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Abstract
Das Ziel dieser Arbeit ist es, zu einer Fehlerschätzungsmethode für adaptive Netzver-
feinerung für eine Finite Volumen Methode (FVM) zu gelangen, wodurch Bereiche des
Berechnungsgebietes bestimmt werden sollen, in denen eine Verfeinerung des Gitters
in größtmöglichem Maße zur Reduzierung des Berechnungsfehlers beiträgt. Die Gle-
ichungen, für die die Methode entwickelt wird, sind die Navier-Stokes Gleichungen für
inkompressible Strömungen. Es wird darauf Wert gelegt, dass die Fehlerschätzer in
der Praxis relevante "Problembereiche" im Berechnungsgebiet erkennen können, um
dort eine Netzverfeinerung zu induzieren. Dazu werden Fehlerschätzer betrachtet, die
für die Finite Elemente Methode (FEM) entwickelt und anschließend an eine FVM
angepasst wurden, sowie auch Fehlerschätzer, die nur für FVM entwickelt wurden.
Insbesondere wurde der Residuenschätzer für FEM in C++ und für FVM in AVL-
Fire implementiert. Abschließend wurden numerische Beispiele mit beiden Implemen-
tierungen gerechnet und die Ergebnisse verglichen und analysiert.

The goal of the present work is to find an error estimation method for adaptive mesh
refinement for a Finite Volume Method (FVM) which allows us to detect regions of the
computational domain where refinement of the mesh seems most promising in terms
of error reduction. The equations for which the method is being developed are the
time independent Navier-Stokes equations for incompressible flows. An emphasis is
placed on error estimators that are capable of detecting practically relevant "problem
regions" in the computational domain, in order to induce refinement in those regions.
For that purpose error estimators are being considered which have been developed for
the Finite Element Method (FEM) and have been adopted to FVM, as well as error
estimators which have solely been developed for FVM. Especially the residual error
estimator has been implemented for FEM in C++ and for FVM in AVL-Fire. Finally,
numerical examples have been calculated for both implementations and the results
compared and analyzed.
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1 Introduction
The aim of this work is to investigate a selection of practically relevant a posteriori
error estimation techniques applicable to fluid flow computations, for finite element
as well as for finite volume discretizations. Numerical experiments were conducted
in order to test the performance of the error estimators. The numerical investigation
for finite elements was done using a C++-implementation, and for the finite volume
method, the commercial code AVL-Fire® was used. In order to keep things simple
while the main focus lies on the error estimation procedures, only the incompressible
Navier-Stokes equations for steady-state calculations are being considered.
The goal when using adaptive mesh refinement is to increase the accuracy of the sim-
ulation, i.e. to reduce the approximation error in an effective way, while at the same
time keeping the computational effort at a minimum. We do this by increasing the
number of control volumina in the computational mesh, also called mesh refinement
or h-refinement (in contrary to p-refinement, where the polynomial order of interpola-
tion is increased locally or globally), but only in regions of the mesh where the error
is large. In order to identify such regions, an error estimator is required. Desirable
properties of such error estimators are reliability and efficiency, which states that the
estimator is a meaningful approximation to the real error.
In Chapter 2, an accurate description of the requirements on the computational do-
main Ω and its decomposition into finite elements is given. The finite volume and
finite element methods are both applicable to two and three space dimensions, but for
simplicity, the considerations on the finite element method are restricted to two space
dimensions and triangles as finite elements.
In Chapter 3 the finite volume method implemented in AVL-Fire® to solve the Navier-
Stokes equations will be discussed, together with all the other numerical aspects needed
to discretize the partial differential equations under consideration. The method allows
unstructured grids composed of arbitrary polyhedra. It is based mainly on Ferziger
and Perić [19] and Patankar [30]. The starting point will be the modelling equations
in integral form, from where the finite volume discretization will be developed. Then
methods for the approximation of derivatives will be discussed and the final form of
the algebraic equations will be given. Finally, the solution procedure using a SIMPLE-
algorithm based approach for the coupling of the velocities and the pressure is being
described, which can be found in [19, 30] as well as [18].
The finite element method described in Chapter 4 is based on works by Brezzi and
Fortin [13] and Girault and Raviart [21]. More material on computational fluid dy-
namics and its practical aspects can be found in [20, 41, 44]. At first the derivation
of the variational formulation for the Stokes problem is being discussed, followed by
different discretization techniques. Special emphasis lies on the Taylor-Hood elements



10 Introduction

and the P1-P1-elements together with a stabilization by local pressure projections
(see [15]). Then, the variational formulation of the Stokes problem is extended by a
nonlinear convection term to a variational formulation of the Navier-Stokes problem.
Furthermore the do-nothing boundary condition is being described. The nonlinear
convection term is treated by the Newton-algorithm.
Chapter 5 is focused on the description and analysis of different types of error esti-
mators, both for finite element and finite volume methods. There is the residual error
estimator, which is available for both methods (see [23, 43]). The residual can be
used to measure how well the original governing equations are satisfied. Then there
is an error estimation technique based on the solution of local problems for the finite
element method (see [43]). Its basic principles can easily be carried over to the fi-
nite volume method (see [23]), which is why it is described only for finite elements.
Next, for finite elements there is the Zienkiewicz-Zhu-error estimator based on inter-
polation techniques for the gradient, such that the norm of the difference between
the interpolated and the discrete gradient composes the error estimator (see [46, 47]).
Furthermore, for the finite volume method, there is an interpolation technique using
third order polynomials, where the solution is being interpolated by a third order
polynomial along the direction vector between the centers of two neighbouring cells.
The interpolated function is then used to recalculate the flux coefficients in the dis-
cretization, which are then used for the computation of the error estimator (see [29]).
Finally, there is the neighbour-difference criterion, a simple and easy to implement,
yet flexible, criterion. It can be used to discover areas in the computational domain
where big changes occur in any quantity like the velocity or pressure, or quantities
that can be calculated based on the primary variables (like vorticity).
Among the many available error estimators the residual error estimator was chosen to
be implemented in C++ for a Navier-Stokes solver based on the finite element method
in Chapter 4. The residual estimator was also implemented in AVL-Fire® . The de-
scription of both implementations can be found in Chapter 6.
Numerical results for both methods are presented in Chapter 7.



2 Notations
The computational domain Ω ⊂ Rd (d = 2, 3), a bounded Lipschitz domain with
boundary Γ := ∂Ω, is being decomposed into elements T . The elements T ∈ T them-
selves are polygonally bounded or polyhedral elements, pairwise disjoint, connected
and bounded, such that

Ω =
⋃
T∈T

T

holds. We call this decomposition a mesh T of Ω, where T is the set of all elements T .
The mesh will consist of triangular elements for two space dimensions and polyhedra
for three space dimensions. The boundary Γ can be represented exactly by edges or
faces of finite elements if it is a polygonal line or if Ω is a polyhedron. Although
the finite element discretization as described in Chapter 4 is derived for two space
dimensions, it can analogously be extended to three dimensions using tetrahedra as
finite elements, and the same error estimation techniques can be employed. The
practical considerations and the implementation of the finite element method were
done in two dimensions. For the finite volume method, arbitrary polyhedra can be
used as finite elements. In practice, the most common shapes for the elements will
be hexahedra, prisms, pyramids and tetrahedra. The terms cell, control volume and
element are used synonymously with each other throughout the whole work, as well
as the terms triangulation, mesh and grid.

2.1 Basic notations
Definition 2.1. The set of all nodes of the triangulation is denoted by N , whereas
the nodes represent the cornerpoints of the elements T ∈ T . The set of all boundary
nodes is

NΓ := {a ∈ N | a ∈ Γ}

and
N0 := N\NΓ

is the set of all interior nodes.

Definition 2.2. For d = 2, the set of all edges of the triangulation is denoted by E.
Let EΓ be the set of all boundary edges, i.e. edges which are part of the boundary Γ.
Furthermore, let E0 be the set of all interior edges, such that E0 = E\EΓ. We denote by
ED the set of all boundary edges for which Dirichlet boundary conditions are prescribed
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and analogously EN the set of all edges with Neumann boundary conditions, such that
EΓ = ED ∪ EN . Moreover, the set of all edges of the element T is:

ET := {E ∈ E | E ⊂ ∂T} .

For three space dimensions, we can analogously define sets of faces F . The set of
interior faces is denoted by F0. FΓ is the set of faces on the boundary and F is the
set of all faces.

Definition 2.3 (Patches). We denote by

ωa := {T ∈ T | a ⊆ ∂T}

the set of all elements containing the node a, also called the node patch of a, see a) in
Figure 2.1. Analogously, we define the element patch of T by

ωT :=
{
L ∈ T | L = T or T ∩ L ∈ E

}
.

a T

a) ωa b) ωT

Figure 2.1: Node patch ωa and element patch ωT .

2.2 Regular triangulations
In the course of the present work, we assume for two dimensions that the triangulation
is regular, a definition which can also be found in [27].

Definition 2.4 (Regular triangulation). Let T be a triangulation of Ω. Then T
is called a regular triangulation of Ω, if

1. for all K,L ∈ T either K = L holds or K ∩ L = ∅,

2. for all K,L ∈ T with K 6= L one of the following cases holds:
• K ∩ L = ∅,
• K ∩ L ∈ N ,
• K ∩ L ∈ E,

3. each K ∈ T has non-empty measure, i.e. meas K > 0.
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2.3 Choice of normal vectors
In many places in this work we need to have the normal vector nE of an edge E in two
dimensions or to a face F in three dimensions. In order to agree on the orientation
of the normal vector, we always consider normal vectors in relation to an element T ,
i.e. nE = nT,E. This normal vector nT,E is pointing out of the element T . In cases,
where it is originally not clear which element is meant (for example when considering
integrals of the normal derivative over an edge E), the orientation is defined explicitly
in the context.

2.4 Diameter hT and ρT

We denote by dT := supx,y∈T |x − y| the diameter of T and by hT := |T |1/d the local
mesh size. Furthermore, rT is the radius of the largest circle (d = 2) or largest sphere
(d = 3) which can be inscribed in the finite element T . We call a finite element T
shape regular, if the diameter dT is bounded uniformly by the radius rT , i.e.

dT ≤ cF rT ∀T ∈ T ,

where the constant cF does not depend on T . The results in the next chapters depend
on the constant cF , thus we only consider triangulations consisting of shape-regular
elements.





3 The Finite Volume Method
In this chapter the finite volume method used to solve the Navier-Stokes equations
in three space dimensions will be discussed, together with all the other numerical
aspects needed to discretize the equations. The method allows us to use unstructured
grids composed of arbitrary polyhedra. The starting point will be the modelling
equations for fluid flow in integral form, from where the finite volume discretization
will be developed. Finally, the solution procedure using a SIMPLE-algorithm (short
for "Semi-Implicit Method for Pressure Linked Equations", see [19, 30]) based approach
for the coupling of the velocities and the pressure is being described.

3.1 Finite volume approach
In this work, a cell-centered finite volume method is being discussed. For such meth-
ods, the solution is seen as an approximation of the exact solution in the centers of
the control volumes T ∈ T . The discretization method uses the conservation laws of
the underlying physical problem in integral form applied over each control volume as
starting point for the final algebraic equations. Therefore, when the requirements to
the numerical grid, c.f. Chapter 2, are met, the finite volume method will be con-
servative, which is a desirable property for applications such as computational fluid
dynamics.

3.1.1 The transport equation
The equations used to model fluid flow phenomena are transport equations. Such
transport equations arise when we want to model the change of a quantity over time,
such as the change of total momentum, energy or enthalpy in a domain Ω(t) which also
depends on the time t. In our case, the transported quantity under consideration is
the momentum ρu, where the vector u with its components uk is the velocity and ρ is
the density of the fluid. Newton’s momentum conservation law states that the change
of linear momentum in ω(t) ⊂ Ω(t) is equal to all forces acting on ω(t) and its surface
∂ω(t), which results in the momentum balance equation for the k-th component uk of
the velocity u

d

dt

∫
ω(t)

ρ(t, x)uk(t, x) dx =
∫
ω(t)

ρ(t, x)fk(t, x) dx+
∫
∂ω(t)

tk(t, x,n) dsx, (3.1)

where the integral on the left hand side of the equation represents the total momentum
in coordinate direction k in ω(t), fk is the k-th component of the volumetric forces
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acting on ω(t) and tk is the k-th component of the Cauchy stress vector. Applying
Reynold’s Transport Theorem (here written for an arbitrary differentiable function ϕ)

d

dt

∫
ω(t)

ϕ(t,x) dx =
∫
ω(t)

∂ϕ

∂t
dx+

∫
ω(t)
∇ · (ϕu) dx, (3.2)

see [33], integration by parts and using the representation tk(t,x,n) = ∑d
i=1 Tkini

yields the balance equation for momentum in integral form

∫
ω(t)

{
∂ρuk
∂t

+∇ · (ρuku)−
d∑
i=1

∂

∂xi
Tki − ρfk

}
dx = 0.

Considering that the derivation of this equation is valid for arbitrary subdomains
ω(t) ⊂ Ω(t), we get the following equation in differential form

∂ρuk
∂t

+∇ · (ρuku) =
d∑
i=1

∂

∂xi
Tki + ρfk.

We assume that the fluid is Newtonian, which means that the viscous stresses (i.e.
forces suffered by a fluid element from surrounding fluid, which cause it to gradually
deform over time) are proportional to the rates of change of the fluid’s velocity vector.
If the fluid is incompressible, isotropic and its viscosity is constant, then there holds
the representation T = −pI + µ(∇u + (∇u)>) with p being the pressure and I the
identity matrix. A fluid is called isotropic, if its mechanical properties are the same in
each direction. For more information on material properties in fluid dynamics, see [10].
The transport equation then assumes the following form:

∂ρuk
∂t

+∇ · (ρuku) =
d∑
i=1

∂

∂xi

(
µ
∂uk
∂xi

)
+ ρfk −

∂p

∂xk
. (3.3)

3.1.2 Finite volumes
We derive a method to solve equation (3.3). For the rest of the chapter, to avoid
confusion with indices, we write φ instead of uk. For simplicity, we choose µ = 1.
Since we consider only incompressible flow, the density is constant over time.
Mass cannot be created or destroyed, which is why the total mass M in a control
volume T is constant:

d

dt
M(t) = d

dt

∫
T
ρ dx =

∫
T

∂

∂t
ρ+∇ · (ρu) dx = 0, (3.4)

using Reynold’s transport theorem (3.2), which leads us to the continuity equation,
with ∂

∂t
ρ = 0 due to incompressibility:∫

T
∇ · (ρu) dx = 0
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and using the Gauss’ theorem
nf∑
j=1

∫
Aj

ρu · n dsx = 0 (3.5)

with nf being the number of faces Aj of the polyhedral control volume T . The surface
integral over ∂T is split into surface integrals over the faces Aj. The volume integral
in equation (3.4) has been transformed into surface integrals in (3.5) using the Gauss’
theorem ∫

T

∂ϕ

∂xi
dx =

∫
∂T
ϕni dsx,

where ni is the i-th component of the outward pointing normal vector n. In order to
approximate surface and volume integrals, the midpoint rule is used. For ϕ being any
scalar valued function, we get∫

Aj

ϕ dsx ≈ |Aj|ϕj and
∫
T
ϕ dx ≈ |T |ϕT ,

where |Aj| denotes the surface area of face Aj and |T | the volume of the control volume
T . The subscripts j and T denote the value of ϕ at the center of the face Aj or center
of the volume T , respectively.
We approximate the surface integrals over Aj in the continuity equation (3.5) by

mj := ρj|Aj|(u · n)j ≈
∫
Aj

ρu · n dsx, (3.6)

which leads to
nf∑
j=1

mj = 0. (3.7)

By integrating equation (3.3) over the control volume T we get
∫
T

∂ρφ

∂t
+∇ · (ρφu) dx =

∫
T

d∑
i=1

∂2φ

∂x2
i

dx+
∫
T

(
ρfk −

∂p

∂xk

)
dx. (3.8)

Then the following integral form of the transport equation can be obtained for sta-
tionary, i.e. time independent flows (thus the time derivative in (3.8) vanishes):

nf∑
j=1

∫
Aj

ρφu · n dsx︸ ︷︷ ︸
convection term

=
nf∑
j=1

∫
Aj

∇φ · n dsx︸ ︷︷ ︸
diffusion term

+
∫
T

(
ρfk −

∂p

∂xk

)
dx︸ ︷︷ ︸

source terms

. (3.9)

With these notations, the general transport equation (3.9) can be approximated as:
nf∑
j=1

mjφj︸ ︷︷ ︸
Cj

−
nf∑
j=1
|Aj| (∇φ · n)j︸ ︷︷ ︸

Dj

= |T | (ρfk)T︸ ︷︷ ︸
SV

T

−
nf∑
j=1
|Aj| (pnk)j︸ ︷︷ ︸

SA
j

(3.10)
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or
nf∑
j=1

Cj −
nf∑
j=1

Dj = SVT −
nf∑
j=1

SAj ,

where the source terms have been transformed according to
∫
T

(
ρfk −

∂p

∂xk

)
dx ≈ |T | (ρfk)T −

nf∑
j=1

∫
Aj

pnk dsx = |T | (ρfk)T −
nf∑
j=1
|Aj|pjnk,j.

