
Bernhard Reinisch, Bakk. techn.

Construction of a Release Pipeline

for Agile Software Development

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Institute for Software Technology

 Diplom-Ingenieur

Supervisor

Graz, May 2017

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis.

Date Signature

TO . . .

MY PARENTS GERTRUDE & BERNHARD

LOVINGLY NAMED MAMA & PAPA.

Abstract

In recent years the software industry has experienced quite an evolution in terms of what customers

expect from software and software deliveries. Customers are much more willing and interested to

play an active role in the software development process. In order to achieve fast feedback loops,

a constant stream of software deliveries is necessary. In Agile Software Development, the key

resources are empowered cross functional development teams which rely heavily on an automated

infrastructure.

AVL reacted to these market changes by reconsolidating its software development process.

An Agile Transformation was initiated. The whole software development process was adapted

based on the Scaled Agile Framework (SAFe). These changes also affected the development

infrastructure. The infrastructure was not designed to support Agile development teams. Actually,

the tool landscape heavily relied on people who manually executed the necessary steps when

requested. Automated workflows were only rarely in place.

As part of this thesis, the core infrastructure building blocks were replaced. A modern Source

Control system is used in order to support isolation for the development teams. Therefore, good

support for branching and merging is paramount. The proprietary Build System is superseded by

the Build vNext system in order to give the teams the ability to run builds by themselves. The

Deployment package creation used a licensed authoring tool which did not meet the needs for

branching. The open source tool Windows Installer XML (WiX) was the replacement.

In addition, an automated testing environment based on virtual machines was established. The

software products are installed and tested within these environments at least on a nightly basis.

Keywords:

Release Pipeline, Agile Transformation, Team Foundation Version Control, Branching, Merging,

Build vNext, VMWare vSphere, Oneiroi, Artifactory, Windows Installer XML, OneSetup

Kurzfassung

In den vergangenen Jahren hat in der Software Industrie ein Umbruch der Kundenerwartungen

in Bezug auf Software- und Softwarelieferungen stattgefunden. Kunden sind mehr denn je dazu

bereit und auch interessiert, eine aktivere Rolle in der Software-Entwicklung zu spielen. Um

schnelle Rückkopplungsschleifen zu erreichen ist ein konstanter Strom von Softwarelieferungen

erforderlich. Die Schlüsselressourcen in der Agilen Softwareentwicklung sind multifunktionale

Entwicklungsteams, die sich wiederum stark auf eine automatisierte Infrastruktur verlassen.

Die AVL reagierte auf diese Marktveränderungen durch eine Evaluierung ihres Softwareen-

twicklungsprozesses. Dieser wurde basierend auf dem Scaled Agile Framework (SAFe) angepasst.

Diese Änderungen wirkten sich ebenfalls auf die Entwicklungsinfrastruktur aus. Die ursprüngliche

Infrastruktur war nicht darauf ausgelegt agile Entwicklungsteams zu unterstützen. Manuelle

Arbeitsschritte waren die Regel. Automatisierte Abläufe waren nur selten vorhanden.

Im Rahmen dieser Arbeit wurden Kerninfrastrukurelemente ersetzt. Ein modernes Source

Control System wurde eingeführt, damit Entwicklungsteams unbeeinflusst von einander arbeiten

können. Das proprietäre Build System wurde durch das Build vNext System ersetzt. Teams haben

so die Möglichkeit, Buildprozesse selbst auszuführen. Zur Erstellung der Installationspakete wird

nun Windows Installer XML (WiX) eingesetzt.

Darüber hinaus wurde eine automatisierte Testumgebung unter Verwendung virtueller Maschi-

nen eingerichtet. Die Software wird in diesen Umgebungen nächtlich voll automatisiert installiert

und getestet.

Schlagwörter:

Release Pipeline, Agile Transformation, Team Foundation Version Control, Branching, Merging,

Build vNext, VMWare vSphere, Oneiroi, Artifactory, Windows Installer XML, OneSetup

Acknowledgements

First and foremost, I would like to thank my supervisor, University Prof. Wolfgang Slany. Although

this thesis took quite some time before it was finished, his support and patience made it possible.

Secondly, I would like to thank AVL and its representative Dipl.-Ing. Andreas Fischer, who served

as my boss and the AVL contact person for this thesis.

I am indebted to many of my student colleagues who supported me over the years. I want

to especially mention my very first hour colleagues Michael Schneeberger, Martin Schröttner,

Bernhard Mayr, Margarete Ortner, and Paul Sprenger who also became my best friends over these

years.

As representatives of my work colleagues and part of the working poor, Andreas Kappel, David

Bloice, and Christian Scherngell. All of you, but especially you three, were my lab rats in testing all

the new tools we introduced. And thank you David for proof-reading this thesis. Your corrections

really have proven that I have written this thesis by myself.

My parents Bernhard and Gertrude, my sisters Manuela and Petra, my uncle Franz, my aunt

Gabi, and my cousin Markus for supporting me throughout all my studies at University and by

simply being there when help was needed. My love Sonja, may you truly become the love of my

life. My daughter Anna, you showed me that being a dad is not accompanied by fear. My son

Bernhard, you just have arrived in this world and you are already loved so much.

Contents

Abstract . vii

Kurzfassung . ix

Acknowledgements . xi

Contents . xvi

List of Figures xix

List of Listings xxiii

List of Tables xxv

Glossary xxviii

Abbreviations xxx

Notes xxxi

1 Introduction . 1

1.1 Structure 2

I Infrastructure

2 Source Control . 7

2.1 Branching 9

2.1.1 Harvest Branching Model . 9

2.1.2 TFVC Basic Branching Model . 10

2.1.3 TFVC Branching - Development Enhancements . 11

2.1.4 TFVC Branching - Production/Release Enhancements 12

2.1.5 TFVC Branching - Enhanced Pattern . 13

2.2 Merging 14

2.2.1 TFVC Merge – Merge Whole Branch . 15

2.2.2 TFVC Merge – Cherry Picking . 18

2.2.3 TFVC Merge – Baseless Merge (BM) . 19

3 Build System . 23

3.1 Build System 25

3.1.1 Build Agents, Agent Pools, and Queues . 25

3.2 Build Infrastructure 27

3.3 Build Agent Installation 28

3.4 Building 30

3.5 Build Numbering Convention 32

4 Lab Management . 37

4.1 Release Definition 39

4.1.1 TFMS Release Definition in Detail . 40

4.2 VMWare vSphere 45

4.2.1 Virtual Machine Templates . 45

4.2.2 Virtual Machine Settings . 46

4.2.3 Troubleshooting . 47

4.3 Oneiroi 47

4.3.1 Unit Tests . 49

4.3.2 Implemented Scripting Functions . 50

5 Dependency Management . 51

5.1 Binary Dependencies 52

5.1.1 Traceability . 52

5.1.2 Automation . 52

5.2 Key Benefits 53

5.3 Build Integration 54

6 Documentation . 57

6.1 Collaborative Writing 58

7 Infrastructure: How To ... 63

7.1 ... setup a Build Machine 63

7.2 ... setup a License Server 64

7.3 ... build a Feature Branch 65

7.4 ... build a Servicing Branch 66

7.4.1 Branching . 66

7.4.2 Build . 66

7.4.3 Lab Machine Creation . 69

7.4.4 Release Definition . 69

7.5 ... create a Virtual Machine 72

7.5.1 via TFS Build Tasks . 72

7.5.2 via PowerShell Script . 73

7.6 ... find artifacts in Artifactory 73

II OneSetup Deployment Framework

8 OneSetup Introduction . 77

8.1 Windows Installer Concepts 77

8.2 Windows Installer XML 79

8.2.1 MSI Package Creation . 80

8.2.2 Bootstrapper Application (BA) . 81

9 OneSetup Platform . 85

9.1 Configuration Handling 85

9.1.1 Implementing Parameters . 90

9.2 Configuration Handling: Supported Parameters 91

9.3 Configurator User Interface 94

9.4 Bootstrapper User Interface 96

9.5 Bundle Conditions 100

9.6 Bundle Command line Switches 100

9.7 Prerequisites Packages 100

9.8 Example Solution 101

9.9 Custom Actions 103

9.9.1 Avl.OneSetup.CustomActions.LaunchConfiguratorUi 103

10 OneSetup Tools . 107

10.1 Tool: *.CreateProductVersionIncludeWxi.exe 107

10.2 Tool: *.RePackCustomActionDll.exe 109

10.3 Tool: *.CopyPayloadGroupFiles.exe 111

10.4 Tool: *.Configurator.exe 112

10.5 Tool: *.IIISHelper.exe 114

10.5.1 Install/Check IIS . 115

10.5.2 SSL and Self-Signed-Certificate . 116

10.5.3 Production-Maintenance-Toggle . 118

10.6 Tool: *.JiraHelper.exe 120

11 OneSetup: How To ... 123

11.1 ... add a SANTORIN Environment Service 123

III Epilogue

12 Results / Conclusion / Further Work . 129

12.1 Results 129

12.2 Conclusions 131

12.3 Further work 132

Bibliography . 135

List of Figures

1.1 Agile Transformation . 2
1.2 The Big Thesis Picture . 3

2.1 A typical Harvest Environment used in AVL . 8
2.2 Harvest Branching Pattern . 10
2.3 Basic Branching Pattern . 10
2.4 Enhanced Branching for Development . 11
2.5 Production / Release Branching Enhancements . 12
2.6 Enhanced Branching Pattern . 13
2.7 File Changes on Development Branch . 14
2.8 New File Created/Changed on Development Branch 14
2.9 Merge Conflict on Main Branch . 14
2.10 Merge Conflict on Development Branch . 14
2.11 Forward Integration from Main to Development . 15
2.12 Forward Integration from Release to Development 15
2.13 Reverse Integration from Development to Main . 16
2.14 Reverse Integration from Servicelevel to Release to Main 16
2.15 Perform GetLatestVersion on Main branch and TeamChicken branch . . 16
2.16 Checkin Pending Changes on both branches. 16
2.17 Initiating the merge from source branch . 17
2.18 Branch Selection . 17
2.19 Version Type Selection . 17
2.20 Performing the Merge Operation . 17
2.21 Check-in local pending changes after merge . 17
2.22 Check-in overview of all files merged . 17
2.23 Forward Integration from Main -> Release -> Servicelevel 18
2.24 Reverse Integration from Development to Main . 18
2.25 Merge Wizard: Specific Changeset selected . 19
2.26 Merge Wizard: Select a Specific Changeset to merge 19
2.27 Specific Folger merge . 20
2.28 Specific File merge . 20
2.29 Baseless Merge Overview . 20
2.30 Multi version bugfixing without BM . 21

2.31 Multi version bugfixing with BM . 21
2.32 Baseless Merge in TFVC . 21

3.1 TFS 2015 Build system . 26
3.2 AVL Build Infrastructure . 27
3.3 SonarQube steps wrapping the actual Build process 29
3.4 Build definition with several solutions . 30
3.5 Build definition with build.proj file . 33
3.6 Multiple Software Releases with multiple Servicelevels 33
3.7 Example Santorin: Naming with associated Build Numbers 35

4.1 Continuous Delivery vs. Continuous Deployment . 38
4.2 Lab Management Infrastructure . 39
4.3 Example Release Definition in TFMS . 41
4.4 Variables for Development Environment in TFMS . 41
4.5 Task Group Revert Snapshot . 42
4.6 Copy DownloadArtifact.ps1 to a particular Lab machine 43
4.7 Execute DownloadArtifact.ps1 on a particular Lab machine 43
4.8 Oneiroi Workflow . 48

5.1 Usage of Artifactory by AVL . 54

6.1 How the project was documented . 58
6.2 Documentation Solution . 59
6.3 Documentation Solution - Areas . 59

7.1 License Server configuration for multiple license files 64
7.2 Create feature branch from Santorin Main . 65
7.3 Branch from <Branch> dialogue . 65
7.4 Clone the build definition for the feature branch . 66
7.5 Adapt the Server Path . 67
7.6 Adapt the Triggers . 67
7.7 Saving the cloned build definition . 68
7.8 Creation of the servicing branch 5R3 . 68
7.9 Servicing Branch Hierarchy . 69
7.10 Servicing Branch Folder . 69
7.11 Find an available machine name . 70
7.12 Queue build in order to create a new virtual machine 70
7.13 Clone the latest servicing Release Definition . 71
7.14 Open Configure Variables on Release Definition . 71
7.15 Configure variables on Release Definition . 71
7.16 Remove/Renew the artifact source to the new build definition 72
7.17 Update the release definition trigger . 72
7.18 Search Artifactory using meta data . 73

8.1 MSI Installation Sequence . 78
8.2 Major constructs of an MSI package . 79
8.3 Visual Studio Integration with Votive . 80
8.4 Command line tools in WiX . 81
8.5 Burn-based Bundle installer overview . 83
8.6 Bootstrapper Application logical event flow . 83

9.1 Configuration Handling Factory Pattern . 91
9.2 Configurator User Interface . 95
9.3 Configuration Wizard: At Startup . 96
9.4 Configuration Wizard: Stepping through . 96
9.5 Bootstrapper User Interface: At Startup . 96
9.6 Bootstrapper User Interface: Sections . 96
9.7 Cobra Installer based on OneSetup . 98

9.8 Concerto Installer based on OneSetup . 98
9.9 Engineers Office Installer based on OneSetup . 98
9.10 PUMA Standalone Office Installer based on OneSetup 98
9.11 TFMS Installer based on OneSetup . 98
9.12 iGem Installer based on OneSetup . 98
9.13 fmi.LAB Installer based on OneSetup . 98
9.14 inMotion Installer based on OneSetup . 98
9.15 SANTORIN Installer based on OneSetup . 98
9.16 Example Solution . 102
9.17 Example Solution - Areas . 102

10.1 Properties Tab of a provided DLL . 108
10.2 Configurator “AVL Installation User Interface” (launched with listing 10.10) 113
10.3 IIS with missing SSL binding . 116
10.4 IIS with fixed SSL binding . 117
10.5 IIS IP address and domain restrictions . 118
10.6 IIS IP Address and Domain Restrictions in Production Mode 118
10.7 IIS IP Address and Domain Restrictions in Maintenance Mode 119

12.1 Modern DevOps Cycle . 132

List of Listings

3.1 Perl-based build project TFMS_V132 . 24

3.2 Section of Project Configuration File of TFMS_V132 24

3.3 CleanupBuildMachine.ps1 . 30

3.4 Example Build.proj file . 32

4.1 PowerShell script WaitForAllMachines.ps1 . 42

4.2 PowerShell script DownloadArtifacts.ps1 . 44

4.3 Example installation variant XML file . 47

4.4 Accessing variables in LabConfig.xml . 47

4.5 Executing structure of Run.ps1 . 49

4.6 PowerShell - Pester installation . 49

4.7 Function Export-Dump . 50

5.1 Example download of Oracle Managed Data Access references 55

5.2 Example upload of Source Code as an artifact . 55

6.1 LaTex Book Compile Compile.ps1 . 60

7.1 Create new build virtual machine . 73

8.1 Events related to the Engine.Detect method . 83

8.2 Events related to the Engine.Plan method . 84

8.3 Events related to the Engine.Apply method . 84

9.1 Meta configuration file . 86

9.2 Node <Package> - Example . 87

9.3 Node <PackageType> - Example . 87

9.4 MSI Package Definition - Example . 87

9.5 Node <InstallPackageInContext> - Example . 87

9.6 Node <ForwardParameterValueTo> - Example 89

9.7 Node <EngineVariable> - Example . 89

9.8 MSI Package Definition with Engine Variables - Example 89

9.9 Node <ConditionalParameters> - Example . 90

9.10 Example Configuration File . 90

9.11 Parameter <Directory> - Example . 92

9.12 Parameter <File> - Example . 92

9.13 Parameter <DomainUserName> - Example . 92

9.14 Parameter <DomainUserPassword> - Example . 92

9.15 Parameter <DriveDropDown> - Example . 93

9.16 Parameter <DropDown> - Example . 93

9.17 Parameter <Integer> - Example . 93

9.18 Parameter <LicenseFile> - Example . 93

9.19 Parameter <LicenseServer> - Example . 94

9.20 Parameter <MachineName> - Example . 94

9.21 Parameter <MachineName> - Example . 94

9.22 Bundle UX Variables . 97

9.23 Customised Bootstrapper Definition . 99

9.24 PayloadGroup file with Bundle Image files . 99

9.25 PayloadGroup file with Application Factory . 99

9.26 Bundle Launch Condition . 100

9.27 Bundle MSI Launch Condition . 100

9.28 Using predefined prerequisite packages in the Bundle chain 101

9.29 Custom Action: Launch Configurator UI OneSetup 104

10.1 Command line call for CreateProductVersionIncludeWxi.exe 108

10.2 Content of created OneSetup.wxi . 109

10.3 Reading Version*.txt files within a batch script . 109

10.4 *.RePackCustomActionDll.exe functions . 110

10.5 RePacking a single file . 110

10.6 Content of created example payload group file . 111

10.7 RePacking a payload group . 111

10.8 *.CopyPayloadGroupFiles.exe interface . 112

10.9 *.CopyPayloadGroupFiles.exe example . 112

10.10Launching Configurator for a particular package . 112

10.11Changing configuration values without user interface 114

10.12IISHelper functions . 115

10.13IISHelper Install/Check IIS functions . 116

10.14IISHelper adds port binding and certificate . 117

10.15IISHelper toggle into Maintenance Mode . 119

10.16IISHelper toggle into Production Mode . 119

10.17JiraHelper command line interface . 120

10.18JiraHelper -GetWrongBuildNumbersCount switch 121

10.19JiraHelper -GetIssuesInWindowCount switch . 121

10.20JiraHelper -NotLinkedToSwr switch . 122

11.1 ETL Loader service definition . 124

11.2 Service dependency to ETL Loader . 125

11.3 Referencing the created ETL Loader ComponentGroup 125

List of Tables

3.1 Example Santorin: List of Product and Binary Versions 35

5.1 Source code vs. binary artifact management . 52

9.1 Bundle command line switches . 101
9.2 Available prerequisite packages . 105

10.1 Content of the created Version*.txt files . 109

Glossary

Agile Transformation Enterprise wide change of the software development process from CMMI

to Agile software development. vii, ix, 1, 2, 25, 58, 129, 131

ALASKA AVL Lean Agile Software Development Process with KAizen. A development process

based on the Scaled Agile Framework (SAFe). 1

Artifactory Universal Artifact Repository Manager from JFrog. vii, ix, xviii, 43, 47, 51, 53–55,

73, 130

AVL The term AVL stands for a particular business unit and includes specific departments (ITS-

IM/ITS-XM). xvii, xviii, 1, 4, 7–9, 23, 25, 27, 28, 34, 38, 40, 44, 45, 51, 53, 54, 58, 59, 63,

64, 72, 114, 115, 129

Build vNext Web based, cross platform Team Foundation Server build system. vii, 130

Bundle A Bundle chains together a number of installation packages with a single User Experience.

xviii, xxii, 82–84, 86, 87, 95–97, 100, 101, 103

Capability Maturity Model Integration A process-level improvement training and appraisal

program. 1

Continuous Delivery Automated tool chain for build/test/deployment. The decision weather a

software increment is deployed is manually made. xviii, 1, 2, 25, 37, 38, 131

Continuous Deployment Automated tool chain for build/test/deployment. The decision weather

a software increment is deployed is automatically made. xviii, 2, 25, 37, 38

Continuous Integration Automated tool chain for build/test. Automated tests at build time

ensures the quality. 2, 25, 37, 131

Dropfolder A central store for data exchange. All build/test results are stored on this file share.

28, 64

ESXi VMware ESXi (formerly ESX) is an enterprise-class, type-1 hypervisor developed by

VMware for deploying and serving virtual computers. 27, 38, 42, 45, 46

Harvest CA Harvest Software Change Manager. xiii, xvii, 7–10, 23, 24, 129

InstallShield A proprietary (licensed) software tool from Flexara Software to create install pack-

ages. 130

Jira A proprietary issue tracking product, developed by Atlassian. 120, 121

Lab Management Combines the three concepts: Release Definition, ESXi and Oneiroi. xviii, 38,

39, 64

LaTex Is a mark up language specially suited for scientific documents and collaborative writing.

xxi, 58–61, 131

Main Main is the name of the trunk in source control. xvii, xviii, 2, 10–16, 18, 19, 33, 39, 65, 66

Oneiroi PowerShell-based script files used in order to prepare machines, install AVL products,

and run automated testing packages. vii, ix, xviii, 39, 40, 42–44, 47, 48, 131, 132

OneSetup Deployment platform based on Windows Installer XML (WiX). vii, ix, xviii, xix, 4, 47,

58, 60, 61, 69, 81, 85, 87–91, 95, 98–101, 103, 107, 109, 110, 112, 113, 130, 131

PowerShell PowerShell is a scripting language for task automation and configuration management

built on the .NET framework. xxi, 29, 39, 40, 42–44, 46, 47, 49, 50, 59, 64, 73, 131, 132

Release Definition Similar to build definition, workflows for machine roll-outs are defined. xiv,

xviii, 38–41, 43, 47, 69, 71

SANTORIN Productline for first/second level host systems. 123

Abbreviations

API Application Programming Interface. 34, 46, 53, 57, 78, 80, 82, 83

BA Bootstrapper Application. xv, xviii, 81–84, 98, 99, 103

BM Baseless Merge. xiv, xvii, xviii, 19–21

CD Continuous Delivery. xviii, 1, 2, 25, 37, 38, 131, Glossary: Continuous Delivery

CD+ Continuous Deployment. xviii, 2, 25, 37, 38, Glossary: Continuous Deployment

CI Continuous Integration. 2, 15, 18, 25, 37, 131, Glossary: Continuous Integration

CMMI Capability Maturity Model Integration. 1, Glossary: Capability Maturity Model Integration

CPL Common Public License. 79, 80

DISM Deployment Image Servicing and Management. 115

DLL Dynamic Link Library. xix, 51, 90, 99, 102, 107–109, 112

DoD Definition of Done. 58

FI Forward Integration. xvii, 12, 15, 18, 20

GUID Globally Unique Identifier. 102

IDE Integrated development environments. 8, 79

IIS Internet Information Services. xix, xxii, 114–116, 118, 119

MSI Windows Installer. xv, xviii, xxi, xxii, 51, 77–83, 86–90, 100, 102, 103, 109, 123, 125

NUnit NUnit unit-testing framework. 49, 63, 105

RI Reverse Integration. xvii, 12, 15, 16, 18, 20

SAFe Scaled Agile Framework. 1

SSL Secure Sockets Layer. xix, 114, 116, 117

SWR Software Release. 120, 121

TAF Test Automation Framework. Glossary: Test Automation Framework

TEA Tiny Encryption Algorithm. 94

TFS Team Foundation Server. xviii, 9, 25, 26, 28, 29, 38, 40, 44, 49, 51, 72, 129–132

TFVC Team Foundation Version Control. vii, ix, xiv, 9–15, 18, 19, 21, 130

UAC User Access Control. 82

UI User Interface. xviii, 82, 90, 94–99, 103, 115, 118

UX User Experience. xxii, 82, 95, 97

WIP Work in Progress. 94

WiX Windows Installer XML. vii, ix, xviii, 79–82, 84, 87, 101, 102, 107, 108, 123, 125, 130

WiX-Toolset Windows Installer XML Toolset. 79–81, 84, 103, 130

Notes

1. Introduction

“Do. Or do not. There is no try."

— Yoda, The Empire Strikes Back

In recent years the software industry has experienced quite a revolution in terms of what

customers expect from software and software deliveries. Customers are much more willing and

interested to play an active role in the software development process. Requirements are now

written and evolve during the software project. With every delivery, the software is examined and

re-evaluated. Requirements might change, particular topics gain interest, and others are dropped

completely. In order to achieve such fast feedback loops a constant stream of software deliveries

is necessary. Over the years a lot of companies have come forward with their success stories.

How they managed their process transformation, their Agile Transformation needed for the new

challenges. They described how they reached this comfortable state of Continuous Delivery (CD).

AVL reacted on these market changes by reconsolidating its software development process.

There was already a sophisticated Capability Maturity Model Integration (CMMI)1-based software

development process in place but it was not suitable for the future challenges. It was designed for

long running projects with clear requirement, design, implementation, verification, delivery, and

acceptance phases. During a software project, those stages were advanced in one direction and

relied very much on paperwork in the early stages of the project. By introducing the ALASKA2

process, which is based on the Scaled Agile Framework (SAFe)[1], the course was set for AVLs

Agile Transformation.

Since ALASKA is a rather complex framework for large organisations, the focus of this thesis

1"CMMI is a process level improvement training and appraisal program. Administered by the CMMI Institute, a
subsidiary of ISACA, it was developed at Carnegie Mellon University (CMU)", http://cmmiinstitute.com/

2AVL Lean Agile Software Development Process with KAizen

2 Chapter 1. Introduction

Figure 1.1: Agile Transformation

will be on the team level as shown in Figure 1.1. One of the main ideas was to remove the barriers

between the development, integration, and system test teams.

At this point it has to be said that bringing these teams together with the cultural change
needed is by far the most important, most cumbersome, and most challenging part of the Agile

Transformation. Organisational units might have grown over centuries. At AVL, the silo mentality3

is rather high. To overcome these difficulties, strong leadership and a common understanding of

the goals as a company are needed. However, bringing everybody together to make it work is the

critical part of this transformation, and is still ongoing.

After these organisational changes, the tooling[2] is the second most important aspect in

achieving our goals. Everybody needs to be on the same page in respect to Continuous Integration

(CI), Continuous Delivery (CD), and Continuous Deployment (CD+). Automated testing is one

of the key elements[3]. The infrastructure needs to provide the tooling in order to be successfully

implemented. Together, metrics need to be defined, and common agreements on actions in case

the system breaks down - and once the system is running smoothly it needs to be kept running.

CI is not only a principle of thought, it keeps development teams in sync and removes the delays

due to integration issues. However, CI is only the first step. Software development is not done

by having the code integrated in Main. Bringing an integrated software version into a production

environment was a forgotten part within the software development industry leaving a big gap

between development and operations[4]. Getting all this working takes effort, but the benefits

are profound. Complicated, long running intensive system test phases are no longer needed.

Customers see their ideas and requirements arriving much faster and last but not least, emergency

calls of operations teams who break systems through upgrades are a thing of the past. Together,

development and operations teams get it running - you build it, you run it.

1.1 Structure

This thesis focuses on the changes which were/are necessary in different areas of the tooling

infrastructure. A short overview of the previous (or in the case of older maintained software still

3"Silo mentality is an attitude that is found in some organizations; it occurs when several departments or groups
within an organization do not want to share information or knowledge with other individuals in the same organization.",
www.investopedia.com/terms/s/silo-mentality.asp

1.1 Structure 3

Figure 1.2: The Big Thesis Picture

the current) state is given in order to point out the main implementation flaws in the particular areas

needed to be tackled.

At this point there is a big spoiler alert: One of the the main tooling flaws was/is that the

teams needed to be empowered in order to achieve the delivery goals by themselves. Whenever

a team is dependent on other teams in order to achieve their goals, priorities must be alignment,

friction is generated, and the velocity4 drops. Wherever it is possible, teams need to be empowered

to get their work done on their own.

Figure 1.2 shows the big thesis picture which focuses on the following parts:

• Introduction: self reference to this chapter.

• Part I - Infrastructure: This first main part describes all the covered infrastructure topics.

The release pipeline within the Team Foundation Server block is at its core.

Source Control: Covers the transformation from a change management system into a

modern source control system (see Chapter 2).

Build: Replacement of a proprietary build system (see Chapter 3).

Dependencies: Inter-product dependencies handling by binary references instead of

rebuilding source code (see Chapter 5).

4"Velocity is a capacity planning tool sometimes used in agile software development. Velocity track-
ing is the act of measuring said velocity. The velocity is calculated by counting the number of units
of work completed in a certain interval, the length of which is determined at the start of the project.",
https://en.wikipedia.org/wiki/Velocity_(software_development)

4 Chapter 1. Introduction

Lab Management: Moving from test systems located under the testers’ desk to a virtu-

alised machine test setup in a data centre (see Chapter 4).

Documentation: Proposal using text based documentation tools integrated in source

control (see chapter 6).

How To: Often used workflows within infrastructure part (see Chapter 7).

• Part II - OneSetup Deployment Framework: The second part deals with the development

and purpose of the OneSetup framework. This framework centralises user interfaces and

behavioural installation patterns to be applied by various software products within AVL.

Introduction: Overall installer concepts (see Chapter 8).

OneSetup Platform: Covers the reusable, configurable platform part (see Chapter 9).

OneSetup Tools: Useful commissioning/OneSetup tools (see Chapter 10).

How To: Example usage and common configuration examples (see Chapter 11).

• Results / Conclusions / Further Work: Final words about this thesis (see Chapter 12).

