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Abstract

In 2014, there were 285 million Visually Impaired (VI) people worldwide estimated
by the World Health Organization (WHO), with 246 million having low vision
and 39 million being blind. It is a challenging task for the VI to safely and quickly
navigate through an unknown or unfamiliar environment. The most common and
reliable travel aids are still the traditional white cane or a guide dog. With the
traditional white cane, collisions can only be detected once they already occurred.
While guide dogs are able to guide the user and avoid collisions, they are rather
expensive, require massive amounts of training, and the VI might not want to or
be able to care for an animal.

The recent improvement of Time-of-Flight (ToF) sensors made them much more
viable for use in a discreet, yet highly functional, Electronic Travel Aid (ETA). With
the power usage, as well as the physical dimensions going down, it is even possible
for them to be included into modern smart phones. Current ETAs are rather large
and have high power usage.

In the course of this thesis a proof-of-concept ETA on a Google Tango enabled
device - the Lenovo Phab 2 Pro - was developed. The Lenovo Phab 2 Pro is an
affordable smart phone with an integrated ToF sensor and OpenCL capabilities.
Using some constraints about the ground floor allows to robustly detect it using a
combination of v disparity and RANdom SAmple Consensus (RANSAC). Further,
once the ground floor is detected, all remaining points are considered to be an
obstacle. The obstacle point cloud has to be further processed to allow for a
meaningful warning. Therefore, a so-called Conservative Polar Histogram was
developed. With the help of the Conservative Polar Histogram the closest obstacle
in each direction is detected and a tactile and/or acoustic warning is given to the
user. Google Tango provides depth images at 5 Frames Per Second (FPS), while
the implementation of our method is capable of handling about 7 FPS on the used
hardware. However, these numbers can be severely sped up by further exploiting
the parallel computing power of the Lenovo Phab 2 Pro.
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Kurzfassung

Im Jahr 2014 waren laut Schätzungen der World Health Organization (WHO)
weltweit 285 Millionen Menschen sehbehindert, 246 Millionen davon sehschwach
und 39 Millionen blind. Für Sehbehinderte ist es sehr schwierig sich durch unbe-
kannte bzw. ungewohnte Gegenden oder Räume zu bewegen. Derzeit sind der
Blindenstock oder der Blindenhund immer noch die meist verwendeten Hilfsmit-
tel. Allerdings werden Kollisionen mit dem Blindenstock erst erkannt, wenn sie
bereits geschehen sind. Obwohl Blindenhunde zwar Kollisionen erkennen und
verhindern können, sind sie sehr teuer, benötigen enorme Mengen an Training,
und ein Sehbehinderter ist eventuell nicht in der Lage für ein Tier zu sorgen.

Neueste Verbesserungen im Bereich der Time-of-Flight (ToF) Sensoren machten es
praktikabel diese als diskreten, jedoch dabei höchst funktionellen, Electronic Travel
Aid (ETA) zu nutzen. Sowohl der Stromverbrauch, als auch die physikalischen
Abmessungen der Sensoren sind so gering, dass sie sogar in Smartphones integriert
werden können. Bisherige ETAs sind sehr groß, unhandlich und haben einen hohen
Stromverbrauch.

In dieser Arbeit wurde ein proof-of-concept ETA auf einem Google Tango fähigem
Smartphone - dem Lenovo Phab 2 Pro - entwickelt. Das Lenovo Phab 2 Pro ist
ein erschwingliches Smartphone mit einem eingebauten ToF Sensor und OpenCL
Fähigkeiten. Mit der Annahme von Restriktionen bezüglich des Bodens ist es
möglich den Boden auf eine robuste Art und Weise zu detektieren, indem man
eine Kombination von v disparity und RANdom SAmple Consensus (RANSAC)
anwendet. Sobald die Punkte die zum Boden gehören selektiert wurden, werden
alle weiteren Punkte als Hindernisse angesehen. Die Hindernis-Punktwolke wird
dann weiterverarbeitet, um eine sinnvolle Warnung ausgeben zu können. Dazu
wurde das Conservative Polar Histogram entwickelt. Mit dem Conservative Polar
Histogram wird das nächste Objekt in jede Richtung erkannt und eine fühlbare
und/oder akustische Warnung wird abgegeben. Google Tango liefert Punktwolken
mit 5 Frames Per Second (FPS) und unsere Implementierung ist in der Lage die
Punktwolke mit rund 7 FPS zu verarbeiten. Durch eine parallele Implementierung
der notwendigen Transformationen könnte dies jedoch noch verbessert werden.
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Chapter 1

Introduction

1.1 Motivation

According to the World Health Organization (WHO) there were about 285 million
Visually Impaired (VI) people in 2014, with 246 million of those having low vision
and 39 million being blind [1]. Safely navigating in an unknown environment is a
very challenging task for visually impaired people.

Although various different electronic travel aids have been developed [2], [3], [4],
most of them never got past the prototype stages. Additionally, they are simply
not small or cheap enough for everyday use, as they mostly use a powerful laptop
somehow attached to the user or do not satisfy all needs of the visually impaired
[5]. Therefore, the most common travel aids are still the traditional white cane or
a guide dog. However, guide dogs are expensive and require massive amounts
of training, and, additionally, caring for an animal might not even be possible or
desired for the visually impaired owner. As the white cane is a cheap, reliable,
and portable device it is not our intention to fully replace it, but to enhance the
travelling experience by providing additional information.

With the recent release of Google Tango [6] enabled mobile phones [7], [8], reason-
ably priced devices with high computational power and range sensing capabilities
at a very small and convenient form factor have become available. Figure 1.1 shows
a picture of the Lenovo Phab 2 Pro used for this thesis.
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Chapter 1 Introduction

Figure 1.1: Picture of the backside of the Lenovo Phab 2 Pro. Sensors seen include a color camera, a
ToF sensor, and a monochromatic fish eye camera.

1.2 Objectives

The focus of this thesis is on the design and implementation of a proof-of-concept
“Virtual White Cane” application on a Google Tango enabled device. The extent of
work can be divided into the following parts:

• Literature research on similar electronic travel aid projects
• Design and implementation of a real-time ground plane detection algorithm

on a hand-held device
• Design and implementation of a warning module to provide visually im-

paired people with a mental image of their surroundings

The result of this thesis is an application showcasing what a future mobile electronic
travel aid could look like. It is able to robustly detect the safe ground floor and
obstacles in the path of the user. Different warnings, acoustic as well as tactile
responses, are given to the user in case of a detected obstacle.

1.3 Outline

The rest of this thesis is structured as follows:

Chapter 2 provides information about other electronic travel aids and the al-
gorithms they used. Further, it introduces the reader to the core Application

2



1.3 Outline

Programming Interfaces (APIs) and frameworks used in this thesis, as well as
describing the algorithms, which are the basis of this work.

Chapter 3 elaborates how the system’s components interact with each other. It gives
details about the requirements and constraints for the Virtual White Cane. The pur-
pose of each model is explained and how they are designed to be interchangeable,
if the need arises.

The implementation Chapter 4 goes into further details and specifics about the
software implementation on the Lenovo Phab 2 Pro. It highlights the hardware
specifications and how such a system can be implemented on an Android device.
The most important APIs and how they interact with Android are displayed.
Afterwards, the software components and their interfaces are explained in detail.
Lastly, it is shown how the algorithms are implemented in OpenCL to improve
their performance and which problems arise developing GPU code for a mobile
device.

The last chapters of this thesis, Chapter 5 and Chapter 6, summarize the results, as
well as where the used algorithms excel at, likewise where their shortcomings are.
It will also be mentioned how the system could be improved or extended.
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Chapter 2

Related Work

This chapter provides an overview about other electronic aids for visually impaired
users and how they detect obstacles. It will further provide information about the
algorithms used in this thesis and explain the basics about Google Tango, which
lies at the core of the application.

2.1 Google Tango

Google’s Tango [6] gives mobile devices the ability to determine, understand, and
track their position relative to the world around them. This is achieved using
various computer vision concepts. To be able to use Google Tango, you need a
device such as the Lenovo Phab 2 Pro [7], which has an array of sensors - for
instance a wide-angle camera, a depth sensing camera, as well as accurate sensor
timestamping. Google Tango builds on the following three main concepts:

• Motion Tracking
• Area Learning
• Depth Perception

2.1.1 Motion Tracking

Motion tracking allows a Tango-enabled device to track its motion. Using the
device’s Inertial Measurement Unit (IMU) paired with feature tracking from the
wide-angle camera, Google Tango provides full 6-degrees-of-freedom (DOF) pose
data in relation to a reference frame. The so-called start of service reference frame
is always located at (0, 0, 0), and it is initialized when the device is connected to the
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Chapter 2 Related Work

Figure 2.1: Measurements from Motion Tracking introduce a drift. To compensate for that error
ADFs are used to detect and correct this drift as soon as an observed landmark is seen
again. (Figure from [6])

Tango Service and it starts to track its motion. Pairing the IMU with the features
from the fish eye lens camera improves the tracking. However, this technique still
introduces inaccuracies. Over long periods of time and distances small errors in
the measurements are accumulated and cause the measurements to “drift” and
therefore produce a larger error in absolute position.

2.1.2 Area Learning

To help correct the error introduced by Motion Tracking, Area Learning can be
used. When Area Learning is turned on, a so-called Area Description File, or ADF,
is created. This file contains information of visual landmarks, like corners or other
distinct features. Whenever the device “sees” a landmark it has already visited,
a so-called loop-closure or drift correction is performed. Due to the fact that the
landmark has already been seen, its position in the world is known. This can be
used to correct the drift, which occurred in the motion tracking (see Figure 2.1).

Another important advantage of area learning is localization. Localization is the
ability to recognize an area the device has already been in and position itself
correctly within the area. This basically takes three steps:

6



2.1 Google Tango

1. Be in a learned area
2. Load the appropriate ADF
3. Localize

Localization enables you to remember where certain (virtual) objects are placed, or
to label certain rooms/position such that it is possible to navigate the user to them.
The quality of the ADF highly depends on the learning process, as only places
the device has seen can be recognized. For example, with only one image of a
room a very limited view is presented, while taking various pictures from different
angles will provide a much better impression of what the room actually looks like.
Likewise, the amount of features in a room influences the quality of the ADF. A
long corridor with white walls will have less features than a room with lots of
different (static) furniture. For localization purposes it is best that few pieces of
furniture are moved to keep the same appearance. Lastly, the lighting conditions
further influence the presentation of features. A feature might look different under
the brightest and lowest lighting conditions. This problem can be solved by having
different ADFs for different times of the day.

2.1.3 Depth Perception

Depth perception makes use of a 3-d depth sensor. This can be a stereo camera
setup, or an infra-red light based technique using either Structured Light or Time-
of-Flight. Depth perceptions allows the device to understand distances in the real
world. This enables the device to interact with the real world, such as detecting a
wall, or measuring the distance between two points. The 3-d depth sensor produces
a point cloud, which can be used in conjunction with the color camera to produce
a textured point cloud or mesh.

Depth from Stereo

Stereo vision systems extract depth information from digital color images. This
is done by finding point correspondences in images from two different vantage
points. A point correspondence is defined as two points x and x′ in the image
plane, which are both projections of the same 3-d point X. The easiest way to obtain
these images is by having two cameras rigidly connected with a known distance
between them, however, it does not matter whether the images are obtained by
one camera moving or a rigid stereo rig. With the help of epipolar geometry these
point correspondences can be found very efficiently [9]. A stereo rig is similar to

7



Chapter 2 Related Work

Figure 2.2: Using two images from the same scene from different vantage points it is possible to
calculate the depth using Equation 2.1. (Figure from [10])

how human vision works. Obtaining the depth information of a scene is done via
triangulation after a point correspondence is found.

Equation 2.1 shows that the depth Z of a point X in space is inversely proportional
to the disparity of corresponding points in the image plane.

disparity = x− x′ =
B f
Z

(2.1)

Where f is the focal length, B is the baseline - the distance between the camera
centres, x and x′ is the distance between the point X in the image plane and their
camera centres O and O′, respectively. Figure 2.2 shows why Equation 2.1 holds
using equivalent triangles.

Depth from Structured Light

In principle, depth from structured light is similar to depth from stereo, but
with one of the cameras replaced by a projector [11]. The projector projects a
pattern [12], [13], [14] onto the scene, which alleviates the problem of finding point

8



2.2 Depth Based Travel Aids for the Visually Impaired

correspondences. To not interfere with other computer vision techniques infra-red
patterns can be used.

Time-of-Flight Cameras

As the name suggests, Time-of-Flight (ToF) measures the travel time of an emitted
light wave to produce range data. As the speed of light is known, the travel time
directly corresponds to the distance between the sensor and the object. Measuring
this time can be achieved by measuring the phase shift between a signal radiated
towards an object and the reflection of it. This principle is shown in Figure 2.3.
The emitted infra-red wave is shown in red, and the reflected and phase shifted
infra-red wave is shown in blue. Calculation of the phase difference can be done
by using four phase control signals C1 to C4. These control signals regulate the
collection of electrons from the reflected signal and result in the electric charge
values Q1 to Q4. Figure 2.4 shows how these electric charge values are obtained.
Given these electric charges the phase difference td can be calculated as

td = arctan
Q3 −Q4

Q1 −Q2
. (2.2)

The phase difference td can be used together with the speed of light c, and the
signal frequency f to calculate the distance d as

d =
c

2 f
td
2π

. (2.3)

2.2 Depth Based Travel Aids for the Visually Impaired

In [5] electronic devices for navigation are divided into three categories:

1. Vision Enhancement - Tries to help users with remaining residual vision by
providing enhanced visual output.

2. Vision Replacement - Replaces human vision by providing output directly to
the optic nerve or the human brain.

3. Vision Substitution - Uses other sensory means like auditory or tactile feed-
back to provide a mental image of the scene.
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Figure 2.3: The principle of a time of flight camera. An infra-red wave is emitted (red) and the
phase shift of its reflection (blue) is measured. (Figure from [15])

Figure 2.4: Four control signals C1 to C4 are used to gather the electronic charges Q1 to Q4 received
by the reflected signal. These electronic charges can be used to estimate the time
difference between the radiated and reflected signal. (Figure from [15])
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Focusing only on vision substitution, it can be further divided into three main
categories:

1. Electronic Travel Aids (ETAs) - provide information normally perceived
visually by transforming them into a form, which can be communicated
through other sensory modality.

2. Electronic Orientation Aids (EOAs) - provide orientation to the user.
3. Position Locator Devices (PLDs) - provide the user with positional informa-

tion, for example by means of Global Positioning System (GPS).

This section will survey different ETAs and categorize them further based on the
core range sensing technology used. However, all of them have in common that
they are very large and obtrusive, as they require the user to wear not only a
rather big depth sensing device like the Microsoft Kinect, but also a backpack
with a laptop for computational power. Further, some systems described are not
intended to be an ETA, but are navigational systems designed for robots. Still,
algorithms intended to guide autonomous robots can be adapted and used to
guide the visually impaired or provide them with a warning.

2.2.1 RGB-D camera

With the Microsoft Kinect a cheap Color and Depth sensing Camera (RGB-D) was
introduced to the market. Due to the availability of the Microsoft Kinect and its
SDK [16] it became popular among researchers.

Using RGB-D cameras such as the Kinect various different ETAs were introduced.
They utilize distinct core methods from directly operating on the point cloud using
RANSAC based approaches to more computer vision aided approaches, such as
using region growing or marching cubes, or a mixture of both.

The system designed by Bernabei et al. [4] directly operates on the point cloud
data and is meant to be time-critical. Therefore, each step in their algorithm is
interruptible and should provide a meaningful, but conservative result. The algo-
rithm has four main steps: “registration”, “occupancy detector”, “walk detector”,
and “analysis”. The registration process detects the floor and transforms the data
into a reference system centred at the user’s feet with the help of the detected
floor. The floor is detected as those points closer than a threshold to the plane
fitted in the previous step. The initial step zero needs a scene without obstacles
or motion to easily fit the ground plane. As the plane fitting depends on the
amount of data used, to speed up the processing the data can be down-sampled
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if needed. This is done in a conservative manner, prioritizing the points nearest
to the user. The occupancy detector creates a one-dimensional Dx1 depth map.
The same conservative process as in the reduction of the data in the registration
step is used and the nearest data points are prioritized. The resulting map gives
a quantization of the space in front of the user, each bin representing a possible
walking direction with the value of the nearest obstacle. This map is used to find
the farthest point reachable considering the users width. To detect if a person is
walking in front of the user, or the user is walking down a corridor a walk detector
is needed. The accelerometer of the Microsoft Kinect is used to detect a walking
motion and the walking direction. Only if the user walks towards an occupied
space it is considered to be an obstacle. Further, if the distance to an obstacle stays
approximately the same between readings, it is considered to be another person
walking in front of the user.