The convective terms Cj = mjφj have been approximated through

Cj =
∫
Aj

ρφu · n dsx ≈ φjmj.

3.2 Interpolation schemes
Equation (3.10) still contains derivatives of φ and values of φ at cell faces. In order to
arrive at an algebraic system consisting only of the values of φ at the cell centroids,
finite difference schemes are employed to replace the derivatives of φ, as well as inter-
polation for values of φ at the cell faces. The way in which the values of variables at
cell faces are calculated has a huge impact on the accuracy and stability of the numer-
ical method. Those properties were investigated in detail for example in [31]. In this
section, two standard finite difference schemes are presented: The central differencing
scheme (CDS) and the upwind differencing scheme (UDS).
For the central differencing scheme, the cell face value is approximated by a linear
combination of the values of φ in the cell centers of two cells T and Nj neighbouring
each other over the face Aj, using a factor

fj =
|rNj
− rj|

|rj − rT |+ |rNj
− rj|

,

where rT and rNj
are the position vectors of the cell centers of T and its neighbour

Nj over the face Aj, see Figure 3.1. The cellcenters are defined as the volume mean

T Nj

rT
rNj

Aj

rj

Figure 3.1: A cell T and its neighbour Nj.

over all position vectors inside of the control volume:

rT := 1
|T |

∫
T

r dx. (3.11)
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In order to find an alternative expression for (3.11), we first consider the k-th coordi-
nate xT,k of the cellcenter rT :

xT,k = 1
|T |

∫
T
xk dx. (3.12)

We use the obvious relation

xk = 1
3xk∇ · r = 1

3 [∇ · (xkr)− r · ∇xk]

and substitute into (3.12):

xT,k|T | =
1
3

∫
T
∇ · (xkr) dx− 1

3

∫
T

r · ∇xk dx. (3.13)

Together with
r · ∇xk = r · ek = xk,

where ek is the k-th unit vector, we get through (3.13)

xT,k|T | =
1
3

∫
T
∇ · (xkr) dx− 1

3

∫
T

r · ∇xk dx = 1
3

∫
T
∇ · (xkr) dx− 1

3xT,k|T |

and finally obtain using Gauss’ Theorem

4xT,k|T | =
∫
T
∇ · (xkr) dx =

∫
∂T
xkr · n dsx.

The term r · n is constant on the planar polygonal faces of T , thus yielding
∫
∂T
xkr · n ds =

nf∑
j=1

rj · nj
∫
Aj

xk dsx =
nf∑
j=1

rj · njxT,k|Aj|

and finally a new expression for the cell center (3.11):

rT = 1
4|T |

nf∑
j=1

(rj ·Aj) rj with Aj = nj|Aj|.

This formula was first derived by Wang [45]. Furthermore, we compute the cell face
centers rj of Aj by decomposing the polygon comprising the cell face into triangles,
computing the centers of the triangles by taking the average of the vertices of each
triangle and then computing the average of the centers, weighted by the area of the
triangles.
The value of φ at the cell face j center can now be computed by linear combination
of the values of φ at the centers of adjacent cells T and Nj:

φCDSj = fjφT + (1− fj)φNj
.
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The disadvantage of this scheme is that it generates numerical oscillations which possi-
bly leads to unbounded and non-monotonic solutions and thus to instability. Whether
oscillations occur when using central differencing, depends on the local Peclet number.
For the one-dimensional case, the local Peclet number is given by

PeT = ρuT∆x
µ

with ∆x being the distance between cell centers of a uniform grid. It can be shown
that if Pe ≤ 2 at every cell, no oscillations will occur for central differencing. This
has been investigated in [19, 30]. A more simple version of central differencing is using
arithmetic averaging:

φj = 1
2(φT + φNj

).

Another possibility is to use the upwind differencing scheme (UDS). It is uncondition-
ally bounded but produces numerical diffusion. For UDS, the value at the upwind
nodes is taken as an approximation for the value at the cell face center:

φUDSj =
φT if mj ≥ 0
φNj

if mj < 0,
(3.14)

with mj being defined through (3.6).

3.3 Algebraic system
In this section, the set of linear equations as a discrete counterpart for the equa-
tion (3.9) will be derived, using equations (3.10) as a starting point. When solving the
algebraic system, we will use an iterative strategy to treat the nonlinearities, which
means that φ is treated implicitly at some of its occurences, i.e. its values from the
previous iteration n− 1 are considered, denoted by the super-index n− 1.

3.3.1 Convective Fluxes
As discussed in Section 3.1, the convective flux through the cell face Aj is approximated
as:

Cj ≈ φjmj.

In order to express φj by the values φT and φNj
, any of the interpolation schemes

discussed in Section 3.2 can be applied. The following approach is based on the
upwind differencing scheme (3.14):

Cj = max {mj, 0}φT −max {−mj, 0}φNj
. (3.15)
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3.3.2 Diffusive fluxes
For the diffusive term Dj in equation (3.10) the derivative of φ or the gradient of φ at
the cell face centers is needed:

Dj = ∇φj ·Aj ≈
∫
Aj

∇φ · n dsx with Aj = |Aj|nj.

One possibility to express the derivative of φ is to use a least squares fit. This method
was introduced by Barth and Muzaferija [28]. Linear variation of φ in the control
volume is assumed. The Taylor series expansion for φ then reads:

φ(r) = φT +∇φT · (r− rT ).

The components of ∇φT can be computed by minimizing the sum of the squares of
the differences φNj

−φ(rNj
). This is achieved by differentiating by the k-th component

of the gradient g` := (∇φT )` and setting the sum equal to zero for each ` = 1, . . . , 3
(for three space dimensions), which results in a system of 3 equations:

∂

∂g`

nf∑
j=1

(
φNj
− φT −∇φT · dj

)2
= −2

nf∑
j=1

(
φNj
− φT −∇φT · dj

)
(dj)` = 0,

leading to
nf∑
j=1

(
φNj
− φT

)
dj =

nf∑
j=1

(dj)`∇φT · dj (3.16)

where dj := rNj
− rT is the distance vector connecting the cell centers rT and rNj

of
two neighbouring cells T and Nj. By defining the matrix G and vector h as

G`i :=
nf∑
j=1

(dj)` (dj)i and h` :=
nf∑
j=1

(
φNj
− φT

)
(dj)`,

equation (3.16) can be rewritten into the following representation for the gradient in
the center of T :

∇φT = G−1h. (3.17)
The gradient at the cell face center follows either by linear interpolation or arithmetic
averaging using the interpolation factor fj from Section 3.1:

∇φj =
fj∇φT + (1− fj)∇φNj

linear interpolation,
1
2(∇φT +∇φNj

) arithmetic averaging.
(3.18)

The above technique for gradient calculation involves the values of φ at neighbouring
cells of the neighbour cell Nj. For practical reasons, this must be avoided, but the
gradients can still be calculated implicitly. Therefore, an expression containing only
φT and φNj

and the gradient at the previous iteration step n− 1 is to be used.
The goal in approximating the diffusive term Dj is to find an expression for ∇φj ·Aj.
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The idea is to split up the surface normal Aj into a part s which has the direction of
the vector dj connecting the cell centers of T and Nj and a remainder part k, such
that Aj = s + k. This principle is also explained in [23]. Since s and dj are parallel,
we can simply use the following differencing formula:

s · ∇φj = |s|
φNj
− φT
|dj|

.

For the remainder we set k := Aj − s and use an over-relaxed approach with:

s := dj
dj ·Aj

|Aj|2

which leads to, when using the gradient at the cell face interpolated as above, but
calculated with values from the previous iteration:

Dj = ∇φj ·Aj = ∇φj · (s + k) ≈ |Aj|2

Aj · dj

(
φNj
− φT

)
+∇φj

n−1 ·
(

Aj −
|Aj|2

Aj · dj
dj
)
.

(3.19)

Remark 3.1. Among other approaches like the orthogonal correction approach or
the minimum correction approach, see [23], the over-relaxed approach was chosen for
implementation because it yielded the most stable results in practical experiments.

3.3.3 Boundary and initial conditions
The convective and diffusive fluxes at the boundaries are calculated in the same way
as for the inner cell faces, but instead of other differencing schemes, only upwind
differencing (3.14) is used for convective fluxes. The values of φ are taken from the
previous iteration n− 1:

Cb = max {mb, 0}φn−1
T −max {−mb, 0}φn−1

b .

The subindex b represents the boundary face b. Writing equation (3.19) for the bound-
ary faces reads:

Db = |Ab|2

Ab · db
(φb − φT ) +∇φn−1

T ·
(

Ab −
|Ab|2

Ab · db
db
)
,

where db is the difference vector db := rb − rT between the center rb of the face Ab
and the cell center rT of the associated cell T . The pressure at the boundary is either
prescribed, or it can be extrapolated from the inside of the solution domain. Therefore,
it is either obtained by pb = pT or by the following linear extrapolation formula:

pb = pT +∇pT · db.
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Symmetry conditions

Symmetric boundary conditions mean that variables do not change in normal direction
to the boundary, resulting in zero diffusive fluxes. Furthermore, velocities in normal
direction are zero and therefore yield zero convective fluxes. Symmetry boundary
conditions should reflect natural symmetries.

3.3.4 Algebraic equations
Gathering the results from the previous sections in this chapter, the discretization
of the transport equation (3.3) leads to a set of linear equations. For every control
volume T , these equations can be written in the following compact form:

aTφT =
nf∑
j=1

ajφNj
+ ST , (3.20)

with nf being the number of interior faces of the volume T and Nj the neighbouring
element of T over the face Aj. The coefficients aT and aj are then defined as follows
(upwind differencing (3.14) was used for convective fluxes):

aT =
nf∑
j=1

aj +
nb∑
b=1

ab,

aj = aCj + aDj = max {−mj, 0}+ |Aj|2

Aj · dj
.

(3.21)

Furthermore, assembling the explicit terms for the sources yields:

ST =
nf∑
j=1

[
∇φj ·

(
Aj −

|Aj|2

Aj · dj
dj
)]

+

nb∑
b=1

[
abφb +∇φT ·

(
Aj −

|Ab|2

Ab · db
db
)]

+ (ρfk)T −
nf∑
j=1

(pnk)j .
(3.22)

Under-relaxation

Instead of using the resultant variable vector φnew which is the solution of system (3.20)
as the solution at iteration step n, we can also define φn as a relaxation between φn−1

from the previous iteration step and φnew:

φn := φn−1 + αk(φnew − φn−1).

For the under-relaxation factor αk we choose a value between 0 and 1. When applying
this under-relaxation technique, system (3.20) still retains the same form, but the
diagonal coefficient of the resulting system matrix as well as the source terms have to
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be redefined:

a∗T = aT
αk
, (3.23)

S∗T = ST + 1− αk
αk

aTφ
n−1
T

which leads to the modified system

a∗TφT =
nf∑
j=1

ajφNj
+ S∗T .

The choice of appropriate relaxation factors αk is problem dependent. Under relax-
ation can be interpreted as a fixed point iteration method. For such a method, con-
vergence can be established by making the parameter αk small enough. Decreasing
the under-relaxation factor αk will also decrease the rate of convergence.

3.4 Numerical accuracy
In the following section, we examine the numerical accuracy of the proposed finite
difference and interpolation schemes of the previous sections. Those considerations
can also be found in [19]. We explain the underlying principle by considering the
one dimensional case. Multidimensional finite differences are handled by treating
each coordinate separately, so the results of this section can be adapted to higher
dimensions.
Any continuous sufficiently often differentiable function φ(x) ∈ Cp(Ω) can be expressed
by a Taylor series expansion around a point x0 ∈ R up to order p:

φ(x) = φ(x0) + (x− x0)
(
∂φ

∂x

)∣∣∣∣∣
x=x0

+ (x− x0)2

2!

(
∂2φ

∂x2

)∣∣∣∣∣
x=x0

+ (x− x0)3

3!

(
∂3φ

∂x3

)∣∣∣∣∣
x=x0

+ · · ·+ (x− x0)(p−1)

(p− 1)!

(
∂(p−1)φ

∂x(p−1)

)∣∣∣∣∣
x=x0

+R,

(3.24)
with x ∈ R where R stands for the remaining terms which are of order p and higher.
There exists a number ξ in the closed interval with bounds x and x0 such that

R = (x− x0)p
p!

∂p

∂xp
φ(ξ).

Let x0 < . . . < xN be a series of real numbers, representing a grid of a given interval
(domain).
The Taylor series expansion will play an important role in the deduction of approx-
imation orders for various interpolation and finite difference schemes. If all the used
approximations are second order accurate, then also the final finite volume method is
called second order accurate.
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3.4.1 Order of approximation for finite difference schemes
The order of approximation for first derivatives plays a role in the approximation of
the diffusive fluxes. We can use the Taylor expansion (3.24) to derive an expression
for the first derivative of φ. For that purpose, it is necessary to assume φ ∈ C3(Ω).
The subindex i denotes evaluation of an expression at the node xi, i.e. (· · · )i =
(· · · ) |x=xi

.

Uniform grids

We start by considering uniform grids, i.e. the distance ∆i between two grid points
xi+1 and xi equals a fixed distance h for all i. For p = 3, we replace x0 in (3.24) by xi
and x by xi+1 and rearrange the terms:(

∂φ

∂x

)
i

= φi+1 − φi
h

− h

2!

(
∂2φ

∂x2

)
i

− h2

3!
∂3φ

∂x3 (ξ), (3.25)

for some ξ ∈ [xi, xi+1] or when expanding the Taylor series once for xi−1 and once for
xi+1 and subtracting both, with η ∈ [xi−1, xi] (the terms with the second derivative of
φ cancel each other out):(

∂φ

∂x

)
i

= φi+1 − φi−1

h
+ h2

3

(
∂3

∂x3φ(ξ) + ∂3

∂x3φ(η)
)
.

