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Kurzfassung 

Durch die zunehmende Globalisierung und dem damit verbundenen verschärften 
Wettbewerb, stehen produzierende Unternehmen unter ständig steigendem 
Kostendruck. Um diesem Kostendruck gerecht zu werden, versuchen Unternehmen 
lohnintensive Herstellungsprozesse durch solche zu ersetzen, welche aufgrund eines 
hohen Automatisierungsgrades einen geringeren Lohnanteil aufweisen. Der höhere 
Automatisierungsgrad impliziert wiederum eine zunehmende Komplexität und 
höhere Kosten der Produktionsanlagen, weshalb das Instandhaltungsmanagement 
zunehmend in den Fokus der Unternehmensführung rückt. Effiziente Planung von 
präventiven Instandhaltungsmaßnahmen, sowie eine rasche Behebung von 
Maschinenausfällen sind notwendig, um eine hohe Anlagenverfügbarkeit zu erzielen. 
Im Falle simultaner Maschinenausfälle und begrenzter Personalressourcen können 
Situationen entstehen, in welchen eine Priorisierung von Anlagen notwendig ist. 
Während diese Priorisierung heute meist im Rahmen der subjektiven Einschätzung 
des Wartungspersonals durchgeführt wird, soll im Rahmen dieser Arbeit eine 
objektive und echtzeitdatenbasierte Priorisierungsmethode entwickelt werden. 
Hierzu wurden zwei Bottleneck-Identifizierungsmethoden - die Active Period 
Method und die Blockage & Starvation Probability Method – hinsichtlich ihrer 
Validität und ihrer Eignung für die Priorisierung von Anlagen untersucht. Weiters 
wurde im Rahmen einer Simulationsstudie das Potential für die Priorisierung von 
reaktiven Instandhaltungsmaßnahmen ermittelt. Die besten Ergebnisse bezüglich 
Validität, Usability, wie auch Performance wurden mit der Active Period Method 
erzielt. Im Rahmen der Simulation einer komplexen Produktionslinie eines 
Motorenwerks konnte durch Priorisierung von reaktiven Wartungsaufgaben eine 
Steigerung der Produktionsleistung von 5,9 %, verglichen zu einer FIFO Strategie, 
erzielt werden. 
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Abstract 

In today’s globalized markets, manufacturing companies have to increase their 
operational effectiveness and revenues while reducing their operating costs in order 
to compete successfully. This has triggered a development within manufacturing 
industries, where companies try to substitute labour-intensive production processes 
through automated processes. An increasing degree of automation implies machines 
with greater complexities which in turn require more maintenance than 
conventional machines. Due to these factors, maintenance has become a prime focus 
of industries. Efficient planning of preventive maintenance tasks, and a quick 
respond in the case of a machine breakdown are crucial tasks in maintenance 
management. In the field of corrective maintenance, situations arise, where there 
are more machine breakdowns, than there are maintenance workers available. In 
most companies, the prioritization of machines is done based on the subjective 
assessment of the maintenance staff. This thesis aims for providing a real-time data-
driven prioritization method which can then be used as a decision support in the 
case of simultaneous breakdowns of machines. Therefore, two different bottleneck 
detection algorithms were applied, validated and assessed concerning their potential 
for prioritization in corrective maintenance. The two algorithms are based on the 
Active Period Method and the Blockage & Starvation Probability Method. The 
validation showed, that the Active Period Method was capable of identifying the 
primary, secondary and tertiary bottleneck of a system reliably, whereas the 
Blockage & Starvation Probability Method could only detect the primary 
bottleneck. Furthermore, the Active Period Method algorithm was modified for the 
usage as a prioritization method for corrective maintenance tasks. The performance 
of the algorithm was evaluated on a highly automated production line using discrete 
event simulation. Compared to a FIFO service policy, the prioritization policy using 
the Active Period Method brought a throughput increment of 5.9%.  
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1 Introduction 

Maintenance has become increasingly important since companies are more and 
more subject to a tough competition on international markets. To be able to 
compete successfully on these markets, manufacturing companies have to increase 
their operational effectiveness and revenues while reducing their operating costs. 
Since a big share of the operating costs of a manufacturing company are the labour 
costs, some companies move their production in low-wage countries in order to stay 
competitive. But in the long term and regardless the location, labour intensive 
manufacturing processes will be substituted more and more by automated 
processes. The high degree of automation requires production facilities which are 
usually more complex and more expensive than non-automated facilities. Because 
of that, two important conclusions can be drawn about the potential for cost 
reduction initiatives in the field of maintenance management. First, the increased 
complexity requires less skilled production workers, but more skilled maintenance 
workers. This results in an increasing share of maintenance labour costs compared 
to other labour-intensive activities and brings maintenance more in the focus of a 
company’s management. The second point is, that more expensive production 
facilities imply also higher downtime costs. In order to reduce the downtime costs 
due to machine breakdowns, modern maintenance strategies evolved towards 
preventive maintenance concepts. But since exceeding preventive maintenance 
would also increase the downtime of production facilities, a Zero Breakdown 
strategy cannot be realized yet cost-efficiently in all industries. Therefore, machine 
breakdowns and thus also corrective maintenance is still an important aspect in the 
field of maintenance management (Biedermann, 2008, p. 9; Leidinger, 2014, pp. 1).  
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This thesis is aiming to improve the efficiency of workforce distribution in a plant 
concerning corrective maintenance tasks. As a part of a research project of the 
Technical University of Graz with a German car manufacturer, the potential for 
throughput improvement through dynamic prioritization of corrective maintenance 
tasks will be evaluated. 

1.1 Problem Definition 

The mentioned research project deals with the usage of Internet of Things in the 
field of maintenance management. Besides Big Data Analysis for the purpose of 
predictive maintenance and the related scheduling of maintenance tasks, one aspect 
of the project is the evaluation of the organizational structures within the plant of 
the project partner. Whereas the maintenance staff is today organized in a 
decentralized structure, the findings of the research project recommend a 
centralized maintenance department for the whole plant. In that case, one central 
authority has to distribute the maintenance workforce on the different production 
lines within the plant. In order to support this central authority in how to distribute 
the workforce most efficiently, a prioritization method for machines shall be 
developed. The focus of this thesis is on the prioritization of corrective maintenance 
tasks for the case of multiple machine breakdowns. Figure 1 is a simplified example 
of a situation where a prioritization of maintenance tasks is required.  

Figure 1: Situation on the plant floor which requires a prioritization of machines
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The red machines symbolize a machine breakdown which requires a maintenance 
worker. At time t1, the maintenance worker can maintain OS20 immediately, since 
there are no other breakdowns. No prioritization is required. During OS20 is 
maintained, OS10 and OS30 breakdown, wherefore the maintenance worker has to 
prioritize which machine to maintain first at time t2. Currently, the prioritization 
of machines is done based on the subjective assessment of the maintenance worker 
and the line manager. 

1.2 Goals 

The aim of this thesis is to develop a data-driven method for the prioritization of 
corrective maintenance tasks on machines within a production line. The main idea, 
is to prioritize bottleneck machines over non-bottleneck machines to generate a 
throughput improvement without increasing the available personnel resources. 
Therefore, the first task is to develop a bottleneck detection algorithm which is 
capable of identifying dynamic bottlenecks by analysing data from the production 
data acquisition system. The output of the algorithm is a priority ranking, which 
can later be used by the maintenance department as a decision support for the 
workforce distribution in case of simultaneous breakdowns. In order to evaluate the 
potential of the developed prioritization method, a simulation study is conducted 
on two different production lines of the mentioned plant. 
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2 Theory 

 

2.1 Maintenance 

Due to the advancing globalization and the associated intensification of 
competition, companies have to provide high-quality products to low costs. One 
way to achieve this goal is the increasing usage of automatization technologies in 
the manufacturing processes. This brings new challenges for maintenance 
management. The increasing complexity of highly interconnected production 
facilities requires more efficient maintenance in order to achieve a high reliability 
of the overall production system. On the other hand the usage of automatization 
increases the amount of maintenance workers, compared to the other workers in 
the production process. This brings maintenance more and more in the focus of a 
company’s management (Pawellek, 2016, p. 1; Leidinger, 2014, p. 1). 

2.1.1 Terms and Definitions 

The maintenance-related terms used within this thesis are defined in EN 
13306:2010-10-01: 

 Maintenance 
“Combination of all technical, administrative and managerial actions 
during the life cycle of an item intended to retain it in, or restore it 
to, a state in which it can perform the required function” 

 Maintenance Management 
“All activities of the management that determine the maintenance 
objectives, strategies and responsibilities, and implementation of them 
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by such means as maintenance planning, maintenance control, and 
the improvement of maintenance activities and economics” 

 Reliability 
“Ability of an item to perform a required function under given 
conditions for a given time interval” 

 Redundancy 
“Existence of more than one unit to fulfil a required function” 

 Failure 
“Termination of the ability of an item to perform a required function” 

 Preventive maintenance 
“Maintenance carried out in accordance with established intervals of 
time or number of units of use but without previous condition 
investigation” 

 Corrective maintenance 
“Maintenance carried out after fault recognition and intended to put 
an item into a state in which it can perform a required function” 

Further terms of maintenance used within this thesis are: 

 Availability 
Availability is the ability to perform under the assumption that all external 
resources are given. Breaking down the planned production time of a 
machine into the 4 states of “Produce”, “Blocked”, “Starved” and “Machine 
failure”, the availability can be calculated as follows: 

ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܣ =
݁ܿݑ݀ݎܲ + ݈݀݁݇ܿܤ + ݀݁ݒݎܽݐܵ

݁݉݅ܶ ݊݅ݐܿݑ݀ݎܲ ݈݀݁݊݊ܽܲ
 (1) 

Another very common way to define the availability is  the Inherent 
availability (Ebeling, 2010, p. 254): 

ݕݐ݈ܾ݈݅݅ܽ݅ܽݒܣ =
ܨܤܶܯ

ܨܤܶܯ + ܴܶܶܯ
 (2) 
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 Mean time between failures (MTBF) is the average of times between 
failures 

ܨܤܶܯ =
∑ ݁݉݅ݐ ݃݊݅ݐܽݎܱ݁

ݏ݁ݎݑ݈݂݅ܽ ℎ݅݊݁ܿܽ݉ ݂ ݎܾ݁݉ݑܰ
 (3) 

 
 Mean time to repair (MTTR) is the average of times to repair 

ܴܶܶܯ =
∑ ݁݉݅ݐ ݎܴ݅ܽ݁

ݏݎ݅ܽ݁ݎ ݂ ݎܾ݁݉ݑܰ
 (4) 

 
 Overall Equipment Effectiveness (OEE) is a key performance 

indicator, especially in total productive maintenance, which enables an 
objective evaluation of production systems. The OEE is calculated by 
multiplying the following measures (Bellgran and Säfsten, 2010, p. 263): 

o Availability 
o Performance efficiency 
o Quality rate 

A more detailed explanation on the calculation of the OEE will be given in 
chapter 2.1.5. 

2.1.2 Objectives and Costs of Maintenance 

DIN31051:2012-09 structures the tasks of maintenance into 4 basic activities: 

1. Service: Activities to reduce the degradation of a unit 
2. Inspection: Activities to determine the actual condition of a unit 
3. Repair: Activities to restore the required function of a faulty unit 
4. Improvement: Activities to increase the reliability, maintainability or 

safety of a unit without changing its original function 

These basic actions are taken to achieve the following primary objectives of 
maintenance (Leidinger, 2014, p. 15): 

 Safety 
 Availability 
 Reliability 
 Value retention 
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The objectives concerning safety consist of health, safety, security and 
environmental issues which are mostly regulated by legal requirements on how to 
maintain production facilities. The goals of increasing availability, reliability and 
value retention are internal objectives of a company (Leidinger, 2014, p. 16). 
Besides these goals, maintenance management always aims for reducing costs. 
Figure 2 shows the two costs, which have the biggest influence on the total costs 
of maintenance. The blue line shows the costs for planned maintenance activities. 
Contrary to that there are the downtime costs in red, which occur due to lost profit 
when a machine is not available.  

It is plausible that the more a company invests in planned maintenance activities, 
the less downtime costs occur. But the marginal downtime-cost-reduction of these 
activities is diminishing, whereas the planned maintenance costs increase linearly. 
The optimum of the total costs is the minimum of the sum of planned maintenance 
costs and downtime costs. Even this model appears very logical, it has only limited 
significance in practice. The reason for that is that in practice, one can only 
determine the actual position on the total costs curve. Determining the shape of 
the total cost curve by increasing or decreasing maintenance intensity is not 
possible, since a change in machine downtime might not occur immediately, but 
with a delay of several months. Since the shape of the curve is not known in 
practice, no statement whether the optimum requires a more or less intense 

C
os

ts
 

Intensity of maintenance 

Costs for planned 
maintenance 

Downtime costs 

Total costs 

Optimum for total costs 
Figure 2 Optimum for total maintenance costs adapted from Matyas (2011, p. 41) 
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maintenance, can be made. Therefore in practice risk-based strategies are used to 
determine the required maintenance intensity for production facilities (Matyas, 
2011, pp. 49).  

2.1.3 Key Performance Indicators in Maintenance Management 

As already stated, the optimum maintenance intensity cannot be calculated based 
on costs for complex manufacturing systems. But still in the past, measurement 
and evaluation of maintenance services was primarily done using cost aspects. The 
problem of this method is, that the performance of maintenance cannot always be 
determined economically. On the one hand, the results of maintenance activities 
can only be measured time delayed and on the other hand some results as an 
increased machine-lifetime or a reduced machine degradation can only be measured 
very limited (Schröder, 2010, pp. 159).  

 

Figure 3: Excerpt of KPIs for maintenance management © (Pascual and Kumar,     
2016, p. 9) 

Figure 3 gives an overview about some KPI’s for maintenance management. 
Especially for companies which follow the concept of Total Productive Maintenance 
(TPM), the most common KPI is the Overall Equipment Effectiveness (OEE). A 
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detailed explanation about the OEE and its importance to the concept of TPM will 
be given in chapter 2.1.5. 

2.1.4 Maintenance Strategies 

Maintenance strategies define the methods and rules that are used to fulfil the 
maintenance objectives. The strategy regulates which activities are taken at what 
point of time and on which production facility. Figure 4 shows four main strategies 
which can be divided in corrective and preventive maintenance activities. A well 
balanced maintenance concept, should include an optimal mix of corrective and 
preventive maintenance activities (Matyas, 2011, pp. 105).  
 

 
Figure 4: Maintenance strategies adapted from Matyas (2016, p. 120) 

The application of a suitable maintenance strategy is decisive for the reliability of 
a production system as well as the total maintenance costs. Since the effects of a 
new strategy cannot be measured immediately, it is difficult to make statements 
about their effect on the total maintenance costs. Therefore, when it comes to 
controlling decisions in maintenance management, performance indicators as the 
downtime of machines or the utilization of wear stock, are good indicators for the 
evaluation of a maintenance strategy (Schenk, 2010, pp. 26). 

2.1.4.1 Corrective Maintenance 
Corrective, sometimes titled as reactive maintenance, is a strategy where 
maintenance is only applied in the case of a machine failure or a predefined wear-
level. At first sight, this strategy seems to be very cost-efficient since every 
machine’s wear stock is completely depleted before a repair is done. There are also 
no costly planning activities required. But on a closer examination, this strategy 
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brings a lot of drawbacks. Concerning the maintenance objective safety, there are 
a lot of machines where this strategy cannot be applied, since a breakdown of a 
part or a machine failure would be hazardous to the operator or the environment. 
Concerning the maintenance objectives availability and costs, a corrective 
maintenance strategy brings also drawbacks, since unplanned machine failures are 
more difficult to handle, than planned downtimes (Schenk, 2010, pp. 26).  

Figure 5 shows the actions that are taken after the breakdown of a machine. The 
net maintenance time is only a fraction of the total machine downtime in the case 
of corrective maintenance. For planned or preventive maintenance activities, the 
machine downtime should be much shorter, since some activities can be run in 
parallel to production (Matyas, 2011, p. 107). 

 
Another risk of corrective maintenance is that the supply with all required resources 
(staff, spare parts, etc.) cannot always be guaranteed. To summarize this, corrective 
maintenance is the most critical one concerning the availability of a production 
system and it causes the highest costs compared to other maintenance strategies.  
A corrective maintenance strategy is therefore only suitable for machines that have 
a low criticality to the overall production system. This means that a breakdown is 
not hazardous to staff or environment and it will not cause any interruptions of 
other machines. Furthermore a corrective strategy can be applied if there are 
enough redundancies and if the availability of maintenance resources (material, 
staff) can be guaranteed. But even when a company is following a preventive 
maintenance strategy, machine breakdowns cannot be avoided completely. 
Therefore, corrective maintenance is still an important aspect in maintenance 
management, since the unplanned downtimes due to a breakdown have severe 
consequences on the OEE of a production facility (Schenk, 2010, pp. 26; Matyas, 
2011, pp. 107). 