One RANSAC based approach was introduced by Vlaminck et al. [17]. They use
the point cloud obtained via a Microsoft Kinect sensor, which is transformed
such that the xz-plane is parallel to the ground plane similar to [4]. Further, they
down-sample it by using a 2x2 sliding window averaging the values and filter
it in x-direction such that no point is further than 75 cm away from the user.
Afterwards, the most prominent planes with a surface normal perpendicular to the
xz-plane are obtained using RANSAC with a fixed number of iterations. During
each iteration the points within a fixed distance of the found plane are added to
the set of inliers. If the cardinality of the set is larger than the cardinality of the
previous iteration, it is considered to be the new ground plane. Walls are detected
using RANdom SAmple Consensus (RANSAC) with the restriction of their normal
to be parallel to the xz-plane. Local surface normals are used to speed up the
detection of planes. Points which are not part of the dominant planes found in the
previous step are clustered by their proximity. Their system is able to detect stairs
by filtering the point cloud such that only points with a normal perpendicular to
the xz-plane remain. These remaining points are sectioned into sets of points with
a height equal to h = Hn ± Htol with HN = HstepxN. Each set is used to estimate
a plane using RANSAC. An adaptive threshold for the amount of inliers is used
to determine whether a step is detected or not. To detect doors, additionally the
color information is used to further segment the “wall planes”. These are further
segmented into a set of planes using the surface normals and color information. A
plane is fitted to these points using RANSAC and their convex hull is calculated.
If it is too big or not big enough it is not considered to be a possible door. Lastly,
the remaining points which are not considered to belong to any plane, but lie in a
predefined door handle height are filtered. For each possible door it is checked if
there are points in the predefined door handle zone. If both, a possible door and
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matching handle are found it is classified as a door.

Another approach utilizing RANSAC was introduced by Aladren et al. [3]. They use
a consumer RGB-D camera and try to fuse RGB and depth data to extend the range
of the depth sensor. To reduce the work load, a voxel-based filter to down-sample
the point cloud is used. This greatly reduces the points considered in the point
cloud (from 300000 to 7000) without losing main structural and representative
information. Afterwards, a Manhattan world model (three main directions, which
are orthogonal between each other [18]) is assumed and the RANSAC algorithm
is used to find the most prominent planes. This is done by detecting a plane and
removing its points, and repeating this process until most points are part of a
plane. Planes are then identified by analyzing their surface normals and classified
as floor or obstacle. Floor points are used as seeds for region growing to extent
the range in the color image. Two different segmentation algorithms (polygonal
floor segmentation and watershed segmentation) are combined to improve the
result. A sound map is used to inform the user. They deploy audio instructions for
high level commands, otherwise stereo beeps with a frequency depending on the
distance to the obstacle are used.

A fast plane detection algorithm was introduced by Poppinga et al. [19]. They use
a Swissranger SR3000 3-d range camera to obtain their point cloud and region
growing to detect planes. Plane detection is done by first taking a random point
r1 and its nearest neighbor r2, forming the initial set of points. This set is called
region Π. The next step is to attempt and extend this region by trying to add a new
point r′ if, and only if, the distance between the region and r′ is small enough and
the mean square error to the optimal plane of the region with the new point is less
than ε and the distance between the new point and the optimal plane is less than
γ. The previous step is repeated until no new points can be added to the region Π.
The size of this region is then checked and if it is more than θ it is added to a set
of regions R, otherwise it is treated as unexplained and added to the set R′. Data
points can be assigned to multiple regions as they could lie in intersections of two
or more planes. The whole process is repeated until every point is either in R or
R′.

Brock and Kristensson [20] use another approach to detect obstacles. Instead of
trying to find structures in the point cloud directly, a depth map is used. As a
depth sensing device the Microsoft Kinect is used. The depth map of the Kinect is
down-sampled to a 20x15 image giving the nearest depth value priority. To detect
obstacles the marching squares algorithm is used. Afterwards, to inform the user
of the obstacles their position is turned into a sound. With the pitch of the sound
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giving the height (y-axis) of the object, the volume representing the distance to the
user, and the x position is encoded using stereo.

A more computer vision oriented approach is presented by Bhowmick et al. [21].
They use the Microsoft Kinect combined with Speeded Up Robust Feature (SURF)
local descriptors, which are clustered using a Bag-of-Visual-Words (BOVW) model.
The BOVW constructs feature vectors, which serve as input for a multi-class
Support Vector Machine (SVM) to classify common office objects like laptops,
chairs, stairs, etc. An audio feedback program is used to notify the user about
obstacles ahead.

The work proposed by Jafri and Khan [22] employs the Google Tango Development
Kit to develop an application to assist the visually impaired. This allows the system
to be less obtrusive. The point cloud received from the depth sensors are converted
into a depth image, which is pre-processed to remove noise. Then all edges are
detected and removed using a canny edge detector and a region growing method
finds all connected components. The largest component at the bottom is assumed to
be the ground floor and removed. Navigational instructions are given after dividing
the depth image into three sections. If the center section is free, no instructions
are given, otherwise the right section is checked and if it is free a signal is given
to bear right. If the right section is not free the left section is checked in the same
manner. For users with low vision, the depth map is color coded with 4 colors to
indicate how far away an obstacle is. In [23] the Google Tango Development Kit is
used to help visually impaired users detect and recognize faces and objects. The
depth information is used to tell the user where the face/object is in relation to
the depth sensor. To recognize faces and objects they used a deep neural network
(NVIDIA’s CUDA R© Deep Neural Network Library cuDNN). Another approach
is proposed by Jafri et al. [24] utilizing the built-in Unity SDK of Google Tango.
The Unity SDK is used to acquire a 3-D mesh of the environment and a character
object will be used to perform distance calculations to obstacles.

Gao et al. [25] took the approach from [26] (see Section 2.7.1) and applied it to a 3-d
range camera. The disparity is calculated assuming a baseline of a stereo-vision
camera. To enhance the segmentation of obstacles on the road they utilize not only
v disparity, but also u disparity. As this approach is used for assisted driving and
no steps should occur, it can be assumed that no point has less depth than the
ground surface on a given row/column. Furthermore, to be more robust a steerable
filter is constructed and used on the disparity maps and the Hough transform is
modified to improve efficiency and accuracy.

A different approach is applied by Peasley and Birchfield [27]. They make a ground
plane assumption that the robot moves on the ground plane and all points above
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the ground plane are potential obstacles. To detect the ground plane, it is further
assumed that initially the space directly in front of the robot is clear for calibration
purposes. These points in the assumed free region are used to fit a plane by
solving a least squares problem with a tolerance of 5 cm. For map building all
points on the floor (± 5 cm) or higher than the robot are ignored. The remaining
points are projected onto a 2-d ground plane by calculating o(i) = p(i) − h(i) ∗ n,
where n is the normal of the ground plane, p is the point to be projected, and
h is the height. High reflective material produces invalid depth readings and to
overcome this problem the 8 neighborhood of those invalid readings is observed.
If the neighborhood contains a floor point, an “infinite pole” is synthesized. This
represents an infinitely tall obstacle. Whenever there are more than 40% invalid
depth readings, it is assumed that it is not safe to proceed any further. As this
work is supposed to steer a robot an obstacle avoidance algorithm is implemented
instead of a warning interface.

2.2.2 Stereo based

The advantage of stereo based depth sensing is their higher range. While a ToF
sensor is mostly limited to a few meters, the stereo system does not suffer from this
problem. However, there are also disadvantages in using a stereo vision system.
Stereo vision depends on a feature rich (texture rich) environment and they are
dependent on good lighting conditions. Further, to obtain a depth map from a
stereo image pair, huge computational demands emerge. Still, modern processors
have enough computational power to meet these demands.

A revolutionary algorithm to detect the ground plane in stereo images was in-
troduced by Labayrade et al. [26]. Their motivation was to detect non-flat road
surfaces for autonomous or assisted driving. They use the disparity map from
a stereo camera to calculate a v disparity map. In the v disparity map a plane
is mapped to a straight line. Therefore, Hough transform is used to detect the
straight lines and filter the ground floor (street). For non flat-earth road geometry
a succession of parts of planes is assumed. These are represented as a piecewise
linear curve and the k (5 to 12) most prominent responses of the Hough transform
are used. Obstacles are assumed to be vertical lines in the v disparity image. For a
detailed explanation of the algorithm refer to Section 2.7.1.

Broggi et al. [28] took the v disparity and enhanced it slightly to be able to handle
off-road scenarios. They use v disparity to find ground plane assumption. Static
calibration data is used to compute the expected ground correlation line on a flat
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surface, as well as the ground correlation line for different pitch angles. A ground
correlation line at a pitch angles oscillates parallel to itself. The v disparity along
these candidate lines is accumulated and the line with the best correlation is chosen
allowing to obtain a pitch estimation. To detect obstacles, a disparity space image
is created.

Further enhancements to the v disparity algorithm were done by Soquet et al. [29]
by combining v disparity for road detection from [26] with u disparity to detect
obstacles. To cope with roll, yaw, pitch, or road slant Soquet et al. proposed a
propagation algorithm. First, the global road profile is extracted, and then it is
refined using a propagation phase. For every pixel on the initial global profile
neighboring pixels are checked according to a pattern. If their intensity value is
above a threshold, they are considered to be part of the global road profile and
their neighbors are checked, too. To classify the free space, the u disparity map
is used. The u disparity map creates a histogram similar to the v disparity, but
instead of the rows the columns are accumulated. This allows to classify pixels
with a disparity as follows: if the intensity of a pixel in the u disparity map is high
it is classified as an obstacle pixel. If the pixel in the v disparity map belongs to the
road profile it is classified as a road surface pixel. Otherwise, it is not classified and
considered to be noise. This robustly classifies a few pixels, which are propagated
to the remaining pixels. All unclassified pixels are influenced by the classified
pixels. The contribution of each classified pixel depends on the distance to it. Once
the free space is determined, a color segmentation is used to extract the road
surface.

Another approach applying uv disparity maps was introduced by Bai et al. [30] us-
ing a two-part approach for obstacle detection - A detection-confirmation structure.
On the one hand, the stereo image is captured and used to calculate a depth dispar-
ity map. This map is used to calculate a uv disparity map. Using the uv disparity
maps allows the extraction of basic structural information of the scene. The original
stereo images are smoothed using an anisotropic filter, which encourages intra-
region smoothing whilst preserving edges. Given the basic geometric information
and the smoothed image, a region of interest is selected supported by the geometric
information. Further, approximately horizontal and vertical lines are extracted
to detect obstacles. To confirm those obstacles, their location is determined and
verified by depth discontinuities.

Musleh et al. [31] first apply a threshold to the u disparity to obtain an “obstacles
map”. With applying a threshold to the u disparity only obstacles with a certain
height in pixels are kept. The v disparity is calculated on the “free map”, which is
every pixel that is not detected as an obstacle in the obstacle map. Removing the
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pixels which are part of obstacles increases the chance of the road surface to be the
most prominent line in the v disparity map.

There are also RANSAC based solutions with stereo vision systems like the one
introduced by Rodrı́guez et al. [32]. A stereo rig is mounted on the user’s chest.
It is assumed that the ground plane is the largest part in the bottom part of the
image and RANSAC is used to calculate the plane coefficients. Further, to detect
obstacles a cumulative polar grid histogram is used. Points, which are too high,
are not counted as possible obstacles and a threshold of at least 500 points is used
to determine whether a bin contains an obstacle or not. Warning the user is done
using audio bone conducting technology, as this does not block the users ears.

Saez Martinez and Ruiz [33] designed their system to be able to warn the user
about aerial obstacles at approximately chest height. This is done by using a stereo
camera mounted to the user’s chest. A map of a small vicinity around the user is
kept and used for obstacle detection. The map is generated using a 6DOF visual
odometry algorithm (SLAM). For obstacle detection the next step of the user is
estimated according to the previous trajectory. Two virtual cubes are placed in
the front, given by the moving direction, of the user. These cubes represent the
user’s body, more specifically where the body will be if the moving direction is
kept. Therefore, the amount of points in these boxes is analyzed and obstacles are
detected if the amount is above a threshold.

Another approach was introduced by Koester et al. [34]. They calculate the gradient
of the disparity map given by a stereo vision setup. This gradient can be used to
detect planar surfaces. The gradient is calculated using a discrete ∇ operator. Given
the gradient in X and Y direction it is possible to calculate the surface region’s
orientation. With the assumption that the accessible section is connected to the
bottom part of the image, the orientation of the surfaces is observed in a bottom
up manner. As long as their orientation does not deviate too much from a perfect
upright orientation they are considered accessible.

2.2.3 Ultrasonic sensor based

Borenstein and Ulrich [2] introduced the GuideCane. It consists of a long handle
with a “sensor head”. The sensor head is equipped with ultrasonic sensors. The
sensor head sits on top of a steerable axle with wheels. They used the Vector
Field Histogram (VFH) (see Section 2.7.3), which detects obstacles and provides
the direction needed to avoid them. This direction is then used to guide the user
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by steering the wheels of the sensor head. The user intuitively follows the force
resulting from the steering, like a trailer follows a car, thus avoiding a collision.

An ETA using similar techniques, which was introduced by Shoval et al. [35] is the
NavBelt. The NavBelt is a different setup to the GuideCane, as the user wears a belt,
which has ultrasonic sensors mounted to it. However, the algorithm used to detect
and avoid obstacles is also based on VFH. There are three modes, which guide the
user: the “Guidance Mode”, “Directional Guidance Mode”, and the “Image Mode”.
These modes offer varying control to the user over the global navigation, from
steering the user to a known goal, over local obstacle avoidance, and lastly the
“Image Mode” provides the user with an acoustic image of the surroundings.

2.3 Computer Vision Technique Based Travel Aids for
the Visually Impaired

Peng et al. [36] use a mid range smart phone to provide a non-intrusive electronic
travel aid. Their approach uses just the built in camera of the smart phone to
determine whether the path in front of the user is safe or not. To reduce the
computational cost, only a limited region of the camera image is used. It is assumed
that the user holds the smart phone in the walking direction at a tilt angle of
approximately 45◦. Therefore, a trapezoid can be calculated to estimate the region
of interest. Further, it is always assumed that a small region in front of the user -
the bottom of the image - is safe floor. Based on this assumption, a binary color
histogram with 163 bins in RGB space is created. This binary color histogram does
not concern pixel counts in each bin and just labels the corresponding bin, as well
as its 9 neighboring bins, as true. Every pixel outside of the region of interest is
labelled as “uninterested”. Each pixel assumed to be floor is labelled as floor and
all remaining pixels are labelled as “unvisited”. To classify the unvisited pixels
as floor or obstacle, every neighboring pixel of floor pixels is considered. First
the current pixels histogram bin is checked, if it is true, it is determined as floor.
Otherwise, a 3x3 Laplacian edge detector is convolved with the given pixel in
each RGB channel, respectively. If the convolved value in any channel is above
a pre-defined threshold, it is determined as obstacle, if not it is determined as
floor and the histogram is updated with the newly found pixel. The image is
subdivided into three regions: left, center, and right. Once the closest obstacle in
each sub-region is determined, its y position in the image can be converted into
corresponding depths, given the focal length and tilt angle of the camera.
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The work introduced by Shen et al. [37] uses the camera of a mobile phone to
detect crosswalks and helps the user to align with the crosswalk. The user is
supposed to take an image of the intersection, which is then processed to give
feedback to the VI. Detection is done using a local grouping process based on
figure-ground segmentation. To segment the pixels into figure and ground a series
of compatibility relationships have to be met, which are checked by a graphical
model. Once the crosswalk is found, the system helps to align the user’s body and
walking direction with the crosswalk. This is done by using the camera’s line of
sight direction corresponding to the center of the image as well as the vanishing
point of the two lines “enclosing” the crosswalk.

2.4 Other Aids for the Visually Impaired

Other methods, such as the one described by Martinez-Sala et al. [38] need external
preparation to function. This makes them unusable if the visited place is not
prepared for this particular system. They use Ultra-Wideband (UWB) technology
to deliver accurate indoor positioning. The user is equipped with an Ubisense UWB
tag and directed via headphones. An advantage of systems needing to prepare
a room beforehand is that even if the VI never was in this room, guidance to a
desired destination can be given.

Further, there are aids, which intend to help the VI in other aspects of their
everyday life. For example, Shaik et al. [39] use a mobile phone camera to help
visually impaired persons. Using Optical Character Recognition (OCR) and Text-
To-Speech (TTS) functionality of an Android phone, they enable visually impaired
users access to reading any text. This could be anything from a street sign, to labels
on groceries, as well as their expiration date.

2.5 Warning Interfaces

The ETAs described in the previous sections all employ different warning interfaces.
The design of the warning interface is a very important part of an ETA, as it should
be discreet, but it also needs to be highly functional.

Acoustic warning interfaces can range from high-level instructions like ’turn left’,
’obstacle ahead’, etc. to an alteration of pitch/volume of a sound depending on
the position and size of the object. High-level commands are often very slow to
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process and might not deliver a reliable warning in time. A more advanced form
of variation of pitch/volume is using 3-d spatial audio, as described in Section 2.6.
However, hearing is an essential sense for VI people and its obstruction should be
limited to a minimum.

A more complex device was developed by Hoang et al. [40]. They use an electrode
matrix, which the user takes into the mouth, giving electrical impulses. Due to the
sensitivity of the tongue, the user can perceive the electrical impulses accurately
and translate them into directional impulses.