We get the following estimate of the error in a grid point xi:∣∣∣∣∣
(
∂φ

∂x

)
i

− φi+1 − φi−1

h

∣∣∣∣∣ =
∣∣∣∣∣h2

3

(
∂3

∂x3φ(ξ) + ∂3

∂x3φ(η)
)∣∣∣∣∣ ≤ h2

3! max
ξ∈[xi−1,xx+1]

∣∣∣∣∣ ∂3

∂x3φ(ξ)
∣∣∣∣∣

under the assumption that φ is sufficiently many times differentiable. If we consider
the maximum of those errors over all grid points, we get

max
i∈{1,...,N}

∣∣∣∣∣
(
∂φ

∂x

)
i

− φi+1 − φi−1

h

∣∣∣∣∣ ≤ h2

3! max
ξ∈[x0,xN ]

∣∣∣∣∣ ∂3

∂x3φ(ξ)
∣∣∣∣∣︸ ︷︷ ︸

=constant

which means that the maximum error in the grid points decreases with second order
as the grid spacing h decreases.
The same as in (3.25) can be done by using the points xi and xi−1. We arrive at
approximations for the first derivative if we leave away the terms on the right side
which contain derivatives of higher order:(

∂φ

∂x

)
i

≈ φi+1 − φi
xi+1 − xi

,

(
∂φ

∂x

)
i

≈ φi − φi−1

xi − xi−1
,

(
∂φ

∂x

)
i

≈ φi+1 − φi−1

xi+1 − xi−1
.

These are the so called forward- (FDS), backward- (BDS), and central differencing
schemes. The terms containing higher order derivatives that were left away are called
the truncation errors. The accuracy of the approxmation and the error decay rate are
determined by those.
This order of approximation also holds true for non-uniform grids asymptotically,
which has been shown in [19].
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3.4.2 Order of approximation for interpolation schemes
Linear interpolation

Let’s recall the linear interpolation scheme from Section 3.2, rewritten for one dimen-
sion. Here, it is sufficient to assume φ ∈ C2(Ω). We want to interpolate based on
points xi and xi+1 to a point xi+1/2 that lies between those points:

φi+1/2 = λφi+1 + (1− λ)φi with λ = xi+1/2 − xi
xi+1 − xi

. (3.26)

In order to see this scheme’s order of convergence, we use a Taylor expansion of φi+1
around the point xi to find an expression for the first derivative(

∂φ

∂x

)
i

= φi+1 − φi
xi+1 − xi

− xi+1 − xi
2

(
∂2φ

∂x2

)
i

+R

and substitute this in

φi+1/2 = φi + (xi+1/2 − xi)
(
∂φ

∂x

)
i

+ (xi+1/2 − xi)2

2

(
∂2φ

∂x2

)
i

+R

which finally leads to (after rearrangement of the terms):

φi+1/2 = λφi+1 + (1− λ)φi −
(xi+1/2 − xi)(xi − xi+1/2)

2

(
∂2φ

∂x2

)
i

+R (3.27)

and yields in the case of a uniform grid, analogously to Section 3.4.1 with xi+1/2−xi =
xi − xi+1/2 = h/2 and ξ ∈ [xi, xi+1]:

∣∣∣φi+1/2 − λφi+1 + (1− λ)φi
∣∣∣ = h2

2

∣∣∣∣∣ ∂2

∂x2φ(ξ)
∣∣∣∣∣ ,

thus the maximum error of the scheme over all grid points scales with h2:

max
i∈{1,...,N}

∣∣∣φi+1/2 − λφi+1 + (1− λ)φi
∣∣∣ ≤ h2

2 max
ξ∈[x0,xN ]

∣∣∣∣∣ ∂2

∂x2φ(ξ)
∣∣∣∣∣ .

The first part of expansion (3.27) is exactly the linear interpolation (3.26).

Upwind differencing scheme

Let’s recall the upwind differencing scheme (3.14), written for one dimension:

φi+1/2 =
φi if ρi+1/2ui+1/2 ≥ 0,
φi+1 if ρi+1/2ui+1/2 < 0.

(3.28)
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The Taylor expansion around a point xi reads:

φi+1/2 = φi + (xi+1/2 − xi)
(
∂φ

∂x

)
i

+ (xi+1/2 − xi)2

2

(
∂2φ

∂x2

)
i

+R.

We see that the UDS approximation (3.28) retains only the first term on the right
hand side, thus leaving terms which scale proportionally to the first power of the grid
spacing.
The advantage of the upwind differencing scheme is that it is unconditionally stable,
see [19], but due to its low order of accuracy it requires very fine grids to achieve
accurate solutions.

3.4.3 Approximation of integrals
The approximations of integration for volume integrals through the midpoint rule∫

T
φ dx ≈ |T |φT

and surface integrals over a face Aj∫
Aj

φ dsx ≈ |Aj|φj,

with φT and φj being the values of φ at cell centers and face centers, respectively,
are at least second order accurate. This can be seen by analyzing a one-dimensional
situation. We consider integration over an interval [a, b] with a, b ∈ R. We denote
by x0 = a+b

2 the midpoint of the interval and by h = b − a the interval length.
Furthermore, we assume φ ∈ C2(Ω). The Taylor expansion then reads with ξ ∈ [a, b]:

φ(x) = φ(x0) + (x− x0) ∂
∂x
φ(x0) + (x− x0)2

2
∂2

∂x2φ(ξ).

Then integration yields:
∫ b

a
φ(x) dx =

∫ b

a
φ(x0) + (x− x0) ∂

∂x
φ(x0) + (x− x0)2

2
∂2

∂x2φ(ξ) dx

= hφ(x0) + h3

24
∂2

∂x2φ(ξ).

Therefore, the error in the integral approximation by the midpoint rule is proportional
to the third order of the integration interval length h:∣∣∣∣∣

∫ b

a
φ(x) dx− hφ(x0)

∣∣∣∣∣ = h3

24 max
ξ∈[a,b]

∣∣∣∣∣ ∂2

∂x2φ(ξ)
∣∣∣∣∣ .

This result can be carried over analogously to higher dimensions.
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3.5 SIMPLE-based solution procedure for
incompressible flow

Aside from the velocity components uk, the other main unknown is the pressure. This
means, that a pressure-velocity coupling is needed. This coupling can be done by the
SIMPLE algorithm (short for "Semi-Implicit Method for Pressure Linked Equations"),
which was introduced by Patankar and Spalding [30]. In the SIMPLE algorithm, a
collocated variable arrangement is assumed, which means that the values of unknown
physical quantities are considered at the center points of the control volumes instead of
points in the faces of the control volumes. This leads to a smaller number of degrees
of freedom, but is also the reason why interpolation techniques are required. The
following description of the SIMPLE algorithm is based on [17, 18]. This description
is correct for staggered grids (see [19]), but is still suitable to explain the principle of
the SIMPLE algorithm. We explain the method for staggered grids since they don’t
require interpolation techniques, thus unnecessary complexity is avoided. The missing
interpolation techniques can be found in [34].
So far in this chapter, the pressure appeared in the equations only as a source, but
is in fact an unknown and needs to be treated as such. Equation (3.20) with the
velocities uk substituted for φ together with the discretized continuity equation (3.7)
can be rewritten in matrix form as:

[
A(u) M
C 0

] [
u
p

]
=
[
b
0

]
(3.29)

with the velocity vector field u = (u1, . . . , uN , v1, . . . , vN , w1, . . . , wN) (for three space
dimensions), where N is the number of control volumes T of the triangulation T as
well as the pressure field p = (p1, . . . , pN). Here A denotes the coefficient matrix with
coefficients defined through (3.21) or (3.23) acting on the velocity field u, while M ’s
coefficients originate from interpolation of the pressure in (3.22). Instead of treating
the pressure as a source, it is now written separately as part of the unknowns. b is the
right hand side containing sources and sinks, and C the matrix which arises through
discretization of the continuity equation (3.7).
The SIMPLE algorithm deals with the non-linearity of equation system (3.29) by
employing an iterative strategy. A is nonlinear since for the computation of A’s co-
efficients, values of u are needed. For the calculation of the velocity field at the n-th
iteration, u(n) is split up into a tentative velocity field u∗ and an update part u′. A
similar splitting is also applied to the pressure by dividing the pressure p(n) into a
part with values from the previous iteration and and a part p′, called the pressure
correction term. This leads to:

u(n) = u∗ + u′ (3.30)
p(n) = p(n−1) + p′, (3.31)
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and they are defined through the following equations:

A(u(n−1))u∗ +Mp(n−1) = b (3.32)
A(u(n−1))u(n) +Mp(n) = b, (3.33)

where we use "old" values u(n−1) from the previous iteration for the computation of
the nonlinear operator A. Subtracting equation (3.32) from (3.33) and using (3.30)
and (3.31) yields

A(u(n−1))u′ +Mp′ = 0,
which contains only the update and correction parts. In the next step, the operator
A is split up into its diagonal part AD = diag(A(u(n−1))) and its remainder

AR := A(u(n−1))− AD.

Patankar’s idea (see [30]) was to treat the remainder AR as a zero matrix, such that
the diagonal matrix AD and therefore also A can easily be inverted, which gives

u′ = −A−1
D Mp′ (3.34)

as an expression for the update velocity u∗. Plugging this into the continuity equation

Cu(n) = 0 =⇒ Cu′ = 0− Cu∗

leads to
−CA−1

D Mp′ = −Cu∗. (3.35)
The following steps represent one iteration of the SIMPLE algorithm:
1. Solve the first equation in (3.29) for u = u∗, i.e. solve A(u(n−1))u∗+Mp(n−1) = b.
2. Assemble equation system (3.35) and solve for p′.
3. Compute velocity update u′ by (3.34).
4. Compute u(n) and p(n) by equations (3.30) and (3.31).





4 The Finite Element Method
In this chapter the finite element method used to solve the steady state incompress-
ible Navier-Stokes equations in two space dimensions will be discussed by starting
with a description of the simpler and linear Stokes equations and then adding corre-
sponding terms in order to reach a discretization of the Navier-Stokes equations. The
mixed finite element method that is being described here can be found in [13, 21]. In
Subsection 3.1.1 the transport equation

∂ρuk
∂t

+∇ · (ρuku) =
d∑
i=1

∂

∂xi

(
µ
∂uk
∂xi

)
+ ρfk −

∂p

∂xk
(4.1)

has been derived, which describes the velocity u and its components uk. We consider
only the stationary (i.e. ∂/∂t = 0) incompressible (ρ = constant, for simplicity
ρ = 1) case with µ = ν. Together with the continuity condition ∇ · u = 0 and
∇ · (uku) = u · ∇uk + uk∇ · u, equation (4.1) simplifies to the Navier-Stokes system:

−ν∆u + u · ∇u +∇p = f in Ω,
∇ · u = 0 in Ω

with the Dirichlet boundary condition

u = g on Γ.

4.1 The Stokes problem
4.1.1 Variational formulation
A reduced problem which we consider first is the Stokes problem

−ν∆u +∇p = f in Ω ⊂ Rd, (4.2)
∇ · u = 0 in Ω ⊂ Rd (4.3)

with d = 2 or d = 3 and with the inhomogeneous boundary condition

u = g on Γ. (4.4)

In general, ν(x) is a positive function, i.e. ν(x) ≥ ν0 > 0, ∀x ∈ Ω, with ν0 ∈ R+, but
for simplicity in this work we assume ν = ν0.
The Stokes equation (4.2) is used to model the motion of a slowly flowing fluid. The
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vectorial unknown u represents the velocity of the fluid at any given point x ∈ Ω,
while p represents the pressure.
Integration over Ω of the second equation (4.3) and using integration by parts yields
a solvability condition which has to be imposed on the boundary data g:

0 =
∫

Ω
∇ · u dx =

∫
Γ

n · u dsx =
∫

Γ
n · g dsx, (4.5)

where n is the outer unit normal vector. Let v ∈ [H1 (Ω)]d be a vectorial test function.
We multiply component i of equation (4.2) with the i-th component of v, integrate
over Ω and apply integration by parts:

ν
∫

Ω
∇ui · ∇vi dx− ν

∫
Γ
vi (∇ui · n) dsx +

∫
Ω
vi∂ip dx =

∫
Ω
fivi dx. (4.6)

Summation over the indices i then gives

ν
∫

Ω

d∑
i=1
∇ui · ∇vi dx− ν

∫
Γ

d∑
i=1

vi (∇ui · n) dsx +
∫

Ω

d∑
i=1

vi∂ip dx =
∫

Ω

d∑
i=1

fivi dx

and we get

ν
∫

Ω
∇u : ∇v dx− ν

∫
Γ

v · (∇u · n) dsx +
∫

Ω
v · ∇p dx =

∫
Ω

f · v dx.

Applying integration by parts on the third integral yields∫
Ω

v · ∇p dx = −
∫

Ω
p∇ · v dx+

∫
Γ
pv · n dsx. (4.7)

We finally have

ν
∫

Ω
∇u : ∇v dx−

∫
Ω
p∇·v dx−ν

∫
Γ

v·(∇u · n) dsx+
∫

Γ
pv·n dsx =

∫
Ω

f ·v dx. (4.8)

If v is chosen to be a function in [H1
0 (Ω)]d, then the two surface integrals in (4.8) over

the boundary Γ vanish, which leads to

ν
∫

Ω
∇u : ∇v dx−

∫
Ω
p∇ · v dx =

∫
Ω

f · v dx. (4.9)

The weak solution u needs to be in [H1 (Ω)]d such that the first integral in equa-
tion (4.9) exists, while the pressure p needs to be in L2 (Ω), such that the second
integral exists. Considering the first equation in (4.2), it becomes clear that the pres-
sure is unique only up to additive constants c ∈ R because of∇(p+c) = ∇p. Therefore,
a scaling condition must be imposed on the pressure by choosing

p ∈ L2
0 (Ω) =

{
p ∈ L2 (Ω) |

∫
Ω
p(x) dx = 0

}
. (4.10)
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Furthermore, in order to incorporate the incompressibility condition (4.3), we multiply
equation (4.3) by a test function q ∈ L2

0 (Ω) which leads to∫
Ω
q∇ · u dx = 0.

This leads to the follwing mixed variational formulation to find (u, p) ∈
[
H1
g (Ω)

]d
×

L2
0 (Ω) such that:

a(u,v)− b(v, p) =
∫

Ω
f · v dx

b(u, q) = 0,

is satisfied for all (v, q) ∈ [H1
0 (Ω)]d × L2

0 (Ω), using the bilinear forms
a(·, ·) : [H1 (Ω)]d×[H1 (Ω)]d → R and b(·, ·) : [H1 (Ω)]d×L2 (Ω)→ R which are defined
by

a(u,v) := ν
∫

Ω
∇u : ∇v dx and b(v, q) :=

∫
Ω
q∇ · v dx. (4.11)

[
H1
g (Ω)

]d
is the set of all [H1 (Ω)]d-functions v satisfying the boundary condition v = g

on Γ.

Incorporating the Dirichlet boundary condition

The boundary condition u = g is usually imposed by choosing an arbitrary but fixed
extension ug ∈

[
H1
g (Ω)

]d
and setting u = u0 + ug with u0 ∈ [H1

0 (Ω)]d. We will use
the definitions

X :=
[
H1

0 (Ω)
]d
,

Π := L2
0 (Ω)

from here on for shorter notation. This finally leads to the following variational for-
mulation for the Stokes-problem (4.2) which is to seek (u0, p) ∈ X × Π, such that:

a(u0,v)− b(v, p) =
∫

Ω
f · v dx− a(ug,v), (4.12)

b(u0, q) = −b(ug, q), (4.13)

is satisfied for all (v, q) ∈ X × Π.