I
2 Source Control . 7
2.1 Branching
2.2 Merging

3 Build System . 23
3.1 Build System
3.2 Build Infrastructure
3.3 Build Agent Installation
3.4 Building
3.5 Build Numbering Convention

4 Lab Management 37
4.1 Release Definition
4.2 VMWare vSphere
4.3 Oneiroi

5 Dependency Management 51
5.1 Binary Dependencies
5.2 Key Benefits
5.3 Build Integration

6 Documentation . 57
6.1 Collaborative Writing

7 Infrastructure: How To 63
7.1 ... setup a Build Machine
7.2 ... setup a License Server
7.3 ... build a Feature Branch
7.4 ... build a Servicing Branch
7.5 ... create a Virtual Machine
7.6 ... find artifacts in Artifactory

Infrastructure

2. Source Control

“TFS ate my source again."

— David Bloice, Feng shui consultant

In AVL CA Harvest Software Change Manager (SCM) [5] [6] (internally named Harvest) was

used as part of the source control infrastructure. Harvest is used for change management and

version control of source code. It originates from the early 70s where it was used for aircraft engine

development where robust, traceable, and reliable parallel development was necessary. These three

attributes robust, traceable, and reliable are the main characteristics of Harvest and have stayed

within the product until today. The main features are:

• Change Packages: Harvest provides version control and change management. In order to

contribute to the source control, the developer creates a change package. The developer can

then checkout the set of files she might need. The files and the changes are associated with

the change package. Once the work has been done, the developer checks in the changes as

part of the change package. This is the version control part of Harvest.

• Life Cycles: The change package can now be iterated through a predefined life cycle. At

AVL those stages are called Coding Unit Test, Build, Integration, System Test, Approved, and

Snapshots. These stages can only be iterated one after the other. At all these stages of this life

cycle, the package needs approval from the appropriate user or user groups. These approvals

/ promotions are stored within Harvest (for audit purposes). At AVL, the movement through

the life cycle was mainly done by the Integration Engineers. This role / person had to decide

which package is to be integrated into what particular software versions and had to provide

this software version to the system test.

• Project (Environments): Harvest Projects are customisable in order to suit company needs.

This includes the process definition within the life cycle, the branching strategy, and access

8 Chapter 2. Source Control

control.

In Figure 2.1 a typical AVL Harvest environment is illustrated.

Figure 2.1: A typical Harvest Environment used in AVL

The Harvest project here is named “Santorin_V55” and shown in the top box. The project is the

root node of the life cycle state model shown here in the boxes below. Within the state model, the

change packages are located (within the folder named Packages). The packages can be promoted /

demoted between the different life cycle stages. The corresponding branching model is shown in

Section 2.1.1.

In respect to the needs of agile software development, Harvest has some major drawbacks:

• Missing IDE Integration: Harvest does not have a smooth integration in common Integrated

development environments (IDE). Anyone who is part of the software development process

needs to use the Harvest interface directly.

• Auditability: One of the main features of Harvest is that every change can be traced and

accounted to a particular person. All changes need to be visible within the system. This

requirement is actually key for reliability critical software (e.g. power plant software, aircraft

software, ...) but usually not needed for commercial software. This makes it very cumbersome

to actually remove files / folders since those changes stay visible as deleted items.

2.1 Branching 9

• Branching: The life cycle design makes it very hard to support modern branching needs

(see Section 2.1.2). During development there is the need for short term feature branches,

and during maintenance there is the need to support different service levels in parallel. This

can only be modelled by creating additional Harvest environments with their own life cycle.

Creating these projects cannot be done by developers themselves which makes it not very

useful in the daily routine.

A whole new source control system was needed. Since at AVL software development is very

much based on Microsoft technologies, the decision for Microsoft Team Foundation Server (TFS)

and its source control system Team Foundation Version Control (TFVC)1 was pretty obvious. TFVC

is a centralised source control system which scales from small to large projects with millions of files

per branch. Access permissions can be defined down to file level. All changesets are checked-in

the server side which makes auditing and tracking rather easy.

This new source control provides branching functionality in a rather simple way. Everybody is

able to create new branches and therefore can isolate their work from others. On the other hand,

by additional branching complexity to the source control is added. To avoid confusion, branches

need to be created and reconciled (merged) in an organised way. In the following two chapters,

branching patterns are discussed with their advantages and disadvantages. At the end of the day,

the product life cycle and teams decide which branching patterns suit them best.

2.1 Branching

In this section different branching models / strategies are discussed. These branching models are

very important for the day to day work since they directly translate into where and when feature

development or bugfixing are made.

2.1.1 Harvest Branching Model

In Harvest, the branching model is actually directly derived from the life cycle model within Harvest

itself. Every life cycle step directly translates into a branch (as shown in Figure 2.2).

Change Packages are created in the Coding Unit Test branch. Once the code changes have been

checked-in, the developer can promote the package to the next stage (in this example to the Build

stage). It depends on the process a team is running which stage actually reflects the state where the

source code is being built. Secondly it is also a matter of access rights who is allowed to promote /

demote packages within the life cycle. At AVL, a developer is allowed to create change packages

in Coding Unit Test and can promote the package to build where a build is created nightly. From

the build state, on the integration engineer takes over and promotes the packages to Integration,

from where releases are created. As already mentioned, this branching model is very limited when

it comes to concurrent support of multiple software versions.

1https://www.visualstudio.com/en-us/docs/tfvc/overview

10 Chapter 2. Source Control

Figure 2.2: Harvest Branching Pattern

2.1.2 TFVC Basic Branching Model

When using TFVC as source control, proper knowledge about branching strategies and models are

also needed. Figure 2.3 shows the basic foundation of every branching strategy.

Figure 2.3: Basic Branching Pattern

The Main branch is in the integration centre. This branch contains the next software version

which is ready to be released. In agile software development, often the terminology potentially

shippable is used.

Above the Main branch, the development branch is located where all new feature development

takes place. The separation between feature development (Development branch) and the current

potentially shippable software version (Main branch) is needed in order to guarantee that the current

feature development does not destabilise the Main branch. Once the feature development is done on

the Development branch, the feature gets merged back into Main branch and enhances the current

2.1 Branching 11

software version.

Below the Main branch the released software maintenance branches are located. The maintenance

branches get updated every time a new release is created and all changes are merged from Main

branch to Release branch. The benefit in having a separate Release branch is that any bugfixing

(which might be necessary in production) can really happen on the version which was released

without having the risk that the latest changes from the Main branch might slip into production.

In the following sections this overall pattern - the separation between development and produc-
tion with main/trunk in the middle - will not be broken. The Main branch will stay sandwiched

between development and production as an anchor between the two.

2.1.3 TFVC Branching - Development Enhancements

The development can be more complicated due to the following challenges:

• Multiple Teams: Teams need to work in isolation from each other. Therefore Team branches

are required.

• Single Feature Development: Particular features might take longer or should be developed

strictly separated from all other changes. For that purpose, Feature branches provide an

answer.

• Quality Assurance: Before any feature from a team/feature branch can be merged into

Main, certain quality criteria have to be met. This guarantees that Main stays at a proper

quality level.

Figure 2.4 shows the enhanced development branching.

Figure 2.4: Enhanced Branching for Development

The idea is that whole teams are separated from Main, and work on their features on their own

12 Chapter 2. Source Control

team branches. As part of the team scope there might be the necessity that particular teammates

have their own private branches or that sub-teams work on a special feature. This strategy supports

the development of multiple teams which contribute to one source control (e.g. one product,

component). In the case of an epic which affects multiple teams, the concept of the Pure Feature

branch is shown as well. Such a branch provides the possibility that teams can work together on

one epic/feature besides their other team work.

In Figure 2.4, the merge events Forward Integration (FI) and Reverse Integration (RI) are also

shown. The most important thing to mention here is the FI event. FI should happen at least on a

daily basis to keep the teams aligned with Main and with each other. Merging will be covered in

detail in Chapter 2.2.

The branching strategy and the isolation which can be achieved only makes sense if a strong

automation chain supports the development. This means that all branches have proper build

automation with test automation behind it. The teams need feedback if their changes affect the

overall quality of the product / component they are working on. Only then the risk in back merging

(Reverse Integration (RI)) new features / changes into main can be minimised. Main remains the

next software version which can be released at any time.

2.1.4 TFVC Branching - Production/Release Enhancements

For production, the need for an extended branching strategy is required mainly due to:

• Concurrent software versions being released.

• Every release version having different service levels.

• Every service level having to be patched.

Figure 2.5 shows the enhanced production / release branching.

Figure 2.5: Production / Release Branching Enhancements

As part of the software release named Release_V1, a release branch is created. A new mainte-

nance branch Release_V1 is created. Furthermore Release_V1_Final will be created as well which

2.1 Branching 13

represents the actual software level for the final release. Release_V1 is called the maintenance

branch for V1. From this branch, all future service releases will be created (e.g. Release_V1_SL1,

Release_V1_SL2, ... Release_V1_SLn). Therefore, all bugfixing takes place directly on this branch.

In case of a critical bug in Release_V1_Final, the teams can fix it directly on this branch. This

structure extends accordingly to the right for every future release.

In addition to the maintenance branches, the teams can also develop new features as part of

a service release. Therefore the enhanced development branching can also be applied above the

maintenance branch (see also Figure 2.4).

2.1.5 TFVC Branching - Enhanced Pattern

As a consequence of Chapter 2.1.3 and Chapter 2.1.4, the enhanced branching pattern is shown in

Figure 2.6.

Figure 2.6: Enhanced Branching Pattern

In comparison to the basic branching pattern (see Figure 2.3) the enhanced pattern has the

following properties:

• Support for Multiple Teams development

• Support for concurrent maintenance of different released versions

• Main is still in the centre and the anchor for development and maintenance

These branching concepts are actually not limited to TFVC. They are very generic and more

or less all modern source control tools support these branching patterns. In any case, the final

branching pattern which will be used is usually a variation of the enhanced pattern or a simplified

one. In the end, the team setup and the number of contributors are also decisive parameters.

14 Chapter 2. Source Control

Figure 2.7: File Changes on
Development Branch

Figure 2.8: New File
Created/Changed on Development

Branch

Figure 2.9: Merge Conflict on Main
Branch

Figure 2.10: Merge Conflict on
Development Branch

2.2 Merging

In Section 2.1 different branching possibilities were discussed. Branching provides the possibility

to work on features/bugfixes without risking others’ work. This isolation comes with at a price.

At some point the changes done on development branches need to go back into the Main branch.

This can be done by merging. Merging, also called integration in revision control, is a fundamental

operation that reconciles multiple changes made to a revision controlled collection of files [7].

Within TFVC, merge operations rely almost entirely on the history (and not the content) of the

affected files. This is nothing unique to TFVC since it is part of almost all modern revision control

systems. When merging files between branches, two different merge events can occur:

• Automatic Merge: Sufficient information in the history of the files is present so that the

tooling can automatically resolve the conflicts and reconcile the files.

• Merge Conflicts: Files were edited simultaneously on multiple branches. Someone needs to

review, compare, and resolve the conflicts.

In Figures 2.7 to 2.10, different basic merge scenarios are shown.

Figure 2.7 and Figure 2.8 show merge scenarios where no conflicts occur. Since in both cases

the full history is given, and this history is strictly linear, the user will see the files which are to be

merged (and can of course always review the automatic merge) but no immediate user interaction is

needed.

Figure 2.9 and Figure 2.10 show merge scenarios where conflicts occur. A particular file gets

edited on Main and Development branch. At the time they are merged together again a merge

conflict occurs and user interaction is required. Depending on the file types and the content changes,

merge tools can provide assistance.

2.2 Merging 15

Figure 2.11: Forward Integration
from Main to Development

Figure 2.12: Forward Integration
from Release to Development

In the following sections, different merge use cases are shown in order to provide a developers

cookbook for merging/branching use cases. The used source control is TFVC.

2.2.1 TFVC Merge – Merge Whole Branch

Use Case 1: Forward Integration (FI)

Development branches of teams or features should not differ too much from their anchor branch,

e.g. Main. To ensure this, whole branch merges are used to keep the development branch up to date.

This is called Forward Integration (FI).

Figure 2.11 and Figure 2.12 show the two uses cases based on the branching model from

Section 2.1.5. It is good practice to run such FI merge events on a regular basis (e.g. daily). By

doing so, conflicts are resolved early where the memory of the team is still fresh. Side effects can

be identified quickly. The team’s tool chain stays up and running.

Use Case 2: Reverse Integration (RI)

Merging from a development branch back into Main as shown in Figure 2.13 can mainly be seen as

a final step of a feature development. Merging the whole branch ensures that really all changes

are beeing merged from development to Main. Therefore the whole CI which took place on

development branches streams back into Main (no cherry picking2 or selective changeset merging

takes place).

In case of maintenance, the whole branch merge (as shown in Figure 2.14) can be used to

ensure that all changes from the release branches really stream back into the next service release or

Main. This guarantees the feature/defect completeness in higher versions - no downdates!

Example: Merge whole branch from Main to TeamChicken

In the following a real world example of merging a whole branch from Main to TeamChicken is

given:

1. Check if both branches are up to date by performing Get Latest Version (see Figure 2.15).

Conflicts need to be resolved.

2. It is best practice to have no pending changes on neither the source nor the target branch.

During the merge, all changes are done locally. Pending changes would then be mixed into

the actual merge which might cause additional confusion. Figure 2.16 shows the check-in

2"Copy commits from one branch to another using cherry-pick. Unlike a merge or rebase, cherry-pick only brings
the changes from the commits you select, instead of all the changes in a branch.", https://www.visualstudio.com/en-
us/docs/git/tutorial/cherry-pick

16 Chapter 2. Source Control

Figure 2.13: Reverse Integration from
Development to Main

Figure 2.14: Reverse Integration from
Servicelevel to Release to Main

Figure 2.15: Perform
GetLatestVersion on Main branch and

TeamChicken branch

Figure 2.16: Checkin Pending
Changes on both branches.

operation and the warning message in case no pending changes exist.

3. Preparation is done - Latest Version and No Pending Changes on both branches.

4. The merge is initiated on source branch (Main) as shown in Figure 2.17.

5. The source control wizard (see Figure 2.18) pops up to guide the user through the merge

process.

Check the source branch again

Select All changes up to a specific version

Select the target branch TeamChicken

Continue with Next >

6. Select a proper Version type, e.g. Latest Version as shown in Figure 2.19. Continue with

Next >.

7. Final informational note is shown to summarise everything. Continue with Next > and the

merge operation will take place as shown in Figure 2.20.

8. As a result of the merge operation, conflicts may occur. These conflicts need to be resolved.

9. The whole merge process (including conflict resolution) is executed locally. In order to

finalise the merge process, the local changes need to be checked-in to the TeamChicken

branch as shown in Figure 2.21 and Figure 2.22.

2.2 Merging 17

Figure 2.17: Initiating the merge from
source branch

Figure 2.18: Branch Selection

Figure 2.19: Version Type Selection Figure 2.20: Performing the Merge
Operation

Figure 2.21: Check-in local pending
changes after merge

Figure 2.22: Check-in overview of all
files merged

18 Chapter 2. Source Control

Figure 2.23: Forward Integration
from Main -> Release -> Servicelevel

Figure 2.24: Reverse Integration from
Development to Main

2.2.2 TFVC Merge – Cherry Picking

In TFVC there are two ways of merging:

1. Merge all changes up to a specified version (as already shown in Figure 2.18)

2. or merging selected changesets. Particular changesets can be selected from a list of changesets

that are in the source branch but not yet merged into the target branch3.

The second option is called a Cherry Pick merge.

By introducing Cherry Picking, some problems also arise in respect to CI. The source control

sums up all changes over time. Therefore, one changeset is usually not granular. In general,

it is not an easy task to identify the changes and the assigned changesets, and merge only the

changes/changesets which are related to a specific problem without picking too much or too little.

Additionally, there is always the risk that the target branch will not be buildable after a cherry

pick merge. Quite often, some additional files or manual file changes are needed to successfully

build the target branch. Sometimes cherry picking is also a symptom of bad work preparation

(especially in maintenance). Teams need to know in advance where bugfixes should be made in

order to achieve proper Reverse Integration in the first place. Otherwise, bugfixes are done in Main

and then later, FI is needed to merge the bugfixes into service releases.

Nevertheless, cherry pick merges have at least two valid use-cases:

• Forward Integration (“Down Merge”) of requested bugfixes or features into releases /

servicelevels which are already solved in higher versions, as shown in Figure 2.23.

• Reverse Integration of specific content which is already finished in a team branch and can

be released to Main (see Figure 2.24).

Example: Cherry Picking a Specific Changeset

In order to reverse integrate a specific bugfix/feature from TeamChicken to Main, the following

steps are necessary:

1. Precondition: Source and target branches have the latest version and there are no pending

changes (see Figures 2.15 and 2.16).

3https://blogs.msdn.microsoft.com/billheys/2011/01/19/what-is-a-cherry-pick-merge-and-why-do-you-
recommend-against-them/

2.2 Merging 19

Figure 2.25: Merge Wizard: Specific
Changeset selected

Figure 2.26: Merge Wizard: Select a
Specific Changeset to merge

2. Start the merge operation on the TeamChicken branch.

3. Select Selected Changesets as desired merge content as shown in Figure 2.25. Continue with

Next >.

4. All changesets which have not yet been merged from TeamChicken to Main are listed as

shown in Figure 2.26. Select the changeset which should be merged and continue with

Next >.

5. The merge operation takes place locally. In case of conflicts they need to be resolved. Follow

the steps as shown in Figures 2.20 to 2.22 to complete the merge operation.

Example: Cherry Picking Specific Folder Content/File(s)

Specific folder and file merges are also a category of cherry picking merges. The following steps

are needed:

1. Precondition: Source and target branches have the latest version and there are no pending

changes (see Figures 2.15 and 2.16).

2. For Folder Merge: Select the folder which should be merged as shown in Figure 2.27 (here

TeamChicken\Setup).

Perform the merge operation (see Figures 2.17 to 2.22).

3. For File Merge: Select the file which should be merged as shown in figure 2.28 (here

PublicAccessNew.sln).

Perform the merge operation (see Figures 2.17 to 2.22).

2.2.3 TFVC Merge – Baseless Merge (BM)

In TFVC, branching creates a relationship between two folders. This relationship is hierarchical.

Merge operations are by default only allowed between branches which have a direct parent-child

relationship with each other. This policy ensures that even in a complicated branching pattern (see

Figure 2.6) the integration chain is not broken.

Baseless Merge (BM) however provides the functionality to violate the parent-child relationship

merge policy. Basically, with a BM merge operation, a merge from any source to any target branch

20 Chapter 2. Source Control

Figure 2.27: Specific Folger merge

Figure 2.28: Specific File merge

is possible. In Figure 2.29, possible merge operations between branches with no direct relationship

are shown.

Figure 2.29: Baseless Merge Overview

A real world use case for BM operations is in the case of Multi Version Bugfixing. Figure 2.30

shows a standard maintenance use case. Assume that a bugfix is needed in Release_V1 and in

Release_V2. The standard answer to this request would be the following:

• Do the bugfixing in Release_V1.

• RI of this bugfix into Future Release_V3.

• FI of the merged bugfix into Release_V2. This downmerge might cause trouble.
The codebase in Release_V3 might have changed dramatically in comparison to Release_V2

and Release_V1. Therefore, merging from future Release_V3 to Release_V2 could be very

tricky (nearly impossible without merging other changes as well). However the codebase of

Release_V1 and Release_V2 are more similar to each other. Therefore it is better to merge from

Release_V1 to Release_V2 directly.

Therefore the preferred procedure here is to use a BM as shown in Figure 2.31:

• Do the bugfixing in Release_V1.

• RI of this bugfix into Future Release_V3.

2.2 Merging 21

Figure 2.30: Multi version bugfixing
without BM

Figure 2.31: Multi version bugfixing
with BM

• Merge the bugfix directly from Release_V1 to Release_V2 by using a Baseless Merge.

Example: TFVC Baseless Merge (BM)

To perform a BM in TFVC the following steps need to be followed:

1. Precondition: Source and target branches have the latest version and there are no pending

changes (see Figures 2.15 and 2.16).

2. Start the merge operation on the source branch. Change the target branch by either entering

or browsing for it as shown in Figure 2.32. Note: A warning will be shown that no direct

merge relationship exists between the source and the target and that a BM will be performed.

Figure 2.32: Baseless Merge in TFVC

3. Perform the merge as shown in Figures 2.20 to 2.22.

3. Build System

“I would distill my Zirbenschnaps with
Build vNext, if there was a build step for
that."

— Christian Scherngell, #1 fan of #15

The build system used at AVL was/is a proprietary build system. It was developed in-house

by Hermann Schinagl and Michael Karner between the years 2000 and 2002 and is a product of

this time. In 2000, there were no standardised build systems available on the market. Companies

needed to come up with their own solutions for the build and delivery process. Therefore, the old

build system was designed to serve the following (AVL process) needs:

• The source control/change management system used was Harvest (see Chapter 2). The AVL

build system needed to be coupled to this source control system.

• At least a nightly build with reporting was necessary.

• Building source and creating deployment packages are two main blocks and needed to be run

separately.

• Interface management was achieved via rebuilding of dependencies.

The solution was a batch script based build system with Perl1 scripting language at its core. In

Listing 3.1, a particular build project TFMS_V132 with its files is shown.

1"Perl is a family of high-level, general-purpose, interpreted, dynamic programming languages.",
https://en.wikipedia.org/wiki/Perl

24 Chapter 3. Build System

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 D:\ Projects \TFMS_V132>dir
5 Volume in drive D has no label .
6 Volume Serial Number is BCFD−F87B
7

8 Directory of D:\ Projects \TFMS_V132
9

10 29.03.2016 14:32 <DIR> .
11 29.03.2016 14:32 <DIR> ..
12 18.09.2012 12:51 1.452 build . bat
13 01.09.2015 15:09 2.191 PostProcess . bat
14 02.11.2015 09:23 6.502 TFMS_V132Config.xml
15 −−−−−−− other files got snipped −−−−−−−−−−−
16 40 File (s) 538.036 bytes
17 7 Dir(s) 22.803.419.136 bytes free
18

19 D:\ Projects \TFMS_V132>

Listing 3.1: Perl-based build project TFMS_V132

The most important files are:

• build.bat: With this batch file a whole build can be created. As part of the processing:

the source is copied to a local drive,

depending on the XML configuration, build solutions are built and

PostProcess.bat is executed.

• PostProcess.bat: This batch file creates the product runtime on the disk. The deployment

packages are created from this runtime which is also part of the postprocessing. In order to

support manual modification of the source build, PostProcess.bat can also be run separately.

1 <Project Name = "TFMS"

2 VersionControl = "harvest"

3 HarvestScheme = "harvest7"

4 HarvestEnvironment = "TFMS_V132"

5 HarvestRepository = "TFMS_Sys"

6 HarvestState = "Build"

7 HarvestUser = "buildread"

8 HarvestPassword = "buildread"

9 WorkSpaceName = "TFMS.sln"

10 Configuration = "Release,Debug"

11 MailMap = "harvest://TFMS_Sys/All/TFMSMailMap.xml"

12 SyncConfig = "harvest://TFMS_Sys/All/TFMSSyncConfig.xml"

13 >

14 <Dependency Name = "GeneralServices"/>

15 <Dependency Name = "CME_V10"/>

16 </Project>

Listing 3.2: Section of Project Configuration File of TFMS_V132

• TFMS_V132Config.xml: This build project configuration file mainly defines the build

dependencies and order. Listing 3.2 shows a section of this configuration file. This section

shows one particular solution which is built during the build process. All Harvest related

attributes describe the connection to the Harvest source control. The WorkSpaceName defines

3.1 Build System 25

the actual solution file. All dependencies are listed within the Dependency nodes.

This small overview of the AVL proprietary build system shows the starting point of the build

tooling when the Agile Transformation started. The main problems with the old build system are

listed as follows:

• Source Control and Build System are decoupled without any notification system. Modern

build systems allow various possibilities to run builds based on check-ins on particular

branches or folders - even Gated-Check-ins2 are possible.

• The build scripts are not part of the source control neither are they versioned.

• Creating branches is very cumbersome. Various settings need to be changed.

• No parallel build support.

• Teams are not able to run/maintain a build by themselves.
This list could be extended quite easily. It is no wonder the build system is already over 15

years old. In the meantime, big companies have closed the gap and professional build software is

on the market.

3.1 Build System

Nowadays the topics Continuous Integration (CI), Continuous Delivery (CD), and Continuous

Deployment (CD+) are the keywords everybody is talking about. The TFS Build System provides

a set of tools for achieving these goals. TFS included a build system from its initial release.

This build system included build controllers and build agents. The whole process was defined by

Workflow Foundation XAML files. Although this build system also had its own flaws and issues,

also Microsoft came up with a web based build system3 which also supports Mac OSX and Linux.

This latest build system from Microsoft is one of the most powerful in the industry.

3.1.1 Build Agents, Agent Pools, and Queues

The main concepts Build Agents, Agent Pools, and Queues help to manage the build resources

within a company. The idea is to manage the resources not individually, but instead to use logical

grouping units. Figure 3.1 (inspired by [8]) illustrates the organisational overview of an on-premises

installation:

• Build Machines: Build Machines represent the actual hardware or virtual machines where

build agents are installed.

• Build Agents: Build Agents are the smallest building blocks of a build infrastructure. Build

agents execute particular build workflows. Multiple build agents can be installed on a single

machine. Depending on the machine setup, build agents can have different capabilities in

respect to the location, installed licensed vendor software, or available compilers. These

capabilities are used for selecting a proper build machine when triggering a new build.

• Agent Pools: Agent Pools arbitrarily group together a number of build agents from different

build machines. This grouping also defines a shared boundary of all agents within the pool.

2A check-in triggers a build. Only if the build is successful are the changes committed to the source control, otherwise
they are rejected.

3Build vNext, https://msdn.microsoft.com/Library/vs/alm/Build/feature-overview

26 Chapter 3. Build System

Figure 3.1: TFS 2015 Build system

3.2 Build Infrastructure 27

Figure 3.2: AVL Build Infrastructure

Agent pools can be shared over various collections and team projects.

• Queues: Queues provide access to particular Agent Pools. On creation of a build definition,

an agent pool is chosen. This selection can be changed at any time.

3.2 Build Infrastructure

Following the design patterns previously presented in Section 3.1, a new build infrastructure

was constructed. Figure 3.2 shows the current infrastructure at AVL (as a result of an iterative

improvement process over the last few years).

The most important thing to mention regarding the AVL build infrastructure is that the BirdIs-

land4 agent pool consists only of virtual machines which are hosted from two ESXi5 clusters, one

located in Graz and one in Gurgaon (India). For the pool administration and for the actual build

process, there is no difference in the workflow if a build is started in Graz or in Gurgaon. As long

as the capabilities are met, the build can run successfully on both sites. Despite this, it is simply

4Name was derived from the system team name, it is the home of TeamChicken.
5"VMware ESXi (formerly ESX) is an enterprise-class, type-1 hypervisor developed by VMware for deploy-

ing and serving virtual computers. As a type-1 hypervisor, ESXi is not a software application that one in-
stalls as an operating system (OS); instead, it includes and integrates vital OS components, such as a kernel.",
https://en.wikipedia.org/wiki/VMware_ESXi

28 Chapter 3. Build System

more convenient for the teams that the location where a build is executed, and from where the

output can be accessed, is selected. Most of the time a builds serve a purpose and the build output

is accessed by the team members. To identify the location of the build agents, the Location attribute

is provided.

The workflow when a build is triggered is as follows:

1. From the build agent pool a build agent is requested which meets the capabilities defined in

the build definition. When an agent is free, it is marked as reserved and assigned to execute

the build.

2. The sources are downloaded to the agent’s working directory and the steps defined in the

build definition are executed.

3. The results of the build process are published as Build Artifacts to Dropfolder.

The Dropfolder is a central store for data exchange. Depending on the number of build

definitions and their retention settings, the needed storage capacity might be rather high. Therefore,

the Dropfolder is set up as a share6 hosted on storage provided by the central IT of AVL. There is

also an auto-extend setting which automatically increases the available capacity in case limits are

reached.

Besides the standard build execution shown in Figure 3.2, the two tool service hooks are also

shown as part of the build process. Service hooks are the way third party tools can be integrated

into the TFS environment and can then be used as part of the build process:

1. SonarQube7: A tool used for static code analysis. SonarQube runs on its own server with

its own database. SonarQube integrates into the build process by having a Begin Analysis

and an End Analysis build step. The actual build and/or unit tests are wrapped from the

Begin/End Analysis steps (as shown in Figure 3.3), which also define the scope of the static

code analysis. Results and trends can then be checked on the SonarCube server.