Amemiya [41], [42] uses a haptic hand-held wayfinder with pseudo-attraction force.
Exploiting the non-linear relationship between perceived and physical acceleration
they are able to generate a force sensation, which should guide the user. Another
device, which relies on tactile responses was introduced by Mann et al. [43]. They
use a vibrotactile helmet, which indicates direction through vibration. Using a
helmet gives the advantage of a hands-free operation.

2.6 3-d Spatial Audio

Similar to stereo vision allowing for 3-d spatial perception, having two ears allows
for the spatial localization of sounds. As visually impaired people heavily rely on
their hearing to avoid dangerous situations, for example listen to the direction of
traffic to cross the street without deviating from their path, obstructing their ears
would be a major limitation. However, in [44] it was shown that bone conduction
devices can be used for 3-d audio. Bone conduction devices use the bones of the
head to propagate the waves to the ear drums and therefore, they do not need to
obstruct the wearer’s ears. This section will describe two ways of how synthesizing
spatial audio works.

2.6.1 Pan and Fade

Due to the way ears are placed on the head, a sound source coming from the left
would be louder in the left ear, as the head dampens the volume for the right ear.
A simple way to provide spatial audio to the user is therefore to pan and fade the
stereo signal.

The most basic variant would just alter the volume for each channel depending on
the angle between the sound source and the head. To further improve the quality
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of the sound position the ear further away from the sound source has to hear it
with a short delay of a few micro seconds. A drawback of this simple method is
that it only provides basic sound localization abilities. For example, it would be
impossible to distinguish whether the sound origin is in front or behind the user
as it would yield the same intensity and delay in both cases.

2.6.2 Head-Related Transfer Function

In reality sound perception is much more complex than a simple pan and fade.
Perception is altered by the shape of the head, ears, ear canal, density of the head,
even the size and shape of nasal and oral cavities affect the sound perception.

In consequence of this complexity, a so-called Head-Related Transfer Function
(HRTF) is used. This function describes how a sound wave is filtered given the
position of the sound origin and the head. One way of obtaining the HRTF is
to measure it using small microphones inside the ears of a person. This HRTF
allows for a much better sound localization, as it incorporates the small differences
between a sound source coming from the front or the back of the listener. Even
though each person would have their own HRTF, the human brain is capable of
learning a new HRTF and adapting to it [45]. Of course, the closer the used HRTF
is to the real HRTF of the person, the easier and better the localization will be.

2.7 Algorithms Used or Tested

In this section the most important parts of the algorithms used or tested in this
thesis will be explained.

2.7.1 V Disparity

V disparity was introduced by Labayrade et al. [26] to be able to detect obstacles
on non-flat road surfaces. The idea is to create a histogram of the disparity values
in an (u, v)-image environment and detect the road surface as a piecewise linear
curve.
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Figure 2.5: Example disparity map I∆ and the corresponding v disparity map Iv∆. (Figure from
[26])

Construction of the v disparity image is as follows: Suppose there is a disparity
map I∆. Let H be a function of I∆, such that

H(I∆) = Iv∆. (2.4)

Denote Iv∆ as the v disparity image. Points with the same disparity along an image
line i are accumulated by H(I∆). For each image line i, the abscissa uM of a point
M in Iv∆ corresponds to disparity ∆M and its intensity value iM corresponds to the
number of points with that disparity ∆M on line i. On each line i, iM is calculated
as follows:

∀i : iM = ∑
P∈I∆

δvP,iδ∆P,∆M (2.5)

where δi,j is the Kronecker delta.

In other words, given disparity map I∆, the v disparity map Iv∆ is constructed by
accumulating the points of same disparity in I∆ along the ~v axis. Figure 2.5 shows
an example disparity map I∆ and the corresponding v disparity map Iv∆.

Once the v disparity map Iv∆ is constructed, robust line finding methods, such as
Hough transformation can be used to find the appropriate lines, which represent
the road surface. Given the disparity of the road surface, it is simple to remove it
and only keep possible obstacles.
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2.7.2 Random Sample Consensus (RANSAC)

RANdom SAmple Consensus (RANSAC) is a robust iterative algorithm. It can be
used to estimate the coefficients of a mathematical model, such as a plane, that fits
given data points. Due to the way RANSAC operates it is robust against outliers,
which would have a severe impact on methods, such as least squares optimization
[46]:

1. Randomly select minimum number of points needed to be able to fit the used
model.

2. Check model hypothesis against the whole input data set.
3. Record how well the input data fits the model according to a loss function.
4. Repeat until sufficiently enough points consent with the hypothesis.

As the basic RANSAC algorithm weighs every point the same, it can lead to wrong
results. For example, in case of a step, a slanted plane might have a better fit overall
than the real geometry, therefore, it is possible to use surface normals to support
the thesis. Only if the point’s surface normal coincides with the surface normal of
the hypothesis it is considered as an inlier. Various methods to estimate the surface
normal of a point in a point cloud exist, like employed by the point cloud libraries
surface normal estimation [47], which uses a kd-tree [48]. Depending on the layout
of the data an organized neighbor tree or integral images [49] can be used to speed
up the calculation. However, the surface normal estimation of a large but sparse
point cloud is computationally expensive.

2.7.3 Vector Field Histogram (VFH)

The Vector Field Histogram (VFH) introduced by Borenstein and Koren [50] is
an efficient wayfinding algorithm for robots. The Vector Field Histogram was
developed as an improvement over their previous Virtual Force Field algorithm
and eliminates its shortcomings. It employs a two-stage data-reduction technique
resulting in three levels of data representation. As each new sensor reading in-
fluences the steering direction directly and continuously no abrupt changes in
direction occur.

The two-stage data-reduction technique produces the following three levels of data
representation:
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• The highest level is a 2-d Cartesian histogram grid C, with each cell (i, j)
holding a certainty (probability) value ci,j. These certainty values respond to
the confidence that there exists an obstacle within this cell.
• The intermediate level representation is a 1-d polar histogram H. It consists

of n angular sectors of width α. The width α is freely choosable.
• The lowest level is the output of the VFH algorithm.

To perform the first data reduction step, an active region C∗ of size ws ×ws around
the robot is defined. The robot is always in the middle of the active region, the
so-called Vehicle Center Point (VCP). This active region C∗ is mapped to H by
treating the contents of each active cell c∗i,j as an obstacle vector. The direction of
the vector is defined as follows:

βi,j = tan−1 yj − y0

xj − x0
(2.6)

and the magnitude of the vector is given by:

mi,j = (c∗i,j)
2(a− bdi,j) (2.7)

where

a, b are positive constants

c∗i,j is the certainty value of active cell (i, j)

di,j is the distance between active cell (i, j) and the VCP

mi,j is the magnitude of the obstacle vector

x0, y0 are the present coordinates of VCP

xi, yj are the coordinates of active cell (i, j)

βi,j is the direction from active cell (i, j) to the VCP

Given the direction βi,j it is possible to calculate which sector the active cell c∗i,j
belongs to:

k = b
βi,j

α
c. (2.8)
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Where α is the arbitrarily chosen resolution of the polar histogram H, for example
α = 5◦, n = 72, k = 0, 1, 2, ..., n− 1. Each sector k corresponds to a discrete angle
ρ = kα. Given this information the polar obstacle density (POD) hk is calculated
for each sector k by

hk = ∑
i,j

mi,j. (2.9)

Once the polar histogram H is constructed, the second data reduction is applied.
This step determines the steering direction for the robot. A threshold is applied
to the polar histogram H. The resulting valleys and ridges in the histogram are
evaluated. The size of a valley is defined by the amount of consecutive sections
below the threshold. To determine the steering direction, the biggest valley which
best coincides with the target direction is chosen. The direction of the steering is
then defined to be through the middle of the valley.
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Chapter 3

Design

3.1 Requirements and Constraints

The following section describes the requirements and constraints of the Virtual
White Cane. The overall goal of the system is to warn the user about possible
obstacles in his path. To achieve this goal, it is necessary to detect and remove the
ground floor, as it should not be considered to be an obstacle. All remaining data
points are considered to be not traversable and thus are declared as an obstacle.
The user should be warned about obstacles in their path. There are two different
warning methods, which can be combined or used independently. An acoustic
warning, providing an acoustic image of the obstacles by sequentially playing a
sound originating from the object. This allows the user to create a mental image of
the layout ahead of the device. The second warning method uses the vibrator of
the device. If an obstacle is detected in front of the device and it is below a certain
distance threshold, the device should vibrate and warn the user. This enables the
user to actively scan their surroundings using a sweeping motion to find a free
path.

The aforementioned functionality has to be provided using a soft real-time con-
straint. Currently, a Google Tango enabled device is restricted to five depth readings
per second. Naturally, this provides a constraint on the timing and thus the compu-
tation of the obstacles has to finish before a new depth reading is provided. Further,
due to the motion tracking of a Google Tango enabled device, it is possible to
obtain a transformation such that the depth data stays at the correct global position,
even if the device is moved between two depth readings. Thus, even though only
five depth readings per second are provided, a faster computation is desired to be
able to provide the user with a warning as soon and as accurate as possible.
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Due to the design of the system, further constraints have to be met for optimal
performance. The ground floor is considered to be between 0.8 m and 1.3 m below
the device at any time. This coincides with the average height a mobile device is
held at while the user is standing.

The tilt angle at which the device is held is largely irrelevant. As the angle of the
line to be found in the v disparity map correlates with the tilt of the device, it can
be adapted. With the device’s internal gravity sensor it is easily possible to get the
orientation of the device and therefore adapt to it. The angle of the line in the v
disparity map changes in a linear fashion with the tilt angle of the device, therefore
the angle can be calculated as follows:

angle = k ∗ tilt + d (3.1)

where k and d are the parameters of the line. To find the values of these parameters,
the v disparity map of an empty room with no obstacles was generated. Given
the v disparity map using Hough transform the angle of the line with the largest
response was recorded as well as the tilt angle. Using linear regression on these
recorded data points, the following values for k and d were found:

k = 0.1478
d = 163.223

Using these parameters and the tilt angle of the device, a fairly tight bound of the
line angle can be calculated. Thus, it is possible to only allow a deviation of 1◦.

Obviously, for acoustic warning to be able to give positional sound, stereo speakers
have to be available, for best results stereo headphones should be used.

3.2 Ground Plane Detection

Instead of detecting obstacles, the dual problem of finding the free space is used,
which means the ground plane has to be detected and filtered and every remaining
point is considered to be an obstacle. This section will describe how the ground
floor is detected.

As the system will run on a hand-held device, only a broad assumption about the
devices distance to the ground can be made and the distance might vary greatly
between frames. Therefore, the user is restricted to holding the device at a certain
height as described in Section 3.1.
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3.2 Ground Plane Detection

To be able to robustly detect the ground plane, two algorithms are used sequentially.
At first a v disparity map is created and using Hough transform a line representing
the ground plane is found. The disparity values of this line are then filtered to
separate the possible ground plane from the obstacles. To further refine the ground
plane assumption the output of the v disparity map filtering is used as input for a
RANSAC algorithm. The output coefficients of the RANSAC algorithm are then
again used to crosscheck the whole point cloud. If the v disparity map fails to find
a ground plane, it is assumed that no ground plane is visible and all points are
considered as obstacles. The dataflow of the whole ground plane detection process
is shown in Figure 3.1. The following sections will provide a detailed explanation
of this process.

3.2.1 V Disparity Map

To be able to calculate a v disparity map, the point cloud has to be in an ordered
(u, v) grid. This means that basically each X, Y world coordinate is given by the
(u, v) coordinate and only the depth Z varies. Given an ordered point cloud,
the v disparity can be calculated for each row as mentioned in Section 2.7.1.
This v disparity map is then used to find a ground floor candidate. To do so
a canny edge detector is applied, such that only the most prominent lines are
preserved. Afterwards, a Hough transform is performed to detect these lines.
The Hough transform can be limited to find a line with an angle θ between
[0, π/2], as the ground floor will never produce a line at an non-acute angle. Only
lines which correspond to the ground plane assumption are used. The ground
plane assumption is derived from the constraints defined in Section 3.1. Due to
these constraints it is well defined where the lines have to cross the v disparity
image borders, as well as their slope. It is necessary to follow these constraints,
as otherwise it would not be possible to distinguish between a plane formed by,
for example, a table or the floor. Especially if most of the floor is obstructed by
obstacles like a large table, this would be the case as the most prominent Hough
transform response would be the line representing the table. The resulting disparity
values obtained by these lines are used to filter the point cloud into ground floor
and obstacles.

Even though the tilt angle of the phone can be used to limit the slope of the line
needed, the user still has to be careful how it is held. Not aligning the bottom
edge of the phone to be roughly parallel to the floor will alter the v disparity map.
Doing so violates the assumption that the floor can be modelled as a piecewise
linear curve in the v disparity map, as shown in Figure 3.2 This will cause the
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Ground Detection

New Point Cloud 
Available

Calculate V-
Disparity

Hough Transform

Candidate 
Found

Yes
RANSAC on Floor 

Candidate

No

Use RANSAC model 
to filter PointCloud

Provide Floor and 
Obstacle Point 

Cloud

Add all Points to 
Obstacle Point 

Cloud

Figure 3.1: The point cloud is used to calculate the v disparity map. Using Hough transformation,
the most relevant lines are detected. If no lines are detected all points are considered to
be obstacles. Otherwise, the floor candidate is refined using RANSAC. Then all points
matching the floor model are considered as floor and the remaining are labelled as
obstacles.
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line to oscillate and be much thicker than expected. Figure 3.3 illustrates why the
v disparity starts to oscillate. The horizontal lines of the checkerboard have the
same depth. As long as the device is parallel to the ground, the image lines are
also parallel to the ground, therefore, the disparity is the same. However, once the
device no longer is aligned, the depth readings also start to shift.

3.2.2 RANSAC

To further improve the quality of the ground plane candidate, the points obtained
by the v disparity filtering are used and a ground plane is fitted using the RANSAC
algorithm. To ensure the found plane has the correct orientation in space, the
normal has to be verified. This also allows to compensate to a certain degree if
the user is holding the lower edge of the device not parallel to the ground. The
RANSAC algorithm is still capable of finding a good fit, even though only parts of
the floor will be used as input for it. Finally, the coefficients found by the RANSAC
algorithm are used to filter the whole point cloud and remove the ground plane.
Points are part of the plane, if they are within 7 cm of the plane spanned by the
coefficients. The threshold is set to accommodate for noise in the point cloud.

3.3 Obstacle Detection and Warning

This section will describe how the obstacle detection and warning is performed. It
consists of the Obstacle Detection algorithm and Obstacle Warning.

To be able to give a meaningful warning to the user, the obstacle point cloud
needs to be further refined. For this purpose an obstacle detection algorithm called
Conservative Polar Histogram was developed. This algorithm puts each point into
a polar grid and creates a disparity histogram for each bin of the grid. A threshold
gets applied to each disparity histogram to filter remaining outliers and the nearest
remaining bin is considered to be an obstacle.

After the obstacles are detected, the user needs to be warned about them. Warning
can be done using either tactile, or acoustic warning, or both methods at the same
time. The obstacle detector provides the warning module with the nearest obstacle
in each direction. Acoustic warning places a sound source for each object and
plays them sequentially, while tactile warning is more limited in its capabilities.
Neither the intensity of vibrations can be altered, nor is it possible to provide a
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(a) Device held parallel. (b) Device not parallel to ground.

(c) Color image to the v disparity at
Fig. 3.2a.

(d) Color image to the v disparity at
Fig. 3.2b.

Figure 3.2: V disparity of the same scene, if device is not held parallel to the ground.

32



3.3 Obstacle Detection and Warning

(a) Bottom edge parallel to the ground. (b) Bottom edge not parallel.

Figure 3.3: Horizontal lines on the checkerboard have the same depth.

sense of direction with the vibration unit of the device. Hence, only if an obstacle
is immediately in front of the user, a warning is given.

Further details about the design of these two important core parts of the application
will be given in the following sections. First, the obstacle detection is described
followed by the two different ways of warning, which will be provided by the
application.

3.3.1 Obstacle Detection

At the present time, widely used obstacle avoidance algorithms [51] use a polar
histogram to detect likely obstacles and to steer a robot away from them. The
VFH algorithm introduced by Ulrich and Borenstein [51] is not able to simply
detect obstacles and let a person decide where they would want to go, based on the
information given by the algorithm. It is not possible to distinguish between a small,
but close, or a large, but far away obstacle. Both would produce a similar response.
Due to the fact the robot is steered, this does not matter, as the response gets larger
if there would be a collision with the obstacle and the robot would simply get the
command to change direction towards a possibly free space. However, a human
might not want to be “steered” and rather find his/her own way. Another problem
with the VFH is the height and angle at which a person would hold a mobile
device. It is possible to hold the device in such a way that for example a table edge
in front of the user might produce the response of a small or far away obstacle,
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as there are only a few range readings on the table. Further, the traditional white
cane would pass under the table and the table might not be detected as an obstacle
and a collision might occur. To prevent this from happening, the user needs to be
informed about each obstacle and the distance to it.

