

Tobias Elmer

Dynamic task prioritization in
maintenance management

Master Thesis

Graz University of Technology

Institute of Engineering and Business Informatics
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Siegfried Vössner

Supervisor:

Dipl.-Ing. Clemens Gutschi
Dipl.-Ing. Dr.techn. Nikolaus Furian

Graz, April 2017

ii

iii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other
than the declared sources/resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

 Graz, 13 April 2017
 Date Signature

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst,
andere als die angegebenen Quellen/Hilfsmittel nicht benutzt und die den benutzten
Quellen wörtlich und inhaltlich entnommene Stellen als solche kenntlich gemacht
habe.

 Graz, am 13 April 2017
 Datum Unterschrift

iv

Danksagung / Acknowledgement

Hiermit möchte ich all jenen danken, die mich im Rahmen meines Studiums sowie
beim Verfassen dieser Masterarbeit unterstützt und begleitet haben. Ich bedanke
mich bei meinen Betreuern Clemens Gutschi, Nikolaus Furian und Dietmar
Neubacher für ihre fachliche und persönliche Unterstützung. Besonderer Dank
gebührt außerdem meinen Eltern Bernhard und Margot, die mir durch ihre
Unterstützung mein Studium ermöglicht haben.

I would like to express my gratitude to the people, who accompanied me during my
studies and supported me while writing this thesis. I want to thank my supervisors
Clemens Gutschi, Nikolaus Furian and Dietmar Neubacher for their professional
and personal support. Finally, let me convey my special thanks to my parents
Bernhard and Margot who made my graduation possible through their support.

v

Kurzfassung

Durch die zunehmende Globalisierung und dem damit verbundenen verschärften
Wettbewerb, stehen produzierende Unternehmen unter ständig steigendem
Kostendruck. Um diesem Kostendruck gerecht zu werden, versuchen Unternehmen
lohnintensive Herstellungsprozesse durch solche zu ersetzen, welche aufgrund eines
hohen Automatisierungsgrades einen geringeren Lohnanteil aufweisen. Der höhere
Automatisierungsgrad impliziert wiederum eine zunehmende Komplexität und
höhere Kosten der Produktionsanlagen, weshalb das Instandhaltungsmanagement
zunehmend in den Fokus der Unternehmensführung rückt. Effiziente Planung von
präventiven Instandhaltungsmaßnahmen, sowie eine rasche Behebung von
Maschinenausfällen sind notwendig, um eine hohe Anlagenverfügbarkeit zu erzielen.
Im Falle simultaner Maschinenausfälle und begrenzter Personalressourcen können
Situationen entstehen, in welchen eine Priorisierung von Anlagen notwendig ist.
Während diese Priorisierung heute meist im Rahmen der subjektiven Einschätzung
des Wartungspersonals durchgeführt wird, soll im Rahmen dieser Arbeit eine
objektive und echtzeitdatenbasierte Priorisierungsmethode entwickelt werden.
Hierzu wurden zwei Bottleneck-Identifizierungsmethoden - die Active Period
Method und die Blockage & Starvation Probability Method – hinsichtlich ihrer
Validität und ihrer Eignung für die Priorisierung von Anlagen untersucht. Weiters
wurde im Rahmen einer Simulationsstudie das Potential für die Priorisierung von
reaktiven Instandhaltungsmaßnahmen ermittelt. Die besten Ergebnisse bezüglich
Validität, Usability, wie auch Performance wurden mit der Active Period Method
erzielt. Im Rahmen der Simulation einer komplexen Produktionslinie eines
Motorenwerks konnte durch Priorisierung von reaktiven Wartungsaufgaben eine
Steigerung der Produktionsleistung von 5,9 %, verglichen zu einer FIFO Strategie,
erzielt werden.

vi

Abstract

In today’s globalized markets, manufacturing companies have to increase their
operational effectiveness and revenues while reducing their operating costs in order
to compete successfully. This has triggered a development within manufacturing
industries, where companies try to substitute labour-intensive production processes
through automated processes. An increasing degree of automation implies machines
with greater complexities which in turn require more maintenance than
conventional machines. Due to these factors, maintenance has become a prime focus
of industries. Efficient planning of preventive maintenance tasks, and a quick
respond in the case of a machine breakdown are crucial tasks in maintenance
management. In the field of corrective maintenance, situations arise, where there
are more machine breakdowns, than there are maintenance workers available. In
most companies, the prioritization of machines is done based on the subjective
assessment of the maintenance staff. This thesis aims for providing a real-time data-
driven prioritization method which can then be used as a decision support in the
case of simultaneous breakdowns of machines. Therefore, two different bottleneck
detection algorithms were applied, validated and assessed concerning their potential
for prioritization in corrective maintenance. The two algorithms are based on the
Active Period Method and the Blockage & Starvation Probability Method. The
validation showed, that the Active Period Method was capable of identifying the
primary, secondary and tertiary bottleneck of a system reliably, whereas the
Blockage & Starvation Probability Method could only detect the primary
bottleneck. Furthermore, the Active Period Method algorithm was modified for the
usage as a prioritization method for corrective maintenance tasks. The performance
of the algorithm was evaluated on a highly automated production line using discrete
event simulation. Compared to a FIFO service policy, the prioritization policy using
the Active Period Method brought a throughput increment of 5.9%.

vii

Table of contents

1 Introduction ____________________________________ 1

1.1 Problem Definition ______________________________ 2

1.2 Goals ______________________________________ 3

2 Theory __ 4

2.1 Maintenance __________________________________ 4

2.1.1 Terms and Definitions ___________________________ 4

2.1.2 Objectives and Costs of Maintenance __________________ 6

2.1.3 Key Performance Indicators in Maintenance Management ______ 8

2.1.4 Maintenance Strategies ___________________________ 9

2.1.5 Total Productive Maintenance _____________________ 13

2.1.6 IT-Systems in Maintenance Management _______________ 16

2.2 Prioritization policies ____________________________ 18

2.2.1 First-In, First-Out ____________________________ 19

2.2.2 Heuristic Prioritization Policies _____________________ 19

2.2.2.1 Part-Out-Part-Out Time ______________________ 20

2.2.2.2 Availability ______________________________ 21

2.2.2.3 Redundancy _____________________________ 22

2.2.2.4 Comparison of the Heuristic Methods _______________ 23

2.2.3 Bottleneck Prioritization Policies ____________________ 24

2.2.3.1 Blocking & Starvation Probability ________________ 24

2.2.3.2 Active period method ________________________ 31

2.2.3.3 System Sensitivity Analysis ____________________ 35

2.2.4 Comparison of Bottleneck Detection Methods ____________ 36

2.3 Simulation __________________________________ 39

2.3.1 Introduction to Simulation ________________________ 40

2.3.2 Simulation Modelling ___________________________ 42

viii

3 Methods & Implementation _________________________ 46

3.1 Bottleneck Detection Algorithms _____________________ 46

3.1.1 Active Period Method __________________________ 46

3.1.2 Blocking & Starvation Probability ___________________ 49

3.2 Simulation __________________________________ 50

3.2.1 Development of the Simulation Study _________________ 50

3.2.2 Simulation Scenarios ___________________________ 57

4 Use Cases _____________________________________ 59

4.1 Demo Use Case________________________________ 60

4.1.1 System Sensitivity Analysis _______________________ 61

4.1.2 Validation of the Active Period Method ________________ 63

4.1.3 Validation of the Blocking & Starvation Probability Method ____ 65

4.1.4 Comparison of the Bottleneck Detection Methods __________ 67

4.2 Industrial Use Case 1 ____________________________ 68

4.2.1 Heuristic Prioritization __________________________ 70

4.2.1.1 Prioritizing using Part-Out-Part-Out Times ___________ 70

4.2.1.2 Prioritizing using Availabilities __________________ 72

4.2.1.3 Prioritizing using Redundancy & Availability __________ 74

4.2.1.4 Comparison of Heuristic Methods _________________ 75

4.2.2 Bottleneck Prioritization _________________________ 76

4.2.2.1 Active Period Method ________________________ 76

4.2.2.2 Blocking & Starvation Probability Method ___________ 83

4.2.2.3 Conclusion – Blockage & Starvation Probability Method ___ 88

4.3 Industrial Use Case 2 ____________________________ 88

4.3.1 Variation of Input Parameters _____________________ 90

5 Discussion _____________________________________ 93

5.1 Comparison of Prioritization Policies ___________________ 93

5.2 Limitations for Prioritization in Corrective Maintenance ________ 96

5.3 Conclusion __________________________________ 97

ix

6 Outlook ______________________________________ 98

References ______________________________________ 100

x

List of Figures

Figure 1: Situation on the plant floor which requires prioritization ________ 2

Figure 2 Optimum for total maintenance costs ____________________ 7

Figure 3: Excerpt of KPIs for maintenance management ______________ 8

Figure 4: Maintenance strategies ____________________________ 9

Figure 5: Activities during a machine failure ____________________ 10

Figure 6: Calculation of the OEE ___________________________ 14

Figure 7: The five pillar model of TPM _______________________ 14

Figure 8: Histogram of measured part-out-part-out times _____________ 21

Figure 9: Failure sensitivity simulation setup ____________________ 22

Figure 10: Failure sensitivity of redundant machines _______________ 23

Figure 11: Bottleneck identification using BSP ___________________ 25

Figure 12: Examples of multiple bottlenecks ____________________ 26

Figure 13: Trend of blocking and starvation in a serial production line _____ 28

Figure 14: Transformation of a concurrent station into a virtual machine ___ 29

Figure 15: Feedback loop in a serial line production ________________ 30

Figure 16: Branch in a serial production line ____________________ 31

Figure 17 Active Periods of a machine _______________________ 32

Figure 18: Shifting bottlenecks ____________________________ 34

Figure 19: Average bottleneck over a period of time ________________ 34

Figure 20: Methods to study a system ________________________ 40

Figure 21: Major approaches in simulation modelling _______________ 43

Figure 22: Main elements of the HCCM framework ________________ 51

Figure 23: Time to repair in context of the simulation study ___________ 55

Figure 24: Introduction of a Priority Increase Factor _______________ 56

Figure 25: Structure of the Demo production line _________________ 60

Figure 26: Bottleneck ranking of the Demo line - System sensitivity analysis _ 62

Figure 27: Shifting bottlenecks of the Demo production line - APM _______ 64

xi

Figure 28: Comparison of the priority ranking of the active period method
and the system sensitivity analysis __________________________ 64

Figure 29: Shifting bottlenecks using the BSP method ______________ 66

Figure 30: Comparison of the BSP method to the system sensitivity method _ 66

Figure 31: Bottleneck ranking of the Demo line using three different
detection methods ___________________________________ 67

Figure 32: Structure of Line 1 _____________________________ 68

Figure 33: Priority ranking using Part-Out-Part-Out times ____________ 71

Figure 34: Average throughput per day - FIFO vs. Part-Out-Part-Out Time _ 71

Figure 35: Priority ranking using availability values ________________ 73

Figure 36: Average throughput per day - FIFO vs. Availability _________ 73

Figure 37: Priority ranking using availability values with decreased
priorities for redundant machines ___________________________ 74

Figure 38: Average throughput per day - FIFO vs. Availability & Redundancy
 __ 75

Figure 39: Average throughput increment of heuristic methods compared
to a FIFO policy ____________________________________ 75

Figure 40: Excerpt of the priorities over a period of 3 days using
the AAP method for Line 1 ______________________________ 77

Figure 41: Average throughput per day - FIFO vs. APM (48 Hours) ______ 78

Figure 42: Average throughput increment for different periods
of observation _____________________________________ 79

Figure 43: Static AAP priorities before redundant machines
priorities are reduced __________________________________ 80

Figure 44: Static AAP priorities after redundant machines priorities
are reduced _______________________________________ 81

Figure 45: Average throughput per day FIFO vs. Static APM __________ 81

Figure 46: Average throughput increment of different ܿ݊݅ using a static
AAP priority ranking _________________________________ 82

Figure 47: Average throughput increment for different input parameters
on Line 1 compared to a FIFO service policy ____________________ 83

Figure 48: Excerpt of the priority over time using the BSP method _______ 84

Figure 49: Average throughput per day - FIFO vs. BSP (7 Days) ________ 85

Figure 50: Static priorities of the BSP method before redundancies
are reduced ______________________________________ 86

xii

Figure 51: Static priorities of the BSP method after redundant machine's
priorities are reduced __________________________________ 87

Figure 52: Average throughput increment and 95% confidence intervals for
different periods of observation for the BSP method compared to a FIFO
service policy ______________________________________ 87

Figure 53: Structure of Line 2 _____________________________ 88

Figure 54: Average throughput increment for different input parameters
on Line 2 compared to a FIFO service policy ____________________ 91

Figure 55: Static AAP priority ranking for Line 2 after redundant machine’s
priority was reduced __________________________________ 91

Figure 56: Simultaneous breakdowns Line 1 - Line 2 _______________ 92

Figure 57: Performance of each prioritization policy for Line 1 compared
to a FIFO policy including a 95 % confidence interval ______________ 94

Figure 58: Potential for throughput increment on Line 1 depending on
amount of repair workers _______________________________ 96

xiii

List of tables

Table 1: States of different system entities adapted from _____________ 32

Table 2: Comparison of bottleneck detection methods _______________ 39

Table 3: Example of production data for a period of 9 time steps ________ 47

Table 4: Overview of conducted use cases within the simulation study _____ 59

Table 5: Input data for the Demo Use Case _____________________ 61

Table 6: Settings for the System Sensitivity Analysis _______________ 61

Table 7: Settings for the validation of the APM __________________ 63

Table 8: Settings for the validation of the BSP method ______________ 65

Table 9: Simulation input parameters for Industrial Use Case 1 _________ 69

Table 10: Settings for prioritizing using Part-Out-Part-Out Times _______ 70

Table 11: Settings for prioritizing using availabilities _______________ 72

Table 12: Settings for prioritizing using availabilities and redundancies _____ 74

Table 13: Settings for the initial experiment – APM ________________ 77

Table 14: Settings for the variation of ܶݏܾ - APM ________________ 78

Table 15: Settings for the static bottleneck detection - APM ___________ 80

Table 16: Settings for the variation of ܿ݊݅ - APM ________________ 82

Table 17: Settings for the initial experiment - BSP ________________ 84

Table 18: Settings for the variation of ܶݏܾ - BSP _________________ 86

Table 19: Simulation input parameters for Industrial Use Case 2 ________ 89

Table 20: Settings for the initial experiment – APM ________________ 90

xiv

List of abbreviations

AAP Average Active Period

APM Active Period Method

BSP Blocking and Starvation Probability

C/T Cycle Time

KPI Key Performance Indicator

MTBF Mean Time between Failures

MTTR Mean Time to Repair

OEE Overall Equipment Effectiveness

TP Throughput

TPM Total Productive Maintenance

WO Work Order

Chapter 1 Introduction

1

1 Introduction

Maintenance has become increasingly important since companies are more and
more subject to a tough competition on international markets. To be able to
compete successfully on these markets, manufacturing companies have to increase
their operational effectiveness and revenues while reducing their operating costs.
Since a big share of the operating costs of a manufacturing company are the labour
costs, some companies move their production in low-wage countries in order to stay
competitive. But in the long term and regardless the location, labour intensive
manufacturing processes will be substituted more and more by automated
processes. The high degree of automation requires production facilities which are
usually more complex and more expensive than non-automated facilities. Because
of that, two important conclusions can be drawn about the potential for cost
reduction initiatives in the field of maintenance management. First, the increased
complexity requires less skilled production workers, but more skilled maintenance
workers. This results in an increasing share of maintenance labour costs compared
to other labour-intensive activities and brings maintenance more in the focus of a
company’s management. The second point is, that more expensive production
facilities imply also higher downtime costs. In order to reduce the downtime costs
due to machine breakdowns, modern maintenance strategies evolved towards
preventive maintenance concepts. But since exceeding preventive maintenance
would also increase the downtime of production facilities, a Zero Breakdown
strategy cannot be realized yet cost-efficiently in all industries. Therefore, machine
breakdowns and thus also corrective maintenance is still an important aspect in the
field of maintenance management (Biedermann, 2008, p. 9; Leidinger, 2014, pp. 1).

Chapter 1 Introduction

2

This thesis is aiming to improve the efficiency of workforce distribution in a plant
concerning corrective maintenance tasks. As a part of a research project of the
Technical University of Graz with a German car manufacturer, the potential for
throughput improvement through dynamic prioritization of corrective maintenance
tasks will be evaluated.

1.1 Problem Definition

The mentioned research project deals with the usage of Internet of Things in the
field of maintenance management. Besides Big Data Analysis for the purpose of
predictive maintenance and the related scheduling of maintenance tasks, one aspect
of the project is the evaluation of the organizational structures within the plant of
the project partner. Whereas the maintenance staff is today organized in a
decentralized structure, the findings of the research project recommend a
centralized maintenance department for the whole plant. In that case, one central
authority has to distribute the maintenance workforce on the different production
lines within the plant. In order to support this central authority in how to distribute
the workforce most efficiently, a prioritization method for machines shall be
developed. The focus of this thesis is on the prioritization of corrective maintenance
tasks for the case of multiple machine breakdowns. Figure 1 is a simplified example
of a situation where a prioritization of maintenance tasks is required.

Figure 1: Situation on the plant floor which requires a prioritization of machines

Chapter 1 Introduction

3

The red machines symbolize a machine breakdown which requires a maintenance
worker. At time t1, the maintenance worker can maintain OS20 immediately, since
there are no other breakdowns. No prioritization is required. During OS20 is
maintained, OS10 and OS30 breakdown, wherefore the maintenance worker has to
prioritize which machine to maintain first at time t2. Currently, the prioritization
of machines is done based on the subjective assessment of the maintenance worker
and the line manager.

1.2 Goals

The aim of this thesis is to develop a data-driven method for the prioritization of
corrective maintenance tasks on machines within a production line. The main idea,
is to prioritize bottleneck machines over non-bottleneck machines to generate a
throughput improvement without increasing the available personnel resources.
Therefore, the first task is to develop a bottleneck detection algorithm which is
capable of identifying dynamic bottlenecks by analysing data from the production
data acquisition system. The output of the algorithm is a priority ranking, which
can later be used by the maintenance department as a decision support for the
workforce distribution in case of simultaneous breakdowns. In order to evaluate the
potential of the developed prioritization method, a simulation study is conducted
on two different production lines of the mentioned plant.

Chapter 2 Theory

4

2 Theory

2.1 Maintenance

Due to the advancing globalization and the associated intensification of
competition, companies have to provide high-quality products to low costs. One
way to achieve this goal is the increasing usage of automatization technologies in
the manufacturing processes. This brings new challenges for maintenance
management. The increasing complexity of highly interconnected production
facilities requires more efficient maintenance in order to achieve a high reliability
of the overall production system. On the other hand the usage of automatization
increases the amount of maintenance workers, compared to the other workers in
the production process. This brings maintenance more and more in the focus of a
company’s management (Pawellek, 2016, p. 1; Leidinger, 2014, p. 1).

