
Toni Celina BSc

Secure Software Remote Update and
Diagnosis - Backend

Master’s Thesis

Graz University of Technology

Institute of Technical Informatics
Head: Univ.-Prof. Dipl-Ing. Dr.sc.ETH Kay Uwe Römer

Supervisor: Dipl-Ing. Dr.techn. Christian Josef Kreiner
Supervisor: Dipl-Ing. Dr.techn. Gerhard Griessnig

Graz, September 2017

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the
used sources.

Graz,

Date Signature

Eidesstattliche Erklärung1

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

iii

Abstract

Based on the improvements in the automotive industry which resulted in
the usage of many electronic devices in vehicles, called electronic control
units (ECUs), there is a need to keep the software up-to-date. Since modern
vehicles include various functionalities which require an internet connec-
tion, updates for ECUs can be transferred over the air. Unfortunately, the
automotive industry has not defined standards with regards to security. Due
to the lack of security, attackers were able to exploit certain vulnerabilities
which harmed the vehicle. The main focus of this project is to detect and
cover flaws which were detected by usage of networking technology in the
vehicle industry.

Solutions which were developed during the project cover, aspects with
regards to the secure update transportation, the key-material management,
the reliable communication between a vehicle and the backbone of the
system, the update package management, the installation of ECU updates,
the gathering of telemetry data from a vehicle, as well as general aspects
like usability, and maintainability.

Keywords: firmware update, over the air update, automotive security, con-
nected car, electric control units

v

Kurzfassung

Basierend auf den Fortschritten in der Automobilindustrie, die eine An-
wendung von elektronischen Geräten, welche auch Steuergeräte genannt
werden, zur Folge haben, existiert das Bedürfnis die Gerätesoftware auf
dem neuesten Stand zu halten. Da viele moderne Fahrzeuge bereits über
eine Internetverbindung verfügen, können auch Software Updates für die
Steuergeräte über das Internet ausgeliefert werden. Bedauerlicherweise
wurden bis heute keine Standards mit Bezug auf Informationssicherheit
von der Automobilindustrie definiert. Auf Grund mangelnder Information-
ssicherheit und Schwachstellen in diesem Bereich sind Fahrzeuge häufig
Ziel von Attacken. Der Fokus dieser Masterarbeit liegt in der Ermittlung
und Behebung dieser Schwachstellen.

Zusätzlich bietet diese Arbeit Lösungen für sichere Übertragung von Up-
dates, sicheres Schlüsselmanagement, zuverlässige Kommunikation zwis-
chen Automobilen und Infrastruktur, Management von Software Update
Paketen, Installation von Software Updates, und Sammeln von Diagnose-
daten. Des Weiteren werden auch generelle Aspekte wie die Benutzerfre-
undlichkeit und die Wartbarkeit der Software behandelt.

Keywords: Firmware Updates, Over the Air Update, Automotive Sicherheit,
Vernetzte Fahrzeuge, Steuergeräte

vii

Acknowledgements

I would first like to thank my thesis advisors Dr. Christian Kreiner and
Dr. Gerhard Griessnig. Their doors were open whenever I had questions
or doubts with regards to the research or the implementation of this the-
sis. A special thank you goes to Dr. Christian Hanser who supported the
project from the beginning until the end of the practical part. I would
also like to thank Wolfgang Schöchl who implemented the part with the
SmartServiceHub for his cooperation and his contribution to the overall
system.

Finally, I must express my very profound gratitude to my parents, my sister,
my brother, my girlfriend and to my friends for providing me with unfailing
support and continuous encouragement throughout my years of study and
through the process of researching, developing and finally, writing this
thesis. This accomplishment would not have been possible without them.
Thank you.

ix

Contents

Abstract v

Kurzfassung vi

Acknowledgements ix

1 Introduction 1
1.1 Arrowhead . 1

1.2 Secure Software Remote Updates and Diagnosis 2

1.2.1 Work . 2

1.2.2 System architecture . 2

1.2.3 Project goals . 3

1.2.4 Verification . 3

2 Motivation 5

3 Background and Related Work 11
3.1 Research on vehicle security and potential threats 11

3.1.1 Physical access . 12

3.1.2 Wireless access . 12

3.1.3 Attack environment and outcome 14

3.2 Practical attacks over the past years 14

3.2.1 Jeep Cherokee 2014 . 15

3.2.2 Toyota Prius and Ford Escape 16

3.2.3 Tesla model S . 17

3.3 Customized products . 17

3.4 Conclusions based on researches in automotive security . . . 19

3.4.1 Vulnerabilities . 19

xi

Contents

4 Project requirements 25
4.1 General requirements . 25

4.1.1 Usability . 25

4.1.2 Scalability . 26

4.1.3 Maintainability . 26

4.1.4 Reliability . 27

4.1.5 Reutilization . 27

4.2 General security requirements 28

4.2.1 A short introduction to cryptography 28

4.2.2 ECC Cryptography1 . 29

4.2.3 Secure communication protocol 31

4.2.4 Key Management . 31

4.2.5 Update package management 32

4.2.6 Update package security properties 32

4.3 Backend security . 34

4.3.1 Threat categories . 34

4.3.2 Host Threats . 37

4.3.3 Application threats . 38

4.3.4 Summary of backend security threats and counter-
measures . 40

5 System Architecture 43
5.1 Design decisions . 43

5.2 Communication . 44

5.2.1 TLS . 44

5.2.2 CMS2 Encryption . 45

5.2.3 Message Queue Telemetry Transport 51

5.3 System components . 53

5.3.1 SmartServiceHub . 53

5.3.2 MQTT Broker . 54

5.3.3 Backend . 57

5.4 Countermeasures against threats 62

1Bos et al., 2014.
2Housley, 2009.

xii

Contents

6 Implementation 63
6.1 Update Scenarios . 63

6.1.1 Update Request and Update Response Process 63

6.1.2 Update Request . 64

6.1.3 Update Response . 66

6.2 Telemetry Data . 68

6.2.1 Telemetry Data Request Package 69

7 Conclusion 73

8 Outlook and future work 75

Bibliography 77

xiii

List of Figures

1.1 Simplified use case and component overview 2

2.1 Modern car architecture . 6

2.2 Can bus connections . 7

2.3 Modern car architecture . 8

3.1 Jeep Cherokee architecture . 15

3.2 TCU connectivity interfaces (OBD-II, USB) 18

3.3 Remote update triggered by an SMS 20

3.4 Remote update triggered by an SMS (II) 21

5.1 System Architecture . 43

5.2 Encryption . 48

5.3 MQTT authentication . 56

5.4 Backend Component Diagram 57

6.1 Update Request Diagram . 64

xv

List of Tables

3.1 Practical attacks . 14

4.1 Proposed solutions . 35

5.1 Encryption - terms explanation 49

5.2 Security requierements and solutions 62

xvii

1 Introduction

Due to the improvements in the automotive industry over the last few
decades, vehicles are not only mechanical systems but electromechanical
ones as well. The idea to introduce electronic devices into vehicles came in
the 1980s, in order to optimize some aspects regarding the fuel-air mixture
along with fuel ignition.

As the usage of electronic devices resulted in a significant benefit to the
vehicle industry, scientists continued the development of such devices. As a
result, today we have cars with more than 50 electronic control units (ECUs).
After realizing the real advantage of ECUs, engineers started combining the
electronic devices with computer science, which lead to the final outcome -
a new type of ECU which can be programmed and calibrated to fit certain
requirements of a specific vehicle.

Since the ECUs are integrated into vehicles and there is no other way to
update the software but to go to an auto shop, a new way of secure software
updates over the air (OTA) was developed in this project.

1.1 Arrowhead

The project developed by this thesis inherited some basic solutions and
design decisions from the Arrowhead1 project with regards to the architecture,
the security and the communication. Furthermore, this project uses the
Arrowhead framework2 by means of communication and authentication.

1Arrowhead, 2017(b).
2Arrowhead, 2017(a).

1

1 Introduction

Figure 1.1: Simplified use case and component overview

1.2 Secure Software Remote Updates and
Diagnosis

1.2.1 Work

The project work is split into two parts - the frontend and the backend. This
thesis will focus on the latter. This includes the development of the backbone
of the system, which is able to handle and process the data coming from
the frontend and also deploy the firmware packages over the internet.

The two major uses cases for the project are the update of vehicles’ ECUs
and the gathering of diagnostic data over the air. The figure 1.1 illustrates
these two use cases and the architecture which is mentioned below.

1.2.2 System architecture

In order to archive the project goals which are mentioned below, the system
is divided into three main components, the SmartServiceHub, the MQTT
broker, and the backend. (1.1, 5.1) The SmartServiceHub is responsible for

2

1.2 Secure Software Remote Updates and Diagnosis

receiving updates, sending update installation logs back to the backend and
sending update request in order to receive the newest software from the
backend. The MQTT broker has the task to forward the data to the recipient.
In addition to this task, this component also implements various features
with regards to security. The backend is responsible for sending updates and
processing the incoming data from the SmartServiceHub. The components
with their respective tasks will be explained in chapter 5 in full detail.

1.2.3 Project goals

Major goals for this project are system security, usability, maintainability,
reliability and scalability. Regarding security, state of the art protocols and
standards in secure communication are used. Various methods are imple-
mented to ensure the authenticity and integrity of the packets. The same
measures are applied to the update packages. The main advantage of the
development of such a system is that the needed vehicle updates can now be
done remotely. The producers and administrators can send needed updates
to all vehicles of a certain type, guaranteeing that the software and firmware
are kept up-to-date. Furthermore, in case of a malfunction, the producer
can analyze the diagnostic data received through the secure communication
methods. This is also beneficial for the owners of the vehicles, as the service
updates can be performed over the air. With this achievement, the main-
tainability and usability goals are reached. For the purpose of this thesis,
a set of requirements have been tested. As the system is fine granular, the
backend supports the growth and changes in the vehicle market, in such
a way that in the case of expansion, no additional adjustments need to be
made, only the number of working instances need to be increased so that
the payload can be supported.

1.2.4 Verification

The verification process was split into 3 parts - a stress test, a penetration
test and a functionality test. The system was tested under a large amount
of payloads. The stimuli reached up to several thousands at a time. During

3

1 Introduction

the testing phase, no messages were lost or were not wrongly interpreted
by the system. In addition to the stress tests, a penetration test regarding
security was made. People from the outside were not able to gain useful
insight which would potentially harm the system through cyptographic
attacks. Finally, a functionality test was made. The update package, which
was sent from the backend, was able to be installed on the given electronic
control unit.

4

2 Motivation

At the very beginning of the automotive industry, vehicles were just mechan-
ical systems consisting of only a few mechanisms using electricity, such as
fuel ignition or the lighting system. With the progress made in the electrical
industry, the usage of electronic devices and circuits in the automotive
industry started to grow, which it continues doing nowadays.

The idea of introducing more electronic devices into vehicles came as experts
found a way to optimize some key features in the fuel ignition. They named
the device electronic control unit (ECU). Nowadays, vehicles are rather
complex electromechanic systems and hold more than 50 ECUs. ECUs have
the task to control distinct processes in vehicles, such as already mentioned
fuel ignition, brakes, doors, fuel-air mixture regulation, transmission control,
assistance systems like ESP, infotainment systems, etc.

There are different classifications of electronic control units. The major
classification would be the classification based on the response times -
highspeed and low-speed ECUs.

All tasks which are highly critical for the vehicle require a very quick
reaction time are handled by the high-speed ECUs. Some examples of such
tasks are ignition systems, brakes, transmission control, steering and the
main control unit, also known as the central control unit.

All other tasks which do not require such a quick response time are handled
by low-speed ECUs. Some of these tasks include mirror control, lighting
systems, seat regulation among others.

Since the control units are processing data from distinct actuators, a re-
quirement exists, which exchanges the collected data between different
control units. To achieve this goal and connect separate ECUs which have to
exchange data amongst each other, a bus is used. Distinct car manufacturers

5

2 Motivation

Figure 2.1: Modern car architecture
Source: Automotive Techis, 2017

6

and control unit manufacturers use different protocols. The most popular
and widely used one is the Controller Area Network (CAN).

Figure 2.2: Can bus connections
Source: Motorsportzenter, 2017

With the need to connect and exchange information between sensors, actua-
tors, and ECUs, a communication primitive had to be implemented. Since
in the time of the expansion of ECUs in automotive industry no suitable
protocols existed which satisfied the requirements to connect and exchange
data between multiple units, a new protocol had to be introduced. In the
act of the leader in ECU development the company Bosch designed and
implemented the CAN as a serial bus communication protocol.

CAN is proven to be reliable and efficient, with these characteristics CAN is
set as the standard protocol in networked embedded systems. The protocols
found its usage in different types of vehicles such as cars, bikes, and trucks.
However, the protocol was not limited to vehicles, it was also used in
weaving machines, factory automation for medicine equipment and the
military industry12

1Xing, Chen, and Ding, n.d.
2Johansson, Törngren, and Nielsen, n.d.

7

2 Motivation

Due to the huge expansion of technology usage in vehicles, these vehicles
become more exposed to computer attacks. In recent years, attackers suc-
ceeded to manipulate some car functions like brakes, wipers, steering and
many more3. The figure 2.3 shows most components of a modern vehicle,
among other things, parts with network access.

Figure 2.3: Modern car architecture
Source: GlobalCarsBrands, 2017

Since the debut of computer networks in the automotive industry, experts
in the field are working on improvements regarding security and safety.
However, not only is security a concern, but computer hackers are expanding
their focus to breaking into computer networks to steal information and
exploit the vulnerabilities of such systems. As the usage of information

3Miller and Valasek, 2015.

8

technology in car industry is expanding, attackers are finding more and
more vulnerabilities.

Vehicle producers Tesla4 and BMW5 also launched a new technology to
update vehicles over wireless networks such as cellular networks and WiFi.
This new technology opened the door for hackers to perform even more
attacks on vehicles. As the software packages are distributed over the
internet, attackers were able to manipulate the software and run malicious
code in vehicles.

With the launch of this technology, a new era in automotive industry be-
gan. It opened important topics concerning security in vehicles and in the
transmission phase during updates.

This master’s thesis is focused on the research and identification of potential
threats in the usage of networking technology in automotive industry and
also the development of a solution covering these topics in order to eliminate
the threats and make the car networking as secure as possible.