The point cloud provided by the Ground Plane Detection module described in
Section 3.2 should now only contain obstacles. Obstacle detection is performed in
a conservative manner similar to Bernabei et al. [4]. This means no obstacle should
go undetected and give priority to the closest obstacle in the path. The points have
to be transformed into the OpenGL world coordinate system and translated such
that the camera is at the origin and then a polar histogram is created. With the
points in the OpenGL coordinate system, a projection onto the ground plane can
be easily achieved by omitting the y axis resulting in a 2-d point pt2. Each point
in the obstacle point cloud is associated with its respective bin k, according to
their angle in polar coordinates calculated as in Eq. 2.6 and Eq. 2.8 with an α = 5◦.
Additionally, for each 2-d point pt2 the euclidean distance d from the origin - which
is the camera - is calculated.

pt2 = (ptogl.x, ptogl.z)

d = dot(pt2, pt2)
(3.2)

The euclidean distance d is then inverted, scaled and discretized into a range from
[0, 255]. As the exposure time of the ToF camera is fixed, a limit to the closest
possible depth reading is inherent. Thus, a depth reading closer than 0.2 m is very
unlikely to be valid and the numerator of dpseudo can be set to 0.2. If closer depth
readings can occur, this value should be changed. As the depth values are not
obtained using stereo images, the values are interpreted as a ‘pseudo disparity’
dpseudo.

dpseudo = b
0.2
d
∗ 255c (3.3)

Given the pseudo disparity dpseudo and the bin k, a disparity histogram is created
for each bin by counting the number of occurrences for each disparity value dpseudo.
Assuming there are K = 72 bins in total, this results in an array of size 72× 256.
Listing 3.1 provides pseudo code of how the Conservative Polar Histogram is
formed.

The disparity histogram allows to further filter outliers from the obstacle point
cloud by applying a threshold and therefore removing bins containing only a
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1 foreach point p t o g l
2 / / ‘ ‘ p r o j e c t ’ ’ t o 2−d
3 pt 2 = ( p t o g l . x , p t o g l . z ) ;
4

5 / / c a l c u l a t e a n g l e b e t a and b i n number e . g . ALPHA = 5 d e g r e e s
6 beta = atan ( pt 2 . x / pt 2 . z ) ;
7 k = beta/ALPHA;
8

9 / / c a l c u l a t e d i s t a n c e and pseudo d i s p a r i t y
10 d = dot ( pt 2 , p t 2 ) ;
11 d pseudo = f l o o r ( 0 . 2 / d i s t a n c e ∗ 255 ) ;
12

13 / / use k and d p s e u d o t o i n c r e m e n t t h e h i s t o g r a m v a l u e
14 dispari tyHistogram [ k ] [ d pseudo ]++;

Listing 3.1: Pseudo code of Conservative Polar Histogram creation.

few points. After a threshold was applied to the disparity histogram, the biggest
remaining non-zero disparity is considered to be the nearest obstacle in that
direction. Figure 3.4 shows an example of how the conservative polar histogram
works. The blue objects are obstacles, and the area around the user is sectioned
into bins. For each bin a disparity histogram is created, then a threshold is applied
and evaluated. The red line indicates the distance to the objects. Figure 3.5 shows a
flowchart of the performed steps during the obstacle detection algorithm.

Once the biggest disparity is found, it has to be converted back into 3-d X, Y, Z
coordinates. The bin number k is easily converted back to an angle θ by multiplying
it by α and adding α/2. By adding α/2, the angle will be in the middle of the bin
instead of at the margin. Lastly, a conversion from degrees to radians is needed, as
the trigonometric functions expect radians as input.

θ =
k ∗ 5 + 2.5

180
∗ π (3.4)

Given the angle θ, the disparity value still needs to be converted back into the
depth value d by simply inverting Eq. 3.3, giving:

d =
0.2

dpseudo/255
(3.5)

Angle θ and distance d are polar coordinates, therefore they can be easily converted
into euclidean coordinates by:
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Disparity Histogram

Figure 3.4: An exemplary Conservative Polar Histogram. The blue objects represent obstacles, while
the red line indicates distance to the object. The points are transformed into their polar
coordinates (θ, d) and categorized into bins. For each bin a disparity histogram is created
and used to determine the closest obstacle.

X = d ∗ cos(θ)
Z = d ∗ sin(θ)
Y = 1

(3.6)

As the Conservative Polar Histogram only works on a 2-d representation of the
data, the third coordinate Y is lost. Hence, each obstacle is simply placed at a
height of Y = 1 at the moment.

3.3.2 Obstacle Warning

The design of the obstacle warning is as central to the function of the application as
finding obstacles in the first place. If the user cannot interpret the warning rapidly
and easily, it might not provide any additional benefit to them. The worst case
scenario would result in a collision, if the user continues to walk while trying to
interpret the warning or simply misinterprets it.

Once all obstacles are detected, the user needs to get a warning about their position.
This section will describe the two possible ways chosen to warn the user.
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Obstacle Detection 
Flowchart

Obstacle Point 
Cloud Provided

Divide Points into 
Polar Histogram 

Bins

Calculate Disparity 
for each Point

Create Histogram of 
each Disparity value

Find next closest 
non-zero Bin

Above 
Threshold?

Yes

Provide Direction 
and Distance

No

Figure 3.5: Obstacle Detection Flowchart. Each point is put into a bin according to its position.
Afterwards, the disparity is calculated and a histogram of the disparity is created. The
nearest non-zero value above a threshold is considered to be the closest obstacle in the
direction of the bin.
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Vibrator Warning

One way to provide a warning is to use the vibrator to inform the user about ob-
stacles in their path. Unfortunately, the intensity of the vibrations is not adjustable
in Android. Therefore, it is only possible to provide a warning once an obstacle
is within a certain distance, defined as 1 m, of the user. Further, it is not possible
to communicate the exact position where an obstacle resides or provide the user
with a full mental view of the scene in front of them without moving the device.
Hence, only a warning if an obstacle is located directly in front of the mobile device
is provided, which allows the visually impaired to use the device like a scanner.
To achieve this, only the current front facing bins from the obstacle detection
algorithm are used to warn the user. As the Conservative Polar Histogram resides
in a world coordinate system with the device rotating at the origin, the front facing
bins are calculated in relation to the device’s orientation.

Acoustic Warning

Even though hearing is an essential sense for visually impaired people, which
should not be hindered if possible, acoustic warning provides better possibilities
to inform the user without the need of another device. Due to stereo sound and
HRTF it is possible to position a source of sound, such that the user immediately
gets a sense of where obstacles are in relation to the device.

A source of noise is positioned for each bin at the distance given by the Conservative
Polar Histogram described in Section 3.3.1. These sounds are played sequentially
like a radar. With this information the VI user can create a mental image of his
surroundings.

Choosing the right sound file to be played is a difficult task. It should obviously be
easily differentiated from any natural sound source, as this could lead to confusion
otherwise. Further, the more complex the sound is, the easier it is to be located. It
should contain various frequencies and not be a simple sine wave. However, the
sound cannot be too long as it has to be played like a sonar and otherwise many
sound sources would just overlap and confuse the user or it will take too long
for each sound to be played and the user cannot react in time. As the sounds are
played like a sonar in a round robin fashion, they seem to be animated (the sound
moves along the obstacles) and they will repeat as the warning module is called
repeatedly. Repeating and animating sounds helps the user to pinpoint them much
faster.
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3.4 Software Design

This section will describe how the software is designed and how each software
component is supposed to communicate with each other. There are three main
components:

• Point Cloud Provider
• Ground Detection Module
• Warning Module

The Point Cloud Provider follows a publish-subscribe pattern. Each time a new
point cloud is available, the Point Cloud Provider publishes the new point cloud
and notifies each subscriber. The Ground Detection Module is subscribed to the
Point Cloud Provider and processes the point cloud as soon as it is available. After
the first point cloud is received and processed by the Point Cloud Provider, it is
possible to poll for the ground plane cloud or the obstacle cloud at any given time.
The Warning Module polls the Ground Detection Module at set intervals and trig-
gers a warning if needed. Figure 3.6 shows how the processes of each component
interact with each other. Each process is supposed to be started once and run until
the application is terminated. In Figure 3.7 the dataflow between the processes is
shown. The VirtualWhiteCaneService connects to the TangoService, which acts
as the Point Cloud Provider and provides the TangoPointCloud to the Ground
Detection Module. The Ground Detection Module processes the point cloud using
v disparity and RANSAC. The resulting obstacle cloud is polled by the Warning
Module, which uses the ObjectDetector to create a ConservativePolarHistogram.
This is used as input for the acoustic and tactile warning.

3.4.1 Point Cloud Provider

The main purpose of the Point Cloud Provider is to notify each subscriber whenever
a new point cloud is available. As this is handled mostly by Google Tango, the
design of this module is already given. Google Tango allows to connect a callback
function, which is called whenever a new point cloud is available as shown in
Listing 3.2.

However, it is important that this callback function does not do any processing on
the data as no new data will be received until this callback returns. Google Tango
further provides a struct TangoSupportPointCloudManager, which allows thread
safe updates and access to the point cloud data. The data of this manager can
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Point Cloud 
Provider

Ground Detection Module

Publish Point Cloud

Poll Extracted Point Cloud

Warning Module

Figure 3.6: Process architecture of the system. The Point Cloud Provider continuously runs and
provides new point cloud data to the Ground Detection Module. The Ground Detection
Module processes this data and makes it available to the Warning Module, which
periodically warns about the obstacles.

1 TangoErrorType TangoService connectOnPointCloudAvailable ( void ( ∗ ) ( void ∗
context , const TangoPointCloud ∗ cloud )
TangoService onPointCloudAvailable , . . . )

Listing 3.2: Tango connect callback function on new point cloud.
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onTangoPointCloudAvailable()

TangoPointCloud

VirtualWhiteCaneService

Connects Tango Service

GroundDetectionWorkerThread

vDisparityMap
RANSAC 

GroundPlane

WarningModuleThread

ObjectDetector

AcousticWarningTactileWarning

PointCloudProvider

GroundDetectionModule
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Cloud
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Figure 3.7: Dataflow diagram: The VirtualWhiteCaneService connects to the TangoService,
which provides the point cloud to the Ground Detection Module. The Ground De-
tection Module generates a v disparity map and uses it as input for the RANSAC
ground detection. The output of this is used as input for the Warning Module where it
is used to create the ConservativePolarHistogram and create the warning.
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1 std : : vector<std : : funct ion<void ( )>∗> s u b s c r i b e r f u n c t i o n s p c ;
2 TangoSupportPointCloudManager ∗pointCloudManager ;
3

4 void TangoHandler : : SubscribePointCloudUpdate ( std : : funct ion<void ( )> ∗
s u b s c r i b e r ) {

5 s u b s c r i b e r f u n c t i o n s p c . push back ( s u b s c r i b e r ) ;
6 }
7

8 void TangoHandler : : onPointCloudAvailable ( const TangoPointCloud ∗
pointCloud ) {

9 / / up da t e po intCloudManager p o i n t c l o u d d a t a
10 TangoSupport updatePointCloud ( pointCloudManager , pointCloud ) ;
11

12 / / c a l l s u b s c r i b e d f u n c t i o n s
13 for ( s td : : vector<std : : funct ion<void ( )> ∗> : : i t e r a t o r i t =

s u b s c r i b e r f u n c t i o n s p c . begin ( ) ;
14 i t != s u b s c r i b e r f u n c t i o n s p c . end ( ) ; ++ i t ) {
15 (∗∗ i t ) ( ) ;
16 }
17 }

Listing 3.3: Subscribe callback function to be called as notification whenever a new point cloud is
available.

therefore be updated with each onPointCloudAvailable callback. The registered
callback further has to notify each subscriber about the new point cloud data. To
subscribe, the subscriber has to register a callback function on their own, which
gets called from within the onPointCloudAvailable callback (see Listing 3.3). Each
subscriber is responsible to not do any processing on the data within its notification
callback as this would block the onPointCloudAvailable callback.

Figure 3.8 shows this routine. As soon as new point cloud data is available,
the onPointCloudAvailable callback is triggered, which in turn updates the
TangoSupportPointCloudManager and notifies each subscriber.

3.4.2 Ground Detection Module

The Ground Detection Module is subscribed to the Point Cloud Provider described
in the previous section. Subscription is done by registering a callback function
to the Point Cloud Provider. The Ground Detection Module is implemented as a
so-called functor, which allows to call an object like a function. To create a functor,
the class has to overload operator()(), as demonstrated in Listing 3.4. Therefore,
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Figure 3.8: New point cloud data triggers the onPointCloudAvailable callback. Within this callback
the TangoSupportPointCloudManager is updated with this new data. Further, each
subscriber is notified.

it is possible to use the object itself as callback function for the subscription to the
Point Cloud Provider. This module runs in its own thread to be able to process a
new point cloud as soon as it is available without blocking the acquisition of new
point cloud data or the Warning Module. Access to the raw point cloud data is
done using the TangoSupportPointCloudManager.

1 TangoSupportPointCloudManager ∗pointCloudManager ;
2 std : : c o n d i t i o n v a r i a b l e pointc loud cv ;
3

4 void GroundDetectionWorkerThread : : operator ( ) ( ) {
5 / / f e t c h l a t e s t p o i n t c l o u d manager
6 pointCloudManager = tango white cane : : u t i l : : tangoHandler .

GetPointCloudManager ( ) ;
7

8 / / wake up / n o t i f y t h r e a d l o o p t o p r o c e s s new d a t a
9 pointc loud cv . n o t i f y a l l ( ) ;

10 }

Listing 3.4: To obtain a functor the class has to overload operator()().
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Figure 3.9: The Ground Detection Module is notified by the Point Cloud Provider as soon as a new
point cloud is available. The Ground Detection Module then accesses the new point
cloud data and acquires a mutex lock to safely process the point cloud.

As soon as new point cloud data is available from the Point Cloud Provider the
Ground Detection Module thread wakes up and updates its obstacle point cloud.
This is done in a two-step process, as described in Section 3.2.

It is crucial for the Warning Module to have access to the obstacle cloud. To ensure
the validity of the point cloud data, a deep copy is required. Otherwise, it would
be possible to update the data at the same time as it is read, leading to invalid
data.

The dataflow of the Ground Detection Module is shown in Figure 3.9. The Point
Cloud Provider notifies the Ground Detection Module which acquires the new
point cloud using the TangoSupportPointCloudManager. Then a mutex lock is
acquired to safely process the point cloud. Further, when the obstacle cloud is
requested the lock is acquired and a deep copy of the obstacle cloud is returned to
ensure it stays valid.
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1 c l a s s Objec tDetec tor {
2 public :
3 / / I m p l e m e n t a t i o n has t o e n s u r e t h r e a d s a f e t y
4 v i r t u a l std : : vector<Eigen : : Vector4 f> GetObstacleCentroids ( ) = 0 ;
5

6 v i r t u a l void SetPointCloud (
7 pcl : : PointCloud<pcl : : PointXYZ > : : P t r obstacleCloud ) {
8 std : : lock guard<std : : mutex> lk ( obs tac le c loud mutex ) ;
9 obstac leCloud = obstacleCloud ;

10 } ;
11

12 v i r t u a l void SetMVP ( f l o a t mvp[ 1 6 ] ) {
13 std : : lock guard<std : : mutex> lk ( obs tac le c loud mutex ) ;
14 std : : copy (mvp, mvp + 16 , mvp ) ;
15 } ;
16

17 protected :
18 std : : mutex obs tac le c loud mutex ;
19

20 pcl : : PointCloud<pcl : : PointXYZ > : : P t r obstac leCloud ;
21 f l o a t mvp [ 1 6 ] ;
22 } ;

Listing 3.5: The ObjectDetector Interface.

3.4.3 Warning Module

The Warning Module runs within its own thread. This is crucial, as warning should
not be blocked by any long running tasks like the Ground Plane Detection. The
Warning Module has two main components: the object detector and the actual
warning. This allows to easily change or enhance the way the warning is performed,
as well as to change the method how obstacles are defined.

Object Detector Interface

It is required for the object detector to produce a list of 4-d vectors. The first three
entries represent the 3-d coordinates around the device with fixed orientation (this
is the OpenGL world coordinate system with the origin translated to the device).
The fourth entry represents the bin number; this is not strictly necessary as this
could be calculated from the world coordinates, but it saves some computational
effort.
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Even though this use of the 4-d vectors is tailored towards the implementation in
this thesis, it is still possible to interchange the object detector rather easily. For it
to work with the acoustic warning, only the first 3 coordinates are needed, while
the tactile warning currently benefits slightly from the fourth entry.

The ObjectDetector interface (see Listing 3.5) provides a mutex lock, which en-
sures thread safety. The standard implementation of setting the point cloud to be
processed and a possible transformation, which should be applied are already
using this lock. However, to ensure the data does not change while it is processed
within GetObstacleCentroids each implementation has to ensure thread safety by
locking the obstacle cloud mutex .

Warning Interface

The warning interface takes a list of obstacle coordinates as input. These coordinates
are obtained by the object detector. It is up to the implementation of the warning
module how these coordinates are interpreted.

Splitting the object detection and the warning interface into two separate classes
allows to interchange the modules as needed. It further allows to reuse the output
of an object detector for multiple warning modules. As already mentioned in the
previous section, the tactile warning and the acoustic warning both can use the
output of the same obstacle detector, however, a different module might interpret
the given coordinates in a different way. For example, a different acoustic warning
module might want to alter the sound depending on the size of the obstacle and
therefore interpret two consecutive coordinates as a virtual rectangle bordering the
obstacle.