2.1.1 Terms and Definitions

The maintenance-related terms used within this thesis are defined in EN
13306:2010-10-01:

 Maintenance
“Combination of all technical, administrative and managerial actions
during the life cycle of an item intended to retain it in, or restore it
to, a state in which it can perform the required function”

 Maintenance Management
“All activities of the management that determine the maintenance
objectives, strategies and responsibilities, and implementation of them

Chapter 2 Theory

5

by such means as maintenance planning, maintenance control, and
the improvement of maintenance activities and economics”

 Reliability
“Ability of an item to perform a required function under given
conditions for a given time interval”

 Redundancy
“Existence of more than one unit to fulfil a required function”

 Failure
“Termination of the ability of an item to perform a required function”

 Preventive maintenance
“Maintenance carried out in accordance with established intervals of
time or number of units of use but without previous condition
investigation”

 Corrective maintenance
“Maintenance carried out after fault recognition and intended to put
an item into a state in which it can perform a required function”

Further terms of maintenance used within this thesis are:

 Availability
Availability is the ability to perform under the assumption that all external
resources are given. Breaking down the planned production time of a
machine into the 4 states of “Produce”, “Blocked”, “Starved” and “Machine
failure”, the availability can be calculated as follows:

ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܣ =
݁ܿݑ݀ݎܲ + ݈݀݁݇ܿܤ + ݀݁ݒݎܽݐܵ

݁݉݅ܶ ݊݅ݐܿݑ݀ݎܲ ݈݀݁݊݊ܽܲ
 (1)

Another very common way to define the availability is the Inherent
availability (Ebeling, 2010, p. 254):

ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܣ =
ܨܤܶܯ

ܨܤܶܯ + ܴܶܶܯ
 (2)

Chapter 2 Theory

6

 Mean time between failures (MTBF) is the average of times between
failures

ܨܤܶܯ =
∑ ݁݉݅ݐ ݃݊݅ݐܽݎܱ݁

ݏ݁ݎݑ݈݂݅ܽ ℎ݅݊݁ܿܽ݉ ݂ ݎܾ݁݉ݑܰ
 (3)

 Mean time to repair (MTTR) is the average of times to repair

ܴܶܶܯ =
∑ ݁݉݅ݐ ݎܴ݅ܽ݁

ݏݎ݅ܽ݁ݎ ݂ ݎܾ݁݉ݑܰ
 (4)

 Overall Equipment Effectiveness (OEE) is a key performance

indicator, especially in total productive maintenance, which enables an
objective evaluation of production systems. The OEE is calculated by
multiplying the following measures (Bellgran and Säfsten, 2010, p. 263):

o Availability
o Performance efficiency
o Quality rate

A more detailed explanation on the calculation of the OEE will be given in
chapter 2.1.5.

2.1.2 Objectives and Costs of Maintenance

DIN31051:2012-09 structures the tasks of maintenance into 4 basic activities:

1. Service: Activities to reduce the degradation of a unit
2. Inspection: Activities to determine the actual condition of a unit
3. Repair: Activities to restore the required function of a faulty unit
4. Improvement: Activities to increase the reliability, maintainability or

safety of a unit without changing its original function

These basic actions are taken to achieve the following primary objectives of
maintenance (Leidinger, 2014, p. 15):

 Safety
 Availability
 Reliability
 Value retention

Chapter 2 Theory

7

The objectives concerning safety consist of health, safety, security and
environmental issues which are mostly regulated by legal requirements on how to
maintain production facilities. The goals of increasing availability, reliability and
value retention are internal objectives of a company (Leidinger, 2014, p. 16).
Besides these goals, maintenance management always aims for reducing costs.
Figure 2 shows the two costs, which have the biggest influence on the total costs
of maintenance. The blue line shows the costs for planned maintenance activities.
Contrary to that there are the downtime costs in red, which occur due to lost profit
when a machine is not available.

It is plausible that the more a company invests in planned maintenance activities,
the less downtime costs occur. But the marginal downtime-cost-reduction of these
activities is diminishing, whereas the planned maintenance costs increase linearly.
The optimum of the total costs is the minimum of the sum of planned maintenance
costs and downtime costs. Even this model appears very logical, it has only limited
significance in practice. The reason for that is that in practice, one can only
determine the actual position on the total costs curve. Determining the shape of
the total cost curve by increasing or decreasing maintenance intensity is not
possible, since a change in machine downtime might not occur immediately, but
with a delay of several months. Since the shape of the curve is not known in
practice, no statement whether the optimum requires a more or less intense

C
os

ts

Intensity of maintenance

Costs for planned
maintenance

Downtime costs

Total costs

Optimum for total costs
Figure 2 Optimum for total maintenance costs adapted from Matyas (2011, p. 41)

Chapter 2 Theory

8

maintenance, can be made. Therefore in practice risk-based strategies are used to
determine the required maintenance intensity for production facilities (Matyas,
2011, pp. 49).

2.1.3 Key Performance Indicators in Maintenance Management

As already stated, the optimum maintenance intensity cannot be calculated based
on costs for complex manufacturing systems. But still in the past, measurement
and evaluation of maintenance services was primarily done using cost aspects. The
problem of this method is, that the performance of maintenance cannot always be
determined economically. On the one hand, the results of maintenance activities
can only be measured time delayed and on the other hand some results as an
increased machine-lifetime or a reduced machine degradation can only be measured
very limited (Schröder, 2010, pp. 159).

Figure 3: Excerpt of KPIs for maintenance management © (Pascual and Kumar,
2016, p. 9)

Figure 3 gives an overview about some KPI’s for maintenance management.
Especially for companies which follow the concept of Total Productive Maintenance
(TPM), the most common KPI is the Overall Equipment Effectiveness (OEE). A

Chapter 2 Theory

9

detailed explanation about the OEE and its importance to the concept of TPM will
be given in chapter 2.1.5.

2.1.4 Maintenance Strategies

Maintenance strategies define the methods and rules that are used to fulfil the
maintenance objectives. The strategy regulates which activities are taken at what
point of time and on which production facility. Figure 4 shows four main strategies
which can be divided in corrective and preventive maintenance activities. A well
balanced maintenance concept, should include an optimal mix of corrective and
preventive maintenance activities (Matyas, 2011, pp. 105).

Figure 4: Maintenance strategies adapted from Matyas (2016, p. 120)

The application of a suitable maintenance strategy is decisive for the reliability of
a production system as well as the total maintenance costs. Since the effects of a
new strategy cannot be measured immediately, it is difficult to make statements
about their effect on the total maintenance costs. Therefore, when it comes to
controlling decisions in maintenance management, performance indicators as the
downtime of machines or the utilization of wear stock, are good indicators for the
evaluation of a maintenance strategy (Schenk, 2010, pp. 26).

2.1.4.1 Corrective Maintenance
Corrective, sometimes titled as reactive maintenance, is a strategy where
maintenance is only applied in the case of a machine failure or a predefined wear-
level. At first sight, this strategy seems to be very cost-efficient since every
machine’s wear stock is completely depleted before a repair is done. There are also
no costly planning activities required. But on a closer examination, this strategy

Chapter 2 Theory

10

brings a lot of drawbacks. Concerning the maintenance objective safety, there are
a lot of machines where this strategy cannot be applied, since a breakdown of a
part or a machine failure would be hazardous to the operator or the environment.
Concerning the maintenance objectives availability and costs, a corrective
maintenance strategy brings also drawbacks, since unplanned machine failures are
more difficult to handle, than planned downtimes (Schenk, 2010, pp. 26).

Figure 5 shows the actions that are taken after the breakdown of a machine. The
net maintenance time is only a fraction of the total machine downtime in the case
of corrective maintenance. For planned or preventive maintenance activities, the
machine downtime should be much shorter, since some activities can be run in
parallel to production (Matyas, 2011, p. 107).

Another risk of corrective maintenance is that the supply with all required resources
(staff, spare parts, etc.) cannot always be guaranteed. To summarize this, corrective
maintenance is the most critical one concerning the availability of a production
system and it causes the highest costs compared to other maintenance strategies.
A corrective maintenance strategy is therefore only suitable for machines that have
a low criticality to the overall production system. This means that a breakdown is
not hazardous to staff or environment and it will not cause any interruptions of
other machines. Furthermore a corrective strategy can be applied if there are
enough redundancies and if the availability of maintenance resources (material,
staff) can be guaranteed. But even when a company is following a preventive
maintenance strategy, machine breakdowns cannot be avoided completely.
Therefore, corrective maintenance is still an important aspect in maintenance
management, since the unplanned downtimes due to a breakdown have severe
consequences on the OEE of a production facility (Schenk, 2010, pp. 26; Matyas,
2011, pp. 107).

Net maintenance time

Machine
failure

Notify
maintenance

staff

Failure
diagnostic

Get
required

spare parts
Maintenance

Test
machine

Machine
available for
production

Machine Downtime = Time to repair

Figure 5: Activities during a machine failure adapted from Matyas (2011, p. 107)

Chapter 2 Theory

11

2.1.4.2 Time-based Maintenance
Time-based strategies follow the directive, to maintain machines before they lose
their required function. After a predefined interval of time, produced pieces,
kilometres, etc. is reached, components will be changed preventively. The length of
these intervals, is usually given through specifications of the manufacturer or they
are set based on prior experience. Using a time-based maintenance strategy will
decrease the risk of machine failures significantly compared to a corrective
maintenance strategy. Another big advantage is the possibility of planning. The
maintenance work can be planned in such a way, that enough resources are
available and, if possible, production is not affected at all. For this strategy, the
definition of the maintenance intervals is a very crucial thing when it comes to
availability and costs. Too short intervals might affect production and decrease the
available time for production. Furthermore it is not cost efficient to change a
component before it has reached its wear limit.
In order to improve this strategy and make it more cost efficient, every component
should be used as close as possible to its wear limit. This requires good
documentation of prior failures for each component. Then statistical procedures
could be used to extend each components maintenance interval and still prevent
most of the failures.
This strategy is required for all machines, where a breakdown would be hazardous
to the staff or the environment. Furthermore it is a good strategy for components,
where a change is much cheaper than a breakdown (e.g.: Oil-filters) (Schenk, 2010,
pp. 28).

2.1.4.3 Condition-based Maintenance
Condition-based maintenance is a further improved preventive strategy. Instead of
using fixed intervals, inspections are used to determine the best time for a
component replacement. By doing that, the usage of wear stock of a component
can be optimized, since a replacement is only done, if a component requires one.
The surveillance of components can be done through manual inspections, or by
using a condition monitoring system.
Condition-based maintenance only works, when the degradation of components is
measureable and when there is a clearly defined wear limit. Furthermore it is only
recommended, if the costs for continual manual inspections or the costs for a
condition monitoring system are economically justifiable. If those requirements are

Chapter 2 Theory

12

given, condition-based maintenance can increase the availability of machines,
prevent breakdowns and detect failures long enough before they occur, in order to
give enough time to the maintenance management for planning a restoration
(Schenk, 2010, pp. 30).

2.1.4.4 Predictive Maintenance
A further improvement of a condition-based approach, is the predictive
maintenance strategy, which aims for detecting also concealed failures which are
usually not measureable through condition monitoring. Starting point of this
strategy is a more detailed look on the functions of a machine (Schenk, 2010, pp.
32). The functions of a machine can be divided into three categories (Moubray,
2000, pp. 35):

1. The Primary function of a machine is derived from the main reason, a
company acquired the machine.

2. Secondary functions are additional requirements a machine is expected
to fulfil. Those can be safety, environmental or economical functions of a
machine.

3. Superfluous functions are all functions or components that do not serve
the primary or secondary function of a machine. According to Moubray
(2000), it is not unusual that 5 – 20 % of the components of a complex
system are superfluous. Even these components are not value-adding, a
failure could still influence the machine’s performance.

After determination and classification of the functions of a machine, potential
failure modes can be identified and eventually eliminated. Compared to condition-
based maintenance, this strategy does not focus on primary functions where failures
are more likely to detect. This strategy is looking at a machine as a whole, and
tries to detect all potential (concealed) failure causes that could influence a
machine’s performance.
Especially the usage of Big Data Analysis has created new possibilities in the field
of predictive maintenance. A set of data, consisting of various records of data about
the primary, secondary and superfluous functions of a machine, is analysed
concerning any patterns that would indicate an upcoming machine breakdown
(Schenk, 2010, pp. 32; Moubray, 2000, pp. 35) .

Chapter 2 Theory

13

2.1.5 Total Productive Maintenance

The concept of total productive maintenance (TPM) was developed by Seiichi
Nakajima in the 1960’s. The concept follows the principle of preventing all kind of
losses in order to produce immaculate products without having any disturbances of
production. In a nutshell this means Zero-defects and Zero-breakdowns. To achieve
this, TPM combines different maintenance strategies and executes them through
the participation of all employees (Reichel et al., 2009, pp. 79; Nakajima, 1988, p.
1).

Over the years TPM evolved from a concept into a management system which
considers maintenance as a necessary and vital part of a business. In order to set
measureable goals, TPM uses the OEE as a core metric for measuring the
performance of a production system. This metric has become widely accepted and
can therefore also be used for benchmarking purposes (Ahuja and Khamba, 2008,
pp. 722).

Figure 6 shows the calculation of the OEE, where the value adding operating time
is reduced by six types of losses. These six losses are classified in three categories:

 Failures & set-up adjustments (Downtime losses)
 Idling & reduced speed (Speed losses)
 Defects & reduced yield (Defect losses)

The overall goal is to increase the value adding operating time and eliminate all
kinds of losses. In order to identify losses properly, a visualization as it is done in
Figure 6 should be done. This makes it easier to analyse the losses and set further
steps for improvement projects (Matyas, 2011, pp. 191).

Chapter 2 Theory

14

Figure 6: Calculation of OEE © (Bellgran and Säfsten, 2010, p. 263)

The framework for those improvement projects is visualized in Figure 7. The
rooftop of the TPM framework represents the goals and objectives of TPM. Those
goals have to be specific, measureable, achievable and reasonable and furthermore
they need a proper time frame (SMART-Goals). In addition, the whole
management has to adhere to the defined goals. To achieve the goals, TPM provides
five basic methods which are called the pillars of TPM. The foundation everything
is built upon, represents the kind working behaviour a company has to promote, in
order to work more efficient.

F
o

cu
s

o
n

m
a

in

pr
o

bl
em

s

A
u

to
no

m
o

us

m
a

in
te

n
an

ce

P
la

nn
ed

M

a
in

te
n

an
ce

C

o
nc

ep
t

M
a

in
te

n
an

ce

pr
e

ve
nt

io
n

E
d

uc
at

io
n

 &

 T
ra

in
in

g

 Teamwork - 5S - Continuous Improvement

Agreement on SMART - Goals

Total Productive Maintenance

Figure 7: The five pillar model of TPM adapted from Matyas (2011, p. 200)

Chapter 2 Theory

15

The key elements of a desired working behaviour are the following:

 Teamwork: TPM involves all departments and it requires the active
participation of all employees from the shop floor to the top management.

 5S: A workplace organization method known from the Toyota Production
System (Ahuja and Khamba, 2008, p. 732).

o Sort – Sort out unnecessary items from the workplace
o Set in order – Arrange items in a good order in order to pick them

up easily
o Shine – Clean the workplace regularly
o Standardize – Set up standards for workplace organization
o Sustain – Train and motivate people to follow the 5S-principle

 Continuous improvement: Approach also known from the Toyota
Production System which empathizes all employees to improve all products,
processes or services constantly through small incremental steps.

On this foundation, the five pillars of TPM, which represent the methods of
reaching the goals, are built upon (Matyas, 2011, pp. 210):

 Focus on main problems: An analysis of the OEE identifies losses,
quantifies them and assigns them to different categories. When planning
improvement projects to eliminate those losses, it is important to be aware
of which kind of losses have the biggest impact on the OEE.

 Autonomous maintenance: In contrast to traditional maintenance
management concepts, TPM involves all employees to maximize the OEE.
This does not mean that a machine operator has to be capable of doing all
maintenance work that a machine requires. Much more this means that the
responsibility for the condition of facilities is shared among all employees
and therefore everyone has to take care to keep them in a good condition.
In practice this is implemented by assigning routine work as cleaning,
lubricating, small inspections or the repair of small failures, to the
responsibility of the machine operator. By doing that, the maintenance staff
has more time to focus on their main tasks.

Chapter 2 Theory

16

 Planned maintenance concept: A planned maintenance concept
guarantees to have the required resources in order to fulfil all maintenance
tasks on time. Furthermore an adequate maintenance strategy for each
equipment is developed for the whole equipment life cycle.

 Maintenance prevention: A lot of failure sources of a machine have their
origin in the machine’s design. The future maintainability is therefore mainly
determined during the design and development phase of a machine. This
emphasizes the need for cooperation and involvement of all departments
over the whole life cycle of a good in order to achieve a high equipment
effectiveness.

 Education & training: In harmony with the continuous improvement
philosophy, also employees have to be trained throughout their time of
employment. The more employees know about the concept of TPM and
about techniques for problem solving, the better they can participate in
improvement projects.

The experience of companies that implemented TPM successfully showed the
following effects (Matyas, 2011, p. 216):

 Increased product quality and equipment efficiency
 Less working incidents
 Positive effect on team spirit and sense of responsibility

The TPM framework is more than a maintenance strategy. It allows a holistic view
on the topic of maintenance and its importance for manufacturing companies.

2.1.6 IT-Systems in Maintenance Management

Since the practical part of this thesis is IT-related, the following shall provide an
overview about what IT-systems are used within maintenance management.

As other processes in the value chain, also maintenance management makes use of
modern IT-systems in order to accomplish its tasks successfully. The main purpose
of an IT-system for maintenance management is to provide the user all required
data, information and technical documents which are necessary for the execution
of maintenance tasks (Schenk, 2010, p. 231).

Chapter 2 Theory

17

2.1.6.1 Maintenance Planning and Control Systems
The most common systems used in the field of maintenance are the maintenance
planning and control systems. The main purpose of such systems is the planning,
control and surveillance of all maintenance activities. The core functions can be
divided into six categories (Reichel et al., 2009, pp. 157):

 Job planning and execution:
All preventive and corrective maintenance work orders can be managed
concerning task scheduling, capacity and cost planning.

 Asset management:
The asset management provides relevant data and information about all
assets that are in the responsibility of the maintenance department. Besides
master data of the assets, also historical data about prior machine failures,
inspections, etc. is stored in the system.

 Material management:
The material management includes the management of spare parts, wear
parts and other components that are necessary to ensure the availability and
safety of the assets.

 Resources management:
The planning of personnel and operating resources is carried out by functions
of resource management.

 Analysis and reporting:
Furthermore, maintenance planning and control systems provide tools, to
create statistics and reports about the collected data.

Besides maintenance planning and control systems, also inter-divisional IT-systems
are used for the purpose of maintenance management. These can be Enterprise
Resource Planning, Document Management, Product Data Management and
Production Data Acquisition Systems. Especially the cross-linking of information
of all those systems is becoming particularly important. An example for the need
of cross-linking is the prioritization algorithm proposed within this thesis. The
algorithm requires input data that comes from the production data acquisition
system. The output is a priority ranking, which shall be implemented in the job
planning function of a maintenance planning system.

Chapter 2 Theory

18

The first part of the theory-chapter has given a brief overview about the topic of
maintenance. The following part examines, which factors influence the priority of
a maintenance task and how a data-driven prioritization method can be developed.

2.2 Prioritization policies

In maintenance management, the prioritization of work-orders can become a crucial
task, especially in the case of limited resources. If there are more work-orders than
there are workers available, the sequence of execution might have an impact on the
performance of a production system. A random execution of work-orders might
potentially extend the production downtime, cause losses and decrease the efficiency
of production facilities. Since the importance of task prioritization is well recognized
in industrial communities, most companies have internal policies to determine the
optimal sequence of work-order execution. Factors that influence these decisions
could be safety related issues, cost related issues as an assets value or machine
related issues as the reliability of a machine and its importance to the overall
production system. Since there are so many aspects that have to be considered
when determining priorities, prioritization policies make usually use of heuristic
rules or common sense derived from human expert knowledge (Yang et al., 2007,
p. 435).