Solvability

The linear continuous operator A : X → X ′ is defined through the bilinear form
a(u,v):

〈Au,v〉X′×X = a(u,v) ∀u,v ∈ X.
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In our case, we have X = [H1
0 (Ω)]d and its dual space X ′ = [H−1(Ω)]d. Similarly, the

operator B : X → Π′ and its adjoint operator B′ : Π→ X ′ are defined through

〈Bv, q〉Π′×Π = 〈v, B′q〉X×X′ = b(v, q) ∀v ∈ X, ∀q ∈ Π.

It is then possible to rewrite formulation (4.12)-(4.13) into the following one using
operator notation: seek (u0, p) ∈ X × Π, such that

〈Au0,v〉X′×X − 〈v, B′p〉X×X′ = 〈f − ug,v〉X′×X (4.14)
〈Bu0, q〉Π′×Π = −〈Bug, q〉Π′×Π (4.15)

is satisfied for all (v, q) ∈ X × Π.
Solvability of the variational formulation (4.14)-(4.15) follows by the following theorem
(see [13, Theorem 1.1] or [38, Theorem 3.11]):

Theorem 4.1. Let X and Π be Banach spaces and let A : X → X ′ and B : X → Π′
be bounded operators with boundedness constants cA2 and cB, respectively. Further,
assume that A is V0-elliptic,

〈Au, v〉 ≥ cA1 ‖v‖
2
X ∀v ∈ V0 = kerB = {v ∈ X |Bv = 0} ,

and that the stability condition

0 < cS‖q‖Π ≤ sup
06=v∈X

〈Bv, q〉Π′×Π

‖v‖X
for all q ∈ Π

is satisfied. For g ∈ ImXB and f ∈ ImVgA there exists a unique solution (u, p) ∈ X×Π
of the variational problem (4.14)-(4.15) satisfying

‖u‖X ≤
1
cA1
‖f‖X′ +

(
1 + cA2

cA1

)
cB‖g‖Π′

and
‖p‖Π ≤

1
cS

(
1 + cA2

cA1

){
‖f‖X′ + cBc

A
2 ‖g‖Π′

}
.

The two bilinear forms a(·, ·) and b(·, ·) defined by (4.11) are bounded from above
with boundedness constants cA2 and cB, respectively:

a(u,v) ≤ cA2 ‖u‖H1(Ω)‖v‖H1(Ω) and b(v,q) ≤ cB‖v‖H1(Ω)‖q‖L2(Ω).

In order to show solvability of (4.14)-(4.15) using Theorem 4.1, we also need to prove
the ellipticity of a(·, ·) and the validity of the stability condition.
The kernel of B is defined as

kerB := {v ∈ X | b(v, q) = 0, ∀q ∈ Π} ⊂ X.

In order to show ellipticity of A, i.e. ellipticity of the bilinear form a(·, ·), we use
norm equivalence. Since v ∈ X, there exists a constant c such that ‖v‖[H1(Ω)]d,Γ ≥
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c‖v‖[H1(Ω)]d by the Norm Equivalence Theorem of Sobolev, see [38, Theorem 2.6].
Then ellipticity follows:

a(v,v) = ν
∫

Ω
∇v : ∇v dx = ν

d∑
i=1
|vi|2H1(Ω)

= ν
d∑
i=1

{[∫
Γ
vi dsx

]2
+ |vi|2[H1(Ω)]d

}
︸ ︷︷ ︸

:=‖v‖2
[H1(Ω)]d,Γ

≥ νc‖v‖2
[H1(Ω)]d .

The proof of the stability condition, i.e. that there exists a constant cS such that

cS‖q‖L2(Ω) ≤ sup
06=v∈X

∫
Ω q div v dx

‖v‖[H1(Ω)]d
for all q ∈ Π, (4.16)

can be found in [38, Lemma 4.20].

The scaling condition

A convenient way to incorporate the scaling condition (4.10) into the variational for-
mulation (4.12)-(4.13) without the need to use the space L2

0 (Ω) is to introduce a scalar
Lagrange multiplier λ ∈ R. We define Π := L2 (Ω) and consider an extended saddle
point problem to find u ∈

[
H1
g (Ω)

]d
as well as p ∈ Π and λ ∈ R such that

a(u,v)−
∫

Ω
p∇ · v dx = 〈f ,v〉Ω, (4.17)∫

Ω
q∇ · u dx+ λ

∫
Ω
q dx = 0, (4.18)∫

Ω
p dx = 0 (4.19)

is satisfied for all v ∈ X and q ∈ Π. Choosing as test function q ≡ 1 and using the
solvability condition (4.5) yields

λ|Ω| = −
∫

Ω
∇ · u dx = −

∫
Γ

n · g dsx = 0

which leads to λ = 0. Therefore equation (4.19) can be rewritten as∫
Ω
p dx− λ = 0.

The Lagrange multiplier λ can then be eliminated and finally a modified variational
formulation follows which is to find u0 ∈ X and p ∈ Π such that

a(u0,v)− b(v, p) =
∫

Ω
f · v dx− a(ug,v) (4.20)

b(u0, q) +
∫

Ω
p dx

∫
Ω
q dx = −b(ug, q) (4.21)

is satisfied for all v ∈ X and q ∈ Π. Solvability of this formulation is shown in [38]
and follows through equivalence with (4.12)-(4.13) by setting q = 1.
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4.1.2 Discretization
For the approximation of the solution of (4.2) the variational formulation (4.20)-(4.21)
is discretized by using

Xh = [Pku ]d ∩X (4.22)
and

Πh = Pkp ∩ Π (4.23)

as ansatz and test spaces with X = [H1
0 (Ω)]d and Π = L2 (Ω), ku as piecewise polyno-

mial degree for the approximation of the velocity u and kp as the polynomial degree
for the pressure p. The index h refers to the global mesh size of the triangulation T .
The space Pk is defined as the Lagrange finite element space of continuous piecewise
polynomials of degree k:

Pk :=
{
u ∈ C0(T ) | u|T ∈ Pk(T ), ∀T ∈ T

}
.

It is defined for a triangulation T as described in Chapter 2. Furthermore, Xh and
Πh are conforming since Xh ⊂ X and Πh ⊂ Π. The Galerkin variational problem
of (4.20)-(4.21) then is to find (u0,h, ph) ∈ Xh × Πh such that:

a(u0,h,vh)− b(vh, ph) =
∫

Ω
f · vh dx− a(ug,vh) (4.24)

b(u0,h, qh) = −b(ug, qh), (4.25)

is satisfied for all (vh, qh) ∈ Xh × Πh.
In order to show solvability of the variational formulation (4.24)-(4.25), Theorem 4.1
can be used. Boundedness of the bilinear forms a(·, ·) and b(·, ·) follows simply by
conformity of the spaces Πh and Xh. Also the ker B-ellipticity on Xh follows with
some simple steps if a(·, ·) is kerB-elliptic on X. Furthermore, the stability condition
needs to hold for the discrete spaces Xh and Πh such that

cS‖qh‖Π ≤ sup
06=vh∈Xh

b(vh, qh)
‖vh‖X

, (4.26)

but this does not follow immediately through conformity. Instead, the discrete stability
condition (4.26) can be shown for a pair Xh × Πh by using Fortin’s criterion:
Proposition 4.2. Suppose that the continuous stability condition (4.16) holds and
assume that there exists a uniformly continuous operator P : X → Xh satisfyingb(Pv− v, qh) = 0, ∀qh ∈ Πh

‖Pv‖X ≤ c‖v‖X

with c independent of h. Then the discrete stability condition (4.26) holds.

The proof of Proposition 4.2 can be found in [13], as well as the proof of the stability
for a selection of finite element pairs. Some of those pairs are presented in the next
section.
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Stable finite element spaces

Two common choices for finite-element spaces yielding unconditionally stable approx-
imations are:

• The Taylor-Hood element: Choose ku ≥ 2 in (4.22) for the elementwise polyno-
mial degree for the piecewise continuous approximation of the velocities, and one
order less kp = ku−1 in (4.23) for the piecewise continuous approximation of the
pressure.

• The mini-element: For the mini-element, the space of piecewise linear functions
P1 enriched by the bubble-functions is used as ansatz and test space. The bubble-
functions are the elements of the space

Bh := span {λT,1λT,2λT,3 | T ∈ Th} , (4.27)

where λT,1, λT,2 and λT,3 are the barycentric coordinates defined on T ∈ Th. The
ansatz and test spaces Xh and Πh can then be defined by:

Xh :=
[
P1 ∩H1

0 (Ω)⊕ Bh
]d

and Πh := P1 ∩ Π.

4.1.3 A priori error estimates
For inf-sup stable and conforming finite element pairs Xh × Πh ⊂ X × Π, we can
conduct an a priori error analysis by standard arguments. We start by using best
approximation results. The following results together with proofs can be found in [13]
for mixed finite element methods for the Stokes problem (4.2).

Theorem 4.3. Let Xh×Πh ⊂ X×Π be a stable finite element pair, (uh, ph) ∈ Xh×Πh

with uh := uh,0 + ug as the solution of (4.24)-(4.25) and h the global mesh size of T .
Then there holds

|u− uh|H1(Ω) + ‖p− ph‖L2(Ω) ≤ c
(

inf
vh∈Xh

|u− vh|H1(Ω) + inf
qh∈Πh

‖p− qh‖L2(Ω)

)
,

where the constant c > 0 depends on the inf-sup constant cS in (4.16). Further, if Ω
is a convex domain, there holds

‖u− uh‖L2(Ω) ≤ ch
(

inf
vh∈Xh

|u− vh|H1(Ω) + inf
qh∈Πh

‖p− qh‖L2(Ω)

)
.

We arrive at an upper bound for the best approximation by substituting vh with an
arbitrary function in Xh instead of taking the infimum, particularly when substituting
with Imh uh, where Imh : C(Ω) → Xh is the Lagrangian interpolation operator into the
space of continuous piecewise polynomials of degree m:

inf
vh∈Xh

|u− vh|H1(Ω) ≤ |u− Imu
h u|H1(Ω) ≤ chku|u|Hku+1(Ω),

inf
qh∈Πh

‖p− qh‖L2(Ω) ≤ ‖p− I
mp

h p‖L2(Ω) ≤ hkp+1|p|Hkp+1(Ω).
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We use mu-th order interpolation for the velocity u and mp-th order interpolation for
the pressure p. In the last step of each of the above two inequalities, [13, Proposition
3.6] was used, for which we have to assume u ∈ Hku+1(Ω) or p ∈ Hkp+1(Ω), with
mu ≥ ku ≥ 1 and mp ≥ kp ≥ 1. These results then give:

inf
vh∈Xh

|u− vh|H1(Ω) + inf
qh∈Πh

‖p− qh‖L2(Ω) ≤ c
(
hku|u|Hku+1(Ω) + hkp+1|p|Hkp+1(Ω)

)
.

In the case of using Taylor-Hood elements (see Section 4.1.2) and especially in the case
mu = 2 and mp = 1 in view of the numerical investigations in Chapter 7, we achieve
a final convergence rate of O(h2) for the errors ‖p− ph‖L2(Ω) and |u− uh|H1(Ω) and
O(h3) for ‖u− uh‖L2(Ω), assuming that u ∈ H3(Ω) and p ∈ H2(Ω):

|u− uh|H1(Ω) + ‖p− ph‖L2(Ω) ≤ ch3
(
|u|H3(Ω) + |p|H2(Ω)

)
.

4.1.4 Stabilization of equal-order approximations
In the case of an appoximation by equal-order polynomials for both the velocity and
the pressure, i.e. ku = kp in (4.22) and (4.23), the stability condition does not hold. In
this subsection, a method to stabilize such choices of spacesXh×Πh is given. Although
the method works for arbitrary polynomial degrees k ≥ 1, we restrict ourselves here
to ku = kp = 1 since this is also the degree with which the implementation was tested.
In [21] it was shown that the inf - sup-condition is valid if and only if the pressure
space coincides with the range of the divergence operator. This is also the case for a
discrete inf-sup-condition. The range of the divergence is a polynomial space of one
degree less than the pressure space for equal-order approximations, which is why such
pairs of spaces would never fulfill the discrete inf-sup-condition.
In the stabilization approach proposed in [15], a local pressure projection term is
added.
Let

PDC
m =

{
qh ∈ L2 (Ω) | qh|T ∈ Pm(T ), ∀T ∈ T

}
be the space of elementwise polynomials of degree m ≥ 0 and

Xh = [P1]d ∩X and Πh = P1 ∩ Π

an equal-order pair of trial and ansatz spaces for velocity and pressure. For a function
q ∈ L2 (Ω) the projection operator ρm : L2 (Ω)→ PDC

m is defined through:∫
Ω
rh(ρmq − q) dx = 0 ∀rh ∈ PDC

m . (4.28)

This uncouples into local elementwise projection problems, such that∫
T
rh(ρmq − q) dx = 0 ∀rh ∈ PDC

m , ∀T ∈ T .
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Considering that each element vh ∈ Xh is a continuous piecewise linear polynomial,
it becomes clear that the divergence of vh is a piecewise constant function, i.e.

∇ · vh ∈ PDC
0 ∀vh ∈ Xh.

Therefore, using the definition (4.28), it follows that∫
Ω

(qh − ρ0qh)∇ · vh dx = 0

and consequently
b(vh, ρ0qh) = b(vh, qh), (4.29)

which is why solving the variational formulation (4.24)-(4.25) using the projections
ρ0ph and ρ0qh instead of ph and qh is the same as solving without using the projections.
Introduction of those projections leads to an imbalance between the desired linear
order of pressure approximation and represent constant pressure approximation. This
imbalance can be penalized by a term

c(ph, qh) = 1
ν

∫
Ω

(ph − ρ0ph)(qh − ρ0qh) dx.

Adding −c(ph, qh) to (4.25) and substitution of ph, qh by ρ0ph, ρ0qh leads to the
following variational problem, which is to find (u0,h, ph) ∈ Xh × Πh such that:

a(u0,h,vh)− b(vh, ρ0ph) =
∫

Ω
f · vh dx− a(ug,vh)

b(u0,h, ρ0qh)− c(ph, qh) = −b(ug, ρ0qh),

is satisfied for all (vh, qh) ∈ Xh ×Πh. Finally, using (4.29), this leads to the following
variational formulation, which is to seek (u0,h, ph) ∈ Xh × Πh, such that:

a(u0,h,vh)− b(vh, ph) =
∫

Ω
f · vh dx− a(ug,vh) (4.30)

b(u0,h, qh)− c(ph, qh) = −b(ug, qh), (4.31)

is satisfied for all (vh, qh) ∈ Xh × Πh.
Unique solvability of the variational formulation (4.30)-(4.31) can be established by
Theorem II.1.2 in [13].
A proof of the stability of the pressure projection method can be found in [12], as
well as the following corollary concerning its convergence, thus proving the method’s
validity as a solution method for the Stokes equation (4.2):

Corollary 4.4. Let (u, p) ∈ H1
0 (Ω)∩H2(Ω)×L2

0 (Ω)∩H1 (Ω) be a solution of the Stokes
problem (4.2)-(4.3) and let (u0,h, ph) be the solution of the stabilized problem (4.30)-
(4.31), where the projection ρ0 satisfies

‖ρ0p‖L2(Ω) ≤ C‖p‖L2(Ω) ∀p ∈ L2 (Ω)
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and
‖p− ρ0p‖L2(Ω) ≤ Ch‖p‖H1(Ω) ∀p ∈ H1 (Ω).