2. Artifactory: See Section 5.3.

3.3 Build Agent Installation

As the teams get used to the new branching concepts, running unit tests during build, having

gated check-in builds, continuously running verification builds, and last but not least, adding more

code, with more people eventually more build agents are needed to satisfy the needs. Additionally,

extending the LAB environment (see Chapter 4) also adds the need for more agents to run the

deployment workflows (the same agents can be used for build and lab).

Fortunately, adding Windows build agents is not too complicated and is script based. For

installing and registering a new Windows build agent8, the following steps have to be applied:

• Extract the agent to the C-Drive

• Rename the folder to Agent_GUID

6Running on machine: atgrzso1199. Share can be accessed via: \\avl01\atgrz\misc\TFS_Dropfolder. Build outputs
are dropped under the following folder structure: <root>\<Builddefinition Name>\<Buildnumber>\<artifactNames>

7https://www.sonarqube.org/
8The latest version of the build agent can be downloaded from Microsoft:

http://go.microsoft.com/fwlink/?LinkID=829054

3.3 Build Agent Installation 29

Figure 3.3: SonarQube steps wrapping the actual Build process

• Call config.cmd from an elevated command line

• Provide the following information

Server-URL: http://tfs-its:8080/tfs

Authentication type: Hit Enter (nothing to be specified)

Agent-Pool: BirdIsland

Agent-Name: <Machinename>_<GUID>

Work folder: D:\Agent_GUID

Run as Service: Y

Provide Username and Password: user avl01\s18f30 is used

• In case the build machine is not located in Graz, the build agent needs to be configured to

use the TFS proxy on site. Therefore, the Windows registry9 of the build machine needs to

be adapted. The correct settings (for an Indian build machine) are prepared at the location

<dropfolder>_HowToSetUpABuildMachine\99_Proxy Configuration

\IndiaProxy.reg.

During the operation of a build agent, a lot of log files and temporary files are created but

not necessarily always cleaned up properly (e.g. due to failing builds, common temporary fold-

ers, build behaviour, etc). It is good practice to clean up the build machine and build agent

respectively on a regular basis. Listing 3.3 shows a possible solution for cleaning up the build

machine. In its current state, the scripts remove all folders which are known to be generated or

filled during the build process. Additionally, this script can be triggered as part of a scheduled

nightly task to clean up the build machine. Both the PowerShell script and the scheduled task def-

inition are prepared and located at <dropfolder>_HowToSetUpABuildMachine\99_Cleanup

Scripts\CleanupBuildmachine.ps1, and CleanupBuildmachine.xml.

9Configure Team Foundation Build Service to Use Team Foundation Server Proxy, https://msdn.microsoft.com/en-
us/library/cc716770(v=vs.120).aspx

30 Chapter 3. Build System

Figure 3.4: Build definition with several solutions

1 Remove-Item -Path C:\Windows\Temp\ -Recurse -Force -ErrorAction SilentlyContinue -Verbose

2 Remove-Item -Path $env:TEMP -Recurse -Force -ErrorAction SilentlyContinue -Verbose

3 Remove-Item -Path "C:\Users\s18f30\AppData\Local\Temp\" -Recurse -Force

4 -ErrorAction SilentlyContinue -Verbose

5 Remove-Item -path "C:\Windows\Microsoft.NET\Framework\v4.0.30319\Temporary ASP.NET Files"

6 -Recurse -ErrorAction SilentlyContinue -Verbose

7 Remove-Item -Path "C:\Users\pbuild\AppData\Local\JetBrains\Transient\InspectCode"

8 -Recurse -ErrorAction SilentlyContinue -Verbose

9 function DeleteFolder($buildAgents)

10 {

11 foreach($buildAgent in $buildAgents)

12 {

13 $diagFolder = $buildAgent.FullName+"_diag"

14 if(Test-Path $diagFolder)

15 {

16 Remove-Item $diagFolder -Recurse -Force -ErrorAction SilentlyContinue

17 -Verbose

18 }

19 }

20 }

21 DeleteFolder (Get-ChildItem C:\ -Filter Agent_*)

22 DeleteFolder (Get-ChildItem C:\ -Filter GRZ_*)

23 DeleteFolder (Get-ChildItem C:\ -Filter GRZ*)

Listing 3.3: CleanupBuildMachine.ps1

3.4 Building

Creating and maintaining build definitions10 is well documented and the current implementation

follows all the suggested guidelines from Microsoft. Figure 3.4 shows a build section of an example

build definition. Every solution has its own build step and can be configured separately.

Although this is quite straightforward, it does have some major drawbacks:

10Create and queue a build definition, https://www.visualstudio.com/en-us/docs/build/define/create

3.4 Building 31

• No parallel build support: Large software projects tend to have a lot of component solutions.

These component solutions do not necessarily need to be built in a consecutive order rather

than in parallel.

• Solution and Build order are not part of source control: When adding/removing/chang-

ing solutions, the build definition also has to be adapted. This cannot be done in one step.

When these changes are propagated through the branches, the build definition always needs

to be adapted. This leads to a situation where nobody changes solutions due to the effort

involved.

• Cannot be executed locally: The logic how the project is built is stored in the build definition.

To perform a local build, all solutions have to be executed in the same order (manually or

scripted). This generates extra effort.

To summarise, it does not scale well. To overcome these limitations, an MSBuild11 project

file can be used. Listing 3.4 partially shows such an MSBuild project file used in the TFMS build

process. All solutions are grouped within targets and executed <Target/> by <Target/> based

on the dependencies set:

1. <Target Name="PreBuild">: Has no dependencies and is executed first. The single

<MSBuild Projects = "$(SolutionRoot)TfmsPrePostBuild\PreBuildStep.sln" so-

lution is executed.

2. <Target Name="TfmsGeneralServices": Dependency is set to PreBuild and the single

solution is executed only after the first solution has finished.

3. <Target Name="TfmsServices": Dependency is set to TfmsGeneralServices and is

only executed once the first and second solutions have built. This target contains multiple so-

lutions. Since there are no dependencies between the <MSBuild/> nodes, they are executed
in parallel.

4. ... and so on.

11The Microsoft Build Engine (MSBuild) is the build platform for .NET and Visual Studio.

32 Chapter 3. Build System

1 <?xml version="1.0" encoding="utf-8"?>

2 <Project ToolsVersion="4.0" DefaultTargets="TfmsLab" xmlns="http://schemas.microsoft.com/developer/

msbuild/2003">

3 <PropertyGroup>

4 <SolutionRoot>$(MSBuildProjectDirectory)\</SolutionRoot>

5 </PropertyGroup>

6
7 <Target Name="PreBuild">

8 <MSBuild Projects = "$(SolutionRoot)TfmsPrePostBuild\PreBuildStep.sln" Targets="Rebuild"

Properties="Configuration=Release" />

9 </Target>

10
11 <Target Name="TfmsGeneralServices" DependsOnTargets="PreBuild">

12 <MSBuild Projects = "$(SolutionRoot)TfmsGeneralServices\TFMSGeneralServices.sln" Targets="

Rebuild" Properties="Configuration=Release" />

13 </Target>

14
15 <Target Name="TfmsServices" DependsOnTargets="TfmsGeneralServices">

16 <MSBuild Projects = "$(SolutionRoot)TfmsServices\TfmsServices_10_All.sln" Targets="Rebuild"

Properties="Configuration=Release" />

17 <MSBuild Projects = "$(SolutionRoot)TfmsServices\TfmsServices_20_WSTestClient_Tools.sln"

Targets="Rebuild" Properties="Configuration=Release" />

18 <MSBuild Projects = "$(SolutionRoot)TfmsServices\TfmsServices_30_TestClient.sln" Targets="

Rebuild" Properties="Configuration=Release" />

19 <MSBuild Projects = "$(SolutionRoot)TfmsServices\TfmsServices_40_PostBuild.sln" Targets="

Rebuild" Properties="Configuration=Release" />

20 </Target>

21
22 <Target Name="TFMS_10" DependsOnTargets="TfmsServices">

23 <MSBuild Projects = "$(SolutionRoot)TFMS\TFMS_10_Interfaces.sln" Targets="Rebuild" Properties="

Configuration=Release" />

24 </Target>

25 <!-- A lot of other solutions snipped -->

26 </Project>

Listing 3.4: Example Build.proj file

Another advantage of using an MSBuild project file is that it is checked-in as part of the source

control. Teams can change the build order, add/remove new solutions, and build locally much easier.

Even gated check-ins are possible along with the changeset. Figure 3.5 shows the cleaned up build

definition using the MSBuild project file. All build steps which dealt with particular solutions are

simplified into one build step which executes the build.proj file.

3.5 Build Numbering Convention

The old build process used a proprietary binary versioning scheme which actually only relied on a

single build number. With the introduction of the enhanced branching model (see Section 2.1.5), a

different version number scheme was used to identify different released versions.

Figure 3.6 illustrates the logical continuation of the enhanced branching pattern in the case

where there are already three software versions released and the fourth is in current development

stage. Release_V1, Release_V2, and Release_V3 are already in regular maintenance mode.

These branches represent the maintenance branches for future service releases of the particular

3.5 Build Numbering Convention 33

Figure 3.5: Build definition with build.proj file

Figure 3.6: Multiple Software Releases with multiple Servicelevels

software versions. Below Release_V1, Release_V2, and Release_V3 are the already released

servicelevels arranged. In addition, Release_V4 is currently in development on Main branch but

pre-releases (alpha, beta, release candidates, etc.) can be maintained using the already created

Release_V4 and Release_V4_Alpha branches. For this branching pattern, proper versioning is

needed.

The binary version number scheme is based on the standard12 provided by Microsoft and

consists of four parts taking the format major.minor.build.revision. All four parts must be

positive integers and need to be provided. They have the following meaning:

• Major: This part indicates major differences between two assemblies with the same name

but different major version. A change in the major version is often accompanied with a

change of interfaces of the assembly. Backwards compatibility cannot be guaranteed.

12Version Class, https://msdn.microsoft.com/en-us/library/system.version(v=vs.110).aspx

34 Chapter 3. Build System

• Minor: A different minor version indicates that enhancements were introduced with the

assembly. These minor changes do not break the backwards compatibility of the assembly.

• Build: The build part is increased daily and follows the following notation:

-.<LastTwoDigitsOfYearCount><DayOfTheYear>.- e.g. the build number part on 1st

January 2017 is -.17001.-, for 31st January 2017 is -.17001.-, ... until 31st December

2017 with -.17365.-. Coding this time information into the build number is not a necessity

but it turned out to be rather convenient in order to immediately identify the age of a particular

assembly.

• Revision: The revision part identifies the daily build number. It is increased with every

build and is reset at midnight. The first build of the year 2017 is -.17001.1, the second

-.17001.2 and so on.

The combination of all these four parts provides the binary version number which is strictly

monotonous increasing13. In order to compare two binary versions, they have to be compared

part-wise beginning with the major part.

The product versioning scheme used at AVL is based on a semantic versioning scheme14.

The product naming and versioning format used follows the following notation:

AVL <Product> <Generation>TMR<Release>.<Servicelevel>.<Patchlevel>

The placeholders have the following meaning:

• Product: The name of the product line is provided here e.g. SANTORIN Host, SANTORIN

MX, TFMS, Concerto,

• Generation: This is the first part of the semantic versioning. The generation identifies

big steps within the software product in respect to architectural changes, and/or different

technologies with no compatibility. The generation version changes in a timeframe of 5-10

years.

• Release: A release signifies a new big increment of the software product. Compatibility is

only given in defined areas. New releases are done on a yearly basis.

• Servicelevel: Service releases are mainly maintenance releases in order to ship bugfixes (in

special occasions, also new features) to the customer. Compatibility within the release is

mandatory. Service releases are scheduled every 10-12 weeks.

• Patchlevel: Patches are provided from servicelevel branches in order to provide fast bugfixes.

They are created irregularly and depend on the priority of the customer requests. Patches are

always cummulative.

The product version number does not change with every build but rather with every release and

needs to be set manually. Figure 3.7 shows an example (based on SANTORIN) of how the product

versioning and binary versioning can be applied to the given branching pattern. The following

details in respect to the binary build number assignments are important:

• Major: The major version is set to 5 which corresponds to the generation Santorin Host 5 of

the software product.

13Every build has its unique build number and the build number increases with every build. There are now builds with
the same build number.

14Versioning indicates the compatibility of the APIs provided, http://semver.org/spec/v2.0.0.html

3.5 Build Numbering Convention 35

Figure 3.7: Example Santorin: Naming with associated Build Numbers

• Minor: The minor version changes with every software release e.g. R1 -> .50., R2 ->

.52., R3 -> .53..

• Build: The build version gets frozen on the service level.

• Revision: The revision is the only part which changes on the servicelevel in order to identify

a particular patchlevel.

In addition to Figure 3.7, the Table 3.1 contains the Product/Binary version pairs (with patch-

levels).

Product version Binary version Remarks
Santorin Host 5 R1.0 5.50.16060.11 —
Santorin Host 5 R1.1 5.50.16071.10 was released eleven days after R1.0
Santorin Host 5 R1.1.1 5.50.16071.18 —
... ... —
Santorin Host 5 R1.1.7 5.50.16071.58 latest (7th) cumulative patch for R1.1
Santorin Host 5 R2.0 5.52.16278.3021 first release of R2.0
Santorin Host 5 R2.0.1 5.52.16278.3051 —
Santorin Host 5 R2.1 5.52.16326.10134 —
... ... —
Santorin Host 5 R2.1.3 5.52.16326.10911 latest (3rd) cumulative patch for R2.1
Santorin Host 5 R3.0 5.53.17087.10991 first release of R3.0

Table 3.1: Example Santorin: List of Product and Binary Versions

4. Lab Management

“It is done, okay it is checked in, I’ll test it
immediately ... oh, a butterfly."

— Andreas Kappel, The young wolf
playing on the green spring meadows.

To recap, the main goal of the tool transformation in the previous two chapters, Source Control

2 and Build System 3, was to implement an infrastructure which applies the principles of Continuous

Integration (CI). As a development practice, CI enables developers to integrate their code several

times a day. These check-ins are validated immediately by the automated build system, which

also includes automated unit testing. Problems/errors can be detected at an early stage in the

development and can be located more easily.

Depending on the literature, the term Continuous Integration (CI) may not only mean source and

build verification, it can also include integration tests on systems which are similar to production

environments. In any case, when Continuous Delivery (CD) and/or Continuous Deployment

(CD+) are the goals, there is no way around having an infrastructure providing a large variety of

systems. Figure 4.1 (inspired by [9]) illustrates the idea behind Continuous Delivery / Continuous

Deployment. Both terms have the same goal: Deploying a product to the production environment

and guaranteeing its functionality[10].

Once every code change is deployed to numerous staging environments, tested against various

quality parameters, and everything is automated, the confidence in deploying the product automati-

cally to a production environment is high. The question is who exactly should be allowed to deploy

to this production environment. The goal, of course, should be in having a CD+ workflow running

where every step is automated, including the decision to deploy to the production environment. On

the other hand, there are business use-cases where an automatic deployment is not suitable due to

38 Chapter 4. Lab Management

Figure 4.1: Continuous Delivery vs. Continuous Deployment

Service Level Agreements (SLAs)1 and missing Feature Toggles2.

In order to build up a staging environment, the Lab Environments / Lab Management was

introduced as part of the development process. Therefore, the TFS Release Management [11]

service module is used to create workflows. These workflows can be linked to particular builds

as event triggers, which allows creating/reverting staging environments (using VMWare ESXi

Clusters), and running installation and test scripts, whose results can then be shown at different

stages.

To get an overview, Figure 4.2 illustrates all building blocks within the current AVL Lab

Management solution:

• Release Definition: The Release Definition is the fundamental concept within TFS. It defines

the whole workflow to be executed when new builds are ready to be tested. The release

agent is the actual worker thread which executes the workflow (build agents can be re-used

as release agents).

• VMWare vSphere: The VMWare vSphere ESXi Cluster provides the virtual machines

needed for the various staging environments and the interfaces required in order to create

and revert the virtual machines.

Physical Machines: Physical machines can also be used, but the machine state has to be

managed manually or taken into account by the deployment scripts. They are mainly used to

1“A service level agreement (SLA) is defined as an official commitment that prevails between a service
provider and the customer. Particular aspects of the service quality, availability, and responsibilities are
agreed between the service provider and the service user.”, https://en.wikipedia.org/wiki/Service-level_agreement,
https://www.paloaltonetworks.com/cyberpedia/what-is-a-service-level-agreement-sla

2“This technique allows developers to release a version of a product that has unfinished features. These unfinished fea-
tures are hidden (toggled) so they do not appear in the user interface. This allows many small incremental versions of soft-
ware to be delivered without the cost of constant branching and merging.”, https://en.wikipedia.org/wiki/Feature_toggle

4.1 Release Definition 39

Figure 4.2: Lab Management Infrastructure

run testbed simulators which cannot be run on virtual environments (due to constraints of the

real time operating system).

• Oneiroi: Oneiroi is the working title of all PowerShell scripts which are used on the particular

virtual machines. The virtual machines are reverted to a machine state where no product

software or other prerequisites are installed. Depending on the settings provided by the

Release Definition, the scripts configure the machine, install the software packages, run

automated tests, and publish the results.

4.1 Release Definition

The Release Definition [12] is the central configuration point. Figure 4.3 shows an example Release

Definition for the TFMS product:

• Stages / Environments: A stage/environment defines a group of machines which are logi-

cally bound together within the stage. All environment specific variables, like machine names

to be used, are defined here. A Release Definition can contain multiple stages. Each Stage has

its own specific purpose. The Release Definition in Figure 4.3 contains two environments.

The Development (Dev) environment is a highly volatile environment which gets up-

dated whenever a new build is available from the TFMS Main branch and the previous

deployment has finished. All automated integration tests are run.

The Quality Assurance (QA) environment is the second stage which has a high availabil-

40 Chapter 4. Lab Management

ity and deployments are only done when a certain level of stability and content is reached on

the development (Dev) environment. This stage is mainly used for manual testing and for

System Demos3.

Additional stages are currently not used but are already in development in order to have

additional environments which are closer to customer environments, have realistic database

dumps, and furthermore improve the test coverage.

• Automation Tasks: A list of tasks and task groups are executed on every machine within

the environments. Depending on the scripting (see Section 4.3), actions might be executed

differently.

Task groups: Task groups provide the possibility to group together a selection of steps

into a single reusable task group. Task groups can then be added to the workflow like

any other step to the Release Definition. Currently, the Download Scripts and the Revert

Snapshot task groups are available. These two task groups actually hide some network

domain peculiarities of AVL. After reverting virtual machines, it is not always guaranteed

that the machines are correctly attached to the AVL domain. Therefore, additional steps for

flushing DNS caches are added and all machines are iterated over in order to detect if they

are really available within the AVL network.

• Settings: Every task has settings to be provided, e.g. settings for the task group RevertSnap-

shot. This particular AVL specific task reverts all machines provided as variable names e.g.

$(Server2008), $(Server2012), ... (defined on the environment) to a defined state.

• Artifacts: A Release Definition can take several input artifacts. In this TFMS example, the

Release Definition is linked to the LabRuntime-Artifact of a particular TFMS build. The

LabRuntime consists of all install packages created from the build. When a Release is created,

the versions of the particular artifacts can no longer be changed. This means that at every

stage the same artifact package is evaluated.

Within a Release Definition not only artifacts from a Build vNext build can be used.

When registered to TFS as a service, other build services like TeamCity and Jenkins can also

be used. In other scenarios, artifacts also stored in version control systems like Git can be

consumed, processed, and validated.

4.1.1 TFMS Release Definition in Detail

For a better understanding and overview, the six steps within the TFMS release definition are

elaborated below:

• Variables for Release Definition: For the Release Definition only the PowerShell scripts of

Oneiroi (see Section 4.3) are parameterised.

• Variables for Development Environment: In Figure 4.4, all the machines which are used

in this stage are listed by name. In addition, the Variant here, 1R5_Stage01_Dev defines

the type of the environment. This variable is used to identify within the Oneiroi scripts which

actions are to be performed. The variables BuildType, MetaVersion, and Stage are

3“The purpose of System Demos is to test and evaluate the full system and to get feedback from the primary
stakeholders of the solution under development.”, http://www.scaledagileframework.com/system-demo/

4.1 Release Definition 41

Figure 4.3: Example Release Definition in TFMS

Figure 4.4: Variables for Development Environment in TFMS

already deprecated but for compatibility reasons are still included.

• Task Group Revert Snapshot: In Figure 4.5, the five steps of this task group are shown.

Revert Snapshot: This VMWare task reverts the specified machine on the VMWare ESXi

cluster.

Shutdown Virtual Machine and Power On Virtual Machine: These two steps perform a

reboot of the machines in case there are some network connectivity problems which can be

solved by a simple reboot (e.g. address resolution issues).

Flush DNS Cache: This command shell command is executed on the newly restarted

machine in order to resolve DNS cache resolution problems.

PowerShell script WaitForMachines: This inline PowerShell script (shown in Listing

4.1) waits until every machine is really accessible from the release agent.

42 Chapter 4. Lab Management

Figure 4.5: Task Group Revert Snapshot

1 param

2 (

3 [string[]]$Computername

4)

5 $time = [System.Diagnostics.Stopwatch]::StartNew()

6 $password = ConvertTo-SecureString "tfslabPW1!" -AsPlainText -Force

7 foreach($computer in $Computername)

8 {

9 while(!(Test-Path \\$computer\c$))

10 {

11 Write-Output "$computer Not available"

12 Start-Sleep 1

13 }

14 }

15 "Elapsed: {0:HH:mm:ss}" -f ([datetime]$time.Elapsed.Ticks)

16 $time.Stop()

Listing 4.1: PowerShell script WaitForAllMachines.ps1

• Task Group Download Scripts: The DownloadArtifact.ps1 is used to download the

Oneiroi scripting files in order to be used in later steps. However, the script file itself also

needs to be distributed to the machines themselves.

Copy DownloadArtifact.ps1: In order to solve this chicken and egg problem, the

DownloadArtifact.ps1 is copied from a well known location,

\\birdisland\LabScripts\DownloadArtifact.ps1, and copied to the Lab machine as

shown in Figure 4.6.

Execute DownloadArtifact.ps1: This execution downloads the Oneiroi script file pack-

age from Artifactory and extracts it to D:_LabRuntime, as shown in Figure 4.7. Listing

4.2 illustrates the content of the PowerShell script file. It uses the Invoke-WebRequest

PowerShell command to download the zipped scripting packages and extracts them to

D:_LabRuntime\. It’s important to notice here that the script file is prepared to also be run

on Indian lab machines (depending on the lab machine name, the Artifactory in Graz or in

India is used).

4.1 Release Definition 43

Figure 4.6: Copy DownloadArtifact.ps1 to a particular Lab machine

Figure 4.7: Execute DownloadArtifact.ps1 on a particular Lab machine

Next Improvement: The dependency to birdisland needs to be removed in order to have

everything within source control. Therefore, this task group will need to be replaced by inline

PowerShell commands.

• Download Artifacts: This step downloads the artifacts linked to the Release Definition (see

Figure 4.3). Normally, for accessing linked artifacts, existing pre-defined tasks are already

available. These tasks, however have one drawback: artifacts are always copied via the

release agent to a target machine. For the AVL use-case, those artifacts are quite large (about

10GB including all required install packages) and reserve unnecessarily large disk space on

the release agents. Therefore, a custom PowerShell script is used to copy from the artifacts

drop folder to the lab machine directly.

44 Chapter 4. Lab Management

1 param

2 (

3 [string]$Repository="repo-qa",

4 [string]$Version

5)

6 $SplitVersion = $Version.Split("{.}")

7 $MajorMinor = $SplitVersion[0]+"."+$SplitVersion[1]

8 $BuildRevision = $SplitVersion[2]+"."+$SplitVersion[3]

9
10 $uri = "https://artifactory.avl.com/artifactory/$Repository/AVL/OneSetup/$MajorMinor/

$BuildRevision/OneSetup-$MajorMinor-$BuildRevision-Oneiroi.zip"

11 if($env:COMPUTERNAME.startswith("INGUR"))

12 {

13 $uri = "https://gur-artifactory.avl.com/artifactory/$Repository/AVL/OneSetup/$MajorMinor/

$BuildRevision/OneSetup-$MajorMinor-$BuildRevision-Oneiroi.zip"

14 }

15 Invoke-WebRequest -Uri $uri -OutFile D:\Oneroi.zip

16 Add-Type -Assembly System.IO.Compression.FileSystem

17 Remove-Item "D:_LabRuntime\" -Recurse -Force -ErrorAction SilentlyContinue

18 [System.IO.Compression.ZipFile]::ExtractToDirectory("D:\Oneroi.zip", "D:_LabRuntime")

19 Remove-Item "D:\Oneroi.zip" -Recurse -Force -ErrorAction SilentlyContinue

Listing 4.2: PowerShell script DownloadArtifacts.ps1

• Configure Environment: For creating and adapting the particular machine configuration, the

ConfigureConfig.ps1 is essential. In Oneiroi, the configuration for all environments and

installation variants is already predefined. In order to activate the predefined configurations,

particular settings are adapted.

-InstallationVariant: Sets the installation variant to $(Variant)

-ReplacesString: Replaces the machine names Machine=$(Machine) within the

installation variant.

-Stage: The Name of the stage $(Stage) used for the reporting.

-DefinitionName: The name of the release definition (TFS variable)

$(Release.DefinitionName) which is also used for reporting.

• Installation & Testing: After all preparation steps, everything is set up and ready to simply

run Run.ps1. Since all configuration is stored in different files, no parameters are needed for

this script file. This is also very convenient for debugging purposes. As a future goal, the

configuration should also be created by a wizard and, in addition, the whole installation can

be done by Run.ps1, e.g. on customer installations.

• Publish Test Results: The results generated during the installation and testing phase are

stored on a central network share,

\\birdisland\TestReports\Tfms\$(Release.DefinitionName)\

$(Build.Buildnumber)\$(Stage)

\<TimeStamp>_<ProductVersion>_<Environment>_<Machinename>_

<NunitProjectFilename>.xml/.html. The Publish Test Results step collects all results

from the file share in order to store them within the created release. Additionally, an overall

stage test report is created by this step for analysis purposes.

4.2 VMWare vSphere 45

4.2 VMWare vSphere

vSphere is the visualisation platform of VMWare. At AVL, the infrastructure is provided by the

central IT department. In order to administrate, the vSphere client is needed which is provided by

AVL Software Center. The rights management is done by the central IT department. Currently, the

following vSphere servers are available:

• atgrzsw1616: Productive vSphere, Version 5.x India Lab and build machines

• atgrzso8101: Productive vSphere, Version 6.x Graz Lab and build machines

• atgrzso2213: Non-productive (Playground) vSphere, Version 6.x

The VMWare vSphere infrastructure is structured in the following organisational units:

• Data Centre: Consists of all building blocks, e.g. virtualisation servers, data storages, IP

networks, management servers, and desktop clients.

• Cluster: Combines multiple ESXi servers in a cluster system.

• Hosts: The actual ESXi machines. In the current setup, two host machines are provided,

atgrzsw2444 and atgrzsw2492. Both are equipped with 256 GB of RAM and an Intel

Xeon E5-2690v4 CPU. The used data storage, atgrzso1493_esx_tfs_its_02_nobck, is

configured to run without backups, and when failures occur, machine states will be lost.

Particular machine states are not critical since they can be setup automatically.

• Virtual Machine: Virtual machines instantiated from the particular ESXi cluster.

4.2.1 Virtual Machine Templates

For every operating system, there are self-created/maintained preconfigured templates available.

The naming convention follows the pattern T-ATGRZ-HW11-<Cluster>-<OS/Usage>. Currently,

the following templates are available:

• T-ATGRZ-HW11-TFS_ITS-Build: Template to create a new Windows Server 2012 build

machine

• T-ATGRZ-HW11-TFS_ITS-Win10_Ent_x64_EN: Template to create a new Windows 10

lab machine

• T-ATGRZ-HW11-TFS_ITS-Win2008_Std_R2_SP1_x64_EN: Template to create a new

Windows Server 2008 lab machine

• T-ATGRZ-HW11-TFS_ITS-Win2012_Std_R2_x64_EN: Template to create a new Win-

dows Server 2012 lab machine

• T-ATGRZ-HW11-TFS_ITS-Win2016_Std_EN: Template to create a new Windows Server

2016 lab machine

• T-ATGRZ-HW11-TFS_ITS-Win7_Ent_x64_EN: Template to create a new Windows 7

lab machine

All templates have the same local administrator account with the username atfsits. Various

software packages like Oracle Server/Client, remote debuggers, text editors, and other tools used

by the teams are installed. In order to save memory and CPU power on the ESXi Host, the default

settings are 4GB RAM and two CPU cores.