This thesis aims for providing a quantitative method to assign priorities, which can
then be used as a decision support for maintenance management. In order to
evaluate the performance of a prioritization policy, a measureable optimization
criteria is needed. Common optimization criteria in maintenance management are
(Wang, 2002, p. 482):

 Minimize costs
 Maximize availability
 Minimize failure rate
 Minimize downtime
 Maximize reliability

For complex production lines, performance indicators as availability, reliability or
downtime cannot be determined for the whole production line directly. Much more
the performance of a production line is a function of the performance of its single
machines and is further dependant on the structure of the line. Within this thesis,

Chapter 2 Theory

19

the total throughput is used as the optimization criteria for the evaluation of
different prioritization policies. The throughput of a production line is usually
determined by its constraints which are known as the bottlenecks of a system. Roser
and Nakano (2015, p. 274) define a bottleneck as follows:

“Bottlenecks are processes that influence the throughput of the entire system.
The larger the influence, the more significant is the bottleneck.”

From a static point of view, a bottleneck can be identified easily as the machine
with the longest cycle time. But the more complex a production system is, the less
it behaves static. Therefore also the bottleneck situation varies over time as a result
of machine failures or other events that influence a production line’s dynamics
(Roser et al., 2003, pp. 1192).

In the following subchapters, different service and prioritization policies will be
discussed. Concerning the bottleneck-based prioritization policies, different
methods to identify bottlenecks dynamically will be described.

2.2.1 First-In, First-Out

First-in, first-out (FIFO) is a service policy in queuing theory, which states that
requests are processed in the order they arrive. For the case of corrective
maintenance task scheduling this means that all machines are treated equally and
only the time a repair request occurs, decides which request is processed first.
Within this thesis, the FIFO policy is used as a benchmark to which the other
policies can be compared to.

2.2.2 Heuristic Prioritization Policies

Even without a dynamic bottleneck detection, the workers on a production line are
usually capable of identifying critical machines. Therefore the FIFO scenario does
not come close to reality, since maintenance staff would always prioritize critical
machines over non-critical ones. In the project partner’s plant, maintenance staff is
using the following facts as a decision support for prioritization:

 Part-Out-Part-Out time
 Availability
 Redundancy of machines

Chapter 2 Theory

20

All these methods are easy to apply since all required data is already available in
the production data acquisition system. But these methods provide only limited
information about the performance of a machine and they are explicitly no
bottleneck detection methods. These methods are only used in order to have a
simulation scenario that comes close to the heuristic prioritization policy that
maintenance staff is nowadays working with. In the following, the three methods
are discussed briefly:

2.2.2.1 Part-Out-Part-Out Time
The part-out-part-out time is the timespan from a part leaving the machine until
the next part is leaving the machine. In the following this time is also called “true
cycle time”. In comparison to the theoretical cycle time of a machine, the true cycle
time also takes into account the time a machine is down, blocked or starved. The
more a machine is blocked, starved or down, the more the true cycle time will
deviate from the theoretical cycle time. One drawback of this method is, that it
does not take into account whether a machine’s cycle time is extended due to
external reasons (Blocked / Starved) or due to internal reasons (Machine Failure).

In order to have a statistical confidence of the calculated true cycle time, all cycles
over a simulation run of 90 days are recorded and the median of the recorded cycle
times is calculated. The reason for using the median instead of the arithmetic
average is that the cycle time is limited downwards to the theoretical cycle time,
whereas it is theoretically not limited upwards. In case of a long time to repair, the
arithmetic mean would deliver a biased result.

Figure 8 shows an example of measured true cycle times. The machine has a
theoretical cycle time of 30 seconds, so this is the most frequent cycle time
measured. But due to blocking, starvation and machine errors, the true cycle time
is sometimes extended. As a result of that, the arithmetic mean of this sample is
61,05 seconds. The median, which is the value where 50 % of the measured cycles
are shorter and 50 % are longer, brings a result of 32,25 seconds, which is in that
case a statistically more accurate result.

Chapter 2 Theory

21

Figure 8: Histogram of measured part-out-part-out times

In order to generate priorities out of the true cycle time, the machine with the
longest true cycle time is assigned the priority of 1. The priority of all other
machines is calculated through the ratio of their true cycle time to the longest true
cycle time.

2.2.2.2 Availability
Another method that is used in practice for estimating the criticality of machines
is to compare their availabilities. As already described in chapter 2.1.1, a machine
is available whenever it is capable of producing during the planned production time
assuming all external resources are given. This means that during the planned
production time, the only machine state that is reducing a machine’s availability,
is the state “Machine Failure”. This is why the availability can also be calculated
only by knowing the MTBF and MTTR values of a machine.

The biggest drawback of this method is that it does not take into account any
effects caused by a production line’s dynamics. Whether a machine is blocked
frequently or not, will not influence the availability. But these external factors have
a huge impact on the performance of a machine. Therefore the availability is a good
indicator for evaluating the performance of maintenance management, but for
evaluating the performance of a machine itself, it has only limited use.

0

500

1000

1500

2000

2500

3000

3500

4000

0 30 60 90 120 150 180 210

F
re

q
u

e
n

c
y

Part-Out-Part-Out Time [s]C/T Median Mean

Chapter 2 Theory

22

2.2.2.3 Redundancy
Using the redundancy of machines as a prioritization factor is a very straight
forward approach. Even the redundancy itself is not meaningful for the bottleneck
situation of a production line, it is very useful to estimate the consequences of a
machine breakdown. The reason for that is that a breakdown of a redundant
machine will only slow down material flow, whereas a breakdown of a single
machine will stop material flow completely.

This failure sensitivity on machine breakdowns was shown by Neubacher et al.
(2016) using simulation.

Figure 9 shows a production line with five operating sequences with buffers in
between. To have a baseline for the failure sensitivity, a simulation run over 72
hours without any machine failures is performed. Then for each operating sequence
a simulation run is performed, where one machine of the sequence breaks down.
The downtime is initially zero and is then increased by 15 minutes up to 10 hours
for each machine. The impact of the breakdown on the overall system performance
is measured in order to draw conclusions about the systems failure sensitivity.

Figure 10 shows the results obtained in the simulation. The time a machine was
taken down during the experiment is plotted on the horizontal axis, the impact on
the system’s performance on the vertical axis. For example taking down one
machine of the OS 50 for 18000 seconds, will reduce the system’s throughput of the
next 72 hours by six percent.

Figure 9: Failure sensitivity simulation setup © Neubacher et al. (2016)

Chapter 2 Theory

23

Two interesting effects are shown in this experiment. First, the duration until a
breakdown will have an impact on the system’s performance, is depending on a
machine’s cycle time and buffer level. Second, the curves are linear and their slope
differs among the operating sequences depending on the amount of redundant
machines they have. The less redundant machines an operating sequence has, the
bigger the impact of an additional hour of downtime on the system’s performance.

Since the method of Neubacher et al. (2016) requires the usage of simulation, it
cannot be used as a heuristic method that maintenance worker on the plant floor
can use for prioritizing. But the experiments confirms, that a very basic
prioritization can be done using the number of redundancies in an operating
sequence. On the plant floor, maintenance workers would then assign the highest
priority to the operating sequence with the lowest number of redundant machines
and vice versa.

2.2.2.4 Comparison of the Heuristic Methods
The benefit of the proposed heuristic methods is, that they are very easy to apply
and no further data processing is required. But the Availabilities and the Part-Out-
Part-Out times of machines cannot be used for assessing the criticality of machines.
A machine with a short cycle time and a low availability does not have to be more
critical than a machine with a long cycle time and a high availability.

Figure 10: Failure sensitivity of redundant machines © Neubacher et al. (2016)

Chapter 2 Theory

24

The Part-Out-Part-Out Time takes the times a machine is under repair, blocked
or starved into account. But since it does not distinguish between those states, in
which a machine is not producing, no statement about the criticality for the system
can be made.
The only heuristic method which is suitable for prioritization from a theoretical
point of view, is using redundancies. A breakdown of a redundant machine will
always have a less severe impact on the system performance than the breakdown
of a single machine.

2.2.3 Bottleneck Prioritization Policies

The last chapter described three basic methods how prioritizing machines can be
done on the plant floor. In the following chapter, bottleneck identification methods
which are using real-time data are introduced. The aim is to improve the total
system throughput by assigning high priority to bottleneck machines and by doing
that, reduce their time to repair.

2.2.3.1 Blocking & Starvation Probability
This method utilizes the blockage and starvation probabilities of machines to
identify bottlenecks. A common definition of a bottleneck is that it is the machine
which limits a system’s performance. Therefore an improvement in non-bottleneck
machines will have a lower impact on the overall system improvement than
improvements on the bottleneck machine. Equation (5) shows a mathematical
formulation for the bottleneck definition. The initial throughput of a production
system is compared to the new throughput after one machine ݅ is improved by
whether reducing TTR, increasing TBF or reducing the cycle time. ∆ܶ ௦ܲ௬௦, is the
system’s throughput increment which is caused by an improvement of machine ݅
and ∆ܶ ܲ is the machine’s throughput increment. A bottleneck can be identified as
the machine with the highest system sensitivity value ߠ Chang et al., 2007, p.
655).

௫ߠ = ܺܣܯ ൬
∆ܶ ௦ܲ௬௦,ଵ

∆ܶ ଵܲ
,
∆ܶ ௦ܲ௬௦,ଶ

∆ܶ ଶܲ
, … ,

∆ܶ ௦ܲ௬௦,

∆ܶ ܲ
൰ (5)

Chapter 2 Theory

25

This definition of a bottleneck is very precise, but it has the big disadvantage, that
it is not possible to determine a bottleneck based on real-time production data. An
indirect method has to be developed. The foundation of the proposed data-driven
method are the characteristics a bottleneck usually follows. For example,
bottlenecks cause upstream machines to be blocked and downstream machines to
get starved (Li et al., 2009, p. 7053).

Figure 11 shows a 5-machine system with four buffers in-between. Below each
machine, the probability for the machine to be blocked or starved is written down.
The arrows which are pointing up- or downstream are indicating in which direction
the bottleneck has to be. Kuo et al. (1996) stated the following rules for assigning
those arrows:

 If the blockage probability of a machine is greater than the starvation
probability of the next downstream machine, the bottleneck is located
downstream the line. In the case shown in Figure 11, this is true for M1.

ܤܶ > ܶ ܵାଵ , ݆ = 1, … , ݊ − 1 (6)

 If the blockage probability of a machine is smaller than the starvation
probability of the next downstream machine, the bottleneck is located
upstream the line. In the case shown in Figure 11, this is true for M2 to M5.

ܤܶ < ܶ ܵାଵ , ݆ = 1, … , ݊ − 1 (7)

Figure 11: Bottleneck identification using blockage and starvation probabilities

Chapter 2 Theory

26

When applying those rules, a bottleneck can be identified, if two arrows are pointing
towards a machine. For the case of the first and the last machine, a bottleneck is
identified whenever there is one arrow pointing towards the machine. If ܶܤ =

ܶ ܵାଵ or ܶܤ = ܶ ܵାଵ and one arrow is pointing towards a machine, this machine
can also be considered to be a bottleneck. Figure 12 shows configurations in which
not one, but multiple bottleneck exists.

Assigning arrows according to (6) and (7) will identify two bottlenecks, but
statements about which bottleneck is more severe cannot be made. Therefore Kuo
et al. (1996) introduced the Bottleneck Severity ܵ which is calculated as follows:

ܵଵ = ܶܵଶ − ଵܤܶ

ܵ = ൫ܶܤିଵ + ܶ ܵାଵ൯ − ൫ܶܤ + ܶ ܵ൯ , ݆ = 2, … , ݊ − 1 (8)
ܵ = ିଵܤܶ − ܤܶ

If there are multiple bottlenecks in a system, the machine with the largest
bottleneck severity is the primary bottleneck. Using the equations from (8) both
examples from Figure 12 can be solved finding a primary bottleneck.

Kuo et al., (1996, p. 248) stated that they justified the equations (6) to (8) through
discrete event simulation. Also Chiang et al. (2001, pp. 566) simulated dozens of

Figure 12: Examples of multiple bottlenecks

Chapter 2 Theory

27

systems using equations (6) to (8) to identify bottlenecks and they came to the
conclusion that discrepancies between the results from this method with a
validation using the system sensitivity value are quite infrequent and minimal in
case they occur. Therefore the proposed method can be used for bottleneck
identification in serial production lines.

For the case of redundancies, average values of the blocking and starvation
probabilities of the machines in an operating sequence are calculated. Using this
averages, the redundant operating sequence can be treated like a single operating
sequence for the bottleneck detection.

Adaption for complex manufacturing systems
Another heuristic bottleneck detection method based on blocking and starvation
probabilities was introduced by Li et al. (2007). Similar as the method of Kuo et
al. (1996) it makes use of the characteristics a bottleneck machine usually follows.
A Machine ݆ is the bottleneck of a system with ݊ -machines if the following
conditions are fulfilled (Li et al., 2007, p. 77):

 Bottleneck machines tend to make upstream machines blocked

ܤܶ − ܶ ܵ > 0 ∶ ݅ ∈ ሾ1, … , ݆ − 1ሿ ; ݆ ≠ 1, ݆ ≠ ݊ (9)

 Bottleneck machines tend to make downstream machines starved

ܤܶ − ܶ ܵ < 0 ∶ ݅ ∈ ሾ݆ + 1, … , ݊ሿ ; ݆ ≠ 1, ݆ ≠ ݊ (10)

 Bottleneck machines have a lower overall sum of blocking and starvation
than the neighbouring machines

ܤܶ + ܶ ܵ < ିଵܤܶ + ܶ ܵିଵ ; ݆ ≠ 1, ݆ ≠ ݊ (11)

ܤܶ + ܶ ܵ < ାଵܤܶ + ܶ ܵାଵ ; ݆ ≠ 1, ݆ ≠ ݊ (12)

 For ݆ = 1:

ଵܤܶ − ܶܵଵ > ଶܤܶ & 0 − ܶܵଶ < ଵܤܶ & 0 + ܶܵଵ < ଶܤܶ + ܶܵଶ (13)

Chapter 2 Theory

28

 For ݆ = ݊:

ିଵܤܶ − ܶܵିଵ > ܤܶ & 0 − ܶܵ < ିଵܤܶ & 0 + ܶܵିଵ < ܤܶ + ܶܵ (14)

When plotting the blockage and starvation probabilities of a production line, the
underlying idea of this method can be visualized. A bottleneck marks a “turning-
point” in the trend of blockage and starvation. This turning-point can be seen in
Figure 13 at M3.

Whereas machine M1 and M2 are more blocked than they are starved, this trend
changes at M3. Furthermore M3 has the lowest sum of blocking and starvation.
Since equations (9) to (14) are fulfilled, M3 can be identified as the bottleneck of
the system. Li et al. (2007) verified the proposed method analytically for a three-
machine no-buffer production line. Furthermore they introduced a heuristic notion
of a bottleneck index ܫ, which can identify the primary bottleneck in a case of
multiple bottlenecks (Li, 2009, p. 6932):

ଵܫ =
ܶܵଶ

ܶܵଵ + ଵܤܶ
 (15)

ܫ =
ିଵܤܶ) + ܶ ܵାଵ)

ܤܶ) + ܶ ܵ)
 , ݅ = 2, … , ݊ − 1 (16)

ܫ =
ିଵܤܶ

ܶܵ + ܤܶ
 (17)

0

5

10

15

20

25

30

35

40

M1 M2 M3 M4 M5

Pe
rc

en
t o

f t
im

e

Blocked

Starved

Figure 13: Trend of blocking and starvation in a serial production line

Chapter 2 Theory

29

In a case of more than one identified bottlenecks, the machine with the highest
bottleneck index ܫ is the more significant one.
Further modifications are required in order to use this method for complex
manufacturing systems. Figure 14 shows an example of concurrent processes as they
exist in complex manufacturing systems. After M1, the part is processed at the
station S1, where 3 processes are performed simultaneous until the part moves on
to M5.

The three processes M2, M3 and M4 have to be transformed into one virtual
machine V2 before equations (9) to (14) can be used to detect the bottleneck of the
line.

The transformation is done using further considerations on the behaviour of the
bottleneck within station S1. The part cannot move on until all processes M2, M3
and M4 are finished. This means that the bottleneck of the three processes within
S1 will cause the other two processes to become starved frequently.

Therefore the bottleneck of a concurrent station is defined as the machine with the
lowest ܶ ܵ . Once the bottleneck within a station is found, the station can be
transformed into a virtual machine that has the blocking and starvation
probabilities of the bottleneck of the station. Then the line can be treated as a
serial production line using equations (9) to (14) to identify the overall bottleneck
(Li, 2009, pp. 6932).

M1 B M5 B S1

M2

M4 M3

M1 B M5 B V2

Transform concurrent process
S1 in virtual machine V2

Figure 14: Transformation of a concurrent station into a virtual machine

Chapter 2 Theory

30

Another element of complex manufacturing systems is shown in Figure 15. Whereas
the main path is a serial line, some parts leave the main part at C4, go through the
feedback loop and enter the main path again at C2.

For identifying bottlenecks in a system with a feedback loop, first the main path is
analysed using the same equations as for the serial line. If the machines at the
branches (C2 and C4) are not identified as bottlenecks, the machines in the
feedback loop cannot constrain the main system and the bottleneck has to be
whether M1, M3 or M5.
If C2 or C4 are identified as bottlenecks in the first analysis, the feedback loop has
a potentially great influence on the overall system. A second analysis is required in
order to find out, whether the feedback loop is slowing down the branch machines
in the main path, or the branch machines are really the overall bottleneck of the
system. Therefore potential bottlenecks in the feedback path (F1, F2 and F3) have
to be detected. If the results of the bottleneck analysis of the feedback path detects
the first or the last machine of the path as a bottleneck, the results of the first
analysis are correct and the overall bottleneck is at the branches of the system (Li,
2009, p. 6933).

But if the second analysis identifies another machine than the last or the first as a
bottleneck, in the example of Figure 15 machine F2, then this machine is also the
bottleneck for the overall system. This is because the border-elements of the
feedback path are slowed down by a bottleneck inside the path and as a result of
that, they are slowing down the branch elements (C2 or C4) of the main path.
Therefore the performance of the overall system is limited by the performance of
the bottleneck inside the feedback loop (Li, 2009, p. 6934).

B C2

F2 F3

M1 B B C4 M3 B M5

F1

Main Path

Feedback Path

Figure 15: Feedback loop in a serial line production

Chapter 2 Theory

31

The same procedure can be applied to branches as shown in the example of Figure
16:

In a first analysis, the main path from M1 to M5 is analysed. If C4 turns out to be
the bottleneck, a second analysis of the path M6 to M8 has to be conducted, to
find out if this path is slowing down the branch machine C4 or if C4 is the true
bottleneck of the system.

Since an analytical verification of complex production systems as shown in Figure
14, Figure 15 and Figure 16 is intractable, the proposed method was verified using
simulation. The results were compared with the bottlenecks identified using a
sensitivity analysis according to the bottleneck definition from equation (5). Li
(2009) stated, that in most cases (more than 90% of over 2000 cases), the real
bottleneck was successfully identified using the proposed method.

Since the planned simulation scenarios do not comprise production lines with
branches or feedback loops, the first proposed blockage and starvation method,
which is also called Arrow Method will be used for the simulation study in this
thesis.