4Tesla, 2017.
5BMW, 2017.

9

3 Background and Related Work

3.1 Research on vehicle security and potential
threats

Based on the research and improvements made in the past decades in the
automotive industry, the focus has been shifted to security and safety. The
outcome of some research topics is already an integrated part of today’s
vehicles, while other topics are still in the research phase. Based on the
research of: insert ref, this chapter will be a brief summary of the automotive
industry regarding the used technologies and their vulnerabilities as well
as practical attacks in the last few years.

Research on the current technology used in vehicles is done by classifying
potential vulnerabilities in different categories based on the access channel to
get into the car internal network, the cost to perform an attack, the required
knowledge, the impact of the attack and the exposure of the vehicle. Vehicles
were inspected either with a direct physical or a remote access with wireless
technology usage. Furthermore, the researchers also proved that the attacks
are also possible in practice. The following sections will explain the attacks
in full detail. In addition to the attack procedure, each section will also
explain the damage to the vehicle caused by the attack.

This sections with regards to vehicle security is based on the research Miller
and Valasek et. al1

1Miller and Valasek, 2015.

11

3 Background and Related Work

3.1.1 Physical access

Modern vehicles offer different interfaces to get into the internal car network.
The most popular interface for an indirect vehicle access is the On Board Di-
agnostics II (OBD-II) port which provides direct access to the vehicle’s CAN
bus. OBD-II is used for programming ECUs as well as vehicle diagnostics.
As soon as the attacker is able to observe the traffic from the CAN bus it is
possible to perform several attacks. Almost all vehicle manufacturers offer
computer-based tools to communicate with the internal car network, these
tools are typically in possession of car dealers and mechanics. They are
developed to communicate with the CAN bus, both directly and indirectly.
Since these mechanisms provide a feature for programming and calibrating
ECUs, it is also possible to flood the network with messages which could
potentially harm the network and cause unexpected behavior.

Another source of vulnerability is the car’s infotainment system. Most of
the automobiles today offer a central display with various functions such as
the radio tuner, seat heating, car settings, air conditioning system settings
and much more. Alongside the central display, nearly all modern vehicles
provide interfaces to connect other smart devices with the vehicle.

One of the possible malicious interfaces is included in virtually every vehicle
today, the CD player. Researchers found a way to perform an attack on the
internal vehicle network by wrapping malicious code into a file format
which can be interpreted with an audio player in a vehicle. This format
could be any audio format since almost all formats are supported by vehicles’
CD players. A practical attack using this interface will be explained in the
following section. In addition to the CD player, most of the vehicles offer
a possibility to connect a device via USB which could also be used as a
backdoor to enter into the car internal network.

3.1.2 Wireless access

In order to simplify actions in the daily routine in automobiles, producers
introduced wireless technologies. They applied the technology to keys to
make the locking and unlocking of automobiles easier. Some of the keys also

12

3.1 Research on vehicle security and potential threats

have the functionality to open and close windows. Wireless access features
are classified into two categories based on the signal range. Ranges up to
300 meters are considered short ranges and ranges above the 1000 meters
mark are considered to be long range signals.

Short range

Due to security risks of using old keys without any kind of identification,
the modern industry uses radio-frequency identification (RFID) keys. The
RFID key is equipped with a key which is used to unlock the doors and the
steering wheel. Many countries across the world set the RFID technology as
standard.

Another example for the short range wireless technology usage is bluetooth
which is used to connect the car to mobile phones in order to play music
or to make phone calls without an interaction with the phone, but with the
infotainment system.

Long range

Wireless signals longer than 1000 meters range are considered to be long
range signals. Long range signals are distinguished by the number of the
receivers. The broadcast signal is received by all vehicles in the network,
while addressable signals are received only by the vehicle to which the
message was sent. An example for broadcast signals is the Global Positioning
System (GPS).

Addressable channels are considered the most vulnerable channel which is
exposed by the remote telematics system. The main reason why this type of
channel is vulnerable is the fact that an attacker can target a specific vehicle
from all over the world and initiate an attack.

13

3 Background and Related Work

Vulnerability
class Channel Implemented

Cabability
Visible
to user Scale Full

Control Cost

Direct physical OBD-II port Plugattack hardware
directly into car Yes Small Yes Low

Indirect physical

CD
CD
PassThru

PassThru

CD-based firmware update
Special song (WMA)
WiFi or wired control connection to
advertised devices
WiFi or wired shell injection

Yes
Yes*
No

No

Small
Medium
Small

Viral

Yes
Yes
Yes

Yes

Medium
Medium-High
Low

Low

Short-range
wireless

Bluetooth

Bluetooth

Buffer overflow with paired Android
phone and Trojan app
Sniff MAC address, brute force PIN,
buffer overflow

No

No

Large

Small

Yes

Yes

Low-Medium

Low-Medium

Long-range
wireless

Cellular

Cullular

Call car, authentication exploit, buffer
overflow (using laptop)Call car, authentication exploit, buffer
overflow (using iPod with exploit audio
file, earphones, and a telephone)

No

No

Large

Large

Yes

Yes

Medium-High

Medium-High

Table 3.1: Practical attacks
Source: Checkoway et al., 2011

3.1.3 Attack environment and outcome

Based on the theoretical research, the authors of the paper Miller and
Valasek, 2015 also made practical attacks on the found vulnerabilities. They
classified the attacks based on the vulnerability channel and evaluated the
impact of the attacks with regards to the visibility to the vehicle user, the
cost to perform the attack, the scale of attack and the type of the access.

The target vehicle was equipped with less than 30 ECUs, connected with
multiple CAN buses and linked together. With respect to the connectivity,
the car offered following interfaces: bluetooth, CD player, OBD-II port,
keyless entry, a satellite radio and the telematics unit as the connector to
long range networks. Each attack was performed by generating specific
CAN messages and injecting to the CAN bus over a certain interface. Every
attack resulted with full access over the target vehicle. Details about the
attack results are shown in the table 3.1

3.2 Practical attacks over the past years

This section will provide a brief summary of the practical attacks done
on vehicles in the recent years. Some of the attacks are performed as pen-
etration tests in order to improve and point out weaknesses of a given
vehicle. However, other attacks are real attacks from hackers which had

14

3.2 Practical attacks over the past years

major consequences on certain mechanisms. Few vulnerabilities have been
eliminated with software/hardware patches from car manufacturers, others
are withdrawn for the moment and will be fixed afterwards.

3.2.1 Jeep Cherokee 2014

In 2014, two information technology (IT) security experts Dr. Charlie Miller
and Chris Valasek published the paper Miller and Valasek, 2015 after the
finished security threat analysis of Jeep Cherokee 2014. They chose the car
based on the vulnerability in the infotainment system architecture. The
identified threat in the architecture was the direct connection between the
head unit and the two main CAN buses.

Figure 3.1: Jeep Cherokee architecture
Source: Miller and Valasek, 2015

15

3 Background and Related Work

The actual attacks were performed over three channels, the radio system,
WiFi and over a cellular network.

The first approach was to run the malicious software via the UConnect2

system. The attack was performed using a few simple steps. The first step
was to trigger an update of the infotainment system by inserting a USB stick
with valid software in order to update the system. The trick concerning the
valid software is that the system verifies the update from the USB stick, and
only after the update is validated, the system reboots. No further validation
is needed and the attacker can insert another USB stick with malicious
software and consequently harm the system.3.

The procedure for exploiting the WiFi access was more complicated. First of
all, they had to inspect the function of the WPA2 password generation for
securing the WiFi communication. After doing so, they found out that in
case that the system cannot get the time, it is automatically set to 00:00:00

Jan 1, 2013, GMT. The next step was to calculate how much time elapsed
until the “WifiSvc” generated their initial password which they received
from Jeep. In their case, it was 32 seconds, which gave them the ability to
brute force the password almost instantly.

In the last approach using cellular networks to harm the system, they
came to the conclusion that the D-Bus (Desktop Bus) port was opened in
the telematics unit. They estimated the number of potentially vulnerable
vehicles between 292.000 and 471.000. In reality, the number of recalled
vehicles was 1.400.000.4

3.2.2 Toyota Prius and Ford Escape

Earlier in Miller and Valasek, 2014 and Valasek have inspected a Toyota
Prius as well as Ford Escape to find possible vulnerabilities in internal
car networks. In order to show potential flaws, they developed a tool for
communication with the CAN bus. They inspected potential weaknesses
of these vehicles by reverse-engineering the communication between two

2UConnect 2017.
3Miller and Valasek, 2015, pp. 34-37.
4Miller and Valasek, 2015, pp. 23-27.

16

3.3 Customized products

ECUs. As a result, they were able to manipulate the CAN message traffic as
well as exploit some weaknesses. They investigated the CAN traffic and all
vulnerable interfaces in full detail. After that, they were able to take control
of the brakes, engine acceleration, steering and also the central display.

3.2.3 Tesla model S

As the leader in today’s electric car industry, Tesla is a good example of a
state of the art vehicle. Although, a research Dhanjani (2014) showed that
the Tesla Model S had vulnerabilities concerning some security aspects. The
Tesla company offered an online feature to lock/unlock doors remotely.
The main reason why this feature was liable is the fact that the password
requirement for such an account was weak. In order to create an account
for using those features, a user had to set a password with at least 6

characters including at least one letter as well as only one number. With these
requirements, the Tesla website was exposed to brute-force and phishing
attacks. The attacker was able to easily get the location of a specific vehicle
by using the offered REST API.

Another security threat in the REST API was that Tesla allowed the API
usage to third party software. This led to an abuse of user credentials by
third party applications. After the release of the article, Tesla advised users
not to use these applications. Finally, Tesla released an SDK for third party
software in order to get rid of the software bug.

In addition to the vulnerable REST API, the research showed that Tesla also
had a weakness concerning the WiFi network. A practical test revealed that
some ports like SSH, TCP, HTTP, RPC bind, nfs and X11 were opened.

3.3 Customized products

Due to the fact that an ECU software can be altered and updated afterwards,
these kinds of aftermarket products were subject of a research by Koscher
in 2015 at University of California in San Diego. One of these products is
the Telematics Control Unit (TCU) 3.2.

17

3 Background and Related Work

Figure 3.2: TCU connectivity interfaces (OBD-II, USB)
Source: Foster et al., 2015

After gaining full access to the TCU by performing an attack via physical in-
terfaces, researchers made remote exploits. The TCU 3.2 provided interfaces
for SMS as well as an internet interface. By analyzing the code of the TCU,
they found out that the web, telnet console and SSH servers were all count
to all other network interfaces exept for the USB. As such an architecture
included a data modem which was connected to the internet, the attacker
would have been able to connect to the TCU by logging into the system
with the SSH key which was exploited in previous physical attacks.

Further, they successfully exploited the SMS interface. The TCU was reach-
able via SMS from the outside by knowing the phone number. Due to the
corresponding online documentation of the interface, the researchers found
out that one can trigger a remote update over the SMS interface. The logs
created after sending SMSs revealed the procedure for remote updating.
(See figure: 3.3)

The remote update revealed few significant design failures. First of all, the
attacker was able to make arbitrary changes in the update file since the
update content was not signed, and therefore the ECU does not check the
content for the origin. In addition to the previously found vulnerability, an-
other serious threat in the server was found to be authentication. According
to the paper, the server authenticates the device. However, the device does
not authenticate the server, which means that the attacker can choose an
arbitrary server as the update server.

18

3.4 Conclusions based on researches in automotive security

In order to prove the found vulnerabilities, they approached the problem
in almost the same way as in the figure 3.3. The full exploitation process is
illustrated in the figure below. 3.4

3.4 Conclusions based on researches in
automotive security

The following section will briefly summarize the vulnerabilities researchers
have found and point out the weaknesses in modern vehicles over the last
few years. Since the introduction of electronic devices in vehicles, vehicles
began to be exposed to attacks. Some vulnerabilities are now solved, others
are still open, and some are still not discovered. Recently the automotive
industry learned a lot about security, building on the experience gathered
by solving and detecting flaws in automobiles. Scientists and researchers
are now able to solve problems much faster and easier.

3.4.1 Vulnerabilities

The major and frequent shortcomings detected in the recent period will
be summed up in the following chapters with regards to the impact, the
number of affected vehicles and the actual risk of a certain flaw.

CAN messages and CAN bus

Whether injecting custom CAN messages or modifying existing messages
in the CAN bus, the impact on the car internal network is immense. As
all of the traffic of ECUs is going through the CAN bus, once an attacker
is able to establish a connection to the bus, the possibility to harm the
vehicle is immence. As previously demonstrated, there are various ways
to access the CAN bus, modify messages and inject malicious messages.
Undoubtedly, the easiest way to compromise the CAN bus is an indirect
physical connection over an OBD-II interface.

19

3 Background and Related Work

Figure 3.3: Remote update triggered by an SMS
Source: Foster et al., 2015

20

3.4 Conclusions based on researches in automotive security

Figure 3.4: Remote update triggered by an SMS (II)
Source: Foster et al., 2015

21

3 Background and Related Work

In all cases, researchers gained almost full access to the vehicle. The affected
car functions included the brakes, lighting system, infotainment systems,
engine acceleration and the steering wheel.

An appropriate way to prevent attacks on the CAN bus, as well as CAN
messages, would be to develop a mechanism to verify the integrity and the
authenticity of messages. Since the CAN bus and the ECUs are lightweight
devices, with regard to the computing power and the power supply, this
seems to be rather impossible.

Key management

As demonstrated in chapter 3.3, researchers were able to enter the network
by extracting the SSH key. By doing so, they had full access to the network
as well as the possibility to harm the system. The way to get rid of those
attacks would be by using a proper key management system. In order to
prevent hackers from extracting the key easily, the key should be stored in
an encrypted storage. Another approach would be to encrypt the key itself
and then to store it. In any case, the best prevention would be not to use the
same key for distinct operations; this can be achieved by a key derivation
function which guarantees key freshness.

Secure interfaces

Since all attacks are performed over a certain interface, the car manufacturers
should put in more effort to secure interfaces which would give access to the
internal network. This would not be easy as the main property of an interface
is to open a tunnel to the internal network. A possibility to secure interfaces
could be a challenge response protocol, which would make the exploits
more difficult. A mandatory improvement should be achieved in regards to
backdoors which are used to surpass authentication mechanisms.

