heimel, S. Posch, J. Hopfgartner, E. Berger, A. Stupnik, and R. Almbauer. Simulations-
gestützte Optimierung eines Hauhaltsgefrierschrankes. In DKV-Tagungsband, AA III.08, Dres-
den, Germany, 2015.

[44] M. Held and R. M. Karp. The Traveling Salesman Problem and Minimum Spanning Trees.
Operations Research, 18:1138–1162, 1970.

[45] C. J. Hermes, C. Melo, and F. T. Knabben. Algebraic solution of capillary tube flows Part I:
Adiabatic capillary tubes. Applied Thermal Engineering, 30:449–457, 2010.

131

BIBLIOGRAPHY

[46] C. J. Hermes, C. Melo, and F. T. Knabben. Algebraic solution of capillary tube flows. Part II:
Capillary tube suction line heat exchangers. Applied Thermal Engineering, 30:770–775, 2010.

[47] C.J.L Hermes and C. Melo. A first-principles simulation model for start-up and cycling transients
of household refrigerators. International Journal of Refrigeration, 31:1341–1357, 2008.

[48] IEA (International Energy Agency). Gadgets and Gigawatts – Policies for Energy Efficient
Electronics. OECD-IEA Publishing, Paris, 2009.

[49] M.J.P Janssen, L.J.M Kuijpers, and J.A. de Witt. Theoretical and experimental investigation
of a dynamic model for small refrigerating systems. In International Refrigeration and Air
Conditioning Conference at Purdue, West Lafayette, USA, 1988.

[50] D.I. Jähnig, D.T. Reindl, and S.A. Klein. A semi-empirical method for representing domestic
refrigerator/freezer compressor calorimeter test data. ASHRAE Transactions, 106:122–130, 2000.

[51] D. S. Johnson and L. A. McGeoch. The Traveling Salesman Problem: A Case Study in Local
Optimization. In E. H. L. Aarts and J. K. Local Lenstra, editors, Search in Combinatorial
Optimization, page 215–310. John Wiley and Sons Ltd., London, 1997.

[52] D. Jung, K. Song, Y. Cho, and S. Kim. Flow condensation heat transfer coefficients of pure
refrigerants. International Journal of Refrigeration, 26:4–11, 2003.

[53] K. Königsberger. Analysis. 2. Springer, Berlin, 1993.

[54] R.N.N. Koury, L. Machado, and K.A.R. Ismail. Numerical simulation of a variable speed refrig-
eration system. International Journal of Refrigeration, 24:192–200, 2001.

[55] A. Kröner, W. Marquardt, and E. D. Gilles. Getting around consistent initialization of DAE
systems? Computers & Chemical Engineering, 21(14), 1997.

[56] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Res. Logist. Quart.,
2:83–97, 1955.

[57] P. Kunkel and V. Mehrmann. Stability properties of differential-algebraic equations and spin-
stabilized discretizations. Electronic Transactions on Numerical Analysis, 26:385–420, 2007.

[58] R. Lamour. Index Determination and Calculation of Consistent Initial values for DAEs. Comp.
Math. Appl., 50(7):1125–1140, 2005.

[59] B. Leimkuhler, L. R. Petzold, and C. W. Gear. Approximation Methods for the Consistent
Initialization of Differential-Algebraic Equations. SIAM J. Numer. Anal., 28(1):205–226, 1991.

[60] E.W. Lemmon, M.L. Huber, and M.O. McLinden. NIST Standard Reference Database 23: Ref-
erence Fluid Thermodynamic and Transport Properties – REFPROP, Version 9.0. National
Institute of Standards and Technology, Gaithersburg, 2010.

[61] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied
Mathematics. Cambridge University Press, 2002.

132

BIBLIOGRAPHY

[62] P. Li, Y. Li, and J. E. Seem. Consistent initialization of system of differential-algebraic equations
for dynamic simulation of centrifugal chillers. Journal of Building Performance Simulation,
5(2):115–139, 2012.