Then,
‖u− uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ Ch

(
‖u‖H2(Ω) + ‖p‖H1(Ω)

)
.

A proof that the assumptions of Corollary 4.4 are satisfied can be found in [12].

4.2 The Navier-Stokes problem
In this section, a finite element approach based on [20] for the solution of the stationary
incompressible Navier-Stokes problem

−ν∆u + u · ∇u +∇p = f in Ω, (4.32)
∇ · u = 0 in Ω (4.33)

with the Dirichlet boundary condition

u = g on Γ,

again underlying the solvability condition (4.5), is being presented.

4.2.1 Variational formulation
The discretization of the nonlinear convection-term u · ∇u appearing in the Navier-
Stokes equations leads, proceeding in the same way as in Section 4.1, but considering
the convection-term and defining the corresponding trilinear form

n(u,v,w) :=
∫

Ω
(u · ∇v) w dx,

to the following variational problem, which is to find (u0, p) ∈ X × Π such that:

a(u0,v) + n(u0 + ug,u0 + ug,v)− b(v, p) = F̃ (f ,ug,v) (4.34)
b(u0, q) = −b(ug, q), (4.35)

is satisfied for all (v, q) ∈ X × Π with

F̃ (f ,ug,v) =
∫

Ω
f · v dx− a(ug,v),

where ug ∈
[
H1
g (Ω)

]d
is an extension of the boundary function g ∈

[
H1/2 (Γ)

]d
to

the domain Ω. The final solution to the Navier-Stokes problem is represented by
u = u0 +ug. The term n(·, ·, ·) cannot be treated directly, which is why we employ the
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iterative Newton-algorithm [21, 44] in order to linearize the Navier-Stokes problem,
leading to the modified Stokes problem

−ν∆ui+1 +∇pi+1 +
[
ui · ∇ui+1 + ui+1 · ∇ui

]
= f + ui · ∇ui in Ω, (4.36)

∇ · ui+1 = 0 in Ω, (4.37)
ui+1 = g on ΓD, (4.38)

where the superindices i or i+1 represent solutions at iterations i or i+1, respectively.
By setting ui+1 = ui+1

0 +ug and ui = ui0 +ug (the extension ug does not change during
the iterations, because g also does not change), the terms ui · ∇ui+1 and ui+1 · ∇ui
in (4.36) lead to the following terms appearing in the variational formulation:

n(ui+1
0 + ug,ui0 + ug,v) = n(ui+1

0 ,ui,v) + n(ug,ui,v), (4.39)
n(ui0 + ug,ui+1

0 + ug,v) = n(ui,ui+1
0 ,v) + n(ui,ug,v). (4.40)

The terms n(ug,ui,v) and n(ui,ug,v) only contain results from the old iteration i,
so we subtract them such that they appear on the right hand side F of the varia-
tional equations. Incorporating the scaling condition as described in Section 4.1.1
finally leads to the following variational formulation with the scaling condition in-
corporated, for the i + 1-th Newton-iteration of the time-independent Navier-Stokes
problem for incompressible flow with pure Dirichlet boundary conditions, which is to
seek (ui+1

0 , pi+1) ∈ X × Π, such that

a(ui+1
0 ,v) + n(ui+1

0 ,ui,v) + n(ui,ui+1
0 ,v)− b(v, p) = F (f ,ui,v) (4.41)

b(ui+1
0 , q) +

∫
Ω
p dx

∫
Ω
q dx = −b(ug, q), (4.42)

is satisfied for all (v, q) ∈ X × Π with

F (f ,ui,v) =
∫

Ω
f · v dx− a(ug,v)− n(ug,ui,v)− n(ui,ug,v) + n(ui,ui,v). (4.43)

Any of the proposed choices for test and ansatz spaces in Section 4.1.2 can be applied
to discretize problem (4.41)-(4.42).

Remark 4.1. Newton’s algorithm can be found in [21, 44], it converges quadratically
under the assumption that the initial guess u0 is good enough. If (u, p) is a solution
of (4.32)-(4.33), then the Newton-iteration scheme defines a sequence (ui, pi) that
converges to (u, p). The solution of the Stokes equations can be used as an initial
guess u0. As a termination criterion, a positive real number ε has to be chosen. The
algorithm stops if ‖ui+1 − ui‖0 ≤ ε.

Remark 4.2. For very fast flows (see Reynolds’ number [33], which is described in
more detail in Chapter 7), the nonlinear term u ·∇u becomes dominant in comparison
to the diffusion term −ν∆u, such that the solution of the Stokes equations which
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lack the nonlinear term may not be good enough, i.e. the algorithm diverges. In
that case, damped Newton iterations can be employed. That means that the nonlinear
terms are multiplied by an increasing sequence 0 < ci+1

D ≤ 1 of coefficients. The
factor c0

D is chosen to be zero (then the problem is reduced to the Stokes problem)
and ci+1

D for consecutive iterations i + 1 is increased for each iteration in such a way
that ciD < ci+1

D ≤ 1. The damping factor serves to slowly introduce the nonlinearity.
However, the final solution is only attained if ci+1

D = 1 and ‖ui+1 − ui‖0 ≤ ε.

4.2.2 Solvability
Solvability of variational formulations for the Navier-Stokes equations is more difficult
to show than for the Stokes equations, where no nonlinear term was present. In most
cases, only the existence of a solution can be shown. Investigations on existence and
uniqueness of solutions can be found in [21, 40]. The following theorem from [21] is a
statement about the existence of a solution of variational formulation (4.34)-(4.35):

Theorem 4.5. Given f ∈ [H−1(Ω)]d and let ug ∈
[
H1
g (Ω)

]d
be an arbitrary but

fixed extension of g ∈
[
H1/2 (Γ)

]d
satisfying the solvability condition (4.5), such that

u = u0 + ug, then there exists at least one pair (u0, p) ∈ X × Π which is a solution
of (4.34)-(4.35). Furthermore, if for

N = sup
u,v,w∈V

n(u,v,w)
|u|H1(Ω)|v|H1(Ω)|w|H1(Ω)

and ‖f‖V ′ = sup
v∈V

〈f ,v〉
|v|H1(Ω)

with V =
{
v ∈ [H1

0 (Ω)]d , ∇ · v = 0
}
the condition

(N /ν2)‖f‖V ′ < 1

holds, then problem (4.34)-(4.35) possesses a unique solution (u0, p) ∈ X × Π.

4.2.3 Linear system
This subsection is about how the variational formulations from the previous sections
can be transformed into linear systems of algebraic equations for d = 2. We set uih =
ui0,h + ug. Discretizing (4.41)-(4.42) and employing pressure scaling as in (4.20)-(4.21)
leads to the following variational formulation, which is to find (ui+1

0,h , p
i+1
h ) ∈ Xh×Πh,

such that

a(ui+1
0,h ,vh) + n(ui+1

0,h ,uih,vh) + n(uih,ui+1
0,h ,vh)− b(vh, pi+1

h ) = F (f ,uih,vh) (4.44)

b(ui+1
0,h , qh) +

∫
Ω
pi+1
h dx

∫
Ω
qh dx = −b(ug, qh), (4.45)
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is satisfied for all (vh, qh) ∈ Xh × Πh with the right hand side F defined as in (4.43).
We use

Xh := [Pku ]d =
[
span

{
ϕku
j

}D0

j=1

]d
= span

{(
ϕku
j

0

)
,

(
0

ϕku
j

)}D0

j=1
⊂
[
H1

0 (Ω)
]2
,

Πh := Pkp = span
{
ϕ
kp

j

}Dp

j=1
⊂ L2 (Ω)

as discrete ansatz and test spaces for the velocity ui+1
0,h and the pressure pi+1

h , where Pk is
the space of continuous piecewise polynomials of degree k. The order of approximation
for the velocity is ku and kp for the pressure. For Taylor-Hood elements, we choose
ku = 2 and kp = 1. Here, ϕkj are the basis functions of k-th order spanning the space
Pk.
We denote by Du the total number of degrees of freedom for the velocity ui+1

h , while
DΓ denotes the number of degrees of freedom with fixed values, determined by the
boundary condition. Then D0 denotes the remaining non-fixed degrees of freedom,
such that Du = D0 + DΓ. The number of degrees of freedom for the pressure is
denoted by Dp. In the case of linear approximation (k = 1), the degrees of freedom
correspond to the nodes a ∈ N . For quadratic approximations (k = 2), the degrees of
freedom correspond to the nodes a ∈ N and additionally the midpoints of the edges
E ∈ E .
The discrete solutions uh and ph of the i+ 1-th Newton iteration can then be written
as

ui+1
h (x) =

Du∑
j=1

{
ui+1
j

(
ϕku
j (x)
0

)
+ vi+1

j

(
0

ϕku
j (x)

)}
and pi+1

h (x) =
Dp∑
j=1

pi+1
j ϕ

kp

j (x)

with coefficient vectors ui+1 ∈ RDu and vi+1 ∈ RDu for the approximation of the
velocity in the x- and y- direction, respectively, and the pressure coefficient vector
pi+1 ∈ RDp .

Definition of the extension ug through interpolation

Let g ∈
[
H1/2 (Γ)

]d
be the given Dirichlet datum. By the inverse trace theorem [38,

Theorem 2.22] there exists a bounded extension Eg ∈ [H1 (Ω)]d and a constant c such
that

‖Eg‖H1(Ω) ≤ c‖g‖H1/2(Γ)

and Eg|Γ = g. We define a piecewise polynomial interpolation (of same order as the
approximation of the velocity) on Ω of Eg:

ug(x) = (IhEg) (x) (4.46)

Then we set the values of the extension ug(x) at the Dirichlet boundary simply to the
values of the Dirichlet datum such that ug(xj)|Γ = g(xj) for all j = D0 + 1, . . . , Du.
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Thus the values of the extension are fixed for degrees of freedom corresponding to a
Dirichlet boundary condition, and we can consider a splitting of the coefficient vectors
ui+1 = ui+1

0 + ug and vi+1 = vi+1
0 + vg into variable parts and parts fixed by the

boundary condition.

Final system

Seeking a solution of the Galerkin variational formulation (4.44)-(4.45) is equivalent
to seeking the solution vectors s = (ui+1

0 , vi+1
0 , pi+1) ∈ RD0 × RD0 × RDp of the linear

equation system Ms = r:

A+ A1 +M00 M10 −B>1
M01 A+ A1 +M11 −B>2
B1 B2 a · a>


︸ ︷︷ ︸

:=M

u
i+1
0
vi+1

0
pi+1


︸ ︷︷ ︸

s

=

F 1
F 2
b


︸ ︷︷ ︸

r

, (4.47)

with

A[j, `] :=
∫

Ω
∇ϕj · ∇ϕ` dx,

A1[j, `] :=
∫

Ω

(
uih · ∇ϕ`

)
ϕj dx,

M00[j, `] :=
∫

Ω

∂uih
∂x

ϕjϕ` dx,

M01[j, `] :=
∫

Ω

∂uih
∂y

ϕjϕ` dx,

M10[j, `] :=
∫

Ω

∂vih
∂x

ϕjϕ` dx,

M11[j, `] :=
∫

Ω

∂vih
∂y

ϕjϕ` dx

for `, j = 1, . . . , D0. The functions uih and vih are the x- and y-components of the
velocity uih. Furthermore, we define

B1[k, `] :=
∫

Ω
ψk
∂ϕ`
∂x

dx,

B2[k, `] :=
∫

Ω
ψk
∂ϕ`
∂y

dx,

a[k] :=
∫

Ω
ϕk dx,
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for ` = 1, . . . , D0 and k = 1, . . . , Dp. The right hand sides of system (4.47) are given
by

F1[j] :=
∫

Ω

(
ϕj
0

)
·
[
f −∇ (ug)x −

(
(ug)x · ∇

(
uih
)
x

)
−
((

uih
)
x
· ∇ (ug)x

)
+
((

uih
)
x
· ∇

(
uih
)
x

)]
dx,

F2[j] :=
∫

Ω

(
0
ϕj

)
·
[
f −∇ (ug)y −

(
(ug)y · ∇

(
uih
)
y

)
−
((

uih
)
y
· ∇ (ug)y

)
+
((

uih
)
y
· ∇

(
uih
)
y

)]
dx,

b[k] := −
∫

Ω
ψk∇ · ug dx,

with (·)x and (·)y denoting the x- and y-components, j = 1, . . . , D0 and k = 1, . . . , Dp.

4.2.4 Neumann boundary condition

Another type of boundary condtion is the Neumann boundary condition. For the
purpose of description of the boundary conditions, we denote by ΓD the Dirichlet-
boundary and by ΓN the free-stream-, Neumann or do-nothing-boundary, such that:

∂Ω = Γ = ΓD ∪ ΓN , (4.48)

under the assumption that the d − 1-dimensional Lebesgue-measure of ΓN ∩ ΓD is
zero, which means that ΓN and ΓD may intersect each other only at common points
in space (d = 2) or at common edges/points (d = 3).
The Neumann boundary condition which is described in [20, 41] is of use, for example,
if we want to simulate the flow of a fluid through a pipe, where the velocity profile at
the inlet of the pipe is known, but nothing is known about the behaviour of the flow
after leaving the pipe. This basically represents the truncation of a physical domain,
e.g. when only the flow in the first half of the pipe is of interest. Then the second half
of the pipe can be truncated by introducing a Neumann boundary normal to the pipe
axis, so the computational domain Ω can be restricted to the first half, see Figure 4.1,
which was taken from [20].
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Figure 4.1: Truncated calculation domain, see [20].

So far, we incorporated Dirichlet-boundary conditions by choosing an extension
ug that fulfills the boundary data g and then solving for u0 ∈ [H1

0 (Ω)]d, such that
u := u0 + ug yields the final solution. In contrary, for the Neumann boundary ΓN , we
do not want to prescribe a specific velocity profile. Therefore, we use the space

X :=
{

v ∈
[
H1 (Ω)

]d
| v = 0 on ΓD

}
.

Let us recall the momentum balance equation (3.1):

d

dt

∫
ω(t)

ρ(t,x)uk(t,x) dx =
∫
ω(t)

ρ(t,x)fk(t,x) dx+
∫
∂ω(t)

tk(t,x,n) dsx

with the surface stress tensor T · n = t. Under certain assumptions on material
properties, there follows the relation

Tij = −pI + ν

(
∂ui
∂xj

+ ∂uj
∂xi

)

and therefore
t = ν∇u · n− pn.

The momentum balance equation states that a change in total impulse over time
is induced by volumetric forces and surface forces. Definition of a Neumann or do-
nothing boundary can be seen as introducing a virtual boundary to a larger domain,
such as when a domain is truncated as depicted in Figure 4.1. Therefore, there will be
zero surface forces introduced at this virtual boundary, which yields the final Neumann
condition

ν∇u · n− pn = 0 on ΓN . (4.49)
It is implied when we assume the existence of a sufficiently smooth solution. Cases
where the do-nothing condition leads to problems are described in [20, 41].
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5.1 Error estimation techniques for finite element
discretizations

5.1.1 Residual error estimator
The idea for this error estimator goes back to works on finite elements, c.f. Ver-
fürth [43] or Babuška [3], who derived residual error estimators for problems such as
the Poisson problem, linear elasticity, the biharmonic plate bending problem or the
nonlinear Navier-Stokes system. In finite element methods, the solution procedure
can be interpreted as a minimisation of the weighted residual over the computational
domain by using the Galerkin principle, see [39]. The residual error estimator aims to
detect local contributions to the weighted residual.