22

3.4 Conclusions based on researches in automotive security

Authentication and passwords

Chapter 3.2.3 presented exploitations based on weak authentication require-
ments. The passwords for applications used for accessing vehicles remotely
or even directly should be much stronger. In addition to weak passwords,
there is also an issue regarding the reuse of passwords, as passwords should
be used for one purpose only.

Each feature of the internal network accessed out of the network shall be
available only after a certain authentication. In case that a manufacturer
provides access to distinct features with the same authentication, a proper
hierarchy should be implemented to prevent possible flaws. Passwords
should not be shared among people.

Message integrity

As described in chapter 3.3, the origin of messages should be proven to rule
out the injection of custom or modified messages to the CAN bus. In case
that the message integrity fails, a message could be ignored by the actuators
communicating over the CAN bus. Denial of service (DoS) attacks initiated
by flooding the network with messages sent from outside the network is also
a threat that requires special attention of security experts in the automotive
industry. An impact of a DoS attack would result in a catastrophe as the
driver would loose control of the vehicle.

One solution to get rid of problems caused by message integrity would be
to sign messages, so that the recipient can validate the sender’s identity.
However, based on the fact that changing a structure of a message by adding
a signature would affect the whole protocol, this solution is not applicable.
The best possible solution for this problem would be to prevent injecting
and altering messages by securing the interfaces.

Secure APIs

Unsecured APIs are a potential threat explained in chapter 3.2.3. If the
access to vehicles needs to be provided to a third party software, a certain

23

3 Background and Related Work

security level should be guaranteed by the provider of the access. In order to
prevent potential damage, application interfaces have to be as secure as the
original software. Another vulnerability found through usage of third party
applications was shown to be credentials sharing, which can be mitigated by
either using secure applications or not using third party software at all.

Disabling unused ports

Securing main vulnerability sources without securing the neglected opened
ports as described in chapter 3.2.3 represents a major threat in the auto-
mobile industry. When dealing with long range signals, producers have
to make sure that only ports which are needed by a certain service are
opened and all other ports are closed. The same precaution measure has to
be applied to various debugging ports used for test purposes.

24

4 Project requirements

Based on the research on automotive security in chapter 4.2, it is clear which
aspects require special attention and which aspects have to be covered
to ensure a certain level of security. This chapter will describe the key
requirements which are needed to reach the project goal of updating ECUs
as well as reading telemetry data over the air in a secure way. In addition
to security aspects, other important aspects regarding the scalability, the
maintainability, the reliability and the reutilization will also be explained.

4.1 General requirements

Alongisde the security requirements which are the most important ones in
the project, the project also covered general requisites in order to ensure an
easy maintanace, and a high scalability level to support the vehicle market
growth.

4.1.1 Usability

One of the most important factors for developing the functionality to re-
motely update vehicles over the air, as well as collecting diagnostic data
in order to monitor the vehicle status and control units behavior, is the
usability. The impact of this software is immense since the vehicles do not
have to be transported to a vehicle shop to update an ECU, or to inspect
the ECU behavior and the status in order to detect and resolve possible
malfunctions.

25

4 Project requirements

This sotfware also represents a significant improvement with regards to the
costs of updating vehicles in comparison to the traditional update routine.
The same holds also for running diagnostic services for vehicles, since
the software provides the same functionality as the traditional diagnostic
service. Now, the same service can be performed over the air, without the
physical presence of a certain vehicle.

4.1.2 Scalability

In addition to security benefits of the architecture with three components, the
architecture also improves the scalability. In case of a huge expansion in the
automotive industry, the project already implements measures to support
virtually any number of vehicles. The benefit of the broker component is the
fact that the number of such components is not limited, and the incoming
message traffic can be distributed not only to one broker, but many.

The same benefits with regards to scalability are provided by the backend
as well. The system backbone implements a complex functionality which
supplies ECUs with up-to-date software and receives diagnostic data from
vehicles. In case that the backend is not able to handle all messages from
the broker, or the storage for update packages and diagnostic data runs out,
the number of backend components and databases can be extended in order
to supply virtually any number of ECUs and vehicles.

4.1.3 Maintainability

As pointed out in Society (2000), the time efforts for maintaining a software
range from 65% and 75% of the total development time. Since the time efforts
for sofware maintainability are immense, this project has to cover specific
aspects in order to save the time invested in the maintanance. According
to Kumar (2012), maintainability is the quality aspect to cover following
requirements:

• Elimination of latent errors
• Addition of new features/capabilities

26

4.1 General requirements

• Removal of unused/undesirable features
• Revision of software

Due to continious changes and variations in the automotive industry, a
system for remote ECU update has to be easy maintainable and cover the
criteria mentioned above. A benefit for the maintainability is the fine granu-
larity of the overall system, and the technology used for the development
of every single component. In case that a broker or a backend component
needs maintanance for some reasons, the component can be replaced by
another one. The replacement, as well as the update of the SmartService-
Hub component will be a reseach subject for the future, which will be be
discussed in the chapter 8. The software development aspects which cover
the mentioned factors will be pointed out in the following chapters.

4.1.4 Reliability

As the software developed by this project is dealing with confidential
data, the system has to ensure a high-reliability level. Measures to achieve a
reliable system are applied in all stages of development, as well as in all areas
of the system. With regards to the communication, reliable protocols have
been used. Regarding the content which is sent over the air, cryptographic
algorithms which ensure data properties like message integrity, authenticity
and confidentiality are used. These aspects will also be discussed in the
following chapters.

4.1.5 Reutilization

An important goal of the project was to develop a software which can be
used for various purposes. The goal is reached by dividing functionalities
into categories and splitting them into units. This was beneficial since the
functionalities can be used for many purposes, not only for one.

27

4 Project requirements

4.2 General security requirements

This section will provide a brief introduction to the used methods, in order
to understand the project goals, as well as the global current state of the used
methods in this research area. The techniques which are explained below
are there to mitigate threats which are explained in the chapter 3. The main
ones include, data authenticity, integrity, non-repudiation, confidentiallity,
as well as firewall rules.

4.2.1 A short introduction to cryptography

In order to understand techniques which have been used to reach the
goal of this project, a basic understanding of cryptography in modern
communication methods is required.

Cryptography in modern communication methods

Since the very beginning of exchanging information, there was a need to
prevent others from accessing confidential data. To make sure that only two
parties which are exchanging some piece of information can actually access
the data, cryptographic systems were designed.

The core of every cryptographycal system are mathematical functions. The
key to the usage of those functions is the fact that they are hard to compute,
even for computers. These functions are used by algorithms for various
purposes like the encryption, the decryption, the key exchange and the
key generation. To ensure that only the recipient can read certain data,
encryption is used. Encryption is the operation of encoding data in a way
that only authorized individuals can decode and access the data. In the
other hand, the reverse process of decoding data is called decryption. In
most cases, to encode as well as decode a piece of information keys are used.
Keys are a sequence of alphanumerical characters whose length depends on
the encryption/decryption algorithm which uses the key.

28

4.2 General security requirements

4.2.2 ECC Cryptography1

Ecliptic curves which are most commonly used in real-world problems have
the Weierstrass form form E : y2 = x3 + ax + b. They are defined for a finite
field Fp, where p > 3 is prime and a; b E ∈ Fp.

The cryptographic group which works on protocols is given a curve E, who’s
form has been defined above. This group is a large prime-order subgroup
of the group E(Fp) of Fp-rational points on E. This group consisting of
rational points, has all solutions of (x; y) ∈ F2

p to the curve equation together
with a point at infinity, or the neutral element The amount of Fp - rational
points is denoted by #E(Fp) and the prime order of the subgroup by n. The
based point is denoted by G ∈ E(Fp), and is a fixed generator of the cyclic
subgroup.

NIST recommends using five elliptic curves for the elliptic curve digital
signature algorithm, which targets five different security levels. Each curve
is defined over a prime field, which is a generalized Mersenne prime. The
same coeffiecient a = 3 is used by all curves, with the goal of this being
efficienty. The five recommended primes include

• p192 = 2192 − 264 − 1
• p224 = 2224 − 296 + 1
• p256 = 2256 − 2224 + 2192 + 296 − 1
• p384 = 2384 − 2128 − 296 + 232 − 1
• p521 = 2521 − 1

As mentioned above, efficient endomorphisms is used for the speed up
scalar multiplication, but what was not said is that it also speeds up the
computing of discrete logarithms. One the other hand, the automorphism
group of E has the order 6. An elliptic curve with j-invariant which is not
0 and 1728 only has an order 2, such that the speed-up in Pollard’s rho
algorithm is a constant factor.

Also important to note is for the larger automorphism group is the existence
of six twists. It is needed to pay extra attention to the curve’s twist security
for an implementation using x- coordinate only arithmetic. In other words,

1Bos et al., 2014.

29

4 Project requirements

its quadratic twist needs to have a large enough prime divisor for the
discrete logarithm.

This prevents from an attacker gaining multiples with secret scalars of a
point on the quadratic twist. The quadratic twist of secp256k1 has a 220-bit
prime factor and is therefore considered as twist secure .

Elliptic Curve Public-Key Pairs

Suppose that a set of domain parameters is given, which includes choices
for the base field prime p, the elliptic curve E/Fp, and the base point G of
order n on E. An elliptic curve key pair (d, Q) consists of a private key d,
which happens to be a non-zero modulo the group order n which is selected
at random, in addition to a public key Q = dG, the d-multiple of the base
point G. Subsequently, the point Q is also selected randomly, and is within
G.

Elliptic Curve Key Exchange

Two parties need to agree on a shared key, and each party individually
generates key pairs - pairs (da, Qa) and (db, Qb). Next, the parties exchange
the public keys Qa and Qb, this is done in a way in which it is possible to
calculate the point P as a function of the two, P = daQb = dbQa. The shared
secret key is found by using a key derivation function.

Elliptic Curve Digital Signatures

The signer makes a key pair (d, Q), which includes a private signing key
d and a public verification key Q = dG. In orger to sign a message m, the
signer needs to choose a random integer k such that 1 ≤ k ≤ n− 1, which
varies per message, it is important to note that k must not be revealed. Next,
the signer calculates the point (x1, y1) = kG, transforms x1 to an integer and
computes r = x1 mod n. The message is then hashed to a bitstring, which
has the length which is no longer than the bit length of n, which is then
transformed to an integer e. The signature of the message is the pair (r, s);

30

4.2 General security requirements

(where r and s both need to be different than zero) of integers modulo n,
where s = k−1(e + dr) mod n.

Beforehand it is mentioned that k must be kept a secret, this is because
otherwise the secret signing key d can be computed by d ≡ r− 1(ks− e)
(mod n), as r and s are given in the signature and e can be computed from
the signed message. Moreover, in the case that the same value for k is used
to sign more than one message, for example it is used for two messages,
the same signing key d is used and it produces signatures (r, s1) and (r, s2).
From this information, it is easy to find the value of k, which is defined as
k ≡ (s2 − s1)

−1(e1 − e2) (mod n), which then would allow for the recovery
of the secret key.

4.2.3 Secure communication protocol

In order to prevent threats which are summarized in the chapter 3, the
commmunication have to ensure a high level of security. The main security
properties which have to be covered by the project will be explained in the
following sections.

4.2.4 Key Management

As the communication is encrypted with an end-to-end encryption, there is
a need to securely store the key material2. In order to get rid of common
problems with the storage of key material, the database which stores private
and public keys is located in a secure demilitarized zone (DMZ)34. The
communication details with regards to the encryption and the storage of
the key material will be explained in the section 5.2. In order to store
the key material, a database is used. The database manages key for both
scenarios, for the data encryption/decryption, as well as certificates for
broker authentication (See 5.3.2). Details regarding the storage of the key

2Bellovin and Housley, 2005.
3Cheminod, Durante, and Valenzano, 2013.
4Mazur et al., 2016.

31

4 Project requirements

material, as well as for the storage of data in general will be explained in
the section 5.3.3.

4.2.5 Update package management

Since the ECUs update process deals with confidential firmware updates
for vehicle ECUs, there is also a requirement to store them in a secure
way, in order to prevent potential flaws with regards to data modifications
which are pointed out in previous chapters. As the requirement for update
package storage can vary for different vehicle manufacturers, there are two
covered scenarios in regards to the data which is stored in the database. The
basic scenario is implemented for the case that a firmware update is not
digitally signed5 by the manufacturer and the other case when the firmware
is digitally signed by the manufacturer. Both cases will be explained in the
following chapters.

4.2.6 Update package security properties

In order to get rid of problems with regards to message modifications which
are a common problem pointed out in the chapter 3 the update package has
to ensure some properties, such that, the vehicle can justify the origin of the
update package and that the vehicle can be sure that the package was not
modified during the transport.

This section will focus on the general goals of cryptography and will try to
explain in a simply manner how cryptography works. Although, generally
speaking, cryptography has a large number of goals, there are considered
to be four prime ones, from which all others can be derived. These four
include confidentiality, integrity, authenticity and non-repudiation.

5Menezes, Oorschot, and Vanstone, 1996.

32

4.2 General security requirements

Confidentiality

Confidentiality, or privacy, means that the information content is kept secret,
or only know to and kept for the parties which are authorized to have it.
The privacy of the message can be kept in various ways, some methods
can include actual physical protection, or the use of complex mathematical
functions and algorithms which could hide the true meaning of the content.
(Menezes, Oorschot, and Vanstone (1996))

Authenticity

Authentication is not only applicable for the data itself, but also to the
entities involved in the communication. This means that the data should be
authenticated, with regards to its origin, the date of its origin, the content,
and so on. Furthermore, as mentioned previously, all parties involved
have to be authenticated, to make themselves known and be identified. As
authentication applies to two different aspects, there is a split between data
origin authentication and entity authentication. (Menezes, Oorschot, and
Vanstone (1996))

Data integrity

Data integrity focuses on keeping the given data accurate and consistent dur-
ing its lifetime, or in other words it focuses on the unauthorized modification
of the data. For this goal to be realized, one must be able to notice changes
in and manipulation of data by parties which do not have authentication to
do so. (Menezes, Oorschot, and Vanstone (1996))

Non repudiation

Non-repudiation forbids a party from declining previous commitments. In
case that some conflicts of opinions arise with regard to an entity denying
that some actions were taken, and in these particular cases a third party is

33

4 Project requirements

needed to find a solution to the problem. (Menezes, Oorschot, and Vanstone
(1996))

4.3 Backend security

In addition to general security requirements, one has to define and analyze
the backend security in order to design a highly secure system. The approach
was to analyze the threats with regards to the backend security using
Microsoft STRIDE6 in order to protect the system against them.