Net maintenance time 

Machine 
failure 

Notify 
maintenance 

staff 

Failure 
diagnostic 

Get 
required 

spare parts 
Maintenance 

Test 
machine 

Machine 
available for 
production 

Machine Downtime = Time to repair 

Figure 5: Activities during a machine failure adapted from Matyas (2011, p. 107) 
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2.1.4.2  Time-based Maintenance 
Time-based strategies follow the directive, to maintain machines before they lose 
their required function. After a predefined interval of time, produced pieces, 
kilometres, etc. is reached, components will be changed preventively. The length of 
these intervals, is usually given through specifications of the manufacturer or they 
are set based on prior experience. Using a time-based maintenance strategy will 
decrease the risk of machine failures significantly compared to a corrective 
maintenance strategy. Another big advantage is the possibility of planning. The 
maintenance work can be planned in such a way, that enough resources are 
available and, if possible, production is not affected at all. For this strategy, the 
definition of the maintenance intervals is a very crucial thing when it comes to 
availability and costs. Too short intervals might affect production and decrease the 
available time for production. Furthermore it is not cost efficient to change a 
component before it has reached its wear limit.  
In order to improve this strategy and make it more cost efficient, every component 
should be used as close as possible to its wear limit. This requires good 
documentation of prior failures for each component. Then statistical procedures 
could be used to extend each components maintenance interval and still prevent 
most of the failures.  
This strategy is required for all machines, where a breakdown would be hazardous 
to the staff or the environment. Furthermore it is a good strategy for components, 
where a change is much cheaper than a breakdown (e.g.: Oil-filters) (Schenk, 2010, 
pp. 28). 

2.1.4.3  Condition-based Maintenance 
Condition-based maintenance is a further improved preventive strategy. Instead of 
using fixed intervals, inspections are used to determine the best time for a 
component replacement. By doing that, the usage of wear stock of a component 
can be optimized, since a replacement is only done, if a component requires one. 
The surveillance of components can be done through manual inspections, or by 
using a condition monitoring system.  
Condition-based maintenance only works, when the degradation of components is 
measureable and when there is a clearly defined wear limit. Furthermore it is only 
recommended, if the costs for continual manual inspections or the costs for a 
condition monitoring system are economically justifiable. If those requirements are 
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given, condition-based maintenance can increase the availability of machines, 
prevent breakdowns and detect failures long enough before they occur, in order to 
give enough time to the maintenance management for planning a restoration 
(Schenk, 2010, pp. 30).  

2.1.4.4  Predictive Maintenance 
A further improvement of a condition-based approach, is the predictive 
maintenance strategy, which aims for detecting also concealed failures which are 
usually not measureable through condition monitoring. Starting point of this 
strategy is a more detailed look on the functions of a machine (Schenk, 2010, pp. 
32). The functions of a machine can be divided into three categories (Moubray, 
2000, pp. 35): 

1. The Primary function of a machine is derived from the main reason, a 
company acquired the machine.  

2. Secondary functions are additional requirements a machine is expected 
to fulfil. Those can be safety, environmental or economical functions of a 
machine. 

3. Superfluous functions are all functions or components that do not serve 
the primary or secondary function of a machine. According to Moubray 
(2000), it is not unusual that 5 – 20 % of the components of a complex 
system are superfluous. Even these components are not value-adding, a 
failure could still influence the machine’s performance. 

After determination and classification of the functions of a machine, potential 
failure modes can be identified and eventually eliminated. Compared to condition-
based maintenance, this strategy does not focus on primary functions where failures 
are more likely to detect. This strategy is looking at a machine as a whole, and 
tries to detect all potential (concealed) failure causes that could influence a 
machine’s performance. 
Especially the usage of Big Data Analysis has created new possibilities in the field 
of predictive maintenance. A set of data, consisting of various records of data about 
the primary, secondary and superfluous functions of a machine, is analysed 
concerning any patterns that would indicate an upcoming machine breakdown 
(Schenk, 2010, pp. 32; Moubray, 2000, pp. 35) . 
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2.1.5 Total Productive Maintenance 

The concept of total productive maintenance (TPM) was developed by Seiichi 
Nakajima in the 1960’s. The concept follows the principle of preventing all kind of 
losses in order to produce immaculate products without having any disturbances of 
production. In a nutshell this means Zero-defects and Zero-breakdowns. To achieve 
this, TPM combines different maintenance strategies and executes them through 
the participation of all employees (Reichel et al., 2009, pp. 79; Nakajima, 1988, p. 
1).  

Over the years TPM evolved from a concept into a management system which 
considers maintenance as a necessary and vital part of a business. In order to set 
measureable goals, TPM uses the OEE as a core metric for measuring the 
performance of a production system. This metric has become widely accepted and 
can therefore also be used for benchmarking purposes (Ahuja and Khamba, 2008, 
pp. 722).  

Figure 6 shows the calculation of the OEE, where the value adding operating time 
is reduced by six types of losses. These six losses are classified in three categories: 

 Failures & set-up adjustments (Downtime losses) 
 Idling & reduced speed (Speed losses) 
 Defects & reduced yield (Defect losses) 

The overall goal is to increase the value adding operating time and eliminate all 
kinds of losses. In order to identify losses properly, a visualization as it is done in 
Figure 6 should be done. This makes it easier to analyse the losses and set further 
steps for improvement projects (Matyas, 2011, pp. 191).  
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Figure 6: Calculation of OEE © (Bellgran and Säfsten, 2010, p. 263) 

The framework for those improvement projects is visualized in Figure 7. The 
rooftop of the TPM framework represents the goals and objectives of TPM. Those 
goals have to be specific, measureable, achievable and reasonable and furthermore 
they need a proper time frame (SMART-Goals). In addition, the whole 
management has to adhere to the defined goals. To achieve the goals, TPM provides 
five basic methods which are called the pillars of TPM. The foundation everything 
is built upon, represents the kind working behaviour a company has to promote, in 
order to work more efficient.   
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Figure 7: The five pillar model of TPM adapted from Matyas (2011, p. 200) 
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The key elements of a desired working behaviour are the following: 

 Teamwork: TPM involves all departments and it requires the active 
participation of all employees from the shop floor to the top management. 

 5S: A workplace organization method known from the Toyota Production 
System (Ahuja and Khamba, 2008, p. 732). 

o Sort – Sort out unnecessary items from the workplace 
o Set in order – Arrange items in a good order in order to pick them 

up easily 
o Shine – Clean the workplace regularly 
o Standardize – Set up standards for workplace organization 
o Sustain – Train and motivate people to follow the 5S-principle 

 Continuous improvement: Approach also known from the Toyota 
Production System which empathizes all employees to improve all products, 
processes or services constantly through small incremental steps.   

On this foundation, the five pillars of TPM, which represent the methods of 
reaching the goals, are built upon (Matyas, 2011, pp. 210): 

 Focus on main problems: An analysis of the OEE identifies losses, 
quantifies them and assigns them to different categories. When planning 
improvement projects to eliminate those losses, it is important to be aware 
of which kind of losses have the biggest impact on the OEE.  

 Autonomous maintenance: In contrast to traditional maintenance 
management concepts, TPM involves all employees to maximize the OEE. 
This does not mean that a machine operator has to be capable of doing all 
maintenance work that a machine requires. Much more this means that the 
responsibility for the condition of facilities is shared among all employees 
and therefore everyone has to take care to keep them in a good condition. 
In practice this is implemented by assigning routine work as cleaning, 
lubricating, small inspections or the repair of small failures, to the 
responsibility of the machine operator. By doing that, the maintenance staff 
has more time to focus on their main tasks. 
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 Planned maintenance concept: A planned maintenance concept 
guarantees to have the required resources in order to fulfil all maintenance 
tasks on time. Furthermore an adequate maintenance strategy for each 
equipment is developed for the whole equipment life cycle. 

 Maintenance prevention: A lot of failure sources of a machine have their 
origin in the machine’s design. The future maintainability is therefore mainly 
determined during the design and development phase of a machine. This 
emphasizes the need for cooperation and involvement of all departments 
over the whole life cycle of a good in order to achieve a high equipment 
effectiveness. 

 Education & training: In harmony with the continuous improvement 
philosophy, also employees have to be trained throughout their time of 
employment. The more employees know about the concept of TPM and 
about techniques for problem solving, the better they can participate in 
improvement projects.  

The experience of companies that implemented TPM successfully showed the 
following effects (Matyas, 2011, p. 216): 

 Increased product quality and equipment efficiency 
 Less working incidents 
 Positive effect on team spirit and sense of responsibility 

The TPM framework is more than a maintenance strategy. It allows a holistic view 
on the topic of maintenance and its importance for manufacturing companies. 

2.1.6 IT-Systems in Maintenance Management 

Since the practical part of this thesis is IT-related, the following shall provide an 
overview about what IT-systems are used within maintenance management.  

As other processes in the value chain, also maintenance management makes use of 
modern IT-systems in order to accomplish its tasks successfully. The main purpose 
of an IT-system for maintenance management is to provide the user all required 
data, information and technical documents which are necessary for the execution 
of maintenance tasks (Schenk, 2010, p. 231).  
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2.1.6.1 Maintenance Planning and Control Systems 
The most common systems used in the field of maintenance are the maintenance 
planning and control systems. The main purpose of such systems is the planning, 
control and surveillance of all maintenance activities. The core functions can be 
divided into six categories (Reichel et al., 2009, pp. 157): 

 Job planning and execution: 
All preventive and corrective maintenance work orders can be managed 
concerning task scheduling, capacity and cost planning. 

 Asset management: 
The asset management provides relevant data and information about all 
assets that are in the responsibility of the maintenance department. Besides 
master data of the assets, also historical data about prior machine failures, 
inspections, etc. is stored in the system. 

 Material management: 
The material management includes the management of spare parts, wear 
parts and other components that are necessary to ensure the availability and 
safety of the assets. 

 Resources management: 
The planning of personnel and operating resources is carried out by functions 
of resource management. 

 Analysis and reporting: 
Furthermore, maintenance planning and control systems provide tools, to 
create statistics and reports about the collected data. 

Besides maintenance planning and control systems, also inter-divisional IT-systems 
are used for the purpose of maintenance management. These can be Enterprise 
Resource Planning, Document Management, Product Data Management and 
Production Data Acquisition Systems. Especially the cross-linking of information 
of all those systems is becoming particularly important. An example for the need 
of cross-linking is the prioritization algorithm proposed within this thesis. The 
algorithm requires input data that comes from the production data acquisition 
system. The output is a priority ranking, which shall be implemented in the job 
planning function of a maintenance planning system. 
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The first part of the theory-chapter has given a brief overview about the topic of 
maintenance. The following part examines, which factors influence the priority of 
a maintenance task and how a data-driven prioritization method can be developed.  

2.2 Prioritization policies 

In maintenance management, the prioritization of work-orders can become a crucial 
task, especially in the case of limited resources. If there are more work-orders than 
there are workers available, the sequence of execution might have an impact on the 
performance of a production system. A random execution of work-orders might 
potentially extend the production downtime, cause losses and decrease the efficiency 
of production facilities. Since the importance of task prioritization is well recognized 
in industrial communities, most companies have internal policies to determine the 
optimal sequence of work-order execution. Factors that influence these decisions 
could be safety related issues, cost related issues as an assets value or machine 
related issues as the reliability of a machine and its importance to the overall 
production system.  Since there are so many aspects that have to be considered 
when determining priorities, prioritization policies make usually use of heuristic 
rules or common sense derived from human expert knowledge (Yang et al., 2007, 
p. 435). 

This thesis aims for providing a quantitative method to assign priorities, which can 
then be used as a decision support for maintenance management. In order to 
evaluate the performance of a prioritization policy, a measureable optimization 
criteria is needed. Common optimization criteria in maintenance management are 
(Wang, 2002, p. 482): 

 Minimize costs 
 Maximize availability 
 Minimize failure rate 
 Minimize downtime 
 Maximize reliability 

For complex production lines, performance indicators as availability, reliability or 
downtime cannot be determined for the whole production line directly. Much more 
the performance of a production line is a function of the performance of its single 
machines and is further dependant on the structure of the line. Within this thesis, 
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the total throughput is used as the optimization criteria for the evaluation of 
different prioritization policies. The throughput of a production line is usually 
determined by its constraints which are known as the bottlenecks of a system. Roser 
and Nakano (2015, p. 274) define a bottleneck as follows: 

“Bottlenecks are processes that influence the throughput of the entire system. 
The larger the influence, the more significant is the bottleneck.” 

From a static point of view, a bottleneck can be identified easily as the machine 
with the longest cycle time. But the more complex a production system is, the less 
it behaves static. Therefore also the bottleneck situation varies over time as a result 
of machine failures or other events that influence a production line’s dynamics 
(Roser et al., 2003, pp. 1192).  

In the following subchapters, different service and prioritization policies will be 
discussed. Concerning the bottleneck-based prioritization policies, different 
methods to identify bottlenecks dynamically will be described.  

2.2.1 First-In, First-Out 

First-in, first-out (FIFO) is a service policy in queuing theory, which states that 
requests are processed in the order they arrive. For the case of corrective 
maintenance task scheduling this means that all machines are treated equally and 
only the time a repair request occurs, decides which request is processed first. 
Within this thesis, the FIFO policy is used as a benchmark to which the other 
policies can be compared to.  

2.2.2 Heuristic Prioritization Policies 

Even without a dynamic bottleneck detection, the workers on a production line are 
usually capable of identifying critical machines. Therefore the FIFO scenario does 
not come close to reality, since maintenance staff would always prioritize critical 
machines over non-critical ones. In the project partner’s plant, maintenance staff is 
using the following facts as a decision support for prioritization: 

 Part-Out-Part-Out time 
 Availability  
 Redundancy of machines 
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All these methods are easy to apply since all required data is already available in 
the production data acquisition system. But these methods provide only limited 
information about the performance of a machine and they are explicitly no 
bottleneck detection methods. These methods are only used in order to have a 
simulation scenario that comes close to the heuristic prioritization policy that 
maintenance staff is nowadays working with. In the following, the three methods 
are discussed briefly: 

2.2.2.1 Part-Out-Part-Out Time  
The part-out-part-out time is the timespan from a part leaving the machine until 
the next part is leaving the machine. In the following this time is also called “true 
cycle time”. In comparison to the theoretical cycle time of a machine, the true cycle 
time also takes into account the time a machine is down, blocked or starved. The 
more a machine is blocked, starved or down, the more the true cycle time will 
deviate from the theoretical cycle time. One drawback of this method is, that it 
does not take into account whether a machine’s cycle time is extended due to 
external reasons (Blocked / Starved) or due to internal reasons (Machine Failure).  

In order to have a statistical confidence of the calculated true cycle time, all cycles 
over a simulation run of 90 days are recorded and the median of the recorded cycle 
times is calculated. The reason for using the median instead of the arithmetic 
average is that the cycle time is limited downwards to the theoretical cycle time, 
whereas it is theoretically not limited upwards. In case of a long time to repair, the 
arithmetic mean would deliver a biased result. 

Figure 8 shows an example of measured true cycle times. The machine has a 
theoretical cycle time of 30 seconds, so this is the most frequent cycle time 
measured. But due to blocking, starvation and machine errors, the true cycle time 
is sometimes extended. As a result of that, the arithmetic mean of this sample is 
61,05 seconds. The median, which is the value where 50 % of the measured cycles 
are shorter and 50 % are longer, brings a result of 32,25 seconds, which is in that 
case a statistically more accurate result. 
 



Chapter 2 Theory 

21 
 

 
Figure 8: Histogram of measured part-out-part-out times 

In order to generate priorities out of the true cycle time, the machine with the 
longest true cycle time is assigned the priority of 1. The priority of all other 
machines is calculated through the ratio of their true cycle time to the longest true 
cycle time. 

2.2.2.2 Availability 
Another method that is used in practice for estimating the criticality of machines 
is to compare their availabilities. As already described in chapter 2.1.1, a machine 
is available whenever it is capable of producing during the planned production time 
assuming all external resources are given. This means that during the planned 
production time, the only machine state that is reducing a machine’s availability, 
is the state “Machine Failure”. This is why the availability can also be calculated 
only by knowing the MTBF and MTTR values of a machine.  