[63] W. Li. Simplified steady-state modeling for hermetic compressors with focus on extrapolation.
International Journal of Refrigeration, 35:1722–1733, 2012.

[64] J. Liu, W. Wei, G. Ding, C. Zhang, M. Fukaya, K. Wang, and T. Inagaki. A general steady
state mathematical model for fin-and-tube heat exchanger based on graph theory. International
Journal of Refrigeration, 27(8):965 – 973, 2004.

[65] D. G. Luenberger and Y. Ye. Linear and nonlinear programming. Springer, New York, NY, 2008.

[66] V. Mehrmann. Index concepts for differential-algebraic equations. In Encyclopedia Applied and
Computational Mathematics, B. Engquist (Ed.), pages 676–681. Springer, Heidelberg, 2015.

[67] C. Melo, R. T. S. Ferreira, R. H. Pereira, and C. O. R. Negrao. Dynamic behavior of a vapour
compression refrigerator: A theoretical and experimental analysis. In International Refrigeration
and Air Conditioning Conference at Purdue, West Lafayette, USA, 1988.

[68] Claudio Melo, Luis Antonio Torquato Vieira, and Roberto Horn Pereira. Non-adiabatic capillary
tube flow with isobutane. Applied Thermal Engineering, 22:1661–1672, 2002.

[69] R. N. Methekar, V. Ramadesigan, J. C. Pirkle Jr., and V. R. Subramanian. A perturbation
approach for consistent initialization of index-1 explicit differential–algebraic equations arising
from battery model simulations. Computers & Chemical Engineering, 35(11):2227 – 2234, 2011.

[70] Scott Meyers. Effective C++: 55 Specific Ways to Improve Your Programs and Designs (3rd
Edition). Addison-Wesley Professional, 2005.

[71] P. K. Moore and L. R. Petzold. A stepsize control strategy for stiff systems of ordinary differential
equations. Applied Numerical Mathematics, 15:449–463, 1994.

[72] H. Mori, S. Yoshida, K. Ohishi, and Y. Kokimoto. Dryout quality and post dryout heat transfer
coefficient in horizontal evaporator tubes. Proc of 3rd European Thermal Sciences Conference,
page 839–844, 2000.

[73] N. S. Nedialkov and J. D. Pryce. Solving differential-algebraic equations by Taylor series. I.
Computing Taylor coefficients. BIT, 45(3):561–591, 2005.

[74] N. S. Nedialkov and J. D. Pryce. Solving differential-algebraic equations by Taylor series. II.
Computing the system Jacobian. BIT, 47(1):121–135, 2007.

[75] N. S. Nedialkov and J. D. Pryce. Solving differential algebraic equations by Taylor series. III.
The DAETS code. JNAIAM J. Numer. Anal. Ind. Appl. Math., 3(1-2):61–80, 2008.

[76] Cezar O.R. Negrao, Raul H. Erthal, Diogo E.V. Andrade, and Luciana Wasnievski da Silva. A
semi-empirical model for the unsteady-state simulation of reciprocating compressors for house-
hold refrigeration applications. Applied Thermal Engineering, 31:1114–1124, 2011.

[77] M. A. M. Neto and J. R. Barbosa Jr. Solubility, density and viscosity of mixtures of isobutane
(r600a) and a linear alkylbenzene lubricant oil. Fluid Phase Equilibria, 292:7–12, 2010.

133

BIBLIOGRAPHY

[78] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering. Springer New York, 2006.

[79] C. C. Pantelides. The consistent initialization of differential-algebraic systems. SIAM J. Sci.
Statist. Comput., 9(2):213–231, 1988.

[80] L. R. Petzold. Differential/Algebraic Equations are not ODE’s. SIAM J. Sci. Stat. Comput.,
3(3):367–384, 1982.

[81] J. Philipp. Optimierung von Haushaltskühlgeräten mittels numerischer Modellierung. PhD thesis,
Fakultät Maschinenwesen, Technische Universität Dresden, Deutschland, 1966.