This section will describe the current threats and countermeasures with
regards to the backend security as the focus of this project lies in the
development of the backend. Since the backbone of the system provides
various services, some of which include the storage of updates, the key
management, the encryption/decryption of the content which is sent over
the network, and primitives which provide the access to the database which
contains confidential data, potential threats and countermeasures will be
explained in more detail below.

4.3.1 Threat categories

In order to secure applications against attacks, one has to identify the threats
which are relevant for a specific application. A threat could be any malicious
element which can harm an application.

According to STRIDE, threats are classified into the following categories:

• Spoofing, an attempt to access the system using a false identity. Accom-
plished using stolen credentials, or using false IP7 addresses.
• Tampering, unauthorized data modification
• Repudiation, ability to deny that a certain action is performed by a

specific user
• Information disclosure, undesirable exposure of private data

6Microsoft STRIDE, 2017.
7J. Postel, 1980a.

34

4.3 Backend security

• Denial of service, making a service unavailable
• Elevation of privilege, using a privileged user identity to gain privileged

access to the system

Threat Countermeasures

Spoofing user identity

Use strong authentication
Do not store secrets (for example, passwords) in plaintext.
Do not pass credentials in plaintext over the wire.
Protect authentication cookies with Secure Sockets Layer (SSL)

Tampering

Use data hashing and signing.
Use digital signatures.
Use strong authorization.
Use tamper-resistant protocols across communication links.
Secure communication links with protocols that provide message integrity.

Repudiation Create secure audit trails.
Use digital signatures.

Information disclosure

Use strong authorization.
Use strong encryption.
Secure communication links with protocols that provide message confidentiality.
Do not store secrets (for example, passwords) in plaintext.

Denial of service Use resource and bandwidth throttling techniques.
Validate and filter input.

Elevation of privilege Follow the principle of least privilege and use least privileged service
accounts to run processes and access resources.

Table 4.1: Proposed solutions
Source: Meier et al., 2003

This section will summarize network threats based on the Microsoft8 re-
search (Meier et al., 2003), regarding the backend, which is often an object
for attackers. Furhermore, the attacker targets the network infrastracture in
the interest of exploiting badly configured network devices, the main ones
include routers, firewalls and switches.

As for threats in general, STRIDE also classified threats into different cate-
gories which are listed and explained below.

• Information gathering
• Sniffing
• Spoofing
• Session hijacking
• Denial of service

8Microsoft, 2017.

35

4 Project requirements

Information gathering, the usual procedure to gather information through the
network is to identify open ports with port scanning for the sake of finding
out information about the operating system, applications, and application
versions. Consequently, with all this knowledge gained, the attacker could
then attack known flaws and harm the system. The usual countermeasures
as to the preventention of such attacks, consist of configuring routers in the
way that they block footprinting requests, as well as disabling unused ports
which could be misused by attackers.

Sniffing is a process where the attacker monitors the network traffic with
the goal of finding information which can be used for a more dangerous
attack. Generally, the attacker is looking data concerning passwords or
configuration information. As in all networks, this data can be encrypted or
not. In case that the network traffic is encrypted by a lightweight encryption,
the attacker can use algorithms to decode the ciphertext, otherwise, in
the more dangerous case, the data is sent as plaintext, and therefore the
decyption process is not needed. Solutions to such problems are the usage
of strong physical security, prevention of gathering information locally, and
the usage of strong data encryption.

Spoofing is a technique which is used to hide a true identity in the network.
In the attacker’s point of view, spoofing is very beneficial since it hides
the source of the attack. Even though carefully created spoofing packets
may never be detected by the user, there are some countermeasures against
spoofing. In order to get rid of spoofing attacks, one possible solution would
be to filter incoming packets which appear to come from an internal or an
invalid local IP address.

Session hijacking, or man in the middle attack, forces a client or a server to
believe that the attacker is the legitimate host. This is done since the man
in the middle can manipulate data in the traffic to the actual end point.
Solutions to this problem include the usage of encrypted session negotiation
and the usage of encryption in general.

Denial of service prevents the user to access the services of the server. This
kind of attack is very dangerous since it is easy to perform the attack, and
also very difficult to track it. The actual attack uses potential vulnerabilities

36

4.3 Backend security

in the TCP/IP9 stack. The countermeasures involve the hardening of the
TCP/IP stack, as well as the usage of intrusion detection systems in order
to identify and respond to SYN10 attacks.

4.3.2 Host Threats

In addition to common network attacks and threats, STRIDE classifies the
host threats as follows:

• Viruses, Trojan horses, and worms
• Password cracking
• Denial of service
• Arbitrary code execution
• Unauthorized access

Viruses, Trojan horses, and worms are special programs developed to perform
malicous operations on the host system. In the interest of preventing the
installation and execution of such programs, one should block all unused
ports at the firewall and at the host, update the operating system, and
disable all unnecessary services and protocols.

Password cracking is a common technique with the goal of getting the access
to the server. Countermeasures against this specific threat are the usage
of strong passwords, as well as the frequent change of passwords. Other
measures include lockout policies which prevent the logging in after a
certain number of failed login attempts, and the analysis of failed login
attempts in order to find patterns which are used for password hacking.

Denial of service, in addition to the previous section with the DoS attack on
the network, the same attack can also be applied to the host. The attacker can
try to harm the host by brute forcing against the application on the host, or
try to exploit vulnerabilities which exist in the service or attack the operating
system which runs on the host server. Along with countermeasures for DoS
attacks on the network, the host should be capable to handle high traffic
payloads.

9Jon Postel, 1981.
10Eddy, 2007.

37

4 Project requirements

Arbitrary code execution is a very dangerous threat where the attacker can
execute his own code on the host. Typical flaws include a weak firewall,
buffer overflows at the host server and servers which allow path traversal.
To get rid of these problems, one should prevent URLs11 with “../” to avoid
the path traversal flaw and stay up-to-date with updates and patches to
prevent buffer overflow attacks.

Unauthorized access is caused by a lack of access control allowing attackers to
use the system without authorization. The precaution measures to prevent
unauthorized access include proper web access permissions and the lock
down of files with file systems permissions.

4.3.3 Application threats

In order to protect the application from the common flaws, one has to ana-
lyze the threats in favor of protecting the application gainst them. According
the Microsoft (Meier et al., 2003), the most common threats are the following
ones:

• Input validation

– Buffer overflow
– SQL injection

• Authorization

– Elevation of privilege
– Disclosure of confidential data
– Data tampering

• Sensitive data

– Eavesdropping
– Data tampering

• Cryptography

– Poor key generation or key management
– Weak or custom encryption

11Berners-Lee, Masinter, and McCahill, 1994.

38

4.3 Backend security

Input validation

In case that the application performs an input validation, an attacker can
execute an attack by carefully preparing the input in such a way that the
application assumes that the input comes from a valid source. Addition-
ally, when the host and the network are secured against such attacks, the
application becomes the attacker’s target.

The most common techniques for such attacks are a buffer overflow attack,
which can lead to the denial of service and the SQL injection attack which
can be used to fetch certain data from the database. SQL injection can be
performed when the application uses dynamic query generation, as well
as when the input is not previously validated. In general, the attacks can
be mitigated by performing a proper input validation. In addition to the
input validation, the SQL injection can be avoided with stored procedures,
alongside with the usage of prepared statements instead of dynamic queries
with concatenated parameters.

Authorization

Typical attacks regarding the authentication are the elevations of privileges,
the disclosure of conditional data and data tampering. The privilege escala-
tion can be performed when the application authorization model is weak
and poorly designed. Also, the attacker can gain access of the higher privi-
leged user and in this way, retrieve confidential data. Similar to privilege
escalation, the attacker can gain the access to confidential data when the
application does not require any authorization, this can be mitigated by
role checks and the by the usage of encryption when storing data. Another
common flaw in the application layer is data tampering, or in other words,
the modification of data. This can be avoided by strong access control and
role-based security.

39

4 Project requirements

Sensitive data

Since the project deals with sensitive data, vulnerabilities like eavesdropping
and data tampering have to be avoided. A common weakness known as
network eavesdropping occurs when the data is transmitted over insecure
channels like HTTP12 without encryption. A mitigation against eavesdrop-
ping is to transmit the data over secure channels like SSL/TLS or to encrypt
the data before transmission. Another typical threat is the tampering of
data, which refers to the modification of the data when transmitted over a
network. This threat can be avoided by signing the data with for example
HMAC13.

Cryptography

Common flaws which refer to cryptography are weak or custom encryption
and the poor key generation or key management. The first threat can be
avoided by using standard proved encryption methods. Poor key generation
can be mitigated by using strong random key generators and the key
management threat can be avoided with secure key management and key
expiration.

4.3.4 Summary of backend security threats and
countermeasures

As described in previous sections, security methods have to be applied in all
areas in order to avoid potential data loss and/or data modification. Further-
more, this research concerning backend security pointed out the common
vulnerabilities which require special attention by the project development.
The common threats are listed below. In addition to the summary of the
typical threats to backend security, countermeasures are also proposed.

• Viruses, Trojan horses, and worms

12Fielding et al., 1999.
13Krawczyk, Bellare, and Canetti, 1997.

40

4.3 Backend security

• Password cracking
• Arbitrary code execution
• Unauthorized access
• Information gathering
• Sniffing
• Spoofing
• Session hijacking
• Denial of service
• Cryptography
• Authorization
• Input validation

As the projects’ task is to transmit updates for vehicles over the air, as well as
collect data from vehicles, these countermeasures have to be applied in order
to achieve a high level of security. The way in which the countermeasures are
applied will be explained and summarized in the chapter 5, and also shown
in the table 5.2. Furthermore, the most important system components and
informations, offten called assets14, which have to be protected are listed
below.

• Update packages
• Diagnostic data
• Key material
• Vehicle data
• Update installation logs
• System components (5.3)

14Management of information and communications technology security – Part 1: Concepts and
models for information and communications technology security management 2004.

41

5 System Architecture

The system is divided into three main parts. The backend and the SmartSer-
viceHub are connected to a central party which is resposible for transfering
messages to the other parties. This central party acts as a broker which
receives and forwards messages to the final recipient. All three actuators in
the system are equipped with various security and safety mechanisms to fit
the requirements which are mentioned in the previous chapters.

Figure 5.1: System Architecture

5.1 Design decisions

This chapter will briefly explain design desicions which were made to reach
the project goal. As this thesis is based on the findings of the Arrowhead
project1, this chapter will also explain the most important discoveries of

1Arrowhead, 2017(b).

43

5 System Architecture

Arrowhead, which were used by this project.

5.2 Communication

The following sections will describe solutions which cover the requirements
from the chapter 4.2.3 with regards to the secure communication. As it is
illustrated in the figure 5.1, the data which is sent to the broker is encrypted
by an authenticated encryption (see 5.2.2), and aditionally secured by the
Transport Layer Security (TLS)2. Furthermore, the architecture also covers
the threats which are explained in sections 3.1 for the front-end and 4.3 for
the backend, while this projects’ work is focused on the latter. Threats which
are covered by this architecture will also be summarized in the table 5.4

5.2.1 TLS

The main goal of the TLS protocol is supply a structure for a secure com-
munication between the two parties included. This is established through a
network, for which neither of the parties has an end-to-end control, giving
a thirst party the chance to intercept the communication. Below, the two
main features, data integrity and end-point verification, will be described in
greater detail.

TLS data integrity

Data integrity has already been described. To summarize, the focus is to
keep the data from being modified by unauthorized parties. In other words,
the communication between the entities is done securely, meaning that,
the data is received without any alterations and without the possibility of
having other unauthorized parties accessing this communication. To help
ensure data integrity, TLS uses various techniques, including asymmetric

2Dierks and Rescorla, 2008.

44

5.2 Communication

and symmetric encryption. These techniques prevent a third party from ac-
cessing the content, even if it is able to intercept the message. As previously
mentioned, it also protects the messages from any modifications, including
removing line, inserting them, etc. (Horman, 2005)

Endpoint Verification

End-point communication was briefly mentioned in the form of “entity
integrity” beforehand. As important as it is to verify the integrity of the
data, it is equally important to do the same with regards to the parties
participating in the communication. Basically, the involved entities or end-
points are who they claim to be. TLS checks this with the use of end-point
certificates. When a TLS connection is established, message is signed with
the entity’s certificate and is sent along with the certificate. To check if the
certificate is valid, several checks can be performed. Naı̈ve checks include
making sure that the certificate has not expired and also checking if the
names of the hostname match the one of the common name which it is
connected to. Further checks include seeing if it is signed by a known
certificate authority, which are often found in a list within the browser.
(Horman, 2005)

5.2.2 CMS3 Encryption

Hybrid encryption uses the benefits of symmetric-key and public-key cryp-
tography systems, as it is as efficient as the first and as convenient as the
latter. Symmetric-key systems are known to be more efficient when it comes
to encrypting messages, as they use a shared secret message between the
two parties communicating the message. On the other hand, public-key
systems require the use of complex mathematical operations, which cause
these systems to be less efficient in comparison to the symmetric-key. How-
ever, they do not use a shared secret and are, for this reason, considered to
be more convenient. As mentioned beforehand, symmetric-key systems use
a shared secret message. A key transportation scheme is needed in order to

3Housley, 2009.

45

5 System Architecture

send it from the originator to the receiver of the message and it includes the
key agreement scheme, as well as the key-wrapping algorithm. These will
be described in more detail later on.