2.2.3.2 Active period method
The active period method is another method to detect the entity of a system, which
has the largest effect on the overall system performance. The underlying idea is
that the longer an entity is working without interruptions, the more likely it is the
bottleneck of a system. The momentary bottleneck at a given point of time, is the
entity which has the longest uninterrupted active period at that point of time. An
overlapping of active periods of two entities, signals that the bottleneck is shifting

M1 M2 M3 C4 B B B B M5

M6 M7 M8 B B

Figure 16: Branch in a serial production line

Chapter 2 Theory

32

from one to another entity. The aim of the active period method is to detect and
monitor the momentary bottlenecks as well as the shifting bottlenecks of a
production system at any time ݐ (Roser et al., pp. 59).

The first step of the described method is to group all possible states of a system
into an active or an inactive state. According to Table 1, active states of a machine
are processing, repair, changing tools, service. Inactive states of a machine are
starved and blocked. One of the benefits of this method is that it can be applied to
a variety of system entities as shown in Table 1. The active period method does
not require any information about the structure of a system. The only data required
are the active and inactive states of the system’s entities.

Table 1: States of different system entities adapted from (Roser et al., 2001, p. 950)
Entity Active States Inactive States
Machine Processing, Repair,

Service, Tool-change
Starved, Blocked

AGV Moving to pick-
up/drop-off location,

Recharge, Repair

Waiting

Human Worker Working, Recovering Waiting
Supply Obtaining new part Blocked
Output Removing part Waiting

Whereas a conventional bottleneck detection method would now calculate the
percentage a machine is processing in order to determine the workload of the
machine, the active period method measures the duration a machine is in an active
state. As shown in Figure 17, the active state of a machine is not interrupted by
repair or tool changing work. Only waiting which is usually because of blocking or
starvation will interrupt an active state (Roser et al., 2001, p. 950).

Figure 17 Active Periods of a machine adapted from (Roser et al., 2001, p. 950)

Processing Repair Processing Starved Starved Processing
Tool

Change

Time

Active Period Active Period

Chapter 2 Theory

33

Out of this perspective it can be seen, that a machine that is active over a long
period without any interruptions is very likely to be the bottleneck, since it is not
influenced by other machines. On the other hand a machine that is switching its
state from active to inactive very often, cannot work continuously because of other
machines that make it starved or blocked. Therefore machines that are often in an
inactive state cannot be the bottleneck of a system.

To determine the momentary bottleneck of a system, the method compares the
active durations of all machines in the system. If at a time ݐ no machines are in an
active state, there is no momentary bottleneck in the system. If there are more
machines active, the bottleneck for the current period has to be the machine that
has the longest uninterrupted active period.

The above described method is capable of identifying the bottleneck of a system at
any point of time. But in this thesis the goal of the bottleneck identification is to
have an objective variable for the prioritization of maintenance activities and
therefore it would not be beneficial to switch the priorities every time a machine
changes its state. This means not the bottleneck at an instant of time, but rather
at a given period of time is of interest. In order to do so, two different methods are
described in the following:

Average Active Period
Based on the machine data, each machine ݅ can be classified into active and inactive
states. Over a certain period of observations, each machine ݅ has ݊ active periods
of which each period has a duration of ܽ,. The result is a set of durations ܣ for
each machine:

ܣ = ൛ܽ,ଵ, ܽ,ଶ, … , ܽ, ൟ (18)

The average active period (AAP) of a machine ݅ over a certain period of observation
is calculated as shown in equation (19):

ܽ =
∑ ܽ,

ୀଵ

݊
 (19)

The machine with the longest average active period ܽ is considered to be the
bottleneck of a system. Roser et al. (2001, pp. 949) have shown using simulation,
that this method can detect bottlenecks reliably in steady state production systems.

Chapter 2 Theory

34

To detect also shifting bottlenecks in non-steady state systems, the average active
period method was developed further.

Shifting Bottleneck Detection
A shifting of the bottleneck occurs during the overlapping phase of two active states
as shown in Figure 18. During these overlapping phases there is no unique
bottleneck in the system. Both machines are denoted as shifting bottlenecks during
the overlapping phase.

The example in Figure 18 shows a simple system consisting of two machines. At
the selected time ݐ, Machine 1 is the sole bottleneck since it has the longest active
period at that time. Before Machine 1 switches to inactive, both machines are the
shifting bottleneck of the system, since the bottleneck is shifting from Machine 1
to Machine 2. During this phase the primary bottleneck cannot be determined
exactly. So both machines are considered to be equally. The same happens at the
end of the bottleneck period of Machine 2, when the bottleneck switches back to
Machine 1.

To determine the bottleneck over a period of time, the percentage of time a machine
is the sole and the percentage a machine is the shifting bottleneck is calculated for
the selected period of time.

Figure 18: Shifting bottlenecks (Roser et al., 2002, p. 1081)

Figure 19: Average bottleneck over a period of time (Roser et al., 2002, p. 1082)

Chapter 2 Theory

35

Figure 19 shows the results of the average bottleneck detection with the example
given in Figure 18. Machine 1 is more often the sole bottleneck of the system and
therefore improvements on the performance of this machine will yield in a larger
improvement of the system performance than an improvement of Machine 2 (Roser
et al., 2002, p. 1081).

When deriving rules for prioritizing out of the shifting bottleneck detection results,
the first decision criteria is the sum of a machine’s sole and shifting duration. The
machine with the highest sum can be considered as the bottleneck of the system. If
there are machines with an equal sum, the machine with the longer sole bottleneck
duration is considered to be the more significant bottleneck.

The drawback of the shifting bottleneck method compared to the average active
period (AAP), is that it only detects the most significant bottleneck of a system
and provides no information about the non-bottleneck machines.

2.2.3.3 System Sensitivity Analysis
The last bottleneck identification method is the system sensitivity analysis. The
basics of this method and equation (20) where already introduced in chapter 2.2.3.1.
The following shall give a more detailed explanation of how this method can be
applied for bottleneck detection in practice.

௫ߠ = ܺܣܯ ൬
∆ܶ ௦ܲ௬௦,ଵ

∆ܶ ଵܲ
,
∆ܶ ௦ܲ௬௦,ଶ

∆ܶ ଶܲ
, … ,

∆ܶ ௦ܲ௬௦,

∆ܶ ܲ
൰ (20)

The throughput of a system ∆ܶ ௦ܲ௬௦ is a complex function consisting of the system’s
single machines throughputs. An analytical solution for equation (20) cannot be
given for a system with more than three machines (Chang et al., 2007, p. 656).
Therefore the system sensitivity values ߠ have to be determined using experiments
or simulation.

To determine the system sensitivity values for a ݊-machine system, ݊ experiments
are necessary. In each experiment the performance of one machine ݅ is changed by
reducing the time to repair. Then the impact on the total system throughput
∆ܶ ௦ܲ௬௦, is observed. Since non-bottleneck machines do not limit a system’s
performance, a reduced time to repair of such a machine will not improve the
system’s performance. The system throughput increment to its own throughput
increment ratio will be close to zero, whereas the ratio of a bottleneck machine can

Chapter 2 Theory

36

be up to 1. The bottleneck of a system is the machine with the maximum system
sensitivity value ߠ௫ (Chang et al., 2007, pp. 655).

If all machines are having a sensitivity value of ߠ = 0, the production system is
optimum balanced. In that case, no balance-losses occur and the performance of
the overall system cannot be improved by improving one single machine (Chang et
al., 2007, p. 655)

Applying this method for a long-term bottleneck detection, equation (20) will
deliver the same result for all machines. The reason for that is, that a throughput
increment of one machine has to result in a similar throughput increment of the
total systems. Because in case of limited buffer capacities and no redundancies, a
single machine cannot produce more parts than the total systems produces on a
long run. Therefore for each machine the sensitivity value would be close to 1. In
order to determine long-term bottlenecks using a system sensitivity analysis,
equation (21) is used:

்ߠ = ܶ∆൫ܺܣܯ ௦ܲ௬௦,ଵ, ∆ܶ ௦ܲ௬௦,ଶ, … , ∆ܶ ௦ܲ௬௦,൯ (21)

Equation (21) states, that the bottleneck of a system, is the machine which’s single
throughput increment will generate the highest system throughput increment. This
equation is used for the validation of the bottleneck detection algorithms in
chapter 4.1.

2.2.4 Comparison of Bottleneck Detection Methods

Before comparing the simulation results, a theoretical investigation of the
bottleneck detection methods is done. The methods shall be compared regarding
the following criteria:

 Accuracy in a static system
 Accuracy in a dynamic system
 Effort for implementation

Chapter 2 Theory

37

2.2.4.1 Heuristic Methods
The heuristic methods determine a bottleneck using the following facts:

 Cycle time
 Part-Out-Part-Out time
 Availability

The biggest advantage of the heuristic methods is that they are very easy to
implement and easy to comprehend. The required data is usually available and no
actions have to be taken in order to prioritize machines using this methods.

Concerning their accuracy, a prioritization using the cycle time only works in static
systems. Under the assumptions of no machine breakdowns and constant cycle
times, a system can be considered as static. In such systems, the machine with the
longest cycle time will always be the bottleneck. The part-out-part-out time is not
suitable for prioritization in static systems with finite buffers, since all machines
will have a similar part-out-part-out time in a steady state. Also the availability is
not suitable for prioritization in static systems, since all machines have a similar
availability in such systems.

In dynamic systems, where random machine failures occur, the heuristic methods
are more problematic. All three methods cannot determine a bottleneck accurately.
The reason for that is that machine breakdowns make the system behaviour more
dynamic. Depending on the frequency, the time of a breakdown, the time to repair,
and the buffer levels, the bottleneck may shift in a production line. Roser and
Nakano (2015, pp. 276) have shown that the cycle time can therefore not be used
to prioritize machines in dynamic systems. The part-out-part-out time does
consider delays that occur due to the line dynamics. But it does not consider the
reason why a machine has an extended part-out-part-out time. A machine that
breaks down frequently will cause its neighbouring machines to be blocked and
starved frequently. But in that case all machines will have the same extended part-
out-part-out time and it cannot be distinguished which machine is more critical to
the system. Comparing the availability values of machines would make a distinction
possible, but using the availability for prioritization only works under the
assumption that all machines have an equal cycle time. Whether a fast machine
with low availability is more critical than a slow machine with high availability

Chapter 2 Theory

38

cannot be determined accurately. Furthermore the availability is calculated using
averages and can therefore not track the line dynamics accurately.

2.2.4.2 Blockage & Starvation Probability
Theoretically this method is suitable for detecting bottlenecks in static and in
dynamic systems. For the arrow-based method described in chapter 2.2.3, Roser
and Nakano (2015, pp. 277) have shown that situations might occur where the
method cannot provide any statement about the bottleneck situation. This is the
case when two neighbouring machines have equal blockage and starvation
probabilities. But this is a special case and shall not be seen as a limiting factor for
this method. More problematic is the distinction between primary and secondary
bottlenecks, which cannot be done using the arrow-based blockage and starvation
method. The modification of the method described in chapter 2.2.3 is capable of
identifying and ranking multiple bottlenecks. But also for the modification, Roser
and Nakano (2015, pp. 278) have shown that the method cannot identify
bottlenecks reliably in practice.

The implementation of a method using blockage and starvation probabilities
requires a lot of effort. Even the data is usually available in production data
acquisition systems, the processing of the data cannot be done easily. The structure
of the line has to be known for this method and the algorithm has to be modified
for each line where it shall be implemented. Furthermore, this method is not
suitable for flexible production systems or for job shop layouts.

2.2.4.3 Active Period Method
Roser and Nakano (2015, pp. 278) have shown that the active period method is
capable of identifying bottlenecks in static and in dynamic systems accurately.
Furthermore, this method can provide a ranking of multiple bottlenecks which is a
very important aspect especially in large production systems.

The required data for this method is usually available in all production data
acquisition systems. A big advantage of this method is, that it does not require any
information about the production line structure or the position of machines within
a line. Therefore the algorithm, which will be explained in chapter 3.1.1, can be
applied to all production systems without any restrictions. There are also no further
modifications necessary if the structure of a production system is changed.

Chapter 2 Theory

39

Furthermore this method can also be used for flexible production systems or job
shop layouts.

2.2.4.4 System Sensitivity
In terms of accuracy, this method is the best of all described bottleneck detection
methods. That is why the System Sensitivity approach is in literature usually used
to validate other bottleneck detection methods.

The big disadvantage of this method is, that it requires the use of simulation and
can therefore not be implemented easily. Every time the bottleneck shall be
detected, a simulation has to be conducted using the actual system parameters as
cycle times and buffer levels. Furthermore the structure of the line has to be known,
since a simulation model has to be created for each production line separately.
Therefore this method has only a limited applicability for dynamic task
prioritization in maintenance management.

Table 2: Comparison of bottleneck detection methods

Heuristic
Methods

Blockage &
Starvation

Active Period
Method

System
Sensitivity

Accuracy for static systems + ~ + +

Accuracy for dynamic systems - ~ + +

Effort for implementation + - ~ -

Table 2 provides an overview of the discussed methods. From a theoretical point
of view, the Active Period Method and the System Sensitivity Method are the best
bottleneck detection methods. Still all four methods will be evaluated using
simulation.

2.3 Simulation

The described prioritization policies will be analysed and verified using simulation.
Therefore the following sub-chapter will give a brief introduction to the topic of
simulation and especially to discrete event simulation.

Chapter 2 Theory

40

2.3.1 Introduction to Simulation

Simulation is a technique to imitate the operations of real-world processes. The
processes of interest are usually called a system. Figure 20 shows different methods
of how systems can be studied. In a lot of fields of research, studying the actual
system or a physical model of a system is expensive or simply impossible. Therefore
mathematical models are established with the goal to imitate the real system’s
behaviour as accurate as necessary. The model building can be described as a
simplification of the reality. The model itself consists of mathematical and logical
relationships that can be used for the understanding of a system’s behaviour.
Depending on how complex the mathematical relationships of a model are,
analytical solutions may or may not be available. Complex models where analytical
solutions cannot be found have to be studied by means of simulation (Law and
Kelton, 2000, pp. 1).

If analytical solutions are not feasible and simulation is chosen to analyse a system’s
behaviour, Banks (2005, pp. 11) suggests the following steps to carry out a
simulation study:

1. Problem definition
At the beginning of a simulation study the real-world problem has to be
defined clearly.

System

Experiment with
the actual

system

Experiment with a
model of the

system

Physical models Mathematical
models

Analytical
solutions Simulation

Figure 20: Methods to study a system adapted from (Law and Kelton, 2000, p. 2)

Chapter 2 Theory

41

2. Setting of objectives and overall project plan
The objectives are the questions to be answered by the simulation. A
decision if simulation is the appropriate methodology to answer those
questions has to be made. Furthermore a project plan including a timetable,
involved people and costs of the study has to be done.

3. Model conceptualization
In this step the assumptions about how the system works are defined. A
crucial task in modelling a system is to abstract the essential features of it.
The quality of the model is strongly dependant on the level of abstraction
and complexity. It is recommended to start with a simple model and build
it then towards the required complexity.

4. Data collection
When abstracting a problem and building a model, it is important to know
which data is required to simulate a system’s behaviour. Looking at a
production line simulation, an objective of the simulation could be to
maximize the throughput. In this case throughput is classified as output
data. Then there are several parameters as cycle times, buffers and MTBFs
which influence the throughput. These parameters are input data. The
model itself describes how input parameters influence output parameters.
The collection of the required data is an important step to get a better
understanding of the system and the level of abstraction. Furthermore data
of the real-world system is necessary to validate the simulation model.

5. Model translation
The result of the abstraction of a real-world system is a model consisting of
mathematical and logical relationships between the system’s entities. The
next step is to translate this conceptual model into computer language. This
is usually done using simulation software.

6. Verification
The verification is the step of checking whether the computer model is
representing the logical structure of the conceptual model or not.

7. Validation
After verifying the computer program it is necessary to check if the
conceptual model itself is an accurate representation of the real-world
system. This can be done by comparing the model behaviour to the real-

Chapter 2 Theory

42

world system behaviour. If discrepancies cannot be eliminated through
calibration, the conceptual model has to be changed.

8. Experimental design
This step defines the scenarios which are planned for the simulation study.
The input parameters which shall be adapted to achieve a desired output
are determined. Furthermore the number and length of simulation runs is
defined.

9. Simulation runs and analysis
Different scenarios are simulated and analysed to estimate measures of
performance of the system.

10. Additional simulation runs
Depending on the results of the first simulation runs, it is decided whether
further scenarios are necessary or not.

11. Documentation and reporting
The results of a simulation study have to be reported concisely and clearly
in a final report. This enables others to review the model formulation,
scenarios, results of the simulation and the recommended solution for the
initial problem.
In addition to the final report, a program documentation shall help others
users to understand and use the computer model which was built.

12. Implementation
The final step is to implement the results of the simulation to solve the real-
world problem.

These twelve steps serve as a guideline for conducting a simulation study within
this thesis. The following sub-chapter shall provide a closer look on simulation
modelling and the major simulation approaches.

2.3.2 Simulation Modelling

Simulation modelling includes the processes of transforming a real-world problem
into a model, analyse and optimize the model and transform the solution back into
the real-world system. Depending on the problem, different approaches are used for
simulation modelling. Figure 21 provides an overview over the major approaches
which are used.

Chapter 2 Theory

43

Figure 21: Major approaches in simulation modelling © (Borshchev and Filippov,
2004, p. 3)

The approaches are used for different kind of processes and different levels of
abstraction. To give an example, System Dynamics deals with problems where a
high level of abstraction can be applied and where the processes that have to be
simulated are mainly continuous. On the other hand, Discrete Event Simulation is
used to picture processes which follow discrete time steps.

2.3.2.1 System Dynamics Simulation
System Dynamics can be applied fur studying urban, organizational, social or
ecological types of systems. The processes within this systems are represented in
terms of stocks, flows between those stocks and information about the values of the
flows. The use of flows makes clear that the processes in System Dynamics Models
behave continuously and they do not follow discrete time steps. The level of
abstraction in System Dynamics is very high. This means, not single elements of
the system are modelled, much more the behaviour of aggregates is studied. The
behaviour of the aggregates is usually modelled using feedback loops which describe
how an increase of one aggregate will influence other aggregates (Borshchev and
Filippov, 2004, pp. 4).

2.3.2.2 Agent Based Simulation
In contrast to the other simulation approaches shown in Figure 21, there is no
central logic in an agent based model which controls the model’s behaviour. Much

Chapter 2 Theory

44

more the behaviour is defined at an individual level and the global behaviour
emerges as a result of all individual’s behaviours. All entities, called agents, follow
their own behaviour rules and they interact in a common environment. This is a
big advantage of Agent Based Simulation, since it enables the modeller to capture
more complex structures and dynamics without having knowledge about the global
interdependencies (Borshchev and Filippov, 2004, pp. 6).

2.3.2.3 Discrete Event Simulation
Discrete Event Simulation (DES) concerns the modelling of a system as a sequence
of events over time. The term discrete is used because the simulation moves forward
in time at discrete intervals. A discrete event model consists of entities, states,
attributes, events and activities. An event is defined as anything that causes a
change in the state of the system or the system’s entities. The state of an entity is
defined by its attributes. The transformation of the state of an entity over time is
carried out by activities. Activities are initiated by events and they end with the
occurrence of another event (Balci, 1988, p. 291).

Using these components, DES enables us to model a variety of real-world problems
and run those simulations comparably fast. The reason for that is that a DES does
not track the system’s behaviour over time and requires therefore less computing
power compared to a continuous simulation. In DES the system’s behaviour and
the entities states are only tracked on discrete time steps. In between that time
steps, no change in the system is assumed to occur.