The biggest drawback of this method is that it does not take into account any 
effects caused by a production line’s dynamics. Whether a machine is blocked 
frequently or not, will not influence the availability. But these external factors have 
a huge impact on the performance of a machine. Therefore the availability is a good 
indicator for evaluating the performance of maintenance management, but for 
evaluating the performance of a machine itself, it has only limited use.  
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2.2.2.3 Redundancy 
Using the redundancy of machines as a prioritization factor is a very straight 
forward approach. Even the redundancy itself is not meaningful for the bottleneck 
situation of a production line, it is very useful to estimate the consequences of a 
machine breakdown. The reason for that is that a breakdown of a redundant 
machine will only slow down material flow, whereas a breakdown of a single 
machine will stop material flow completely.  

This failure sensitivity on machine breakdowns was shown by Neubacher et al. 
(2016) using simulation.  

Figure 9 shows a production line with five operating sequences with buffers in 
between. To have a baseline for the failure sensitivity, a simulation run over 72 
hours without any machine failures is performed. Then for each operating sequence 
a simulation run is performed, where one machine of the sequence breaks down. 
The downtime is initially zero and is then increased by 15 minutes up to 10 hours 
for each machine. The impact of the breakdown on the overall system performance 
is measured in order to draw conclusions about the systems failure sensitivity. 

Figure 10 shows the results obtained in the simulation. The time a machine was 
taken down during the experiment is plotted on the horizontal axis, the impact on 
the system’s performance on the vertical axis. For example taking down one 
machine of the OS 50 for 18000 seconds, will reduce the system’s throughput of the 
next 72 hours by six percent. 

Figure 9: Failure sensitivity simulation setup  © Neubacher et al. (2016) 
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Two interesting effects are shown in this experiment. First, the duration until a 
breakdown will have an impact on the system’s performance, is depending on a 
machine’s cycle time and buffer level. Second, the curves are linear and their slope 
differs among the operating sequences depending on the amount of redundant 
machines they have. The less redundant machines an operating sequence has, the 
bigger the impact of an additional hour of downtime on the system’s performance. 

Since the method of Neubacher et al. (2016) requires the usage of simulation, it 
cannot be used as a heuristic method that maintenance worker on the plant floor 
can use for prioritizing. But the experiments confirms, that a very basic 
prioritization can be done using the number of redundancies in an operating 
sequence. On the plant floor, maintenance workers would then assign the highest 
priority to the operating sequence with the lowest number of redundant machines 
and vice versa. 

2.2.2.4 Comparison of the Heuristic Methods 
The benefit of the proposed heuristic methods is, that they are very easy to apply 
and no further data processing is required. But the Availabilities and the Part-Out-
Part-Out times of machines cannot be used for assessing the criticality of machines. 
A machine with a short cycle time and a low availability does not have to be more 
critical than a machine with a long cycle time and a high availability.  

Figure 10: Failure sensitivity of redundant machines © Neubacher et al. (2016) 
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The Part-Out-Part-Out Time takes the times a machine is under repair, blocked 
or starved into account. But since it does not distinguish between those states, in 
which a machine is not producing, no statement about the criticality for the system 
can be made.  
The only heuristic method which is suitable for prioritization from a theoretical 
point of view, is using redundancies. A breakdown of a redundant machine will 
always have a less severe impact on the system performance than the breakdown 
of a single machine.  

2.2.3 Bottleneck Prioritization Policies 

The last chapter described three basic methods how prioritizing machines can be 
done on the plant floor. In the following chapter, bottleneck identification methods 
which are using real-time data are introduced. The aim is to improve the total 
system throughput by assigning high priority to bottleneck machines and by doing 
that, reduce their time to repair. 

2.2.3.1 Blocking & Starvation Probability  
This method utilizes the blockage and starvation probabilities of machines to 
identify bottlenecks. A common definition of a bottleneck is that it is the machine 
which limits a system’s performance. Therefore an improvement in non-bottleneck 
machines will have a lower impact on the overall system improvement than 
improvements on the bottleneck machine. Equation (5) shows a mathematical 
formulation for the bottleneck definition. The initial throughput of a production 
system is compared to the new throughput after one machine ݅ is improved by 
whether reducing TTR, increasing TBF or reducing the cycle time. ∆ܶ ௦ܲ௬௦, is the 
system’s throughput increment which is caused by an improvement of machine ݅ 
and ∆ܶ ܲ is the machine’s throughput increment. A bottleneck can be identified as 
the machine with the highest system sensitivity value ߠ  Chang et al., 2007, p. 
655). 

௫ߠ = ܺܣܯ ൬
∆ܶ ௦ܲ௬௦,ଵ

∆ܶ ଵܲ
,
∆ܶ ௦ܲ௬௦,ଶ

∆ܶ ଶܲ
, … ,

∆ܶ ௦ܲ௬௦,

∆ܶ ܲ
൰ (5) 



Chapter 2 Theory 

25 
 

This definition of a bottleneck is very precise, but it has the big disadvantage, that 
it is not possible to determine a bottleneck based on real-time production data. An 
indirect method has to be developed. The foundation of the proposed data-driven 
method are the characteristics a bottleneck usually follows. For example, 
bottlenecks cause upstream machines to be blocked and downstream machines to 
get starved (Li et al., 2009, p. 7053).  

Figure 11 shows a 5-machine system with four buffers in-between. Below each 
machine, the probability for the machine to be blocked or starved is written down. 
The arrows which are pointing up- or downstream are indicating in which direction 
the bottleneck has to be. Kuo et al. (1996) stated the following rules for assigning 
those arrows: 

 If the blockage probability of a machine is greater than the starvation 
probability of the next downstream machine, the bottleneck is located 
downstream the line. In the case shown in Figure 11, this is true for M1. 

ܤܶ > ܶ ܵାଵ  , ݆ = 1, … , ݊ − 1 (6) 

 If the blockage probability of a machine is smaller than the starvation 
probability of the next downstream machine, the bottleneck is located 
upstream the line. In the case shown in Figure 11, this is true for M2 to M5. 

ܤܶ < ܶ ܵାଵ  , ݆ = 1, … , ݊ − 1 (7) 

Figure 11: Bottleneck identification using blockage and starvation probabilities
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When applying those rules, a bottleneck can be identified, if two arrows are pointing 
towards a machine. For the case of the first and the last machine, a bottleneck is 
identified whenever there is one arrow pointing towards the machine. If  ܶܤ =

ܶ ܵାଵ or ܶܤ = ܶ ܵାଵ and one arrow is pointing towards a machine, this machine 
can also be considered to be a bottleneck. Figure 12 shows configurations in which 
not one, but multiple bottleneck exists.  

Assigning arrows according to (6) and (7) will identify two bottlenecks, but 
statements about which bottleneck is more severe cannot be made. Therefore Kuo 
et al. (1996) introduced the Bottleneck Severity ܵ which is calculated as follows: 

ܵଵ = ܶܵଶ −   ଵܤܶ

ܵ = ൫ܶܤିଵ + ܶ ܵାଵ൯ − ൫ܶܤ + ܶ ܵ൯ , ݆ = 2, … , ݊ − 1 (8) 
ܵ = ିଵܤܶ −   ܤܶ

If there are multiple bottlenecks in a system, the machine with the largest 
bottleneck severity is the primary bottleneck. Using the equations from (8) both 
examples from Figure 12 can be solved finding a primary bottleneck.  

Kuo et al., (1996, p. 248) stated that they justified the equations (6) to (8) through 
discrete event simulation. Also Chiang et al. (2001, pp. 566) simulated dozens of 

Figure 12: Examples of multiple bottlenecks 



Chapter 2 Theory 

27 
 

systems using equations (6) to (8) to identify bottlenecks and they came to the 
conclusion that discrepancies between the results from this method with a 
validation using the system sensitivity value are quite infrequent and minimal in 
case they occur. Therefore the proposed method can be used for bottleneck 
identification in serial production lines.  

For the case of redundancies, average values of the blocking and starvation 
probabilities of the machines in an operating sequence are calculated. Using this 
averages, the redundant operating sequence can be treated like a single operating 
sequence for the bottleneck detection. 

Adaption for complex manufacturing systems 
Another heuristic bottleneck detection method based on blocking and starvation 
probabilities was introduced by Li et al. (2007). Similar as the method of Kuo et 
al. (1996) it makes use of the characteristics a bottleneck machine usually follows. 
A Machine ݆  is the bottleneck of a system with ݊ -machines if the following 
conditions are fulfilled (Li et al., 2007, p. 77): 

 Bottleneck machines tend to make upstream machines blocked 

ܤܶ − ܶ ܵ > 0 ∶ ݅ ∈ ሾ1, … , ݆ − 1ሿ ;  ݆ ≠ 1, ݆ ≠ ݊ (9) 

 Bottleneck machines tend to make downstream machines starved 

ܤܶ − ܶ ܵ < 0 ∶ ݅ ∈ ሾ݆ + 1, … , ݊ሿ ;  ݆ ≠ 1, ݆ ≠ ݊ (10) 

 Bottleneck machines have a lower overall sum of blocking and starvation 
than the neighbouring machines 

ܤܶ + ܶ ܵ < ିଵܤܶ + ܶ ܵିଵ ;  ݆ ≠ 1, ݆ ≠ ݊ (11) 
  

ܤܶ + ܶ ܵ < ାଵܤܶ + ܶ ܵାଵ ;  ݆ ≠ 1, ݆ ≠ ݊ (12) 

 For ݆ = 1: 

ଵܤܶ − ܶܵଵ > ଶܤܶ  &  0 − ܶܵଶ < ଵܤܶ  &  0 + ܶܵଵ < ଶܤܶ + ܶܵଶ  (13) 
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 For ݆ = ݊: 

ିଵܤܶ − ܶܵିଵ > ܤܶ  &  0 − ܶܵ < ିଵܤܶ  &  0 + ܶܵିଵ < ܤܶ + ܶܵ (14) 

When plotting the blockage and starvation probabilities of a production line, the 
underlying idea of this method can be visualized. A bottleneck marks a “turning-
point” in the trend of blockage and starvation. This turning-point can be seen in 
Figure 13 at M3. 

Whereas machine M1 and M2 are more blocked than they are starved, this trend 
changes at M3. Furthermore M3 has the lowest sum of blocking and starvation. 
Since equations (9) to (14) are fulfilled, M3 can be identified as the bottleneck of 
the system. Li et al. (2007) verified the proposed method analytically for a three-
machine no-buffer production line. Furthermore they introduced a heuristic notion 
of a bottleneck index ܫ, which can identify the primary bottleneck in a case of 
multiple bottlenecks (Li, 2009, p. 6932): 

ଵܫ =
ܶܵଶ

ܶܵଵ + ଵܤܶ
 (15) 

ܫ =
ିଵܤܶ) + ܶ ܵାଵ)

ܤܶ) + ܶ ܵ)
 , ݅ = 2, … , ݊ − 1 (16) 

ܫ =
ିଵܤܶ

ܶܵ + ܤܶ
 (17) 
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Figure 13: Trend of blocking and starvation in a serial production line



Chapter 2 Theory 

29 
 

In a case of more than one identified bottlenecks, the machine with the highest 
bottleneck index ܫ is the more significant one.  
Further modifications are required in order to use this method for complex 
manufacturing systems. Figure 14 shows an example of concurrent processes as they 
exist in complex manufacturing systems. After M1, the part is processed at the 
station S1, where 3 processes are performed simultaneous until the part moves on 
to M5.  

The three processes M2, M3 and M4 have to be transformed into one virtual 
machine V2 before equations (9) to (14) can be used to detect the bottleneck of the 
line. 

The transformation is done using further considerations on the behaviour of the 
bottleneck within station S1. The part cannot move on until all processes M2, M3 
and M4 are finished. This means that the bottleneck of the three processes within 
S1 will cause the other two processes to become starved frequently.  

Therefore the bottleneck of a concurrent station is defined as the machine with the 
lowest ܶ ܵ . Once the bottleneck within a station is found, the station can be 
transformed into a virtual machine that has the blocking and starvation 
probabilities of the bottleneck of the station. Then the line can be treated as a 
serial production line using equations (9) to (14) to identify the overall bottleneck 
(Li, 2009, pp. 6932). 

M1 B M5 B S1 

M2 

M4 M3 

M1 B M5 B V2 

Transform concurrent process 
S1 in virtual machine V2 

Figure 14: Transformation of a concurrent station into a virtual machine 
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Another element of complex manufacturing systems is shown in Figure 15. Whereas 
the main path is a serial line, some parts leave the main part at C4, go through the 
feedback loop and enter the main path again at C2.  

For identifying bottlenecks in a system with a feedback loop, first the main path is 
analysed using the same equations as for the serial line. If the machines at the 
branches (C2 and C4) are not identified as bottlenecks, the machines in the 
feedback loop cannot constrain the main system and the bottleneck has to be 
whether M1, M3 or M5. 
If C2 or C4 are identified as bottlenecks in the first analysis, the feedback loop has 
a potentially great influence on the overall system. A second analysis is required in 
order to find out, whether the feedback loop is slowing down the branch machines 
in the main path, or the branch machines are really the overall bottleneck of the 
system. Therefore potential bottlenecks in the feedback path (F1, F2 and F3) have 
to be detected. If the results of the bottleneck analysis of the feedback path detects 
the first or the last machine of the path as a bottleneck, the results of the first 
analysis are correct and the overall bottleneck is at the branches of the system (Li, 
2009, p. 6933).  

But if the second analysis identifies another machine than the last or the first as a 
bottleneck, in the example of Figure 15 machine F2, then this machine is also the 
bottleneck for the overall system. This is because the border-elements of the 
feedback path are slowed down by a bottleneck inside the path and as a result of 
that, they are slowing down the branch elements (C2 or C4) of the main path. 
Therefore the performance of the overall system is limited by the performance of 
the bottleneck inside the feedback loop (Li, 2009, p. 6934). 

B C2 

F2 F3 

M1 B B C4 M3 B M5 

F1 

Main Path 

Feedback Path 

Figure 15: Feedback loop in a serial line production 
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The same procedure can be applied to branches as shown in the example of Figure 
16: 

In a first analysis, the main path from M1 to M5 is analysed. If C4 turns out to be 
the bottleneck, a second analysis of the path M6 to M8 has to be conducted, to 
find out if this path is slowing down the branch machine C4 or if C4 is the true 
bottleneck of the system. 

Since an analytical verification of complex production systems as shown in Figure 
14, Figure 15 and Figure 16 is intractable, the proposed method was verified using 
simulation. The results were compared with the bottlenecks identified using a 
sensitivity analysis according to the bottleneck definition from equation (5). Li 
(2009) stated, that in most cases (more than 90% of over 2000 cases), the real 
bottleneck was successfully identified using the proposed method. 

Since the planned simulation scenarios do not comprise production lines with 
branches or feedback loops, the first proposed blockage and starvation method, 
which is also called Arrow Method will be used for the simulation study in this 
thesis. 

2.2.3.2 Active period method 
The active period method is another method to detect the entity of a system, which 
has the largest effect on the overall system performance. The underlying idea is 
that the longer an entity is working without interruptions, the more likely it is the 
bottleneck of a system. The momentary bottleneck at a given point of time, is the 
entity which has the longest uninterrupted active period at that point of time. An 
overlapping of active periods of two entities, signals that the bottleneck is shifting 

M1 M2 M3 C4 B B B B M5 

M6 M7 M8 B B 

Figure 16: Branch in a serial production line 
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from one to another entity. The aim of the active period method is to detect and 
monitor the momentary bottlenecks as well as the shifting bottlenecks of a 
production system at any time ݐ (Roser et al., pp. 59). 

The first step of the described method is to group all possible states of a system 
into an active or an inactive state. According to Table 1, active states of a machine 
are processing, repair, changing tools, service. Inactive states of a machine are 
starved and blocked. One of the benefits of this method is that it can be applied to 
a variety of system entities as shown in Table 1. The active period method does 
not require any information about the structure of a system. The only data required 
are the active and inactive states of the system’s entities. 

Table 1: States of different system entities adapted from (Roser et al., 2001, p. 950) 
Entity Active States Inactive States 
Machine Processing, Repair, 

Service, Tool-change 
Starved, Blocked 

AGV Moving to pick-
up/drop-off location, 

Recharge, Repair 

Waiting 

Human Worker Working, Recovering Waiting 
Supply Obtaining new part Blocked 
Output Removing part Waiting 

Whereas a conventional bottleneck detection method would now calculate the 
percentage a machine is processing in order to determine the workload of the 
machine, the active period method measures the duration a machine is in an active 
state. As shown in Figure 17, the active state of a machine is not interrupted by 
repair or tool changing work. Only waiting which is usually because of blocking or 
starvation will interrupt an active state (Roser et al., 2001, p. 950). 

Figure 17 Active Periods of a machine adapted from (Roser et al., 2001, p. 950) 

Processing Repair Processing Starved Starved Processing 
Tool 

Change 

Time 

Active Period Active Period 
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Out of this perspective it can be seen, that a machine that is active over a long 
period without any interruptions is very likely to be the bottleneck, since it is not 
influenced by other machines. On the other hand a machine that is switching its 
state from active to inactive very often, cannot work continuously because of other 
machines that make it starved or blocked. Therefore machines that are often in an 
inactive state cannot be the bottleneck of a system.  