Elliptic Curve Menezes-Qu-Vanstone key exchange

Elliptic Curve Menezes-Qu-Vanstone (ECMQV)4 is a one-pass key agree-
ment scheme who’s goal is to create a shared secret between the two parties,
which would then be used to encapsulate a session key. This means that it is
a protocol which can be executed by the originating party, without actually
having any contribution from the receiver. Suppose U represents the origi-
nating party, whereas V represents the receiving party. The one-pass scheme
C(1e, 2s ECC MQV) includes the short-lived contribution by the originating
party U, as well as the long-term key pairs for both parties involved and
the ECMQV primitive ecmqv(). It is necessary that both parties come to
an agreement concerning the Elliptic Curve (EC) domain D = (q, FR, S, a,
b, P, n, h) and a key derivation function (KDF) kdf(). Below, the steps of a
one-time setup of long-term keys:

• 1) U: static private/public key pair (dsU, QsU) in D.
• 2) V : static private/public key pair (dsV , QsV) in D.
• Process for U: (QeU, kU) = kasU(QsU, dsU, QsV)
• 1) Generate random ephemeral key pair (deU, QeU) in D.
• 2) Compute Z = ecmqv(dsU, QsV , deU, QeU, QsV).
• 3) Derive kU = kd f (xZ), where xZ is x-coordinate of Z.
• 4) Output shared secret kU and QeU .
• Recipient V calculates kV = kasV(QsU, dsV , QeU) with its static private

key, and the ephemeral QeU obtained from U:
• 1) Compute Z = ecmqv(dsV , QsU, dsV , QsV , QeU).
• 2) Derive kV = kd f (xZ), where xZ is x-coordinate of Z.
• 3) Output shared secret kV .

At this point, both parties involved have obtained the shared secret kU = kV
.

4Blake-Wilson, Brown, and Lambert, 2002, Chapter 4.

46

5.2 Communication

Key wrapping schemes use a symmetric-key system in order to maintain
confidentiality and integrity for the storage and transport of material which
is needed for the generation of the secret key. A key wrapping scheme
consists of a function for wrapping and unwrapping, which use a secret key
wrapping key, the secret key material, as well as the protected wrapped key
material. The wrapping function is used for the encryption of the secret key
wrapping key the material. On the other side, the unwrapping function is
used to decrypt the secret key wrapping key and the protected wrapped
key material. It also is used for the verification of the authenticity of the
received secret key material.

The main goal of Authenticated Encryption (AE)5 is to accomplish data
confidentiality and authenticity. These schemes are semantically secure,
which means that attacker is not able to gain any information about the
plaintext from the ciphertext. Moreover, they are secure against given cipher
text attack. The reason for this is because AE can detect invalid ciphertext,
and therefore it can refuse to decrypt it. As key wrapping schemes, AE
schemes also consist of encryption and decryption functions. The encryption
function authenc k() figures out the ciphertext, using the plaintext as well as
the key. Furthermore, an authentication tag of the plaintext, the associated
data (optional, not encrypted), and the key is generated. On the other hand,
the decryption function authdeck() decrypts the ciphertext and chekc the
authenticity of the message using its key. In case that any of the following:
the plaintext message, the associated data or the authentication tag are
modified, the decryption process will terminate in failure, since the integrity
has been violated.

Authenticated encryption

In the paper Lesjak, Bock, et al., 2016, the researchers describe a snapshot
protection system which protects the snapshot between different parties –
the mediator and customer or mediator and vendor, regarding confidential-
ity, integrity and authenticity of the transferred snapshot.

5cryptoeprint:2003:069.

47

5 System Architecture

Figure 5.2: Encryption
Source: Lesjak, Bock, et al., 2016

The figure below 5.2.2 shows the main steps of the protocol between the
originating party (in this case – the mediator), and the receiving party (here,
the customer or the vendor), in the form of a table. The individual steps
will also be explained in more detail. The broker is disregarded because
as it does distribute the protected snapshots, it is not able to decrypt the
given snapshots, and is therefore irrelevant for this specific case. The hybrid
encryption scheme is based on the ECMQV, which was described previously.
Furthermore, the partitioning of the originator’s steps split among two
execution environments- a secured one and a general-purpose one can be
seen.

As already mentioned, the steps from the table are explained in more detail
below.

• Steps 1–2c: in the case that the originator (ie. the mediator) needs to
transfer a snapshot to the receiver (again, in this case, the vendor), a
request for a short-lived, ephemeral, secret key material (SKM) and an
initialization vector (IV) from the SC is made. The values are generated
by the SC, as its TRNG provide a cryptographically qualified entropy

48

5.2 Communication

dsX , QsX Static (long-term) private and corresponding public key of X.
deX , QeX Ephemeral private/public key pair generated by X.
skm Ephemeral secret keying material to encrypt/authenticate m.
m Plain-text message (snapshot) to be transferred to a recipient.
m′ Encrypted snapshot m.
t Tag value to verify authenticity of encrypted message m’.
kwk Ephemeral key wrapping key obtained from kasU or kasV.
wkm Wrapped key material containing encrypted skm using kwk.
rand() Random number function to generate ephemeral key material.
kasX() KAS to calculate kwk for X.
kasV() C(1e, 2s, ECMQV)-type KAS to calculate kwk.
authenc() AE scheme to encrypt and authenticate.
authdec() AE scheme to decrypt and verify.
wk() Wraps and encrypts skm using kwk.
uk() Unwraps and decrypts wkm using kwk.

Table 5.1: Encryption - terms explanation
Source: Lesjak, Bock, et al., 2016

source, in comparison to the mediator’s host CPU.

• Step 3: The MQTT plaintext payload is protected with the help of
authenticated encryption. The goal of this is end-to-end data confi-
dentiality and authenticity, which is described in the section above. To
recall, the encryption function authenc() is used to protect the payload
with the help of the short-lived SKM and an IV. It delivers an authen-
ticity tag value, which is needed to verify the snapshot’s authenticity
and integrity to the other parties involved in the communication.

• Steps 4a–4d: The originating party makes a request for the SC to wrap
the secret key material for the receiving party. This is done by the
SC performing the C(1e, 2s, ECMQV) type key agreement scheme
(KAS), using the originating party’s snapshot encryption key (MSEK)
pair, alongside the recipient’s public snapshot encryption key (VSEK),
as the input. It is important to note that the SC does not receive the
wrapped secret key material from the originator’s host, but takes it
from the preceding step (step 2b). In this way, an attacker is prevented
from wrapping arbitrary secret key material values. This results in the
calculation of the key wrapping key (KWK) and the random short-
lived contribution QeM by the SC. The same KWK is used as an input
of the key wrapping function, which wraps the secret key material.

49

5 System Architecture

Also, the QeM is returned to the originating party.

• Step 5: The originating party encapsulates the encrypted snapshot,
alongside its authentication tag value, the initialization vector, the
ephemeral ECMQV contribution QeU , and the wrapped key material.
For this step, the platform-independent CMS is used.

• Step 6-9d: The CMS-encapsulated snapshot and the needed data are
sent in the form of a MQTT payload via the broker to each of the
recipients. Once all of the recipients involved receive the snapshot,
they unfold the payload in order to get the public key. This is then
used to calculate the key wrapping key which then in turn unwraps
the secret key material. Lastly, the recipient decrypts the encrypted
snapshot, and authenticates it using the authentication tag.
• Justification for O1: as mentioned above in step 9, the receiving party

(the vendor), should verify the integrity and authenticity of the snap-
shot by unwrapping the wrapped key material. If this step is done
successfully, then it can be assumed that it was wrapped by and gener-
ated with the claimed SC instance. Moreover, if the decryption phase
ends successfully and the snapshots authenticity is verified, one can
assume that the unmodified payload really was encrypted by the orig-
inating party.

• Justification for O2: As the key agreement scheme requires the private
key, only the receiving parties for which the secret key material has
been wrapped and included with the encapsulated snapshot are able
to perform it in a successful manner. Therefore, the snapshots are
protected until an appropriate recipient can successfully perform the
key agreement scheme and unwrap the decryption key.

• Justification for O3: All of the encapsulated snapshots are exchanged
through the broker using MQTT messages. The message includes
some topic information which helps the broker find out the origin of a
snapshot. To authenticate the snapshots, the customer is added in the
recipient list and can perform the key agreement scheme in a similar
way to the vendor.

50

5.2 Communication

5.2.3 Message Queue Telemetry Transport

The MQTT Protocol is a lightweight protocol widely used for Internet of
Things (IoT)6 applications. The protocol is used because of its reliability,
its simplicity and real time capability. In addition to these features, the
protocol is also proved to be secure since it implements the current security
standards with regards to encryption and decryption.

Another key feature which led to the decision to use the protocol to fulfill
the project requirements were the Quality of Service (QoS)7 properties of an
MQTT message.

The QoS of an MQTT message defines details about the delivery. Since
the protocol is used for various purposes there are different types of a
message delivery. Delivery types are developed to ensure that a particular
client receives exactly a certain number of copies of a message. With respect
to the number of deliveries to a recipient, the QoS defines three different
standards.

The delivery type with the highest quality of service is the “Exactly once
delivery”, which does not allow either duplication of messages or loss of
messages. The message receiver has to send a reply when the message is
received. Due to the MQTT specification8, the receiver of the message has to
perform a two-step acknowledgment to ensure the sender that the message
was received. Both parties, the sender as well as the receiver have to perform
some actions to aknowledge the receival of a message.

Sender: (Banks and Gupta (2014))

• MUST assign an unused Packet Identifier when it has a new Applica-
tion Message to publish.
• MUST send a PUBLISH packet containing this Packet Identifier with

QoS=2, DUP=0

• MUST treat the PUBLISH packet as “unacknowledged” until it has
received the corresponding PUBREC packet from the receiver.

6Cisco, 2017(a).
7Cisco, 2017(b).
8Banks and Gupta, 2014, p. 54.

51

5 System Architecture

• MUST send a PUBREL packet when it receives a PUBREC packet
from the receiver. This PUBREL packet MUST contain the same Packet
Identifier as the original PUBLISH packet.
• MUST treat the PUBREL packet as “unacknowledged” until it has

received the corresponding PUBCOMP packet from the receiver.
• MUST NOT re-send the PUBLISH once it has sent the corresponding

PUBREL packet

Recipient: (Banks and Gupta (2014))

• MUST respond with a PUBREC containing the Packet Identifier from
the incoming PUBLISH Packet, having accepted ownership of the
Application Message.
• Until it has received the corresponding PUBREL packet, the Receiver

MUST acknowledge any subsequent PUBLISH packet with the same
Packet Identifier by sending a PUBREC. It MUST NOT cause duplicate
messages to be delivered to any onward recipients in this case.
• MUST respond to a PUBREL packet by sending a PUBCOMP packet

containing the same Packet Identifier as the PUBREL.
• After it has sent a PUBCOMP, the receiver MUST treat any subsequent

PUBLISH packet that contains that Packet Identifier as being a new
publication.

In addition to the reliabilty of the procotol, another significant property
of the MQTT is that it is suitable for high-performance devices, such as
a server as well as embedded systems like the SmartServiceHub, without
losing its key advantages in comparison to other protocols.

Topic subscription and topic hierarchy

The message carries the actual message content, as well as the topic (Banks
and Gupta, 2014, p. 35), which identifies the information channel on the
broker where the message will be posted. The topic is a variable UTF-8
string which must not contain wildcard characters. The wildcard character
concept allows to create complex topic hierarchy along with topic filters
and topic levels.

52

5.3 System components

The topic hierarchy is made by splitting topic parts with a “/” character.
Each string separated by the forward slash represents a topic level. Topic
levels can be used by both communication parties, the sender and the
receipient. The advantages of the hierarchy can be used for various purposes,
some inlude authentication (certificate to topic binding), message parsing
and message interpretation.

An example for a topic hierarchy which can be used as a client to a topic
binding is “identi f ier1/identi f ier2/identi f ier3”, where the “identi f ier1” rep-
resent the top level in the hierarchy. Suppose that a client is interested in
movies, and let’s assume that the value of the top level identifier is “movies”.
The next level could represent the genre of the movie and could be identified
by “thriller”. The third level could represent the exact movie name. The
whole topic is then represented by “movies/thriller/movie name”. Another
interesting feature in the topic hierarchy is the wildcard character “#” which
can be used anywhere in the topic structure. An example for the usage
of the wildcard is replacing a topic level with the wildcard character. If
the client is interested in all movies from a specific genre, the previous
topic would be used as follows: “movies/thriller/#”. Since the usage of the
wildcard character is not limited, the user can also replace the second level
identifier with the wildcard and retrieve all messages from the first level
topic (“movies/#/#” to obtain all messages from the movies topic).

5.3 System components

This section will provide an overview of the components, the used technol-
ogy and the implementation details.

5.3.1 SmartServiceHub

The SmartServiceHub is the component which is installed in a vehicle, with
tasks to communicate with the broker, and receiving and installing updates,
as well as reading diagnostic data from the vehicle and publishing them to
the broker.

53

5 System Architecture

As the network traffic is encrypted, this component is also responsible for
the decryption of incoming messages (messages from the broker), as well for
the encryption of outgoing messages (messages to the broker). In order to
perform these operations, the SmartServiceHub stores the keys for encryption
and decryption. As it is illustrated in the figure 5.3, the SmartServiceHub
carries its own private key and the backends’ public key for encryption
of outgoing messages and uses the previously metioned private key for
decryption of incoming messages.

In order to get rid of security thretas with regards to open ports, all ports
except the MQTT port 8883 are disabled.

Hadware specification

• CPU and operating system

– CPU: ARM Cortex-A9, 1 GHz (Texas Instruments AM4379)9

– Operating system: Linux (Custom Build Image)10, kernel version
4.1.6

• Interfaces

– 2x CAN Interface
– 1x serial interface
– 1x LAN
– 1x USB
– 1x SD card slot

5.3.2 MQTT Broker

As the usage of an MQTT broker seemed to be promising, which was shown
in a research by Priller, Aldrian, and Ebner, 2014, experts continued the
verification in (Lesjak, Hein, et al., 2015) and developed the solution which
was used by this project to achieve the main project goals.

9Texas Instruments, 2017.
10Yocto Project 2017.

54

5.3 System components

The MQTT broker is a component running on either a windows or a linux
machine. The service which implements the MQTT protocol is developed
by Eclipse11 and the current version of the protocol is Eclipse Mosquitto
3.112.

In adittion to the main task of the broker which is transporting messages
to the endpoint, the MQTT broker also implements security mechanisms
proposed in (Lesjak, Hein, et al., 2015, Lesjak, Bock, et al., 2016) to ensure
the maximum security level and forbid unauthenticated parties to publish
messages.