46 Chapter 4. Lab Management

Virtual Machine Template Edit

From time to time the templates need to be updated, e.g. Windows Updates need to be applied or

additional software installed, changed, or removed. Therefore, the following steps are performed:

1. Select the template to be updated,

2. Select Convert to Virtual Machine in the context menu,

3. Select the cluster where the virtual machine should run, e.g. ATGRZ-MBK-TFS-ITS,

4. Select the resource pool to be used e.g. ATGRZ-MBK-TFS-ITS,

5. Confirm by using the Finish Button,

6. Start the virtual machine,

7. Update domain settings (see Section 4.2.2),

8. Shut down the virtual machine,

9. Select the virtual machine,

10. Execute Template and Convert to Template in the context menu,

11. Template update was successful.

4.2.2 Virtual Machine Settings

As already stated, the virtual machines are set up with the smallest amount of resources as possible

in order to provide a large testing infrastructure. The settings are sufficient for running automated

tests but most of the time it is very tedious to work with them interactively. In order to increase

RAM and CPU cores, two possibilities are given:

1. vSphere Client: To edit a virtual machine, select Edit Settings in the context menu of

the virtual machine and change the value of Memory and CPUs.

2. PowerShell script BoostMe.ps1: This PowerShell script calls the vSphere API directly and

changes the settings on the fly. Start the PowerShell script (located on the desktop) either via

the context menu Run with PowerShell or with the PowerShell console.

Both options only work in cases where the virtual machine (guest) operating system is either

Windows 7, Windows 10, Windows Server 2008 R2, or Windows Server 2012 R2. On Windows

Server 2016 it is not possible to change its settings while the VM is running.

Domain Settings

Domain admin users are allowed to add machines to the AVL01 domain. Open the system

properties in vSphere and select Change settings. Click the Change Settings link next to

“Computer name, domain and workgroup settings” in the system information window to access the

system properties window, which allows you to join or leave a domain. To join the domain, enter

avl01.avlcorp.lan in the domain text box. A dialogue will ask to provide admin credentials

(e.g. a17v16).

4.2.3 Troubleshooting

Error 1396 while copying DownloadArtifacts.ps1 to Lab Machine

This error indicates that the machine has not correctly joined the domain or other IP related problems

are present. There are two possible solutions to this problem:

4.3 Oneiroi 47

• Recreate the virtual machine mentioned in the error message or

• Re-add the virtual machine to the AVL01 domain (see Section 4.2.2).

4.3 Oneiroi

Oneiroi4 is the working title for all PowerShell based scripts which run directly on the lab ma-

chines. The Oneiroi scripts are part of the OneSetup source control. The scripts are located within

the folder R2OY with the build solution R2OY.sln. The scripts are divided into common library

scripts and AVL product specific scripts. As part of the OneSetup releases, the Oneiroi pack-

age OneSetup-<Major>.<Minor>-<Build>.<Revision>-Oneiroi.zip is provided as well. It

contains all script files which are also part of the source control.

In Section 4.1, the workflow of a Release Definition was shown. Figure 4.8 shows this workflow

from the scripting point of view. The main focus is on the following parts:

• ConfigureConfig.ps1 This configuration PowerShell script is executed as the first step. This

scrip prepares/adapts the machine for the particular machine setup, e.g. stops all Oracle

services to free up memory, updates tnsnames.ora entries, and prepares the LabConfig.xml.

• Installation Variants: An Installation Variant is represented by an XML file which lists the

tasks (and their parameters) which will be executed on an environment on various machines.

All available installation variants can be found at

<R2OYRoot>/AVL/Common/LAB/ConfigurationVariants/. The structure within an in-

stallation variant is shown in Listing 4.3.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <Variants>

3 <RunThisTaskEverywhere Install="*" />

4 <RunFirstTaskOnMachineA Install="%MachineA%" ParameterA="Value" />

5 <RunSecondTaskOnMachineA Install="%MachineA%" ParameterA="Value" />

6 <RunThisTaskOnMachineB Install="%MachineB%" ParameterB="Value" />

7 <RunThisTaskOnMachineAandB Install="%MachineA%,%MachineB%" ParameterC="Value" />

8 </Variants>

Listing 4.3: Example installation variant XML file

• LabConfig.xml: This file provides all global settings within the workflow. It contains values

such as the License Server, Artifactory links, database users, and passwords. The variables

can be accessed as shown in Listing 4.4 using $labConfig.LabConfig.LicenseServer.

1 [xml]$labConfig = Get-Content $PSScriptRoot\LabConfig.xml

2 Write-Verbose $labConfig.LabConfig.LicenseServer

Listing 4.4: Accessing variables in LabConfig.xml

• Run.ps1: This script is a wrapper around the installation variants definitions and the executes

the methods. It loads all installation tasks from the LabConfig.xml. It only loads the tasks

4“In Greek mythology, the Oneiroi or Oneiri (“Dreams”) were various gods and demigods that ruled over dreams,
nightmares and oneiromatic symbols.”, https://en.wikipedia.org/wiki/Oneiroi

48 Chapter 4. Lab Management

Figure 4.8: Oneiroi Workflow

4.3 Oneiroi 49

which are applicable for the current machine. Listing 4.5 shows the switch case structure

used.

1 $myTasks = Get-MyTasks

2 foreach($task in $myTasks)

3 {

4 switch{$task}

5 {

6 "RunThisTaskEverywhere"

7 {

8 Run-ThisTaskEverywhere

9 break

10 }

11 "RunFirstTaskOnMachineA"

12 {

13 Execute-Sometasks -ParameterA $task.ParameterA

14 break

15 }

16 }

17 }

Listing 4.5: Executing structure of Run.ps1

4.3.1 Unit Tests

In order to provide PowerShell scripts which also meet a certain level of stability and quality, the

testing framework Pester5 is used. Pester provides a framework for running unit tests from within

PowerShell to test PowerShell scripts. Pester consists of a set of functions that exposes a testing

domain specific language (DSL)6 for isolating, running, evaluating, and reporting the results of

PowerShell commands.

In order to run the test locally/on a build machine, the particular modules need to be installed

on the system. Listing 4.6 shows how to install Pester.

1 Install-PackageProvider Nuget

2 Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

3 Install-Module -Name Pester

4 Install-Module PSScriptAnalyzer

Listing 4.6: PowerShell - Pester installation

The output format of the test results can be specified using -OutputFormat NUnitXml. NUnit

result files can be processed by TFS and a test report shown as part of the build. Additionally, the

script coverage can also be measured. Static code analysis7 is also supported. PSScriptAnalyzer

checks the Windows PowerShell code against a set of best practice rules indentified by the Pow-

erShell team and the community. PSScriptAnalyzer generates diagnostic results (errors and

5As a precondition to use it, PowerShell 5.0 is needed. https://www.microsoft.com/en-
us/download/details.aspx?id=50395

6For a more detailed description see https://github.com/pester/Pester
7PowerShell Script Analyzer: Static Code analysis for Windows PowerShell scripts and modules,

https://blogs.msdn.microsoft.com/powershell/2015/02/24/powershell-script-analyzer-static-code-analysis-for-
windows-powershell-scripts-modules

50 Chapter 4. Lab Management

warnings) to inform users about potential code vulnerabilities and suggests possible improvements.

The Pester unit tests are wrapped around the PSScriptAnalyzer. The build can be configured to

fail in case the analyser finds issues within the scripts.

4.3.2 Implemented Scripting Functions

This section lists all PowerShell functions from the common framework. Actually, there are far

more and the documentation will continue to grow while working on updating existing functions.

Export-Dump: Oracle dump export (Dump.ps1)

In addition to the test reports, the database dump is quite a convenient thing to store for running

upgrade scenarios with higher software versions. A database dump can be exported using expdp

which is part of the Oracle Client installation. The PowerShell script in Listing 4.7 can be used to

export the schema of a particular database (the script file is located at

<OneiroiRoot>\AVL\Common\Database\Dump.ps1).

1 function Export-Dump

2 {

3 param

4 (

5 [parameter(Mandatory=$true)]

6 [object]$SystemDbObject,

7
8 [parameter(Mandatory=$true)]

9 [string]$Schemas,

10
11 [parameter(Mandatory=$true)]

12 [string]$DumpFile

13)

14
15 $pumpDir = Get-PumpDir $SystemDbObject

16 $dumpFileName = [System.IO.Path]::GetFileName($DumpFile)

17 $dumpFilePath = [System.IO.Path]::Combine($pumpDir[1],$dumpFileName)

18
19 $expdpArgument = "schemas=$Schemas directory=DATA_PUMP_DIR dumpfile=$dumpFileName"

20 $(&expdp $SystemDbObject.ConnectionString `"$expdpArgument`") 2> $null

21 $exportFileName = $pumpDir[1]+"export.log"

22 if(Test-Path $exportFileName)

23 {

24 Log (Get-Content -Path $exportFileName)

25 }

26 Copy-Item -Path $dumpFilePath -Destination $DumpFile -Force

27 }

Listing 4.7: Function Export-Dump

5. Dependency Management

“Well, it depends."

— Peter Scheir, Lacrosse Apprentice

In the beginning of 2014, AVL introduced[13] Artifactory [14] - an enterprise software solution

for binary repository management. Artifactory was implemented as a tool to manage binary

components (primarily DLLs and libraries, but also executables or MSIs) which are aimed at being

used by several products within AVL. These components are frequently referred to as Platform

components. Additionally, Artifactory can also be used as a central repository for all binary

components used and generated during the build process.

Binary repositories are similar to source code repositories with respect to the fact that files

are managed, archived, and versioned inside the repository itself. A key difference however,

is that binary repository management solutions are optimised for large binary files, whereas

source code management tools are optimised for large amounts of relatively small text files that

change frequently. And whereas state-of-the-art source code management tools provide for a tight

integration with development tools (e.g. Visual Studio), binary repository management tools are

strongly integrated with build automation tools (TFS1, Jenkins2, Team City3): build results can be

stored and meta-data generated during the build process (e.g. source code revision, build date, build

number, user who triggered the build, component version, component name, licenses, etc.) can be

attached to the binary. Table 5.1 (inspired by [15]) compares the characteristics of source code and

binary repositories. The main drivers behind the need for dedicated binary repository management

solutions like Artifactory are the management of binary dependencies and build automation.

1https://www.visualstudio.com/tfs/
2https://jenkins.io/index.html
3https://www.jetbrains.com/teamcity/

52 Chapter 5. Dependency Management

Source code management Binary artifact management

Diffing, branching, tagging
None of these (within the development

process proper)
Frequent deletes/overwrites Rare deletes/overwrites

Small files Large files
Minimal file-specific metadata Lots of file-specific metadata

Changing, project-specific dependencies Relatively static, cross-project dependencies

Table 5.1: Source code vs. binary artifact management

5.1 Binary Dependencies

Delivery of components in binary form (as opposed to delivery as source code) has been popular in

software development for decades. Providers of components favour binary components because

they do not have to provide the source code. Consumers of components are satisfied as they do not

have to worry about building the components from source code, and they get a piece of functionality

that is immediately ready to use.

Several teams have switched or are switching to providing their components in binary form.

The reasons for this are similar to the reasons stated above:

1. Stronger encapsulation of the components; project-specific branching of components is

restricted,

2. the build process is divided; a build can be naturally distributed on several machines and

3. the consuming project requires knowledge about building the components.

Also see [15] for a discussion of this topic.

5.1.1 Traceability

When moving to binary dependencies, traceability needs to be ensured for maintenance purposes:

on one hand, the exact version of a component that was used during the creation of a complex

piece of software needs to be documented. On the other hand, a binary component that provides

functionality needs to document from which source code revision it was built. As part of the

configuration management of a software product, all information needed to ensure traceability must

be managed properly. In the context of binary repositories, this information is stored as meta-data

of the components that are stored in the repository.

5.1.2 Automation

If the meta-data described above is stored in a form that is machine readable (i.e. clearly defined

syntax and semantics), it lays the ground for build automation. Based on explicit meta-data of binary

components (identifier, version, etc.), it is possible to define on which exact version of an external

component a piece of software depends. A build system that can interpret this information is then

able to resolve dependencies on external components automatically; based on the requirements of

the depending software and the meta-data of the component, the appropriate version of a binary

can be identified and linked.

In the world of Java-based software development, the concept of Binary Dependency Manage-

5.2 Key Benefits 53

ment [16][17] and its tight integration into the build process, is very well established and supported

by tools such as Maven4, Gradle5, and Ivy6.

With the release of NuGet7 in 2010, the Microsoft C++/.NET camp is rapidly catching up

regarding this topic. NuGet is developed by Microsoft and tightly integrated into the Visual Studio

line of products. The initial version of NuGet enabled binary dependency management for the .NET

platform. In mid 2013, a version of NuGet was presented that supports native code. A detailed

presentation on the benefits of using NuGet and binary dependencies can be found in [18].

5.2 Key Benefits

In brief, Artifactory can be viewed as a file system with a powerful application layer on top

that provides ways for detailed management of the meta-data of artifacts and a means for strong

automation. Artifactory’s key features include:

• All interaction with the repository can be performed programmatically via an API (search,

reading and writing of artifacts, and meta-data)

• Meta-data can be attached directly onto artifacts

• The repository offers advanced search over different properties of the components (version,

name, organisation, meta-data, etc.)

• Artifactory handles replication to different locations out of the box

• The repository software guides the naming style of components and entering meta-data

• Artifactory allows extending its functionality via plug-ins (custom checks of meta-data and

workflows can be implemented in this way)

• Artifactory can be used like a Windows network drive via WebDAV

• Users can subscribe to folders and artifacts to get notified via email when changes occur (e.g.

when a new binary is published)

The selection of Artifactory as a tool for binary repository management was triggered by a

project called Platform Repository. The project aimed at providing a uniform way to deliver Plat-

form components in AVL development projects. In addition to the original use case of Artifactory

as a place to uniformly store and manage binary deliveries of Platform components, a second, more

advanced use case arose during the evaluation phase: as intended by its developers, Artifactory can

also be used as part of a build automation system, as the place in which builds are stored, and as the

repository from which binary dependencies are retrieved during build time (see Figure 5.1, inspired

from [19]).

The key benefit of using Artifactory for this purpose is the automation of the whole process:

after building a component, it can be stored in the repository and meta-data can be attached to it.

Based on this meta-data, the artifact can be later retrieved and used to build a product depending

on the component. For example, a build process can retrieve (based on the meta-data) a binary

component of a certain version that was flagged as approved by the QA team after their test of the

4https://http://maven.apache.org/
5https://gradle.org/
6https://ant.apache.org/ivy/
7http://nuget.codeplex.com/

54 Chapter 5. Dependency Management

Figure 5.1: Usage of Artifactory by AVL

component. What’s especially interesting is Artifactory’s capability to replicate the contents of

a repository to other locations. This will be employed to synchronise the component repository

between the Austrian and the Indian development teams so that it is ensured that everybody builds

upon the same version of a component.

A logical next step would then be to deploy artifacts using the NuGet package format (see

above). It offers advanced resolution mechanisms of dependencies to the build tool (e.g. retrieve at

least a certain version of a certain library). Also, transitive dependencies (dependencies that have

dependencies, cf. [16] [17]) can be resolved automatically using this approach.

5.3 Build Integration

A major improvement to the old build system discussed in Chapter 3 is that the dependency

management is part of source control. The whole build is wrapped around two actions:

• Download References: In the current implementation there is a single batch file which

contains all vendor and inter-product dependencies. As part of a pre-step of the build process,

all dependencies are downloaded and provided within the build folder. All application projects

within the build refer to this build folder for their reference resolution. In Listing 5.1, a small

working example is illustrated. A specific version of a vendor component, package name, and

download path are set. The download operation DownloadArtifactoryPackage.bat uses

Curl.exe8. The download does not require authentication since Artifactory is configured to

allow anonymous downloads. As part of the download, the package is extracted to a local

directory specified by OracleManagedDataAccessLocalInterfacesFolder. In this example,

the binaries are copied to the "%TargetDir%" from where they can be referenced.

8“Curl is used in command lines or scripts to transfer data.”, https://curl.haxx.se/download.html

5.3 Build Integration 55

1 set ArtifactoryRoot = https://artifactory . avl . com/artifactory
2
3 echo ### OracleManagedDataAccess Download #######################################
4 set OracleManagedDataAccessVersion=12.1.2400
5 set OracleManagedDataAccessDownloadPath=

%ArtifactoryRoot%/nuget−vendor/Oracle/Oracle/%OracleManagedDataAccessVersion%/
6 set OracleManagedDataAccessPackageName=oracle.manageddataaccess.%OracleManagedDataAccessVersion%.nupkg
7 set OracleManagedDataAccessLocalInterfacesFolder=%TargetDir%_Artifactory\OracleManagedDataAccessInterfaces\
8 echo %OracleManagedDataAccessDownloadPath%%OracleManagedDataAccessPackageName% >> %IntegratedArtifactsFile%
9 call DownloadArtifactoryPackage.bat "%ProjectDir%" "%TargetDir%" "%OracleManagedDataAccessDownloadPath%" "

%OracleManagedDataAccessPackageName%" "%OracleManagedDataAccessLocalInterfacesFolder%"
10 xcopy "%OracleManagedDataAccessLocalInterfacesFolder%lib\net40\∗.∗" "%TargetDir%" /Y

Listing 5.1: Example download of Oracle Managed Data Access references

• Build: The software is built.

• Upload Interfaces and Build Results: After a successful build, the build artifacts are also

generated in a batch file. The build artifacts consist of the whole source and build output,

several interface packages, release packages, and documentation. Listing 5.2 shows an

example upload of the source code artifact. The source code is zipped using 7za.exe9. For

upload, Curl is used. In contrast to the download operation, for upload, user authentication is

necessary. The user s13d01 was created for build automation and has the rights to upload to

Artifactory. This procedure is replicated for other artifacts as well.
1 set Product=SANTORIN
2 set /p Version=< "%TargetDir%Version.txt"
3 set /p VersionMajor=< "%TargetDir%VersionMajor.txt"
4 set /p VersionMinor=< "%TargetDir%VersionMinor.txt"
5 set /p VersionBuild=< "%TargetDir%VersionBuild.txt"
6 set /p VersionRevision=< "%TargetDir%VersionRevision.txt"
7
8 set ArtifactoryUploadUser=s13d01
9 set ArtifactoryUploadUserPassword=NF4d$1cQ

10 set ArtifactoryRoot = https://artifactory . avl . com/artifactory
11
12 REM ###
13 REM Zipping Source
14 set SourceTempDir=%SolutionDir%..\
15 for /F "delims=" %%F IN ("%SourceTempDir%") DO SET "SourceTempDir=%%~fF"
16 echo %SourceTempDir%
17
18 "%TargetDir%7za.exe" a −tzip "%TargetDir%_Delivery\%TFSSourcePackageName%" "%SourceTempDir%∗" −xr!Bin −xr!

CopyFinishedBuild.log −xr!PostBuildStep.opensdf −xr!PostBuildStep.sdf
19
20 "%TargetDir%curl.exe" −−user %ArtifactoryUploadUser%:%ArtifactoryUploadUserPassword% −−upload−file "

%TargetDir%_Delivery\%TFSSourcePackageName%"
%ArtifactoryRoot%/simple/repo−snapshot/AVL/%Product%/%VersionMajor%.%VersionMinor%/%VersionBuild%.
%VersionRevision%/%TFSSourcePackageName% −−insecure

Listing 5.2: Example upload of Source Code as an artifact

9“7-Zip is an open source file archiver with a high compression ratio.”, http://www.7-zip.org/download.html

6. Documentation

“Documentation, when it is good, it is very,
very good; and when it is bad, it is better
than nothing."

— Rajeev Kumar Tyagi, Every day is a
new day, let’s do it

In software projects proper documentation is often one of the first topics which get cut due to

time constraints. Writing and maintaining documentation is most of the time considered to be extra

unplanned effort. The term documentation refers to the written text that is produced as part of the

software development project[20]. Documentation can be split into several subtypes:

• Architecture and Design documents: This kind of documentation provides the overall

information about the software projects. Initially, is is generated at the beginning of the

software project but to be useful it must be reviewed and continuously updated during the

development.

• Technical documents: The actual documentation of the code itself in respect to design pat-

terns, interfaces, and APIs. The best practice approach is to keep this kind of documentation

inside the source code and use tools (e.g. Doxygen1) to automatically parse the source code

in order to build up a reference handbook.

• End-User Manuals: These manuals are meant for the real end-user, the system administra-

tors, trainers and trainees, and support staff. This kind of documentation has usually nothing

to do with the source code or other technical insights. It is written in a behavioural way in

order to give guidance to the usage of the software.
1“Doxygen is the de facto standard tool for generating documentation from annotated C++ sources, but it also

supports other popular programming languages such as C, Objective-C, C#, PHP, Java, Python, IDL (Corba, Microsoft,
and UNO/OpenOffice flavours), Fortran, VHDL, Tcl, and to some extent D.”, http://www.stack.nl/ dimitri/doxygen/

58 Chapter 6. Documentation

Figure 6.1: How the project was documented

In AVL, regarding documentation, particularly the end-user manuals, a separate department

is responsible. Resources in the documentation department are heavily dependent on the input

from the development teams in order to create proper documentation. The development teams

prepare the systems, create screen-shots and assist in writing the text itself. On the other hand, the

documentation department is responsible for ensuring the documentation follows the style guides

and are also providing translations. As part of the Agile Transformation, the restructuring/relocation

of the documentation resources was not carried out. This lead to the situation that the development

teams sped up but were not able to actually close features without having documentation done.

The teams were not able to update the documentation by themselves due to the tooling setup

(licensing cost). Therefore the documentation was removed from the Definition of Done (DoD), and

it was expected that the documentation resources will eventually catch up. What actually happened

can be seen in Figure 6.1 (taken from [21]). It might seem a bit exaggerated but serious problems

arose due the fact that the documentation could not keep up with the speed of the development.

6.1 Collaborative Writing

To solve the problem that only designated people were allowed to create documentation, a collabo-

rative writing model was needed. The teams needed to be enabled to actively contribute. As part

of the internal OneSetup project, the documentation was created using LaTex2 for typesetting and

MikTeX Portable3 for compilation. The main advantage of LaTex is that the text and the style of a

2“LaTex is a high-quality typesetting system; it includes features designed for the production of technical and
scientific documentation. LaTex is the de facto standard for the communication and publication of scientific documents.
LaTex is available as free software.”, https://www.latex-project.org/

3“MiKTeX (pronounced mick-tech) is an up-to-date implementation of TeX/LaTex and related programs for Windows
(all current variants).”, https://miktex.org/portable

6.1 Collaborative Writing 59

Figure 6.2: Documentation Solution Figure 6.3: Documentation Solution -
Areas

document is strictly separated from each other. The written text is really text-based and therefore

can be nicely checked-in to source control and is furthermore mergeable over branches. This is a

key advantage over all other documentation tools used at AVL.

As part of the source code, a Visual Studio solution was created to incorporate the documentation

creation into the build process. Figures 6.2 and 6.3 show the structure:

• Solution and Documentation Project: This is the actual solution and contains one Power-

Shell project. All LaTex files are located within the project.

• Bibliography: The folder to place different bibliographies which may be used in various

books.

• Books: The book definitions are located in this folder. Every folder represents one product.

One product can have several books and every LaTex file represents the definition of a book.

• Chapters: The smallest unit are chapters. Chapters are written on a specific topic and have

all their references in the particular chapter folder. Chapters can be re-used over various

books.

• MikTeX Portable: The MikTeX toolset is located within this folder. No installation is

needed.

• Compile Books with PowerShell: Three PowerShell scripts are needed for compiling the

books. The main file is Compile.ps1 (the other two are helper scripts). This file needs to be

60 Chapter 6. Documentation

opened and run. All books defined within the Compile.ps1 are compiled.

1 Param

2 (

3 [Parameter(Mandatory=$false)] [string]$productVersion = "2.1.17074.3",

4 [Parameter(Mandatory=$false)] [string]$productMetaVersion = "AVL OneSetup 2 R1.1",

5 [Parameter(Mandatory=$false)] [string]$outputDirectory = "..\bin\releaseU\documentation\"

6)

7 Set-Location $psscriptroot

8
9 If (Test-Path $outputDirectory) {

10 Remove-Item $outputDirectory -Recurse

11 }

12
13 $OneSetup = @('OneSetupDeveloperGuideBook',

14 '".\books\OneSetup\DevGuide.tex"',

15 '".\books\OneSetup"',

16 '".\styles"',

17 '".\prologue\generic"',

18 '".\chapters\oneSetupIntro"',

19 '".\chapters\oneSetupPlatform"',

20 '".\chapters\oneSetupTools"',

21 '".\bibliography"')

22
23 ."$PSScriptRoot\CompileBook.ps1"

24 ."$PSScriptRoot\OutFileUtf8NoBom.ps1"

25
26 ## OneSetup Developer Guide Book

27 (Get-Content ".\prologue\generic\titlepage.tex" -Encoding UTF8).replace('[PLACEHOLDER_PRODUCT]', $

productMetaVersion).replace('[PLACEHOLDER_BRAND_PROMISE]', 'Experience the spirit of open source').

replace('[PLACEHOLDER_DOCUMENT_NAME]', 'Developer Guide').replace('[

PLACEHOLDER_BELOW_DOCUMENT_NAME]', 'Build: ' + $productVersion) | Out-FileUtf8NoBom ".\prologue\

generic\oneSetupDevGuideTitlepage.tex"

28 (Get-Content ".\prologue\generic\prologue.tex").replace('[PLACEHOLDER_TITLEPAGE]', '

oneSetupDevGuideTitlepage') | Out-FileUtf8NoBom ".\prologue\generic\oneSetupDevGuidePrologue.tex"

29
30 CompileBook -productVersion $productVersion

31 -productMetaVersion $productMetaVersion

32 -outputDirectory $outputDirectory

33 -bookDefinition $OneSetup

34 -quiet $true

Listing 6.1: LaTex Book Compile Compile.ps1

In order to understand how the Compile.ps1 needs to be adapted/extended, an example for one

book is shown in Listing 6.1. This example shows how the OneSetup Developer Guide is compiled:

• Input Parameters: The documentation is versioned with the same version number as the

regular build. Therefore, the version information needs to be provided ($productVersion,

$productMetaVersion). The resulting PDF files are created in

the output directory ($outputDirectory).

• Book definition: The $OneSetup list provides all the information for the compile process.

The first entry, OneSetupDeveloperGuideBook is the job name which is also the name of

the resulting PDF file. The second entry, .\books\OneSetup\DevGuide.tex, points to the

root LaTex file of the book. All other paths are include paths to the LaTex files which are

6.1 Collaborative Writing 61

directly referenced in the root LaTex files.

• Customising generic template: The OneSetup books use a generic template as part of their

prologue. The lines beginning with Get-Content are modifying the generic prologue in

respect to versioning, book name, subtitle, and images on the title page.

• CompileBook.ps1: Compiles one particular book and takes the version information and the

book definition as input.

In the OneSetup project, all documentation is generated with this documentation framework.

OneSetup lives from the contribution of various developers and the immediate documentation of

the developed features (no additional documentation resources are available). From the feedback

and based on the results, integrating documentation in a collaborative way is a big step forward in

respect to the velocity and quality of delivered software.

7. Infrastructure: How To ...

“Changing Stuff and Seeing What
Happens."

— Severin Kann, C/C++ Tutor

This chapter provides a collection of use-cases applicable to daily work. They are more oriented

to achieve a goal than to provide a good explanation.

7.1 ... setup a Build Machine

To setup a Build Machine for the AVL products Santorin and TFMS, a Windows Server 2012 R2

machine is needed with the following minimum configuration:

• 8 CPU Cores

• 8 GB RAM

• 100 GB C-drive

• 500 GB D-drive

The build user is avl01\s18f30. The pbuild user which is often used within AVL should NOT be

used. The following software needs to be installed on a build machine:

• Visual Studio 2010 Premium

• Visual Studio 2010 PS1

• Visual Studio 2015 Update 3 or newer

• Infragistics 2011.1

• PerpetuumSoft Sharpshooter 7.3.0

• NorthWood GoDiagram

• NUnit Visual Studio Test Adapter

64 Chapter 7. Infrastructure: How To ...

Figure 7.1: License Server configuration for multiple license files

• vSphere PowerCLI 6.5 or newer

• PowerShell 5.0 or newer

• Silverlight SDK 4.0

• Java JDK 8 Update 77 or newer

• MVC4

• ActivePerl 5.24.1.2402 or newer

All installers can be found on the Dropfolder:

\\avl01.avlcorp.lan\ATGRZ\misc\TFS_Dropfolder_HowToSetUpABuildMachine.

7.2 ... setup a License Server

For licensing AVL software, a solution of Flexera Software1 is used. As part of this software

component, a license server is also provided. For all installations in the Lab Management, one

license server is installed which is located on \\birdisland. The installer of the license server

can be found at \\avl01\nbuild\PumaOpen\V153\Vendor\FlexLMx64. An installation guide

(AT1729E10_LicServInstall) is also provided. To install, follow the instructions found in Chapter 3

Installation of the License Server on WindowsServer 2008 R2 (64 Bit).