To determine the momentary bottleneck of a system, the method compares the 
active durations of all machines in the system. If at a time ݐ no machines are in an 
active state, there is no momentary bottleneck in the system. If there are more 
machines active, the bottleneck for the current period has to be the machine that 
has the longest uninterrupted active period.  

The above described method is capable of identifying the bottleneck of a system at 
any point of time. But in this thesis the goal of the bottleneck identification is to 
have an objective variable for the prioritization of maintenance activities and 
therefore it would not be beneficial to switch the priorities every time a machine 
changes its state. This means not the bottleneck at an instant of time, but rather 
at a given period of time is of interest. In order to do so, two different methods are 
described in the following: 

Average Active Period  
Based on the machine data, each machine ݅ can be classified into active and inactive 
states. Over a certain period of observations, each machine ݅ has ݊ active periods 
of which each period has a duration of  ܽ,. The result is a set of durations ܣ for 
each machine: 

ܣ = ൛ܽ,ଵ, ܽ,ଶ, … , ܽ, ൟ (18) 

The average active period (AAP) of a machine ݅ over a certain period of observation 
is calculated as shown in equation (19): 

ܽ =
∑ ܽ,


ୀଵ

݊
 (19) 

The machine with the longest average active period ܽ  is considered to be the 
bottleneck of a system. Roser et al. (2001, pp. 949) have shown using simulation, 
that this method can detect bottlenecks reliably in steady state production systems. 
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To detect also shifting bottlenecks in non-steady state systems, the average active 
period method was developed further. 

Shifting Bottleneck Detection 
A shifting of the bottleneck occurs during the overlapping phase of two active states 
as shown in Figure 18. During these overlapping phases there is no unique 
bottleneck in the system. Both machines are denoted as shifting bottlenecks during 
the overlapping phase.  

The example in Figure 18 shows a simple system consisting of two machines. At 
the selected time  ݐ, Machine 1 is the sole bottleneck since it has the longest active 
period at that time. Before Machine 1 switches to inactive, both machines are the 
shifting bottleneck of the system, since the bottleneck is shifting from Machine 1 
to Machine 2. During this phase the primary bottleneck cannot be determined 
exactly. So both machines are considered to be equally. The same happens at the 
end of the bottleneck period of Machine 2, when the bottleneck switches back to 
Machine 1. 

To determine the bottleneck over a period of time, the percentage of time a machine 
is the sole and the percentage a machine is the shifting bottleneck is calculated for 
the selected period of time.  

Figure 18: Shifting bottlenecks (Roser et al., 2002, p. 1081) 

Figure 19: Average bottleneck over a period of time (Roser et al., 2002, p. 1082) 
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Figure 19 shows the results of the average bottleneck detection with the example 
given in Figure 18. Machine 1 is more often the sole bottleneck of the system and 
therefore improvements on the performance of this machine will yield in a larger 
improvement of the system performance than an improvement of Machine 2 (Roser 
et al., 2002, p. 1081). 

When deriving rules for prioritizing out of the shifting bottleneck detection results, 
the first decision criteria is the sum of a machine’s sole and shifting duration. The 
machine with the highest sum can be considered as the bottleneck of the system. If 
there are machines with an equal sum, the machine with the longer sole bottleneck 
duration is considered to be the more significant bottleneck. 

The drawback of the shifting bottleneck method compared to the average active 
period (AAP), is that it only detects the most significant bottleneck of a system 
and provides no information about the non-bottleneck machines.  

2.2.3.3 System Sensitivity Analysis 
The last bottleneck identification method is the system sensitivity analysis. The 
basics of this method and equation (20) where already introduced in chapter 2.2.3.1. 
The following shall give a more detailed explanation of how this method can be 
applied for bottleneck detection in practice. 

௫ߠ = ܺܣܯ ൬
∆ܶ ௦ܲ௬௦,ଵ

∆ܶ ଵܲ
,
∆ܶ ௦ܲ௬௦,ଶ

∆ܶ ଶܲ
, … ,

∆ܶ ௦ܲ௬௦,

∆ܶ ܲ
൰ (20) 

The throughput of a system ∆ܶ ௦ܲ௬௦ is a complex function consisting of the system’s 
single machines throughputs. An analytical solution for equation (20) cannot be 
given for a system with more than three machines (Chang et al., 2007, p. 656). 
Therefore the system sensitivity values ߠ have to be determined using experiments 
or simulation. 

To determine the system sensitivity values for a ݊-machine system, ݊ experiments 
are necessary. In each experiment the performance of one machine ݅ is changed by 
reducing the time to repair. Then the impact on the total system throughput 
∆ܶ ௦ܲ௬௦, is observed. Since non-bottleneck machines do not limit a system’s 
performance, a reduced time to repair of such a machine will not improve the 
system’s performance. The system throughput increment to its own throughput 
increment ratio will be close to zero, whereas the ratio of a bottleneck machine can 
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be up to 1. The bottleneck of a system is the machine with the maximum system 
sensitivity value ߠ௫ (Chang et al., 2007, pp. 655).  

If all machines are having a sensitivity value of ߠ = 0, the production system is 
optimum balanced. In that case, no balance-losses occur and the performance of 
the overall system cannot be improved by improving one single machine (Chang et 
al., 2007, p. 655) 

Applying this method for a long-term bottleneck detection, equation (20) will 
deliver the same result for all machines. The reason for that is, that a throughput 
increment of one machine has to result in a similar throughput increment of the 
total systems. Because in case of limited buffer capacities and no redundancies, a 
single machine cannot produce more parts than the total systems produces on a 
long run. Therefore for each machine the sensitivity value would be close to 1. In 
order to determine long-term bottlenecks using a system sensitivity analysis, 
equation (21) is used: 

்ߠ = ܶ∆൫ܺܣܯ ௦ܲ௬௦,ଵ, ∆ܶ ௦ܲ௬௦,ଶ, … , ∆ܶ ௦ܲ௬௦,൯ (21) 

Equation (21) states, that the bottleneck of a system, is the machine which’s single 
throughput increment will generate the highest system throughput increment. This 
equation is used for the validation of the bottleneck detection algorithms in 
chapter 4.1. 

2.2.4 Comparison of Bottleneck Detection Methods 

Before comparing the simulation results, a theoretical investigation of the 
bottleneck detection methods is done. The methods shall be compared regarding 
the following criteria: 

 Accuracy in a static system 
 Accuracy in a dynamic system 
 Effort for implementation 
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2.2.4.1 Heuristic Methods 
The heuristic methods determine a bottleneck using the following facts: 

 Cycle time 
 Part-Out-Part-Out time 
 Availability 

The biggest advantage of the heuristic methods is that they are very easy to 
implement and easy to comprehend. The required data is usually available and no 
actions have to be taken in order to prioritize machines using this methods. 

Concerning their accuracy, a prioritization using the cycle time only works in static 
systems. Under the assumptions of no machine breakdowns and constant cycle 
times, a system can be considered as static. In such systems, the machine with the 
longest cycle time will always be the bottleneck. The part-out-part-out time is not 
suitable for prioritization in static systems with finite buffers, since all machines 
will have a similar part-out-part-out time in a steady state. Also the availability is 
not suitable for prioritization in static systems, since all machines have a similar 
availability in such systems. 

In dynamic systems, where random machine failures occur, the heuristic methods 
are more problematic. All three methods cannot determine a bottleneck accurately. 
The reason for that is that machine breakdowns make the system behaviour more 
dynamic. Depending on the frequency, the time of a breakdown, the time to repair, 
and the buffer levels, the bottleneck may shift in a production line. Roser and 
Nakano (2015, pp. 276) have shown that the cycle time can therefore not be used 
to prioritize machines in dynamic systems. The part-out-part-out time does 
consider delays that occur due to the line dynamics. But it does not consider the 
reason why a machine has an extended part-out-part-out time. A machine that 
breaks down frequently will cause its neighbouring machines to be blocked and 
starved frequently. But in that case all machines will have the same extended part-
out-part-out time and it cannot be distinguished which machine is more critical to 
the system. Comparing the availability values of machines would make a distinction 
possible, but using the availability for prioritization only works under the 
assumption that all machines have an equal cycle time. Whether a fast machine 
with low availability is more critical than a slow machine with high availability 
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cannot be determined accurately. Furthermore the availability is calculated using 
averages and can therefore not track the line dynamics accurately.  

2.2.4.2 Blockage & Starvation Probability 
Theoretically this method is suitable for detecting bottlenecks in static and in 
dynamic systems. For the arrow-based method described in chapter 2.2.3, Roser 
and Nakano (2015, pp. 277) have shown that situations might occur where the 
method cannot provide any statement about the bottleneck situation. This is the 
case when two neighbouring machines have equal blockage and starvation 
probabilities. But this is a special case and shall not be seen as a limiting factor for 
this method. More problematic is the distinction between primary and secondary 
bottlenecks, which cannot be done using the arrow-based blockage and starvation 
method. The modification of the method described in chapter 2.2.3 is capable of 
identifying and ranking multiple bottlenecks. But also for the modification, Roser 
and Nakano (2015, pp. 278) have shown that the method cannot identify 
bottlenecks reliably in practice. 

The implementation of a method using blockage and starvation probabilities 
requires a lot of effort. Even the data is usually available in production data 
acquisition systems, the processing of the data cannot be done easily. The structure 
of the line has to be known for this method and the algorithm has to be modified 
for each line where it shall be implemented. Furthermore, this method is not 
suitable for flexible production systems or for job shop layouts. 

2.2.4.3 Active Period Method 
Roser and Nakano (2015, pp. 278) have shown that the active period method is 
capable of identifying bottlenecks in static and in dynamic systems accurately. 
Furthermore, this method can provide a ranking of multiple bottlenecks which is a 
very important aspect especially in large production systems. 

The required data for this method is usually available in all production data 
acquisition systems. A big advantage of this method is, that it does not require any 
information about the production line structure or the position of machines within 
a line. Therefore the algorithm, which will be explained in chapter 3.1.1, can be 
applied to all production systems without any restrictions. There are also no further 
modifications necessary if the structure of a production system is changed. 
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Furthermore this method can also be used for flexible production systems or job 
shop layouts. 

2.2.4.4 System Sensitivity 
In terms of accuracy, this method is the best of all described bottleneck detection 
methods. That is why the System Sensitivity approach is in literature usually used 
to validate other bottleneck detection methods. 

The big disadvantage of this method is, that it requires the use of simulation and 
can therefore not be implemented easily. Every time the bottleneck shall be 
detected, a simulation has to be conducted using the actual system parameters as 
cycle times and buffer levels. Furthermore the structure of the line has to be known, 
since a simulation model has to be created for each production line separately. 
Therefore this method has only a limited applicability for dynamic task 
prioritization in maintenance management. 

Table 2: Comparison of bottleneck detection methods 

 

Heuristic 
Methods 

Blockage & 
Starvation 

Active Period 
Method 

System 
Sensitivity 

Accuracy for static systems + ~ + + 

Accuracy for dynamic systems - ~ + + 

Effort for implementation + - ~ - 

Table 2 provides an overview of the discussed methods. From a theoretical point 
of view, the Active Period Method and the System Sensitivity Method are the best 
bottleneck detection methods. Still all four methods will be evaluated using 
simulation. 

2.3 Simulation 

The described prioritization policies will be analysed and verified using simulation. 
Therefore the following sub-chapter will give a brief introduction to the topic of 
simulation and especially to discrete event simulation. 
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2.3.1 Introduction to Simulation 

Simulation is a technique to imitate the operations of real-world processes. The 
processes of interest are usually called a system. Figure 20 shows different methods 
of how systems can be studied. In a lot of fields of research, studying the actual 
system or a physical model of a system is expensive or simply impossible. Therefore 
mathematical models are established with the goal to imitate the real system’s 
behaviour as accurate as necessary. The model building can be described as a 
simplification of the reality. The model itself consists of mathematical and logical 
relationships that can be used for the understanding of a system’s behaviour. 
Depending on how complex the mathematical relationships of a model are, 
analytical solutions may or may not be available. Complex models where analytical 
solutions cannot be found have to be studied by means of simulation (Law and 
Kelton, 2000, pp. 1). 

If analytical solutions are not feasible and simulation is chosen to analyse a system’s 
behaviour, Banks (2005, pp. 11) suggests the following steps to carry out a 
simulation study: 

1. Problem definition 
At the beginning of a simulation study the real-world problem has to be 
defined clearly. 
 
 

System 

Experiment with 
the actual 

system 

Experiment with a 
model of the 

system 

Physical models Mathematical 
models 

Analytical 
solutions Simulation 

Figure 20: Methods to study a system adapted from (Law and Kelton, 2000, p. 2) 
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2. Setting of objectives and overall project plan 
The objectives are the questions to be answered by the simulation. A 
decision if simulation is the appropriate methodology to answer those 
questions has to be made. Furthermore a project plan including a timetable, 
involved people and costs of the study has to be done. 

3. Model conceptualization 
In this step the assumptions about how the system works are defined. A 
crucial task in modelling a system is to abstract the essential features of it. 
The quality of the model is strongly dependant on the level of abstraction 
and complexity. It is recommended to start with a simple model and build 
it then towards the required complexity. 

4. Data collection 
When abstracting a problem and building a model, it is important to know 
which data is required to simulate a system’s behaviour. Looking at a 
production line simulation, an objective of the simulation could be to 
maximize the throughput. In this case throughput is classified as output 
data. Then there are several parameters as cycle times, buffers and MTBFs 
which influence the throughput. These parameters are input data. The 
model itself describes how input parameters influence output parameters. 
The collection of the required data is an important step to get a better 
understanding of the system and the level of abstraction. Furthermore data 
of the real-world system is necessary to validate the simulation model.  

5. Model translation 
The result of the abstraction of a real-world system is a model consisting of 
mathematical and logical relationships between the system’s entities. The 
next step is to translate this conceptual model into computer language. This 
is usually done using simulation software. 

6. Verification 
The verification is the step of checking whether the computer model is 
representing the logical structure of the conceptual model or not.  

7. Validation 
After verifying the computer program it is necessary to check if the 
conceptual model itself is an accurate representation of the real-world 
system. This can be done by comparing the model behaviour to the real-
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world system behaviour. If discrepancies cannot be eliminated through 
calibration, the conceptual model has to be changed. 

8. Experimental design 
This step defines the scenarios which are planned for the simulation study. 
The input parameters which shall be adapted to achieve a desired output 
are determined. Furthermore the number and length of simulation runs is 
defined. 

9. Simulation runs and analysis 
Different scenarios are simulated and analysed to estimate measures of 
performance of the system. 

10. Additional simulation runs 
Depending on the results of the first simulation runs, it is decided whether 
further scenarios are necessary or not. 

11. Documentation and reporting 
The results of a simulation study have to be reported concisely and clearly 
in a final report. This enables others to review the model formulation, 
scenarios, results of the simulation and the recommended solution for the 
initial problem.  
In addition to the final report, a program documentation shall help others 
users to understand and use the computer model which was built. 

12. Implementation 
The final step is to implement the results of the simulation to solve the real-
world problem. 

These twelve steps serve as a guideline for conducting a simulation study within 
this thesis. The following sub-chapter shall provide a closer look on simulation 
modelling and the major simulation approaches. 

2.3.2 Simulation Modelling 

Simulation modelling includes the processes of transforming a real-world problem 
into a model, analyse and optimize the model and transform the solution back into 
the real-world system. Depending on the problem, different approaches are used for 
simulation modelling. Figure 21 provides an overview over the major approaches 
which are used.  
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Figure 21: Major approaches in simulation modelling © (Borshchev and Filippov, 
2004, p. 3) 

The approaches are used for different kind of processes and different levels of 
abstraction. To give an example, System Dynamics deals with problems where a 
high level of abstraction can be applied and where the processes that have to be 
simulated are mainly continuous. On the other hand, Discrete Event Simulation is 
used to picture processes which follow discrete time steps. 

2.3.2.1 System Dynamics Simulation 
System Dynamics can be applied fur studying urban, organizational, social or 
ecological types of systems. The processes within this systems are represented in 
terms of stocks, flows between those stocks and information about the values of the 
flows. The use of flows makes clear that the processes in System Dynamics Models 
behave continuously and they do not follow discrete time steps. The level of 
abstraction in System Dynamics is very high. This means, not single elements of 
the system are modelled, much more the behaviour of aggregates is studied. The 
behaviour of the aggregates is usually modelled using feedback loops which describe 
how an increase of one aggregate will influence other aggregates (Borshchev and 
Filippov, 2004, pp. 4).  