Client to broker authentication

Each client which is communicating with the broker has to authenticate
himself to the broker. The authentication is achieved by using an authen-
ticated TLS channel. In order to be verified by the broker, a client needs a
public Broker TLS authentication key (BTAK). The matching private key is
securely managed by the broker. The client’s public key is also known to
the server (MTAK). The corresponding client private key is stored securely
by the client.

11Eclipse 2017.
12Eclipse, 2017.

55

5 System Architecture

Figure 5.3: MQTT authentication
Source: Lesjak, Bock, et al., 2016

The same authentication procedure is used for backend to broker authen-
tication. The backend, labeled as vendor in the figure 5.3 stores its private
key (VTAK) in a secure way, alongside other public keys (BTAK, VTAK).

Certificate to topic authentication scheme

According to the proposed solution in “Securing smart maintenance services:
Hardware-security and TLS for MQTT” described in the previous section,
the client has to authenticate himself to the broker in order to publish
a message. The autentifiation is implemented by the certificate to topic
binding. A client can publish a message on a certain topic, only if the client
is in possesion of a certificate which belongs to the given topic.

56

5.3 System components

5.3.3 Backend

Figure 5.4: Backend Component Diagram

DMZ protection

In order to protect the backend components which include the network, the
application and the host, a demilitarized zone is used. DMZs are a common
approach for secure hosting and securing the enterprise network. In general,
the DMZ acts as the security barrier between the external (unsafe) and the
internal (safe) network. As the DMZ operates between two networks, the
local network and external the DMZ is guarded by two firewalls between
the networks. According to Stouffer, Falco, and Scarfone, 2013, DMZ usually
blocks or controls the unnecessary traffic and protocols (SNMP13, ICMP14,
RPC15, FTP16). Furthermore, such a network topology is ideal to secure
confidential data. As shown in 5.1, the DMZ is guarding the MQTT broker
by allowing only incoming messages on the 8883 port (Banks and Gupta,
2014, Chapter 4.2).

13Case et al., 1990.
14J. Postel, 1981.
15Thurlow, 2009.
16J. Postel, 1980b.

57

5 System Architecture

LAN protection

Additionally to the DMZ, sensitive data (ECU update files, key material,
vehicle data, diagnostic data) is also protected by a Local Area Network
(LAN)17. The main purposes of the LAN are to provide data integrity and
to block all the outgoing traffic, except the messages to the port 8883, since
the communication between the backend from the LAN is realized over the
previously mentioned MQTT port, as it is illustrated in the figure 5.1.

Backend components

In favor of the fine granularity of the overall system, the backend func-
tionality is divided into various services with their corresponding tasks.
In addition to the fine granularity, such architecture is also beneficial with
regards to the system maintainability. As the project deals with two major
scenarios, the components are classified into two categories, the first one,
components which are reposponsible for the ECU update scenario, and the
second one, components which are responsible for collecting and triggering
telemetry data exchange.

• ECU update components

– UpdateRequestReceiver
– UpdateRequestHandler
– UpdateRequestInterpreter

• Telemetry data processing

– Collection of telemetry data
∗ SDRSReceiver
∗ SDRSHandler
∗ SDRSInterpreter

– Request for telemetry data
∗ DBCFilePublisher

17Velde et al., 2007.

58

5.3 System components

UpdateRequestReceiver

The task of the UpdateRequestReceiver is, as the name aleady reveals, the
collection of update requests from the broker. As described in previous
chapters, the data from the SmartServiceHub is published on the broker,
since the broker implements complex hierarchy in regards to the message
topics, the UpdateRequestReceiver distinguishes the origin of the message by
inspecting the topic on which the message was published.

The update request processing starts with the decryption of the content
received from the broker, the UpdateRequestReceiver queries the database in
order to find the client certificate which corresponds to the topic. (see 5.3.2).
The whole procedure will be explained in the 6 chapter.

UpdateRequestHandler

This component is responsible for the update request handling. The task of
the UpdateRequestHandler is to forward the data which is previously received
and decrypted by the UpdateRequestReceiver to the next component in the
chain, namely the UpdateRequestInterpreter.

The simple design of this component allows performing changes to the
request interpretation in case that the requirements change over time.

UpdateRequestInterpreter

The UpdateRequestInterpreter component is the last component in the update
request processing chain, the task of this component is to parse the data
from the request, and store it accordingly into the database. Correspoding
to the message content, the interpreter queries the database in order to
determine the current ECU software versions of the vehicle which sent the
request for the update.

According to the software versions which are retrieved from the database
for a specific vehicle, the interpreter can now generate the update package

59

5 System Architecture

and send it back to the vehicle. This procedure will be explained in the
implementation chapter in full detail.

SDRSReceiver

The SDRSReceiver (Service Data Record Set Receiver) is the component
responsible for receiving messages for the telemetry data use case. The idea
behind this receiver component is the same as by the previous receiver com-
ponent the UpdateRequestReceiver. As the idea remains the same, the benefits
of the design also remain the same, the architecture allows various modifi-
cations which is an important factor with regards to the maintainability and
the reusage of the component.

SDRSHandler

The component responsible for forwarding messages from the SDRSReceiver
to the SDRSInterpreter. Since the component acts like dispatcher of messages,
it is possible to add other features before, or after the message forwarding
in order to, for example, analyze the data, monitor the traffic and so on.

SDRSInterpreter

After receiving the data from the SDRSHandler, the SDRSInterpreter has
the task to extract the information which is sent in the Comma-Separated
Values (CSV)18 format. After extracting the data, the interpreter then stores
it accordingly into the database.

DBCFilePublisher

Is a standalone component which has the responsibility to send DBC19 files
to the broker, in order to read diagnostic/telemetry data from a specific

18Shafranovich, 2005.
19Vector Informatik GmbH, 2007.

60

5.3 System components

vehicle. The component publishes DBC files to the broker periodically. The
idea behind the continuous publishing of DBC files is that the backend
does not know when the vehicle is able to receive the file since there is no
indication when a vehicle has a network access. The sending frequency is
variable, one can define the sending frequency arbitrarily.

Database

Alongside components which are responsible for data interpretation, and
receiving data, the main component which is used for storing the data is the
Oracle database which is commonly used for high-performance database
applications20.

The database carries various information which is sent and received by the
backend in order to accomplish the update and the telemetry data scenario.
In addition to the data which is sent across the network, the database
also stores meta information about vehicles, ECUs, ECU versions, vehicle
manufacturers, as well as data to observe and analyze the vehicle network,
the ones include, storage of update requests, update install logs, etc.

Another task for which the database is responsible for, is the storage of
firmware update packages. Furthermore, there are two possible ways to
store update packages, one can store an update package with, or without
a digital signature. The case where the signature of the update is stored
along the actual update package is guaranteeing a higher security level
since the backend can prove the origin of the update based on the digital
signature. The idea behind these two ways of storing data is to support both,
car manufacturer which are delivering updates without a digital signature
and the ones which are signing update packages before the delivery.

In addition to features regarding the data traffic storage, the database is also
storing the key-material which is needed for encryption and decryption of
the content which is sent across the network, as well as the key material
which is needed for the backend to MQTT broker authentication. Furher-
more, the database manages the private key which is used for the encryption
of all messages which are sent to the broker, including the update packages

20Burleson, 1996.

61

5 System Architecture

and the DBC files. As described in the section 5.2.2, the data is encrypted for
a specific recipient, since such an encryption requires the recipients’ public
key, public key of receipients (vehicles) are also stored in the database.

5.4 Countermeasures against threats

According to the analysis in the chapter 3, the project should be able to
cover threats like, spoofing, network sniffing, the cryptography issues and
so on. The table below illustrates the common threats, countermeasures to
avoid the threats as well as the solutions provided by this projects with the
reference how a specific threat is mitigated.

Threat Countermeasures Achieved by Chapter

Spoofing user identity Strong authentication
Credentials in plaintext

TLS
Broker authentication 5.2.1, 5.3.2

Tampering

Data hashing and signing.
Digital signatures.
Strong authorization.
Provide message integrity.

CMS encryption
Data Signing
Broker authorization

5.2.2, 5.3.2

Repudiation Use digital signatures. Data signing 5.2.2

Information disclosure
Strong authorization.
Strong encryption.
Ensure message confidentiality.

CMS encryption
TLS 5.2.2, 5.2.1

Denial of service Use resource and bandwidth throttling techniques.
Validate and filter input.

Broker authorization
DMZ

Information gathering Firewall
Disable unused ports

DMZ
Firewall 5.3.2, 5.3.3

Sniffing Strong physical security
Strong encryption

DMZ
Firewalls
TLS
CMS encryption

5.3.3, 5.2.1, 5.2.2

Session hijacking Encrypted session negotiation
Strong encryption

TLS
CMS encryption
Broker authorization

5.2.1, 5.2.2, 5.3.2

Input validation Prepared statements (SQL)
Proper input validation

Broker authorization
Java prepared statements 5.3.2 , 5.3.3

Sensitive data
Transffering over TLS
Signing data
Strong encryption

TLS
CMS encryption 5.2.1, 5.2.2

Cryptography Strong encryption
Key expiration

CMS encryption
Key freshness 5.2.2

Table 5.2: Security requierements and solutions

62

6 Implementation

As described in the previous chapters, the project deals with two major
scenarios. One possible use case is the ECU update over the air and the
other is the exchange of telemetry as well as the diagnostic data over the air.
Both use cases use the same architecture as described in the chapter 5.

6.1 Update Scenarios

The use case for the over the air update of ECUs will be explained in the
following sections. The process of the update request and update delivery
is illustrated in the figure 6.1.

6.1.1 Update Request and Update Response Process

The update process starts with the process initiator, the vehicle sends an
update request message to the broker. The main reason why the initiator
role is assigned to vehicles is due to the fact that is hard to predict when a
specific vehicle is online and able to exchange data with the backend.

After the request is prepared and sent, the initiator subscribes to the update
topic and waits for the response from the backend. In case that the vehicle is
not up-to-date, updates are available and the vehicle is supposed to install
these updates and send the update install log back to the backend. The log
contains information on the installation process as well as the information
whether the installation was successful or not. The log is then stored in the
database and the update process is done. The whole process is explained in
more detail in the following sections.

63

6 Implementation

Figure 6.1: Update Request Diagram

6.1.2 Update Request

In order to keep track of software versions in vehicles a database is used. The
database holds infomation about vehicles, their ECUs as well as software
versions of a particular ECU. In addition to vehicle and ECU data, the
database also carries data about old versions and the history of updates and
update requests.

In case that a vehicle is online, the SmartServiceHub sends an update re-
quest message to the broker in form of a Extensible Markup Language
(XML)1 file. The XML Format is described later in the text. Based on the
authentication scheme which is described in the previous chapter, every
vehicle has its own update request topic on the broker. According to the
scheme, the topic is defined as ”Vehicle Producer/Vehicle Identification
Number/updaterequests”. The first part of the topic describes the vehicle
producer, for example: ”Mercedes”, ”Audi”, ”JAC”. The second part is the
unique Vehicle Identification Number, often called “chassis number”. The last
part is a fixed string ”updaterequests” which is common for all update
requests of all vehicles.

1Rosenberg, 2007.

64

6.1 Update Scenarios

Update Request format

<?xml version="1.0" encoding="UTF-8"?>

<update_request>

<timestamp>LINUX-TS</timestamp>

<devices>

<device id="...">version</device>

<device id="...">version</device>

</devices>

</update_request>

In order to keep track of update requests, the XML string carries information
on the time in which the request was created. The format of the timestamp is
the same as in all UNIX operating systems, which count time in milliseconds
since 1.1.1970

2.

The next node is a parent node for all devices which are requesting an
update. “Device id” carries the control unit identification number. Every
update request is logged into the vehicle database.

Include dashboard image with the update requests

Update Request Processing

As described above, the request is sent as an XML file. This file is encrypted
using a client private key. When the message is received by the broker, a mi-
croservice for decryption is executed. The decrypted message is forwarded
to another service which has the responsibility to interpret the data. The
parsed values, request timestamp, and device identification numbers are
retrieved. The request timestamp is then stored in the database along with
the corresponding device identification numbers which are requesting an
update.

After the data logging, the actual update request is performed in the back-
bone of the system. The database is queried with the information obtained
from the vehicle control unit ids. Since all the data is stored in the database,

2UNIX, 2017.

65

6 Implementation

no interaction with the vehicle is needed. Queries are made to the database
for a new update for every single device id from the update request. If
the current software version for a given control unit id is outdated, a new
version will be prepared for the delivery.

6.1.3 Update Response

In both cases, whether updates are available or not, a response package will
be sent. The update package consists of an XML description file and update
file(s). All files are compressed in an archive to reduce the transmission
costs. The encrypted and BASE64 encoded update packages are then ready
for delivery. There are two different cases for the update response.

Based on the information retrieved in the process described above, an update
response message is generated. In both cases, whether an update exists or
not an update response message will still be generated and sent.

Updates Available

In the more interesting case, updates are available.

Depending on the number of updates available, an XML file is produced.
The file carries meta information about the update files. An example XML
file could look like the following:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<update_response>

<request_timestamp>SENT-LINUX-TS</request_timestamp>

<files>

<file order="0">

<name>update0.s19</name>

<format>s19</format>

<size unit="KB">100</size>

<signature file="update0.sig" />

<device>device-ID</device>

</file>

66

6.1 Update Scenarios

<file order="1">

<name>update1.s19</name>

<format>s19</format>

<size unit="KB">1000</size>

<signature file="update1.sig" />

<device>device-ID</device>

</file>

</files>

</update_response>

The XML has a timestamp so one can keep track of the time when a certain
update for a specific vehicle was sent. Another interesting feature of the
description file is the file order attribute. In case that updates depend on
each other, the file order attribute define the order in which the updates
have to be installed.

Other data which can be found in the XML file include the name of the
update file, the file format and the file size in a certain unit which is listed
as an attribute in the same XML node.

In order to verify the update file origin, an optional signature file can also
be part of the update package. In the XML file, only the signature file name
is added as an attribute. However, the file is stored in the archive, and the
SmartServiceHub has to verify the update file and the appended signature.
If the signature matches to the origin, the update is valid, otherwise the
update will be treated as malicious and will be discarded.