The residual error estimator for the Laplace equation

We begin by introducing the estimator and explaining the basic principles for a simple
equation, the Poisson equation. A discrete solution will not necessarily satisfy the
governing equations in their strong form, which are:

−∆u = f in Ω ⊂ Rd, (5.1)
u = 0 on Γ. (5.2)

The standard weak formulation of (5.1)-(5.2) then is to find u ∈ X such that∫
Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ X, (5.3)

where X := H1
0 (Ω). Furthermore, we have the finite element discretization of prob-

lem (5.1)-(5.2) to find uh ∈ Xh ⊂ X, such that∫
Ω
∇uh · ∇vh dx =

∫
Ω
fvh dx ∀vh ∈ Xh. (5.4)

Let u ∈ X and uh ∈ Xh be the solutions of variational problems (5.3) and (5.4). They
fulfill the identity∫

Ω
∇(u− uh) · ∇v dx =

∫
Ω
fv dx−

∫
Ω
∇uh · ∇v dx ∀v ∈ X, (5.5)
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while we can also observe∫
Ω
∇(u− uh) · ∇vh = 0 ∀vh ∈ Xh (5.6)

by subtracting equation (5.4) from (5.3). Using a Poincare-Friedrichs inequality

‖v‖L2(Ω) ≤ cΩ|v|H1(Ω) ∀v ∈ X

and consequently

‖v‖2
H1(Ω) = ‖v‖2

L2(Ω) + |v|2H1(Ω) ≤ c2
Ω|v|2H1(Ω) + |v|2H1(Ω) = (1 + c2

Ω)|v|2H1(Ω)

we get with Cauchy-Schwarz’s inequality and the definition of the | · |H1(Ω)-norm
through the supremum

1
1 + c2

Ω
‖v‖H1(Ω) ≤ sup

w∈X
‖w‖

H1(Ω)=1

∫
Ω
∇v · ∇w dx ≤ ‖v‖H1(Ω). (5.7)

By substituting v in (5.7) through u− uh and using (5.5) we get the estimate

sup
w∈X

‖w‖
H1(Ω)=1

{∫
Ω
fw dx−

∫
Ω
∇uh · ∇w dx

}

≤‖u− uh‖H1(Ω) (5.8)

≤(1 + c2
Ω) sup

w∈X
‖w‖

H1(Ω)=1

{∫
Ω
fw dx−

∫
Ω
∇uh · ∇w dx

}
.

This shows that the error in the full H1 (Ω)-norm is bounded from above and below
by the norm of the residual in the dual space of X. In the next steps we estimate the
upper bound in (5.8) by quantities which can be computed and therefore used as an
estimator for the H1 (Ω)-error. First we apply elementwise integration by parts:∫

Ω
fw dx−

∫
Ω
∇uh · ∇w dx =

∫
Ω
fw dx−

∑
T∈T

∫
T
∇uh · ∇w dx

=
∫

Ω
fw dx−

∑
T∈T

{
−
∫
T
w∆uh dx+

∫
∂T

(nT · ∇uh)w dsx

}
=
∑
T∈T

∫
T

(f + ∆uh)w dx−
∑
E∈E0

∫
E

[nE · ∇uh]w dsx,

where nE is the unit normal vector of the edge E while [·]E is the jump of a function
over the edge E. The definition of the orientation of nE is in this case irrelevant, but
it has to be fixed.
For the next step we use the interpolation operator ICh : X → Xh of Clement [14],
for which we have local error estimates available. We define the operator as follows.
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Denote by P1 the space of polynomials of degree at most 1. For a given φ ∈ X and
node x ∈ N , let πxφ be the L2(ωx)-projection of φ on P1,∫

ωx

φψ dx =
∫
ωx

πxφψ dx ∀ψ ∈ P1,

where ωx is the node patch as defined in definition 2.3. We define ICh φ by

ICh φ(x) = (πxφ)(x) ∀x ∈ N0

ICh φ(x) = 0 ∀x ∈ NΓ.

This operator satisfies the following estimates, see [14]:
Lemma 5.1. Let T ∈ T and E ∈ E. Let φ ∈ X be arbitrary. Then there holds:

‖φ− ICh φ‖L2(T ) ≤ cC1 hT‖φ‖H1(ωT )

‖φ− ICh φ‖L2(E) ≤ cC2 h
1/2
E ‖φ‖H1(ωE),

where the constants cC1 and cC2 depend only on the smallest angle of elements of the
triangulation T .
We consider an arbitrary but fixed element w ∈ X. Then, using (5.6) and (5.5)

written with vh = ICh v and using Cauchy-Schwarz’s inequality, we get∫
Ω
fw dx−

∫
Ω
∇uh · ∇w dx

=
∑
T∈T

∫
T

(f + ∆uh)(w − ICh w) dx+
∑
E∈E0

∫
E

[nE · ∇uh]E (w − ICh w) dx

≤
∑
T∈T

cC1 hT‖f + ∆uh‖L2(T )‖w‖H1(ωT ) +
∑
E∈E0

cC2 h
1/2
E ‖ [nE · ∇uh] ‖L2(E)‖w‖H1(ωE)

≤ max
{
cC1 , c

C
2

}∑
T∈T

h2
T‖f + ∆uh‖2

L2(T ) +
∑
E∈E0

hE‖[nE · ∇uh]E‖
2
L2(E)


1/2

·

∑
T∈T
‖w‖2

H1(ωT ) +
∑
E∈E0
‖w‖2

H1(ωE)


1/2

≤ c̃‖w‖H1(Ω)

∑
T∈T

h2
T‖f + ∆uh‖2

L2(T ) +
∑
E∈E0

hE‖[nE · ∇uh]E‖
2
L2(E)


1/2

and together with (5.8) there follows

‖u− uh‖H1(Ω) ≤ c

∑
T∈T

h2
T‖f + ∆uh‖2

L2(T ) +
∑
E∈E0

hE‖[nE · ∇uh]E‖
2
L2(E)


1/2

, (5.9)

which leads to the definition of the elementwise residual error estimator:

ηR,T :=
h2

T‖f + ∆uh‖2
L2(T ) + 1

2
∑

E∈ET∩E0
hE‖[nE · ∇uh]E‖

2
L2(E)


1/2

.
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If appropriate inverse inequalities are available and f ∈ [H−1(Ω)]d, equation (5.9) can
be estimated by an expression without the scaling factors hT and hE:

‖u− uh‖H1(Ω) ≤ c

∑
T∈T
‖f + ∆uh‖2

H−1(T ) +
∑
E∈E0
‖[nE · ∇uh]E‖

2
H−1/2(Γ)


1/2

.

It has been shown that η := (∑T∈T η
2
R,T )1/2 constitutes an upper bound of the global

computational error in the H1 (Ω)-norm. Thus, we assume that ηR,T can be used as
bound for the local H1 (Ω)-error. Conversely, it can be shown that ‖u− uh‖H1(ωT ) is
bounded from below by ηR,T . The proof can be found in [43].

Remark 5.1. When performing the integration by parts in (4.6) and (4.7) elementwise
instead of over the whole domain Ω, one obtains the edgewise contributions in ηR,T . If
the integration is performed over the whole domain Ω, the edge-residuals [nE · ∇uh]E
are implicitly required to be equal to zero, but when approximating with finite elements,
this actually cannot be fully satisfied.

The residual error estimator for the Stokes and Navier-Stokes system

In [43], the residual error estimator is also derived for the Navier-Stokes system. The
element residual

Rh(uh, ph) = −ν∆uh + uh · ∇uh +∇ph − f (5.10)
is defined as a function which measures how well the original governing equations
are satisfied by the discrete solution (uh, ph). For the Stokes equations, the residual
is defined by leaving the convective term uh · ∇uh in (5.10) aside. Furthermore, we
define the boundary residual by

rh|E :=


[
ν ∂uh

∂nE
− nEph

]
E
, if E ∈ E0

0, if E ∈ ED
−ν ∂uh

∂nE
+ nEph, if E ∈ EN ,

(5.11)

with [·]E being the jump of a function over the edge E, i.e.

[ϕ]E := ϕ|T − ϕ|K , (5.12)

where T and K ∈ T are two neighbouring cells sharing a common edge E ∈ E0. The
residual a posteriori error estimator is then given by

ηR,T :=
{
h2
T

∥∥∥Rh|T

∥∥∥2

L2(T )
+ ‖∇ · uh‖2

L2(T ) + 1
2
∑
E∈E

hE
∥∥∥rh|E∥∥∥2

L2(E)

}1/2

. (5.13)

Remark 5.2. • The second term in (5.13) is the residual of the discrete solution
with respect to the continuity equation ∇ · u = 0, i.e. it measures how well the
incompressibility constraint is fulfilled.
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• The pressure jumps in rh|E vanish when using a discretization scheme with con-
tinuous pressure approximation.

In [43], it has been shown that under suitable conditions, the following two results
hold for the error estimator ηR,T :

Theorem 5.2 (Global realiability). There exist constants c∗1 and c∗2 depending only
on the shape of the elements T of T , but not on the size of the elements, such that

{
|u− uh|2H1(Ω) + ‖p− ph‖2

L2(Ω)

}1/2
≤ c∗1

{∑
T∈T

η2
R,T

}1/2

+ c∗2

{∑
T∈T

h2
T‖f − f0,T‖2

L2(T )

}1/2

(5.14)
holds, where

f0,T := 1
|T |

∫
T

f dx

is the integral mean of f over the control volume T .

Theorem 5.3 (Local efficiency). There exist constants c1
∗ and c2

∗ depending only on
the shape of the elements T of T , but not on the size of the elements, such that

ηR,T ≤ c1
∗

{
|u− uh|2H1(ωT ) + ‖p− ph‖2

L2(ωT )

}1/2
+ c2
∗

 ∑
T ′∈ωT

h2
T ′‖f − f0,T‖2

L2(T ′)


1/2

(5.15)
holds.

Remark 5.3. Efficiency and reliability are two properties which each practically rel-
evant a posteriori error estimator should posses. Basically these properties mean that
the error indicator scales asymptotically in the same way as the real error.

Remark 5.4. An abstract framework to prove efficiency and reliability results for
residual based error estimators for general varational formulations can be found in [43].
Using less abstract notation, such results are also shown in [22] for general finite ele-
ment discretizations and also some type of finite volume discreatizations of the Stokes
equations.

5.1.2 Error estimation based on the solution of local problems
The idea of this error estimator (see [43]) is to construct auxiliary problems for the
original discrete problem (e.g. (4.20)-(4.21) or (4.41)-(4.42)). Its basic principle is
explained for a simple Poisson problem with Dirichlet-conditions, see (5.1)-(5.2). The
auxiliary problems have to be similar to the original problem. They should satisfy the
following conditions:

• For information on the local error, the auxiliary problems should involve only
small subdomains of Ω.
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• The finite element spaces used for their solution should approximate through
polynomials of higher order than the original ones.

• As few degrees of freedom as possible are to be preferred in order keep computa-
tional work at a minimum.

• To each edge and triangle, there should correspond at least one degree of freedom.
• The solution of all auxiliary problems should not cost more than the assembly of

the stiffness matrix of problem (5.1)-(5.2).
These conditions then lead to the following definition: For all T ∈ T , let

ṼT := span {βT ′ , βE: T ′ ⊂ ωT , E ∈ E(T ) ∩ E}

and define the error estimator

ηD,T := ‖∇ṽT‖L2(ωT ),

where βT are the triangle bubble functions (4.27) and βE are the edge bubble functions.
Let E ∈ E and ωE = T1 ∪ T2 and let x1, x2 ∈ N (E) be the two vertices of the edge
E. Then with λTi,1 and λTi,2 being the barycentric coordinates of the triangle Ti
corresponding to the vertices x1 and x2, respectively, the edge-bubble-functions are
defined by

βE :=
λTi,1λTi,2 on Ti, i = 1, 2

0 on Ω\ωE.
Supposing a discrete solution uh of the original problem has been calculated, function
ṽT ∈ ṼT is then calculated as the unique solution of∫

ωT

∇ṽT · ∇w dx =
∑

T ′⊂ωT

∫
T ′
fT ′w dx−

∫
ωT

∇uh · ∇w dx ∀w ∈ ṼT .

Furthermore, ϕ = uh + ṽT can be interpreted as the approximate solution of the
following problem:

−∆ϕ = f in ωT
ϕ = uh on ∂ωT .

In [43] it has been shown that the estimator ηD,T is in the same way as the residual
estimator ηR,T bounded from above and below by the computational error. Moreover,
the both error estimators yield local bounds for each other:

Theorem 5.4. Let u ∈ X and uh ∈ Xh be the unique solutions of the following vari-
ational formulations of the Poisson problem (5.1)-(5.2) with homogeneous Dirichlet-
conditions such that ∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx ∀v ∈ X

and ∫
Ω
∇uh · ∇vh dx =

∫
Ω
fvh dx ∀vh ∈ Xh
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for some space X and finite element space Xh. There exist constants cT ,1, . . . , cT ,4
depending only on the smallest angle of the triangulation T , such that the estimates

ηD,T ≤ cT ,1

 ∑
T ′⊂ωT

η2
R,T ′


1/2

,

ηR,T ≤ cT ,2

 ∑
T ′⊂ωT

η2
D,T ′


1/2

,

ηD,T ≤ cT ,3

‖u− uh‖2
H1(ωT ) +

∑
T ′⊂ωT

h2
T ′‖f − fT ′‖

2
L2(T ′)


1/2

,

‖u− uh‖H1(Ω) ≤ cT ,4

{∑
T∈T

η2
D,T +

∑
T∈T

h2
T‖f − fT‖

2
L2(T )

}1/2

,

hold for all T ∈ T .

Remark 5.5. Analogously, it is also possible to define an error estimator ηN,T based
on the solution of local Neumann-problems by using a homogeneous Dirichlet-condition
on edges E of T which are part of the boundary Γ and the Neumann-condition ∂ϕ

∂n
=

−1
2 [nE · ∇uh]E on internal edges of T . Similar boundedness properties as the ones for

ηD,T can also be shown for ηN,T .

Remark 5.6. The estimator ηD,T was first introduced in [11], and ηN,T in [7]. A
more exhaustive analysis of the error estimation techniques presented in this section
and the extension and application to the Stokes and Navier-Stokes problem was done
in [9, 8, 42].

Remark 5.7. The estimators ηD,T and ηN,T pose an alternative to the residual error
estimator, but are always more difficult to compute.

5.1.3 Error estimators based on gradient recovery, the
ZZ-estimator

The idea behind the error estimators based on gradient recovery is to construct a
continuous approximation of the gradient by postprocessing the gradient of the finite
element approximation. So if the aim of the method is to reduce the H1-error, i.e. if
we want to reduce

|||e|||2 :=
∫

Ω
|∇φ−∇φh|2 dx,

then the gradient ∇φ would have to be replaced by a recovered gradient Gh(Iphφh) in
order to achieve an a posteriori error estimate, because the exact gradient ∇φ is of
course not known. Iph is the interpolation operator of degree p.
Such methods were investigated in [1, 2]. The description of the methods in the
present section is based on those two papers. Those methods do not involve any



54 Error Estimators

information on the kind of problem to be solved, therefore we consider a quantity φ,
which can be the solution u of the Poisson problem (5.1)-(5.2), the components of the
vector-valued velocity u or the pressure p in the Navier-Stokes problem (4.32)-(4.33).
There is one especially noteworthy (because of its numerical robustness) gradient
recovery technique: The Zienkiewicz-Zhu-estimator (hence the name ZZ), which was
first introduced in [47].