2.3.2.2 Agent Based Simulation 
In contrast to the other simulation approaches shown in Figure 21, there is no 
central logic in an agent based model which controls the model’s behaviour. Much 
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more the behaviour is defined at an individual level and the global behaviour 
emerges as a result of all individual’s behaviours. All entities, called agents, follow 
their own behaviour rules and they interact in a common environment. This is a 
big advantage of Agent Based Simulation, since it enables the modeller to capture 
more complex structures and dynamics without having knowledge about the global 
interdependencies (Borshchev and Filippov, 2004, pp. 6).  

2.3.2.3 Discrete Event Simulation 
Discrete Event Simulation (DES) concerns the modelling of a system as a sequence 
of events over time. The term discrete is used because the simulation moves forward 
in time at discrete intervals. A discrete event model consists of entities, states, 
attributes, events and activities. An event is defined as anything that causes a 
change in the state of the system or the system’s entities. The state of an entity is 
defined by its attributes. The transformation of the state of an entity over time is 
carried out by activities. Activities are initiated by events and they end with the 
occurrence of another event (Balci, 1988, p. 291).  

Using these components, DES enables us to model a variety of real-world problems 
and run those simulations comparably fast. The reason for that is that a DES does 
not track the system’s behaviour over time and requires therefore less computing 
power compared to a continuous simulation. In DES the system’s behaviour and 
the entities states are only tracked on discrete time steps. In between that time 
steps, no change in the system is assumed to occur. 

How the time steps are chosen, depends on which time flow mechanism (TFM) is 
used. A fixed-time increment TFM will always advance the simulation clock by a 
fixed length of ݐ and all state changes that occurred during this time step will be 
processed. The second approach is the variable-time increment TFM, which 
advances the simulation clock from one event to another. Depending on the 
timespan between those events, the time steps can differ. An advantage of the 
variable-time increment approach is that no execution time is wasted for time steps 
where no events happened and for the process of searching for state changes that 
happened during the time increment. On the other hand, systems where state 
changes occur in constant time steps, the fixed-time increment approach might be 
more beneficial (Balci, 1988, pp. 291–294; Law and Kelton, 2000, pp. 7). 
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Whether using the variable or the fixed-time increment approach, a framework is 
necessary to model, control and trigger the state changes of the system. This 
framework is called the Conceptual Framework, also called World View which is a 
structure concept under which the simulation is developed. The classical CFs are 
Event Scheduling, Activity Scheduling and Process Interaction (Balci, 1988, p. 1). 
A more detailed look on the conceptual framework used within this thesis will be 
given in the next chapter.   
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3 Methods & Implementation 

This chapter shall provide an accurate description of how solutions for the problem 
stated in chapter 1 were found and implemented. The development of a bottleneck 
detection algorithm and the procedure of how a simulation study was conducted 
will be explained to ensure that the reader can comprehend and verify the results 
of the study. 

3.1 Bottleneck Detection Algorithms 

For the purpose of machine prioritization, two algorithms are developed, which 
create a bottleneck ranking based on real-time production data. The first algorithm 
uses the Average Active Period and the second the Blockage and Starvation 
Method, which were both described in chapter 2.2.3. 

3.1.1 Active Period Method 

The input data for the first bottleneck detection algorithm are the machine states 
that are given by the Production Data Acquisition System. Table 3 shows the data 
which is used as an example for the explanation of the active period method 
algorithm. In addition a period of observation is required as an input parameter. 
The period of observation determines, which time stamps will be considered for the 
bottleneck identification. For short periods of observation, the algorithm will detect 
short-term bottlenecks, whereas for long periods, the algorithm will detect the long-
term bottlenecks. 
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Table 3: Example of production data for a period of 9 time steps 

t Machine 1 Machine 2 Machine 3 
0 Produce Starved Starved 
1 Repair Starved Starved 
2 Produce Produce Starved 
3 Blocked Tool Change Produce 
4 Blocked Produce Produce 
5 Produce Starved Starved 
6 Produce Starved Produce 
7 Produce Produce Starved 
8 Blocked Produce Produce 

3.1.1.1 State-Matrix  
In a first step the algorithm reads all time stamps of the machines and in order to 
classify them into active and inactive states. The states are written into a State 
Matrix ܣ which has ݅  columns, where ݅  equals the number of machines in the 
system and ݆ rows, where ݆ is representing the number of time steps. The State-
Matrix for the example given in Table 3 looks the following: 

ܣ = ൭
1 1 1 0 0 1 1 1 0
0 0 1 1 1 0 0 1 1
0 0 0 1 1 0 1 0 1

൱ (22) 

3.1.1.2 Accumulated State Matrix B 
The next step is to accumulate the values from matrix ܣ. The entries ܾ in the 
Matrix ܤ represent the accumulated duration of the active period of each machine 
݅. 

ܾ = ܽ ∗ (ܾ,ିଵ + 1) (23) 

Using equation (23) will generate the accumulated state matrix ܤ: 

ܤ = ൭
1 2 3 0 0 1 2 3 0
0 0 1 2 3 0 0 1 2
0 0 0 1 2 0 1 0 1

൱ (24) 

3.1.1.3 Bottleneck Matrix C 
In order to determine the bottleneck of the system, the algorithm has to find the 
machine with the longest active duration ܾ at each time step. If a machine has to 
longest accumulated active period in a time step, the algorithm will assign the 
machine a value ܿ = 1 in the bottleneck matrix ܥ. Furthermore, the algorithm 
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will assign this value for all entries of the corresponding machine within the actual 
active period. 

The result of this step can be seen in (25). Each entry where ܿ = 1 in the matrix 
is representing a bottleneck state.  

ܥ = ൭
1 1 1 0 0 1 1 1 0
0 0 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0

൱ (25) 

In order to distinguish between a sole and a shifting bottleneck, further steps are 
necessary. 

3.1.1.4 Shifting bottleneck matrix D 
The state of a shifting bottleneck is characterized by more than one ܿ = 1 entries 
in one row. Therefore, the algorithm will assign each machine the value ݀ = 1, in 
case there are more than one entries with ܿ = 1 in one row. 

As shown in matrix ܦ, the bottleneck shifts in time step 3 and 8.  

ܦ = ൭
0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

൱ (26) 

3.1.1.5 Sole bottleneck matrix E 
The sole bottleneck matrix can be calculated by subtracting the shifting bottleneck 
matrix from the total bottleneck matrix. 

ܧ = ܥ −  (27) ܦ

ܧ = ൭
1 1 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0

൱ (28) 

As described in chapter 2.2.3, there are two approaches how the active period 
method can be used. The first is using the average active period (AAP) to detect 
bottlenecks. For that case only equations (22) to (24) are required. In order to 
generate a bottleneck ranking, the algorithm calculates the average active period 
using equation (29): 

ܽ =
∑ ܽ,


ୀଵ

݊
 (29) 
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The active durations ܽ, and the number of active durations ݊ can be found in the 
accumulated state matrix ܤ. Then the machine with the longest active duration ܽ 
is assigned a value of 1 and the other machines according to their active relation 
related to the longest active duration. 

The second approach looks at the average durations a machine is the sole or the 
shifting bottleneck. For the bottleneck ranking the sum of a machine’s sole and 
shifting duration are accumulated and the machine with the highest accumulated 
sum can be considered as the bottleneck of the system and a value of 1 will be 
assigned to that machine.  

As already mentioned, the second approach has the drawback of only providing 
information about the most significant machines and no information about non-
bottleneck machines. First results, have shown that the AAP method is therefore 
better suited for larger production systems. Since the industrial use cases which are 
analysed in the simulation study, are both large production lines, the simulation 
study will be conducted using the AAP method. 

3.1.2 Blockage & Starvation Probability 

As for the AAP method algorithm, this algorithm requires the machine states and 
a period of observation as an input. Then the machine states within the period of 
observation are read and the duration each machine is blocked and starved is 
calculated. The probability for being blocked is the duration a machine is blocked 
divided by the duration of the period of observation. The same applies for the 
probability of being starved. Furthermore each machine has a Boolean variable 
which defines whether it is a bottleneck machine or not. This variable is set to true, 
if the following requirements are fulfilled: 

 If the starvation probability of a machine ݆ is smaller than the blockage 
probability of the next upstream machine and the blockage probability of a 
machine ݆ is smaller than the starvation probability of the next downstream 
machine, ݆ is a bottleneck of the system. 

ିଵܤܶ > ܶ ܵ   , ݆ = 1, … , ݊ − 1 (30) 
ܤܶ < ܶ ܵାଵ  , ݆ = 1, … , ݊ − 1 (31) 
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 The first machine of a line is considered to be a bottleneck, if: 

ܤܶ < ܶܵଵ   (32) 

 The last machine of a line is considered to be a bottleneck, if: 

ିଵܤܶ < ܶܵ   (33) 

For the bottleneck ranking each machine where the Boolean value, which indicates 
it is a bottleneck of the system, is set to true, a value of 1 is assigned. This procedure 
explains, why this method is not capable of providing information about the 
importance of all machines of the system. In contrast to the AAP method, only 
bottlenecks machine will have a ranking which can be further used for the purpose 
of prioritization. 

3.2 Simulation 

The output of both described bottleneck detection algorithms is a bottleneck 
ranking for a certain period of observation. In order to evaluate the performance of 
the prioritization using bottleneck detection, a simulation study is required. The 
following describes how the simulation study was conducted. 

3.2.1 Development of the Simulation Study 

The simulation study is carried out, using the steps that have been described in 
chapter 2.3.1: 

3.2.1.1 Problem definition 
In large production systems, situations might occur where more maintenance 
workers are required than there are available. This means, especially for the case of 
corrective maintenance, that a prioritization might be useful to improve a 
production line’s performance. The decision criteria for the prioritization is a 
machine’s importance for the production line. A machine’s importance can be 
determined by finding the bottlenecks of a production line.  
Therefore a production line will be modelled and its performance using a FIFO 
maintenance strategy will be compared to a prioritization strategy where bottleneck 
machines will be prioritized over non-bottleneck machine in the case of a 
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simultaneous breakdown. A more detailed description of the real-world problem is 
given in chapter 1.1.  

3.2.1.2 Setting of objectives  
This study focusses on investigating the economic potential of a prioritization of 
corrective maintenance tasks on a single production line. Therefore different 
bottleneck detection methods shall be evaluated in terms of their accuracy, usability 
and their potential for system throughput improvement.  

3.2.1.3 Model conceptualization 
The simulation model is built using a hierarchical control conceptual modelling 
(HCCM) framework. The HCCM framework was developed, to build DES models 
with complex control policies. Instead of modelling queues, an advanced control 
mechanism steers the behaviour of a model’s entities. The entities can change their 
role in the model and their behaviour depending on their current activity. The 
control structure of the HCCM framework enables the modeller to model real-world 
problems, where a high degree of entity interaction and complex control policies 
are required. Even manufacturing systems are comparably simple systems to model, 
the HCCM framework was used because of the possibility to implement custom 
dispatching rules for the repair workers (Furian et al., 2014; Furian et al., 2015).  

Figure 22 shows the main elements and the hierarchical structure of the model built 
using the HCCM framework. The model consists of different organizational areas, 

Control Unit 
Line 

Control Unit 
OS 1 

Control Unit 
OS 2 

Control Unit 
OS 3 

Control Unit 
OS N 

Machine 1.1 

Machine 1.2 

Machine 1.3 

Machine 2.1 Machine 3.1 

Machine 3.2 

Machine N.1 

Material 
Flow 

Figure 22: Main elements and hierarchical structure of the HCCM framework 
adapted for the usage in production research 
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which can be seen as sub-models. Each sub-model is controlled by a Control Unit 
which handles the activity requests of its entities. In the proposed simulation model, 
the single operating sequences (OS) represent the sub-models. Each OS consists of 
one or, in case of redundant OS, multiple machines. One level above, there is the 
Control Unit Line which handles the interactions and requests of the Control Units 
OS.  

The following shall give a more detailed explanation of the elements used within 
the simulation framework: 

 Machine: 
A machine is the most basic entity and it is always part of an operation 
sequence. The attributes of the machine are an identification number, a 
procedure ID of the production process and a cycle time, which are all 
inherited by the operating sequence. Furthermore, the state of a machine is 
defined by its activities which can be Produce, Wait for Material, Blocked 
or Repair. The activity changes are initiated by events. 

 Operating sequence: 
The operating sequence consists of one or multiple machines. An OS is 
defined by an ID, its position in the production line, the amount of machines 
it consist of and a buffer capacity. 

 Material: 
The material travels from one OS to another. Each machine has a list of 
procedures to pass starting with the first machine in the production line and 
ending with the last. If a material was processed in an OS, the procedure ID 
of the corresponding machine will be deleted from the list, and the Control 
Unit travels the material to the OS which performs the next procedure on 
the list. 

 Control Unit OS: 
This Control Unit handles the requests of its entities and communicates with 
the Control Unit Line. The following requests are handled within one 
Control Unit OS: 

o Produce Request: 
The moment a material is travelled from one machine to the next in 
the production sequence, it sends a produce request to the Control 
Unit OS. Then the Control Unit OS checks the states of its machine 
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and in case a machine is in the activity “Wait for material”, the 
Control Unit removes the material from the buffer and processes it 
in the machine. 

o Travel Request: 
When a machine has processed a material it starts the activity 
“Blocked” and sends a travel request to its Parent Control Unit in 
order to travel the material to the buffer of the next OS in the 
production sequence. Since the Control Unit OS cannot control the 
behaviour of another Control Unit OS, it has to hand off this request 
to the superordinate Control Unit Line. 

o Repair Request: 
In case a machine breaks down, it switches to the activity “Repair” 
and sends a repair request to its Control Unit OS. Since the repair 
workers are organized on a line-level, the request will be hand off to 
the Control Unit Line. 

 Control Unit Line: 
This is the superordinate Control Unit which handles all request that cannot 
be handled within one sub-system. These request are the repair and the 
travel requests.  

o Travel Requests: 
When a travel requests reaches the Control Unit Line, the Control 
Unit Line acts as the communication interface between the Control 
Unit OS the request comes from and the Control Unit OS where the 
material is processed next. The Control Unit Line reads the next 
procedure to pass from the material’s list and checks if the OS of that 
procedure has still capacity in its buffer. If it has enough capacity, 
the material is travelled to the next OS and is given to the control of 
the corresponding Control Unit OS. Furthermore the activity of the 
machine where the material comes from is changed to “Wait for 
material”. 

o Repair Requests: 
When a repair request reaches the Control Unit Line, the Control 
Unit Line decides whether a repair worker can be assigned to the 
machine or not. These decision rules, are where the prioritization 
algorithm is implemented. In case there are more workers available 
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than requests, the Control Unit will assign a repair worker to the 
broken machines immediately. If there are more requests, the 
prioritization algorithm will be executed in order to prioritize and the 
available worker will be sent to the machine which has the highest 
priority. 

 Simulation Engine: 
The simulation engine handles the scheduled events of the simulation using 
an event calendar. The events are added at the beginning or end of an 
activity. If all events for a certain time step are executed, the simulation 
engine advances to the time of the next event in the calendar. 

3.2.1.4 Data collection 
The simulation model requires the following input data: 

 Structure of the production line 
 For each operation sequence: 

o Cycle time 
o Time between failure 
o Time to repair 
o Buffer capacity 
o Amount of machines (Redundancy) 

 Amount of repair workers 
 Simulation Period 

The Simulation Period defines which period of time will be simulated. All 
experiments will be done simulating 90 days of production. 

 Warm-Up Period 
Before the 90 days start, a Warm-Up Time is necessary to ensure the 
simulation model has reached a steady state and all buffers are on a realistic 
level. The Warm-Up Period for all experiments is chosen with 7 days. 

The used data comes from an engine manufacturing plant. The time to repair and 
time between failure values are sampled out of a list of historical production data. 
In context of this simulation study, the time to repair (TTR) will be used in a 
different way than in literature. Figure 23 shows the different tasks which are 
executed in a case of a machine breakdown. The conventional definition of TTR is 
the duration from a machine failure until the machine is available again for 
production. The TTR values which are sampled out of historical data, represent 
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the duration from when the repair worker starts his maintenance task until the 
machine is available again for production. 

The reason for sampling out of historical production data instead of using mean 
values is that the machine failures do not follow any distribution. Therefore 
sampling out of historical data is a more precise replication of reality. The random 
number generator for the sampling process is using a seed. This guarantees that 
the FIFO simulation run will use the same sequence of TBF and TTR values as 
the prioritization simulation run. Otherwise the results would not be comparable. 