The last attribute is the unique device id of the device which needs to be
updated.

Update Install Log

After the vehicle receives the update files, the installation of updates is exe-
cuted. During this time, the SmartServiceHub logs the installation process
into a file. The log file contains detailed information about the installation
progress. The log also contains information concerning the memory blocks

67

6 Implementation

which have been modified, the UDS Protocol status messages and the final
status message from the update installation. After the installation is finished,
the log file containing the debug output from the vehicle is sent back to the
backend.

A service on the backend side is responsible for the interpretation of the log.
The service is able to distinguish whether the installation was successful
or not. In case that the installation succeeded, the software versions for the
updated control units are updated.

No Updates Available

In case that no updates are available, a similar XML file will be sent back
to the vehicle. However, since all vehicle control units are up-to-date, the
number of update files will be 0. Sending a message even when no updates
are available was a design decision with the advantage that the procedure
stays the same. Another key argument for sending messages even when no
updates are available, is the fact that the vehicle does not know when the
procedure is over and the system with a response to every request provides
an appropriate solution.

The XML response, in this case, carries only the information about the
current timestamp when the response was generated.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<update_response>

<request_timestamp>SENT-LINUX-TS</request_timestamp>

</update_response>

6.2 Telemetry Data

The other use case of the project was to develop a scenario of collecting
diagnostic and telemetry data in a secure way over the air. The communica-
tion protocols remain the same, the main difference is that the initiator role

68

6.2 Telemetry Data

is assigned to the to the backend. Since the backend does not know when
a vehicle is online and able to exchange telemetry data with the backbone
of the system, the request for the exchange of telemetry data is triggered
and sent from the backend periodically. The request is defined in a similar
way as an update response package. There are two files compressed in an
archive which is sent to every vehicle in a defined period.

6.2.1 Telemetry Data Request Package

XML Telemetry Description File

<?xml version="1.0" encoding="UTF-8"?>

<telemetry_data>

<frequency>60000</frequency>

<duration>10000</duration>

</telemetry_data>

As it is described in the XML file, there are two important parameters
which define the sending frequency in milliseconds and also the duration
of the capture of specific signals and CAN messages. These two parameters
have the advantage that the backend can periodically request and monitor
specific signals in order to inspect possible sources of errors.

DBC File

The XML file described above is sent with the correspoding DBC file. The
DBC (DBC Communication Database for CAN) file describes the signals
which the backend wants to capture.

VERSION "HY_CAN"

NS_ :

NS_DESC_

69

6 Implementation

CM_

BA_DEF_

BA_

VAL_

CAT_DEF_

CAT_

FILTER

BA_DEF_DEF_

EV_DATA_

ENVVAR_DATA_

SGTYPE_

SGTYPE_VAL_

BA_DEF_SGTYPE_

BA_SGTYPE_

SIG_TYPE_REF_

VAL_TABLE_

SIG_GROUP_

SIG_VALTYPE_

SIGTYPE_VALTYPE_

BO_TX_BU_

BA_DEF_REL_

BA_REL_

BA_DEF_DEF_REL_

BU_SG_REL_

BU_EV_REL_

BU_BO_REL_

SG_MUL_VAL_

BS_:

BU_: EMS HVCU

VAL_TABLE_ TMDirCmd 2

"rotating backward" 1 "rotating forward" 0 "not rotating" ;

VAL_TABLE_ DCCOperMode 2

"reserved" 1 "Buck Mode" 0 "Standby" ;

70

6.2 Telemetry Data

BO_ 265 HVCU_FrP08: 8 HVCU

SG_ HVCU_Cnt109 : 15|4@0+ (1,0) [0|15] "" EMS

BO_ 267 HVCU_FrP09: 8 HVCU

SG_ HVCU_Cnt10B : 15|4@0+ (1,0) [0|15] "" EMS

Since signals are captured directly from the CAN bus, one can adapt the
DBC file and capture virtually everything on the CAN bus. Furhermore, by
the project definition, DBC files are sent periodically to vehicles, that gives
the administrators the opportunity to change the capture signals in order to
get different data from the vehicle.

71

7 Conclusion

The scope of this thesis was the research of the global security state within
the automotive industry as well as the research on common shortcomings
with regards to backend security. The requirements for this project were
defined after the classification of the flaws which are summarized in chap-
ters 3.4 and 4.3 the main ones with regards to vehicle security include,
CAN message modifications, custom CAN messages injection, problems
caused by open ports. The typical threats regarding the backend security
include, sniffing, spoofing, weak encryption, unsafe protocols, wrong host
and network configurations and other.

In addition to the researches on security, this project also focuses on finding
an elegant solution to one of two scenarios in the backend, the update of
ECUs over the air, as well as the gathering of diagnostic data over the air.
Furthermore, the project also provides a concept for data management, key
management and visualization of the information collected from a vehicle.
Alongside the main objective which was the system security, other objectives
have been covered as well. An important requirement, the usability, is
covered by the way of the update transmission and installation. The solution
found is a rather large improvement in comparison to old ECU update
methods which require the physical presence of a vehicle in, for example, a
vehicle shop.

From the technical point of view, an important aspect of this project is the
capability of it to be reused for other purposes with similar requirements,
especially with regards to the secure communication, the architecture, as
well as the project design. Another argument in favor of the reusage of
technology is the fact that this project inherited basic principles and concepts
from the Arrowhead1 project. Oher important requirements are reached by

1Arrowhead, 2017(b).

73

7 Conclusion

the easy maintainability of the project. As already described in the chapter
4.1.3, the costs for the system maintenance are in the range from 65% to
75% and therefore an important requirement was to develop an easily
maintainable system to reduce the maintenance costs.

Although this project tried to focus on the most frequent known flaws which
were detected in recent years, there is plenty of room to improve in the
modern automotive industry.

Topics which could potentially be covered by this project as a base will be
explained in the next section.

74

8 Outlook and future work

Although the system proved to be reliable and showed no weaknesses,
goals regarding future improvements have already been set. The main focus
will be moved to secure vehicle-to-vehicle communication. It is planned for
vehicles to be able to communicate and share data with each other, in the
same manner in which the communication has been established between
the backend and frontend. Another focal point could be the payment of toll
roads though the implemented communication.

With regards to the backend, an improvement could be reached by im-
plementing a hierarchy permission model for update distribution. Such a
model would be beneficial with regards to the updates of vehicle groups.
That role model would allow classifying vehicles into different categories
with regards to the vehicle’s equipment, the vehicle manufacturer, the vehi-
cle model and the vehicle build year. Furthermore, one could launch update
only for vehicles from a certain group, for example, one could update all
vehicles built in a certain year with a specific equipment package.

As the main focus was the security of the system, an important aspect
which is not covered, but has to be covered in the future is the functional
safety. As defined in Brunel et al., 2016, the functional safety is the part
of the overall safety which depends on a system operating correctly in
response to its inputs. Aspects with regards to functional safety within the
project include the installation of updates when the vehicle is in a certain
state. In order to cover the mentioned aspect, one has to make sure that the
vehicle is able to install the update, the update installation ready-state can be
achieved by ensuring that the vehicle is not in motion, other preconditions
include the availability of memory resources in case of large updates as
well as a trustworthy network connection which guarantees a reliable data
exchange.

75

8 Outlook and future work

Since the project i capable to securely distribute updates for ECUs over the
air, another approach to extend the project functionality could be to tranfer
updates for the SmartServiceHub in order to perform an firmware update of
the SmartServiceHub.

One possible approach for the future could be to support real time data
exchange in order to supply the backend continuously with data from the
vehicle. The main issue with regards to the real time data exchange is due
to the vehicle connectivity which can be interrupted.

The most important asset for the future will be the fallback functions in case
that the update process fails. However, the design and the implementation
of these functions is rather complex. A possible approach to achieve such
functionality would be to save the current firmware update on the SmartSer-
viceHub before installing the newest software and install the software again
if the installation of the newer software fails. Another approach could be
to implement the logic for such scenario on the backend. In case that the
update fails, the backend can send the older software in order to get rid of
the problem caused with the newer software.

76

Bibliography

Arrowhead (2017[a]). Arrowhead Framework. url: https://forge.soa4d.
org/plugins/mediawiki/wiki/arrowhead-f/index.php/Main_Page

(visited on 08/30/2017) (cit. on p. 1).
Arrowhead (2017[b]). Arrowhead Project. url: http://www.arrowhead.eu/

(visited on 06/05/2017) (cit. on pp. 1, 43, 73).
Automotive Techis (2017). CAN Bus. url: https : / / automotivetechis .

wordpress.com/2012/06/01/ (visited on 08/13/2017) (cit. on p. 6).
Banks, A. and R. Gupta (2014). MQTT version 3.1.1. url: http://docs.oasis-

open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf

(cit. on pp. 51, 52, 57).
Bellovin, S. and R. Housley (2005). Guidelines for Cryptographic Key Manage-

ment. BCP 107. RFC Editor (cit. on p. 31).
Berners-Lee, Tim, Larry Masinter, and Mark McCahill (1994). Uniform Re-

source Locators (URL). RFC 1738. http://www.rfc-editor.org/rfc/
rfc1738.txt. RFC Editor. url: http://www.rfc-editor.org/rfc/
rfc1738.txt (cit. on p. 38).

Blake-Wilson, S., D. Brown, and P. Lambert (2002). Use of Elliptic Curve
Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS).
RFC 3278. RFC Editor (cit. on p. 46).

BMW (2017). ConnectedDrive. url: https://www.bmw.com/en/topics/
offers-and-services/bmw-connecteddrive-services/mobile-devices.

html#firmware.html (visited on 09/03/2017) (cit. on p. 9).
Bos, Joppe W. et al. (2014). “Elliptic Curve Cryptography in Practice.” In:

Financial Cryptography and Data Security. Springer Berlin Heidelberg,
pp. 157–175. doi: 10 . 1007 / 978 - 3 - 662 - 45472 - 5 _ 11. url: https :

//doi.org/10.1007/978-3-662-45472-5_11 (cit. on p. 29).
Brunel, Julien et al. (2016). Recommendations for Security and Safety Co-

engineering (Release no3) - Part B. en. doi: 10.13140/rg.2.1.3649.1923.
url: http://rgdoi.net/10.13140/RG.2.1.3649.1923 (cit. on p. 75).

77

https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Main_Page
https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Main_Page
http://www.arrowhead.eu/
https://automotivetechis.wordpress.com/2012/06/01/
https://automotivetechis.wordpress.com/2012/06/01/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/csprd02/mqtt-v3.1.1-csprd02.pdf
http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc1738.txt
http://www.rfc-editor.org/rfc/rfc1738.txt
https://www.bmw.com/en/topics/offers-and-services/bmw-connecteddrive-services/mobile-devices.html#firmware.html
https://www.bmw.com/en/topics/offers-and-services/bmw-connecteddrive-services/mobile-devices.html#firmware.html
https://www.bmw.com/en/topics/offers-and-services/bmw-connecteddrive-services/mobile-devices.html#firmware.html
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.1007/978-3-662-45472-5_11
https://doi.org/10.13140/rg.2.1.3649.1923
http://rgdoi.net/10.13140/RG.2.1.3649.1923

Bibliography

Burleson, Donald K. (1996). High-performance Oracle database applications. pub-
CORIOLIS:adr: Coriolis Group Books, pp. xiii + 461. isbn: 1-57610-100-2
(cit. on p. 61).

Case, Jeffrey D. et al. (1990). Simple Network Management Protocol (SNMP).
STD 15. http://www.rfc-editor.org/rfc/rfc1157.txt. RFC Editor.
url: http://www.rfc-editor.org/rfc/rfc1157.txt (cit. on p. 57).

Checkoway, Stephen et al. (2011). Comprehensive Experimental Analyses of
Automotive Attack Surfaces. url: http://www.autosec.org/pubs/cars-
usenixsec2011.pdf (cit. on p. 14).

Cheminod, Manuel, Luca Durante, and Adriano Valenzano (2013). “Review
of Security Issues in Industrial Networks.” In: IEEE Transactions on
Industrial Informatics 9.1, pp. 277–293. doi: 10.1109/tii.2012.2198666.
url: https://doi.org/10.1109/tii.2012.2198666 (cit. on p. 31).

Cisco (2017[a]). IoT. url: http://www.cisco.com/c/dam/en_us/solutions/
trends/iot/introduction_to_IoT_november.pdf (visited on 05/15/2017)
(cit. on p. 51).

Cisco (2017[b]). QoS. url: http://www.cisco.com/c/en/us/td/docs/ios/
12_2/qos/configuration/guide/fqos_c/qcfintro.pdf (visited on
07/30/2017) (cit. on p. 51).

Dhanjani, Nitesh (2014). url: http://www.dhanjani.com/blog/2014/03/
curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-

cars-like-we-protect-our-workstations.html (cit. on p. 17).
Dierks, T. and E. Rescorla (2008). The Transport Layer Security (TLS) Protocol

Version 1.2. RFC 5246. http://www.rfc-editor.org/rfc/rfc5246.txt.
RFC Editor. url: http://www.rfc-editor.org/rfc/rfc5246.txt (cit.
on p. 44).

Eclipse (2017). url: http://www.eclipse.org/ (visited on 04/03/2017)
(cit. on p. 55).

Eclipse (2017). Eclipse Mosquitto. url: https://projects.eclipse.org/
projects/technology.mosquitto (visited on 08/07/2017) (cit. on p. 55).

Eddy, W. (2007). TCP SYN Flooding Attacks and Common Mitigations. RFC
4987. RFC Editor (cit. on p. 37).

Fielding, Roy T. et al. (1999). Hypertext Transfer Protocol – HTTP/1.1. RFC
2616. http://www.rfc-editor.org/rfc/rfc2616.txt. RFC Editor. url:
http://www.rfc-editor.org/rfc/rfc2616.txt (cit. on p. 40).