It is also possible to provide a folder which contains multiple license files. Instead of providing

a path to a single license file, enter the path to the folder containing all license files as shown in

Figure 7.1.

Auto generated license files are provided by license@avl.com and have the .dat file ending. In

order to get them working with the license server, they need to be renamed to files with the ending

1FlexLM, http://www.flexerasoftware.de

7.3 ... build a Feature Branch 65

Figure 7.2: Create feature branch
from Santorin Main

Figure 7.3: Branch from <Branch>
dialogue

.lic. Only then they can be loaded processed properly by the license server.

7.3 ... build a Feature Branch

In order to create a feature branch, the following information is needed:

• Parent trunk branch.

• Feature name.

• Build needed?

If yes: Which check-in policy is needed?

• Lab environment needed?

If yes: Which rollout policy is needed?

The following naming convention is used:

• Branch: FT_<Featurename>

• Build Definition

From Main: <Product>_FT_<Featurename>

From Servicing: <Product>_Svc_V<Version>_FT_<Featurename>

• Release Definition: follows the same as build definition.

Once the information is provided, the feature branch can be created:

1. Open the context menu of the parent branch (see Figure 7.2, in this case, Santorin Main) and

select Branching and Merging and Branch....

2. The Branch from <Branch> dialogue (see Figure 7.3) will pop-up. Provide the target branch

name. The feature branch should be located within the Folder DevTeams.

3. The source code branch is now created.

4. To create the build definition, navigate to the Builds - All Definitions section of the

Team Project. The folder structure for the build definitions is similarly organised as within

the source control. Clone the build definition of the parent branch (see Figure 7.4) and edit

66 Chapter 7. Infrastructure: How To ...

Figure 7.4: Clone the build definition for the feature branch

the Server Path repository tab, as shown in Figure 7.5, and the Triggers, as shown in

Figure 7.6, accordingly.

5. As a final step, save the build definition using the naming convention shown in Figure 7.7.

7.4 ... build a Servicing Branch

On the Main branch the version SANTORIN 5 R3.0 is currently in development. In order to create

this first release, Main becomes SANTORIN 5 R3.1 and the servicing branches then need to be

created. In addition, also a build and lab environment are needed for SANTORIN 5 R3.0.

7.4.1 Branching

An additional branch 5R3 is needed and it becomes a placeholder until Main becomes R4. From

then on, the 5R3 branch will become the maintenance branch for SANTORIN 5 R3.x. The two

sub-branches, /Servicing/5R3.x/5R3 and /Servicing/5R3.x/5R3.0 also need to be created.

1. In order to create the Folder 5R3.x, the parent folder Servicing needs to be mapped. Create

the branch as shown in Figure 7.8 and repeat for the /Servicing/5R3.x/5R3.0 branch.

2. After both branches are complete, the branch hierarchy should appear as shown in Figure 7.9

and the folder structure should appear as shown in Figure 7.10.

7.4.2 Build

To create the build definitions for the newly created branches:

1. Clone the build definition Santorin_Main_Nightly.

2. Adapt the Server Path in the repository tab (as shown in Figure 7.5, e.g.

$/Santorin/Source/Servicing/5R3.x/5R3.0) and the Triggers (as shown in Figure

7.6) accordingly .

3. Adapt the build number format in the General tab. The default value is

5.53.$(Year:yy)$(DayOfYear)$(rev:.r). In this particular case, the build number

7.4 ... build a Servicing Branch 67

Figure 7.5: Adapt the Server Path

Figure 7.6: Adapt the Triggers

68 Chapter 7. Infrastructure: How To ...

Figure 7.7: Saving the cloned build definition

Figure 7.8: Creation of the servicing branch 5R3

7.4 ... build a Servicing Branch 69

Figure 7.9: Servicing Branch
Hierarchy

Figure 7.10: Servicing Branch Folder

needs to be adapted as described in Section 3.5 (e.g. to 5.53.17085.$(DayOfYear)$(rev:r)).

7.4.3 Lab Machine Creation

For the /Servicing/5R3.x/5R3.0 branch, only one Windows Server 2012 R2 machine is needed.

To create the new virtual machine, a machine name needs to be chosen. To achieve this, within the

vSphere Client, navigate to Hosts and Clusters View as shown in Figure 7.11. All machine names

are listed in alphabetical order, and in this example, the next free machine name is ATGRZWV523004.

Within the OneSetup project there is a build definition which creates new virtual machines.

Navigate to the build definition All Definitions/New-Machines, queue a new build (as shown in

Figure 7.12), and set the variable New-Win2012 to the available machine name, ATGRZWV523004

(this step takes about 30 minutes). Machine names have to be in capital letters.

7.4.4 Release Definition

In general, one of the latest servicing Release Definitions should be taken as a template for new

release definitions:

1. Clone a release definition, e.g. Santorin_Svc_V5R2.1, as shown in Figure 7.13.

2. Adapt the variables (as shown in Figure 7.14 and Figure 7.15) for the Development stage.

3. Link the created release definition to the artifacts of the created build definition as shown in

Figure 7.16.

4. Update the Continuous Deployment trigger to match the artifact source as shown in Figure

7.17.

5. Finally, save the Release Definition with the same name as the source build definition. In our,

case Santorin_Svc_V5R3.0.

70 Chapter 7. Infrastructure: How To ...

Figure 7.11: Find an available machine name

Figure 7.12: Queue build in order to create a new virtual machine

7.4 ... build a Servicing Branch 71

Figure 7.13: Clone the latest servicing Release Definition

Figure 7.14: Open Configure

Variables on Release Definition

Figure 7.15: Configure variables on
Release Definition

72 Chapter 7. Infrastructure: How To ...

Figure 7.16: Remove/Renew the
artifact source to the new build

definition
Figure 7.17: Update the release

definition trigger

7.5 ... create a Virtual Machine

Virtual machines in the AVL infrastructure should follow the following naming pattern:

• ATGRZWV522xxx -> Win2008

• ATGRZWV523xxx -> Win2012

• ATGRZWV524xxx -> Win7

• ATGRZWV525xxx -> Win10

• ATGRZWV526xxx -> Win2016

• ATGRZWV527xxx -> Build Machines

In addition to creating virtual machines within the vSphere client, where every step needs to

be applied manually, the VMWare PowerCLI can also be used. As a precondition, the vCenter

Server Connection, the Data Center, the Template Name, the Cluster Name, the Datastore Name,

the guest operating system customisation specification, and the machine name is needed. The guest

operating system customisation specification can be found with the vSphere Client (Management

-> Customisation Specifications Manager). It describes how to customise the virtual machine in

respect to computer name, license options, domain joins, and so on.

7.5.1 via TFS Build Tasks

One way to create machines from a template is to use the TFS build tasks for VMWare Resource

Deployment. A build agent with an installed VMWare PowerCLI is needed. Five steps are required:

1. Power off the virtual machine (it has to be powered off in order to be deletable)

2. Delete the virtual machine

3. Deploy the virtual machine using a template

4. Reboot the virtual machine to apply group policies

5. Take a snapshot of the virtual machine (to be used in the lab environment in the revert to

snapshot tasks)

7.6 ... find artifacts in Artifactory 73

7.5.2 via PowerShell Script

The other way is to use a PowerShell script to perform these tasks. In Listing 7.1, the PowerCLI is

used to communicate to the VMWare server.

1 Connect-VIServer atgrzso8101 -Credential $mycreds -Force

2 $targetCluster = Get-Cluster -Name $clusterName

3 $sourceVmTemplate = Get-Template -Name $sourceVmTemplateName

4 $sourceCustomSpec = Get-OSCustomizationSpec -Name $sourceCustomSpecName

5 New-VM -Name $nextVmName -Template $sourceVmTemplate -ResourcePool $targetCluster

6 -OSCustomizationSpec $sourceCustomSpec

7 $myVm = Get-VM -Name $nextVmName

8 Start-VM -VM $myVm

Listing 7.1: Create new build virtual machine

7.6 ... find artifacts in Artifactory

The Product Versioning is part of the meta-data of all software releases within Artifactory. This

meta-data can be used to search for particular software versions right from the search pane as shown

in Figure 7.18.

Figure 7.18: Search Artifactory using meta data

II
8 OneSetup Introduction 77
8.1 Windows Installer Concepts
8.2 Windows Installer XML

9 OneSetup Platform 85
9.1 Configuration Handling
9.2 Configuration Handling: Supported Parameters
9.3 Configurator User Interface
9.4 Bootstrapper User Interface
9.5 Bundle Conditions
9.6 Bundle Command line Switches
9.7 Prerequisites Packages
9.8 Example Solution
9.9 Custom Actions

10 OneSetup Tools . 107
10.1 Tool: *.CreateProductVersionIncludeWxi.exe
10.2 Tool: *.RePackCustomActionDll.exe
10.3 Tool: *.CopyPayloadGroupFiles.exe
10.4 Tool: *.Configurator.exe
10.5 Tool: *.IIISHelper.exe
10.6 Tool: *.JiraHelper.exe

11 OneSetup: How To 123
11.1 ... add a SANTORIN Environment Service

OneSetup Deployment
Framework

8. OneSetup Introduction

“MSI is wearing a tight corset. Keep your
installer simple and MSI will do the
maintenance job for you, ignore MSI’s
rules and you’ll finish up in hell."

— Johannes J. Klinger, Telling ghost
stories to installer newbies

As part of software development, the question “How can the software be delivered to the

customer?” is part of the whole development process. There are quite a lot of competing installer

frameworks on the market. All of them have to deal with standard problems/questions such as:

• Per-User or Per-Machine installation needed?

• What happens if an error occurs in the middle of the setup?

• How to deal with folder redirection and/or roaming profiles?

• Which processor platform is the target platform: x86, x64, AnyCPU?

• Different folder visibilities on 32-bit, 64-bit operating systems.

• How to deal with patches and upgrades?

• Are Launch Conditions met? What about conditional installations?

• ...

One approach to deal with these concerns is Windows Installer (MSI).

8.1 Windows Installer Concepts

Windows Installer (MSI) started around 1999 (with Microsoft Office 2000). Microsoft wanted to

provide a standardised way for installation processes on their Windows operating system. Windows

Installer consists of three main components:

78 Chapter 8. OneSetup Introduction

• Msiexec.exe1 (see command line options2)

• Windows Installer API3

• Windows Installer SDK4

By using MSI as part of the deployment strategy, the operating system can keep track of the

consistency and versioning of an application. Even repair operations can be initiated on faulty

programs. Figure 8.1 (inspired by [22]) shows the sequence of an installation.

Figure 8.1: MSI Installation Sequence

An installation (which also includes uninstallations/updates/etc.) always runs through the same

events. The three main sequences are:

• InstallationUISequence: This is the user interaction mode. Here the user enters all necessary

information required for the installation.

• InstallExecuteSequence (Immediate): Here all preparation is done for the actual installation

itself.

• InstallExecuteSequence (Deferred): All scripts and changes on the system are applied. In

case of errors, a full rollback can be performed.

To round up this basic introduction to MSI, the major constructs within an MSI package are

illustrated in Figure 8.2 (inspired by [22]).

An MSI package is structured in a hierarchical way. A product is always deployed as part of

a package which consists of a set of features, each of which consists of components which again

contain the actual Installables (e.g. files, shortcuts, registry keys, ...). Essentially, an MSI package

is simply a database which contains a description of the product along with its installation sequence

(database tables like Components, Condition, Custom Action, Dialog, ...). All files are part of a data

stream. The proper database viewer for MSI packages is Orca5.

1http://msdn.microsoft.com/en-us/library/aa372024(v=VS.85).aspx
2http://technet.microsoft.com/en-us/library/cc759262(WS.10).aspx
3http://msdn.microsoft.com/en-us/library/aa372860(v=vs.85).aspx
4http://msdn.microsoft.com/en-us/library/aa370834(v=vs.85).aspx
5https://msdn.microsoft.com/en-us/library/windows/desktop/aa370557(v=vs.85).aspx

8.2 Windows Installer XML 79

Figure 8.2: Major constructs of an MSI package

8.2 Windows Installer XML

As already discussed in Chapter 8.1, Microsoft came up with the Windows Installer service in 1999.

The Windows Installer service is able to execute MSI package installations. However, Microsoft

did not come up with an authoring tool to create MSI packages. They defined the standard but

left the challenge of providing development environments for authoring MSI packages up to the

software development industry.

Rob Mensching6, who was an employee at Microsoft at this time and was part of the team

which developed the Windows Installer service, saw this missing authoring tool as a failure of

Microsoft. He believed Microsoft also needed to provide an authoring tool in order to ensure that

MSI packages are created in the proper way. Therefore, he started the Windows Installer XML

(WiX) project in the years 1999-2000 as an open source project, and published it under the Common

Public License (CPL). In 2004, Microsoft began to officially fund the project and it was actually

one of the very few open source projects of Microsoft.

Over the years, the WiX-Toolset grew in popularity. The key factors for its success and also its

main advantages over other commercial Windows Installer developer tools were:

• XML-based: The source code is XML-based and can be easily edited with any text editor,

although proper IDEs als provide auto-complete functionality. The XML-based files are also

perfect to be used within source control and can be merged very easily (support of branching

6http://robmensching.com/

80 Chapter 8. OneSetup Introduction

is given).

• Compatibility: Since the founder, Rob Mensching, was also part of the development team

of Windows Installer, WiX itself attaches very nicely to the Windows Installer API. The

produced installation packages follow the same strict rules.

• Integration into build automation: The WiX-Toolset consists of a set of command line

tools which integrate very well into build and continuous integration environments.

• Votive7 / Visual Studio Integration / MSBuild: With Votive, the WiX-Toolset integrates

itself into Microsoft’s development environment, Visual Studio. This integration provides

WiX project templates within Visual Studio (see Figure 8.3, taken from [23] under CPL).

The integration into Visual Studio hides the complexity of the command line tools.

Figure 8.3: Visual Studio Integration with Votive

• Bootstrapper/Chainer: Since 2012, with Burn, the WiX-Toolset provides a powerful

bootstrapper engine (see Section 8.2.2).

• No licensing costs: WiX is free.

• Team empowering: Installation tasks can be done on team level. The teams can take over

responsibility for their components and update the deployment by themselves (e.g. file lists,

registry, COM component IDs, etc.).

8.2.1 MSI Package Creation

As already discussed, WiX integrates nicely into Visual Studio. In order to understand how the

whole framework interacts, Figure 8.4 (taken from [23] under CPL) shows an overview of all the

tools within WiX and their place in the tool chain.
7Votive is part of the WiX-Toolset which allows you to easily create WiX projects, edit WiX files using IntelliSense,

and compile/link projects within the Visual Studio IDE. http://wixtoolset.org/documentation/manual/v3/votive/

8.2 Windows Installer XML 81

Figure 8.4: Command line tools in WiX

For a simple MSI package creation, only the following four tools are needed:

• Heat: With Heat, file lists can be created based on an already existing directory structure.

The created .wxs files can be used as part of projects.

• Candle: The counterpart to a compiler. In this step, the source is compiled into object files

(.wixobj) for later reuse. These object files contain all symbols and references to the original

source files.

• Lit: A library creation tool. It takes compiled object files and creates .wixlib files. These libs

can then be reused by various other projects.

• Light: The counterpart to a linker which takes the object files (.wixobj) as input and possibly

also libraries (.wixlib). Here the package is being generated (e.g. MSI package).

This part of the WiX-Toolset is rather well documented and due to the nature of the XML-based

source code, reference implementations or guidelines can also be found on the internet. As part of

OneSetup, some best practice implementations are also provided (see Section 9.8).

8.2.2 Bootstrapper Application (BA)

The original design of Windows Installer included the idea that with a single MSI package all

components of an application could be installed as part of the installation. This also included vendor

components and other prerequisite packages. Therefore, features and merge modules are part of

Windows Installer. Although merge modules are a very powerful asset, they do not fulfil the needs

82 Chapter 8. OneSetup Introduction

of all variations of vendor components. As part of Rob Menschings blog entry8, he also stated

that the limitations are far more serious when it comes to real professional installers. So the idea

was born to create a bootstrapper to provide a state of the art User Interface (UI) for installation

procedures which contain one or more deployment packages. The main features of a Burn-based

Bootstrapper Application are:

• User Experience (UX): Since Windows Installer was created back in 1998-2000, the User

Interface of MSI packages is already a bit old fashioned. Burn provides the possibility to

implement a custom User Interface tailored to the needs of an application installation.

• Elevation: Nearly all bootstrapper applications immediately prompt the user to get access

elevation on a client machine. Burn provides functionality to first analyse a client machine

and then make an installation plan. Once this plan is set and the user wants to install, the

request for elevation is prompted (User Access Control (UAC)). This request is only made

once and granted for all further installation packages.

• Progress: Burn provides proper messaging to the bootstrapper application and, consequently,

also to the User Interface, about the progress and status of the installation.

• Download functionality: Modern install packages are normally quite small when they are

downloaded from a software provider. Only once the user starts the setup procedure, does

the installer check the system status and downloads the packages which are needed for the

installation process. Burn also offers some built-in functionality to download the needed

packages required by an installation from the internet.

Building a custom Bootstrapper Application

So the general idea is that there are several installer packages which should be installed as part of a

product installation. These packages are packed into a single .exe package. The user has a nice User

Experience for the whole installation procedure by having a rich state-of-the-art User Interface,

proper progress information, and by not being interrupted by other events (since all install packages

are installed silently in the background). In Figure 8.5, an overview of a Bundle-based installer is

shown. In the middle, the actual Bundle installer is shown along with its components. A Bundle

installer contains the actual bootstrapper application and all install packages.

When the user initially starts the Bundle installer, the WiX native (C++) application is loaded.

This application is the underlying engine which actually interacts with the Windows Installer API.

The engine itself performs some launch condition checks. Once these checks are passed, the WiX

engine loads the custom bootstrapper. From this point on, the communication between engine and

bootstrapper is done via events which are provided by the BootstrapperApplication base class.

The logical flow (with the corresponding events) is shown in Figure 8.6 (inspired by [24]).

For the minimum working example (e.g. a successful installation), the following steps are

needed:

1. Startup: Initial registration of the custom Bootstrapper Application to the events of the

Engine. Data structures need to be initialised in order to use them in the event-based coding.

2. Engine.Detect: The purpose of the detect phase is to determine the current state of the

8http://robmensching.com/blog/posts/2009/7/14/lets-talk-about-burn/

8.2 Windows Installer XML 83

Figure 8.5: Burn-based Bundle installer overview

Figure 8.6: Bootstrapper Application logical event flow

machine. The engine provides, by using the Windows Installer API, the current state of

install packages within the Bundle. The information provided helps to define the actions

which need to be taken. Listing 8.1 shows all events which are fired within Engine.Detect.

1 //Events related to the Engine.Detect method

2 event EventHandler<DetectBeginEventArgs> DetectBegin;

3 event EventHandler<DetectPriorBundleEventArgs> DetectPriorBundle;

4 event EventHandler<DetectRelatedBundleEventArgs> DetectRelatedBundle;

5 event EventHandler<DetectPackageBeginEventArgs> DetectPackageBegin;

6 event EventHandler<DetectRelatedMsiPackageEventArgs> DetectRelatedMsiPackage;

7 event EventHandler<DetectTargetMsiPackageEventArgs> DetectTargetMsiPackage;

8 event EventHandler<DetectMsiFeatureEventArgs> DetectMsiFeature;

9 event EventHandler<DetectPackageCompleteEventArgs> DetectPackageComplete;

10 event EventHandler<DetectCompleteEventArgs> DetectComplete;

Listing 8.1: Events related to the Engine.Detect method

84 Chapter 8. OneSetup Introduction

3. Engine.Plan: As an outcome of Engine.Detect, all states of the installer packages are

known. The requested future state now needs to be set. This can be done via user interaction

or in a predefined way. Listing 8.2 shows all events within the planning phase.

1 //Events related to the Engine.Plan method

2 event EventHandler<PlanBeginEventArgs> PlanBegin;

3 event EventHandler<PlanRelatedBundleEventArgs> PlanRelatedBundle;

4 event EventHandler<PlanPackageBeginEventArgs> PlanPackageBegin;

5 event EventHandler<PlanTargetMsiPackageEventArgs> PlanTargetMsiPackage;

6 event EventHandler<PlanMsiFeatureEventArgs> PlanMsiFeature;

7 event EventHandler<PlanPackageCompleteEventArgs> PlanPackageComplete;

8 event EventHandler<PlanCompleteEventArgs> PlanComplete;

Listing 8.2: Events related to the Engine.Plan method

4. Engine.Apply: After detecting and defining the future state of packages, the actual work

begins. All packages are processed in the pre-defined order from the Bundle definition.

The events shown in Listing 8.3 are there to send feedback / progress information to the

Bootstrapper Application. By utilising a progress bar, the information can also be presented

to the user.

1 //Events related to the Engine.Apply method

2 event EventHandler<ApplyBeginEventArgs> ApplyBegin;

3 event EventHandler<ApplyCompleteEventArgs> ApplyComplete;

4
5 event EventHandler<RegisterBeginEventArgs> RegisterBegin;

6 event EventHandler<RegisterCompleteEventArgs> RegisterComplete;

7 event EventHandler<UnregisterBeginEventArgs> UnregisterBegin;

8 event EventHandler<UnregisterCompleteEventArgs> UnregisterComplete;

Listing 8.3: Events related to the Engine.Apply method

5. Engine.Exit: Finally, after applying the whole plan (successful, failed, or even cancelled

by the user), to shutdown the Bootstrapper Application and exit the installation process, the

Engine.Exit is called.

This was just a short introduction to the behavioural concept of a custom bootstrapper appli-

cation. For the creation of the Avl.OneSetup.BootstrapperApplication, code examples, and

guidelines were quite difficult to find. Therefore, the Bootstrapper Application of the WiX installer

itself was used as a starting point. In the meantime, good literature has become available. The

books [25] and [26] of Nick Ramirez, who is also a developer for the WiX-Toolset, are a personal

recommendation. Also, the blog of John M. Wright [24] provides a very good starting point.

9. OneSetup Platform

“A deployment engineer had a problem,
she decided to use WiX, now she has a
whole Bundle."

— Klemens Wallner, Coding Happy
Hour(s): Friday Afternoon

9.1 Configuration Handling

Deployment packages should be as simple as possible to install. Every choice a user has to make is a

possible source of errors. It also assumes that the user has the proper knowledge to make a decision.

Therefore, the authors of deployment packages tend not to give a lot of choices to users. Most of

the time, the only configuration which needs to be provided is the installation directory. This goal

is certainly true for office-side applications where installation processes need to be bullet-proof.

For server software, this is not always the case. Of course, the installation process still needs to be

bullet-proof, but for server software often configuration parameters are also needed (e.g. database

connections, firewall settings, port selections, etc.).

In Figure 8.5, a general overview of a Burn-based installation was shown. To illustrate the

configuration needed for the particular packages, the contract symbol is shown next to them. The

contract is not standardised (this is something which is part of OneSetup and how it handles

configurations). A meta contract/configuration file is shown in Listing 9.1.

86 Chapter 9. OneSetup Platform

1 <?xml version="1.0" encoding="utf-8" ?>

2 <AVLOneSetupConfiguration>

3 <!-- for which package is this definition for -->

4 <Package>

5 <!--

6 PackageType: -

7 Allowed values are:

8 UpgradeableConfigFileReadyMSI|StandardMSI|Upgradeable-Bundle|Standard-Bundle

9 -->

10 <PackageType/>

11 <!--

12 InstallPackageInContext: Defines if the package should be installed in context of another

package

13 Allowed values are:

14 0|1 (false|true)

15 -->

16 <InstallPackageInContext EngineVariableName="InstallPackage_OneSetup" Value="1"/>

17
18 <UserSettings>

19 <!-- Parameters are shown to the user -->

20 <Parameter>

21 <!-- Parameters can be forwarded to other packages -->

22 <ForwardParameterValueTo/>

23 <!-- For StandardMSI packages -->

24 <EngineVariable />

25 <!--

26 ConditionalParameters which are only shown when a

27 specific value of the parent parameter is choosen

28 -->

29 <ConditionalParameters>

30 <Parameter/>

31 </ConditionalParameters>

32 </Parameter>

33 </UserSettings>

34 <CustomerPredefinition>

35 <!-- Parameters which are not shown to the user -->

36 <Parameter>

37 <!-- Parameters can be forwarded to other packages -->

38 <ForwardParameterValueTo/>

39 <!-- For StandardMSI packages -->

40 <EngineVariable />

41 </Parameter>

42 </CustomerPredefinition>

43 </Package>

44 </AVLOneSetupConfiguration>

Listing 9.1: Meta configuration file

• Package:
Attribute:Name: This is the name of the package. This needs to be the same as the defined

product name for MSI or bundle name for Bundle packages/installers. Example: see Listing

9.2

9.1 Configuration Handling 87

1 <Package Name="AVL OneSetup Example">

2 </Package>

Listing 9.2: Node <Package> - Example

• PackageType:
Attribute:Value: Four different parameters are allowed.

Allowed Values:

UpgradeableConfigFileReadyMSI: These types of MSI packages are built using the OneSetup

framework. They are able to read all their properties from a OneSetupConfiguration.zip

file whose path is provided by the CONFIG_FILE property. A newer version of the MSI

package can upgrade itself without additional information. For a detailed description, see

Section 9.9.1.

StandardMSI: These are standard MSI packages. They get all their properties by providing

them in the calling method.

Upgradeable-Bundle: These types of Bundles can upgrade with a Single-Button-Upgrade

functionality.

Standard-Bundle: These types of Bundles can only be upgraded by first uninstalling the old

and then installing the new bundle. Example: see Listing 9.3.

1 <PackageType Value="UpgradeableConfigFileReadyMSI" />

Listing 9.3: Node <PackageType> - Example

• InstallPackageInContext:
Attribute:EngineVariableName: This attribute is directly related to the install condition of

a package definition (see Listing 9.4) in WiX. InstallPackageOneSetup is the variable

name within the package.

Attribute:Value: The variable InstallPackageOneSetup will be substituted within the

package with Attribute:Value. In the case where the evaluation resolves to 1=1->true

the package will be installed.

1 <MsiPackage Vital="yes" EnableFeatureSelection="yes" DisplayInternalUI="no" Visible="yes" Name="

data\AVL OneSetup Example.msi" SourceFile="\$(var.TargetDir)en-us\AVL OneSetup Example.msi" Cache=

"yes" InstallCondition="InstallPackage_OneSetup = 1 OR OneSetupInstalled" >

2 <MsiProperty Name="CONFIG_FILE" Value="[OneSetupXMLConfigFile]"/>

3 </MsiPackage>

Listing 9.4: MSI Package Definition - Example

Example: see Listing 9.5.

1 <InstallPackageInContext EngineVariableName="InstallPackage_OneSetup" Value="1"/>

Listing 9.5: Node <InstallPackageInContext> - Example

• UserSettings: This node has no attribute. It is a grouping element. All parameters within

this node are visible to the user.

• CustomerPredefinition: This node has no attribute. It is a grouping element. All parameters

88 Chapter 9. OneSetup Platform

within this node are not visible to the user. Installation packages are reused in different

products. Depending on the products, parameters can be pre-defined differently.

• Parameter: This is by far the most powerful node in terms of attributes and implementation.

Every product that builds their install packages using the OneSetup framework can implement

their own parameter implementations and be dynamically loaded (see Section 9.1.1).

Attribute:InternalParameterName: Within the configuration file this is the unique ID of

the parameter. No duplicate names within a package are allowed. On the MSI level this is

the property name within the MSI and will be set via the custom action (see Section 9.9.1).

Mandatory.

Attribute:Value: Represents the actual parameter value. Mandatory.

Attribute:HumanReadableName: This is the parameter text presented to the user. No

multi-language support is implemented. Mandatory.

Attribute:Description: This is the description presented to the user. No multi-language

support is implemented. Mandatory.

Attribute:ParameterType: The parameter type defines which specific parameter imple-

mentation is used (see Section 9.1.1). In case no ParameterType is defined, the default

ParameterType String is used.

Attribute:ParameterStyle: Besides the functional definition, the style of the parameter can

also be defined.

Allowed Values:

Directory: This parameter field in the configurator (see Section 9.3) adds a directory chooser

to the parameter field.

File: This parameter field in the configurator adds a file chooser to the parameter field.

DropDown: This parameter field in the configurator is a drop down box.

Password: This parameter field in the configurator is a password field which hides the input

of the user.

NotSpecified: The style for String is used.

Attribute:AllowedParameterValues: A list of allowed parameter values separated by �|�

can be predefined. This is most commonly used for predefined drop down boxes, e.g. for

language selection. These values can also be set inside the implemented parameter.

Attribute:InputParameter: In case the selected parameters depend on the input of other

parameters. A list of parameters can be specified in pairs

<LogicalNameForImplementedParameter>=

<InternalParameterNameOfNeededOtherParameter> separated by �;�.