For the bottleneck detection algorithm, more input data is required: 

 Period of Observation ܶ௦ 
A long period of observation will detect long-term bottlenecks and vice-
versa. The first simulations have shown, that  ܶ௦ is a very critical factor 
for the success of a task prioritization. Therefore different scenarios are done 
to find an optimum for ܶ௦. 

 Priority Increase Factor  
The first simulation runs have shown that, especially for long periods of 
observation, the algorithms do not give enough priority to non-bottleneck 
machines that are already waiting for repair for several hours. This is 
because a waiting time of several hours cannot influence the result of an 
observation over 7 days significantly, even this waiting time already has a 
significant influence on the performance of the production line. Therefore a 
Priority Increase Factor is introduced. Figure 24 shows an example of how 
the  works. Machine 1 and Machine 2 break down at different points in 
time. For both machines, there was no repair worker available when the 
failure occurred. When a worker becomes available, the prioritization 
algorithm is executed. The calculated priorities for both machines are 
represented by the grey vertical bars. The priority of Machine 2 is higher 
than the one of Machine 1. So the worker would be assigned to Machine 2 

Machine 
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machine 

Machine 
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Figure 23: Time to repair in context of the simulation study 
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first. But since the breakdown of Machine 1 happened much earlier, this 
machine might be more important to the system even the algorithm has not 
detected that.  

By increasing the priority of each machine over time using a constant 
gradient , this behaviour can be prevented. 

Equation (34) shows how the calculated priorities are increased with a 
Priority Increase Factor. The higher the gradient  is chosen, the more 
the prioritization strategy will behave as the FIFO strategy. Therefore 
different simulations will be run to find an optimum value for . 

 Prioritization Frequency ݂௧௭௧ 
The last required input for the algorithm is the Prioritization Frequency. It 
determines how often the algorithm will be executed. In reality the algorithm 
will be executed every time, a machine breaks down. But since the execution 
of the algorithm takes up to a minute of time, the algorithm will be executed 
in a certain frequency ݂௧௭௧ in order to speed up the simulation.  

Concerning the output data, the simulation has to provide the following values in 
order to validate and evaluate the results: 

 Total throughput 
 Throughput of each operation sequence 
 Waiting, Blocking, Repair and Production time for each machine 

ௗௗ݅ݎܲ = ௨௧ௗ݅ݎܲ +  ∗ ௫௨௧ݐ) −  ௗ௪) (34)ݐ

Time 
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Figure 24: Introduction of a Priority Increase Factor 
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3.2.1.5 Model translation 
The conceptual model now has to be translated into a computer model. This is 
done using the HCDESLib, which is an open source simulation software for discrete 
event simulation (Furian, 2017). The HCDESLib is based on the principles of the 
HCCM framework which has already been described.  

3.2.1.6 Validation 
The simulation will be conducted over a period of 90 days. From the production 
data acquisition (PDA) system of the engine manufacturing plant, real historical 
data is used to validate the results of the simulation. For a period of 90 days, all 
times between failure and times to repair are available as real historical data. This 
TBF and TTR values are the basis for the sampling of TBF and TTR values within 
the model. For the validation, the total downtime and the total throughput of each 
machine was compared to the real production system.  

3.2.1.7 Experimental design 
This step defines the scenarios which are planned for the simulation study. Different 
scenarios are necessary to validate the result of the bottleneck detection algorithm 
and to optimize the performance of the algorithm using different input parameters. 

3.2.2 Simulation Scenarios 

Within the simulation study, the following scenarios are planned: 

 Validation of the bottleneck detection algorithm: 
Since the real-world production lines are well-balanced complex systems, a 
validation has to be done on a more simple line. Otherwise the output of the 
bottleneck detection algorithm would not be comprehensible. Therefore, the 
algorithms for the active period method and the blockage and starvation 
method will be validated on a simple production line using a system 
sensitivity analysis. The aim of this scenario is to validate whether the 
bottleneck detection algorithms are capable of identifying bottlenecks 
correctly or not. A detailed description of the line structure and the input 
data will be given in the next chapter. 

 Industrial Use Case 1 
Line 1 is a production line of an engine manufacturing plant. This scenario 
is a real-world use-case which aims for determining the potential of dynamic 
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task prioritization for corrective maintenance. Two different bottleneck 
detection approaches are used to prioritize machines within Line 1. For both 
approaches simulation runs, using different input parameters for the 
algorithm are conducting in order to find optimal settings. To evaluate the 
performance of the prioritization methods, the total throughput is compared 
to the total throughput using a FIFO repair policy. All simulation scenarios 
will be run 30 times over 90 days in order to have a statistical confidence 
about the results. 

 Industrial Use Case 2 
The prioritization method which performed best in the prior scenario, will 
be tested in this scenario on a different production line of the engine 
manufacturing plant. The aim is to test whether there is are optimal settings 
for the input parameters of the algorithm and whether those settings have 
to be modified for other production lines or not. Therefore several simulation 
runs using different input parameters are conducted to find out if the 
optimal settings are the same as for the prior scenario. As for Use Case 1, 
all simulation scenarios will be run 30 times over 90 days in order to have a 
statistical confidence about the results. 
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4 Use Cases 

This chapter contains all results from the different use cases, starting with the 
validation of the used bottleneck detection algorithms on a simple demo production 
line. After validating the algorithms, an industrial use case for a more complex 
production line is conducted. The method which performs best in the first industrial 
use case, will then be tested in a second industrial use case to find out, whether the 
algorithm can be applied without any modifications on different production lines 
or not. 

Table 4: Overview of the conducted use cases within the simulation study 
Use Case Objective Method Experiment 

Demo   
Use Case 

Validate Bottleneck 
Detection Method 

System Sensitivity 
Analysis 

Active Period Method 
Blocking & Starvation 

Probability 

Industrial 
Use Case 1 

Throughput 
Improvement by 

Bottleneck 
Prioritization 

Heuristic Methods 
Part-Out-Part-Out Time 

Availability 
Availability + Redundancy 

Active Period 
Method 

Initial Experiment 
Variation of ܶ௦ 

Static Bottleneck Ranking 
Variation of  

Blocking & 
Starvation 
Probability 

Initial Experiment 
Variation of ܶ௦  

Static Bottleneck Ranking 

Industrial 
Use Case 2 

Verify Optimum 
Settings of Industrial 

Use Case 1 

Active Period 
Method 

Variation of ܶ௦ and  
+ Static Bottleneck 

Ranking 
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4.1 Demo Use Case 

This first use case, is aiming for validating the output of the bottleneck detection 
algorithms. To do so, three different simulation scenarios are necessary: 

 System Sensitivity Analysis 
 Active Period Method 
 Blocking & Starvation Method 

First, a System Sensitivity Analysis is conducted, since this method is considered 
to be the most reliable bottleneck detection method. Then two simulations scenarios 
using the Active Period Method and the Blocking & Starvation Method are 
conducted. The output of those two scenarios, which is a bottleneck ranking, can 
then be compared to the bottleneck ranking of the System Sensitivity Analysis in 
order to validate the result.  

Since the bottleneck detection for complex lines is hard to comprehend, the 
validation will be done for a simple Demo production line pictured in Figure 25. 

 
Figure 25: Structure of the Demo production line 

The line consists of seven operating sequences where each consists of one machine. 
Between each operating sequence there is a buffer with a capacity of 100. 
Furthermore there is one repair worker which will perform all maintenance tasks 
that take longer than 10 minutes. This behaviour is set with the Boolean variable 
Remove Short Repair = true. The reason for doing that, is that small repair tasks 
are conducted by the machine operators and only more complex tasks require a 
more skilled repair worker. The machine operators are not modelled within the 
simulation model, since they are no subject of interest concerning the goals of this 
simulation study. Instead repair tasks shorter than 10 minutes are performed 
instantly. This simplification was resolved together with the project partner and 
will be used throughout all use cases of this simulation study. 
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Table 5: Simulation input parameters for the Demo Use Case 
Global Settings  

Repair Workers 1 

Remove Short Repair true 

Simulation Period 90 Days 

Warm Up Period 7 Days 

Simulation Runs 1 

Machine Settings C/T [s] Puffer Capacity MTBF [h] MTTR [h] 
Redundant 
Machines 

OS10 45 ∞ 1 1 0 

OS20 48 100 2 0,5 0 

OS30 65 100 1 1,3 0 

OS40 50 100 2 0,5 0 

OS50 54 100 3 1 0 

OS60 45 100 1 1 0 

OS70 48 100 2 0,5 0 

The input data, shown in Table 5 will be used for all three scenarios within this 
use case. 

4.1.1 System Sensitivity Analysis 

The objective of this scenario is to create a reliable bottleneck ranking using a 
System Sensitivity Analysis. This ranking can be considered as the most realistic 
ranking and can therefore be used as a benchmark for the other two bottleneck 
detection methods. One simulation run, which consists of ݊ + 1 experiments, will 
be performed, where ݊ is the amount of machines of the production line. 

Table 6: Settings for the System Sensitivity Analysis 

Bottleneck Detection Method System Sensitivity Analysis 

Objective Bottleneck Detection 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 5 
Line Structure Demo Line 

Method Settings 
Period of Observation − 

Prioritization Frequency − 
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The first experiment is conducted using the initial machine input data of the Demo 
Line (Table 5). The result of this experiment will be the baseline for the following 
experiments. In a next step, the performance of OS10 is improved by reducing the 
MTTR by 50 % and another experiment is conducted. By comparing the total 
throughput of this experiment to the total throughput of the baseline experiment, 
the impact of an improvement of OS10 on the overall system performance can be 
observed. This determines the value ∆ܶ ௦ܲ௬௦,ைௌଵ. The higher the overall system 
improvement, the more OS10 is a significant bottleneck of the Demo Line.  

In a next step, the MTTR of OS10 is set back to the initial value and the MTTR 
of OS20 is reduced by 50 %. Again the result is compared to the baseline, which 
determines the value ∆ܶ ௦ܲ௬௦,ைௌଶ. This process is done for each machine in the 
production line. The machine with the highest ∆ܶ ௦ܲ௬௦,  is considered to be the 
primary bottleneck of the system and it is assigned a value of 1. The other machines 
according to their ∆ܶ ௦ܲ௬௦, in relation to the highest ∆ܶ ௦ܲ௬௦,.  

4.1.1.1 Results 

Figure 26 shows the results of the sensitivity analysis of the Demo production line. 
The primary bottleneck of the system is OS 30. Secondary and tertiary bottlenecks 
are OS 10 and OS 60. 
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Figure 26: Bottleneck ranking of the Demo line using a system sensitivity analysis 
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4.1.1.2 Discussion 

The basics of this method were already explained in chapter 2.2.3.3. Even this 
method is the most precise bottleneck detection method, it cannot be used for 
dynamic task prioritization on the plant floor. Even for this comparable small 
production line, eight experiments are necessary in order to determine the actual 
bottleneck situation. It is not suitable for tracking the actual bottleneck situation 
using real-time production data. Therefore, this method is only used to validate the 
two data-driven bottleneck detection approaches. 

4.1.2 Validation of the Active Period Method 

Within this scenario, a simulation run using the Active Period Method is conducted. 
The bottleneck ranking according to the Active Period Method can then be 
compared to the bottleneck ranking of the System Sensitivity Analysis.  

Table 7: Settings for the validation of the APM 

Bottleneck Detection Method Active Period Method 

Objective Bottleneck Ranking Validation 

Comparative Basis System Sensitivity Analysis 

Simulation 
Settings 

Global Settings Table 5 
Line Structure Demo Line 

Method Settings 
Period of Observation ܶ௦ =  ݕܽܦ 1

Prioritization Frequency ݂௧௭௧ =   ݎݑܪ ݎ݁ 0,33

This scenario is using the same simulation input data as the System Sensitivity 
Analysis (Table 5). Since the objective is to determine and validate the bottleneck 
situation, all repair requests will be executed using a FIFO strategy. This is because 
a prioritization would change the bottleneck situation and the bottleneck ranking 
could not be compared to the ranking of the System Sensitivity Analysis.  

In the simulation run, the algorithm will be executed 0.33 times an hour in order 
to track the actual bottleneck situation of the system, considering the machine 
states of the last 24 hours. 
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4.1.2.1 Results 

The output of this scenario is a bottleneck ranking over time which is pictured in 
Figure 27.  

Since the System Sensitivity Analysis was conducted over a period of 90 days, an 
average priority over the whole simulation period has to be calculated for each 
machine. Figure 28 shows the result of the average bottlenecks over 90 days 
determined with the active period method, compared to the result of the system 
sensitivity analysis. The primary, secondary and tertiary bottleneck of the system 
are identified correctly by the average active period method.  

 
Figure 28: Comparison of the priority ranking of the active period method and the   
system sensitivity analysis 
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Figure 27: Shifting bottlenecks of the Demo production line using the APM 
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4.1.2.2 Discussion 

The result of the average active period method comes very close to the result of the 
system sensitivity analysis which is considered as the real world situation. The 
deviations at OS 20, OS 50 and OS 70 are negligible, since those machines are the 
least critical machines for the overall systems. Concerning the priority over time as 
shown in Figure 27, it can be seen that the system behaves very dynamic and that 
the APM is capable of determining the dynamic bottlenecks. Even OS 30, which is 
marked in red, is most of the time a bottleneck machine, there are periods, where 
other machines are more important to the system’s performance. This indicates, 
that the system’s performance can be improved through a dynamic prioritization. 
Therefore the proposed method is suitable for further investigations, how a system’s 
performance can be improved through dynamic bottleneck detection. 

4.1.3 Validation of the Blocking & Starvation Probability Method 

In the last scenario of this use case, a simulation run using the Blocking & 
Starvation Probability Method for bottleneck detection is conducted. The 
bottleneck ranking can then be compared to the bottleneck ranking of the System 
Sensitivity Analysis in order to validate this method.  

Table 8: Settings for the validation of the BSP method 

Bottleneck Detection Method Blocking & Starvation Prob. 

Objective Bottleneck Ranking Validation 

Comparative Basis System Sensitivity Analysis 

Simulation 
Settings 

Global Settings Table 5 
Line Structure Demo Line 

Method Settings 
Period of Observation ܶ௦ =  ݕܽܦ 1

Prioritization Frequency ݂௧௭௧ =   ݎݑܪ ݎ݁ 0,33

Concerning the methodology, this scenario is conducted equally to the prior 
scenario. All repair requests are executed using a FIFO strategy, the bottleneck 
situation is detected 0.33 times per hour and the machine states of the last 24 hours 
are considered. If the requirements for a bottleneck, which were explained in 
chapter 2.2.3, are fulfilled, the algorithm assigns a priority of 1 to the machine. 
Otherwise a zero. 
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4.1.3.1 Results 

The output of this scenario is a bottleneck ranking over time, which is shown in 
Figure 29. According to this method, the bottleneck shifts between OS 30 (red) and 
OS 40 (yellow). In contrast to the Active Period Method, this method does not 
provide information about the criticality of the other machines.  

In the same manner as for the Active Period Method, an average bottleneck ranking 
over the whole simulation period of 90 days is calculated. The result of this step, is 
shown in Figure 30. 

 
Figure 30: Comparison of the BSP method to the system sensitivity method 
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4.1.3.2 Discussion 

The blockage and starvation probability method could only detect the primary 
bottleneck of the system, which is OS30. It failed for detecting OS 10 and OS 60 
as the secondary and tertiary bottlenecks. Since it cannot be said, how significant 
the primary bottleneck is, this method still might be able to improve the system’s 
performance and it will also be used for further investigations on a real-world 
production line. 

4.1.4 Comparison of the Bottleneck Detection Methods 

Figure 31 gives a direct comparison of the results of the three bottleneck detection 
methods used within this use case. As already mentioned, the System Sensitivity 
Analysis is considered to be the most reliable bottleneck detection method and is 
therefore used to validate the two data-driven methods. 

 
Figure 31: Bottleneck ranking of the Demo line using three different detection 
methods 

The Active Period Method could detect the three most significant bottlenecks of 
the Demo production line, whereas the Blocking & Starvation Probability Method 
could only detect the primary bottleneck. Another drawback of the Blocking & 
Starvation Probability Method is, that it does not provide any information about 
the criticality of non-bottleneck machines. Especially in larger production systems, 
this is required in order to assign a certain priority to each machine of the system. 
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But still, both data-driven methods were able to detect the primary bottleneck of 
the system. Furthermore, both methods could track shifting bottlenecks over time, 
which indicates that the system does behave dynamically and a dynamic 
maintenance task prioritization could improve the system’s performance. Therefore 
both methods will be evaluated concerning their potential for throughput increment 
in the next use case. 

4.2 Industrial Use Case 1 

Line 1 is a highly automated production line from an engine manufacturing plant. 
The structure of the production line is shown in Figure 32. 