78

http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
http://www.autosec.org/pubs/cars-usenixsec2011.pdf
https://doi.org/10.1109/tii.2012.2198666
https://doi.org/10.1109/tii.2012.2198666
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf
http://www.cisco.com/c/dam/en_us/solutions/trends/iot/introduction_to_IoT_november.pdf
http://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfintro.pdf
http://www.cisco.com/c/en/us/td/docs/ios/12_2/qos/configuration/guide/fqos_c/qcfintro.pdf
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://www.dhanjani.com/blog/2014/03/curosry-evaluation-of-the-tesla-model-s-we-cant-protect-our-cars-like-we-protect-our-workstations.html
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.eclipse.org/
https://projects.eclipse.org/projects/technology.mosquitto
https://projects.eclipse.org/projects/technology.mosquitto
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt

Bibliography

Foster, Ian et al. (2015). Fast and Vulnerable: A Story of Telematic Failures. url:
https://www.usenix.org/system/files/conference/woot15/woot15-

paper-foster.pdf (cit. on pp. 18, 20, 21).
GlobalCarsBrands (2017). Top 10 Newest Car Technologies That Have Revolution-

ized the Auto Industry. url: https://www.globalcarsbrands.com/top-
10-newest-car-technologies-that-have-revolutionized-the-auto-

industry/ (visited on 05/08/2017) (cit. on p. 8).
Horman, Simon (2005). SSL and TLS An Overview of A Secure Communications

Protocol. url: http://horms.net/projects/ssl_and_tls/stuff/ssl_
and_tls.pdf (cit. on p. 45).

Housley, R. (2009). Cryptographic Message Syntax (CMS). STD 70. http :

//www.rfc- editor.org/rfc/rfc5652.txt. RFC Editor. url: http:
//www.rfc-editor.org/rfc/rfc5652.txt (cit. on p. 45).

Management of information and communications technology security – Part 1:
Concepts and models for information and communications technology security
management (2004). ISO. Geneva, CH: International Organization for
Standardization (cit. on p. 41).

Johansson, Karl Henrik, Martin Törngren, and Lars Nielsen (n.d.). Vehicle
Applications of Controller Area Network. Tech. rep. url: http://people.
kth.se/~kallej/papers/can_necs_handbook05.pdf (cit. on p. 7).

Krawczyk, Hugo, Mihir Bellare, and Ran Canetti (1997). HMAC: Keyed-
Hashing for Message Authentication. RFC 2104. http://www.rfc-editor.
org/rfc/rfc2104.txt. RFC Editor. url: http://www.rfc-editor.org/
rfc/rfc2104.txt (cit. on p. 40).

Kumar, Balraj (2012). “A Survey of Key Factors Affecting Software Maintain-
ability.” In: 2012 International Conference on Computing Sciences. IEEE. doi:
10.1109/iccs.2012.5. url: https://doi.org/10.1109/iccs.2012.5
(cit. on p. 26).

Lesjak, Christian, Holger Bock, et al. (2016). “Hardware-secured and trans-
parent multi-stakeholder data exchange for industrial IoT.” In: 2016
IEEE 14th International Conference on Industrial Informatics (INDIN). IEEE.
doi: 10.1109/indin.2016.7819251. url: https://doi.org/10.1109/
indin.2016.7819251 (cit. on pp. 47–49, 55, 56).

Lesjak, Christian, Daniel Hein, et al. (2015). “Securing smart maintenance
services: Hardware-security and TLS for MQTT.” In: 2015 IEEE 13th
International Conference on Industrial Informatics (INDIN). IEEE. doi: 10.

79

https://www.usenix.org/system/files/conference/woot15/woot15-paper-foster.pdf
https://www.usenix.org/system/files/conference/woot15/woot15-paper-foster.pdf
https://www.globalcarsbrands.com/top-10-newest-car-technologies-that-have-revolutionized-the-auto-industry/
https://www.globalcarsbrands.com/top-10-newest-car-technologies-that-have-revolutionized-the-auto-industry/
https://www.globalcarsbrands.com/top-10-newest-car-technologies-that-have-revolutionized-the-auto-industry/
http://horms.net/projects/ssl_and_tls/stuff/ssl_and_tls.pdf
http://horms.net/projects/ssl_and_tls/stuff/ssl_and_tls.pdf
http://www.rfc-editor.org/rfc/rfc5652.txt
http://www.rfc-editor.org/rfc/rfc5652.txt
http://www.rfc-editor.org/rfc/rfc5652.txt
http://www.rfc-editor.org/rfc/rfc5652.txt
http://people.kth.se/~kallej/papers/can_necs_handbook05.pdf
http://people.kth.se/~kallej/papers/can_necs_handbook05.pdf
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
https://doi.org/10.1109/iccs.2012.5
https://doi.org/10.1109/iccs.2012.5
https://doi.org/10.1109/indin.2016.7819251
https://doi.org/10.1109/indin.2016.7819251
https://doi.org/10.1109/indin.2016.7819251
https://doi.org/10.1109/indin.2015.7281913
https://doi.org/10.1109/indin.2015.7281913
https://doi.org/10.1109/indin.2015.7281913

Bibliography

1109/indin.2015.7281913. url: https://doi.org/10.1109/indin.
2015.7281913 (cit. on pp. 54–56).

Mazur, David C. et al. (2016). “Defining the Industrial Demilitarized Zone
and Its Benefits for Mining Applications.” In: IEEE Transactions on In-
dustry Applications 52.3, pp. 2731–2736. doi: 10.1109/tia.2016.2530045.
url: https://doi.org/10.1109/tia.2016.2530045 (cit. on p. 31).

Meier, J.D. et al. (2003). Improving Web Application Security Threats and Coun-
termeasures. url: https : / / msdn . microsoft . com / en - us / library /

ff649874.aspx (visited on 08/10/2017) (cit. on pp. 35, 38).
Menezes, Alfred John, Paul C. van Oorschot, and Scott A. Vanstone (1996).

Handbook of Applied Cryptography. Taylor & Francis Inc. 810 pp. isbn:
9780849385230. url: http://www.ebook.de/de/product/3648186/
alfred_john_menezes_paul_c_van_oorschot_scott_a_vanstone_

handbook_of_applied_cryptography.html (cit. on pp. 32–34).
Microsoft (2017). Microsoft. url: https://www.microsoft.com/en- us/

(visited on 08/08/2017) (cit. on p. 35).
Microsoft STRIDE (2017). The STRIDE Threat Model. url: https://msdn.

microsoft.com/en-us/library/ee823878(v=cs.20).aspx (visited on
08/07/2017) (cit. on p. 34).

Miller, Charlie and Chris Valasek (2014). Adventures in Automotive Networks
and Control Units. url: https://www.ioactive.com/pdfs/IOActive_
Adventures_in_Automotive_Networks_and_Control_Units.pdf (cit. on
p. 16).

Miller, Charlie and Chris Valasek (2015). Remote Exploitation of an Unal-
tered Passenger Vehicle. url: http://illmatics.com/Remote%20Car%
20Hacking.pdf (cit. on pp. 8, 11, 14–16).

Motorsportzenter (2017). url: http : / / www . motorsportscenter . com /

printer_26.shtml (visited on 07/03/2017) (cit. on p. 7).
Postel, J. (1980a). DoD standard Internet Protocol. RFC 760. RFC Editor (cit. on

p. 34).
Postel, J. (1980b). File Transfer Protocol specification. RFC 765. RFC Editor

(cit. on p. 57).
Postel, J. (1981). Internet Control Message Protocol. STD 5. http://www.rfc-

editor.org/rfc/rfc792.txt. RFC Editor. url: http://www.rfc-
editor.org/rfc/rfc792.txt (cit. on p. 57).

80

https://doi.org/10.1109/indin.2015.7281913
https://doi.org/10.1109/indin.2015.7281913
https://doi.org/10.1109/indin.2015.7281913
https://doi.org/10.1109/indin.2015.7281913
https://doi.org/10.1109/indin.2015.7281913
https://doi.org/10.1109/tia.2016.2530045
https://doi.org/10.1109/tia.2016.2530045
https://msdn.microsoft.com/en-us/library/ff649874.aspx
https://msdn.microsoft.com/en-us/library/ff649874.aspx
http://www.ebook.de/de/product/3648186/alfred_john_menezes_paul_c_van_oorschot_scott_a_vanstone_handbook_of_applied_cryptography.html
http://www.ebook.de/de/product/3648186/alfred_john_menezes_paul_c_van_oorschot_scott_a_vanstone_handbook_of_applied_cryptography.html
http://www.ebook.de/de/product/3648186/alfred_john_menezes_paul_c_van_oorschot_scott_a_vanstone_handbook_of_applied_cryptography.html
https://www.microsoft.com/en-us/
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
https://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
https://www.ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://www.motorsportscenter.com/printer_26.shtml
http://www.motorsportscenter.com/printer_26.shtml
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc792.txt
http://www.rfc-editor.org/rfc/rfc792.txt

Bibliography

Postel, Jon (1981). Internet Protocol. STD 5. http://www.rfc-editor.org/
rfc/rfc791.txt. RFC Editor. url: http://www.rfc-editor.org/rfc/
rfc791.txt (cit. on p. 37).

Priller, Peter, Andreas Aldrian, and Thomas Ebner (2014). “Case study:
From legacy to connectivity migrating industrial devices into the world
of smart services.” In: Proceedings of the 2014 IEEE Emerging Technology
and Factory Automation (ETFA). IEEE. doi: 10.1109/etfa.2014.7005136.
url: https://doi.org/10.1109/etfa.2014.7005136 (cit. on p. 54).

Rosenberg, J. (2007). Extensible Markup Language (XML) Formats for Represent-
ing Resource Lists. RFC 4826. RFC Editor (cit. on p. 64).

Shafranovich, Y. (2005). Common Format and MIME Type for Comma-Separated
Values (CSV) Files. RFC 4180. http : / / www . rfc - editor . org / rfc /

rfc4180.txt. RFC Editor. url: http://www.rfc-editor.org/rfc/
rfc4180.txt (cit. on p. 60).

S. Muthanna, K. Kontogiannis and K. Ponnambalam, eds. (2000). A main-
tainability model for industrial software systems using design level met-
rics. (Nov. 25, 2000). Ieee. isbn: 0-7695-0881-2. doi: 10 . 1109 / WCRE .

2000 . 891476. url: https : / / www . amazon . com / Seventh - Working -

Conference-Reverse-Engineering/dp/0769508812?SubscriptionId=

0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&

creative=165953&creativeASIN=0769508812 (cit. on p. 26).
Stouffer, Keith, Joe Falco, and Karen Scarfone (2013). Guide to Industrial

Control Systems (ICS) Security : Supervisory Control and Data Acquisition
(SCADA) Systems, Distributed Control Systems (DCS), and Other Control
System Configurations such as Programmable Logic Controllers (PLC). Tech.
rep. doi: 10.6028/nist.sp.800-82r1. url: https://doi.org/10.6028/
nist.sp.800-82r1 (cit. on p. 57).

Tesla (2017). Software Updates. url: https://www.tesla.com/support/
software-updates (visited on 08/07/2017) (cit. on p. 9).

Texas Instruments (2017). ARM Cortex-A9. url: http : / / www . ti . com /

product/AM4379 (visited on 08/07/2017) (cit. on p. 54).
Thurlow, R. (2009). RPC: Remote Procedure Call Protocol Specification Version 2.

RFC 5531. http://www.rfc-editor.org/rfc/rfc5531.txt. RFC Editor.
url: http://www.rfc-editor.org/rfc/rfc5531.txt (cit. on p. 57).

UConnect (2017). url: http://www.driveuconnect.com/ (visited on 08/01/2017)
(cit. on p. 16).

81

http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
http://www.rfc-editor.org/rfc/rfc791.txt
https://doi.org/10.1109/etfa.2014.7005136
https://doi.org/10.1109/etfa.2014.7005136
http://www.rfc-editor.org/rfc/rfc4180.txt
http://www.rfc-editor.org/rfc/rfc4180.txt
http://www.rfc-editor.org/rfc/rfc4180.txt
http://www.rfc-editor.org/rfc/rfc4180.txt
https://doi.org/10.1109/WCRE.2000.891476
https://doi.org/10.1109/WCRE.2000.891476
https://www.amazon.com/Seventh-Working-Conference-Reverse-Engineering/dp/0769508812?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769508812
https://www.amazon.com/Seventh-Working-Conference-Reverse-Engineering/dp/0769508812?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769508812
https://www.amazon.com/Seventh-Working-Conference-Reverse-Engineering/dp/0769508812?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769508812
https://www.amazon.com/Seventh-Working-Conference-Reverse-Engineering/dp/0769508812?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769508812
https://doi.org/10.6028/nist.sp.800-82r1
https://doi.org/10.6028/nist.sp.800-82r1
https://doi.org/10.6028/nist.sp.800-82r1
https://www.tesla.com/support/software-updates
https://www.tesla.com/support/software-updates
http://www.ti.com/product/AM4379
http://www.ti.com/product/AM4379
http://www.rfc-editor.org/rfc/rfc5531.txt
http://www.rfc-editor.org/rfc/rfc5531.txt
http://www.driveuconnect.com/

Bibliography

UNIX (2017). UNIX Timestamp. Ed. by UNIX. url: http://pubs.opengroup.
org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16

(visited on 07/18/2017) (cit. on p. 65).
Vector Informatik GmbH (2007). DBC File Format Documentation. url: https:

//wenku.baidu.com/view/41c36d25ed630b1c59eeb534.html## (cit. on
p. 60).

Velde, G. Van de et al. (2007). Local Network Protection for IPv6. RFC 4864.
RFC Editor (cit. on p. 58).

Xing, Wang, Huiyan Chen, and Huarong Ding (n.d.). “The application of
controller area network on vehicle.” In: Proceedings of the IEEE Interna-
tional Vehicle Electronics Conference (IVEC’99) (Cat. No.99EX257). IEEE.
doi: 10.1109/ivec.1999.830728. url: https://doi.org/10.1109/
ivec.1999.830728 (cit. on p. 7).

Yocto Project (2017). url: https : / / www . yoctoproject . org (visited on
08/09/2017) (cit. on p. 54).

82

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_16
https://wenku.baidu.com/view/41c36d25ed630b1c59eeb534.html###
https://wenku.baidu.com/view/41c36d25ed630b1c59eeb534.html###
https://doi.org/10.1109/ivec.1999.830728
https://doi.org/10.1109/ivec.1999.830728
https://doi.org/10.1109/ivec.1999.830728
https://www.yoctoproject.org