How the time steps are chosen, depends on which time flow mechanism (TFM) is
used. A fixed-time increment TFM will always advance the simulation clock by a
fixed length of ݐ and all state changes that occurred during this time step will be
processed. The second approach is the variable-time increment TFM, which
advances the simulation clock from one event to another. Depending on the
timespan between those events, the time steps can differ. An advantage of the
variable-time increment approach is that no execution time is wasted for time steps
where no events happened and for the process of searching for state changes that
happened during the time increment. On the other hand, systems where state
changes occur in constant time steps, the fixed-time increment approach might be
more beneficial (Balci, 1988, pp. 291–294; Law and Kelton, 2000, pp. 7).

Chapter 2 Theory

45

Whether using the variable or the fixed-time increment approach, a framework is
necessary to model, control and trigger the state changes of the system. This
framework is called the Conceptual Framework, also called World View which is a
structure concept under which the simulation is developed. The classical CFs are
Event Scheduling, Activity Scheduling and Process Interaction (Balci, 1988, p. 1).
A more detailed look on the conceptual framework used within this thesis will be
given in the next chapter.

Chapter 3 Methods & Implementation

46

3 Methods & Implementation

This chapter shall provide an accurate description of how solutions for the problem
stated in chapter 1 were found and implemented. The development of a bottleneck
detection algorithm and the procedure of how a simulation study was conducted
will be explained to ensure that the reader can comprehend and verify the results
of the study.

3.1 Bottleneck Detection Algorithms

For the purpose of machine prioritization, two algorithms are developed, which
create a bottleneck ranking based on real-time production data. The first algorithm
uses the Average Active Period and the second the Blockage and Starvation
Method, which were both described in chapter 2.2.3.

3.1.1 Active Period Method

The input data for the first bottleneck detection algorithm are the machine states
that are given by the Production Data Acquisition System. Table 3 shows the data
which is used as an example for the explanation of the active period method
algorithm. In addition a period of observation is required as an input parameter.
The period of observation determines, which time stamps will be considered for the
bottleneck identification. For short periods of observation, the algorithm will detect
short-term bottlenecks, whereas for long periods, the algorithm will detect the long-
term bottlenecks.

Chapter 3 Methods & Implementation

47

Table 3: Example of production data for a period of 9 time steps

t Machine 1 Machine 2 Machine 3
0 Produce Starved Starved
1 Repair Starved Starved
2 Produce Produce Starved
3 Blocked Tool Change Produce
4 Blocked Produce Produce
5 Produce Starved Starved
6 Produce Starved Produce
7 Produce Produce Starved
8 Blocked Produce Produce

3.1.1.1 State-Matrix
In a first step the algorithm reads all time stamps of the machines and in order to
classify them into active and inactive states. The states are written into a State
Matrix ܣ which has ݅ columns, where ݅ equals the number of machines in the
system and ݆ rows, where ݆ is representing the number of time steps. The State-
Matrix for the example given in Table 3 looks the following:

ܣ = ൭
1 1 1 0 0 1 1 1 0
0 0 1 1 1 0 0 1 1
0 0 0 1 1 0 1 0 1

൱ (22)

3.1.1.2 Accumulated State Matrix B
The next step is to accumulate the values from matrix ܣ. The entries ܾ in the
Matrix ܤ represent the accumulated duration of the active period of each machine
݅.

ܾ = ܽ ∗ (ܾ,ିଵ + 1) (23)

Using equation (23) will generate the accumulated state matrix ܤ:

ܤ = ൭
1 2 3 0 0 1 2 3 0
0 0 1 2 3 0 0 1 2
0 0 0 1 2 0 1 0 1

൱ (24)

3.1.1.3 Bottleneck Matrix C
In order to determine the bottleneck of the system, the algorithm has to find the
machine with the longest active duration ܾ at each time step. If a machine has to
longest accumulated active period in a time step, the algorithm will assign the
machine a value ܿ = 1 in the bottleneck matrix ܥ. Furthermore, the algorithm

Chapter 3 Methods & Implementation

48

will assign this value for all entries of the corresponding machine within the actual
active period.

The result of this step can be seen in (25). Each entry where ܿ = 1 in the matrix
is representing a bottleneck state.

ܥ = ൭
1 1 1 0 0 1 1 1 0
0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0

൱ (25)

In order to distinguish between a sole and a shifting bottleneck, further steps are
necessary.

3.1.1.4 Shifting bottleneck matrix D
The state of a shifting bottleneck is characterized by more than one ܿ = 1 entries
in one row. Therefore, the algorithm will assign each machine the value ݀ = 1, in
case there are more than one entries with ܿ = 1 in one row.

As shown in matrix ܦ, the bottleneck shifts in time step 3 and 8.

ܦ = ൭
0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

൱ (26)

3.1.1.5 Sole bottleneck matrix E
The sole bottleneck matrix can be calculated by subtracting the shifting bottleneck
matrix from the total bottleneck matrix.

ܧ = ܥ − (27) ܦ

ܧ = ൭
1 1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0

൱ (28)

As described in chapter 2.2.3, there are two approaches how the active period
method can be used. The first is using the average active period (AAP) to detect
bottlenecks. For that case only equations (22) to (24) are required. In order to
generate a bottleneck ranking, the algorithm calculates the average active period
using equation (29):

ܽ =
∑ ܽ,

ୀଵ

݊
 (29)

Chapter 3 Methods & Implementation

49

The active durations ܽ, and the number of active durations ݊ can be found in the
accumulated state matrix ܤ. Then the machine with the longest active duration ܽ
is assigned a value of 1 and the other machines according to their active relation
related to the longest active duration.

The second approach looks at the average durations a machine is the sole or the
shifting bottleneck. For the bottleneck ranking the sum of a machine’s sole and
shifting duration are accumulated and the machine with the highest accumulated
sum can be considered as the bottleneck of the system and a value of 1 will be
assigned to that machine.

As already mentioned, the second approach has the drawback of only providing
information about the most significant machines and no information about non-
bottleneck machines. First results, have shown that the AAP method is therefore
better suited for larger production systems. Since the industrial use cases which are
analysed in the simulation study, are both large production lines, the simulation
study will be conducted using the AAP method.

3.1.2 Blockage & Starvation Probability

As for the AAP method algorithm, this algorithm requires the machine states and
a period of observation as an input. Then the machine states within the period of
observation are read and the duration each machine is blocked and starved is
calculated. The probability for being blocked is the duration a machine is blocked
divided by the duration of the period of observation. The same applies for the
probability of being starved. Furthermore each machine has a Boolean variable
which defines whether it is a bottleneck machine or not. This variable is set to true,
if the following requirements are fulfilled:

 If the starvation probability of a machine ݆ is smaller than the blockage
probability of the next upstream machine and the blockage probability of a
machine ݆ is smaller than the starvation probability of the next downstream
machine, ݆ is a bottleneck of the system.

ିଵܤܶ > ܶ ܵ , ݆ = 1, … , ݊ − 1 (30)
ܤܶ < ܶ ܵାଵ , ݆ = 1, … , ݊ − 1 (31)

Chapter 3 Methods & Implementation

50

 The first machine of a line is considered to be a bottleneck, if:

ܤܶ < ܶܵଵ (32)

 The last machine of a line is considered to be a bottleneck, if:

ିଵܤܶ < ܶܵ (33)

For the bottleneck ranking each machine where the Boolean value, which indicates
it is a bottleneck of the system, is set to true, a value of 1 is assigned. This procedure
explains, why this method is not capable of providing information about the
importance of all machines of the system. In contrast to the AAP method, only
bottlenecks machine will have a ranking which can be further used for the purpose
of prioritization.

3.2 Simulation

The output of both described bottleneck detection algorithms is a bottleneck
ranking for a certain period of observation. In order to evaluate the performance of
the prioritization using bottleneck detection, a simulation study is required. The
following describes how the simulation study was conducted.

3.2.1 Development of the Simulation Study

The simulation study is carried out, using the steps that have been described in
chapter 2.3.1:

3.2.1.1 Problem definition
In large production systems, situations might occur where more maintenance
workers are required than there are available. This means, especially for the case of
corrective maintenance, that a prioritization might be useful to improve a
production line’s performance. The decision criteria for the prioritization is a
machine’s importance for the production line. A machine’s importance can be
determined by finding the bottlenecks of a production line.
Therefore a production line will be modelled and its performance using a FIFO
maintenance strategy will be compared to a prioritization strategy where bottleneck
machines will be prioritized over non-bottleneck machine in the case of a

Chapter 3 Methods & Implementation

51

simultaneous breakdown. A more detailed description of the real-world problem is
given in chapter 1.1.

3.2.1.2 Setting of objectives
This study focusses on investigating the economic potential of a prioritization of
corrective maintenance tasks on a single production line. Therefore different
bottleneck detection methods shall be evaluated in terms of their accuracy, usability
and their potential for system throughput improvement.

3.2.1.3 Model conceptualization
The simulation model is built using a hierarchical control conceptual modelling
(HCCM) framework. The HCCM framework was developed, to build DES models
with complex control policies. Instead of modelling queues, an advanced control
mechanism steers the behaviour of a model’s entities. The entities can change their
role in the model and their behaviour depending on their current activity. The
control structure of the HCCM framework enables the modeller to model real-world
problems, where a high degree of entity interaction and complex control policies
are required. Even manufacturing systems are comparably simple systems to model,
the HCCM framework was used because of the possibility to implement custom
dispatching rules for the repair workers (Furian et al., 2014; Furian et al., 2015).

Figure 22 shows the main elements and the hierarchical structure of the model built
using the HCCM framework. The model consists of different organizational areas,

Control Unit
Line

Control Unit
OS 1

Control Unit
OS 2

Control Unit
OS 3

Control Unit
OS N

Machine 1.1

Machine 1.2

Machine 1.3

Machine 2.1 Machine 3.1

Machine 3.2

Machine N.1

Material
Flow

Figure 22: Main elements and hierarchical structure of the HCCM framework
adapted for the usage in production research

Chapter 3 Methods & Implementation

52

which can be seen as sub-models. Each sub-model is controlled by a Control Unit
which handles the activity requests of its entities. In the proposed simulation model,
the single operating sequences (OS) represent the sub-models. Each OS consists of
one or, in case of redundant OS, multiple machines. One level above, there is the
Control Unit Line which handles the interactions and requests of the Control Units
OS.

The following shall give a more detailed explanation of the elements used within
the simulation framework:

 Machine:
A machine is the most basic entity and it is always part of an operation
sequence. The attributes of the machine are an identification number, a
procedure ID of the production process and a cycle time, which are all
inherited by the operating sequence. Furthermore, the state of a machine is
defined by its activities which can be Produce, Wait for Material, Blocked
or Repair. The activity changes are initiated by events.

 Operating sequence:
The operating sequence consists of one or multiple machines. An OS is
defined by an ID, its position in the production line, the amount of machines
it consist of and a buffer capacity.

 Material:
The material travels from one OS to another. Each machine has a list of
procedures to pass starting with the first machine in the production line and
ending with the last. If a material was processed in an OS, the procedure ID
of the corresponding machine will be deleted from the list, and the Control
Unit travels the material to the OS which performs the next procedure on
the list.

 Control Unit OS:
This Control Unit handles the requests of its entities and communicates with
the Control Unit Line. The following requests are handled within one
Control Unit OS:

o Produce Request:
The moment a material is travelled from one machine to the next in
the production sequence, it sends a produce request to the Control
Unit OS. Then the Control Unit OS checks the states of its machine

Chapter 3 Methods & Implementation

53

and in case a machine is in the activity “Wait for material”, the
Control Unit removes the material from the buffer and processes it
in the machine.

o Travel Request:
When a machine has processed a material it starts the activity
“Blocked” and sends a travel request to its Parent Control Unit in
order to travel the material to the buffer of the next OS in the
production sequence. Since the Control Unit OS cannot control the
behaviour of another Control Unit OS, it has to hand off this request
to the superordinate Control Unit Line.

o Repair Request:
In case a machine breaks down, it switches to the activity “Repair”
and sends a repair request to its Control Unit OS. Since the repair
workers are organized on a line-level, the request will be hand off to
the Control Unit Line.

 Control Unit Line:
This is the superordinate Control Unit which handles all request that cannot
be handled within one sub-system. These request are the repair and the
travel requests.

o Travel Requests:
When a travel requests reaches the Control Unit Line, the Control
Unit Line acts as the communication interface between the Control
Unit OS the request comes from and the Control Unit OS where the
material is processed next. The Control Unit Line reads the next
procedure to pass from the material’s list and checks if the OS of that
procedure has still capacity in its buffer. If it has enough capacity,
the material is travelled to the next OS and is given to the control of
the corresponding Control Unit OS. Furthermore the activity of the
machine where the material comes from is changed to “Wait for
material”.

o Repair Requests:
When a repair request reaches the Control Unit Line, the Control
Unit Line decides whether a repair worker can be assigned to the
machine or not. These decision rules, are where the prioritization
algorithm is implemented. In case there are more workers available

Chapter 3 Methods & Implementation

54

than requests, the Control Unit will assign a repair worker to the
broken machines immediately. If there are more requests, the
prioritization algorithm will be executed in order to prioritize and the
available worker will be sent to the machine which has the highest
priority.

 Simulation Engine:
The simulation engine handles the scheduled events of the simulation using
an event calendar. The events are added at the beginning or end of an
activity. If all events for a certain time step are executed, the simulation
engine advances to the time of the next event in the calendar.

3.2.1.4 Data collection
The simulation model requires the following input data:

 Structure of the production line
 For each operation sequence:

o Cycle time
o Time between failure
o Time to repair
o Buffer capacity
o Amount of machines (Redundancy)

 Amount of repair workers
 Simulation Period

The Simulation Period defines which period of time will be simulated. All
experiments will be done simulating 90 days of production.

 Warm-Up Period
Before the 90 days start, a Warm-Up Time is necessary to ensure the
simulation model has reached a steady state and all buffers are on a realistic
level. The Warm-Up Period for all experiments is chosen with 7 days.

The used data comes from an engine manufacturing plant. The time to repair and
time between failure values are sampled out of a list of historical production data.
In context of this simulation study, the time to repair (TTR) will be used in a
different way than in literature. Figure 23 shows the different tasks which are
executed in a case of a machine breakdown. The conventional definition of TTR is
the duration from a machine failure until the machine is available again for
production. The TTR values which are sampled out of historical data, represent

Chapter 3 Methods & Implementation

55

the duration from when the repair worker starts his maintenance task until the
machine is available again for production.

The reason for sampling out of historical production data instead of using mean
values is that the machine failures do not follow any distribution. Therefore
sampling out of historical data is a more precise replication of reality. The random
number generator for the sampling process is using a seed. This guarantees that
the FIFO simulation run will use the same sequence of TBF and TTR values as
the prioritization simulation run. Otherwise the results would not be comparable.

For the bottleneck detection algorithm, more input data is required:

 Period of Observation ܶ௦
A long period of observation will detect long-term bottlenecks and vice-
versa. The first simulations have shown, that ܶ௦ is a very critical factor
for the success of a task prioritization. Therefore different scenarios are done
to find an optimum for ܶ௦.

 Priority Increase Factor
The first simulation runs have shown that, especially for long periods of
observation, the algorithms do not give enough priority to non-bottleneck
machines that are already waiting for repair for several hours. This is
because a waiting time of several hours cannot influence the result of an
observation over 7 days significantly, even this waiting time already has a
significant influence on the performance of the production line. Therefore a
Priority Increase Factor is introduced. Figure 24 shows an example of how
the works. Machine 1 and Machine 2 break down at different points in
time. For both machines, there was no repair worker available when the
failure occurred. When a worker becomes available, the prioritization
algorithm is executed. The calculated priorities for both machines are
represented by the grey vertical bars. The priority of Machine 2 is higher
than the one of Machine 1. So the worker would be assigned to Machine 2

Machine
Failure

Notify
maintenance

staff

Failure
diagnostic

Get
required

spare parts
Maintenance

Test
machine

Machine
available for
production

Time to repair

Figure 23: Time to repair in context of the simulation study

Chapter 3 Methods & Implementation

56

first. But since the breakdown of Machine 1 happened much earlier, this
machine might be more important to the system even the algorithm has not
detected that.

By increasing the priority of each machine over time using a constant
gradient , this behaviour can be prevented.

Equation (34) shows how the calculated priorities are increased with a
Priority Increase Factor. The higher the gradient is chosen, the more
the prioritization strategy will behave as the FIFO strategy. Therefore
different simulations will be run to find an optimum value for .

 Prioritization Frequency ݂௧௭௧
The last required input for the algorithm is the Prioritization Frequency. It
determines how often the algorithm will be executed. In reality the algorithm
will be executed every time, a machine breaks down. But since the execution
of the algorithm takes up to a minute of time, the algorithm will be executed
in a certain frequency ݂௧௭௧ in order to speed up the simulation.

Concerning the output data, the simulation has to provide the following values in
order to validate and evaluate the results:

 Total throughput
 Throughput of each operation sequence
 Waiting, Blocking, Repair and Production time for each machine

ௗௗ݅ݎܲ = ௨௧ௗ݅ݎܲ + ∗ ௫௨௧ݐ) − ௗ௪) (34)ݐ

Time

Pr
io

rit
y

Breakdown Machine 1 Breakdown Machine 2 Execution of Algorithm

Figure 24: Introduction of a Priority Increase Factor

Slope =

Chapter 3 Methods & Implementation

57

3.2.1.5 Model translation
The conceptual model now has to be translated into a computer model. This is
done using the HCDESLib, which is an open source simulation software for discrete
event simulation (Furian, 2017). The HCDESLib is based on the principles of the
HCCM framework which has already been described.

3.2.1.6 Validation
The simulation will be conducted over a period of 90 days. From the production
data acquisition (PDA) system of the engine manufacturing plant, real historical
data is used to validate the results of the simulation. For a period of 90 days, all
times between failure and times to repair are available as real historical data. This
TBF and TTR values are the basis for the sampling of TBF and TTR values within
the model. For the validation, the total downtime and the total throughput of each
machine was compared to the real production system.

3.2.1.7 Experimental design
This step defines the scenarios which are planned for the simulation study. Different
scenarios are necessary to validate the result of the bottleneck detection algorithm
and to optimize the performance of the algorithm using different input parameters.

3.2.2 Simulation Scenarios

Within the simulation study, the following scenarios are planned:

 Validation of the bottleneck detection algorithm:
Since the real-world production lines are well-balanced complex systems, a
validation has to be done on a more simple line. Otherwise the output of the
bottleneck detection algorithm would not be comprehensible. Therefore, the
algorithms for the active period method and the blockage and starvation
method will be validated on a simple production line using a system
sensitivity analysis. The aim of this scenario is to validate whether the
bottleneck detection algorithms are capable of identifying bottlenecks
correctly or not. A detailed description of the line structure and the input
data will be given in the next chapter.

 Industrial Use Case 1
Line 1 is a production line of an engine manufacturing plant. This scenario
is a real-world use-case which aims for determining the potential of dynamic

Chapter 3 Methods & Implementation

58

task prioritization for corrective maintenance. Two different bottleneck
detection approaches are used to prioritize machines within Line 1. For both
approaches simulation runs, using different input parameters for the
algorithm are conducting in order to find optimal settings. To evaluate the
performance of the prioritization methods, the total throughput is compared
to the total throughput using a FIFO repair policy. All simulation scenarios
will be run 30 times over 90 days in order to have a statistical confidence
about the results.

 Industrial Use Case 2
The prioritization method which performed best in the prior scenario, will
be tested in this scenario on a different production line of the engine
manufacturing plant. The aim is to test whether there is are optimal settings
for the input parameters of the algorithm and whether those settings have
to be modified for other production lines or not. Therefore several simulation
runs using different input parameters are conducted to find out if the
optimal settings are the same as for the prior scenario. As for Use Case 1,
all simulation scenarios will be run 30 times over 90 days in order to have a
statistical confidence about the results.