 
Figure 32: Structure of Line 1 

The production line consists of 26 operating sequences where some of them have 
redundant machines. In contrast to the Demo line, no mean values are used for the 
TBF and TTR. Instead of that, TBF and TTR values are sampled out of historical 
data. Furthermore, there are two maintenance workers on the production line, what 
complies with the conditions in the plant of the project partner. Again all repair 
tasks shorter than 10 minutes do not require a maintenance worker, since those 
tasks are performed by the machine operators which are not modelled within the 
simulation. The simulation period is 90 days, with 7 days warm up period. Since 
the TTR and TBF values vary a lot, 15 simulation runs are conducted in order to 
have a statistical confidence about the results. 
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Table 9: Simulation input parameters for Industrial Use Case 1 
Global Settings  

Repair Workers 2 

Remove Short Repair true 
Simulation Period 90 Days 
Warm Up Period 7 Days 
Simulation Runs 15 

Machine Settings C/T [s] Puffer Capacity TBF [h] TTR [h] 
Amount of 
Machines 

AF200-Transferstrasse 30 ∞ Sample Sample 1 

AF210-AF220-ZEN 1 10 Sample Sample 1 
AF210-BZs 33 1 Sample Sample 1 
AF220-BZs 33 3 Sample Sample 7 
AF230-ZEN 1 40 Sample Sample 1 
AF230-BZs 33 1 Sample Sample 6 
AF240-Transferstrasse 30 25 Sample Sample 1 
AF250-Transferstrasse 30 10 Sample Sample 1 
AF255-ZEN 1 20 Sample Sample 1 
AF255-BZs 33 1 Sample Sample 2 
AF260-ZEN 1 10 Sample Sample 1 
AF260-BZs 33 1 Sample Sample 6 
AF270 30 20 Sample Sample 1 
AF280 30 20 Sample Sample 1 
AF300-Transferstrasse 30 6 Sample Sample 1 
AF310-AF320-ZEN 1 20 Sample Sample 1 
AF310-AF320-BZs 33 20 Sample Sample 4 
AF325 27 48 Sample Sample 1 
AF325P 33 1 Sample Sample 1 
AF330 30 20 Sample Sample 1 
AF335 33 20 Sample Sample 2 
AF335-HB 33 25 Sample Sample 1 
AF340 30 10 Sample Sample 1 
AF345-ZEN 1 10 Sample Sample 1 
AF345-W 33 1 Sample Sample 2 
AF350 30 5 Sample Sample 1 
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4.2.1 Heuristic Prioritization 

The heuristic prioritization methods, aim for imitating the actual prioritization 
behaviour of the maintenance staff on the plant floor. Three different heuristic 
approaches will be used within this use case: 

 Part-Out-Part-Out Times 
 Availability 
 Availability + Redundancy 

As for the other methods, the baseline for the heuristic methods will be a FIFO 
strategy. Since all heuristic methods work with long-term averages, they are 
considered to be static. This means that the time a machine is already waiting for 
repair, cannot influence the priority. Therefore also for this scenario a Priority 
Increase Factor is used, which is set to  = 0,2

ଵ

ு௨
  for all heuristic methods. 

4.2.1.1 Prioritizing using Part-Out-Part-Out Times 
As already discussed in chapter 2.2.2, in the engine manufacturing plant, all Part-
Out-Part-Out times are recorded in order to evaluate the performance of machines. 
The longer this “true cycle time” is, the more critical is a machine. Even this 
method cannot detect bottlenecks at all, it is used for comparison to other 
prioritization strategies.  

Table 10: Settings for prioritizing using Part-Out-Part-Out Times 

Prioritization Method Part-Out-Part-Out Time 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 

Line Structure Line 1 

Method Settings 

Period of Observation − 

Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,2

Prioritization Frequency − 

Reduce Redundant ݂݈ܽ݁ݏ 

The simulation requires an input file, where the priorities of all machines according 
to their Part-Out-Part-Out times are listed. Figure 33 shows the priority ranking 
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where the machine with the longest Part-Out-Part-Out time is assigned the priority 
of 1. The Part-Out-Part-Out times of the redundant operation sequences have been 
reduced by the number of redundant machines. Since the Part-Out-Part-Out times 
of the machines in a production line cannot differ significantly in a long term, also 
the priorities do not differ a lot.  

 
Figure 33: Priority ranking using Part-Out-Part-Out times 

Results 
The output of the simulation is the average throughput per day of 30 simulation 
runs of 90 days. This average throughput can be compared to the output of the 
same simulation using a FIFO service policy.  

The performance of this prioritization policy compared to FIFO, each with a 95% 
confidence interval is shown in    Figure 34.  

   Figure 34: Average throughput per day - FIFO vs. Part-Out-Part-Out Time 
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Discussion 
The reason why this policy performs worse than a FIFO policy is that all redundant 
operation sequences have a high priority, whereas some of the single machines have 
a low priority. This means that the redundant machines may be, due to their long 
cycle times, bottlenecks for the system. But this method does not consider, that a 
breakdown of a redundant machine is not as critical as a breakdown of a single 
machine. Furthermore, the proposed method is questionable concerning its use for 
prioritization, since it cannot detect bottlenecks and the priorities of all machines 
are almost equal. 

4.2.1.2 Prioritizing using Availabilities 
The second heuristic approach uses availability values of the machines for 
maintenance task prioritization.  

Table 11: Settings for prioritizing using availabilities 

Prioritization Method Availabilities 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation − 

Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,2

Prioritization Frequency − 

Reduce Redundant ݂݈ܽ݁ݏ 

The machine with the lowest availability is assigned a priority of 1. Figure 35 shows 
the priority ranking using average availability values over 90 days. 
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Figure 35: Priority ranking using availability values 

Results 
Using the priorities from Figure 35 will not bring an improvement compared to a 
FIFO service policy. The average throughput per day is shown in Figure 36. 
  

Discussion 
The availabilities of machines can whether give any statement about the 
importance of machines, nor can they be used for bottleneck identification. Because 
of that, and because the lower breakdown severity of redundant machines is not 
considered, no throughput increment could be achieved. This will be taken into 
account for the next scenario.  
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Figure 36: Average throughput per day - FIFO vs. Availability 
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4.2.1.3 Prioritizing using Redundancy & Availability 
The last method utilizes the average availability values from the last method and 
decreases the priorities, depending on if there are redundant machines in an 
operating sequence. The priority of each operating sequence is reduced by its 
amount of machines.  

Table 12: Settings for prioritizing using availabilities and redundancies 

Prioritization Method Availability + Redundancy 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation − 

Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,2

Prioritization Frequency − 

Reduce Redundant ݁ݑݎݐ 

The simulation requires an input file, where each machine’s priority based on 

availabilities is reduced by the number of redundant machines. Figure 37 shows the 

adapted priority ranking, which will be used for this scenario. 

 
Figure 37: Priority ranking using availability values with decreased priorities for 
redundant machines 
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Results 
Dividing the priority of redundant machines by the amount of redundant machines 
improves the availability approach and generates a throughput increment of 5 % 
compared to a FIFO strategy.  

Discussion 
Since the prior scenario, which only used availability values, could not bring any 
throughput improvements, the good result of this scenario can be traced on the 
priority reduction of redundant machines. 

4.2.1.4 Comparison of Heuristic Methods 
Figure 39 shows the average throughput increment of the 3 heuristic methods 
compared to a FIFO policy with a 95 % confidence interval. 
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Figure 38: Average throughput per day - FIFO vs. Availability & Redundancy
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The only heuristic approach which generates a throughput increment, was the 
approach based on availabilities and redundancies. But since prioritizing using only 
availability values could not bring any improvement, the good result is only due to 
the reduction of the priority of redundant machines. The next sub-chapter 
investigates the potential of bottleneck prioritization methods.  

4.2.2 Bottleneck Prioritization 

In contrast to the heuristic methods, the following methods are based on the 
strategy of reducing the downtime of bottleneck machines in order to improve the 
system’s performance. The bottleneck detection algorithms use real-time production 
to determine the actual bottleneck situation and enable a dynamic prioritization of 
machines. The following bottleneck detection methods are used within this use case: 

 Active Period Method 
 Blocking & Starvation Probability Method 

For both methods, several simulations using different input parameters are 
conducted in order to find optimal settings for the algorithm concerning the Priority 
Increase Factor and the Period of Observation. 

4.2.2.1  Active Period Method 
The objective of the simulations using the Active Period Method is to improve the 
total throughput by prioritizing bottleneck machines and to find optimal settings 
for the algorithm.  

The following experiments are conducted for the Active Period Method: 

o Initial Experiment: Track the dynamic behaviour of the system 
o Variation of the Period of Observation: Find optimal settings for ܶ௦ 
o Static Priorities: Use Average Active Period over 90 days 
o Variation of the Priority Increase Factor: Find optimal settings for  

Initial Experiment 
To have a first result of how dynamic the system behaves, a simulation using the 
following scenario is conducted: 
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Table 13: Settings for the initial experiment – APM 

Prioritization Method Active Period Method 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation ܶ௦ =  ݏݎݑܪ 48

Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ =  ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ 

RESULTS 
Figure 40 shows for the most significant bottleneck machines of Line 1, how the 
bottlenecks are shifting over a period of 3 days. In the example of Figure 40, the 
primary bottleneck is shifting between machine AF220-Bz, AF260-Bz and AF345-
W. This behaviour continues over the whole simulation run of 90 days. This 
indicates that a dynamic prioritization could improve the system’s performance. 

 
Figure 40: Excerpt of the priorities over a period of 3 days using the AAP method 
for Line 1 
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Using the priorities over time, of which an excerpt is shown in Figure 40, will bring 
a throughput improvement. Figure 41 shows the average throughput per day and 
the 95 % confidence intervals of 30 simulation runs over 90 days in comparison to 
the same simulation using a FIFO service policy.  

DISCUSSION 
The first simulation brought a throughput increment of 2 %. Since there are two 
input parameters for the algorithm which influence the result, further simulations 
are necessary to optimize the performance. The period of observation has the 
biggest influence on the output of the algorithm. Therefore further scenarios using 
different periods of observation are conducted.  

Variation of the Period of Observation 
This experiments aims for optimizing the algorithm by varying the input 
parameter ܶ௦. The other parameters will be the same as for the prior experiment. 

Table 14: Settings for the variation of ܶ௦ - APM 

Prioritization Method Active Period Method 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation ܶ௦ =  ݈ܾ݁ܽ݅ݎܽݒ

Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ =  ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ 
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Figure 41: Average throughput per day - FIFO vs. APM (48 Hours) 
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RESULTS 
Figure 42 shows the average throughput increment and the 95% confidence 
intervals using different periods of observation. Short periods of observation enable 
the algorithm to detect short-term bottlenecks and vice versa. The maximum is 
found using a period of observation of 7 days. 

 
Figure 42: Average throughput increment using different periods of observation 

DISCUSSION 
The results indicate that these short-term bottlenecks do not significantly influence 
the system’s performance, since a prioritization of those machines does not improve 
the system’s throughput. Since the validation of the algorithm brought a good 
match with the system sensitivity analysis for the average priorities over 90 days, 
the same scenario will be investigated here. 

Static Priorities 
This scenario is a static bottleneck detection scenario, since the algorithm does not 
determine the actual bottleneck situation during a simulation run. Instead of that, 
the average bottlenecks over a simulation run of 90 days are calculated and used 
as an input for the static scenario. This is done, using the priorities over time of 
the ܶ௦ =  scenario, and calculate average priorities for each machine. The ݏݕܽܦ 7
other parameters are the same as for the prior experiment. 
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Table 15: Settings for the static bottleneck detection - APM 

Prioritization Method Active Period Method 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation - 
Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ =  ݎݑܪ ݎ݁ 0

Reduce Redundant ݁ݑݎݐ 

The average priorities over a period of 90 days are shown in Figure 43. According 
to this result, the system has three significant bottlenecks. 

 
Figure 43: Static AAP priorities before redundant machines priorities are reduced 

In order to consider the lower breakdown severity of redundant machines, the 
priorities have to be divided by the number of redundancies per operating sequence. 
The result of that modification is shown in Figure 44. The operating sequence with 
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Figure 44: Static AAP priorities after redundant machines priorities are reduced 

RESULTS 
Using a static Active Period Method priority ranking will improve the throughput 
by 5 % compared to a FIFO policy: 

DISCUSSION 
The simulation scenarios with different periods of observation have shown that the 
system does behave dynamically, but a dynamic prioritization does not improve 
the throughput as much as a static prioritization does. 

The Priority Increase Factor  is another input parameter which has an impact 
on the result. The higher  is chosen, the more the prioritization policy will 
behave like a FIFO policy. This is because  increases the priority depending on 
the time of the breakdown. The next experiments aim for finding an optimum value 
for .  
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Figure 45: Average throughput per day FIFO vs. Static APM 
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Variation of the Priority Increase Factor 
This scenario uses the same static APM priorities as the prior experiment, since 
this priority ranking performed best. The Priority Increase Factor will be varied in 
order to find an optimal setting for this parameter. 

Table 16: Settings for the variation of  - APM 

Prioritization Method Active Period Method 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation − 

Priority Increase Factor  =  ݈ܾ݁ܽ݅ݎܽݒ

Prioritization Frequency ݂௧௭௧ =  ݎݑܪ ݎ݁ 0

Reduce Redundant ݁ݑݎݐ 

RESULTS 
The average throughput increment compared to a FIFO policy and the 95 % 
confidence interval are shown in the following figure: 

 
Figure 46: Average throughput increment of different   using a static AAP 
priority ranking 

DISCUSSION 
Increasing the Priority Increase Factor to  = 0,2 could improve the system’s 
performance by 5,9 % compared to a FIFO service policy. 
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Conclusion – Active Period Method 
Since the bottleneck detection algorithm shall be applied on different production 
lines, it is necessary to find out, if there is a global optimum which achieves good 
results on different production lines. Therefore the results of the different 
experiments in dependence of the two input parameters are visualized in Figure 47 
using a bubble chart, where the diameter of a bubble is representing the average 
throughput increment of the simulation scenario compared to a FIFO policy. 

 
Figure 47: Average throughput increment for different input parameters on Line 1 
compared to a FIFO service policy 

The best result for Line 1 is achieved using a static Active Period Method priority 
ranking and a Priority Increase Factor of   = 0,2. In 4.3, the same simulations 
will be conducted for a different production line in order to verify if this setting 
also performs best in a different production system. 

4.2.2.2 Blockage & Starvation Probability Method 
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in order to evaluate its performance for throughput improvement by corrective 
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 Initial Experiment: Track the dynamic behaviour of the system 
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Initial Experiment 
In the first experiment using the BSP method, the dynamic behaviour of the system 
and the ability of the algorithm to detect shifting bottlenecks shall be analysed. 
The experiment is done using the following input parameters:  

Table 17: Settings for the initial experiment - BSP 

Prioritization Method Blocking & Starvation Prob. 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation ܶ௦ =  ݏݕܽܦ 7

Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ =  ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ 

RESULTS 
Figure 48 shows for the most significant bottlenecks of the system, how the 
bottlenecks are shifting according to the blockage and starvation probability 
method.  

 
Figure 48: Excerpt of the priority over time using the BSP method 
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Using this dynamic bottleneck ranking will generate a throughput increment of 
3,5 % compared to a FIFO policy: 
 

DISCUSSION 
Even also this method detects shifting bottlenecks, the chart looks very different to 
the one of the Active Period Method. This is because this method can only provide 
information about if a machine is a bottleneck or not. If a machine is a bottleneck, 
it is assigned a priority of 1. Else, it is assigned a priority of zero and no further 
statement about the criticality of that machine is possible. Furthermore, this 
method achieved 1,5 % less than the APM, using the same input parameters. Still 
further experiments are conducted in order to optimize this method. 

Variation of the Period of Observation 
Since the Active Period Method performed best using a static priority ranking, the 

same scenario will be conducted for the BSP method. Furthermore, several 

experiments where the Period of Observation is varied between 8 Hours and 9 Days 

are conducted.   
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Figure 49: Average throughput per day - FIFO vs. BSP (7 Days) 
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Table 18: Settings for the variation of ܶ௦ - BSP 

Prioritization Method Blocking & Starvation Prob. 

Objective Throughput Improvement 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 9 
Line Structure Line 1 

Method Settings 

Period of Observation ܶ௦ =  ݈ܾ݁ܽ݅ݎܽݒ

Priority Increase Factor  =  ݎݑܪ ݎ݁ 0,1

Prioritization Frequency ݂௧௭௧ =  ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ 

 
As for the Active Period Method, the static priorities are calculated using the 
average priorities over 90 days from the scenario ܶ௦ =  ;ݏݕܽܦ 7 = 0,1

ଵ

ு௨
. 