Attribute:InputValue: A list of predefined <Name:Value> pairs separated by �;�. Used

for different range limitations of install packages integrated in different products.

• ForwardParameterValueTo: Parent parameter values can be forwarded to other package

definitions.

Attribute:Package: Defines the target package. Mandatory.

Attribute:ParameterName: Defines the parameter name within the target package. Manda-

tory.

9.1 Configuration Handling 89

Attribute:WithSuffix: A special suffix can be added to the value. In the case of the install

directory parameter, a special subfolder is defined in this way.

Example: see Listing 9.6.

1 <Parameter InternalParameterName="INSTALLDIR" Value="d:\AVL\SANTORIN QMS Web Services{

Instance}" HumanReadableName="Installation directory" Description="Base Install Directory

for the Host Web Services." ParameterType="Directory" >

2 <ForwardParameterValueTo Package="AVL SANTORIN Base Web Services" ParameterName="

INSTALLDIR" WithSuffix="\Base Web Services" />

3 </Parameter>

Listing 9.6: Node <ForwardParameterValueTo> - Example

• EngineVariable: This parameter forwards the parent value directly to a Burn engine variable.

This is needed for packages that do not understand the OneSetup configuration zip file.

Attribute:Name: This is the name of the engine variable to be set.

Example: see Listing 9.7 within the package definition of Listing 9.8.

1 <Parameter InternalParameterName="INSTALLDIR" Value="d:\AVL\Cobra Runtime" >

2 <EngineVariable Name="INSTALLDIR_CobraRuntime" />

3 </Parameter>

4 <Parameter InternalParameterName="INSTALLLEVEL" Value="1" >

5 <EngineVariable Name="INSTALLLEVEL_CobraRuntime" />

6 </Parameter>

Listing 9.7: Node <EngineVariable> - Example

1 <MsiPackage Vital="yes" EnableFeatureSelection="yes" DisplayInternalUI="no" Visible="yes"

Name="data\CobraRuntime.msi" SourceFile="\$(var.TargetDir)en-us\CobraRuntime.msi"

ForcePerMachine="yes" Cache="yes" InstallCondition="InstallPackage_CobraRuntime = 1">

2 <!-- UserSettings-->

3 <MsiProperty Name="INSTALLDIR" Value="[INSTALLDIR_CobraRuntime]"/>

4 <MsiProperty Name="INSTALLLEVEL" Value="[INSTALLLEVEL_CobraRuntime]"/>

5 </MsiPackage>

Listing 9.8: MSI Package Definition with Engine Variables - Example

• ConditionalParameters: Parameters underneath this node are conditional parameters and

are only active and visible to the user in case the value of the parent parameter meets the

condition.

Attribute:ActiveIfParentParameterValueEquals: The value of this attribute needs to be

the same as the parent value to make the parameters visible to the user.

Example: see Listing 9.9

90 Chapter 9. OneSetup Platform

1 <Parameter InternalParameterName="LICENSING_MODEL" Value="" HumanReadableName="Licensing Model"

Description="Define the Licensing model." ParameterType="DropDown" AllowedParameterValues="License

Server|License File" >

2 <ConditionalParameters ActiveIfParentParameterValueEquals="License Server" >

3 <Parameter/>

4 </ConditionalParameters>

5 </Parameter>

Listing 9.9: Node <ConditionalParameters> - Example

An example contract/configuration file used in OneSetup is shown in Listing 9.10. The example

is taken from the OneSetup Example MSI project from Chapter 9.8.

1 <?xml version="1.0" encoding="utf-8" ?>

2 <AVLOneSetupConfiguration>

3 <Package Name="AVL OneSetup Example">

4 <PackageType Value="UpgradeableConfigFileReadyMSI" />

5 <InstallPackageInContext EngineVariableName="InstallPackage_OneSetup" Value="1"/>

6 <UserSettings>

7 <Parameter InternalParameterName="LICENSE_SERVER" Value="" HumanReadableName="License Server"

Description="" />

8 <Parameter InternalParameterName="LICENSE_FILE" Value="" HumanReadableName="License File"

Description="" />

9 <Parameter InternalParameterName="INSTALLDIR" Value="d:\AVL\OneSetup" HumanReadableName="

Installation Directory" Description="" ParameterType="Directory" />

10 </UserSettings>

11 <CustomerPredefinition>

12 </CustomerPredefinition>

13 </Package>

14 </AVLOneSetupConfiguration>

Listing 9.10: Example Configuration File

9.1.1 Implementing Parameters

The basic idea of the configuration framework is that applications which are using the OneSetup

framework can use the same User Interface for configuration and also reuse existing parameters

wherever possible. In cases where the parameter implementations are not sufficient, consumers can

contribute to the OneSetup source and enhance particular, or even introduce new, parameters. There

is also the possibility to implement parameters on the application side and dynamically load these

parameters. This can be achieved by using the factory design pattern which produces parameters as

shown in Figure 9.1.

To implement its own parameter factory, the IParameterFactory interface needs to be im-

plemented. The derived abstract class AParameterFactory implements some basic func-

tionality such as XML parsing. During runtime, all co-located DLLs (also subdirectories) will be

searched for possible interface implementations of IParameterFactory. To reduce the search

effort, only files which follow the naming pattern Avl.OneSetup.ParameterFactory.*.dll are

considered.

The abstract Parameter class already includes XML file parsing and other useful function-

ality. For an actual parameter implementation like ParameterString, three methods need to be

9.2 Configuration Handling: Supported Parameters 91

Figure 9.1: Configuration Handling Factory Pattern

overwritten:

• InitializeParameterValue(): This method is only called once during the construction/ini-

tialisation of the parameter. No other InputParameter is valid yet. Within initialisation the

parameter value is set/modified based on, for example, machine specific settings.

• ValidateParameter(): This method is called at the latest by the end of the configuration

phase. During the parameter validation, the ParameterValidation enum needs to be

correctly set. There is also a string message for the tooltip of the configurator (can also be

used for error messages). For the ParameterValidation enum, three states are allowed:

ParameterValidation.Successful: Identifies that the parameter validation was

successful and no errors occured.

ParameterValidation.Warning: Identifies that something went wrong during the

validation but is not severe enough that an installation would fail.

ParameterValidation.Failed: The parameter validation failed. A Proper error

message should be in the tooltip. The user gets an error message.

• InputParameterObjectChanged(object, PropertyChangedEventArgs): This event is fired

when the parameter itself has changed and/or a parameter on which the current parameter

depends on (e.g. via Attribute:InputParameter) has changed.

As part of the parameter configuration, the correct ParameterType has to be set. As a final step,

the parameter factory and its dependencies need to be added to the ParameterFactoryFiles.wxs
shown in Listing 9.25 in Section 9.4.

9.2 Configuration Handling: Supported Parameters

As part of the common OneSetup framework, a lot of parameters are already implemented to start

with. In the following enumeration, all implemented parameters are listed and can be reused:

92 Chapter 9. OneSetup Platform

• ParameterType: Directory
ParameterStyle: Directory
Description: Needs to be a logical drive. Environment variables are expanded, e.g.

%ProgramFiles(x86)%. Directory browser available in the user interface.

Example: see Listing 9.11

1 <Parameter InternalParameterName="INSTALLDIR" Value="%ProgramFiles(x86)%\AVL\TFMS Client{

Instance}" HumanReadableName="Installation Directory" Description="Defines the installation

directory." ParameterType="Directory" ParameterStyle="Directory"/>

Listing 9.11: Parameter <Directory> - Example

• ParameterType: File
ParameterStyle: File
Description: Path to a file. File needs to exist. File browser available in the user interface.

Example: see Listing 9.12

1 <Parameter InternalParameterName="CUS_RULE_ENGINE" Value="" HumanReadableName="Custom Rule

Engine File" Description="Filename (including full path) to custom rule engine file (

otherwise leave it empty or default value)." ParameterType="File" ParameterStyle="File"/>

Listing 9.12: Parameter <File> - Example

• ParameterType: DomainUserName
Description: A domain user specified with the pattern <domainname>\<username> is

checked for existence.

Example: see Listing 9.13

1 <Parameter InternalParameterName="COND02_DB_SERVICES_USERNAME" Value="" HumanReadableName="

Santorin Services Account Username" Description="Domain Username" ParameterType="

DomainUserName"/>

Listing 9.13: Parameter <DomainUserName> - Example

• ParameterType: DomainUserPassword
ParameterStyle: Password
InputParameter: DomainUserName connected to the DomainUserName parameter.

Description: Together with the DomainUserName parameter, the credentials of a domain

user are checked. In case both parameters validate successfully, the user exists in the domain,

and the password was correctly provided.

Example: see Listing 9.14

1 <Parameter InternalParameterName="COND02_DB_SERVICES_PASSWORD" Value="" HumanReadableName="

Santorin Services Account Password" Description="Domain User Password" ParameterType="

DomainUserPassword" ParameterStyle="Password" InputParameter="DomainUserName=

COND02_DB_SERVICES_USERNAME" >

Listing 9.14: Parameter <DomainUserPassword> - Example

9.2 Configuration Handling: Supported Parameters 93

• ParameterType: DriveDropDown
ParameterStyle: DropDown
Description: A drop down box of all logical drives on the machine is provided. The

AllowedParameterValues are filled during initialisation.

Example: see Listing 9.15

1 <Parameter InternalParameterName="DB_DRIVE" Value="" HumanReadableName="Database Drive"

Description="Database drive destination." ParameterType="DriveDropDown" ParameterStyle="

DropDown"/>

Listing 9.15: Parameter <DriveDropDown> - Example

• ParameterType: DropDown
ParameterStyle: DropDown
AllowedParameterValues: A list of items separated by �|�.

Description: Generic drop down implementation with predefined values.

Example: see Listing 9.16

1 <Parameter InternalParameterName="LANGUAGE" Value="ENG" HumanReadableName="Language"

Description="Application language. Valid Values are GER/ENG/FRE." ParameterType="DropDown"

ParameterStyle="DropDown" AllowedParameterValues="ENG|GER|FRE" >

Listing 9.16: Parameter <DropDown> - Example

• ParameterType: Integer
InputValue: A list of pre-defined <name><value> pairs separated by �;�. Key names are

MIN and MAX.

Description: The input value needs to be an integer. In case MIN or MAX are defined, the

entered integer needs to be within the range MIN <= value <= MAX.

Example: see Listing 9.17

1 <Parameter InternalParameterName="DB_TOTAL_SIZE" Value="5000" HumanReadableName="Database

Size [MB]" Description="Database size in megabytes, min. 2500, max. 99999/free disk space."

ParameterType="Integer" InputValue="MIN=2500;MAX=99999">

Listing 9.17: Parameter <Integer> - Example

• ParameterType: LicenseFile
ParameterStyle: File
Description: The provided file needs to exist. The license file needs to be valid in respect to

the expiration date.

Example: see Listing 9.18

1 <Parameter InternalParameterName="LICENSE_FILE" Value="" HumanReadableName="License File"

Description="" ParameterType="LicenseFile" ParameterStyle="File"/>

Listing 9.18: Parameter <LicenseFile> - Example

94 Chapter 9. OneSetup Platform

• ParameterType: LicenseServer
Description: A license server follows the following naming pattern: [port]@[machinename]

(where the port can be omitted). Multiple license servers can be specified in a list separated

by ;. The [machinename] is pinged as part of the validation.

Example: see Listing 9.19

1 <Parameter InternalParameterName="LICENSE_SERVER" Value="" HumanReadableName="License Server

" Description="" ParameterType="LicenseServer"/>

Listing 9.19: Parameter <LicenseServer> - Example

• ParameterType: MachineName
ParameterStyle: DropDown
Description: All possible names for the local machine are offered as part of a drop down

menu. Therefore, all network interfaces are checked for their DNSSuffixes and concatenated

with the pure machine name.

Example: see Listing 9.21

1 <Parameter InternalParameterName="SANTORIN_HOST_NAME" Value="" HumanReadableName="Santorin

Server Name" Description="Name of the local machine" ParameterType="MachineName"

ParameterStyle="DropDown" AllowedParameterValues="" />

Listing 9.20: Parameter <MachineName> - Example

• ParameterType: Password
ParameterStyle: Password
Description: This field provides a hidden mask for user inputs. When the password is

entered, it is symmetrically encrypted with the Tiny Encryption Algorithm (TEA) with a

fixed key. This allows later decryption within the application. This sort of encryption is

mainly used to scramble the password so that it is not easily read. It does not guarantee

security in the conventional sense.

Example: see Listing 9.21

1 <Parameter InternalParameterName="SANTORIN_HOST_NAME" Value="" HumanReadableName="Santorin

Server Name" Description="Name of the local machine" ParameterType="MachineName"

ParameterStyle="DropDown" AllowedParameterValues="" />

Listing 9.21: Parameter <MachineName> - Example

Due to the amount of already implemented parameters, this is a Work in Progress list. Application

developers are encouraged to improve and contribute parameter implementations.

9.3 Configurator User Interface

The installation configurator is the User Interface to use for configuration. All parameters defined

in the XML configuration files and packed into a zip file (configurator can also deal with single

XML/INI files) are shown (see Figure 9.2) in an intuitive way to the user. The configurator is part

9.3 Configurator User Interface 95

Figure 9.2: Configurator User Interface

of the overall concept shown in Figure 8.5 as Configuration User Interface. The configurator is also

reused as part of the OneSetup Tools in order to have a standalone checking tool for commissioning

engineers (see Section 10.4).

Four main areas are highlighted in the configuration user interface (see Figure 9.2):

1. Configuration Mode: The design allows different configuration modes. The idea is to have

different levels of granularity depending on the user . The configurator always starts up in a

simple mode with limited configuration possibilities. A power user can then switch to a more

advanced view. Currently, only the Expert View is implemented.

2. Package Hierarchy: The pane on the left shows the package hierarchy. On the top level is

always the Bundle package. Underneath, all integrated packages are shown. A user can also

define if particular packages should not be installed with the Bundle installation.

3. Parameter List: All parameters which are needed for the install are shown in this table.

Conditional parameters can also be added.

4. Configuration File/Validation Handling: Configuration files can also be stored or previous

configurations can be loaded (to ease update processes). Parameters can always be validated

by using Validate. Ready to Install again validates all parameters and finishes and

closes the configurator.

As already stated, the configurator currently only supports the Expert View as a configuration

mode. In addition, the User Interface was originally designed to just fit the immediate needs. There-

fore, a more user-friendly wizard-based Non Expert View was not part of the initial implementation.

In any case, together with our user experience expert Sonja Sulzer1, a new wizard design2 was

created. Figures 9.3 and 9.4 show the next big design step. The User Interface is aligned with

1Sonja Sulzer is an UX expert within the Concerto product team.
2https://confluence.avl.com/its/display/UX/Setup+wizard

96 Chapter 9. OneSetup Platform

Figure 9.3: Configuration Wizard: At
Startup

Figure 9.4: Configuration Wizard:
Stepping through

Figure 9.5: Bootstrapper User
Interface: At Startup

Figure 9.6: Bootstrapper User
Interface: Sections

our corporate design requirements and has a better user experience right from the start. From the

configuration handling point of view, no big changes are expected since the package definition just

defines, the parameter list, and not their visualisation.

9.4 Bootstrapper User Interface

By starting an installation package as part of the initial start-up, the bootstrapper User Interface

(see Figure 9.5) is created and populated. The bootstrapper UI has a parametrised implementation

so it can be reused in various products for the application installation bundles.

Figure 9.6 shows the main areas which can be customised. The customisation can be configured

as part of the Bundle definition using variables (see Listing 9.22).

9.4 Bootstrapper User Interface 97

1 <!-- UX Settings-->

2 <Variable Name="ProductBrandPromise" Value="$(var.ProductBrandPromise)" Type="string"

Persisted="yes" />

3 <Variable Name="Heading" Value="$(var.Heading) $(var.MetaVersion)" Type="string" Persisted="

yes" />

4 <Variable Name="SubHeading" Value="$(var.SubHeading)" Type="string" Persisted="yes" />

5 <Variable Name="ProductImage" Value="$(var.ProductImage)" Type="string" Persisted="yes" />

6 <Variable Name="ProductColor" Value="$(var.ProductColor)" Type="string" Persisted="yes" />

7 <Variable Name="ConfigureMandatory" Value="true" Type="string" Persisted="yes" />

8 <Variable Name="ConfigureButtonEnabled" Value="true" Type="string" Persisted="yes" />

9 <Variable Name="BrowseButtonEnabled" Value="false" Type="string" Persisted="yes" />

10
11 <!-- Platform -->

12 <Variable Name="Platform" Value="x86" Type="string" Persisted="yes" />

13
14 <!-- Start Application Button -->

15 <Variable Name="StartButtonEnabled" Value="false" Type="string" Persisted="yes" />

16 <!--<Variable Name="RegKeyStartApplication" Value="HKEY_LOCAL_MACHINE\Software\$(var.

ManufacturerName)\$(var.ProductDirectoryName)\ApplicationExecuteable" Type="string" Persisted

="yes" />-->

17 <!-- Where it the install location stored in case of an upgrade -->

18 <!--<Variable Name="RegKeyInstallLocation" Value="HKEY_LOCAL_MACHINE\Software\$(var.

ManufacturerName)\$(var.ProductDirectoryName)\InstallLocation" Type="string" Persisted="yes"

/>-->

Listing 9.22: Bundle UX Variables

The variables have the following meaning:

• Product Customisation - ProductBrandPromise: Marketing brand promise of the product,

e.g. Unleash data power.

• Product Customisation - Heading: Product’s brand name with its market release naming

<generation>R<release>.<servicelevel>.<patchlevel>.

• Install Package Customisation - SubHeading: Name of the installer package.

• Icon Customisation - ProductImage Every product can use their own product brand icon.

• Install Package Customisation - ProductColour: Text colour the installation name. Re-

lated to the icon colour.

• ConfigureMandatory: Defines if the Start Installation button is available immedi-

ately after startup. For complex installers, the configuration needs to be run, and only after

successful configuration, the Start Installation button is enabled.

• ConfigureButtonEnabled: For very simple installers where only an installation directory

needs to be provided, a configuration UI makes no sense. In this case, even the Configure

button can be disabled.

• BrowseButtonEnabled: Enables the Change installation path... button. This is

also for very simple installers where no configuration UI is needed.

• StartButtonEnabled / RegKeyStartApplication: The start button is not visible in Figure

9.6. The start button allows the starting of an application which was installed right from the

bootstrapper UX. The RegKeyStartApplication points to a registry key where the start

path of the application is provided.

• RegKeyInstallLocation: In the current implementation, the configuration is only stored in

98 Chapter 9. OneSetup Platform

Figure 9.7: Cobra
Installer based on

OneSetup

Figure 9.8: Concerto
Installer based on

OneSetup

Figure 9.9: Engineers
Office Installer based on

OneSetup

Figure 9.10: PUMA
Standalone Office
Installer based on

OneSetup

Figure 9.11: TFMS
Installer based on

OneSetup

Figure 9.12: iGem
Installer based on

OneSetup

the Windows registry. In the case of an update, the install directory needs to be read from the

Windows registry in order to be presented correctly.

As a result of the modern User Interface, and the possibility to configure it depending on

the needs of the product, a lot of products have already adopted the framework. For example,

the following figures show example installers within the product lines of Cobra (see Figure 9.7),

Concerto (see Figure 9.8), Engineers Office (see Figure 9.9), PUMA Standalone Office (see Figure

9.10), TFMS (see Figure 9.11), iGem (see Figure 9.12), fmi.LAB (see Figure 9.13), inMotion (see

Figure 9.14), and SANTORIN (see Figure 9.15).

In addition to the User Interface configuration, the Bootstrapper Application also needs to be

extended. Listing 9.23 shows the needed payload groups:

Figure 9.13: fmi.LAB
Installer based on

OneSetup

Figure 9.14: inMotion
Installer based on

OneSetup

Figure 9.15:
SANTORIN Installer
based on OneSetup

9.4 Bootstrapper User Interface 99

• PLG_BootstrapperApplication: This definition and the file list are part of the OneSetup

framework and maintained there. It contains all files needed to run the Bootstrapper Ap-

plication (e.g. bootstrapper DLL with its dependencies, multi-language libraries, images,

etc).

• PLG_Configurator: Contains the file list for the Configurator (see Section 9.3). The

Configurator depends on Infragistics3 UI Elements, a zipping library, and the VCRedist2010

files.

• PLG_OneSetupBundleImagesFiles: A payload list for all customised images which are

used. A minimum working example is shown in Listing 9.24.

• PLG_OneSetupParameterFactoryFiles: Add the implemented parameter factory (based

on Section 9.1.1) to the Bootstrapper Application. A minimum working example is shown in

Listing 9.25.

1 <BootstrapperApplicationRef Id="ManagedBootstrapperApplicationHost">

2 <!-- Tiles Bootstrapper Application -->

3 <PayloadGroupRef Id="PLG_BootstrapperApplication" />

4 <!-- Configurator for MSI / Bootstrapper Application -->

5 <PayloadGroupRef Id="PLG_Configurator"/>

6 <!-- Application files / Bootstrapper Application -->

7 <PayloadGroupRef Id="PLG_OneSetupBundleImagesFiles"/>

8 <PayloadGroupRef Id="PLG_OneSetupParameterFactoryFiles"/>

9 <Payload SourceFile="$(var.TargetDir)AVLOneSetupDefaultConfiguration.zip" />

10 </BootstrapperApplicationRef>

Listing 9.23: Customised Bootstrapper Definition

1 <?xml version="1.0" encoding="UTF-8"?>

2 <Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

3 <Fragment>

4 <PayloadGroup Id="PLG_OneSetupBundleImagesFiles">

5 <Payload SourceFile="$(var.ProjectDir)images\product_tfms_configuration_tool_256x.png" />

6 </PayloadGroup>

7 </Fragment>

8 </Wix>

Listing 9.24: PayloadGroup file with Bundle Image files

1 <?xml version="1.0" encoding="UTF-8"?>

2 <Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

3 <Fragment>

4 <PayloadGroup Id="PLG_OneSetupParameterFactoryFiles">

5 <!--OneSetup Parameter Factory -->

6 <Payload SourceFile="\$(var.TargetDir)Avl.OneSetup.ParameterFactory.OneSetup.dll" />

7 <!--OneSetup Parameter Factory Dependencies -->

8 </PayloadGroup>

9 </Fragment>

10 </Wix>

Listing 9.25: PayloadGroup file with Application Factory

3Infragistics UI Controls and Tools, https://www.infragistics.com/

100 Chapter 9. OneSetup Platform

9.5 Bundle Conditions

Bundle conditions are the counterpart of the MSI launch conditions. During its immediate start-up

phase, the Burn engine evaluates conditions provided by bal:Condition XML nodes. Most of the

time, such launch conditions are based on registry searches4, but they can also be more complicated.

In that case they need to be processed as part of the bootstrapper application.

The AVL_COMPLEX_CONDITION_EVALUATION launch conditions are complex launch conditions

implemented within OneSetup and executed at the bootstrapper startup. Two types are currently

implemented in the framework:

• _MinimumBundleVersion: This condition blocks the update in case the current Bundle

needs a minimum version of the previous Bundle installed on the machine. In case this

minimum version is not installed, the software can only be updated via uninstall/install. An

example is shown in Listing 9.26.

1 <bal:Condition Message="Upgrade path was intentionally terminated with this version. Please

uninstall the old version and install with this installer." >

2 <![CDATA[AVL_COMPLEX_CONDITION_EVALUATION_MinimumBundleVersion >= 1.50.15249.0]]>

3 </bal:Condition>

Listing 9.26: Bundle Launch Condition

• _MinimumMsiVersion_<packageName>.msi: This condition targets an integrated MSI

package of the Bundle installation chain. In case the already installed MSI package does not

have a minimum version the Bundle installation is blocked. An example is shown in Listing

9.27.

1 <bal:Condition Message="'AVL SANTORIN Base Windows Services' are installed in a too small

version (at least version 5.50.14300.0 is necessary). Please uninstall them first manually -

the Bundle will reinstall them with higher version." >

2 <![CDATA[

AVL_COMPLEX_CONDITION_EVALUATION_MinimumMsiVersion_AVL_SANTORIN_Base_Windows_Services.msi

>= 5.50.14300.0]]>

3 </bal:Condition>

Listing 9.27: Bundle MSI Launch Condition

9.6 Bundle Command line Switches

One of the fundamental requirements is that the installation packages need to install silently.

Therefore, the whole installation process can also be triggered by command line. Table 9.1 lists all

the available switches.

9.7 Prerequisites Packages

Most of the time, an application’s installation Bundle does not consist only of its application

install packages. Applications might have dependencies to vendor packages. As part of the

4How To: Block Bootstrapper Installation Based on Registry Key, http://wixtoolset.org/documentation/manual/v3/howtos/

9.8 Example Solution 101

Switch Description

-q, -quiet, -s, -silent
Performs a silent install. No user interface is shown and the
installation runs in the background. The main use-case is
for the rollout.

-passive
Same behaviour as the silent install but the progress bar is
shown during the installation.

-norestart
In case any packages requests a reboot the request is
supressed.

-forcerestart
Restarts the machine after a successful installation. This
might be necessary in case an integrated installer does not
request a reboot but actually does need one.

-l, -log
Defines the path and file name of the log file. Default is the
bundle name with a timestamp.

-uninstall Uninstalls the bundle.
-repair Repairs or, if not already installed, installs the bundle.

-configFile <pathToConfigFile>
Provides the (relative or absolute) path to the OneSetup
configuration file.

Table 9.1: Bundle command line switches

OneSetup framework, a growing set of vendor packages is provided. The advantage to this is

that once the installation logic (detect conditions, install conditions, etc.) is written, every new

application does not need to think about its implementation. Additionally, in the case where

applications need additional vendor packages, the application development team is encouraged

to add this new vendor package to the OneSetup framework so that others might also bene-

fit from this contribution. The OneSetup prerequisite packages follow the naming convention

Avl.Common.Package.Group.<SpecificPrerequisitePackage>.wixlib.

Listing 9.28 gives an example of how predefined prerequisite packages can be used as part

of a Bundle chain. Only a specific PackageGroupId needs to be referenced. An overview of all

supported prerequisite packages is shown in Table 9.2.

1 <Chain>

2 <PackageGroupRef Id="Netfx4Full" /> <!-- This is also the prerequisite for the Installer -->

3 <PackageGroupRef Id="SingleButtonFailureDump"/>

4 <RollbackBoundary />

5 <PackageGroupRef Id=" ... applicationPackages ... " />

6 </Chain>

Listing 9.28: Using predefined prerequisite packages in the Bundle chain

9.8 Example Solution

WiX is known to have a flat learning curve. To compensate for this, and in order to provide a good

starting point, as part of the OneSetup framework a best practice example is provided for creating

an application installer package. The

OneSetup-<version>-ExampleInstallation.zip is provided as part of the OneSetup delivery.

In order to use the package, the developer needs to have Visual Studio 2013/2015 and WiX Toolset

102 Chapter 9. OneSetup Platform

Figure 9.16: Example Solution Figure 9.17: Example Solution -
Areas

v3.9 R2 installed. It can be started with the 05_OneSetupMsiBundles.sln solution.

The example solution is shown in Figure 9.16. In Figure 9.17 the main areas are highlighted

and are described below:

• Common: Avl.OneSetup.ParameterFactory.<Product>.dll contains the customised

application parameter factory based on the design from Figure 9.1.

PackageMetaInformation<Product>.wxi defines all upgrade GUIDs for all packages

used within the solution. WixVarPreprocessorMapping.wxs: Passes the version informa-

tion into WiX variables (which can then be used in the setup authoring).

• Custom Actions: All custom action project DLLs are located here within the solution.

• Avl.<Product>.Files: This WiX library contains component-wise grouped deployment file

lists within .wxs files. All deployment file lists should be kept here. Having them in a

separate .wixlib (and not part of the MSI project itself) allows easy reuse over multiple

MSI projects. The files within this WiX library are meant to be modified by anybody who

works on particular components. The file lists are pure XML files which allow modifications

without having deep knowledge about WiX.

• OneSetupCustomised-Folder: Every application solution should adapt the three files within

this folder. PLG_OneSetupBundleImagesFiles.wxs and

PLG_OneSetupParameterFactory.wxs were already discussed as part of Listings 9.24 and

9.25. For CA_LaunchConfiguratorUi_OneSetup.wxs see Section 9.9.1.

• Avl.<Product>.Library: This WiX library contains the deployment operations beyond sim-

ple file copying (e.g. shortcut creation, Windows service management, ini file modifications,

9.9 Custom Actions 103

...). For changes within this library, knowledge about the WiX-Toolset is needed.

• Example MSI Package: This is a very simple MSI package project. It contains only a

single file for deployment (referenced from Avl.<product>.Files.wixlib) but has full

functionality in respect to upgradeability, User Interface, and command line functions.