Chapter 4 Use Cases

59

4 Use Cases

This chapter contains all results from the different use cases, starting with the
validation of the used bottleneck detection algorithms on a simple demo production
line. After validating the algorithms, an industrial use case for a more complex
production line is conducted. The method which performs best in the first industrial
use case, will then be tested in a second industrial use case to find out, whether the
algorithm can be applied without any modifications on different production lines
or not.

Table 4: Overview of the conducted use cases within the simulation study
Use Case Objective Method Experiment

Demo
Use Case

Validate Bottleneck
Detection Method

System Sensitivity
Analysis

Active Period Method
Blocking & Starvation

Probability

Industrial
Use Case 1

Throughput
Improvement by

Bottleneck
Prioritization

Heuristic Methods
Part-Out-Part-Out Time

Availability
Availability + Redundancy

Active Period
Method

Initial Experiment
Variation of ܶ௦

Static Bottleneck Ranking
Variation of

Blocking &
Starvation
Probability

Initial Experiment
Variation of ܶ௦

Static Bottleneck Ranking

Industrial
Use Case 2

Verify Optimum
Settings of Industrial

Use Case 1

Active Period
Method

Variation of ܶ௦ and
+ Static Bottleneck

Ranking

Chapter 4 Use Cases

60

4.1 Demo Use Case

This first use case, is aiming for validating the output of the bottleneck detection
algorithms. To do so, three different simulation scenarios are necessary:

 System Sensitivity Analysis
 Active Period Method
 Blocking & Starvation Method

First, a System Sensitivity Analysis is conducted, since this method is considered
to be the most reliable bottleneck detection method. Then two simulations scenarios
using the Active Period Method and the Blocking & Starvation Method are
conducted. The output of those two scenarios, which is a bottleneck ranking, can
then be compared to the bottleneck ranking of the System Sensitivity Analysis in
order to validate the result.

Since the bottleneck detection for complex lines is hard to comprehend, the
validation will be done for a simple Demo production line pictured in Figure 25.

Figure 25: Structure of the Demo production line

The line consists of seven operating sequences where each consists of one machine.
Between each operating sequence there is a buffer with a capacity of 100.
Furthermore there is one repair worker which will perform all maintenance tasks
that take longer than 10 minutes. This behaviour is set with the Boolean variable
Remove Short Repair = true. The reason for doing that, is that small repair tasks
are conducted by the machine operators and only more complex tasks require a
more skilled repair worker. The machine operators are not modelled within the
simulation model, since they are no subject of interest concerning the goals of this
simulation study. Instead repair tasks shorter than 10 minutes are performed
instantly. This simplification was resolved together with the project partner and
will be used throughout all use cases of this simulation study.

Chapter 4 Use Cases

61

Table 5: Simulation input parameters for the Demo Use Case
Global Settings

Repair Workers 1

Remove Short Repair true

Simulation Period 90 Days

Warm Up Period 7 Days

Simulation Runs 1

Machine Settings C/T [s] Puffer Capacity MTBF [h] MTTR [h]
Redundant
Machines

OS10 45 ∞ 1 1 0

OS20 48 100 2 0,5 0

OS30 65 100 1 1,3 0

OS40 50 100 2 0,5 0

OS50 54 100 3 1 0

OS60 45 100 1 1 0

OS70 48 100 2 0,5 0

The input data, shown in Table 5 will be used for all three scenarios within this
use case.

4.1.1 System Sensitivity Analysis

The objective of this scenario is to create a reliable bottleneck ranking using a
System Sensitivity Analysis. This ranking can be considered as the most realistic
ranking and can therefore be used as a benchmark for the other two bottleneck
detection methods. One simulation run, which consists of ݊ + 1 experiments, will
be performed, where ݊ is the amount of machines of the production line.

Table 6: Settings for the System Sensitivity Analysis

Bottleneck Detection Method System Sensitivity Analysis

Objective Bottleneck Detection

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 5
Line Structure Demo Line

Method Settings
Period of Observation −

Prioritization Frequency −

Chapter 4 Use Cases

62

The first experiment is conducted using the initial machine input data of the Demo
Line (Table 5). The result of this experiment will be the baseline for the following
experiments. In a next step, the performance of OS10 is improved by reducing the
MTTR by 50 % and another experiment is conducted. By comparing the total
throughput of this experiment to the total throughput of the baseline experiment,
the impact of an improvement of OS10 on the overall system performance can be
observed. This determines the value ∆ܶ ௦ܲ௬௦,ைௌଵ. The higher the overall system
improvement, the more OS10 is a significant bottleneck of the Demo Line.

In a next step, the MTTR of OS10 is set back to the initial value and the MTTR
of OS20 is reduced by 50 %. Again the result is compared to the baseline, which
determines the value ∆ܶ ௦ܲ௬௦,ைௌଶ. This process is done for each machine in the
production line. The machine with the highest ∆ܶ ௦ܲ௬௦, is considered to be the
primary bottleneck of the system and it is assigned a value of 1. The other machines
according to their ∆ܶ ௦ܲ௬௦, in relation to the highest ∆ܶ ௦ܲ௬௦,.

4.1.1.1 Results

Figure 26 shows the results of the sensitivity analysis of the Demo production line.
The primary bottleneck of the system is OS 30. Secondary and tertiary bottlenecks
are OS 10 and OS 60.

0

0,2

0,4

0,6

0,8

1

1,2

OS 10 OS 20 OS 30 OS 40 OS 50 OS 60 OS 70

Figure 26: Bottleneck ranking of the Demo line using a system sensitivity analysis

Chapter 4 Use Cases

63

4.1.1.2 Discussion

The basics of this method were already explained in chapter 2.2.3.3. Even this
method is the most precise bottleneck detection method, it cannot be used for
dynamic task prioritization on the plant floor. Even for this comparable small
production line, eight experiments are necessary in order to determine the actual
bottleneck situation. It is not suitable for tracking the actual bottleneck situation
using real-time production data. Therefore, this method is only used to validate the
two data-driven bottleneck detection approaches.

4.1.2 Validation of the Active Period Method

Within this scenario, a simulation run using the Active Period Method is conducted.
The bottleneck ranking according to the Active Period Method can then be
compared to the bottleneck ranking of the System Sensitivity Analysis.

Table 7: Settings for the validation of the APM

Bottleneck Detection Method Active Period Method

Objective Bottleneck Ranking Validation

Comparative Basis System Sensitivity Analysis

Simulation
Settings

Global Settings Table 5
Line Structure Demo Line

Method Settings
Period of Observation ܶ௦ = ݕܽܦ 1

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0,33

This scenario is using the same simulation input data as the System Sensitivity
Analysis (Table 5). Since the objective is to determine and validate the bottleneck
situation, all repair requests will be executed using a FIFO strategy. This is because
a prioritization would change the bottleneck situation and the bottleneck ranking
could not be compared to the ranking of the System Sensitivity Analysis.

In the simulation run, the algorithm will be executed 0.33 times an hour in order
to track the actual bottleneck situation of the system, considering the machine
states of the last 24 hours.

Chapter 4 Use Cases

64

4.1.2.1 Results

The output of this scenario is a bottleneck ranking over time which is pictured in
Figure 27.

Since the System Sensitivity Analysis was conducted over a period of 90 days, an
average priority over the whole simulation period has to be calculated for each
machine. Figure 28 shows the result of the average bottlenecks over 90 days
determined with the active period method, compared to the result of the system
sensitivity analysis. The primary, secondary and tertiary bottleneck of the system
are identified correctly by the average active period method.

Figure 28: Comparison of the priority ranking of the active period method and the
system sensitivity analysis

0

0,2

0,4

0,6

0,8

1

1,2

OS 10 OS 20 OS 30 OS 40 OS 50 OS 60 OS 70
Sensitivity Analysis Average Active Period

0

0,2

0,4

0,6

0,8

1

1,2

Day
1

Day
2

Day
3

Day
4

OS 10 OS 20 OS 30 OS 40 OS 50 OS 60 OS 70

Figure 27: Shifting bottlenecks of the Demo production line using the APM

Chapter 4 Use Cases

65

4.1.2.2 Discussion

The result of the average active period method comes very close to the result of the
system sensitivity analysis which is considered as the real world situation. The
deviations at OS 20, OS 50 and OS 70 are negligible, since those machines are the
least critical machines for the overall systems. Concerning the priority over time as
shown in Figure 27, it can be seen that the system behaves very dynamic and that
the APM is capable of determining the dynamic bottlenecks. Even OS 30, which is
marked in red, is most of the time a bottleneck machine, there are periods, where
other machines are more important to the system’s performance. This indicates,
that the system’s performance can be improved through a dynamic prioritization.
Therefore the proposed method is suitable for further investigations, how a system’s
performance can be improved through dynamic bottleneck detection.

4.1.3 Validation of the Blocking & Starvation Probability Method

In the last scenario of this use case, a simulation run using the Blocking &
Starvation Probability Method for bottleneck detection is conducted. The
bottleneck ranking can then be compared to the bottleneck ranking of the System
Sensitivity Analysis in order to validate this method.

Table 8: Settings for the validation of the BSP method

Bottleneck Detection Method Blocking & Starvation Prob.

Objective Bottleneck Ranking Validation

Comparative Basis System Sensitivity Analysis

Simulation
Settings

Global Settings Table 5
Line Structure Demo Line

Method Settings
Period of Observation ܶ௦ = ݕܽܦ 1

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0,33

Concerning the methodology, this scenario is conducted equally to the prior
scenario. All repair requests are executed using a FIFO strategy, the bottleneck
situation is detected 0.33 times per hour and the machine states of the last 24 hours
are considered. If the requirements for a bottleneck, which were explained in
chapter 2.2.3, are fulfilled, the algorithm assigns a priority of 1 to the machine.
Otherwise a zero.

Chapter 4 Use Cases

66

4.1.3.1 Results

The output of this scenario is a bottleneck ranking over time, which is shown in
Figure 29. According to this method, the bottleneck shifts between OS 30 (red) and
OS 40 (yellow). In contrast to the Active Period Method, this method does not
provide information about the criticality of the other machines.

In the same manner as for the Active Period Method, an average bottleneck ranking
over the whole simulation period of 90 days is calculated. The result of this step, is
shown in Figure 30.

Figure 30: Comparison of the BSP method to the system sensitivity method

0

0,2

0,4

0,6

0,8

1

1,2

OS 10 OS 20 OS 30 OS 40 OS 50 OS 60 OS 70

Sensitivity Analysis Blockage & Starvation Method

0

0,2

0,4

0,6

0,8

1

1,2

Day
1

Day
2

Day
3

Day
4

OS 10 OS 20 OS 30 OS 40 OS 50 OS 60 OS 70

Figure 29: Shifting bottlenecks using the BSP method

Chapter 4 Use Cases

67

4.1.3.2 Discussion

The blockage and starvation probability method could only detect the primary
bottleneck of the system, which is OS30. It failed for detecting OS 10 and OS 60
as the secondary and tertiary bottlenecks. Since it cannot be said, how significant
the primary bottleneck is, this method still might be able to improve the system’s
performance and it will also be used for further investigations on a real-world
production line.

4.1.4 Comparison of the Bottleneck Detection Methods

Figure 31 gives a direct comparison of the results of the three bottleneck detection
methods used within this use case. As already mentioned, the System Sensitivity
Analysis is considered to be the most reliable bottleneck detection method and is
therefore used to validate the two data-driven methods.

Figure 31: Bottleneck ranking of the Demo line using three different detection
methods

The Active Period Method could detect the three most significant bottlenecks of
the Demo production line, whereas the Blocking & Starvation Probability Method
could only detect the primary bottleneck. Another drawback of the Blocking &
Starvation Probability Method is, that it does not provide any information about
the criticality of non-bottleneck machines. Especially in larger production systems,
this is required in order to assign a certain priority to each machine of the system.

0

0,2

0,4

0,6

0,8

1

1,2

OS 10 OS 20 OS 30 OS 40 OS 50 OS 60 OS 70

System Sensitivity Active Period Method Blocking & Starvation Probability

Chapter 4 Use Cases

68

But still, both data-driven methods were able to detect the primary bottleneck of
the system. Furthermore, both methods could track shifting bottlenecks over time,
which indicates that the system does behave dynamically and a dynamic
maintenance task prioritization could improve the system’s performance. Therefore
both methods will be evaluated concerning their potential for throughput increment
in the next use case.

4.2 Industrial Use Case 1

Line 1 is a highly automated production line from an engine manufacturing plant.
The structure of the production line is shown in Figure 32.

Figure 32: Structure of Line 1

The production line consists of 26 operating sequences where some of them have
redundant machines. In contrast to the Demo line, no mean values are used for the
TBF and TTR. Instead of that, TBF and TTR values are sampled out of historical
data. Furthermore, there are two maintenance workers on the production line, what
complies with the conditions in the plant of the project partner. Again all repair
tasks shorter than 10 minutes do not require a maintenance worker, since those
tasks are performed by the machine operators which are not modelled within the
simulation. The simulation period is 90 days, with 7 days warm up period. Since
the TTR and TBF values vary a lot, 15 simulation runs are conducted in order to
have a statistical confidence about the results.

Chapter 4 Use Cases

69

Table 9: Simulation input parameters for Industrial Use Case 1
Global Settings

Repair Workers 2

Remove Short Repair true
Simulation Period 90 Days
Warm Up Period 7 Days
Simulation Runs 15

Machine Settings C/T [s] Puffer Capacity TBF [h] TTR [h]
Amount of
Machines

AF200-Transferstrasse 30 ∞ Sample Sample 1

AF210-AF220-ZEN 1 10 Sample Sample 1
AF210-BZs 33 1 Sample Sample 1
AF220-BZs 33 3 Sample Sample 7
AF230-ZEN 1 40 Sample Sample 1
AF230-BZs 33 1 Sample Sample 6
AF240-Transferstrasse 30 25 Sample Sample 1
AF250-Transferstrasse 30 10 Sample Sample 1
AF255-ZEN 1 20 Sample Sample 1
AF255-BZs 33 1 Sample Sample 2
AF260-ZEN 1 10 Sample Sample 1
AF260-BZs 33 1 Sample Sample 6
AF270 30 20 Sample Sample 1
AF280 30 20 Sample Sample 1
AF300-Transferstrasse 30 6 Sample Sample 1
AF310-AF320-ZEN 1 20 Sample Sample 1
AF310-AF320-BZs 33 20 Sample Sample 4
AF325 27 48 Sample Sample 1
AF325P 33 1 Sample Sample 1
AF330 30 20 Sample Sample 1
AF335 33 20 Sample Sample 2
AF335-HB 33 25 Sample Sample 1
AF340 30 10 Sample Sample 1
AF345-ZEN 1 10 Sample Sample 1
AF345-W 33 1 Sample Sample 2
AF350 30 5 Sample Sample 1

Chapter 4 Use Cases

70

4.2.1 Heuristic Prioritization

The heuristic prioritization methods, aim for imitating the actual prioritization
behaviour of the maintenance staff on the plant floor. Three different heuristic
approaches will be used within this use case:

 Part-Out-Part-Out Times
 Availability
 Availability + Redundancy

As for the other methods, the baseline for the heuristic methods will be a FIFO
strategy. Since all heuristic methods work with long-term averages, they are
considered to be static. This means that the time a machine is already waiting for
repair, cannot influence the priority. Therefore also for this scenario a Priority
Increase Factor is used, which is set to = 0,2

ଵ

ு௨
 for all heuristic methods.

4.2.1.1 Prioritizing using Part-Out-Part-Out Times
As already discussed in chapter 2.2.2, in the engine manufacturing plant, all Part-
Out-Part-Out times are recorded in order to evaluate the performance of machines.
The longer this “true cycle time” is, the more critical is a machine. Even this
method cannot detect bottlenecks at all, it is used for comparison to other
prioritization strategies.

Table 10: Settings for prioritizing using Part-Out-Part-Out Times

Prioritization Method Part-Out-Part-Out Time

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9

Line Structure Line 1

Method Settings

Period of Observation −

Priority Increase Factor = ݎݑܪ ݎ݁ 0,2

Prioritization Frequency −

Reduce Redundant ݂݈ܽ݁ݏ

The simulation requires an input file, where the priorities of all machines according
to their Part-Out-Part-Out times are listed. Figure 33 shows the priority ranking

Chapter 4 Use Cases

71

where the machine with the longest Part-Out-Part-Out time is assigned the priority
of 1. The Part-Out-Part-Out times of the redundant operation sequences have been
reduced by the number of redundant machines. Since the Part-Out-Part-Out times
of the machines in a production line cannot differ significantly in a long term, also
the priorities do not differ a lot.

Figure 33: Priority ranking using Part-Out-Part-Out times

Results
The output of the simulation is the average throughput per day of 30 simulation
runs of 90 days. This average throughput can be compared to the output of the
same simulation using a FIFO service policy.

The performance of this prioritization policy compared to FIFO, each with a 95%
confidence interval is shown in Figure 34.

 Figure 34: Average throughput per day - FIFO vs. Part-Out-Part-Out Time

0

0,2

0,4

0,6

0,8

1

1,2

1420

1440

1460

1480

1500

FIFO Part-Out-Part-Out Time

Pr
od

uc
ed

 P
ar

ts
 p

er
 D

ay

Chapter 4 Use Cases

72

Discussion
The reason why this policy performs worse than a FIFO policy is that all redundant
operation sequences have a high priority, whereas some of the single machines have
a low priority. This means that the redundant machines may be, due to their long
cycle times, bottlenecks for the system. But this method does not consider, that a
breakdown of a redundant machine is not as critical as a breakdown of a single
machine. Furthermore, the proposed method is questionable concerning its use for
prioritization, since it cannot detect bottlenecks and the priorities of all machines
are almost equal.

4.2.1.2 Prioritizing using Availabilities
The second heuristic approach uses availability values of the machines for
maintenance task prioritization.

Table 11: Settings for prioritizing using availabilities

Prioritization Method Availabilities

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation −

Priority Increase Factor = ݎݑܪ ݎ݁ 0,2

Prioritization Frequency −

Reduce Redundant ݂݈ܽ݁ݏ

The machine with the lowest availability is assigned a priority of 1. Figure 35 shows
the priority ranking using average availability values over 90 days.

Chapter 4 Use Cases

73

Figure 35: Priority ranking using availability values

Results
Using the priorities from Figure 35 will not bring an improvement compared to a
FIFO service policy. The average throughput per day is shown in Figure 36.

Discussion
The availabilities of machines can whether give any statement about the
importance of machines, nor can they be used for bottleneck identification. Because
of that, and because the lower breakdown severity of redundant machines is not
considered, no throughput increment could be achieved. This will be taken into
account for the next scenario.

0

0,2

0,4

0,6

0,8

1

1,2

1400

1420

1440

1460

1480

1500

FIFO Availability

Pr
od

uc
ed

 P
ar

ts
 p

er
 D

ay

Figure 36: Average throughput per day - FIFO vs. Availability

Chapter 4 Use Cases

74

4.2.1.3 Prioritizing using Redundancy & Availability
The last method utilizes the average availability values from the last method and
decreases the priorities, depending on if there are redundant machines in an
operating sequence. The priority of each operating sequence is reduced by its
amount of machines.

Table 12: Settings for prioritizing using availabilities and redundancies

Prioritization Method Availability + Redundancy

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation −

Priority Increase Factor = ݎݑܪ ݎ݁ 0,2

Prioritization Frequency −

Reduce Redundant ݁ݑݎݐ

The simulation requires an input file, where each machine’s priority based on

availabilities is reduced by the number of redundant machines. Figure 37 shows the

adapted priority ranking, which will be used for this scenario.