Figure 50 shows the average priority ranking of the BSP method before the 
redundant machine’s priority is divided by the number of machines: 

 
Figure 50: Static priorities of the BSP method before redundancies are reduced 

This result is very different to the priority ranking from the AAP method. The 
AAP method detected three significant bottlenecks which were all redundant 
operating sequences. In contrast to that, the BSP method detects no significant 
bottleneck, but six machines which are equally often the bottleneck of the system. 
Reducing the priority of the operating sequences by the number of its machines, 
will generate the following priority ranking: 
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Figure 51: Static priorities of the BSP method after redundant machine's priorities 
are reduced 

RESULTS 
Using the priority ranking shown in Figure 51, will improve the system’s 
throughput by almost 5%. The results for different Periods of Observation and for 
the static priority ranking are shown in Figure 52. 

 
Figure 52: Average throughput increment and 95% confidence intervals for different 
periods of observation for the BSP method compared to a FIFO service policy 

DISCUSSION 
The best performance improvement was achieved using a static priority ranking. 
As before for the Active Period Method, a dynamic bottleneck detection performed 
better than FIFO, but worse than a static priority ranking.   
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4.2.2.3 Conclusion – Blockage & Starvation Probability Method 
The best result using the BSP method achieved a throughput increment over a 
FIFO service policy of almost 5 %. A drawback of this method is that it cannot 
provide information about the criticality of non-bottleneck machines. This was 
shown in Figure 48, where the priorities over time are pictured. This behaviour is 
problematic for larger production systems, since the proposed method can only 
prioritize very few machines of the system. Most of the machines will have a priority 
of zero, wherefore those machines can only be serviced using a FIFO policy. 
Furthermore, the BSP method requires information about the line structure and is 
therefore not suitable for flexible production systems or job shop layouts. Because 
of its drawbacks concerning usability, validity and performance, the second 
industrial use case will be conducted using only the Active Period Method. 

4.3 Industrial Use Case 2 

The second use case is for another production line of an engine manufacturing plant. 
The aim for this use case is to verify, if the algorithm settings which performed 
best in the first use case, also perform best on a different production line. If this 
could be verified, the algorithm could be applied on all production lines in the plant, 
without the need for any modifications.  

The structure of Line 2 is shown in Figure 53. 

 
Figure 53: Structure of Line 2 

As the line of the first use case, Line 2 is a highly automated production line. In 
contrast to Line 1, this line is even more balanced since the cycle times of all 
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machines are equal. Furthermore the buffer capacities are smaller compared to 
Line 1. All input parameters for the simulation can be seen in Table 19. 

Table 19: Simulation input parameters for Industrial Use Case 2 
Global Settings   

Repair Workers 2 

Remove Short Repair true 
Simulation Period 90 Days 
Warm Up Period 7 Days 
Simulation Runs 15 

Machine Settings C/T [s] Puffer Capacity TBF [h] TTR [h] 
Amount of 
Machines 

AF20-Zen 27 ∞ Sample Sample 1 
AF20-BZ 27 5 Sample Sample 3 
AF30-LIP 27 5 Sample Sample 1 
AF30-BZ 27 5 Sample Sample 4 
AF34 27 5 Sample Sample 1 
AF40-LIP 27 5 Sample Sample 1 
AF40-BZ 27 5 Sample Sample 6 
AF44 27 5 Sample Sample 1 
AF50-60 27 5 Sample Sample 1 
AF50-BZ 27 5 Sample Sample 2 
AF60-BZ 27 5 Sample Sample 4 
AF70-ZP 27 5 Sample Sample 1 
AF70 27 5 Sample Sample 3 
AF110 27 60 Sample Sample 2 
AF120-LIP 27 5 Sample Sample 1 
AF120-BZ 27 5 Sample Sample 4 
AF124 27 5 Sample Sample 1 
AF140-LIP 27 50 Sample Sample 1 
AF140-BZ 27 5 Sample Sample 4 
AF144 27 5 Sample Sample 1 
AF148 27 5 Sample Sample 1 
AF160-ZP 27 50 Sample Sample 1 
AF160 27 5 Sample Sample 2 
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4.3.1 Variation of Input Parameters 

The best results for Line 1 were achieved using the Active Period Method. 
Furthermore the Active Period Method provided reliable results, since it could 
identify the bottleneck situation correctly in the validation on the Demo production 
line. Therefore this method shall now be used for a different production line in order 
to identify if there is a global optimum for the input parameters which could be 
applied to any production line. The input parameters which influence the 
performance of the algorithm are: 

Table 20: Settings for the variation of ܶ௦ and  – APM 

Prioritization Method Active Period Method 

Objective Verification of Global Optimum 

Comparative Basis FIFO Policy 

Simulation 
Settings 

Global Settings Table 19 
Line Structure Line 2 

Method Settings 

Period of Observation ܶ௦ =  ݈ܾ݁ܽ݅ݎܽݒ

Priority Increase Factor  =  ݈ܾ݁ܽ݅ݎܽݒ

Prioritization Frequency ݂௧௭௧ =  ݎݑܪ ݎ݁ 0,2

Reduce Redundant ݁ݑݎݐ 

Results 
To verify the optimum which was found at Line 1, the same scenarios are conducted 
for Line 2. The results of different scenarios are shown in a bubble chart in Figure 
54.  
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Figure 54: Average throughput increment for different input parameters on Line 2 
compared to a FIFO service policy 

As for Line 1, the best results were achieved using a static AAP priority ranking. 
This ranking is shown in Figure 55. 

 
Figure 55: Static AAP priority ranking for Line 2 after redundant machine’s priority 
was reduced 

Discussion 
Compared to the first industrial use case, Line 2 is even more well-balanced. No 
significant bottleneck was found and the differences between the priorities of the 
machines are marginal. This result coincides with the fact, that for Line 2 all 
machines have equal cycle times and therefore bottlenecks can only occur due to 
machine breakdowns.  

9,4%

9,2%

10,6%

7,8%

6,9%

11,2%

9,0%

10,1%

6,4%

12,7%

11,5%

10,7%

8,2%

12,9%

8,2%

19,2%

17,8%

18,7%

0

0,1

0,2

0,3
Pr

io
rit

y 
In

cr
ea

se
 F

ac
to

r [
1/

H
ou

r]

Period of observation [Days]

1,5                      2                       3       7                      10                  Static

0

0,2

0,4

0,6

0,8

1



Chapter 4 Use Cases 

92 
 

The fact, that the average throughput increment using a prioritization strategy is 
much higher than for the first use case, can be explained by taking the number of 
simultaneous breakdowns and the amount of repair workers into account.  

Figure 56 gives a comparison of Line 1 and Line 2 concerning how often 
simultaneous breakdowns occurred during the 90 days of simulation. Line 1 had 
more situations, where a repair request could be processed immediately because 
only one machine had a failure. Figure 56 shows, that Line 2 had more situations 
where three or more machines where down simultaneously. In consequence of that, 
Line 2 had an average downtime per machine of 350 hours whereas machines of 
Line 1 were only down for 150 hours using the same simulation scenario. This 
means, that Line 2 requires more maintenance workforce than Line 1. But both use 
cases were conducted using the same input parameter of 2 available maintenance 
workers. This resulted in an understaffed scenario for Line 2. The consequence of 
an understaffed maintenance team are more simultaneous breakdowns and a higher 
average downtime. On the other hand less resources reinforce the performance of a 
prioritization policy and this is why the average throughput increments in the 
scenarios of Line 2 are higher than for Line 1. The impact of available resources on 
the performance of a prioritization policy will be explained more detailed in the 
next chapter. 
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5 Discussion 

This thesis aimed for developing a data-driven prioritization method for corrective 
maintenance tasks. In the following chapter, the methods which were developed 
and analysed, will be compared concerning their usability and performance. 
Furthermore the limitations for prioritization and different fields of application will 
be discussed. 

5.1 Comparison of Prioritization Policies 

The following prioritization policies were analysed within this thesis: 

 Heuristic Approaches 
o Part-Out-Part-Out Time 
o Availability 
o Availability + Redundancy 

 Bottleneck-based Approaches 
o Blockage & Starvation Probability 
o Active Period Method 

The use of heuristic methods for the prioritization of maintenance tasks is the most 
common approach in industries. Especially the prioritization of single machines over 
redundant machines is a very straightforward and comprehensibly policy. The 
simulation study has shown, that this policy performs also well compared to a FIFO 
policy. But in the case of no redundant machines in a production line, no 
prioritization would be possible. Furthermore, under the assumption of existing 
bottlenecks in a production line, there is a potential for improvements by 
prioritizing bottlenecks. 
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The bottleneck-based approaches try to use this potential. Both analysed methods 
use real-time production data for bottleneck detection. Concerning the usability, 
the Blockage & Starvation Method is harder to implement in industries, since the 
line structure has to be implemented in the bottleneck detection algorithm. The 
Active Period Method does not require any information about the line structure, 
but only the machine states which are usually available in a PDA system. This 
makes the Active Period Method suitable for Line Production, Job Shop Production 
and even Flexible Production Systems (Klenner et al., 2016, pp. 543). 

Also concerning the validity the Active Period Method was the better detection 
method. Using a System Sensitivity Analysis it was shown, that the Active Period 
Method could detect the primary, secondary and tertiary bottleneck of a line 
correctly, whereas the Blockage & Starvation Method could only detect the primary 
bottleneck. Furthermore, the Blockage & Starvation method provides only values 
for very few machines and does not provide any information about the importance 
of non-bottleneck machines. This can be seen when comparing the priority ranking 
of the Active Period Method with the one from the Blockage & Starvation Method. 
Especially for large production systems, it is more beneficial to have a consistent 
priority ranking for all machines as it is provided by the Active Period Method. 

For the evaluation of the performance of the prioritization policies, the average 
throughput increment compared to a FIFO policy was chosen as a performance 
indicator. Figure 57 shows the best result for each prioritization policy for the 
industrial use case Line 1: 

 
Figure 57: Performance of each prioritization policy for Line 1 compared to a FIFO 
policy including a 95 % confidence interval 
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Even the Active Period Method reached the highest average throughput increment 
of 5,9%, the good result of the heuristic method with 5,2% was not expected at the 
beginning of the simulation study. But only the heuristic scenario, where the 
priority of redundant machines was reduced, has performed that good. This 
explains, that the failure sensitivity value explained in chapter 2.2.2, is a major 
aspect for task prioritization in corrective maintenance. A prioritization of single 
machines over redundant machines will always bring a performance improvement 
independent of the bottleneck situation. 

This finding explains, why the Active Period Method performed only 0,7% better 
than the best heuristic method. The most significant bottlenecks the Active Period 
Method detected, were all redundant machines. From a production and 
maintenance management point of view, this is a very positive result. This means, 
that the most important machines to the system are redundant machines and in 
case of a breakdown of such a bottleneck machine, the impact on the overall system 
performance will be less critical than in case of the bottleneck was a single machines. 
This behaviour was taken into account, by reducing the calculated priority by the 
number of redundant machines. But for a bottleneck-based prioritization approach 
this means, that in case of a redundant bottleneck machine, the potential for 
improvement is very limited.  

In general it has to be emphasized, that bottleneck detection alone, cannot be a 
prioritization policy for corrective maintenance tasks. Further modifications as the 
reduction of redundant machines and a Priority Increase Factor have to be made 
in order to improve a system’s performance.  

Concerning the period of observation for the bottleneck detection, the algorithm 
performed best using a static average active period priority ranking over 90 days. 
Even the bottlenecks are shifting over time it could not be shown, that a 
prioritization of short-term bottlenecks would improve the system’s performance. 
The better performance of a static prioritization was also confirmed by 
Gopalakrishnan et al. (2014, pp. 2173). Even the same behaviour occurred in the 
second industrial use case, there might be systems where a more dynamic bottleneck 
detection performs better. This is because both use cases are conducted on highly 
automated and well-balanced production lines, which have only minor changes in 
the bottleneck situations due to machine breakdowns. For assembly lines or in 
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general production systems that are producing multiple products, the cycle times 
are not always constant over time and therefore such lines are not as well-balanced 
as the lines of the use cases. In that case, a more dynamic bottleneck detection 
could be more suitable. 

5.2 Limitations for Prioritization in Corrective 
Maintenance 

The biggest limiting factor for the potential of improvement by prioritization in 
corrective maintenance is the amount of repair workers. If there are infinite workers 
available, each request can be processed immediately and there is no need for 
prioritization. Still, companies strive for a cost-efficient use of their resources and 
therefore especially personnel resources as maintenance workers will always be 
limited. Therefore in the first industrial use case, several simulation runs with a 
different amount of workers were conducted. The results of this simulation runs are 
shown in Figure 58: 

 
Figure 58: Potential for throughput increment on Line 1 depending on amount of 
repair workers 

The potential of improvement by prioritization decreases with an increasing number 
of repair workers, since with more workers, most repair request can be processed 
immediately. In order to maximize throughput, the best result can be achieved 
having three or more repair workers. The results of Figure 58 can be used for further 
research on the optimization of total costs of maintenance. Since prioritization can 
achieve a higher throughput with the same amount of workers, it shifts the cost-
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optimum point of total costs of maintenance towards less costs due to breakdowns 
with equal personnel costs. 

5.3 Conclusion 

Concerning usability, validity and the potential for throughput improvement, the 
Average Active Period Method was the best performing prioritization policy. The 
two industrial cases have shown that there is potential for throughput increment 
by bottleneck prioritization. Both industrial use cases were very well-balanced and 
furthermore the bottlenecks of both lines were redundant machines. These were 
limiting factors for the performance of the prioritization policy. Still the results of 
this thesis recommend the implementation of the algorithm on production lines for 
the purpose of corrective maintenance task prioritization. The algorithm was 
validated successfully and can therefore be a reliable, real-time data driven decision 
support for the production and maintenance staff and provides useful information 
about the actual bottleneck situation of a production system. 
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6 Outlook 

The prioritization algorithm for corrective maintenance tasks was realized using a 
data-driven bottleneck detection method. The bottleneck ranking was modified by 
introducing a Priority Increase Factor and by reducing the priority of redundant 
operating sequences. The result of this modification was the final priority ranking. 
Both of those modifications have still potential for further performance 
improvements. The Priority Increase Factor increases the priority of a machine 
depending on the time of how long a machine is already waiting for repair. Within 
this simulation study, a linear function with the same slope for all machines was 
used to model this behaviour. Using a machine depending Priority Increase Factor 
could bring further performance improvements, since the lower breakdown severity 
of redundant operating sequences compared to non-redundant operating sequences 
would be considered. In that case, redundant operating sequences would be assigned 
a lower Priority Increase Factor, whereas single machines would be assigned a 
higher Priority Increase Factor. The second modification, the reduction of 
redundant operating sequences priorities, was done by dividing the priority of each 
operating sequence, by the number of its redundant machines. This was necessary, 
since otherwise redundant operating sequences, which were detected as bottleneck 
machines, would have been prioritized over single non-bottleneck operating 
sequences which broke down at the same time. Even a redundant operating 
sequence can be a bottleneck of a system, it will always have a lower breakdown 
severity compared to a non-redundant operating sequence. Therefore, in the case 
of corrective maintenance, the priority of redundant operating sequence has to be 
reduced. How much the priority has to be reduced, is not only a matter of the 
number of redundancies, but also of the actual buffer levels and the structure of a 
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production system. Therefore, the findings of this thesis lead to further research on 
how the Priority Increase Factor and the reduction of redundant operating 
sequences priorities can be modelled in a mathematically more accurate way, in 
order to improve the proposed prioritization method further. 

In the field of preventive maintenance, the scheduling of maintenance tasks is 
another possible application where a data-driven bottleneck detection could be 
used. Preventive maintenance tasks, require the stoppage of machines and reduce 
therefore the availability of those machines. Because of that, effective maintenance 
task scheduling has a big impact on the OEE of production facilities. Depending 
on the production system, the shift plan and the personnel resources of a company, 
not all preventive tasks can be scheduled in non-production shifts. Within the TPM 
4.0 research project it was shown, that flexible maintenance windows, which occur 
due to a production line’s dynamics and machine breakdowns, can be used for the 
purpose of preventive maintenance, without affecting the performance of the 
production system. Performing preventive maintenance tasks on bottleneck 
machines only during non-production shifts or flexible maintenance windows (Li et 
al., 2009) could bring further OEE improvements. 

Also besides maintenance there are possible fields of application for the bottleneck 
detection algorithm. Especially for assembly lines or job shop production layouts 
which are less automated compared to the two industrial use cases, a short-term 
bottleneck identification could be used to assign additional resources to the 
bottleneck stations. Furthermore, the buffer capacities around bottlenecks could be 
adjusted in order to reduce the balance-losses on a production line. Chang et al. 
(2007) have shown, that adjusting buffer capacities based on information about the 
bottleneck situation, can bring performance improvements and reduce balance-
losses.  
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