[82] P. Pöll. Modellierung von Haushaltskühlgeräten für den transienten Betriebsfall in IPSEpro.
Master’s thesis, Graz University of Technology, 2016.

[83] L. Ploug-Sørensen, J.P. Fredsted, and M. Willatzen. Improvements in the modelling and sim-
ulation of refrigeration systems: aerospace tools applied to a domestic refrigerator. Journal of
HVAC&R Research, 3(4):387–403, 1997.

[84] S. Posch, E. Berger, M. Heimel, R. Almbauer, A. Strasser, and A. Stupnik. Semi-empirische
Modelle für hermetische Kühlschrankkompressoren. KI Kälte Luft Klimatechnik, pages 51–55, 5
2016.

[85] S. Posch, E. Berger, M. Heimel, Almbauer R., A. Stupnik, and H. Schögler. Comparison and
validation of semi-empirical compressor models for cycle simulation application. In International
Compressor Engineering Conference at Purdue, West Lafayette, USA, 2014.

[86] S. Posch, M. Rohrhofer, J. Hopfgartner, E. Berger, R. Almbauer, and E. Perz. Numerische
Untersuchung eines LNG-Tanksystems. In DKV-Tagungsband, AA I.10, Kassel, Germany, 2016.

[87] J. D. Pryce. Solving high-index DAEs by Taylor series. Numer. Algorithms, 19(1-4):195–211,
1998. Differential algebraic equations (Grenoble, 1997).

[88] J. D. Pryce. A simple structural analysis method for DAEs. BIT, 41(2):364–394, 2001.

[89] J. M. Quibén and J. R. Thome. Flow pattern based two-phase frictional pressure drop model
for horizontal tubes. Part I: Diabatic and adiabatic experimental study. International Journal
of Heat and Fluid Flow, 28(5):1049 – 1059, 2007.

[90] J. M. Quibén and J. R. Thome. Flow pattern based two-phase frictional pressure drop model
for horizontal tubes, Part II: New phenomenological model. International Journal of Heat and
Fluid Flow, 28(5):1060 – 1072, 2007.

[91] R. Radermacher, E. Gercek, and V.C. Aute. Transient simulation tool for refrigeration systems.
In IIR Conference on Commercial Refrigeration, Vicenza, Italy, pages 349–355, 2005.

[92] R. Riaza. Differential-Algebraic Systems: Analytical Aspects and Circuit Applications. World
Scientific, 2008.

[93] Secop GmbH, Fürstenfeld, Austria. Hermetic compressors for ac voltage (catalogue), 2015.

[94] H. Sigloch. Technische Fluidmechanik. Springer-Verlag Berlin Heidelberg, 5th edition, 2004.

134

BIBLIOGRAPHY

[95] SimTech GmbH, Graz, Austria. Model Development Kit, Documentation, Version 6.0.001.

[96] R. D. Skeel. Construction of variable-stepsize multistep formulas. Math. Comp., 47(176):503–510,
S45–S52, 1986.

[97] P. Spellucci. Numerische Verfahren der nichtlinearen Optimierung. Birkhäuser, Basel, 1993.

[98] K. Stephan. Wärmeübergang beim Kondensieren und beim Sieden. Wärme- und Stoffübertragung.
Springer Verlag Berlin, 1988.

[99] Bjarne Stroustrup. Programming: Principles and Practice Using C++. Addison-Wesley Profes-
sional, 1st edition, 2008.

[100] M. Takamatsu and S. Iwata. Index Determination and Calculation of Consistent Initial values
for DAEs. Linear Algebra and its Applications, 429:2268–2277, 2008.

[101] R. Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,
1972.

[102] S. A. Tassou and T. Q. Qureshi. Comparative performance evaluation of positive displacement
compressors in variable-speed refrigeration applications. International Journal of Refrigeration,
21:29–41, 1998.