1 c l a s s WarningModule {
2 public :
3 v i r t u a l void warn ( std : : vector<Eigen : : Vector4 f> obstac leCoordinates )

= 0 ;
4 } ;

Listing 3.6: The WarningModule interface.
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Implementation

This chapter describes implementation details of the Virtual White Cane application.
It will first depict the hardware used, then the development environment and which
frameworks and APIs were used. The last two sections will go into further detail
about the software components and the algorithm design.

To be able to compile the software Android Studio 2.3 with the Android Native
Development Kit (NDK), version 15b, is needed. Using a later release of the NDK
might not work, as the used boost version does not work using unified headers
and the old libc headers used by the NDK are considered deprecated and will be
removed1.

4.1 Hardware Setup

As of now (2017), there are currently only two Google Tango enabled devices
available, the Lenovo Phab 2 Pro and the Asus Zenfone AR. At the start of this
thesis the Asus Zenfone AR was only announced and not yet available for purchase.
As only the Lenovo Phab 2 Pro was available and with Google Tango at the core of
the application, the choice of hardware was therefore limited to one device.

The Lenovo Phab 2 Pro comes with a Qualcomm Snapdragon 652 mobile processor,
which is an octa-core processor and comes with the Adreno 510 GPU. It has a
64-bit CPU architecture with the following specifications:

• 4x 1.8 GHz Cortex-A72

• 4x 1.4 GHz Cortex-A53

1https://android.googlesource.com/platform/ndk/+/ndk-r15-
release/docs/UnifiedHeaders.md
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• 64 GB ROM
• 4 GB RAM

Therefore, it has ample computing power and should be capable to cope with the
demands of the application.

The GPU is also important, as it allows the use of Khronos OpenCL which can
be used to speed up some computations dramatically. It has a clock of 600 MHz,
128 ALUs, a unified shader model, and unified memory. The unified memory is
important, as this means the memory is shared with the CPU, therefore the GPU
has access to the same data as the CPU without the need to copy it into another
memory. This is very beneficial, as copying data between memories is often a
bottleneck of General-purpose Computing on Graphics Processing Units (GPGPU)
programs. The Adreno 510 has support for the following APIs:

• OpenCL 2.0 Full Profile
• OpenGL ES 3.2
• OpenGL 3.2
• Vulkan 1.0

While Vulkan is supported by the Adreno, it is not yet supported by the latest
Android version (6.0 Marshmallow) available for the Lenovo Phab 2 Pro. However,
it will be supported once Android 7.0 Nougat is available for the Phab 2 Pro. Even
though there is no official support of OpenCL by Android, the Lenovo Phab 2 Pro
comes with the Open CL 2.0 libraries, which allows developers to use it. Hence,
the GPGPU programming language used was OpenCL.

It further comes equipped with a 224× 172 pixel ToF depth camera, a 640× 480 fish-
eye lens camera used by Google Tango for motion tracking, and a high resolution
full HD 1920× 1080 pixel color camera. Further sensors included are:

• Compass / Magnetometer
• Proximity sensor
• Accelerometer
• Ambient light sensor
• Gyroscope
• Barometer

The Lenovo Phab 2 Pro is powered by a 4050 mAh Li-ion battery.

48



4.2 Development Environment

Virtual White Cane Application

Virtual White Cane Software Stack

NDK 15Android SDK

Google 
Tango SDK

PCL OpenCV OpenCL
Google Cardboard 

VR Audio

Point Cloud Provider
Ground Floor 

Detector
Warning 
Module

Figure 4.1: Software stack of the Virtual White Cane Application. Magenta colored boxes operate
within the native layer, while the blue boxes operate in the native and the Java layer of
Android.

4.2 Development Environment

The software was developed on Windows 7 using Android Studio 2.3 with NDK
15b. Figure 4.1 shows the different software components needed by the Virtual
White Cane application. The magenta colored boxes operate entirely in the native
layer, while the blue boxes use both, the native and the Java layer. This section
describes these components in more detail.

4.2.1 Android Native Development Kit (NDK)

The Android Native Development Kit (NDK) helps with the development of
Android applications using C/C++ code. It also provides some platform libraries,
which allow to access physical device components like sensors. Using the NDK
allows to reuse existing C/C++ libraries on Android and enables the developer
to get some extra performance out of the device. Since Android Studio 2.2 it is
possible to compile native code directly using Gradle. Communication between
Java and native code is done using the Java Native Interface (JNI).

The NDK ships the toolchain to compile for the target platform, such as ARM,
MIPS, or x86. Additionally, it allows to pack the compiled native libs into the apk
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Figure 4.2: Native libraries reside between the HAL and the Android Framework within the
Android stack. (Figure from [52])

and therefore allows the developer to ship his native libraries with his application.
Without this the native libs would have to reside in a specific folder on the device’s
internal memory (’/sys/libs/’), which is not accessible unless you are a OEM or
work closely with one. However, using the NDK does not allow to overwrite the
usual Android restrictions and every application still runs within its own sandbox.
Figure 4.2 shows where native libraries reside within the Android stack.

Since Android Studio 2.2+ and the Android plugin for Gradle version 2.2.0+ it is
possible to directly compile your native library with Gradle. This makes the build
process straight forward, as everything is handled by Gradle. The Android plugin
for Gradle allows to define an “externalNativeBuild” target where the targeted
Application Binary Interfaces (ABIs) can be selected, as well as compiler flags or
other arguments, for example CMake arguments. Despite the convenience given
by the Android plugin for Gradle, a build file for the C/C++ source is still needed.
There are two possible ways to configure the native build, namely ndk-build make
files or CMake build files. Even though ndk-build make files are still supported for
backwards compatibility reasons, it is recommended to start a new project using
CMake build files. The configuration of the native library using CMake works
just like any other C/C++ project using CMake though the paths for find * calls
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NDK Build Process
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Figure 4.3: The ‘Java App Source’ and ‘Java Native Library’ (providing the JNI calls) are compiled
by Gradle using javac. It is possible to generate the C Header using ‘javah -jni’ or write
them by hand. The header and the C/C++ source code is then compiled according to
the ‘CMakefile’. (Figure adapted from2)

are set to only search the sysroot path. Therefore, it prevents CMake to look for
libraries on the host platform, which are probably compiled for the host platform.
Consequently, one has to be aware of this, if adding other pre-compiled libraries is
desired. Figure 4.3 shows how the components interact with each other during the
NDK build process. The ‘Java App Source’, ‘Java Native Library’, ‘C Source Code’,
and ‘CMakefile’ have to be written by the developer. The ‘Java Native Library’
represents the Java interface to the native library (see Java Native Interface (JNI)).

2M. Gargenta, Learn about Android Internals and NDK - YouTube. [Online]. Available: https:
//www.youtube.com/watch?v=byFTAhXVF7k (visited on 09/18/2017).
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Figure 4.4: The JNI interface pointer. The interface pointer is a pointer to a pointer, which points to
an array of pointers. Each pointer in the array points to an interface function. (Figure
from [54])

4.2.2 Java Native Interface (JNI)

The Java Native Interface (JNI) is a standardized interface to call native code from
Java. This allows to call for example C/C++ code directly from Java. It defines the
naming and coding convention, such that the Java Virtual Machine (VM) knows
how to find and call the native code. The JNI is built into the Java VM.

To indicate in Java which methods are supposed to be implemented in a na-
tive library, the method header needs to have the native keyword. Due to the
native keyword the Java compiler assumes that the method is implemented
elsewhere and accepts the unimplemented method. To load a native library, the
System.loadLibrary method has to be called.

To access Java VM features, native code needs to call JNI functions. Those functions
are available through an interface pointer which is structured like a C++ virtual
function table (see Figure 4.4).

A native JNI function’s first parameter is always a pointer to the JNIEnv, which is
the interface pointer. This interface pointer is only valid within the current thread.
The second parameter is always a jobject, representing the “this” pointer of the
caller. All following parameters are the parameters defined by the function.

Data passed to a native function is always a local reference. This means it will be
valid only until the end of the function. Normally, a developer does not have to
worry about garbage collection of local references, as this will happen automatically.
However, it is possible to manually delete these references once they are no longer
needed. This might be particularly useful if large array elements are accessed and
processed, but are no longer needed afterwards. To create a persistent reference,
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which will not succumb garbage collection at the end of the scope of the function,
it has to be made global reference. A global reference will never be released
automatically, therefore the developer has to delete those references once they are
no longer needed.

As already mentioned earlier, a JNI interface pointer is only valid within a thread
and it cannot be passed onto another thread. In case of the creation of a new thread
in native code, it has to register to the Java VM by calling the AttachCurrentThread

method. An attached thread has to make sure it detaches from the Java VM by
calling the DetachCurrentThread method prior to termination, as the Java VM
cannot unload as long as threads are attached to it. An attached thread is able
to get its own JNI interface pointer by calling the GetEnv method from the Java
VM.

JNI usually allows multiple Java VMs to exist. However, the Android implementa-
tion of JNI only allows a single Java VM. The Java VM provides the “invocation
interface” functions. The best way to keep a reference to this single Java VM is
during the JNI OnLoad method.

Figure 4.5 shows how the JNI changes the way Android applications access native
libraries. While usually Applications written entirely in Java would use the Android
framework to access system libraries, using the JNI allows to directly access native
libraries.

4.2.3 Google Tango SDK

The Google Tango SDK basically is the heart of the application. It provides not
only the depth readings from the ToF camera, but also various transformations,
such as from the depth camera coordinate system to the color camera. With the
frames of reference defined by Google Tango it is possible to put the data into the
same coordinate system.

Basically Google Tango distinguishes between the following two slightly different
right-hand convention coordinate systems:

• Right Hand Local Level
• Right Hand Android (Identical to Android Sensor coordinate system)

The Right Hand Local Level coordinate system has the x axis horizontal and the
positive direction pointing to the right, the z axis is vertical with positive direction
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Application

Framework Classes

RuntimeYour Libraries

Stable ABI

System Libraries

Linux Kernel

JNI

Application stack using JNI

Figure 4.5: Normally, an Android application written entirely in Java would use the Android
framework, which in turn uses JNI internally, to access underlying system libraries.
Using the JNI enables the application code to bypass the Android framework and access
your own native libraries.
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Figure 4.6: The right hand local level system. The x axis is horizontal and pointing to the right. The
z axis is vertical and pointing up and the y axis is depth and pointing away from the
user. (Figure from [6])

Base Frame Coordinate System
COORDINATE FRAME START OF SERVICE Right Hand Android

COORDINATE FRAME AREA DESCRIPTION Right Hand Local Level
COORDINATE FRAME DEVICE Right Hand Android

Table 4.1: The Base Frame and its associated coordinate system.

pointing up and the y axis represents the depth pointing away from the user (see
Figure 4.6).

The Right Hand Android coordinate system is identical to the Android Sensor
coordinate system. If the device is held in the default orientation, the x axis is also
horizontal and in positive direction pointing to the right. The y axis is vertical
and positive direction pointing up and the z axis is pointing towards the user,
representing depth (see Figure 4.7).

The different frames of reference used by Google Tango have different coordinate
systems associated with them. See Table 4.1 for more information.
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Figure 4.7: The right hand android system. The x axis is horizontal and pointing to the right, the y
axis is vertical and pointing up, and the z axis is depth and pointing towards the user.
(Figure from [6])

Each component such as the IMU, the depth camera, the color camera of a device
resides in its own coordinate system with itself at the origin. Using intrinsic and
extrinsic parameters, it is possible to calculate a transformation between them. An
example extrinsic parameter would be the translational difference between the
IMU and the color camera on the device. In other words, the extrinsic parameters
account for the positional differences of the sensors. The intrinsic parameters
of a camera are, for example, the focal length or the field of view. These intrin-
sic and extrinsic parameters are needed to transform, for example, the depth
camera’s readings into the color camera’s image and can be obtained using the
TangoService getCameraIntrinsics method.

The Tango SDK provides the depth readings from the ToF camera as an unordered
point cloud. However, given the camera intrinsics, it is easy to reproject those
points into an ordered image.

Given the 3-d point (X, Y, Z) one can calculate the pixel coordinate by:
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x =
X
Z
∗ fx +

rd
ru

+ cx,

y =
Y
Z
∗ fy +

rd
ru

+ cx

(4.1)

with the normalized radial distance defined as

ru =

√
X2 + Y2

Z2 (4.2)

and the distorted radial distance as

rd = ru + k1 + r3
u + k2 ∗ r5

u + k3 ∗ r7
u. (4.3)

The focal length fx and fy, the principal point cx and cy, as well as the distortion
coefficients k1, k2, and k3 are part of the intrinsic calibration. However, the distorted
radial distance is depending on the camera model used. Equation 4.3 is only valid,
if Brown’s camera model [55] is used, as the calibration for the ToF camera does.

Another important system is the OpenGL coordinate system. While the axis follow
the same notion as the Right Hand Android coordinate system, the OpenGL world
frame defines a fixed point in space as origin. In the default orientation, an Android
device can be used to control an OpenGL camera and they would have the same
coordinate system. Figure 4.8 shows how the OpenGL world frame has a fixed
point in space as origin, while the camera can move freely and will always have
the camera as origin. In the default orientation, the OpenGL camera coordinate
system is equal to the Right Hand Android system.

The Google Tango SDK provides a support function to easily get the transformation
matrices between two key frames (see Listing 4.1). It is also possible to define the
target and base coordinate systems (engine). The target frame and engine define
which coordinate system the matrix converts from and the base frame and engine
where the matrix converts to. The timestamp parameter defines the timestamp
of the transformation matrix, while 0 will return the latest transformation matrix
available. Display rotation is the index of the rotation between the device’s default
orientation and the current orientation. The transformation matrix is returned
using a pointer as parameter in column-major order as doubles. A version of this
function, which returns the matrix as floats does also exist. The return value of the
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Figure 4.8: The OpenGL coordinate system. (Figure from [6])

function is either TANGO SUCCESS on success, TANGO ERROR on an error, or
TANGO INVALID if the input is invalid.

1 TangoErrorType TangoSupport getDoubleMatrixTransformAtTime (
2 double timestamp ,
3 TangoCoordinateFrameType base frame ,
4 TangoCoordinateFrameType target f rame ,
5 TangoSupportEngineType base engine ,
6 TangoSupportEngineType t a r g e t e n g i n e ,
7 TangoSupportRotation d i s p l a y r o t a t i o n ,
8 TangoDoubleMatrixTransformData ∗matr ix transform
9 )

Listing 4.1: Tango support function to obtain a transformation matrix.

4.2.4 Khronos OpenCL (on Android)

To improve the performance, some algorithms were designed and implemented
to be run in parallel. This was achieved using Khronos OpenCL. Due to the fact
that OpenCL is intended as a cross-platform standard, it is easy to run on any
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supported device. This section will give a brief overview over OpenCL in general
and how it can be used with Android.

Khronos OpenCL (Open Computing Language)3 is an open, royalty-free standard
to perform cross-platform parallel programming for many different processors
found in personal computers or even mobile devices. It consists of the following
core ideas [57]:

• Platform Model
• Execution Model
• Memory Model
• Programming Model

The OpenCL Platform Model consists of one host and one to many compute
devices. An example for a compute device might be a 4 core CPU, a powerful
graphics card with hundreds of cores, or even a mobile phone. A compute device
has one to many compute units, each of them having again one to many processing
elements. In Figure 4.9 this abstraction how OpenCL views the hardware is shown
graphically.

The Execution Model splits the program into two parts: the host program and the
kernel. The host program is responsible for creating and managing the context
in which the kernel will execute. This well-defined context includes information
about the following:

• Devices The devices exposed by the OpenCL platform.

• Kernel Objects The OpenCL functions and their arguments that run on the
OpenCL device.

• Program Objects The program containing the kernel functions.

• Memory Objects Variables used by the host and OpenCL devices. Instances of
kernels operate on these.

The work of a Kernel is done on “work-items”, which are grouped into “work-
groups”. The amount of work-items and work-groups to be launched is defined in
an index space called “NDRange index space”. This NDRange index space gives
each work-item a unique global ID, as well as a local ID within its associated
work-group. Each work-group is also assigned a unique group ID. An example of
how a 2-d index space could look like is seen in Figure 4.10.

3OpenCL - The open standard for parallel programming of heterogeneous systems. [Online]. Available:
https://www.khronos.org/opencl/ (visited on 04/27/2017).
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Figure 4.9: The OpenCL platform model. The host has one to many compute devices. Each compute
device has one to many compute units, which again have one to many processing
elements. (Figure from [57])

Figure 4.10: Example NDRange index space. Each work-item has its own global and local ID.
Work-groups have their own unique IDs. (Figure from [57])
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Interaction between the host and the device is handled through a command-queue.
This command-queue has three command types:

• Kernel-enqueue commands Kernel to be executed on a device.

• Memory commands Transfer data between host and device memory
objects.

• Synchronization commands Explicit synchronization commands.

Commands submitted to a command-queue will only execute, if prerequisites are
met. These prerequisites might be from two possible sources. Either a command-
queue that constrains the order of launch of commands, or there exist dependencies
between commands. These dependencies can be expressed through events.