Figure 37: Priority ranking using availability values with decreased priorities for
redundant machines

0

0,2

0,4

0,6

0,8

1

1,2

Chapter 4 Use Cases

75

Results
Dividing the priority of redundant machines by the amount of redundant machines
improves the availability approach and generates a throughput increment of 5 %
compared to a FIFO strategy.

Discussion
Since the prior scenario, which only used availability values, could not bring any
throughput improvements, the good result of this scenario can be traced on the
priority reduction of redundant machines.

4.2.1.4 Comparison of Heuristic Methods
Figure 39 shows the average throughput increment of the 3 heuristic methods
compared to a FIFO policy with a 95 % confidence interval.

1420

1440

1460

1480

1500

1520

1540

1560

1580

FIFO Availability + Redundancy

Pr
od

uc
ed

 P
ar

ts
 p

er
 D

ay

Figure 38: Average throughput per day - FIFO vs. Availability & Redundancy

-3,00%

-2,00%

-1,00%

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

Part-Out-Part-Out Time Availability Availability +
Redundancy

Figure 39: Average throughput increment of heuristic methods compared to a
FIFO policy

Chapter 4 Use Cases

76

The only heuristic approach which generates a throughput increment, was the
approach based on availabilities and redundancies. But since prioritizing using only
availability values could not bring any improvement, the good result is only due to
the reduction of the priority of redundant machines. The next sub-chapter
investigates the potential of bottleneck prioritization methods.

4.2.2 Bottleneck Prioritization

In contrast to the heuristic methods, the following methods are based on the
strategy of reducing the downtime of bottleneck machines in order to improve the
system’s performance. The bottleneck detection algorithms use real-time production
to determine the actual bottleneck situation and enable a dynamic prioritization of
machines. The following bottleneck detection methods are used within this use case:

 Active Period Method
 Blocking & Starvation Probability Method

For both methods, several simulations using different input parameters are
conducted in order to find optimal settings for the algorithm concerning the Priority
Increase Factor and the Period of Observation.

4.2.2.1 Active Period Method
The objective of the simulations using the Active Period Method is to improve the
total throughput by prioritizing bottleneck machines and to find optimal settings
for the algorithm.

The following experiments are conducted for the Active Period Method:

o Initial Experiment: Track the dynamic behaviour of the system
o Variation of the Period of Observation: Find optimal settings for ܶ௦
o Static Priorities: Use Average Active Period over 90 days
o Variation of the Priority Increase Factor: Find optimal settings for

Initial Experiment
To have a first result of how dynamic the system behaves, a simulation using the
following scenario is conducted:

Chapter 4 Use Cases

77

Table 13: Settings for the initial experiment – APM

Prioritization Method Active Period Method

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation ܶ௦ = ݏݎݑܪ 48

Priority Increase Factor = ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ

RESULTS
Figure 40 shows for the most significant bottleneck machines of Line 1, how the
bottlenecks are shifting over a period of 3 days. In the example of Figure 40, the
primary bottleneck is shifting between machine AF220-Bz, AF260-Bz and AF345-
W. This behaviour continues over the whole simulation run of 90 days. This
indicates that a dynamic prioritization could improve the system’s performance.

Figure 40: Excerpt of the priorities over a period of 3 days using the AAP method
for Line 1

0

0,2

0,4

0,6

0,8

1

1,2

Day 1 Day 2 Day 3
 AF220-BZs AF230-BZs AF260-BZs AF310-AF320-BZs

 AF335 AF335-HB AF345-W

Chapter 4 Use Cases

78

Using the priorities over time, of which an excerpt is shown in Figure 40, will bring
a throughput improvement. Figure 41 shows the average throughput per day and
the 95 % confidence intervals of 30 simulation runs over 90 days in comparison to
the same simulation using a FIFO service policy.

DISCUSSION
The first simulation brought a throughput increment of 2 %. Since there are two
input parameters for the algorithm which influence the result, further simulations
are necessary to optimize the performance. The period of observation has the
biggest influence on the output of the algorithm. Therefore further scenarios using
different periods of observation are conducted.

Variation of the Period of Observation
This experiments aims for optimizing the algorithm by varying the input
parameter ܶ௦. The other parameters will be the same as for the prior experiment.

Table 14: Settings for the variation of ܶ௦ - APM

Prioritization Method Active Period Method

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation ܶ௦ = ݈ܾ݁ܽ݅ݎܽݒ

Priority Increase Factor = ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ

1400

1450

1500

1550

1600

FIFO 48 Hours

Pr
od

uc
ed

 P
ar

ts
 p

er
 D

ay

Figure 41: Average throughput per day - FIFO vs. APM (48 Hours)

Chapter 4 Use Cases

79

RESULTS
Figure 42 shows the average throughput increment and the 95% confidence
intervals using different periods of observation. Short periods of observation enable
the algorithm to detect short-term bottlenecks and vice versa. The maximum is
found using a period of observation of 7 days.

Figure 42: Average throughput increment using different periods of observation

DISCUSSION
The results indicate that these short-term bottlenecks do not significantly influence
the system’s performance, since a prioritization of those machines does not improve
the system’s throughput. Since the validation of the algorithm brought a good
match with the system sensitivity analysis for the average priorities over 90 days,
the same scenario will be investigated here.

Static Priorities
This scenario is a static bottleneck detection scenario, since the algorithm does not
determine the actual bottleneck situation during a simulation run. Instead of that,
the average bottlenecks over a simulation run of 90 days are calculated and used
as an input for the static scenario. This is done, using the priorities over time of
the ܶ௦ = scenario, and calculate average priorities for each machine. The ݏݕܽܦ 7
other parameters are the same as for the prior experiment.

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

36
Hours

48
Hours

60
Hours

72
Hours

84
Hours

4 Days 5 Days 6 Days 7 Days 10 Days 14 Days 17 Days

Av
er

ag
e

th
ro

ug
hp

ut
 in

cr
em

en
t

Chapter 4 Use Cases

80

Table 15: Settings for the static bottleneck detection - APM

Prioritization Method Active Period Method

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation -
Priority Increase Factor = ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0

Reduce Redundant ݁ݑݎݐ

The average priorities over a period of 90 days are shown in Figure 43. According
to this result, the system has three significant bottlenecks.

Figure 43: Static AAP priorities before redundant machines priorities are reduced

In order to consider the lower breakdown severity of redundant machines, the
priorities have to be divided by the number of redundancies per operating sequence.
The result of that modification is shown in Figure 44. The operating sequence with
the highest priority is AF345-W, which is still a redundant operating sequence.

0

0,2

0,4

0,6

0,8

1

1,2

Chapter 4 Use Cases

81

Figure 44: Static AAP priorities after redundant machines priorities are reduced

RESULTS
Using a static Active Period Method priority ranking will improve the throughput
by 5 % compared to a FIFO policy:

DISCUSSION
The simulation scenarios with different periods of observation have shown that the
system does behave dynamically, but a dynamic prioritization does not improve
the throughput as much as a static prioritization does.

The Priority Increase Factor is another input parameter which has an impact
on the result. The higher is chosen, the more the prioritization policy will
behave like a FIFO policy. This is because increases the priority depending on
the time of the breakdown. The next experiments aim for finding an optimum value
for .

0

0,2

0,4

0,6

0,8

1

1,2

1420

1440

1460

1480

1500

1520

1540

1560

1580

FIFO Static

Pr
od

uc
ed

 P
ar

ts
 p

er
 D

ay

Figure 45: Average throughput per day FIFO vs. Static APM

Chapter 4 Use Cases

82

Variation of the Priority Increase Factor
This scenario uses the same static APM priorities as the prior experiment, since
this priority ranking performed best. The Priority Increase Factor will be varied in
order to find an optimal setting for this parameter.

Table 16: Settings for the variation of - APM

Prioritization Method Active Period Method

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation −

Priority Increase Factor = ݈ܾ݁ܽ݅ݎܽݒ

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0

Reduce Redundant ݁ݑݎݐ

RESULTS
The average throughput increment compared to a FIFO policy and the 95 %
confidence interval are shown in the following figure:

Figure 46: Average throughput increment of different using a static AAP
priority ranking

DISCUSSION
Increasing the Priority Increase Factor to = 0,2 could improve the system’s
performance by 5,9 % compared to a FIFO service policy.

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

p_inc = 0,05 p_inc = 0,1 p_inc = 0,15 p_inc = 0,2 p_inc = 0,3

Av
er

ag
e

th
ro

ug
hp

ut
 in

cr
em

en
t

Chapter 4 Use Cases

83

Conclusion – Active Period Method
Since the bottleneck detection algorithm shall be applied on different production
lines, it is necessary to find out, if there is a global optimum which achieves good
results on different production lines. Therefore the results of the different
experiments in dependence of the two input parameters are visualized in Figure 47
using a bubble chart, where the diameter of a bubble is representing the average
throughput increment of the simulation scenario compared to a FIFO policy.

Figure 47: Average throughput increment for different input parameters on Line 1
compared to a FIFO service policy

The best result for Line 1 is achieved using a static Active Period Method priority
ranking and a Priority Increase Factor of = 0,2. In 4.3, the same simulations
will be conducted for a different production line in order to verify if this setting
also performs best in a different production system.

4.2.2.2 Blockage & Starvation Probability Method
This method is the second which shall be investigated within this simulation study
in order to evaluate its performance for throughput improvement by corrective
maintenance task prioritization. The following experiments are conducted:

 Initial Experiment: Track the dynamic behaviour of the system
 Variation of the Period of Observation: Find optimal settings for ܶ௦

1,8%

2,6%

2,3%

2,0%

2,7%

3,0%

2,1%

1,9%

3,6%

3,8%

3,0%

2,5%

3,6%

3,6%

2,5%

5,0%

5,9%

5,2%

0

0,1

0,2

0,3

Pr
io

rit
y

In
cr

ea
se

 F
ac

to
r [

1/
H

ou
r]

Period of observation [Days]
1,5 2 3 7 10 Static

Chapter 4 Use Cases

84

Initial Experiment
In the first experiment using the BSP method, the dynamic behaviour of the system
and the ability of the algorithm to detect shifting bottlenecks shall be analysed.
The experiment is done using the following input parameters:

Table 17: Settings for the initial experiment - BSP

Prioritization Method Blocking & Starvation Prob.

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation ܶ௦ = ݏݕܽܦ 7

Priority Increase Factor = ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ

RESULTS
Figure 48 shows for the most significant bottlenecks of the system, how the
bottlenecks are shifting according to the blockage and starvation probability
method.

Figure 48: Excerpt of the priority over time using the BSP method

0

0,2

0,4

0,6

0,8

1

1,2

Day 1 Day 2 Day 3
 AF255-BZs AF260-ZEN AF310-AF320-ZEN AF340 AF345-ZEN

Chapter 4 Use Cases

85

Using this dynamic bottleneck ranking will generate a throughput increment of
3,5 % compared to a FIFO policy:

DISCUSSION
Even also this method detects shifting bottlenecks, the chart looks very different to
the one of the Active Period Method. This is because this method can only provide
information about if a machine is a bottleneck or not. If a machine is a bottleneck,
it is assigned a priority of 1. Else, it is assigned a priority of zero and no further
statement about the criticality of that machine is possible. Furthermore, this
method achieved 1,5 % less than the APM, using the same input parameters. Still
further experiments are conducted in order to optimize this method.

Variation of the Period of Observation
Since the Active Period Method performed best using a static priority ranking, the

same scenario will be conducted for the BSP method. Furthermore, several

experiments where the Period of Observation is varied between 8 Hours and 9 Days

are conducted.

1420

1440

1460

1480

1500

1520

1540

1560

1580

FIFO 7 Days

Pr
od

uc
ed

 P
ar

ts
 p

er
 D

ay

Figure 49: Average throughput per day - FIFO vs. BSP (7 Days)

Chapter 4 Use Cases

86

Table 18: Settings for the variation of ܶ௦ - BSP

Prioritization Method Blocking & Starvation Prob.

Objective Throughput Improvement

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 9
Line Structure Line 1

Method Settings

Period of Observation ܶ௦ = ݈ܾ݁ܽ݅ݎܽݒ

Priority Increase Factor = ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ

As for the Active Period Method, the static priorities are calculated using the
average priorities over 90 days from the scenario ܶ௦ = ;ݏݕܽܦ 7 = 0,1

ଵ

ு௨
.

Figure 50 shows the average priority ranking of the BSP method before the
redundant machine’s priority is divided by the number of machines:

Figure 50: Static priorities of the BSP method before redundancies are reduced

This result is very different to the priority ranking from the AAP method. The
AAP method detected three significant bottlenecks which were all redundant
operating sequences. In contrast to that, the BSP method detects no significant
bottleneck, but six machines which are equally often the bottleneck of the system.
Reducing the priority of the operating sequences by the number of its machines,
will generate the following priority ranking:

0

0,2

0,4

0,6

0,8

1

1,2

Chapter 4 Use Cases

87

Figure 51: Static priorities of the BSP method after redundant machine's priorities
are reduced

RESULTS
Using the priority ranking shown in Figure 51, will improve the system’s
throughput by almost 5%. The results for different Periods of Observation and for
the static priority ranking are shown in Figure 52.

Figure 52: Average throughput increment and 95% confidence intervals for different
periods of observation for the BSP method compared to a FIFO service policy

DISCUSSION
The best performance improvement was achieved using a static priority ranking.
As before for the Active Period Method, a dynamic bottleneck detection performed
better than FIFO, but worse than a static priority ranking.

0

0,2

0,4

0,6

0,8

1

1,2

-1,00%

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

8 Hours 60 Hours 72 Hours 84 Hours 7 Days 8 Days 9 Days Static

Av
er

ag
e

th
ro

ug
hp

ut
 in

cr
em

en
t

Chapter 4 Use Cases

88

4.2.2.3 Conclusion – Blockage & Starvation Probability Method
The best result using the BSP method achieved a throughput increment over a
FIFO service policy of almost 5 %. A drawback of this method is that it cannot
provide information about the criticality of non-bottleneck machines. This was
shown in Figure 48, where the priorities over time are pictured. This behaviour is
problematic for larger production systems, since the proposed method can only
prioritize very few machines of the system. Most of the machines will have a priority
of zero, wherefore those machines can only be serviced using a FIFO policy.
Furthermore, the BSP method requires information about the line structure and is
therefore not suitable for flexible production systems or job shop layouts. Because
of its drawbacks concerning usability, validity and performance, the second
industrial use case will be conducted using only the Active Period Method.

4.3 Industrial Use Case 2

The second use case is for another production line of an engine manufacturing plant.
The aim for this use case is to verify, if the algorithm settings which performed
best in the first use case, also perform best on a different production line. If this
could be verified, the algorithm could be applied on all production lines in the plant,
without the need for any modifications.

The structure of Line 2 is shown in Figure 53.

Figure 53: Structure of Line 2

As the line of the first use case, Line 2 is a highly automated production line. In
contrast to Line 1, this line is even more balanced since the cycle times of all

Chapter 4 Use Cases

89

machines are equal. Furthermore the buffer capacities are smaller compared to
Line 1. All input parameters for the simulation can be seen in Table 19.

Table 19: Simulation input parameters for Industrial Use Case 2
Global Settings

Repair Workers 2

Remove Short Repair true
Simulation Period 90 Days
Warm Up Period 7 Days
Simulation Runs 15

Machine Settings C/T [s] Puffer Capacity TBF [h] TTR [h]
Amount of
Machines

AF20-Zen 27 ∞ Sample Sample 1
AF20-BZ 27 5 Sample Sample 3
AF30-LIP 27 5 Sample Sample 1
AF30-BZ 27 5 Sample Sample 4
AF34 27 5 Sample Sample 1
AF40-LIP 27 5 Sample Sample 1
AF40-BZ 27 5 Sample Sample 6
AF44 27 5 Sample Sample 1
AF50-60 27 5 Sample Sample 1
AF50-BZ 27 5 Sample Sample 2
AF60-BZ 27 5 Sample Sample 4
AF70-ZP 27 5 Sample Sample 1
AF70 27 5 Sample Sample 3
AF110 27 60 Sample Sample 2
AF120-LIP 27 5 Sample Sample 1
AF120-BZ 27 5 Sample Sample 4
AF124 27 5 Sample Sample 1
AF140-LIP 27 50 Sample Sample 1
AF140-BZ 27 5 Sample Sample 4
AF144 27 5 Sample Sample 1
AF148 27 5 Sample Sample 1
AF160-ZP 27 50 Sample Sample 1
AF160 27 5 Sample Sample 2

Chapter 4 Use Cases

90

4.3.1 Variation of Input Parameters

The best results for Line 1 were achieved using the Active Period Method.
Furthermore the Active Period Method provided reliable results, since it could
identify the bottleneck situation correctly in the validation on the Demo production
line. Therefore this method shall now be used for a different production line in order
to identify if there is a global optimum for the input parameters which could be
applied to any production line. The input parameters which influence the
performance of the algorithm are:

Table 20: Settings for the variation of ܶ௦ and – APM

Prioritization Method Active Period Method

Objective Verification of Global Optimum

Comparative Basis FIFO Policy

Simulation
Settings

Global Settings Table 19
Line Structure Line 2

Method Settings

Period of Observation ܶ௦ = ݈ܾ݁ܽ݅ݎܽݒ

Priority Increase Factor = ݈ܾ݁ܽ݅ݎܽݒ

Prioritization Frequency ݂௧௭௧ = ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ

Results
To verify the optimum which was found at Line 1, the same scenarios are conducted
for Line 2. The results of different scenarios are shown in a bubble chart in Figure
54.

Chapter 4 Use Cases

91

Figure 54: Average throughput increment for different input parameters on Line 2
compared to a FIFO service policy

As for Line 1, the best results were achieved using a static AAP priority ranking.
This ranking is shown in Figure 55.

Figure 55: Static AAP priority ranking for Line 2 after redundant machine’s priority
was reduced

Discussion
Compared to the first industrial use case, Line 2 is even more well-balanced. No
significant bottleneck was found and the differences between the priorities of the
machines are marginal. This result coincides with the fact, that for Line 2 all
machines have equal cycle times and therefore bottlenecks can only occur due to
machine breakdowns.

9,4%

9,2%

10,6%

7,8%

6,9%

11,2%

9,0%

10,1%

6,4%

12,7%

11,5%

10,7%

8,2%

12,9%

8,2%

19,2%

17,8%

18,7%

0

0,1

0,2

0,3
Pr

io
rit

y
In

cr
ea

se
 F

ac
to

r [
1/

H
ou

r]

Period of observation [Days]

1,5 2 3 7 10 Static

0

0,2

0,4

0,6

0,8

1

Chapter 4 Use Cases

92

The fact, that the average throughput increment using a prioritization strategy is
much higher than for the first use case, can be explained by taking the number of
simultaneous breakdowns and the amount of repair workers into account.

Figure 56 gives a comparison of Line 1 and Line 2 concerning how often
simultaneous breakdowns occurred during the 90 days of simulation. Line 1 had
more situations, where a repair request could be processed immediately because
only one machine had a failure. Figure 56 shows, that Line 2 had more situations
where three or more machines where down simultaneously. In consequence of that,
Line 2 had an average downtime per machine of 350 hours whereas machines of
Line 1 were only down for 150 hours using the same simulation scenario. This
means, that Line 2 requires more maintenance workforce than Line 1. But both use
cases were conducted using the same input parameter of 2 available maintenance
workers. This resulted in an understaffed scenario for Line 2. The consequence of
an understaffed maintenance team are more simultaneous breakdowns and a higher
average downtime. On the other hand less resources reinforce the performance of a
prioritization policy and this is why the average throughput increments in the
scenarios of Line 2 are higher than for Line 1. The impact of available resources on
the performance of a prioritization policy will be explained more detailed in the
next chapter.