[103] J. R. Thome, Hajal J. El, and A. Cavallini. Condensation in horizontal tubes, part 2: new
heat transfer model based on flow regimes. International Journal of Heat and Mass Transfer,
46(18):3365 – 3387, 2003.

[104] F. Tröltzsch. Optimale Steuerung partieller Differentialgleichungen: Theorie, Verfahren und
Anwendungen. Vieweg Studium. Vieweg+Teubner Verlag, 2010.

[105] J. Unger, A. Kröner, and W. Marquardt. Structural analysis of differential-algebraic equation
systems - theory and applications. Computers & Chemical Engineering, 19(8):867–882, 1995.

[106] J.V.C. Vargas and J.A.R. Parise. Simulation in transient regime of a heat pump with closed-loop
and on–off control. International Journal of Refrigeration, 18(4):235–243, 1995.

[107] V. Vidmar and B. Gaspersic. Dynamic simulation of domestic refrigerators with refrigerants R12
and R134a. In IIR International Congress of Refrigeration, Montreal, Canada, page 1250–1254,
1991.

[108] R.C. Vieira and E.C. Biscaia Jr. Direct methods for consistent initialization of DAE systems.
Computers & Chemical Engineering, 25(9–10):1299 – 1311, 2001.

[109] W. Wibel. Untersuchungen zu laminarer, transitioneller und turbulenter Strömung in rechteck-
igen Mikrokanälen. PhD thesis, Fakultät Bio- und Chemieingenieurwesen der Technischen Uni-
versität Dortmund, 2009.

[110] S. Wiggins. Global Bifurcations and Chaos: Analytical Methods. Applied Mathematical Sciences.
Springer New York, 2013.

[111] C. Windhager. Dynamische Simulation von Kühlkreisläufen. Master’s thesis, Graz University of
Technology, 2015.

135

BIBLIOGRAPHY

[112] L. Wojtan, T. Ursenbacher, and J. R. Thome. Investigation of flow boiling in horizontal tubes:
Part I— A new diabatic two-phase flow pattern map. International Journal of Heat and Mass
Transfer, 48(14):2955 – 2969, 2005.

[113] L. Wojtan, T. Ursenbacher, and J. R. Thome. Investigation of flow boiling in horizontal tubes:
Part II— Development of a new heat transfer model for stratified-wavy, dryout and mist flow
regimes. International Journal of Heat and Mass Transfer, 48(14):2970 – 2985, 2005.

[114] S. Wongwises, S. Disawas, J. Kaewon, and C. Onurai. Two- phase evaporative heat transfer
coefficients of refrigerant hfc-134a under forced flow conditions in a small horizontal tube. Inter-
national Communications in Heat and Mass Transfer, 27(1):35–48, 2000.

[115] B. Wu and R. C. White. An initialization subroutine for DAEs solvers: DAEIS. Computers &
Chemical Engineering, 25(2-3):301–311, 2001.

[116] H. Yasuda, S. Touber, and C.H.M. Machielsen. Simulation model of a vapor compression refrig-
eration system. ASHRAE Transactions, 89 (Part 2):408–425, 1983.

[117] B.F. Yu, Z.G. Wang, B. Yue, B.Q. Han, H.S. Wang, and F.X. Chen. Simulation computation and
experimental investigation for on–off procedure of refrigerator. In IIR International Congress of
Refrigeration, The Hague, The Netherlands, vol. 3, page 546–553, 1995.

[118] X. Yuan and D.L. O’Neal. Development of a Transient Simulation Model of a Freezer Part I:
Model Development. In International Refrigeration and Air Conditioning Conference at Purdue,
West Lafayette, USA, 1994.

[119] C. Zhang and G. Ding. Approximate analytic solutions of adiabatic capillary tube. International
Journal of Refrigeration, 27:17–24, 2004.

[120] J. Zierep and K. Bühler. Strömungsmechanik. Springer-Verlag Berlin Heidelberg, 1991.

136