The Memory Model logically divides the memory into host and device memory.
The behaviour of the host memory is defined outside of OpenCL. Device memory
is directly available to the kernel and it has 4 memory regions or address spaces,
as seen in Figure 4.11.

• Global Memory each work-item has read/write access

• Constant Memory each work-item has read access

• Local Memory restricted to work-items in a work-group

• Private Memory only the work-item has access

There are no restrictions from OpenCL towards a physical difference between these
different memory regions. Still, devices often provide dedicated memories for each
region with different latencies, but there might be an overhead accessing these
[58].

OpenCL is not officially supported by Android, however, many manufacturers
of Android devices do provide OpenCL support. The prebuilt libraries are often
found on the phone and can be obtained using the Android Debug Bridge (adb).
Usually, Android applications are written using Java and native OpenCL host code
is written using C/C++. Even though Java OpenCL bindings4 exist, the host code
was written in C/C++ utilizing the Android NDK and Java is only used for the
user interface. OpenCL kernels are usually supplied as an asset in form of a plain
text file. Communication between the Java code and the native C/C++ code is

4jocl.org - Java bindings for OpenCL. [Online]. Available: http://www.jocl.org/ (visited on
07/05/2017).
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Figure 4.11: The OpenCL memory model consists of host memory and “context” memory. The
context represents the device on which the code will be executed. It has several different
memory regions with different access speeds, permissions, and sizes. (Figure from
[59])
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Figure 4.12: Usually, the interaction between Android and OpenCL is using the Android NDK and
the JNI. Java is used for the user interface, while native C/C++ code is used to interact
with the libOpenCL.so library. Communication between the Java code and C/C++ code
is done via the Java Native Interface and the OpenCL kernels are supplied as text file
assets. (Figure from [61])

done via the Java Native Interface. A schematic view of this interaction between
Java, C/C++, and OpenCL C is shown in Figure 4.12.late

4.2.5 Google Cardboard VR Audio

The acoustic warning is a crucial part of the application, therefore, it is important
to be able to precisely position and locate a sound source. Android does allow
developers to use OpenSL ES using the NDK, however, it does not implement
any of its profiles fully [62]. While, according to its specification, OpenSL ES
would implement a 3-d audio using a HRTF in the gaming profile [63], Android
unfortunately only implements the pan and fade features. Therefore, the Google
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Figure 4.13: The dependency graph of the PCL modules. This modular approach allows to compile
and link only the needed parts of PCL. (Figure from 5)

Cardboard VR Audio library is used, which implements a powerful audio engine
supporting HRTF. As Google Cardboard VR Audio is made for mobile devices,
integration into an existing Android project happens in a straight forward manner.
The Google Cardboard VR Audio library allows to easily place a sound source
in space and update the head pose. As the head pose, the device’s pose is used.
This allows the user to move the phone the same way one would move the head to
increase sound localization.

Unfortunately, this introduces yet another coordinate system called the head space.
In the head space, the head is at the origin and faces the negative z direction,
this coincides with the Right Hand Android system described in Section 4.2.3.
Sound sources are placed around the user in an OpenGL world coordinate system,
translated such that the mobile phone is the origin.

4.2.6 Point Cloud Library (PCL) on Android

The Point Cloud Library (PCL)5 from Rusu and Cousins [65] is a large scale, cross
platform, open project to perform point cloud processing. It is released under the
3-clause BSD license and therefore free for commercial and research use.

To help reduce the size on platforms with computational or size constraints, PCL
is build modular. Modules can be compiled and linked separately, which allows to
only link the parts needed for the given application. Figure 4.13 gives an overview
of PCLs dependencies.

5PCL - Point Cloud Library (PCL). [Online]. Available: http://www.pointclouds.org/ (visited
on 05/02/2017).
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As there is currently no pre-compiled version of the PCL available for Android, it
is necessary to compile it yourself. This was done on a virtual machine running
Ubuntu 16.04 LTS 64-bit6, git version 2.7.4, CMake version 3.5.1, and the Android
NDK r15b. Using a newer NDK version might not work, as there is a bug in the
boost library with unified headers which replace the current libc headers supplied
with the NDK. As PCL depends on boost7, FLANN8, and Eigen9, it is suggested by
the PCL documentation10 to use a “superbuild”. The problem with the superbuild
provided by the PCL documentation is that it is outdated, but various forks of the
original github project exist11, allowing to build boost 1.60, FLANN 1.8.5, Eigen
3.2.8, and PCL 1.7.2 for Android.

Once the library is successfully built, it is necessary to force CMake to search not
only the local, but also the system root path. The Android Toolchain is set to only
search the local path to prevent CMake to link to libraries, which are not compiled
for Android. Hence, forcing CMake to search the system root path has to be done
carefully.

4.2.7 OpenCV

OpenCV is a software library written in optimized C/C++ to provide fast image
processing capabilities. It is released under a BSD license. OpenCV provides a vast
array of optimized algorithms, both classic and state-of-the-art computer vision
and machine learning algorithms.

OpenCV is available for Android and the SDK provides the C++ library, to be used
via JNI, as well as a Java wrapper to be used directly. The OpenCV Java API has
a minimum platform requirement of Android 2.2. To be able to easily import the
C++ library into an Android project, the SDK comes with ndk-build files, as well
as a ‘OpenCVConfig.cmake’ file. Using these files, importing the library can be
achieved conveniently.

As the whole application heavily relies on native C++, code the native OpenCV
library is used in this thesis.

6https://www.ubuntu.com/
7http://www.boost.org/
8http://www.cs.ubc.ca/research/flann/
9http://eigen.tuxfamily.org/

10http://www.vtk.org/Wiki/VES/Point Cloud Library
11https://github.com/Sirokujira/pcl-superbuild
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4.3 Software Components

This section will describe the implementation details of the software components
and how they interact with each other. The Android application is written in
Java and C++. Java is only used for the user interface and as a start up point for
the application. Further, it handles the connection to the Google Tango service
and other parts, which cannot be accessed easily using native C++ code, like
activation of the vibrator or detecting screen rotation. The C++ code is the core
of the application. Once the application is started and initialized, everything is
handled directly in the native layer.

The C++ code is sectioned into multiple smaller libraries with different responsi-
bilities:

virtualWhiteCane The main application library. It makes use of the other
library functionalities.

groundPlaneDetection Provides the different functions to detect the ground plane,
such as calculation of the v disparity map.

virtualWhiteCaneUtil Is a collection of useful utility classes. This library is in-
tended to ease the use of some JNI functionality and often
used OpenCL calls. Those classes also provide a global
“default implementation”.

warningModule holds the classes responsible for warning and object de-
tection.

The following sections will describe these libraries in more detail.

4.3.1 Java Components

The main Java components of the application are the VirtualWhiteCaneActivity,
the VirtualWhiteCaneService, and the TangoJNINative classes. The main ac-
tivity of the application is the VirtualWhiteCaneActivity, thus, it extends the
Android Activity class. Upon start up of the application, it launches the
VirtualWhiteCaneService. Its main purpose is to provide debug visuals and
controls, and is crucial to launch the service. However, depth readings of obstacles
are projected onto them in red with the intensity inversely proportional to the
distance (the closer the obstacle, the stronger the hue). This could help a partially
sighted person avoid these directions. Additionally, once the activity is destroyed
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by the user it stops the VirtualWhiteCaneService to free the TangoService. It is
important for the VirtualWhiteCaneService to keep the TangoService until it is
destroyed by the user, as otherwise the warning might stop unexpectedly, giving
the impression of a free path.

Figure 4.14 shows a UML diagram containing these classes. For the sake of clarity
further classes used for the user interface are omitted, as well as functions, which
are only used for debug purposes. The TangoInitializationHelper is placed on
the outside of the package, as it is part of Google Tango.

The VirtualWhiteCaneService class is run as a background service. Therefore, it
extends the Android Service class. This allows the warning to be active, even if
the application is not in the focus. As soon as it is launched, it binds the Tango
service using the TangoInitializationHelper provided by Google and launches
the native part of the application using the TangoJNINative interface.

Lastly, the TangoJNINative interface holds all the calls to the native layer. Its
main purpose is to tell Java which native functions are available in the native
virtualWhiteCane library. Further, it is responsible for loading these shared native
libraries providing the implementations of the function declarations:

libtango client api The Tango shared library providing the Google Tango func-
tionality.

virtualWhiteCane The main library of the application developed using the NDK
having the implementations of the methods declared in Tango-
JNINative.

gvr audio The Google VR audio library providing 3-d audio support
using HRTF.

4.3.2 virtualWhiteCane Library

This library handles the interaction between the other libraries and is the core of the
Virtual White Cane application. It has the C++ part of the JNI interface, which is the
jni interface. This interface implements all the previously defined JNI methods.
The VirtualWhiteCaneApp class is called by the VirtualWhiteCaneService via JNI,
where it starts two threads. The first thread is the GroundDetectionWorkerThread,
which is subscribed to the onPointcloudAvailable callback and processes the point
cloud to detect the ground floor. The second thread is the WarningWorkerThread.
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Figure 4.14: UML of the Java part. The VirtualWhiteCaneActivity starts the
VirtualWhiteCaneService, which binds the TangoService. Communication
with the native layer is done using the TangoJNINative interface.
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This thread polls the GroundDetectionWorkerThread to get the obstacle point cloud
and processes it into obstacles and warns about them.

The TangoHandler is another vital part of the application. It has a global default
implementation and it constructs the Google Tango configuration, as well as
defines its callbacks. This process is started once the TangoService is bound. The
GroundDetectionWorkerThread subscribes to the TangoHandler to receive updates
once new point clouds are available.

Figure 4.15 shows a UML diagram with the most important methods and members
of the classes.

jni interface

This interface is the connection between Java and C++. Each method defined as
native in the TangoJNIInterface in Java is implemented here. It also initializes a
static VirtualWhiteCaneApp object.

TangoHandler

The TangoHandler is responsible for binding the TangoService and configuring
it properly. A default object is globally instantiated. The jni interface calls the
OnTangoServiceConnected method of the default object. Once the TangoService

is bound, it can be configured and the callback methods are registered.

The TangoHandler is responsible for informing subscribers about new point cloud
data. To do so, it is possible to subscribe a callback function using the method
SubscribePointCloudUpdate. Within the onPointCloudAvailable callback these
functions are called. The callback registered by the GroundDetectionWorkerThread

wakes the thread up, so it can process the new point cloud.

VirtualWhiteCaneApp

This class represents the C++ part of the VirtualWhiteCaneService and the
VirtualWhiteCaneActivity. It is responsible for resource acquisition upon cre-
ation, releasing resources once destroyed and only keeping resources needed to
run in the background while the activity is paused.
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Further, it handles the rendering of the OpenGL GLSurfaceView, which was created
by the VirtualWhiteCaneActivity. With every onDrawFrame call, the color camera
output is rendered to the display with the depth points on top of the obstacles.
The depth value is converted to a hue of red, inversely depending on the distance
of the object. The closer the object, the more saturated the red is.

Another vital responsibility of the VirtualWhiteCaneApp is to start two ad-
ditional threads during onCreate: the GroundDetectionWorkerThread and the
WarningWorkerThread. It also has to stop them, once the application is termi-
nated. The threads are not paused during the onPause event because the warning
should continue to run even if the application is not active on the screen.

GroundDetectionWorkerThread

Once the GroundDetectionWorkerThread is started by the VirtualWhiteCaneApp

it registers itself to the TangoHandler to receive point cloud updates. To do so
the operator()() is overwritten. This allows the thread object to be called like a
function. Once the callback is called the thread wakes up and processes the new
point cloud.

As soon as the thread is woken up, it tries to acquire a mutex lock to ensure the
obstacle data cannot be read by any other thread. With the lock acquired, the new
point cloud data can be processed. Whenever the outcome of the ground plane
detection is accessed, a deep copy of the point cloud has to be returned to ensure
thread safety.

WarningWorkerThread

The WarningWorkerThread periodically polls the GroundDetectionWorkerThread

for the obstacle cloud. The obstacle cloud is then used as input for the Conservative
Polar Histogram algorithm. This returns a list of obstacle centroids for each
direction given by the binning of polar coordinates.

The WarningWorkerThread further has a list of WarningModules. Each
WarningModule is called sequentially with the obstacle centroids as input. It is
also the WarningWorkerThread’s responsibility to supply warning modules with
additional resources if needed, like the AcousticWarningModule, which is supplied
the Google VR audio API upon creation.
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Figure 4.15: UML of the virtualWhiteCane library. The virtualWhiteCaneApp starts the
GroundDetectionWorkerThread and the WarningWorkerThread. The TangoHandler

handles getting and distributing the point cloud.
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4.3.3 groundPlaneDetection Library

This library provides several useful methods employed for ground detection. The
most important class is the GroundPlaneExtractor class. It provides methods to
estimate a ground plane using RANSAC from the point cloud library, as well as
calculating a v disparity map using OpenCL. The layout of this library can be seen
in Figure 4.16 as an UML diagram.

Further, it wraps additional filter operations from the point cloud library in the
PointCloudFilter class, which allows to easily produce a voxel grid or perform
statistical outlier removal. However, as the voxel grid removes a lot of input
points and the statistical outlier removal is too slow on the full input cloud, this
functionality is not used.

The SurfaceNormalEstimator also wraps two methods of surface normal estima-
tion for easier use. It allows to estimate the surface normals using a tree structure
(for example KdTree, Octree, etc.) or, if the data is organized, it is possible to use
integral images. Again, building a KdTree is very slow on a full point cloud and
therefore surface normal estimation is not used.

GroundPlaneExtractor

The GroundPlaneExtractor implements two ways to detect a ground plane using
either RANSAC or a v disparity map. The RANSAC implementation is provided
by the PCL and the v disparity map algorithm is implemented in parallel using
OpenCL.

The RANSAC implementation has some additional filters to ensure a better fit.
First, it allows to filter the point cloud data points according to their Y value in
space. This can eliminate planes, which are too high, like a table. Further, it allows
to define the distanceThreshold, which defines whether a point is considered
to be a inlier or not. Lastly, it returns the coefficients with the largest amount of
inliers, if the resulting normal has a dominant y component, which means the y
component has to be larger than the x and z component of the normal vector, and
if they are between 0.8 m and 1.3 m below the phone. Checking for a dominant y
component ensures that the plane coefficients coincide with the floor and not a
wall. However, the plane has to contain at least 30% of all input points.

The method CalcVDisparity calculates the v disparity of an input depth map
in parallel using OpenCL. For implementation details about the v disparity map
calculation in OpenCL see Section 4.4.1. The GroundPlaneExtractor also provides
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a method to filter a depth map according to a disparity mask. Filtering is also
implemented using OpenCL and details can also be found in the Section 4.4.1.

PointCloudFilter

The PointCloudFilter class provides easier usage of two filter methods imple-
mented in the Point Cloud Library. Applying a voxel grid filter or statistical
outlier removal to a point cloud can be done using a single call of the appropriate
method.

The VoxelGridFilter takes a point cloud as an input parameter and applies voxel
grid filtering. A voxel grid can be imagined as a set of 3-d boxes in space. All
points contained in a voxel are approximated by a single new point. This point is
located at the center of mass of the original points. Therefore, the point cloud is
downsampled and greatly reduced in size.

Statistical outlier removal does a statistical analysis of the neighborhood of each
point and removes them, if they can be considered to be noise. As the implemen-
tation internally creates a KdTree to define the neighborhood of each point; this
process is rather slow on large point clouds and it can only be applied in real-time
on a downsampled point cloud.

SurfaceNormalEstimator

For easier usage of surface normal estimation in the Virtual White Cane application,
the SurfaceNormalEstimator class was created. It wraps two algorithms for surface
normal estimation implemented by the Point Cloud Library into single templated
function calls.

The EstimateSurfaceNormalsUsingTree method allows to easily interchange the
used tree structure to estimate the surface normals. This allows to benefit from
the OrganizedNeighbor structure from PCL, in case of organized point clouds.
EstimateSurfaceNormalsUsingIntegralImages uses the algorithm described in
[49].
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Figure 4.16: UML of the groundPlaneDetection library.
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4.3.4 virtualWhiteCaneUtil Library

Some functionality is frequently needed across the whole application. These are
implemented in the virtualWhiteCaneUtil library. The utility classes are com-
posed within its own library such that they can be used in other projects as well.
Figure 4.17 shows an UML diagram of the virtualWhiteCaneUtil library.

It is composed of two classes, which hold methods in need of further data and
some static functions, which can be called directly. The JNIHelper is responsible
for various JNI communications. For JNI functionality to work, members, such as
the Java VM, are needed.

The second class OpenClHelper wraps OpenCL methods with frequently used
parameters. It also handles globally identical members, such as the OpenCL
context. Each method checks for an OpenCL error and reports it if one occurs.

JNIHelper

The Android implementation of JNI only supports a single Java VM, but it does not
provide the static methods to retrieve it when needed in native code. Therefore, it
is necessary to save the Java VM as a member. This is done during the JNI OnLoad

call, which sets the VM of the default JNIHelper.

The JNIHelper class initializes a default object, which can be accessed globally.
This allows to create additional instances of the JNIHelper, if they are needed
for some reason. For example, even though Android currently only supports a
single Java VM, if this changes for some reason, a second JNIHelper object could
be created, which uses the second VM.