• Avl.<Product>.Packages: This package library contains the package definitions of all MSI

packages within the solution which can then be reused by multiple Bundle install projects.

• Example Bundle Package: Contains the example Bundle project with DotNet, Single

Button Failure Dump, and the example MSI package.

9.9 Custom Actions

This Section lists all custom actions from the common OneSetup framework which are ready and

meant for reuse within applications. This is a non-complete list. Actually, there are far more custom

actions which are not yet fully documented. In this Section only fully documented custom actions

are listed.

9.9.1 Avl.OneSetup.CustomActions.LaunchConfiguratorUi

The configurator discussed in Section 9.3 is not only used within the Bootstrapper Application, it is

also used as the User Interface part of an MSI installation package. The

Avl.OneSetup.CustomActions.LaunchConfiguratorUi.CA.dll is actually a zip file which

contains the Avl.OneSetup.CustomActions.LaunchConfiguratorUi.dll with its dependen-

cies, and a basic OneSetup configuration file.

In order to reuse the *.LaunchConfiguratorUi.CA.dll within the customised application

installers, the actual application’s AVLOneSetupConfiguration.zip needs to be RePacked. For

this purpose, the tool from Section 10.2 can be used. On the other side, as part of the customised

MSI packages, the sequencing and launch of the configurator User Interface can be changed by

re-implementing the custom action as shown in Listing 9.29. The following things are important:

• Defining of Avl.OneSetup.CustomActions.LaunchConfiguratorUi.CA.dll as part of

a product binary Id="OSConf.CA.dll".

• Defining a new custom action Id="LaunchOneSetupConfigurator" and scheduling this

custom action properly (see InstallUISequence and InstallExecuteSequence).

104 Chapter 9. OneSetup Platform

1 <?xml version="1.0" encoding="UTF-8"?>

2 <Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

3 <Fragment>

4 <Property Id="CA_LaunchConfiguratorUi_OneSetup" Value="1"/>

5
6 <Property Id="CONFIG_FILE" Value="NO FILE SET" Secure="yes"/>

7
8 <Binary Id="OSConf.CA.dll" SourceFile="$(var.TargetDir)Avl.OneSetup.CustomActions.

LaunchConfiguratorUi.CA.dll" />

9 <CustomAction Id="LaunchOneSetupConfigurator" BinaryKey="OSConf.CA.dll" DllEntry="

LaunchConfiguratorUi" Execute="immediate" Return="check"/>

10
11 <InstallUISequence>

12 <Custom Action="LaunchOneSetupConfigurator" After="LaunchConditions">(NOT OLD_VERSION_FOUND)

AND (NOT Installed) AND (UILevel = "5")</Custom>

13 </InstallUISequence>

14 <InstallExecuteSequence>

15 <!-- After LaunchConditions because then we have already checked the other needed products

installed -->

16 <!-- Otherwise we configure and then a LaunchCondition can be fired -->

17 <Custom Action="LaunchOneSetupConfigurator" After="LaunchConditions">(NOT OLD_VERSION_FOUND)

AND (NOT Installed) AND NOT(UILevel = "5")</Custom>

18 </InstallExecuteSequence>

19 </Fragment>

20 </Wix>

Listing 9.29: Custom Action: Launch Configurator UI OneSetup

9.9 Custom Actions 105

PackageGroupId Wixlib Description

DotNetHotfix_Vista_2k8 *.DotNetHotfix.wixlib
Microsoft .NET Framework 3.5 Family Update for
Windows XP x64, and Windows Server 2003 x64,
Download

JavaRuntimeEnvironment *.JRE.1.6.0.23.wixlib Java SE Downloads, Download

KBs *.KBs.wixlib
Security Update for Windows XP (KB2916036),
Download

MSXML40 *.MSXML.wixlib
MSXML 4.0 Service Pack 3 (Microsoft XML Core
Services), Download

Netfx20 *.Netfx20.wixlib
Microsoft .NET Framework 2.0 Service Pack 2,
Download

Netfx35 *.Netfx35Full.wixlib
Microsoft .NET Framework 3.5 Service pack 1 (Full
Package), Download

Netfx4Full *.Netfx4Full.wixlib
Microsoft .NET Framework 4 (Standalone Installer),
Download

Netfx452Full *.Netfx452Full.wixlib

Microsoft .NET Framework 4.5.2 (Offline Installer)
for Windows Vista SP2, Windows 7 SP1, Windows
8, Windows 8.1, Windows Server 2008 SP2,
Windows Server 2008 R2 SP1, Windows Server
2012 and Windows Server 2012 R2, Download

Netfx462Full *.Netfx462Full.wixlib

Microsoft .NET Framework 4.6.2 (Offline Installer)
for Windows 7 SP1, Windows 8.1, Windows Server
2008 R2 SP1, Windows Server 2012 and Windows
Server 2012 R2, Download

NUnit2.5.10.11092
*.NUnit2.5.10.11092.wixlib

Nunit testing framework, Download

NUnit3.4.1 *.NUnit3.4.1.wixlib NUnit testing framework, Download
SingleButtonFailure-
Dump

*.SingleButtonFailure-
Dump.wixlib

AVL Single Button Failure Dump Install Package

VCRedist2005 *.VCRedist2005.wixlib
Microsoft Visual C++ 2005 Redistributable Package,
Download

VCRedist2008 *.VCRedist2008.wixlib
Microsoft Visual C++ 2008 Redistributable Package,
Download

VCRedist2010 *.VCRedist2010.wixlib
Microsoft Visual C++ 2010 Redistributable Package,
Download

VCRedist2013 *.VCRedist2013.wixlib
Visual C++ Redistributable Packages for Visual
Studio 2013, Download

VCRedist2015 *.VCRedist2015.wixlib
Visual C++ Redistributable for Visual Studio 2015,
Download

VS2013TestAgent
*.VS2013.TestAgent.wixlib

Agents for Microsoft Visual Studio 2013, Download

WindowsInstaller45
*.WindowsIn-
staller45.wixlib

Windows Installer 4.5 Redistributable, Download

Table 9.2: Available prerequisite packages

https://www.microsoft.com/en-us/download/details.aspx?id=16921
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.microsoft.com/en-us/download/details.aspx?id=41715
https://www.microsoft.com/en-us/download/details.aspx?id=15697
https://www.microsoft.com/en-us/download/details.aspx?id=1639
https://www.microsoft.com/en-us/download/details.aspx?id=25150
https://www.microsoft.com/en-us/download/details.aspx?id=17718
https://www.microsoft.com/en-us/download/details.aspx?id=42642
https://www.microsoft.com/en-us/download/details.aspx?id=53344
http://nunit.org/?p=download
http://nunit.org/?p=download
https://www.microsoft.com/en-us/download/details.aspx?id=3387
https://www.microsoft.com/en-us/download/details.aspx?id=29
https://www.microsoft.com/en-us/download/details.aspx?id=5555
https://www.microsoft.com/en-us/download/details.aspx?id=40784
https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=40750
https://www.microsoft.com/en-us/download/details.aspx?id=8483

10. OneSetup Tools

“Quotes are smarter than the author ... but
not this time."

— Jadranko Lucic, The Croatian
Connection

The OneSetup framework offers a set of tools which are either related to the framework usage

itself or were developed as a by-product for the deployment. These by-products are mainly for the

use of commissioning engineers and operations staff for the preparation, execution, and maintenance

of customer installations. The OneSetup Tools always follow the same namespace and naming

convention: Avl.OneSetup.Tools.<Toolname>.exe.

10.1 Tool: *.CreateProductVersionIncludeWxi.exe

The purpose of the CreateProductVersionIncludeWxi tool is to provide functionality in order

to have better integration in build automation in respect to versioning and version stamping. All

deployment packages should also have proper version stamping. Of course, the version number is

different with every build. Therefore, within WiX projects, a version number can only be used as

a variable which changes with every build. This variable needs to be set somewhere. In context

of WiX, this can be done by creating an include file which contains the variable definition with

properly generated values.

Therefore, the tool takes a DLL as an input and reads the version information imprinted on it.

With this information the following files are created:

• A WiX Include File (.wxi) and

• Simple text files named Version.txt, VersionMajor.txt, VersionMinor.txt,

108 Chapter 10. OneSetup Tools

VersionBuild.txt, VersionRevision.txt, VersionMeta.txt,

and VersionMetaSecond.txt.

Listing 10.1 shows the command line call.

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 D:\temp>Avl.OneSetup.Tools.CreateProductVersionIncludeWxi.exe
5 −versionFile "Avl.OneSetup.ParameterFactory. Interface . dll "
6 −out "OneSetup.wxi"
7

8 Input Parameters :
9 −versionFile : Avl.OneSetup.ParameterFactory. Interface . dll

10 −out: OneSetup.wxi
11 Creating product version .wxi file .
12 Creating file version . txt files .
13

14 D:\temp>

Listing 10.1: Command line call for CreateProductVersionIncludeWxi.exe

The content of the generated files depends on the properties of the provided input DLL. The

property tab of Avl.OneSetup.ParameterFactory.Interface.dll is shown in Figure 10.1.

The information needed is taken from the File version and Product version entries.

Figure 10.1: Properties Tab of a provided DLL

In Listing 10.2, the content of the created OneSetup.wxi is shown. This include file can

now be used within the deployment projects. Within WiX, the variables ProductVersion,

MajorVersion, etc. are defined and also populated with values.

10.2 Tool: *.RePackCustomActionDll.exe 109

1 <?xml version="1.0" encoding="utf-8"?>

2 <Include>

3 <!-- Test Comment -->

4 <?define ProductVersion = "2.1.17078.2" ?>

5 <?define MajorVersion = "2" ?>

6 <?define MinorVersion = "1" ?>

7 <?define BuildVersion = "17078" ?>

8 <?define RevisionVersion = "2" ?>

9 <?define MetaVersion = "2 R1.1" ?>

10 <?define MetaVersionSecond = "no second meta version found" ?>

11 <?define Comments = "Version 2.1.17078.2 from build 17078, 19.03.2017 01:52" ?>

12 </Include>

Listing 10.2: Content of created OneSetup.wxi

The text files and their contents are shown in Table 10.1. They can be used within batch

scripting as shown in Listing 10.3.

Text file name Text file content
Version.txt 2.1.17078.2

VersionMajor.txt 2
VersionMinor.txt 1
VersionBuild.txt 17078

VersionRevision.txt 2
VersionMeta.txt 2TM R1.1

VersionMetaSecond.txt no second meta version found

Table 10.1: Content of the created Version*.txt files

1 set /p Version=< "Version . txt "
2 set /p VersionMajor=< "VersionMajor. txt "
3 set /p VersionMinor=< "VersionMinor. txt "
4 set /p VersionBuild=< "VersionBuild . txt "
5 set /p VersionRevision=< "VersionRevision . txt "
6 set /p VersionMeta=< "VersionMeta. txt "

Listing 10.3: Reading Version*.txt files within a batch script

10.2 Tool: *.RePackCustomActionDll.exe

The main purpose of this tool is to assist in the repacking of the OneSetup framework custom

action DLL, Avl.OneSetup.CustomActions.LaunchConfiguratorUi.CA.dll. This custom

action allows deployment packages which are based on the OneSetup framework to use the same

Configurator User Interface for their MSI packages (for more information see Section 9.9.1).

The *LaunchConfiguratorUi.CA.dll is actually not a real DLL. It is a compressed archive

(Cabinet Format1) containing the real

Avl.OneSetup.CustomActions.LaunchConfiguratorUi.dll and all its dependencies. In or-

der to reuse this custom action, the configuration files and parameter factory files of the consuming

product must be packed into the *LaunchConfiguratorUi.CA.dll. Therefore, the original

1https://msdn.microsoft.com/en-us/library/bb267310.aspx

110 Chapter 10. OneSetup Tools

CA.dll needs to be unpacked to a temporary folder, additional files are then added to this folder,

and the folder is zipped again containing the additional files.

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 D:\temp>Avl.OneSetup.Tools.RePackCustomActionDll.exe −Help
5 Adding a single file :
6 −CustomActionDll <FullPathFilename | RelativePathFilename>
7 −AddFile <FullPathFilename | RelativePathFilename>
8

9 Adding files based on a PayloadGroup Definition :
10 −CustomActionDll <FullPathFilename | RelativePathFilename>
11 −WixPayloadGroupFile <FullPathFilename | RelativePathFilename>
12 −WixVariableNameValuePairs <VariableName=VariableValue>(;<VariableName=VariableValue>)∗
13 D:\temp>

Listing 10.4: *.RePackCustomActionDll.exe functions

The tool offers an interface as shown in Listing 10.4. The two main functions are:

• Adding a single file. In the OneSetup framework it is used to add the

AVLOneSetupDefaultConfiguration.zip and shown in Listing 10.5.
1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 D:\temp>Avl.OneSetup.Tools.RePackCustomActionDll.exe
5 −CustomActionDll "Avl.OneSetup.CustomActions.LaunchConfiguratorUi.CA.dll"
6 −AddFile "AVLOneSetupDefaultConfiguration.zip"
7 Repacking successful .
8

9 D:\temp>

Listing 10.5: RePacking a single file

• Adding files defined in a payload group (within a .wxs file). The content of such an example

payload group file can be seen in Listing 10.6.

10.3 Tool: *.CopyPayloadGroupFiles.exe 111

1 <?xml version="1.0" encoding="UTF-8"?>

2 <Wix xmlns="http://schemas.microsoft.com/wix/2006/wi">

3 <Fragment>

4 <PayloadGroup Id="PLG_SantorinParameterFactoryFiles">

5 <!--Santorin.Common Parameter Factory -->

6 <Payload SourceFile="$(var.TargetDir)Avl.OneSetup.ParameterFactory.Santorin.Common.dll"

/>

7
8 <!--Santorin Parameter Factory Dependencies -->

9 <Payload SourceFile="$(var.TargetDir)aods511.dll" />

10 <Payload SourceFile="$(var.TargetDir)IIOPChannel.dll" />

11 <Payload SourceFile="$(var.TargetDir)SantorinHelper.dll" />

12 <Payload SourceFile="$(var.TargetDir)regclnt.exe" />

13 <Payload SourceFile="$(var.TargetDir)AsamHelper.dll" />

14 <Payload SourceFile="$(var.TargetDir)LoggingHelper.dll" />

15 <Payload SourceFile="$(var.TargetDir)Logging.dll" />

16 <Payload SourceFile="$(var.TargetDir)SantorinRegistryInterface.dll" />

17 <Payload SourceFile="$(var.TargetDir)SAPI.dll" />

18 <Payload SourceFile="$(var.TargetDir)TnsNamesEditor.exe" />

19 <Payload SourceFile="$(var.TargetDir)TnsNamesUtility.dll" />

20 </PayloadGroup>

21 </Fragment>

22 </Wix>

Listing 10.6: Content of created example payload group file

All files within this PayloadGroup need to be packed into the

*LaunchConfiguratorUi.CA.dll. Therefore the command line help is shown in Listing

10.7.
1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 D:\temp>Avl.OneSetup.Tools.RePackCustomActionDll.exe
5 −CustomActionDll "Avl.OneSetup.CustomActions.LaunchConfiguratorUi.CA.dll"
6 −WixPayloadGroupFile ".\SANTORIN\Files\OneSetupCustomized\PLG_SantorinParameterFactoryFiles.wxs"
7 −WixVariableNameValuePairs "TargetDir;D:\temp\."
8 Repacking successful .
9

10 D:\temp>

Listing 10.7: RePacking a payload group

As a result, all files are RePacked into *LaunchConfiguratorUi.CA.dll. This can be

double-checked by unzipping *LaunchConfiguratorUi.CA.dll with any standard zipping

tool like Winzip or 7-Zip.

10.3 Tool: *.CopyPayloadGroupFiles.exe

The *.CopyPayloadGroupFiles.exe tool provides similar functionality to the

*.RePackCustomActionDll.exe (see Section 10.2) with respect to processing payload group

files. This tool copies all files specified within such a payload group file to a defined location. The

interface of *.CopyPayloadGroupFiles.exe is shown in Listing 10.8.

112 Chapter 10. OneSetup Tools

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 D:\temp>Avl.OneSetup.Tools.CopyPayloadGroupFiles.exe −Help
5 −WixPayloadGroupFile <FullPathFilename | RelativePathFilename>
6 −WixVariableNameValuePairs <VariableName=VariableValue>(;<VariableName=VariableValue>)∗
7 −DestinationFolder <FullPath>| RelativePath >
8

9 D:\temp>

Listing 10.8: *.CopyPayloadGroupFiles.exe interface

In the example usage shown in Listing 10.9, the same payload group file (see Listing 10.6) is

used.
1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 D:\temp>Avl.OneSetup.Tools.CopyPayloadGroupFiles.exe
5 −WixPayloadGroupFile ".\SANTORIN\Files\OneSetupCustomized\PLG_SantorinParameterFactoryFiles.wxs"
6 −WixVariableNameValuePairs "TargetDir;D:\TFS\SANT_Main\Bin\ReleaseU\."
7 −DestinationFolder "d :\ temp\ test \."
8 Copying file <D:\TFS\SANT_Main\Bin\ReleaseU\.\Avl.OneSetup.ParameterFactory.Santorin.Common.dll> to
9 <d:\temp\ test \.\ Avl.OneSetup.ParameterFactory. Santorin .Common.dll>.

10 Copying file <D:\TFS\SANT_Main\Bin\ReleaseU\.\aods511.dll> to
11 <d:\temp\ test \.\ aods511. dll >.
12 −−−− snipped (all file copies are listed) −−−
13 Copying successful .

Listing 10.9: *.CopyPayloadGroupFiles.exe example

This functionality is used as part of the runtime generation for the OneSetup configurator

discussed in Section 9.3.

10.4 Tool: *.Configurator.exe

The AVL Installation User Interface discussed in Section 9.3 is embedded in a reusable DLL. The

Avl.OneSetup.Tools.Configurator.exe provides a command line interface for:

1. Launching AVL Installation User Interface for a particular package definition. This is

used for commissioning and pre-installation checks. The tool can be sent to a customer.

Since the AVL Installation User Interface actually contains all the logic for the deployment

parameter checks, the customer themselves can run the tool as a pre-installation check for

the installer. In case of invalid parameter validation, additional preparation actions can be

taken before the commissioning engineer is sent to the customer. The goal is to enable

the personnel on the customer side to do the commissioning by themselves. Therefore,

the parameter validation needs to be very robust. In Listing 10.10, the command line for

launching the user interface is shown. In this example, the product configuration for AVL

TFMS Client (Upgradeable-Bundle) is launched, as shown in Figure 10.2.

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. Configurator .exe

10.4 Tool: *.Configurator.exe 113

Figure 10.2: Configurator “AVL Installation User Interface” (launched with listing 10.10)

5 −packageName "AVL TFMS Client (Upgradeable−Bundle)"
6

7 Passed arguments: −packageName AVL TFMS Client (Upgradeable−Bundle)
8 Launching AVLOneSetupConfigurator.
9 Starting AVLOneSetupConfigurator for package <AVL TFMS Client (Upgradeable−Bundle)>.

10

11 d :\ temp\>

Listing 10.10: Launching Configurator for a particular package

The user can now configure the particular deployment package and test the parameter

validation. The created deployment configuration can also be saved and reused for rollout

purposes.

2. Changing configuration values without user interface for automated deployment / roll-
out. To change parameter values, some knowledge about the internal structure of the

OneSetup configuration zip is needed (see Section 9.1). Based on this, all packages have

unique internal parameter names. Therefore, a particular parameter value is uniquely spec-

ified by PackageName and InternalParameterName. In Listing 10.11, an example for

changing the installation directory of the AVL TFMS Client (Upgradeable-Bundle) package

is shown.

114 Chapter 10. OneSetup Tools

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. Configurator .exe
5 − sourceConfigurationFile .\ AVLOneSetupDefaultConfiguration.zip
6 − destinationConfigurationFile .\ TFMSConfiguration.zip
7 −packageName "AVL TFMS Client (Upgradeable−Bundle)"
8 −internalParameterName "INSTALLDIR"
9 −setParameterValueTo "d :\ Temp\AVL\TFMS Client"

10

11 Passed arguments:
12 − sourceConfigurationFile .\ AVLOneSetupDefaultConfiguration.zip
13 − destinationConfigurationFile .\ TFMSConfiguration.zip
14 −packageName AVL TFMS Client (Upgradeable−Bundle)
15 −internalParameterName INSTALLDIR
16 −setParameterValueTo d :\ Temp\AVL\TFMS Client
17 ConfigurationFile is not rooted <.\ AVLOneSetupDefaultConfiguration.zip>.
18 ConfigurationFile is now rooted <D:\TFS\Setup_Main\Bin\ReleaseU\AVLOneSetupDefaultConfiguration.zip>.
19 ConfigurationFile is not rooted <.\ TFMSConfiguration.zip>.
20 ConfigurationFile is now rooted <D:\TFS\Setup_Main\Bin\ReleaseU\TFMSConfiguration.zip>.
21 Launching AVLOneSetupConfigurator.
22 Changing <INSTALLDIR> to value <d:\Temp\AVL\TFMS Client> for
23 package <AVL TFMS Client (Upgradeable−Bundle)>.
24 Successfull .
25

26 d :\ temp\>

Listing 10.11: Changing configuration values without user interface

10.5 Tool: *.IIISHelper.exe

The IISHelper tool is a command line tool which provides functionality for the installation and

configuration of the Internet Information Services (IIS)[27]. The tool provides three main functions:

• Install/Check IIS: IIS consists of a set of various features. Some features are recommended

or needed for AVL products. The tool provides functionality to install/check already installed

feature sets and can also add and remove features.

• SSL and Self-Signed-Certificate: To enable SSL on IIS, a 443 port binding and a certificate

is needed. The port binding (including a self-signed-certificate) can be automatically added

with this feature.

• Production-Maintenance-Toggle: During customer maintenance phases, it is necessary to

completely shut off the IIS from external requests. Therefore, the IIS-IPSecurity feature

of IIS is used. The tool allows the turning on and off of outside communication by toggling

between Production and Maintenance modes.

All IISHelper functions can be listed with the -Help or -? switches as shown in Listing 10.12.

10.5 Tool: *.IIISHelper.exe 115

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. IisHelper .exe −Help
5 Avl.OneSetup.Tools. IisHelper .exe (64 bit)
6

7 OPTIONS:
8

9 −Cert :
10 Generates and installs self signed IIS certificate .
11

12 −InstallAVLDefault :
13 Installs all recommended IIS features .
14

15 − InstallFeatures FEATURES :
16 Installs IIS features .
17 FEATURES : List of feature names (case− sensitive !) .
18 Example: Avl.OneSetup.Tools. IisHelper .exe − InstallFeatures "IIS − IPSecurity"
19 Example: Avl.OneSetup.Tools. IisHelper .exe − InstallFeatures "IIS − IPSecurity" "IIS−WebServerRole"
20

21 −GetEnabledFeatures :
22 Shows all enabled IIS features .
23

24 −−−−−− snipped here −−−−−−−

Listing 10.12: IISHelper functions

10.5.1 Install/Check IIS

IIS on Windows can be installed by using either of the following the User Interface options:

• Control Panel: Windows Desktop operating systems like Windows 7

• Server Manager: Windows Server operating systems like Windows 2012

• or by using the Deployment Image Servicing and Management (DISM) (see [28])

DISM provides a command line driven possibility to install features on Windows operating systems.

IISHelper wraps this DISM functionality and provides a tailored, lightweight interface for AVL

purposes.

In Avl.OneSetup.Tools.IisHelper.exe.config config file, the IIS features are predefined.

The current AVL default IIS features are:

IIS-IPSecurity, IIS-WebServerRole, IIS-WebServerManagementTools,

IIS-ManagementConsole, IIS-WebServer, IIS-ApplicationDevelopment,

IIS-NetFxExtensibility, IIS-ASPNET, IIS-ISAPIExtensions,

IIS-ISAPIFilter, IIS-CommonHttpFeatures, IIS-DefaultDocument,

IIS-DirectoryBrowsing, IIS-HttpErrors, IIS-StaticContent,

IIS-HealthAndDiagnostics, IIS-HttpLogging, IIS-RequestMonitor,

IIS-Performance, IIS-HttpCompressionStatic, IIS-Security,

IIS-RequestFiltering, WAS-WindowsActivationService,

WAS-ProcessModel, WAS-NetFxEnvironment, and WAS-ConfigurationAPI. By modifying

the .config file, the default feature set can be changed.

The command line switches, descriptions, and examples are shown in Listing 10.13.

116 Chapter 10. OneSetup Tools

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. IisHelper .exe −Help
5 Avl.OneSetup.Tools. IisHelper .exe (64 bit)
6

7 OPTIONS:
8

9 −InstallAVLDefault :
10 Installs all recommended IIS features .
11

12 − InstallFeatures FEATURES :
13 Installs IIS features .
14 FEATURES : List of feature names (case− sensitive !) .
15 Example: Avl.OneSetup.Tools. IisHelper .exe − InstallFeatures "IIS − IPSecurity"
16 Example: Avl.OneSetup.Tools. IisHelper .exe − InstallFeatures "IIS − IPSecurity" "IIS−WebServerRole"
17

18 −GetEnabledFeatures :
19 Shows all enabled IIS features .
20

21 −GetAllFeatures :
22 Shows all IIS features with state .
23

24 −CheckAVLDefault :
25 Checks if all recommended AVL IIS features are already installed .

Listing 10.13: IISHelper Install/Check IIS functions

10.5.2 SSL and Self-Signed-Certificate

In order to run SSL secured communication, an SSL binding on port 443 is necessary for the

website where the applications are running in IIS. Figure 10.3 shows the DefaultWebSite where

port 80 is bound, but not port 443.

Figure 10.3: IIS with missing SSL binding

In order to create the SSL binding, IISHelper supports the -Cert switch. As shown in Listing

10.14, this function checks all bindings on the DefaultWebSite. If an SSL binding already exists,

10.5 Tool: *.IIISHelper.exe 117

this binding is removed and a new binding is created.
1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. IisHelper .exe −Cert
5 Checking site : DefaultWebSite
6 Iterating through bindings .
7 Checking binding : <http>.
8 Checking binding : <net . tcp>.
9 Checking binding : <net . pipe>.

10 Checking binding : <net .msmq>.
11 Checking binding : <msmq.formatname>.
12 Checking binding : <https >.
13 Https binding found.
14 Removing https binding .
15 All https bindings are removed.
16 self signed certificate created .
17 Certificate added to store .
18 Adding https binding for : Default Web Site
19 Calling : netsh http add sslcert ipport =0.0.0.0:443
20 certhash =BFD2CC88625E15189DF88509056B3110FA8F07AD
21 appid={c0298694−cad5−4971−8fdf−5a07d9a095eb}
22

23 SSL Certificate successfully added
24

25 d :\ temp\>

Listing 10.14: IISHelper adds port binding and certificate

A new binding also needs a certificate. A self-signed-certificate is created (as described here2

and here3) and added to the Trusted Root Authority Store of the operating system. As a last step, an

update of the certificate-to-endpoint mappings are necessary using netsh.exe4.

Figure 10.4: IIS with fixed SSL binding

Figure 10.4 shows the result of this function. The SSL binding is created and properly initialised.

2see http://stackoverflow.com/questions/13806299/how-to-create-a-self-signed-certificate-using-c
3see https://msdn.microsoft.com/en-us/library/windows/desktop/aa377124(v=vs.85).aspx
4see http://serverfault.com/questions/460090/binding-ssl-certificate-reset-in-win-2012

118 Chapter 10. OneSetup Tools

10.5.3 Production-Maintenance-Toggle

During maintenance phases of IIS Web Service based applications, there is often the need to shut off

all outside requests to the application. Therefore, IISHelper provides the switches -Maintenance

and -Production. These switches rely on the IP Address and Domain Restrictions

(IIS-IPSecurity) feature of IIS. In case the feature is missing, it can be installed as shown in

Section 10.5.1.

Figure 10.5 and Figure 10.6 show how to access the IP Address and Domain Restrictions

via the IIS User Interface. In production mode, IIS is configured to serve all outside requests as

shown in Figure 10.6.

Figure 10.5: IIS IP address and domain restrictions

Figure 10.6: IIS IP Address and Domain Restrictions in Production Mode

To bring IIS into maintenance mode, the -Maintenance switch can be used as shown in Listing

10.15. This operation turns off all communication from unspecified clients and only allows the

communication from local network adapters.

10.5 Tool: *.IIISHelper.exe 119

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. IisHelper .exe −Maintenance
5 Allow: 169.254.144.250
6 Allow: 169.254.24.24
7 Allow: 169.254.194.241
8 Allow: 157.247.17.169
9 Allow: 127.0.0.1

10 Access for unspecified clients denied .
11

12 d :\ temp\>

Listing 10.15: IISHelper toggle into Maintenance Mode

Figure 10.7 shows the IP Address and Domain Restrictions after IIS is brought into

maintenance mode.