Recovery operators

In this section, a class of recovery operators is described. A recovery operator should
satisfy the following conditions:
(R1) Consistency condition: If φh belongs to a finite element space of order p+1, then

Gh(Iphφh) = ∇φh.

(R2) Localization condition: The computation of Gh should naturally be inexpensive.
This practically means that no global compuations should be necessary, other-
wise the whole variational problem could be solved on a finer mesh in the same
time. We consider recovery techniques where the recovered gradient at a point
x∗ depends only on a neighbourhood of x∗, like the element patch ωT , if x∗ ∈ T ,
T ∈ T .

(R3) Boundedness and linearity condition: If Xh is a finite element space of order p
and Gh : Xh → Xh × Xh is a linear operator then there exists a constant C
independent of h such that

‖Gh(φ)‖L∞(T ) ≤ C|φ|W 1,∞(ωK) ∀T ∈ T , ∀φ ∈ X,

with the norm
‖φ‖Wm,∞(Ω) = max

|α|≤m
‖Dαφ‖L∞(Ω).

If conditions (R1)-(R3) are satisfied, then it can be shown (see [2]) that Gh offers a
good approximation to the true gradient:

Lemma 5.5. Suppose that Gh satisfies (R1)-(R3) and that φ ∈ Hp+2(Ω). Then

‖∇φ−Gh(Iphφ)‖L2(Ω) ≤ Chp+1|φ|Hp+2(Ω)

where C > 0 is independent of h and φh.

The superconvergence property

Lemma 5.5 shows that if an operator Gh satisfies certain conditions, then applying it
to Iphφ yields good approximations to the derivatives of φ. If the so called supercon-
vergence phenomenon is present, then applying Gh to the discrete solution φh itself
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also yields good approximations to the derivatives. Normally, for the finite-element
method there holds

|∇φ−∇φh|H1(Ω) ≤ C(φ)hp

with a positive constant C(φ) depending on φ. If superconvergence is present, this
means that under appropriate regularity assumptions on the triangulation T and the
solution φ there holds

|φh − Iphφ|H1(Ω) ≤ C(φ)hp+1. (5.16)

The necessary assumptions needed for superconvergence to occur depend on the used
finite element method and were investigated more closely in [24]. Superconvergence
being present leads to (see [2]):

Lemma 5.6. Suppose φ ∈ Hp+2(Ω), Gh satisfies (R1)-(R3) and (5.16) is valid. Then

‖∇φ−Gh(φh)‖L2(Ω) ≤ C(φ)hp+1

holds where C > 0 is independent of h and φh.

In general, every error estimator for the local error in a cell T ∈ T based on gradient
recovery will have the form

ηT = ‖Gh(φh)−∇φh‖L2(Ω),

while the global error estimator is

η =
(∑
T∈T

η2
T

)1/2

.

A simple way to define the nodal values in nodes a of the recovered gradient is to use
a weighted average of ∇φh over all elements in the node patch ωa:

Gh(φh)(a) =
∑
T∈ωa

|T |
|ωa|
∇φh|T .

The values of the recovered gradient at an arbitrary point x ∈ Ω can then be obtained
by piecewise linear interpolation of the nodal values to the interior of the element T
to which the point x belongs.

The Zienkiewicz-Zhu patch recovery technique

For the ZZ-estimator we first construct an intermediate recovered gradient Ga
h for each

nodepatch ωa and then perform an averaging to compute the final recovered gradient
at the point x ∈ Ω:

Gh [φh] (x) = 1
|N |

∑
a∈N

Ga
h [φh] (x).
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Let Z(a) be a set of points at which the gradient is to be sampled. For quadrilateral
elements, this set can be the set of Gauss-Legendre quadrature points. In our case for
triangles, we would chose the circumcenters of the triangles

Z(a) = {b | b is circumcenter of T ∈ ωa}

when using piecewise linear basis functions for the approximation of φ or the centers
of the edges of the triangles in the nodepatch

Z(a) = {b | b is center of E, E ∈ E(T ), T ∈ ωa}

for a piecewise quadratic approximation of φ. Further examples and explanations can
be found in [46].
The function Ga

h : Xh → Xh × Xh is then calculated by a least-squares fit to the
gradient sampled at the points in Z(a). It has the following form:

Ga
h(x) =

∑
n

αnϕn(x) (5.17)

where ϕn(x) is a basis of the finite element space Xh and αn are constant vectors
chosen in such a way that they minimize the expression∑

z∈Z(a)
{Ga

h(z)−∇φh(z)}2 . (5.18)

When computing a local L2-projection Ga
h of ∇φh on the node patch ωa, one seeks for

constant vectors αn in (5.17) such that∫
ωa

(Ga
h −∇φh) · ϕh dx = 0

holds for all ϕh ∈ [Xh]2, thus∫
ωa

(Ga
h −∇φh)

2 dx = ‖Ga
h −∇φh‖

2
L2(ωa) = 0

holds for ϕh = Ga
h −∇φh. Minimization of (5.18) resembles such a L2-projection, but

only using a small set of sample points Z(a) instead of integrating over ωa.
In the summation (5.17) we consider only degrees of freedom n which are associated
with the elements in the node patch ωa, such that the recovery procedure fulfills
condition (R2). The recovery operator is linear and bounded, therefore condition (R1)
is also satisfied. The superconvergence condition (5.16) and condition (R1) can be
fulfilled by chosing the sampling points in Z(a) in such a way that superconvergence
occurs. The error estimator will then be asymptotically exact, i.e. η will converge to
the real computation error |∇φ−∇φh|H1(Ω) as the meshsize h decreases. This was
confirmed with numerical results in [46, 47]. One would expect that the estimator
would lose this property if the sampling points cannot be chosen accordingly, but it
has been shown in [4, 5] that the estimator still performs satisfactorily in extreme
choices of Z(a).
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5.2 Error estimation techniques for finite volume
discretizations

5.2.1 Residual error estimator
With the residual error estimator for the finite volume method, we try to measure
how well the approximate solution fulfills the governing equations in integral form
compared to a solution of assumed order of variation p. This method can also be
found in [23]. The variable φ represents the velocity components uk.
Each finite volume discretization is accurate only up to p-th order, which means that
the function used to evaluate the surface and volume integrals consists of the first p
terms of a Taylor series expansion

φ(r) = φT + (r− rT ) · (∇φ)T + . . .+ 1
(p− 1)!(r− rT )p−1 ::︸︷︷︸

p−1

(∇∇ . . .∇φ︸ ︷︷ ︸
p−1

)T , (5.19)

and that p-th order accurate face interpolation is used. Thus, the variation of the
numerical solution over the control volume is described by (5.19). The finite volume
method presented in Chapter 3 is accurate up to second order.
There are two ways to express the value of φ at the face Aj with rj being the position
vector of the face center of Aj, see Figure 5.1:

• Assuming linear variation over the control volume:

φ(rj) = φT + (rj − rT ) · ∇φT . (5.20)

or interpolating from the neighbour Nj of T over the face Aj:

φ(rj) = φNj
+ (rj − rNj

) · ∇φNj
.

• Using a linear combination between the values φT and φNj
:

φ(rj) = fjφT + (1− fj)φNj
,

with
fj =

|rNj
− rj|

|rj − rT |+ |rNj
− rj|

. (5.21)

The representation (5.21) of face values satisfying the governing equations is not con-
sistent with the prescribed linear variation of φ used for volume integrals. Therefore,
a consistent face value of φ for the control volume T should be calculated using (5.20).
The residual can now be defined in the following way for a velocity component uk = φ:

resT (φ) =
∫
T

[
∇ · (ρφu)−∇ · (∇φ)− ρfk + ∂p

∂xk

]
dx

=
∫
Aj

nj · [ρφu− (∇φ)] dx−
∫
T

[
ρfk −

∂p

∂xk

]
dx

≈
nf∑
j=1

[
mj −Aj · (∇φ)j

]
− |T |

[
(ρfk)T −

(
∂p

∂xk

)
T

]
,

(5.22)
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T Nj

rT
rNj

Aj

rj

Figure 5.1: Interpolation at cell face Aj.

with

(∇φ)j = ∇φT

where the face value of φ is determined through the Taylor expansion instead of the
linear combination (5.21):

φj = φT + (rj − rT ) · ∇φT .

In order to understand the residual error estimate, we consider a simple 1D-situation.
In this case, there are three values available, as depicted in Figure 5.2: two face values,
and one at the cell center. The governing equations in their integral form are fulfilled
by those values. It is therefore possible to approximate the variation of the exact
solution over the cell by passing a parabola (blue line) through the three available
points. The residual can then be seen as the difference between the linear variation
(red line) of φ using the gradient ∇φT and the parabola (blue line). This implies that
the distribution of the error is quadratic, which would mean that the error reduces to
the exact error with the fourth power of mesh size.

T

φT

Figure 5.2: Scaling properties of the residual error estimate
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Relation to the residual error estimate for the finite element method

If we use Cauchy-Schwarz’ inequality on the definition of the residual (5.22) and sum
over k, we will find similarity to the residual for finite elements (5.13):

3∑
k=1

resT (uk) =
3∑

k=1

∫
T

[
∇ · (ρuku)−∆uk − ρfk + ∂p

∂xk

]
dx

≤ |T |1/2
(∫

T
(∇ · (ρuu)−∆u− ρf +∇p)2 dx

)1/2

= |T |1/2‖Rh|T‖L2(T ).

We denote by Rh|T the element residual (5.10) on T . The residual for finite elements
additionally contains the term for the edge residual rh|E and the continuity ‖∇ · u‖L2(T )
over T . The continuity ocer T is already fulfilled for the finite volume method due to
conservativity. The definition of an edge residual makes no sense for the finite volume
method because the jump [·] is zero since interpolation from both sides yields the same
values.

Normalization of the residual estimate

Error estimate (5.22) represents the volume integrated imbalance in approximation
methods. By normalization we aim to establish the influence of the imbalance to the
local value of φ. The terms contributing to the error are the ones containing φ and
∇φ, namely the diffusion and convection terms. A suitable normalization would then
involve the characteristic diffusion and convection transport. The diffusion coefficient
is known for each face. |d| is used as the characteristic length and |A| as the area
active in the transport.
The total diffusion transport coefficient can then be calculated as the sum of volume
weighted diffusion transport fluxes:

Fdiff = 1
|T |

nf∑
j=1

[
|Aj|

ρj
|dj|

]
.

The next term of the normalization factor is the convection transport term. For a
conservative discretization like the Finite Volume method, the total flux going out of
the control volume is equal to the total flux going in. Therefore, the sum of positive
mass fluxes mj over the faces Aj weighted by the volume is used as the convective
part of the normalization factor:

Fconv = 1
|T |

nf∑
j=1

max {mj, 0} .

The factor now reads:
Fnorm = Fconv + Fdiff ,
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and the final form of the residual error estimate is:

ηR,T (φ) = resT (φ)
|T |Fnorm

.

The residual error estimator ηR,T (φ) has the advantage that it is cheap and easy to
compute, and all discretization errors are taken into account. It can also be extended
to transport equations of vector or tensor quantities. In this case, the estimator needs
to be computed for each vector component of the computed quantity. The magnitude
of the resulting residual vector for each control volume can then be taken to gain a
scalar value for the estimated error, where uk are components of the velocity vector
field:

ηR,T (u) =
√
ηR,T (u1)2 + ηR,T (u2)2 + ηR,T (u3)2

5.2.2 Third order polynomial interpolation
For this error estimation technique, which is based on [29], we consider a third order
polynomial interpolation of φ, but only in the direction of dj between a cell T and its
neighbour Nj, depending on the parameter ξ. The interpolating polynomial has the
following form:

φ∗(ξ) = c0 + c1ξ + c2ξ
2 + c3ξ

3 (5.23)
with coefficients ci, which can be determined by the conditions

ξ = 0 : φ∗ = φT , ξ = |dj| : φ∗ = φPj
,

ξ = 0 : (∇φ∗)ξ = (∇φ)ξT , ξ = |dj| : (∇φ∗)ξ = (∇φ)ξTj

(5.24)

and (∇φ)ξTj
being the gradient in the direction dj, i.e.

(∇φ∗)ξTj
= (∇φ)Tj

· dj.

The conditions (5.24) are then satisfied by the coefficients

c0 = φT ,

c1 = (∇φ)ξT ,

c2 = 3
φTj
− φT
|dj|2

−
(∇φ)ξTj

+ 2(∇φ)ξT
|dj|

,

c3 = −2
φTj
− φT
|dj|3

+
(∇φ)ξTj

+ (∇φ)ξT
|dj|

.

Expression (5.23) can then be used to express the dependent variable and its gradient
by:

φj = c0 + c1ξj + c2φ
2
j + c3ξ

3
j ,

∇φj ·
dj
|dj|

= c1 + 2c2ξj + 3c3ξ
2
j
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with ξj being the value of ξ at the cell face j, i.e. at the intersection of the distance
vector and the cell face plane, see Figure 5.1. Using those new values of φ and its
gradient, the diffusion and convection coefficients of Section 3.3 can be recalculated by
substituting φ and∇φ in the expressions (3.15) and (3.19) for φ∗ and∇φ∗, respectively.
This leads to the new coefficients Dj and Cj, which will in general be different than
the original ones, Dj and Cj. Summing up the differences between these coefficients
for each face bounding a control volume T yields the truncation error τ :

τT =
nf∑
j=1

[
(Cj − Cj) + (Dj −Dj)

]
,

and together with an appropriate normalization the error indicator:

ητ,T = τT
aTφref

.

The normalization factor φref might be set to the value of φ at the location where the
truncation error is calculated, or it can be a typical value in the computational domain
or subdomain. The factor aT is the coeffcient aT in the equation system (3.20).

5.2.3 The neighbour-difference criterion
The following error estimator is based on the simple principle of calculating the differ-
ence of values of a transported quantity φ or the pressure p in a control volume T and
its neighbours Tj and taking the maximum of these differences as the error estimator:

ηD,T (u) = max
Tj

‖uT − uTj
‖2

for vectorial quantities like the velocity or

ηD,T (p) = max
Tj

∣∣∣pT − pTj

∣∣∣
for the pressure. Analogously, this error estimator can also be computed for every
other quantity which is calculated in a postprocessing step based upon the primary
variables uh and ph.
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6.1 The adaptive strategy
Algorithms using adaptive mesh refinement in general have the same form, indepen-
dent of the type of problem to be solved. We are going to explain the separate
components of an adaptive algorithm first, and then the algorithm itself.

6.1.1 Termination criteria
Let T (k) be a sequence of triangulations of Ω, with the initial trinagulation T (0). Let
Nk := |T (k)| be the number of elements of T (k) and let Nmax, kmax be natural numbers
denoting the maximum number of elements and the maximum number of refinement
steps, respectively. Furthermore, let and τmax, εmax be positive real numbers denoting a
maximum computation time and a maximum computational error. Then we can define
a termination criterion by stopping the algorithm as soon as the maximum iterations
kmax, the maximum number of elements Nmax, the maximum computation time τmax
or the maximum computational error εmax is reached. Use of the computational error
ε := ‖u− uh‖ as a criterion is only possible if an exact solution is known, which is
sometimes the case when testing the implementation.

6.1.2 Cell selection
Furthermore, it is necessary to choose a rule on how to select the elements T that
have to be refined based on the value of the local error estimator ηT . Let θ ≥ 0 be the
adaptivity parameter. Then we aim to find a setM ⊂ T of marked elements which
will be refined such that:
1. Maximum value rule: For every T ∈M, there holds:

ηT ≥ θmax
T ′∈T

ηT ′ .