Further, to allow access to Android assets the JNIHelper keeps a reference to the
asset manager handle. This has to be done during start up and is provided via JNI
from the Java layer.

The JNIHelper also allows to attach or detach a thread to the Java VM, which is
crucial if a new thread wants to call a function in the Java layer from the C++ layer.
Calling or registering functions, which return void, is also wrapped into a single
call, respectively. To be able to call a function, it is necessary to register the caller
activity and keep a global reference to it, which is kept in a map. A helper function,
which takes the key to the caller activity, the method name, and signature, and if
needed any arguments, which should be passed to the method, is implemented to
allow easy access to methods in the Java layer.
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Figure 4.17: UML of the virtualWhiteCaneUtil library.
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OpenClHelper

With the OpenClHelper class, common OpenCL procedures are combined into sim-
ple methods. The OpenCL context is created and configured during initialization
of the object, as this often involves the same steps and parameters.

Creating and building a OpenCL program often involves the same steps and,
therefore, a helper function exists. This helper function creates the program from
the given source and builds it. It also checks if errors occurred and reports them, if
necessary.

CreateBuffer is useful to create a buffer in OpenCL memory. A buffer is created
for the context created during initialization. The helper function also checks and
reports for errors occurring during buffer creation.

Lastly, a helper function, which returns a command queue exists. This is useful,
as command queues are often created with the same parameters and the helper
function also checks for errors.

util

Finally, the VirtualWhiteCaneUtil library has a namespace to provide some helper
functions, which do not need to keep any references. Their range of tasks include
converting Google Tango point cloud data into other formats and likewise creating
transformation matrices from various input data formats.

To be able to use PCL functions, it is necessary to convert the point cloud
data from Google Tango’s data format to a PCL format. For this reason, three
slightly different helper functions exist. ConvertTangoToPclPointCloud simply
converts an unorganized point cloud into an unorganized point cloud in PCL.
ConvertTangoToOrganizedPclPointCloud converts the point cloud into an orga-
nized point cloud. There are two different versions of this method, one takes
additional parameters and one does not. The method without additional param-
eters receives them using the Google Tango SDK. The following parameters are
needed:

width the width of the organized cloud.

height the height of the organized cloud.

fx, fy the focal length of the camera, x and y axis, in pixels.
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cx, cy the central point, x and y axis, in pixels.

k1, k2, k3 the distortion coefficients.

channels this parameter can be a null pointer, otherwise it has to be an array
of 4 cv::Mat matrices. Each component x, y, z of a 3-d point is stored
separately in one channel. The fourth channel stores the confidence value
given by Google’s Tango.

Further, as with physical rotation of the device the orientation of the depth image
no longer coincides with the OpenGL world, there is a helper function, which
rotates a depth map according to the rotation of the device. RotateMat takes a
cv::Mat* and TangoSupportRotation as input and rotates the matrix, such that
the depth maps axis coincides with the the OpenGL world.

4.3.5 warningModule Library

This library handles the object detection and object warning. Figure 4.18 shows
an UML diagram of the library. It defines two interfaces, which allow to change
the underlying algorithm easily. The interfaces are described in more detail at
Section 3.4.3.

The realization of the ObjectDetector interface is the ConservativePolarHisto-

gram. It calculates a Conservative Polar Histogram and outputs a list of coordinates
representing obstacles. Detailed information about the implementation in OpenCL
can be found in Section 4.4.2.

For the AcousticWarningModule the Google VR audio API is used. It provides
a powerful audio engine allowing to produce accurate 3-d sound. To be able to
make use of the Google VR audio API, a pointer to the gvr::AudioApi has to be
supplied. Access to the gvr::AudioApi allows to load sound files and place them
in 3-d space. The Google VR audio API further implements a HRTF, which allows
to create an authentic spatial sound. In addition to the audio cues, once an object is
within 1 m and in front of the device, the vibrator is activated. To determine which
bin corresponds to the front of the device, the pose of the smart phone needs to
be determined. This is achieved by using the Google Tango SDK by getting the
newest transformation matrix and eliminating the translational component. The
vibrator is activated using a JNI call via the JNIHelper.
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Figure 4.18: UML of the warningModule library.
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Chapter 4 Implementation

4.4 Algorithm Implementation Details

This section describes how the used algorithms were implemented and what had
to be considered to be able to run them on the Lenovo Phab 2 Pro. It focuses
on the problems arising with the very limited memory available for OpenCL
implementations on mobile devices and how they were solved.

4.4.1 V Disparity in OpenCL

First, the point cloud has to be transformed according to Equation 4.1. This gives
a 2-d image, where the pixel location (x, y) represents the 3-d X, Y coordinates
and the intensity of the pixel represents the depth Z. As the ToF camera does
not use disparity to calculate the depth of the pixel, a pseudo-disparity has to be
introduced. As shown in [25], the disparity d can be calculated using

d = f ∗ B
z

. (4.4)

With f being the focal length and B the assumed baseline. Due to the fact that
Google Tango does not yet implement an auto exposure algorithm for the ToF
camera and, therefore, objects, which are too close will result in overexposure
and no valid depth readings, a minimum distance of 0.2 m was assumed. Hence,
f ∗ B = 0.2 was chosen, giving a disparity of d = 1 for z = 0.2 m. Any object farther
away will therefore have a smaller disparity. The disparity obtained in this way is
discretized into 256 values.

The v disparity map is computed in parallel using OpenCL. For easier processing
each work-group is supposed to handle a row of pixels. Therefore, depthimage.rows
work-groups are needed and each work-group has depthimage.cols work-items.
However, due to the fact that each work-item writes one value of the v dis-
parity map as output, at least 256 work items are needed per work-group. If
depthimage.cols happens to be lower than 256, the depth map has to be padded
to 256 with NaN values. As the ToF camera used in the Lenovo Phab 2 Pro has a
resolution of 172× 224 pixels, the columns are padded to 256. Note that depending
on the orientation of the phone, the image size might be transposed.

Accumulating the amount of pixels for each disparity value has to be synchronized,
as otherwise race conditions would occur. Thus, atomic operations are needed
to prevent these and ensure valid increments. Unfortunately, using global atomic
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operations is very costly and slow. As local atomic operations are much faster, each
work-group has to operate on exactly one line of the depth map and use a local
array to hold the respective v disparity line. Figure 4.19 shows how the OpenCL
kernel operates. The input depth image is accessed as a 1-d array in the following
way:

tid = get local id(0),
group idx = get group id(0) ∗ 256,

idx(x, y) = tid + group index.
(4.5)

Listing 4.2 shows the implementation of the v disparity kernel. For this to work,
there needs to be a local size of at least 256, which means each work-group holds
256 work-items and depthimage.rows work-groups are created.

Filtering a depth map by disparity values can be achieved in parallel as well. The
kernel needs the depth map and a mask structured like the v disparity map. For
each input point the disparity is calculated in the same way as for the v disparity
map (see Equation 4.4). After the disparity value is discretized to a range from
0 to 255, this discretized value and the line number is used as an index for the
disparity mask. If the value of the mask is 1, the point has to be filtered. Obviously,
the input again has to be an ordered depth map, which tells the kernel which line
of the v disparity mask to look at. As each work item only works and writes to
one pixel location and they do not interfere with each other, a direct access pattern
is given and no synchronization is needed.

For this kernel to work properly, it has to be called with a certain configuration.
Globally, there are rows× cols work-items created using a 2-d kernel. Therefore,
the global IDs are also 2-d allowing direct access to the (u, v) coordinates of the
depth map. Within each work-group, however, work-items are only accessed in
a 1-d pattern and each work-group has #cols work-items. This results in #rows
work-groups. In other words each work-group represents a row within the depth
map allowing to easily access the correct row in the disparity mask. Listing 4.3
shows the implementation of this kernel.

4.4.2 Conservative Polar Histogram

In order to find the nearest obstacle within the point cloud once the floor points are
removed, a Conservative Polar Histogram is developed. To calculate the Conserva-
tive Polar Histogram, the points are projected onto the x-z plane in the translated
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1 k e r n e l void VDisparity ( g l o b a l f l o a t ∗ inputData ,
2 i n t width ,
3 i n t height ,
4 g l o b a l unsigned char∗ output ) {
5

6 i n t t i d = g e t l o c a l i d ( 0 ) ;
7 i n t group idx = get group id ( 0 ) ∗ 2 5 6 ;
8

9 l o c a l unsigned i n t vDispar i tyLine [ 2 5 6 ] ;
10

11 / / i n i t i a l i z e p a r t i a l V D i s p a r i t y
12 i f ( t i d < 256 ) {
13 vDispar i tyLine [ t i d ] = 0 ;
14 }
15

16 b a r r i e r (CLK LOCAL MEM FENCE) ;
17

18 / / on ly c o n s i d e r one row and r e s t r i c t t o d e p t h r e a d i n g s >= 0 . 2m
19 i f ( t i d < width && ! isnan ( inputData [ t i d + group idx ] ) && inputData [

t i d + group idx ] >= 0 . 2 ) {
20

21 / / z s h o u l d a lways p o s i t i v e b e c a u s e o f d e p t h camera c o o r d i n a t e
sys t em

22 f l o a t z = inputData [ t i d + group idx ] ;
23

24 / / d i s p a r i t y = f ∗ T / z
25 f l o a t d = 0 . 2 f / z ;
26

27 i n t idx = f l o o r ( clamp ( d , 0 . f , 1 . f ) ∗255 ) ;
28

29 atom add(& vDispar i tyLine [ idx ] , 1 ) ;
30 }
31

32 b a r r i e r (CLK LOCAL MEM FENCE) ;
33

34 i f ( t i d < 256 ) {
35 output [ t i d + group idx ] = ( unsigned char ) vDispar i tyLine [ t i d ] ;
36 }
37 }

Listing 4.2: Kernel to calculate the v disparity.
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Host Memory

1 Work Group per row

Depth Image
(rows x cols)

V Disparity 
Map 

(rows x 256)

barrier(CLK_LOCAL_MEM_FENCE);
if(tid < 256)
    output[tid + group_idx] =  (unsigned char)vDisparityLine[tid];
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local unsigned int vDisparityLine[256]

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&vDisparityLine[idx], 1);
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But at least 
256 Threads

atom_add(&vDisparityLine[idx], 1);
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local unsigned int vDisparityLine[256]

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&vDisparityLine[idx], 1);

1 Thread per  
column,
But at least 
256 Threads

atom_add(&vDisparityLine[idx], 1);
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local unsigned int vDisparityLine[256]

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&vDisparityLine[idx], 1);
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local unsigned int vDisparityLine[256]

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&vDisparityLine[idx], 1);
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local unsigned int vDisparityLine[256]

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&partialVDisparity[idx], 1);

Work Item

float z = inputData[tid + group_idx];
float d =  0.2f / z;
int idx = floor(clamp(d, 0.f, 1.f)*255);
atom_add(&vDisparityLine[idx], 1);

1 Thread per  
column,
But at least 
256 Threads

atom_add(&vDisparityLine[idx], 1);

Figure 4.19: The v disparity kernel starts one thread per pixel. Each work group has at least 256

and at most depthimage.cols work items. Each work item calculates the disparity and
adds it to a local array representing the v disparity line. As soon as all work items
added their contribution to the local map, it is copied to the global v disparity map.
The green block represents the local memory block and the lavender represents the
host input and output memory.
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1 k e r n e l void F i l t e r B y D i s p a r i t y ( c o n s t a n t f l o a t ∗ inputData , g l o b a l
f l o a t ∗ f i l t e r e d , c o n s t a n t unsigned char∗ disparityMask , i n t width ,
i n t height ) {

2 / / u , v c o o r d i n a t e s o f d e p t h map / inputData
3 i n t gid x = g e t g l o b a l i d ( 0 ) ; / / u
4 i n t gid y = g e t g l o b a l i d ( 1 ) ; / / v
5 i n t l o c a l s i z e = g e t l o c a l s i z e ( 0 ) ∗ g e t l o c a l s i z e ( 1 ) ; / / # c o l s ∗ 1
6 / / g r o u p i d x t o a c c e s s c o r r e c t row in d i s p a r i t y M a s k
7 i n t group idx = get group id ( 0 ) ∗ 2 5 6 ;
8

9 i f ( g id x > width | | gid y > height ) {
10 return ;
11 }
12 / / e a c h p o i n t has 3 c o o r d i n a t e s (X, Y , Z)
13 f l o a t depth = inputData [ gid y ∗ l o c a l s i z e ∗3 + (3∗ gid x ) + 2 ] ;
14

15 f l o a t d = 0 . 2 f / depth ;
16

17 i n t idx = f l o o r ( clamp ( d , 0 . f , 1 . f ) ∗255 ) ;
18

19 / / i f t h e d i s p a r i t y M a s k f o r t h e g i v e n i n d e x > 0 , copy p o i n t t o o u tp ut
20 i f ( disparityMask [ gid y ∗256 + idx ] ) {
21 f i l t e r e d [ gid y ∗ l o c a l s i z e ∗3 + (3∗ gid x ) + 0 ] = inputData [ gid y ∗

l o c a l s i z e ∗3 + (3∗ gid x ) + 0 ] ;
22 f i l t e r e d [ gid y ∗ l o c a l s i z e ∗3 + (3∗ gid x ) + 1 ] = inputData [ gid y ∗

l o c a l s i z e ∗3 + (3∗ gid x ) + 1 ] ;
23 f i l t e r e d [ gid y ∗ l o c a l s i z e ∗3 + (3∗ gid x ) + 2 ] = inputData [ gid y ∗

l o c a l s i z e ∗3 + (3∗ gid x ) + 2 ] ;
24 }
25 }

Listing 4.3: Kernel to filter by v disparity.
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OpenGL world frame and transformed into their polar coordinates. The projection
onto the x-z plane is done by simply omitting the y coordinate of the point. The
angular coordinates are sectioned into bins á 5 degrees, giving 72 bins in total.
The radial coordinate is transformed into a discrete disparity value between 0 and
255. For each bin a disparity histogram is formed by accumulating the amount of
points in that bin with the same disparity. These disparity histograms for each bin
can now be used to easily find the closest obstacle by applying a threshold to the
histogram.

The Conservative Polar Histogram algorithm is implemented using OpenCL.
Figure 4.20 shows the kernel layout. First, the point has to be transformed into
the OpenGL coordinate system by a simple matrix multiplication. Afterwards, the
polar angle of the point is calculated, as well as the bin it belongs to. The distance
is obtained by calculating the dot product of the projected point with itself. Once
the distance and the polar angle are calculated, the histogram can be obtained.

As the Lenovo Phab 2 Pro has a local device memory limit of 32 kB and a full
Conservative Polar Histogram with 72 bins would need 72 ∗ 256 ∗ sizeo f (uint) =
72 kB, each work item has to do 4 passes. Thus, only a local array of size 72 ∗ 64 ∗
sizeo f (uint) = 18kB is allocated. To still get a full Conservative Polar Histogram,
each quarter of the disparity histogram is written sequentially. Again, as with the
v disparity map, the access to the local memory has to be synchronized. Listing 4.4
is a shortened version of the kernel. Some code is shortened or omitted for brevity.
First, the local memory is allocated, afterwards, the discrete disparity value idx and
the polar coordinate bin k are determined. After each quarter pass, the memory
is synchronized and written to the output array. As it is not possible for work
groups to access another work group’s local memory, each work group only has a
partial Conservative Polar Histogram. Therefore, #workgroups Conservative Polar
Histograms are created and need to be combined by another kernel. Listing 4.5
shows how the partial Conservative Polar Histograms are summed up to one
Conservative Polar Histogram. Each thread locally sums up one value of the partial
Conservative Polar Histogram.
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Host Memory

num_points / max_local_threads

Input points [num_points]
partialPolarHistogram

[numWorkGroups][72][256]

W
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up

local unsigned int tmpConservativePolarHist[72][64]

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

max_local_threads
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local unsigned int tmpConservativePolarHist[72][64]

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

max_local_threads
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local unsigned int tmpConservativePolarHist[72][64]

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
for(pass = 0; pass < 4; i++) {
  if(pass * 64 < idx < (pass+1) * 64)
    atom_add(&tmpConservativePolarHist[k][idx – pass * 64]
  barrier(CLK_LOCAL_MEM_FENCE)
  if(pass * 64 < idx < (pass+1) * 64)
    writeBackToGlobalMemory()
  barrier(CLK_LOCAL_MEM_FENCE)
}  

Work Item

pt_ogl = convertToOglWorld( point )
(θ, d) = convertToPolarCoordinates( pt_ogl )
k = θ/5
Idx = 0.2 / d
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Figure 4.20: Conservative Polar Histogram Kernel Layout.
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4.4 Algorithm Implementation Details

1 k e r n e l void Part ia lConservat ivePolarHistogramKernel ( c o n s t a n t f l o a t 4

∗ inputPoints , f l o a t 1 6 MVP, long numPts , g l o b a l unsigned i n t ∗
outputPart ia lPolarHistogram ) {

2

3 i n t gid = g e t g l o b a l i d ( 0 ) ;
4 i n t t i d = g e t l o c a l i d ( 0 ) ;
5 i n t group idx = get group id ( 0 ) ;
6