Figure 10.7: IIS IP Address and Domain Restrictions in Maintenance Mode

Once the maintenance phase is over, IIS can be brought into production mode by using the

-Production switch. Listing 10.16 shows this operation. The access of all unspecified clients is

allowed again and local exceptions are once again removed. All other exceptions which might have

been added stay untouched from this operation. As a result, IIS is in production mode once again

as shown in Figure 10.6.

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. IisHelper .exe −Production
5 Access for unspecified clients allowed.
6 Delete : 169.254.144.250
7 Delete : 169.254.24.24
8 Delete : 169.254.194.241
9 Delete : 157.247.17.169

10 Delete : 127.0.0.1
11

12 d :\ temp\>

Listing 10.16: IISHelper toggle into Production Mode

120 Chapter 10. OneSetup Tools

10.6 Tool: *.JiraHelper.exe

The Avl.OneSetup.Tools.JiraHelper.exe tool provides a command line interface to Jira5 for:

• Checking all defects, stories, and features for incorrectly formated Integration/Verification

Build Numbers.

• Selecting all defects, stories, and features within a particular window of Integration/Verifi-

cation Build Numbers.

• Finding all defects, and features which are not linked to a Jira item called Software Release

(SWR).

Listing 10.17 shows the interface of Avl.OneSetup.Tools.JiraHelper.exe.
1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. JiraHelper .exe −Help
5 Example Usage:
6 −project JiraProjectName
7 −affectedVersion JiraAffectedVersionField
8

9 −operation <operation>
10 GetWrongBuildNumbersCount
11 GetWrongBuildNumbersList
12 −buildNumberFormat <Major>.<Minor>.<Build>.<Revision>
13

14 −operation <operation>
15 GetIssuesInWindowCount
16 GetIssuesInWindowList
17 −from <Major>.<Minor>.<Build>.<Revision>
18 −to <Major>.<Minor>.<Build>.<Revision>
19

20 −operation <operation>
21 NotLinkedToSwr
22 −from <Major>.<Minor>.<Build>.<Revision>
23 −to <Major>.<Minor>.<Build>.<Revision>
24 −swr JiraIssueKey
25

26 d :\ temp\>

Listing 10.17: JiraHelper command line interface

For all operations, a particular Jira project (-project) and an affected version (-affectedVersion)

are needed. The Jira project is the overall product name within Jira e.g. SANTORIN, TFMS,

PUMAOpen, etc. Within a project are several releases which can be identified via the affected

version attribute, e.g. SANTORIN_V552, SANTORIN_5R3, etc. The project/affected version at-

tributes specify a specific release. Within such a release, all version stamping is following the same

pattern <Major>.<Minor>.<Build>.<Revision> where Major and Minor are the same over the

whole release. Build and Revision at least must exist.

The operations -GetWrongBuildNumbersCount and -GetWrongBuildNumbersList show

an overview / detailed list of all items within the project which are not following the version

numbering pattern defined with the -buildNumberFormat switch. Since various people are

5Jira is a proprietary issue tracking product, developed by Atlassian, https://www.atlassian.com/software/jira

10.6 Tool: *.JiraHelper.exe 121

involved in the software development process, it might happen that somebody incorrectly enters a

build number. However, these build numbers are essential for bug and feature tracking purposes.

Therefore, at least as part of the release creation, a double-check of all build numbers should

be performed. Listing 10.18 shows an example of the -GetWrongBuildNumbersCount switch

functionality. For a more detailed overview, the -GetWrongBuildNumbersList switch can be

used.
1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. JiraHelper .exe −project SANTORIN −affectedVersion Santorin_5_R3
5 −operation GetWrongBuildNumbersCount −buildNumberFormat 5.53.16245.0
6 Defect with wrong ’ Integration Build Number’ (count: 0) :
7 Defect with wrong ’ Verification Build Number’ (count: 2) :
8 Story with wrong ’ Integration Build Number’ (count: 34):
9 Story with wrong ’ Verification Build Number’ (count: 34):

10 Feature with wrong ’ Integration Build Number’ (count: 2) :
11 Feature with wrong ’ Verification Build Number’ (count: 2) :
12

13 d :\ temp\>

Listing 10.18: JiraHelper -GetWrongBuildNumbersCount switch

The operations -GetIssuesInWindow and -NotLinkedToSwr are part of the release process

checks. With the switch -GetIssuesInWindow, all items within a build number window can be listed.

For example, assume that the software has reached the desired content and a certain level of quality

has been reached. The build number of the software which will be released is 5.53.17080.1. The

last service release had the build number 5.53.16250.12. Therefore, all bugfixes and features

which were resolved/integrated in the window from 5.53.16250.12 to 5.53.17080.1 is the

additional content of the current release 5.53.17080.1. An example of the -GetIssuesInWindow

switch is shown in Listing 10.19.

1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. JiraHelper .exe −project SANTORIN
5 −affectedVersion Santorin_5_R3 −operation GetIssuesInWindowCount
6 −from 5.53.0.0 −to 5.53.17079.1
7 Defect integrated BUT NOT closed in Window (count: 4):
8 Defect integrated and closed in Window (count: 72):
9 Story integrated BUT NOT closed in Window (count: 0):

10 Story integrated and closed in Window (count: 0) :
11 Feature integrated BUT NOT closed in Window (count: 0):
12 Feature integrated and closed in Window (count: 0) :
13

14 d :\ temp\>

Listing 10.19: JiraHelper -GetIssuesInWindowCount switch

The third operation -NotLinkedToSwr is also a crosschecking functionality. In the release

process, all bugfixes and features within a release need to be linked to a Jira item named Software

Release (SWR). This Jira item is the entry point for the management to check the content of a

release. Therefore, the -NotLinkedToSwr switch helps to identify all Jira items which are not

122 Chapter 10. OneSetup Tools

correctly linked. An example of this operation is shown in Listing 10.20.
1 Microsoft Windows [Version 6.1.7601]
2 Copyright (c) 2009 Microsoft Corporation . All rights reserved .
3

4 d :\ temp\>Avl.OneSetup.Tools. JiraHelper .exe −project SANTORIN
5 −affectedVersion Santorin_5_R3
6 −operation NotLinkedToSwr
7 −from 5.53.0.0 −to 5.53.17079.1
8 −swr SANTORIN−20348
9 Defect integrated BUT not linked (count : 1) :

10 SANTORIN−20120
11 Defect closed BUT not linked (count : 2) :
12 SANTORIN−18250
13 SANTORIN−19320
14 Feature integrated BUT not linked (count : 0) :
15 Feature closed BUT not linked (count : 0) :
16

17 d :\ temp\>

Listing 10.20: JiraHelper -NotLinkedToSwr switch

11. OneSetup: How To ...

“Ok, it’s fixed now. It will be available in
the next build."

— Nadeem Ahamd Siddiqui, Quick Action
Required for Healing

This chapter provides a collection of use cases used throughout daily work. They are more

oriented to achieve a goal than to provide good explanations.

11.1 ... add a SANTORIN Environment Service

Installing a Windows service as part of an MSI installation is a standard feature of WiX. Various

XML elements are available for the installation1, startup/shut down2, error3, and firewall4 handling

of particular Windows services. Various examples can be found on the internet. However this

section deals in particular with the service installation of a SANTORIN environment Windows

service. As an example, the newly created ETL Loader service is described in Listing 11.1. The

main building blocks of a SANTORIN environment service are:

• The service file embedded in the File element.

• The firewall exception (fire:FirewallException) for allowing all inbound and outbound

communication ports for this file.

• The service install (ServiceInstall) element which deals with the service creation.

1ServiceInstall element: http://wixtoolset.org/documentation/manual/v3/xsd/wix/serviceinstall.html
2ServiceControl element: http://wixtoolset.org/documentation/manual/v3/xsd/wix/servicecontrol.html
3ServiceConfig element: http://wixtoolset.org/documentation/manual/v3/xsd/util/serviceconfig.html
4FirewallException element: http://wixtoolset.org/documentation/manual/v3/xsd/firewall/firewallexception.html

124 Chapter 11. OneSetup: How To ...

• The service dependency (ServiceDependency) element for adding dependencies. In this

case, the dependency to the AVLStopEnvironment_[SANTORIN_ENVIRONMENT] needs to

be set.

• The error handling (util:ServiceConfig) element defines what happens in the case of

an error. To avoid endless service reboot loops (maybe even endless machine reboot loops)

caused by erroneous services, the environment services are configured to take no action after

the third attempt.

• The service control (ServiceControl) element starts/stops the service a part of the instal-

lation.

1 <Component Id="CMP_EtlLoader" Guid="*">

2 <File Id="fil094F8916C5044401AA899065B56D97B7" KeyPath="yes" Source="!(wix.

SantorinExplorerTargetDir)\ETLLoader.exe">

3 <fire:FirewallException

4 Id="FirExc_EtlLoader" Name="AVL [SANTORIN_ENVIRONMENT] ETL Loader"

5 Description="no description"

6 Profile="all" Scope="any" IgnoreFailure="yes"/>

7 </File>

8
9 <ServiceInstall

10 Id="SI_EtlLoader" Name="AVLEtlLoader_[SANTORIN_ENVIRONMENT]"

11 Start="demand" Type="ownProcess" ErrorControl="normal" Vital="no" Interactive="no"

12 DisplayName="AVL [SANTORIN_ENVIRONMENT] ETL Loader"

13 Description="ETL Loader service, transfers measurement to MX host"

14 Arguments="-env "[SANTORIN_ENVIRONMENT]" -sysRoot "[INSTALLDIR]\" -service

1"

15 Account="[DB_SERVICES_USERNAME]" Password="[DB_SERVICES_PASSWORD_DECRYPTED]">

16
17 <ServiceDependency Id="AVLStopEnvironment_[SANTORIN_ENVIRONMENT]"/>

18
19 <util:ServiceConfig ServiceName="AVLEtlLoader_[SANTORIN_ENVIRONMENT]"

20 FirstFailureActionType="restart"

21 SecondFailureActionType="restart"

22 ThirdFailureActionType="none"/>

23 </ServiceInstall>

24 <ServiceControl

25 Id="SC_EtlLoader" Name="AVLEtlLoader_[SANTORIN_ENVIRONMENT]" Remove="both" Stop="both" Wait="

yes" />

26 </Component>

Listing 11.1: ETL Loader service definition

The service definition is created within the Avl.Santorin.Library project. Within this

project, the proper AVLStartEnvironment service dependency also needs to be adapted. In the

case of the ETL Loader, a service dependency is needed for the SANTORIN MX Host. Listing 11.2

shows the additional service dependency to the AVL Start Environment Service added to the ETL

Loader service.

11.1 ... add a SANTORIN Environment Service 125

1 <Component Id="CMP_StartEnvironmentServices_SantorinMxHost" Guid="*">

2 <File Id="fil_StartControlServiceFile_SantorinMxHost" KeyPath="yes"

3 Source="!(wix.SantorinExplorerTargetDir)\ControlServiceStart.exe" />

4 <ServiceInstall ... > <!-- Attributes of ServiceInstall snipped -->

5
6 <ServiceDependency Id="AVLDispatcher_[SANTORIN_ENVIRONMENT]"/>

7 <ServiceDependency Id="AVLEMailDistributor_[SANTORIN_ENVIRONMENT]"/>

8 <ServiceDependency Id="AVLFileStorageServer_[SANTORIN_ENVIRONMENT]"/>

9 <ServiceDependency Id="AVLExtractor_[SANTORIN_ENVIRONMENT]"/>

10 <ServiceDependency Id="AVLJQMgr_[SANTORIN_ENVIRONMENT]"/>

11 <ServiceDependency Id="AVLSantorinServer_[SANTORIN_ENVIRONMENT]"/>

12 <ServiceDependency Id="AVLEtlLoader_[SANTORIN_ENVIRONMENT]"/>

13 </ServiceInstall>

14 </Component>

Listing 11.2: Service dependency to ETL Loader

The final step is to add the newly created service to the correct install package. All host related

MSI packages have the same shared source file name SantorinHost.wxs. Within the WiX file are

sections related to the particular applications (Host, MX, QMS, PUMA). The created service needs

to be added as part of the AVL SANTORIN MX* install packages. Therefore, as shown in Listing

11.3, the Component Group is referenced within the AVL SANTORIN MX* section.

1 <?if $(var.TargetName) = "AVL SANTORIN MX" Or

2 $(var.TargetName) = "AVL SANTORIN MX 2nd Env" Or

3 $(var.TargetName) = "AVL SANTORIN MX 3rd Env" ?>

4 <!-- snipped content -->

5
6 <!--Environment specific services-->

7 <ComponentGroupRef Id="CmpGroupAVLStartEnvironmentSantorinMxHostServiceFiles"/>

8 <ComponentGroupRef Id="CmpGroupAVLEMailDistributorServiceFiles" />

9 <ComponentGroupRef Id="CmpGroupAVLJobQueueManagerServiceFiles"/>

10 <ComponentGroupRef Id="CmpGroupAVLEtlLoaderServiceFiles"/>

11 <?endif ?>

Listing 11.3: Referencing the created ETL Loader ComponentGroup

III

12 Results / Conclusion / Further Work . . 129
12.1 Results
12.2 Conclusions
12.3 Further work

Bibliography . 135

Epilogue

12. Results / Conclusion / Further Work

“Don’t count pages, count finished
chapters."

— Elisabeth Jöbstl, Pilot User

12.1 Results

At the beginning of this year, in comparison to 2011, the whole AVL software development process

was different. The planning was previously done in large work packages which took about half a

year to go through the entire process. The development tools were also set up for these long-running

work package cycles. Code complete dates, integration phases, and system tests where planned

in advance and designed to last several days or weeks. Although this process looks rock solid in

generating a yearly stream of value, internally a lot of friction emerged during transition phases.

System integration always took quite a while and it wasn’t rare that the developed solutions did

not integrate seamlessly into the whole product. Rework of implementations based on system

test results was nearly impossible, and was often moved to the next work package. The current

implementation (with minor changes) was the solution that needed to be shipped. Even without the

Agile Transformation movement beginning in 2013, there was the need to improve the development

process to reduce the friction and improve the quality of software shipments.

Accompanied with other (process) actions (not covered in this thesis), the tools right at the

core of the development process were replaced with a state-of-the-art tooling landscape, driven
by the idea to enable the developers/testers, and later also the teams, to get their work done by
themselves:

• Source Control: All the source code was migrated from Harvest to TFS using the source

130 Chapter 12. Results / Conclusion / Further Work

control module Team Foundation Version Control (TFVC). This migration was done part-

wise, and was by far the most unpredictable part of the whole work. This uncertainty had its

root cause in the original tooling setup. A lot of build actions / build hacks were no longer

applicable to the new tooling landscape. Although this was a rather crucial part, the problems

that occurred during the migration were not covered by this thesis since most of the time,

the root causes where technical debts (e.g. no Visual Basic support any more). The most

interesting parts of the new source control system are the branching concepts, which were

introduced along with it. A proper branching model was introduced in order to support the

release planning of particular software products. Training and coaching was provided to the

teams during the transition. Chapter 2 is also meant to be a reference branching guide for the

teams.

• Build System: The proprietary Perl-based build system was substituted with build system

modules provided as part of TFS. At first, this XAML-based build system was introduced in

2013, and again replaced by the new Build vNext build system released with TFS 2015. As

with the source control, the initial migration was the hardest part. To get from the proprietary

build system to a quasi-industry standard build system was challenging, e.g. a lot of build

steps existed and tools relied on hardcoded paths that were defined within the old build

system. Once this big step was taken, the replacement of the XAML build system with the

Build vNext build system was quite easy. Getting the software buildable in the Build vNext

environment was no challenge at all. It is a good example of how fast particular modules/tools

can be exchanged, when the original implementation sticks to industry standards (with little

or no customisation). The current build infrastructure relies on a pool of distributed build

machines located on different continents which are centrally managed. The scaling and

maintenance, once the whole system proved its reliability, was handed over to the central

tool service department which also freed resources within the development teams.

• Dependency Management: The old build system relied on recompiling source code of other

product interfaces in order to reference them in its own product build. This was additional

overhead and the knowledge how other product interfaces are built was needed. With the

introduction of Artifactory, references were not rebuilt any more, but rather interfaces were

provided in binary form by the products. This reduced the complexity of the build system

and made the interface management more transparent.

• Deployment: As part of the system integration, the installation packages were created using

InstallShield. To overcome the limitations of InstallShield, in respect to the high licensing

costs and the missing merge capability of InstallShield source files, the tool was replaced

with WiX. At its core, the WiX-Toolset is strictly XML-based and therefore perfectly fits the

needs to be part of a source control system with branching/merging capabilities. In addition,

the XML-based source enables the teams to maintain the deployment of their particular

components by themselves.

As part of this work, the OneSetup framework was created in order to emphasise the capa-

bilities of WiX and to create reusable libraries to be consumed by multiple install packages.

Although the OneSetup framework is already used in several products, organisational-wise,

12.2 Conclusions 131

the development and maintenance relies on the voluntarily contribution of developers within

the products.

• Documentation: As part of the OneSetup framework, LaTex was also introduced as a

documentation tool. Since OneSetup lives the spirit of open source, no resources from the

documentation department are available. Therefore, all contributors write their documentation

as part of the feature development and add it to the source code as part of their check-in.

Because of this, the documentation is also always up to date. This positive effect has been

recognised and the current documentation process is now under discussion.

The three main building blocks, Source Control, Build System, and Deployment, were replaced

as part of this work. This replacement was already a large step forward towards Continuous

Integration. Teams are enabled to do their feature development isolated on team branches, and can

create and trigger builds to verify the whole system by using the adapted deployment packages.

Even in the old work package oriented process, these improvements would allow to verify smaller

increments, more often, and adapt/steer the implementation at an early stage. For Agile software

development, the fast implementation cycles are a key factor to success. As part of the Agile

Transformation, the need of having an even more automated toolchain was obvious. Therefore, the

workflow was extended with:

• Lab Management: This module extends the whole infrastructure and was also not part

of the original infrastructure. The ability to have physical/virtual machines attached to the

whole build process is a big step towards Continuous Delivery. Currently, over fifty virtual

machines are used within various testing stages. The TFS build steps handle the machine

setup in order to provide clean snapshots. The actual product installation and testing is

handled by the PowerShell-based scripts of Oneiroi. A full integration test cycle is run at

least nightly to provide fast feedback.

12.2 Conclusions

First and foremost, and this might actually be very hard to swallow for a technician, to really master

the Agile Transformation, the single most important thing is the cultural change. At the beginning

of this work, it was my personal belief, that by providing the right tools, showing alternative

workflows, and thus enabling teams to become more powerful, changes will eventually occur and

the transition will happen by itself. I was a strong believer, and still am, that technicians/scientists

have an intrinsic motivation for advancement and a curiosity for new things. However, I had to

learn that an organisation needs to support these self-learning mechanisms. The book How Google

Works [29] was a good companion during my work and illustrates a lot of good working patterns

which are worth learning from.

On the technical side, this thesis is a conclusion of nearly six years of my work at AVL (with a

lot of invested leisure time). Unfortunately, not all topics were elaborated on the level of detail as

I would have wished (simply due to time constraints). From the tooling point of view, there was,

after a decade of not improving the tool landscape, the urgent need and necessity to change the

infrastructure. The Agile Transformation made those limitations even more visible.

132 Chapter 12. Results / Conclusion / Further Work

Figure 12.1: Modern DevOps Cycle

12.3 Further work

The build system was changed twice during the time of this work. This example illustrates quite

well that infrastructural topics can never reach a state of Done. Even worse, the technological

advancements make it necessary to keep up with the pace of the industry, e.g. in order to provide

the latest operating systems, additional security testing environments, or adding new deployment

technologies.

Currently, the possibility to extend the current Release Pipeline into the cloud is being discussed.

The current Lab Management needs to be extended in order to deploy not only to virtual machines

in-house, but also to machines located in the Microsoft Azure Cloud. Since the current infrastructure

relies heavily on TFS, there are already build steps available to manage cloud machines in-house.

Additionally, during the development of the PowerShell scripting solution Oneiroi, cloud support

was always considered as a possible target.

Besides cloud support, the concept of a Modern DevOps Cycle, as shown in Figure 12.1

(inspired by [30]), is part of the game. Installation and maintenance, which is currently done by

commissioning engineers on-site becomes closer to the development. Commissioning will become

a real operations team, which runs the products within the cloud. Incidents need to be handled by

operations/development teams together. Performance data can be gathered directly and used to

continuously improve the product.

Bibliography

[1] D. Leffingwell, Agile Software Requirements. Addison-Wesley, 2010.

[2] L. Brader, R. Leibovitz, and J. L. S. Teruel, Building a Release Pipeline with Team Foundation

Server 2012. Thought Works, 2013.

[3] L. Brader, H. Hilliker, and A. C. Wills, Testing For Continuous Delivery With Visual Studio

2012. Thought Works, 2012.

[4] J. Humble and D. Farley, Continuous Delivery, Reliable Software Releases through Build, Test

and Deployment Automation. Addison-Wesley, 2010.

[5] C. Technologies, “Ca harvest software change manager.” https://www.ca.com/us/

products/ca-harvest-software-change-manager.html, 2017.

[6] Wikipedia, “Ca harvest software change manager.” https://en.wikipedia.org/wiki/

CA_Harvest_Software_Change_Manager, 2017.

[7] Wikipedia, “Merge (version control).” http://en.wikipedia.org/wiki/Merge_

(revision_control), 2017.

[8] Microsoft, “Agent pools and queues..” https://www.visualstudio.com/en-us/docs/

build/concepts/agents/pools-queues, 2017.

[9] C. Caum, “Puppet blog, continuous delivery vs. continuous

deployment: What’s the diff?.” https://puppet.com/blog/

continuous-delivery-vs-continuous-deployment-what-s-diff, 2013.

[10] Puppet, Continuous Delivery: What It Is and How to Get Started. White Paper, Puppet, 2013.

https://www.ca.com/us/products/ca-harvest-software-change-manager.html
https://www.ca.com/us/products/ca-harvest-software-change-manager.html
https://en.wikipedia.org/wiki/CA_Harvest_Software_Change_Manager
https://en.wikipedia.org/wiki/CA_Harvest_Software_Change_Manager
http://en.wikipedia.org/wiki/Merge_(revision_control)
http://en.wikipedia.org/wiki/Merge_(revision_control)
https://www.visualstudio.com/en-us/docs/build/concepts/agents/pools-queues
https://www.visualstudio.com/en-us/docs/build/concepts/agents/pools-queues
https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff
https://puppet.com/blog/continuous-delivery-vs-continuous-deployment-what-s-diff

134 BIBLIOGRAPHY

[11] Microsoft, “Release management, continuous deployment for your applications - ship faster,

ship often.” https://www.visualstudio.com/team-services/release-management,

2017.

[12] Microsoft, “Release definition in release management.” https://www.visualstudio.com/

en-us/docs/build/concepts/definitions/release, 2017.

[13] P. Scheir and B. Reinisch, “Binary repository management with artifactory,” ITS-I Info Letter,

2014.

[14] JFrog, “Jfrog artifactory, the world’s most advanced repository manager..” https://www.

jfrog.com/open-source/#os-top/, 2017.

[15] C. Sanchez, “Binary repository management - patterns for performance, security, and trace-

ability.” http://refcardz.dzone.com/refcardz/binary-repository-management,

2017.

[16] Maven, “Introduction to the dependency mechanism.” http://maven.apache.org/

guides/introduction/introduction-to-dependency-mechanism.html, 2017.

[17] Gradle, “Dependency management.” http://www.gradle.org/docs/current/

userguide/dependency_management.html, 2017.

[18] B. Sadogursky, “Dependency management with .net - doing it right.” http://dotnet.dzone.

com/articles/dependency-management-net, 2017.

[19] E. Minick, “Package repositories: The unsung heroes of configura-

tion and release management.” http://de.slideshare.net/Urbancode/

package-repositories-the-unsung-heroes-of-configuration-and-release-management,

2017.

[20] S. Talens-Oliag, “Agile documentation tools,” V Jornades Programari Lliure, 2006.

[21] E. Minick, “How projects really works.” http://www.projectcartoon.com/, 2017.

[22] A. Davis, “Beginners guide to windows installer xml (wix).” Powerpoint presentation, March

2011.

[23] Mensching, “Wix toolset, the most powerful set of tools available to create your windows

installation experience..” http://wixtoolset.org/, 2017.

[24] J. M. Wright, “Writing your own .net-based installer with wix.” http://www.wrightfully.

com/part-1-of-writing-your-own-net-based-installer-with-wix-overview,

2017.

[25] N. Ramirez, WiX 3.6: A Developer’s Guide to Windows Installer XML. Packt Publishing Ltd,

2012.

https://www.visualstudio.com/team-services/release-management
https://www.visualstudio.com/en-us/docs/build/concepts/definitions/release
https://www.visualstudio.com/en-us/docs/build/concepts/definitions/release
https://www.jfrog.com/open-source/#os-top/
https://www.jfrog.com/open-source/#os-top/
http://refcardz.dzone.com/refcardz/binary-repository-management
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://www.gradle.org/docs/current/userguide/dependency_management.html
http://www.gradle.org/docs/current/userguide/dependency_management.html
http://dotnet.dzone.com/articles/dependency-management-net
http://dotnet.dzone.com/articles/dependency-management-net
http://de.slideshare.net/Urbancode/package-repositories-the-unsung-heroes-of-configuration-and-release-management
http://de.slideshare.net/Urbancode/package-repositories-the-unsung-heroes-of-configuration-and-release-management
http://www.projectcartoon.com/
http://wixtoolset.org/
http://www.wrightfully.com/part-1-of-writing-your-own-net-based-installer-with-wix-overview
http://www.wrightfully.com/part-1-of-writing-your-own-net-based-installer-with-wix-overview

BIBLIOGRAPHY 135

[26] N. Ramirez, WiX Cookbook. Packt Publishing Ltd, 2015.

[27] Microsoft, “Internet information server (iis) for windows..” https://www.iis.net/, 2017.

[28] Microsoft, “Deployment image servicing and management dism.” https://msdn.

microsoft.com/en-us/windows/hardware/commercialize/manufacture/desktop/

dism-image-management-command-line-options-s14#, 2017.

[29] E. Schmidt and J. Rosenberg, How Google Works. Grand Central Publishing, 2014.

[30] B. Keller, “Modern application lifecycle management and devops.” Powerpoint presentation,

October 2014.

https://www.iis.net/
https://msdn.microsoft.com/en-us/windows/hardware/commercialize/manufacture/desktop/dism-image-management-command-line-options-s14#
https://msdn.microsoft.com/en-us/windows/hardware/commercialize/manufacture/desktop/dism-image-management-command-line-options-s14#
https://msdn.microsoft.com/en-us/windows/hardware/commercialize/manufacture/desktop/dism-image-management-command-line-options-s14#

	Abstract
	Kurzfassung
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	List of Tables
	Glossary
	Abbreviations
	Notes

	1 Introduction
	1.1 Structure

	Part I — Infrastructure
	2 Source Control
	2.1 Branching
	2.2 Merging

	3 Build System
	3.1 Build System
	3.2 Build Infrastructure
	3.3 Build Agent Installation
	3.4 Building
	3.5 Build Numbering Convention

	4 Lab Management
	4.1 Release Definition
	4.2 VMWare vSphere
	4.3 Oneiroi

	5 Dependency Management
	5.1 Binary Dependencies
	5.2 Key Benefits
	5.3 Build Integration

	6 Documentation
	6.1 Collaborative Writing

	7 Infrastructure: How To ...
	7.1 ... setup a Build Machine
	7.2 ... setup a License Server
	7.3 ... build a Feature Branch
	7.4 ... build a Servicing Branch
	7.5 ... create a Virtual Machine
	7.6 ... find artifacts in Artifactory

	Part II — OneSetup Deployment Framework
	8 OneSetup Introduction
	8.1 Windows Installer Concepts
	8.2 Windows Installer XML

	9 OneSetup Platform
	9.1 Configuration Handling
	9.2 Configuration Handling: Supported Parameters
	9.3 Configurator User Interface
	9.4 Bootstrapper User Interface
	9.5 Bundle Conditions
	9.6 Bundle Command line Switches
	9.7 Prerequisites Packages
	9.8 Example Solution
	9.9 Custom Actions

	10 OneSetup Tools
	10.1 Tool: *.CreateProductVersionIncludeWxi.exe
	10.2 Tool: *.RePackCustomActionDll.exe
	10.3 Tool: *.CopyPayloadGroupFiles.exe
	10.4 Tool: *.Configurator.exe
	10.5 Tool: *.IIISHelper.exe
	10.6 Tool: *.JiraHelper.exe

	11 OneSetup: How To ...
	11.1 ... add a SANTORIN Environment Service

	Part III — Epilogue
	12 Results / Conclusion / Further Work
	12.1 Results
	12.2 Conclusions
	12.3 Further work

	Bibliography