0

200

400

600

800

1000

Line 1 Line 2

Am
ou

nt
 o

f s
im

ul
ta

ne
ou

s
br

ea
kd

ow
ns

3 or more simultaneous breakdowns

2 simultaneous breakdowns

Figure 56: Simultaneous breakdowns Line 1 - Line 2

Chapter 5 Discussion

93

5 Discussion

This thesis aimed for developing a data-driven prioritization method for corrective
maintenance tasks. In the following chapter, the methods which were developed
and analysed, will be compared concerning their usability and performance.
Furthermore the limitations for prioritization and different fields of application will
be discussed.

5.1 Comparison of Prioritization Policies

The following prioritization policies were analysed within this thesis:

 Heuristic Approaches
o Part-Out-Part-Out Time
o Availability
o Availability + Redundancy

 Bottleneck-based Approaches
o Blockage & Starvation Probability
o Active Period Method

The use of heuristic methods for the prioritization of maintenance tasks is the most
common approach in industries. Especially the prioritization of single machines over
redundant machines is a very straightforward and comprehensibly policy. The
simulation study has shown, that this policy performs also well compared to a FIFO
policy. But in the case of no redundant machines in a production line, no
prioritization would be possible. Furthermore, under the assumption of existing
bottlenecks in a production line, there is a potential for improvements by
prioritizing bottlenecks.

Chapter 5 Discussion

94

The bottleneck-based approaches try to use this potential. Both analysed methods
use real-time production data for bottleneck detection. Concerning the usability,
the Blockage & Starvation Method is harder to implement in industries, since the
line structure has to be implemented in the bottleneck detection algorithm. The
Active Period Method does not require any information about the line structure,
but only the machine states which are usually available in a PDA system. This
makes the Active Period Method suitable for Line Production, Job Shop Production
and even Flexible Production Systems (Klenner et al., 2016, pp. 543).

Also concerning the validity the Active Period Method was the better detection
method. Using a System Sensitivity Analysis it was shown, that the Active Period
Method could detect the primary, secondary and tertiary bottleneck of a line
correctly, whereas the Blockage & Starvation Method could only detect the primary
bottleneck. Furthermore, the Blockage & Starvation method provides only values
for very few machines and does not provide any information about the importance
of non-bottleneck machines. This can be seen when comparing the priority ranking
of the Active Period Method with the one from the Blockage & Starvation Method.
Especially for large production systems, it is more beneficial to have a consistent
priority ranking for all machines as it is provided by the Active Period Method.

For the evaluation of the performance of the prioritization policies, the average
throughput increment compared to a FIFO policy was chosen as a performance
indicator. Figure 57 shows the best result for each prioritization policy for the
industrial use case Line 1:

Figure 57: Performance of each prioritization policy for Line 1 compared to a FIFO
policy including a 95 % confidence interval

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

Heuristic Approaches Blocking & Starvation
Probability

Active Period Method

Av
er

ag
e

th
ro

ug
hp

ut
 in

cr
em

en
t

Chapter 5 Discussion

95

Even the Active Period Method reached the highest average throughput increment
of 5,9%, the good result of the heuristic method with 5,2% was not expected at the
beginning of the simulation study. But only the heuristic scenario, where the
priority of redundant machines was reduced, has performed that good. This
explains, that the failure sensitivity value explained in chapter 2.2.2, is a major
aspect for task prioritization in corrective maintenance. A prioritization of single
machines over redundant machines will always bring a performance improvement
independent of the bottleneck situation.

This finding explains, why the Active Period Method performed only 0,7% better
than the best heuristic method. The most significant bottlenecks the Active Period
Method detected, were all redundant machines. From a production and
maintenance management point of view, this is a very positive result. This means,
that the most important machines to the system are redundant machines and in
case of a breakdown of such a bottleneck machine, the impact on the overall system
performance will be less critical than in case of the bottleneck was a single machines.
This behaviour was taken into account, by reducing the calculated priority by the
number of redundant machines. But for a bottleneck-based prioritization approach
this means, that in case of a redundant bottleneck machine, the potential for
improvement is very limited.

In general it has to be emphasized, that bottleneck detection alone, cannot be a
prioritization policy for corrective maintenance tasks. Further modifications as the
reduction of redundant machines and a Priority Increase Factor have to be made
in order to improve a system’s performance.

Concerning the period of observation for the bottleneck detection, the algorithm
performed best using a static average active period priority ranking over 90 days.
Even the bottlenecks are shifting over time it could not be shown, that a
prioritization of short-term bottlenecks would improve the system’s performance.
The better performance of a static prioritization was also confirmed by
Gopalakrishnan et al. (2014, pp. 2173). Even the same behaviour occurred in the
second industrial use case, there might be systems where a more dynamic bottleneck
detection performs better. This is because both use cases are conducted on highly
automated and well-balanced production lines, which have only minor changes in
the bottleneck situations due to machine breakdowns. For assembly lines or in

Chapter 5 Discussion

96

general production systems that are producing multiple products, the cycle times
are not always constant over time and therefore such lines are not as well-balanced
as the lines of the use cases. In that case, a more dynamic bottleneck detection
could be more suitable.

5.2 Limitations for Prioritization in Corrective
Maintenance

The biggest limiting factor for the potential of improvement by prioritization in
corrective maintenance is the amount of repair workers. If there are infinite workers
available, each request can be processed immediately and there is no need for
prioritization. Still, companies strive for a cost-efficient use of their resources and
therefore especially personnel resources as maintenance workers will always be
limited. Therefore in the first industrial use case, several simulation runs with a
different amount of workers were conducted. The results of this simulation runs are
shown in Figure 58:

Figure 58: Potential for throughput increment on Line 1 depending on amount of
repair workers

The potential of improvement by prioritization decreases with an increasing number
of repair workers, since with more workers, most repair request can be processed
immediately. In order to maximize throughput, the best result can be achieved
having three or more repair workers. The results of Figure 58 can be used for further
research on the optimization of total costs of maintenance. Since prioritization can
achieve a higher throughput with the same amount of workers, it shifts the cost-

0

500

1000

1500

2000

1 Worker 2 Worker 3 Worker 4 Worker 20 Worker

Av
er

ag
e

Th
ro

ug
hp

ut

pe
r D

ay

FIFO Average Active Period (Static)

Chapter 5 Discussion

97

optimum point of total costs of maintenance towards less costs due to breakdowns
with equal personnel costs.

5.3 Conclusion

Concerning usability, validity and the potential for throughput improvement, the
Average Active Period Method was the best performing prioritization policy. The
two industrial cases have shown that there is potential for throughput increment
by bottleneck prioritization. Both industrial use cases were very well-balanced and
furthermore the bottlenecks of both lines were redundant machines. These were
limiting factors for the performance of the prioritization policy. Still the results of
this thesis recommend the implementation of the algorithm on production lines for
the purpose of corrective maintenance task prioritization. The algorithm was
validated successfully and can therefore be a reliable, real-time data driven decision
support for the production and maintenance staff and provides useful information
about the actual bottleneck situation of a production system.

Chapter 6 Outlook

98

6 Outlook

The prioritization algorithm for corrective maintenance tasks was realized using a
data-driven bottleneck detection method. The bottleneck ranking was modified by
introducing a Priority Increase Factor and by reducing the priority of redundant
operating sequences. The result of this modification was the final priority ranking.
Both of those modifications have still potential for further performance
improvements. The Priority Increase Factor increases the priority of a machine
depending on the time of how long a machine is already waiting for repair. Within
this simulation study, a linear function with the same slope for all machines was
used to model this behaviour. Using a machine depending Priority Increase Factor
could bring further performance improvements, since the lower breakdown severity
of redundant operating sequences compared to non-redundant operating sequences
would be considered. In that case, redundant operating sequences would be assigned
a lower Priority Increase Factor, whereas single machines would be assigned a
higher Priority Increase Factor. The second modification, the reduction of
redundant operating sequences priorities, was done by dividing the priority of each
operating sequence, by the number of its redundant machines. This was necessary,
since otherwise redundant operating sequences, which were detected as bottleneck
machines, would have been prioritized over single non-bottleneck operating
sequences which broke down at the same time. Even a redundant operating
sequence can be a bottleneck of a system, it will always have a lower breakdown
severity compared to a non-redundant operating sequence. Therefore, in the case
of corrective maintenance, the priority of redundant operating sequence has to be
reduced. How much the priority has to be reduced, is not only a matter of the
number of redundancies, but also of the actual buffer levels and the structure of a

Chapter 6 Outlook

99

production system. Therefore, the findings of this thesis lead to further research on
how the Priority Increase Factor and the reduction of redundant operating
sequences priorities can be modelled in a mathematically more accurate way, in
order to improve the proposed prioritization method further.

In the field of preventive maintenance, the scheduling of maintenance tasks is
another possible application where a data-driven bottleneck detection could be
used. Preventive maintenance tasks, require the stoppage of machines and reduce
therefore the availability of those machines. Because of that, effective maintenance
task scheduling has a big impact on the OEE of production facilities. Depending
on the production system, the shift plan and the personnel resources of a company,
not all preventive tasks can be scheduled in non-production shifts. Within the TPM
4.0 research project it was shown, that flexible maintenance windows, which occur
due to a production line’s dynamics and machine breakdowns, can be used for the
purpose of preventive maintenance, without affecting the performance of the
production system. Performing preventive maintenance tasks on bottleneck
machines only during non-production shifts or flexible maintenance windows (Li et
al., 2009) could bring further OEE improvements.

Also besides maintenance there are possible fields of application for the bottleneck
detection algorithm. Especially for assembly lines or job shop production layouts
which are less automated compared to the two industrial use cases, a short-term
bottleneck identification could be used to assign additional resources to the
bottleneck stations. Furthermore, the buffer capacities around bottlenecks could be
adjusted in order to reduce the balance-losses on a production line. Chang et al.
(2007) have shown, that adjusting buffer capacities based on information about the
bottleneck situation, can bring performance improvements and reduce balance-
losses.

100

References

Ahuja, I. and Khamba, J.S. (2008), “Total productive maintenance. Literature
review and directions”, International Journal of Quality & Reliability
Management, Vol. 25 No. 7, pp. 709–756, DOI:
10.1108/02656710810890890.

Balci, O. (1988), “The implementation of four conceptual frameworks for
simulation modeling in high-level languages”, in Proceedings of the 20th
conference on Winter simulation, San Diego, California, United States,
ACM, New York, NY, pp. 287–295, DOI: 10.1145/318123.318204.

Banks, J. (2005), Discrete-event system simulation, Prentice-Hall
international series in industrial and systems engineering, 4. ed., Pearson
Prentice Hall, Upper Saddle River, NJ, ISBN: 0131446797.

Bellgran, M. and Säfsten, K. (2010), Production development: Design and
operation of production systems, Springer, London, ISBN: 1848824955.

Biedermann, H. (2008), Ersatzteilmanagement: Effiziente Ersatzteillogistik für
Industrieunternehmen, 2. Auflage, Springer-Verlag, Berlin, Heidelberg,
ISBN: 9783540008507.

Borshchev, A. and Filippov, A. (2004), “From System Dynamics and Discrete
Event to Practical Agent Based Modeling: Reasons, Techniques, Tools”,
22nd International Conference of the System Dynamics Society, July 25 -
29, 2004, Oxford, England, pp. 1–23.

Chang, Q., Ni, J., Bandyopadhyay, P., Biller, S. and Xiao, G. (2007),
“Supervisory Factory Control Based on Real-Time Production Feedback”,
Journal of Manufacturing Science and Engineering, Vol. 129 No. 3, pp.
653-660, DOI: 10.1115/1.2673666.

101

Chiang, S.-Y., Kuo, C.-T. and Meerkov, S.M. (2001), “C-Bottlenecks in serial
production lines. Identification and application”, Mathematical Problems in
Engineering, Vol. 7 No. 6, pp. 543–578, DOI:
10.1155/S1024123X01001776.

Ebeling, C.E. (2010), An introduction to reliability and maintainability
engineering, 2. ed., Waveland Press, Long Grove Ill., ISBN: 1577666259.

EN 13306:2010-10-01 (2010), Maintenance ― Maintenance terminology,
01.040.03; 03.080.10, Austrian Standards Institute.

Furian, N. (2017), “HCDESLib”, available at:
https://github.com/nikolausfurian/HCDESLib/wiki (accessed 30 March
2017).

Furian, N., O'Sullivan, M., Walker, C. and Voessner, S. (2014), “HCCM - A
Control World View For Health Care Discrete Event Simulation”, in
Proceedings / 28th European Conference on Modelling and Simulation
ECMS 2014: May 27th - May 30th, 2014, Brescia, Italy, ECMS, pp. 206–
213, DOI: 10.7148/2014-0206.

Furian, N., O'Sullivan, M., Walker, C., Vossner, S. and Neubacher, D. (2015),
“A conceptual modeling framework for discrete event simulation using
hierarchical control structures”, Simulation modelling practice and theory,
Vol. 56, pp. 82–96, DOI: 10.1016/j.simpat.2015.04.004.

Gopalakrishnan, M., Skoogh, A. and Laroque, C. (2014), “Simulation-based
planning of maintenance activities by a shifting priority method”, in
Winter Simulation Conference (WSC), 2014: 7 - 10 Dec., Savannah, GA,
Savanah, GA, USA, IEEE, Piscataway, NJ, pp. 2168–2179, DOI:
10.1109/WSC.2014.7020061.

Klenner, F., Lenze, D., Schwarzer, S., Deuse, J. and Friedrich, T. (2016),
“Smart Data Analytics zur Identifikation dynamischer Engpässe in
Flexiblen Fertigungssystemen”, in Automatisierungstechnik, Vol. 64 No. 7,
DOI: 10.1515/auto-2016-0014.

Kuo, C.-T., Lim, J.-T. and Meerkov, S.M. (1996), “Bottlenecks in serial
production lines. A system-theoretic approach”, Mathematical Problems in
Engineering, Vol. 2 No. 3, pp. 233–276, DOI:
10.1155/S1024123X96000348.

102

Law, A.M. and Kelton, W.D. (2000), Simulation modeling and analysis,
McGraw-Hill series in industrial engineering and management science, 3.
ed., McGraw-Hill, Boston, ISBN: 0070592926.

Leidinger, B. (2014), Wertorientierte Instandhaltung: Kosten senken,
Verfügbarkeit erhalten, Springer Gabler, Wiesbaden.

Li, L. (2009), “Bottleneck detection of complex manufacturing systems using a
data-driven method”, International Journal of Production Research,
Vol. 47 No. 24, pp. 6929–6940, DOI: 10.1080/00207540802427894.

Li, L., Ambani, S. and Ni, J. (2009), “Plant-level maintenance decision
support system for throughput improvement”, International Journal of
Production Research, Vol. 47 No. 24, pp. 7047–7061, DOI:
10.1080/00207540802375705.

Li, L., Chang, Q., Ni, J., Xiao, G. and Biller, S. (2007), “Bottleneck Detection
of Manufacturing Systems Using Data Driven Method”, in IEEE
International Symposium on Assembly and Manufacturing, 22 - 25 July
2007, Ann Arbor, USA, IEEE Operations Center, Piscataway, NJ, pp. 76–
81, DOI: 10.1109/ISAM.2007.4288452.

Matyas, K. (2011), Taschenbuch Instandhaltungslogistik: Qualität und
Produktivität steigern, 4. Aufl., Carl Hanser Fachbuchverlag, ISBN:
3446423761.

Matyas, K. (2016), Instandhaltungslogistik: Qualität und Produktivität
steigern, Praxisreihe Qualitätswissen, 6. Auflage, ISBN: 3-446-44614-1.

Moubray, J. (2000), Reliability-centered maintenance, 2. ed., Industrial Press,
New York, NY, ISBN: 978-0831131463.

Nakajima, S. (1988), Introduction to TPM: Total productive maintenance,
Productivity Press, Portland, ISBN: 0915299232.

Neubacher, D., Furian, N., Gutschi, C. and Voessner, S., “A Hierarchical
Control Simulation Model to Support Maintenance Planning in Flexible
Production Systems”, in European Simulation and Modelling Conference
2016.

Pascual, D.G. and Kumar, U. (2016), Maintenance audits handbook: A
performance measurement framework, CRC Press LLC, Boca Raton, ISBN:
9781466583924.

103

Pawellek, G. (2016), Integrierte Instandhaltung und Ersatzteillogistik:
Vorgehensweisen, Methoden, Tools, 2. Auflage, Springer Vieweg, Berlin,
Heidelberg.

Reichel, J., Müller, G. and Mandelartz, J. (Eds.) (2009), Betriebliche
Instandhaltung, VDI-Buch, Springer, Berlin, ISBN: 978-3-642-00501-5.

Roser, C. and Nakano, M. (2015), “A Quantitative Comparison of Bottleneck
Detection Methods in Manufacturing Systems with Particular
Consideration for Shifting Bottlenecks”, in Advances in production
management systems: Innovative production management towards
sustainable growth; September 7-9, 2015; Vol. 460, Springer, pp. 273–281,
DOI: 10.1007/978-3-319-22759-7_32.

Roser, C., Nakano, M. and Minoru Tanaka, “Detecting Shifting Bottlenecks”,
International Symposium on Scheduling, Vol. 2002, pp. 59–62.

Roser, C., Nakano, M. and Tanaka, M. (2001), “A practical bottleneck
detection method”, in Proceedings of the 2001 Winter Simulation
Conference: Crystal Gateway Marriott, Arlington, VA, U.S.A., 9 - 12
December 2001, Assoc. for Computing Machinery, New York, NY, pp.
949–953, DOI: 10.1109/WSC.2001.977398.

Roser, C., Nakano, M. and Tanaka, M. (2002), “Shifting bottleneck
detection”, in Yücesan, E. (Ed.), Proceedings of the 2002 Winter
Simulation Conference: Manchester Grand Hyatt San Diego, U.S.A.,
December 8 - 11, 2002, Association for Computing Machinery, New York,
pp. 1079–1086, DOI: 10.1109/WSC.2002.1166360.

Roser, C., Nakano, M. and Tanaka, M. (2003), “Comparison of bottleneck
detection methods for AGV systems”, in Chick, S.E. (Ed.), Proceedings of
the 2003 Winter Simulation Conference: Fairmont Hotel, New Orleans,
LA, U.S.A., December 7 - 10, 2003, Association for Computing
Machinery, New York, pp. 1192–1198, DOI: 10.1109/WSC.2003.1261549.

Schenk, M. (2010), Instandhaltung technischer Systeme: Methoden und
Werkzeuge zur Gewährleistung eines sicheren und wirtschaftlichen
Anlagenbetriebs, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.

Schröder, W. (2010), Ganzheitliches Instandhaltungsmanagement: Aufbau,
Ausgestaltung und Bewertung, Zugl.: Leoben, Montanuniv., Diss., 2009,
Gabler research Techno-ökonomische Forschung und Praxis, 1. Aufl.,
Gabler Verlag / GWV Fachverlage GmbH Wiesbaden, Wiesbaden.

104

Wang, H. (2002), “A survey of maintenance policies of deteriorating systems”,
European Journal of Operational Research, Vol. 139 No. 3, pp. 469–489,
DOI: 10.1016/S0377-2217(01)00197-7.

Yang, Z., Chang, Q., Djurdjanovic, D., Ni, J. and Lee, J. (2007),
“Maintenance Priority Assignment Utilizing On-line Production
Information”, Journal of Manufacturing Science and Engineering, Vol. 129
No. 2, p. 435, DOI: 10.1115/1.2336257.