7 / / 72 x256 i s t o o much memory , do i t in 4 p a s s e s
8 l o c a l unsigned i n t tmpConservativePolarHist [ 7 2 ] [ 6 4 ] ;
9

10 / / t r a n s f o r m t o o g l . mvp i s in column major o r d e r
11 f l o a t 4 p t o g l = transformPoint (MVP, inputPoints [ gid ] ) ;
12

13 / / x / z g i v e s t h e a n g l e t o t h e wrong a x i s −> z / x
14 f l o a t beta = atan2pi ( p t o g l . z , p t o g l . x ) ∗ 1 8 0 . f ;
15 i n t k = f l o o r ( beta /5) ;
16 f l o a t 2 p t o g l 2 = ( f l o a t 2 ) ( p t o g l . x , p t o g l . z ) ;
17 f l o a t d i s t a n c e = s q r t ( dot ( pt ogl2 , p t o g l 2 ) ) ;
18 f l o a t d i s p a r i t y = 0 . 2 f / d i s t a n c e ;
19 i n t idx = f l o o r ( clamp ( d i s p a r i t y , 0 . f , 1 . f ) ∗255 ) ;
20

21 for ( i n t c = 0 ; c < 4 ; ++c ) {
22 i f ( ( 6 4∗ c ) < idx < ( 6 4∗ ( c +1) ) ) {
23 atom add(& tmpConservativePolarHist [ k ] [ idx ] , 1 ) ;
24 }
25 b a r r i e r (CLK LOCAL MEM FENCE) ;
26

27 i f ( ( 6 4 ∗ ( c ) ) <= t i d && t i d < ( 6 4∗ ( c +1) ) ) {
28 #pragma u n r o l l
29 for ( i n t i = 0 ; i < 7 2 ; ++ i ) {
30 / / s e t ou tp ut
31 outputPart ia lPolarHistogram [ i ∗ 256 + t i d + group idx ∗ 72 ∗

256 ] = tmpConservativePolarHist [ i ] [ t i d − (64∗ c ) ] ;
32 / / r e s e t l o c a l f o r nex t 1 / 4
33 tmpConservativePolarHist [ i ] [ t i d − (64∗ c ) ] = 0 ;
34 }
35 }
36 b a r r i e r (CLK LOCAL MEM FENCE) ;
37 }
38 }

Listing 4.4: Kernel to calculate the partial ConservativePolarHistogram. Some code is omitted or
shortened for brevity.
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Chapter 4 Implementation

1 k e r n e l void SumPartialConservativePolarHistogram ( c o n s t a n t unsigned
i n t ∗part ia lPolarHistogram , i n t numGroups , g l o b a l unsigned i n t ∗
polarHistogram ) {

2

3 / / g i d 0 . . . 7 2 ∗ 2 5 6
4 i n t gid = g e t g l o b a l i d ( 0 ) ;
5 i n t t i d = g e t l o c a l i d ( 0 ) ;
6 i n t l o c a l s i z e = g e t l o c a l s i z e ( 0 ) ;
7 i n t group idx = get group id ( 0 ) ;
8

9 unsigned i n t sum = 0 ;
10

11 for ( i n t i = 0 ; i < numGroups ; ++ i ) {
12 sum += part ia lPolarHis togram [ i ∗ 72 ∗ 256 + gid ] ;
13 }
14

15 polarHistogram [ gid ] = sum ;
16

17 }

Listing 4.5: Kernel to sum the partial ConservativePolarHistogram.
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Chapter 5

Results

This chapter will present the results of this thesis. It will show examples where
the used algorithms would fail on their own and how the combination of them
improved the result.

First, the results of the ground floor detection algorithm are presented and dis-
cussed. We will show how the used algorithm improves the ground floor detection.
Then the results of the Conservative Polar Histogram are shown.

5.1 Ground Floor Detection

This section discusses how the algorithm improves the ground floor detection.
The color coding of the pixels shows their classification after the ground detection
process. Green pixels indicate floor pixels, while red pixels indicate obstacles.
Pixels, which are not artificially colored, do not have a valid depth reading due to
the ToF sensor’s limitations and the lack of infra-red light reflected to the sensor.

The combination of the v disparity and RANSAC algorithm helps to improve the
accuracy of the RANSAC algorithm. Due to its random nature and the fitting pro-
cess, the best fit might not always reflect the real geometry of the data. Figure 5.1b
shows how the RANSAC algorithm found a better fit for a plane with a slight slope,
because there are hardly any valid depth readings on the floor beyond a certain
distance and the high noise ratio given by the carpeted floor. A similar problem
occurs with the v disparity algorithm, as seen in Figure 5.1a. The line found by the
Hough transformation also covers the pixels corresponding to the intersection of
the obstacles and the floor. However, the combination of both provides a better fit,
as seen in Figure 5.1c.
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Chapter 5 Results

(a) v disparity. (b) RANSAC. (c) Our method.

Figure 5.1: Image (a) shows how the floor is segmented just using v disparity, while (b) shows
segmentation just using RANSAC, and (c) shows our method.

Our method also overcomes some problems in cluttered scenes. V disparity seg-
mentation often classifies too many points as floor, while RANSAC is unable to
find a properly fitting plane. However, due to the reduced number of input points,
which already mostly belong to the floor, it performs well in our method. Fig-
ure 5.2 shows an example of a cluttered scene and how our method outperforms
the algorithms on their own.

A similar situation arises with a large object covering most of the floor. Figure 5.3
shows how the RANSAC algorithm fails to classify the correct floor plane, while
the v disparity algorithm already has a good classification. The combination of
both again gives a slight improvement.

When the device is held at any angle, such that the bottom line of the phone is not
parallel to the ground, the line representing the ground floor in the v disparity
image oscillates. This results in a misclassification of the ground floor in the v
disparity domain. This can be seen in Figure 5.4. RANSAC on its own is able to
detect the ground plane fairly well. It also is capable of correcting the problems
with the pure v disparity algorithm, as can be seen in Figure 5.4c.
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5.1 Ground Floor Detection

(a) v disparity. (b) RANSAC. (c) Our method.

Figure 5.2: Our method outperforms in cluttered scenes.

(a) v disparity. (b) RANSAC. (c) Our method.

Figure 5.3: Again our method outperforms with a large object in front of the user.

91



Chapter 5 Results

(a) v disparity. (b) RANSAC. (c) Our method.

Figure 5.4: Our implementation fixes the problems occurring with pure v disparity.

Detecting the floor in the presence of thin objects works almost equally well with
each algorithm. Figure 5.5 shows how the v disparity classifies bits of the table leg
as floor, while pure RANSAC and our method perform equally well.

Stairs are a very common sight in a man-made environment. Currently, downstairs
are detected as an obstacle, however, they have to be visible to the sensor. This
means, if no points are reflected from the stairs, the Virtual White Cane application
is not aware of them. Figure 5.6 shows how the segmentation into ground plane
and obstacles works. Every image shows points on the wall classified as floor,
because the floor plane spans an infinite space. Still, the VI user would be warned
about an obstacle in front of them because the remaining points are correctly
classified as obstacles. Once the user moves closer to the stairs the first stair is
considered to be the ground plane, as seen in Figure 5.7. This happens because
there is a larger response from the Hough transform on the first step, due to the
larger amount of points. The v disparity map of a downstairs scene shows multiple
small responses for each step, as seen in Figure 5.8. The largest response at the
bottom of the v disparity map represents the ground floor the user is standing
on. Further, there is a discontinuity between the responses of each step. This is
obvious due to the jump in depth. For stair detection, this distinctive pattern could
turn out to be very helpful. Additionally, the steps further down provide a smaller
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5.1 Ground Floor Detection

(a) v disparity. (b) RANSAC. (c) Our method.

Figure 5.5: Detecting thin objects like a pole.

footprint.

Upstairs are also detected as obstacles, even though they would be passable.
Figure 5.9 shows an upstairs scene with the floor segmented and the steps detected
as obstacles. The v disparity map of an upstairs scene also shows a distinct pattern,
as seen in Figure 5.10. Similar to the downstairs v disparity map, the upstairs v
disparity map shows a distinctive pattern. However, the steps are connected by the
vertical walls between them. These vertical walls are represented as vertical lines
in the v disparity map, which connect the different lines representing the steps.
This difference gets less and less pronounced the farther afield the steps are.

Table 5.1 shows the runtime of the different steps during ground plane segmenta-
tion. Steps like acquiring the TangoPointcloud or some necessary transformations
are not explicitly measured, however, they are included in the “v disparity com-
plete” and the “complete” rows. It can be seen that a frame rate of about 7 Frames
Per Second (FPS) is obtained. While this is only marginally faster than the 5 FPS
obtained by the depth sensor, the table helps to identify the bottlenecks in the
performance. The biggest bottlenecks are the necessary transformations and the
Hough transform. Especially the transformations can be easily sped up by using
parallel computing. The measurements are averaged over 1000 calculations of the
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(a) v disparity. (b) RANSAC. (c) Our method.

Figure 5.6: Downstairs scene, the stairs are considered as obstacles.

Figure 5.7: Our method on a downstairs scene.
The first stair is more prominent than
the actual floor the user is standing
on.

Figure 5.8: v disparity map of a downstairs scene.
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(a) v disparity. (b) RANSAC. (c) Our method.

Figure 5.9: Upstairs scene, the stairs are considered as obstacles.

Figure 5.10: v disparity map of upstairs scene.
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same static scene. The label of each row represents the following:

#Points the average number of points obtained by the ToF
sensor.

v disparity the time it took to calculate the v disparity map with
the depth map as input.

Hough the Hough transformation and finding the best fitting
line

filter the time it takes to filter the disparity according to
the given mask.

v disparity complete the complete process to filter v disparity. Including
necessary transformations and converting the Tango-
Pointcloud.

RANSAC how long it takes until the largest plane is found.

RANSAC+transformations time RANSAC needs, as well as the necessary trans-
formations.

complete time it takes for the whole algorithm to find a ground
plane.

FPS time in FPS.

Scene 1 Scene 2 Scene 3 Scene 4
#Points 13621 12869 12190 11909

v disparity 0.002899 s 0.002668 s 0.002636 s 0.002666 s
Hough 0.025121 s 0.024643 s 0.024968 s 0.024529 s

filter 0.004326 s 0.004420 s 0.004307 s 0.004248 s
v disparity complete 0.071596 s 0.070626 s 0.070847 s 0.069256 s

RANSAC 0.008736 s 0.009508 s 0.009607 s 0.009627 s
RANSAC+transformations 0.055555 s 0.057348 s 0.058670 s 0.059712 s

complete 0.141702 s 0.142561 s 0.143157 s 0.142376 s
FPS 7.057 7.014 6.985 7.023

Table 5.1: Runtime of ground detection.
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5.2 Conservative Polar Histogram

This section shows the results of the Conservative Polar Histogram. Naturally,
given by the binning in polar coordinates, the closer the object, the higher the
resolution. An object close to the device will cover more bins as the same object
farther afield. This allows the accurate placement of sound sources if objects are
close to the user and fewer sound sources for objects far away, as they are not that
important for immediate collision avoidance. It has to be noted that the ToF sensor
has a larger Field of View (FOV) than the color camera (see Figure 5.11). Therefore,
the leftmost and rightmost bins might deviate from the image of the scene and
seem out of place.

The Conservative Polar Histogram is represented as follows:

• Assign a random color to each bin, such that they can be easily distinguished.
• Draw a line for each bin representing two different values

– The length of the line corresponds to the percentage of the total distance
covered by obstacles to the distance covered by the bin.

– The depth of the obstacle is encoded into the height on the image with
a maximum of 7 m.

Figure 5.12 shows a scene with the corresponding Conservative Polar Histogram
in the bottom right. The previously classified ground floor points are hidden and
only the relevant obstacle points are projected onto the color image. It can be seen
that the garbage can on the bottom left of the scene is represented by as many
polar histogram bins as the table a few meters away. The bin on the far right is
farther away, as it represents the object not visible in the scene due to the FOV
discrepancy.

The Conservative Polar Histogram only warns about the closest obstacle. This is
done to lower the cognitive load and still warn about the most important obstacles.
Figure 5.13 shows how the garbage bin in front of the desk is detected and the
desk in the background is only visible in “unobstructed” bins. The long magenta
colored line represents the wall behind the desk.

As Table 5.2 shows the Conservative Polar Histogram runs at 50 FPS, even if almost
50% of the possible points (224× 172) are considered to be an obstacle. In a less
crowded scene even higher frame rates were obtained.
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(a) Scene as seen by the color camera
while the point cloud is recorded.

(b) Same point cloud with a slight rota-
tion of the device.

Figure 5.11: The acquired point cloud by the ToF sensor has a larger FOV than the color camera
captures.

#Points time FPS
6366 0.012183 s 82.082

4531 0.010480 s 95.419

16377 0.018828 s 53.112

2702 0.009527 s 104.961

Table 5.2: Timing of Conservative Polar Histogram.
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Figure 5.12: Conservative Polar Histogram. Figure 5.13: Conservative Polar Histogram
result with multiple obstacles in
the same bin, but only the clos-
est is indicated.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the increased capabilities of smart phones due to the addition of ToF sensors,
their high computational power, and the IMU, an ETA for the VI is more and more
feasible. Due to the high acceptance of smart phones in every day life, they provide
the ideal platform for an ETA, which is not intrusive and mobile per design.

It was shown that a modern smart phone has ample computational power to
properly classify the floor in a point cloud in real-time and process the remaining
points as obstacles to warn about them. A multi-threaded architecture was chosen,
such that the detection of new obstacles and the warning about already known
obstacles can run in parallel. To detect obstacles, the dual problem of detecting
the free walkable ground plane was chosen. A combination of v disparity and
RANSAC was used to overcome the weaknesses of each algorithm on their own.
To speed up the algorithm, the v disparity calculation takes advantage of the
parallel computing standard OpenCL, as well as the unified memory model of the
Snapdragon 652. This resulted in a robust detection of the ground floor, largely
independent of the device’s orientation in space. Due to the IMU of the smart
phone, the orientation of the device is known and can mostly be accounted for.
However, the position of the device in space can only be measured in relation to
the start of the service, which puts limitations on the user. It is assumed that the
device is held at between 0.8 m and 1.3 m above ground.

Once the ground plane is removed, a Conservative Polar Histogram was developed
to further detect the distance to obstacles in each direction and eliminate remaining
outliers. The calculation of the Conservative Polar Histogram was also sped up
using OpenCL’s parallel computing capabilities. This allows to find the closest
distance to the next obstacle in a given direction and warn the user about it.
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Currently, two different warning modules exist, employing tactile and acoustic
warning interfaces. The tactile warning module is limited to a response if there
is an obstacle directly in front of the device, while the acoustic warning interface
gives the user an mental image of the surrounding obstacles using 3-d sound
provided by HRTF.

6.2 Future Work

This thesis presented a proof-of-concept ETA on a Google Tango enabled device. It
provides the ideal platform to further explore the capabilities of a small and power-
ful ETA. This section provides various ideas and pointers for future improvements
to the developed platform.

Ground floor detection: To further improve upon the robustness of the ground
floor detection, the u disparity could be utilized as in [31]. Additionally, exploiting
the temporal coherency between frames would allow to further refine the ground
plane assumption. Further, the current system is limited to detecting a floor, whose
surface normal is approximately parallel to the y-axis. Even though a natural slope
would still be safely walkable, it is not properly detected.

Even though the current timing restrictions of 5 FPS are met, a higher frame
rate would be beneficial, as the ToF sensor is only limited by Google Tango to
5 FPS. Improving the frame rate can be achieved by further utilizing parallel
computing. The Hough transform [66], as well as the RANSAC algorithm [67] can
both be greatly sped up by using a parallel implementation. Another bottleneck
of the current implementation is the need to transform point clouds. Again, these
transformations can be greatly sped up by employing parallel computing.

Warning Module: To improve the usability of the tactile warning module, different
vibration patterns could be used to give a better indication of the distance to
the next obstacle. An improvement for the acoustic warning module could be
to cluster neighboring bins with approximately the same depth and placing one
sound source for all of them. Indication of the object size can then be achieved by
variation of the pitch, for example the lower the pitch, the larger the object.

Additional functionality: Another very important functionality would be to detect
stairs. Stairs are a very common occurrence in man-made architecture, yet they are
extremely dangerous and it is crucial to detect them properly. Various approaches
exist that aim to detect stairs using RGB-D data [68], [69].
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Detecting a crosswalk and aligning oneself towards it is another dangerous chal-
lenge faced by VI people. Hence, enhancing the functionality of the Virtual White
Cane to help the VI safely cross an intersection seems like an ideal addition to the
developed application. Additionally, detection of stairs and crosswalks is a similar
topic, as these share the same features, which are parallel lines in RGB data, while
the depth data helps to differentiate them [70].

Further, the current system does not detect closed doors as passable terrain and
classifies them as obstacles, like walls. Therefore, exploiting RGB-D data to detect
closed doors and inform the user about the door greatly enhances the maneuver-
ability of the user.

Text-To-Speech functionality with OCR is another useful addition to the application.
This allows the VI to read signs on the street, labels during grocery shopping,
or help them identify the value of a banknote [39], [71]. Being able to read signs
further helps the VI navigate independently and be able to find their destination.
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