2. Mean value rule: For every T ∈M, there holds:

ηT ≥ θ mean
T ′∈T

ηT ′ .

3. Absolute value rule: For every T ∈M, there holds:

ηT ≥ θ.
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4. Quantile rule: Let T0, . . . , T|T | be a numbering of elements containing every el-
ement T of T exactly once, such that ηT0 ≤ . . . ≤ ηT|T | . With p = 1 − θ,
g = (|T | − 1)p+ b(|T | − 1)pc and the p-th quantile

qp = (1− g)ηTb(|T |−1)p+1c + gηTb(|T |−1)p+2c

we defineM such that for every T ∈M, there holds:
ηT ≥ qp.

5. Döfler marking: This marking strategy was introduced by Dörfler, see [16]. Seek
a minimal setM (minimal in the sense of "least elements"), such that there holds:∑

T∈M
η2
T ≥ θ

∑
T∈T

η2
T .

Remark 6.1. An exemplary value for θ for the maximum value rule would be 0.5.
This means that every element T for which the estimator ηT is bigger than 50% of the
maximum is being marked for refinement. The mean value rule is more robust from
a statistical point of view and less dependent on the distribution of the estimators ηT .
A possible value for this rule could be θ = 1.0. In order to use the absolute value
rule, some knowledge about the magnitudes of the error estimators must be available
before defining the parameter θ. This makes it useful mainly for experimental cases.
The quantile rule chooses the elements with the highest p% of the error estimators for
refinement. It offers the greatest control over the number of elements that are being
refined in every refinement step.

6.1.3 The adaptive algorithm
The adaptive algorithm can now be described as follows:
Algorithm 6.1. Let T (0) be an initial triangulation of Ω. Further, define an adaptivity
parameter θ ≥ 0 and choose one of the termination criteria in Section 6.1.1 and one of
the cell selection rules in Section 6.1.2. Start with k := 0 as the number of refinement
steps.
1. Compute the discrete solution (ukh, pkh) of the Stokes or Navier-Stokes problem by

the finite element or finite volume method in Chapters 4 and 3.
2. Compute the error estimators ηT by using one of the error erstimation techniques

described in Chapter 5.
3. Compute the setM(k) based on the chosen cell selection rule.
4. Perform refinement of T (k), yielding the new triangulation T (k+1).
5. Decide based on the termination criterion wether the computation should stop or

continue.
6. Define k := k + 1 and go back to step 1.
The sequence of discrete solutions

{
(u0

h, p
0
h), . . . , (ukend

h , pkend
h )

}
is the result of the

computation. It belongs to the triangulations
{
T (0), . . . , T (kend)

}
, where kend is the

iteration number when the algorithm terminates.
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6.2 Implementation of the finite element method
In this section, the implementation of the finite element method as described in Chap-
ter 4 is given. The implementation is done in C++.
Figure 6.1 is a visual interpretation of the adaptive solution process 6.1, including
the iterative Newton-algorithm which starts by calculating the solution of the Stokes
problem (4.2) as the initial guess u0

h and performs Newton-iterations as described in
Section 4.2 until a prescribed accuracy ε > 0 for the iterations is achieved in order to
find a solution for the Navier-Stokes problem (4.32)-(4.33).

main terminate? solve
Stokes

Newton:
|ui − ui−1| < ε?

solve
Navier-
Stokes

calculate
ηT

calculate
Mk

refine Tk,
k := k + 1

stop

Mk

(u0
h, p

0
h)

yes

no

yes

no

ηTTk+1

(ui
h, p

i
h)

Figure 6.1: Adaptive solution process, Newton iteration included

6.2.1 Numerical integration
The first step for numerical integration on a triangle T is to introduce a transformation
of the integral from coordinates x = (x, y) ∈ T into coordinates x̃ = (x̃, ỹ) on the
reference element T̃ . The so called reference element T̃ is the unit-triangle T̃ =
{(x̃, ỹ) ∈ R2 | 0 ≤ x̃ ≤ 1, 0 ≤ ỹ ≤ x̃} as depicted in Figure 6.2. Let xi = (xi, yi) be
the coordinates of the three nodes i of the triangle T . Then the transformation x⇔ x̃
is given by:

x(x̃) = BT x̃ + x1, x̃(x) = B−1
T (x− x1)

with the transformation matrix

BT =
(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
.
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x

y

1

2

3
T

T̃

1 2

3

x̃(x)

x(x̃)

Figure 6.2: Transformation of coordinates between the reference triangle T̃ and the
triangle T ∈ T .

With the determinant of the transformation matrix |BT |, the transformation of the
integral is given by: ∫

T
ϕ(x) dx = |BT |

2

∫
T̃
ϕ(x(x̃)) dx̃.

Integrals on the reference element are then approximated by an appropriate quadrature
rule:

• Gauß-quadrature of N -th order:
∫ b

a
f(x) dx ≈

N∑
k=1

f(x)ωk,

using the integration points xk and integration weights ωk. By Gauss-quadature,
one dimensional integrals on the interval [a, b] are approximated exactly if the
integrand f(x) is a polynomial of order up to 2N − 1. More information on
Gauss-quadrature can be found in [25]. It can be adopted to multidimensional
integrals by simply iterating the quadrature for each coordinate direction and is
therefore easy to implement, but requires N2 integration points where d is the
integration dimension. In multidimensional integration using Gauss-quadrature,
the highest exponent of either x or y in f if f is a polynomial must be smaller
than 2N − 1 for the formula to be exact. Gauss quadrature is the method used
in the implementation.

• Radon-integration of N -th order: This quadrature was especially developed for
multidimensional integration, see [32]. The quadrature formula

∫∫
ω

f(x, y) dx dy ≈
N∑
k=1

f(xk, yk)ωk

for integration in two dimensions on connected, bounded domains ω ⊂ R2 yields
an exact approximation of the integral if the integrand f(x, y) is a polynomial of
order at most p with

N = (p+ 1)(p+ 1)
6 .
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Radon-integration is better suited for multidimensional integrals since the num-
ber of required integration points is smaller than for Gauss-quadrature for mul-
tiple dimensions for the same accuracy.

The integration procedure requires that the values of the integrand are known at the
points x(x̃k). If the integrand is a shapefunction like (6.1), then the values are known
for points in the reference element, such that a transformation of the integration points
x̃ back again to the global coordinates is not necessary. The linear shape funtions can
be given as functions of coordinates in the reference triangle in the following way:

ϕ̃1(x̃, ỹ) := 1− x̃− ỹ,
ϕ̃2(x̃, ỹ) := x̃,

ϕ̃3(x̃, ỹ) := ỹ,

where the indices 1, 2 and 3 correspond to the degrees of freedom at the cornerpoints
of the reference element (0, 0), (1, 0) and (0, 1), respectively. Furthermore, if piecewise
quadratic ansatzfunctions are to be used, we have the additional functions

ϕ̃4(x̃, ỹ) := 4x̃(1− x̃− ỹ),
ϕ̃5(x̃, ỹ) := 4ỹx̃,
ϕ̃6(x̃, ỹ) := 4ỹ(1− x̃− ỹ)

corresponding to degrees of freedom at the midpoints of the edges of the reference tri-
angle, see Figure 6.3. In Figure 6.4, linear and quadratic shape functions are depicted
for a one dimensional situation. The two dimensional case is completely analogous.

x

y

1 2

3

4

5
6

Figure 6.3: Degrees of freedom on the reference triangle: nodal values at 1, 2, 3 for
linear basis functions and 4, 5, 6 at edge mid points for quadratic basis
functions.
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Figure 6.4: The linear shape functions ϕ1(x) = 1−x and ϕ2(x) = x and the quadratic
shape function ϕ3(x) = 4x(1− x) on the unit interval.

6.2.2 Calculation of element matrices and element vectors,
assembly of the system matrix

Similar to other finite element codes, this implementation also employs an elementwise
assembly strategy of the required matrices and vectors. The i, j-th element of the
matrix A, for example, is defined by

A[i, j] :=
∫

Ω
∇ϕi · ∇ϕj dx.

Assume for simplicity that only linear basis functions are considered, i.e. all degrees
of freedom correspond to values of the solution in the nodes a ∈ N (the extension to
quadratic basis functions is done by also considering the midpoints of edges E ∈ E).
The continuous linear basis function ϕa is defined as

ϕa(x) :=


1 in the node a
linear for x ∈ ωa
0 x 6∈ ωa.

(6.1)

Therefore, when computing the integral A[i, j], only integration over ωa(i)∩ωa(j) needs
to be considered instead of over Ω (a(i) is the node corresponding to the degree of
freedom i). This fact is exploited for the elementwise assembly strategy using DOFT
as the set of degrees of freedom corresponding to T :

Algorithm 6.2 (elementwise assembly). A ∈ RMu
0 ×M

u
0

A[i, j] = 0 ∀i, j = 1, . . . ,Mu
0

AT ∈ R|DOFT |×|DOFT |

for T ∈ T do
for i = 1, . . . , |DOFT | do

for j = 1, . . . , |DOFT | do
AT [i, j] =

∫
T ∇ϕDOFT (i) · ∇ϕDOFT (j) dx

end for
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end for
for i = 1, . . . , |DOFT | do

for j = 1, . . . , |DOFT | do
if DOFT (i) ∈ {1, . . . ,Mu

0 } then
if DOFT (j) ∈ {1, . . . ,Mu

0 } then
A[DOFT (i),DOFT (j)]+ = AT [i, j]

end if
end if

end for
end for

end for

The matrix entry AT [i, j] is calculated by transformation of the integral to the
reference element and application of numerical integration methods as described in
Section 6.2.1. The computation of the other matrices in (4.47) works analogously,
with the difference that for some of them the velocity uih at the previous Newton-
iteration must be computed first. The pointwise value at x ∈ T of this function, using
only the degrees of freedom DOFT corresponding to T , is given by:

uih(x) =
∑

j∈DOFT

uij

(
ϕj(x)

0

)
+ vij

(
0

ϕj(x)

)
.

In the implementation, the local element matrices AT , MT
ij , A1, B1 and B2 are assem-

bled by the function calcElMatNavierStokes. Analogously, the element vectors of the
right hand sides RHS1, RHS2 and RHS3 are calculated by calcElVecNavierStokes.
The function assembleNavierStokes assembles the global matrices A, Mij,etc. and
integrates them into the final system matrix M (see equation (4.47). It returns the
final system matrix M and right hand side vector r. This equation system is then
solved by the parallel direct solver PARDISO, see [26, 35, 36].
The integrals are integrated by the numerical integration procedure described in Sub-
section 6.2.1.

6.2.3 Mesh refinement for two space dimensions
The mesh refinement algorithm in use for two space dimensions goes back to [6] and is
also described in [43]. The method of choice is the so called red-green-blue refinement
(rgb-refinement), which offers three possibilities to divide a triangle into new triangles.
Those three division strategies are denoted red, green and blue. The advantage of red-
green-blue refinement is that with this strategy, hanging nodes can be avoided (i.e.
every node in the set N can only be the endpoint of an edge, but never be part of the
interior part of an edge). Furthermore, if a triangle is divided into new triangles, the
newly created triangles will always be similar to the original triangle, see Figure 6.5.
This ensures that shape regularity in the triangulation is being preserved, as long as
the initial triangulation T (0) is shape regular.
In every one of the three refinement cases, the longest edge, also called the reference
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red green blue

Figure 6.5: The three different possibilities to refine an element T . For green refine-
ment, two variants exist: refining the left upper or the right upper edge

edge, will be divided into two equally long edges.
The initial triangulation and therefore the geometry of the domain Ω is read from a
*.msh-file, which can be produced for example by tools like NetGen (see [37]). This file
contains node coordinates, elements given by three nodes each and boundary elements
(edges) given by two nodes. Each boundary element corresponds to an edge of a
triangular element, and for each boundary element, a type of boundary condition is
provided (Dirichlet, do-nothing, etc.). We agree on the following necessary conventions
(see Figure 6.6):

1 2

3

1

23

Figure 6.6: Convention by which the nodes and edges are labeled in the data structures
which store the triangulation information

• The nodes of an element T are stored in the mathematically positive sense of
orientation.

• The first edge of an element T is the first edge after the first node of T in the
mathematically positive sense.

• The edges of an element T are labeled in the mathematically positive sense.

Red-Green-Blue refinement

For each refinement step k, we calculate a setMk ⊆ Tk of elements according to a cell
selection rule from Subsection 6.1.2. The elements inMk have to be refined, but there
will be more elements that also have to be refined in order to avoid hanging nodes.
Therefore, we first use the following procedure to decide in which way an element
T ∈ Tk has to be refined (red, green or blue) and store the decisions as marked edges
and elements, then use another algorithm (which will not be described in detail) to
build up the corresponding data structures representing the new triangulation Tk+1.
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We use an auxiliary data structure S to store elements which the algorithm still has
to process. The marking is conducted in the following way:
1. All the initially marked elements T in set Mk are being divided into four new

elements, also called red-refinement, see Figure 6.5. We mark T and every edge
E ∈ ET .

2. We perform this and the following steps for all neighbours K of T which have
not been marked yet: If a neighbour K of T has not been marked yet, we also
mark K for refinement.

3. If the mutual edge E = T ∩K is the longest edge of K, and no other edge of K
has been marked, we use blue-refinement for K, i.e. K is being marked, but no
other edges.

4. If the mutual edge E = T ∩K is the longest edge of K, and exactly one other
edge E2 has been marked, we mark the element K and use green-refinement for
K.

5. If the mutual edge E = T ∩K is not the longest edge of K, we mark the longest
edge and store the neighbour of K over the longest edge in S in case it is not yet
contained in S. If the third edge ofK has also been marked, we use red-refinement
for K.

6. Repeat steps 3 to 5 for all elements T in S, and remove them from S. Do this
until S is empty.

6.3 Adaptive mesh refinement in AVL-Fire®

Adaptive mesh refinement is incorporated into the solution process of AVL-Fire® in
the following way:

Algorithm 6.3. Define a cell selection rule (see Subsection 6.1.2), a refinement
threshold parameter θ, a termination criterion and a refinement intervall N ∈ N.
Set k := 0.
1. Start with an initial triangulation T0 and set up the equation system based on the

finite volume method described in Chapter 3.
2. Calculate iterations of the SIMPLE algorithm in Section 3.5 using triangulation
Tk.

3. After N iterations, compute an error estimator ηT for all T ∈ Tk, refine Tk
in order to arrive at a refined triangulation Tk+1 according to the chosen cell
selection rule and parameter θ. For the first iteration of the SIMPLE algorithm
after refinement, interpolation is required to define the velocity field u on the
new mesh based on u from the last iteration of the SIMPLE algorithm before
refinement.

4. Set k := k + 1 and go to step 1 if the chosen termination criterion has not been
met.
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The numerical investigations in AVL-Fire® in Chapter 3 were conducted among
others using the residual error estimator described in Subsection 5.2.1. We calculate
the cell residuals

nf∑
j=1

[
mj −Aj · (∇φ)j

]
− |T |

[
(ρfk)T −

(
∂p

∂xk

)
T

]

and apply a normalization as in Section 5.2.1 in order to arrive at the final residual
error estimators:

ηR,T (φ) = resT (φ)
|T |Fnorm

.

6.3.1 Interpolation of the velocity field after refinement
After the triangulation Tk has been refined to Tk+1, at step 4 in the solution process
(described at the beginning of Section 6.3), the values of φ correspond to element
centers of the old mesh and therefore have to be adopted by interpolation to the new
mesh in order to make them usable for the further calculation, see Figure 6.7. The
following interpolation techniques are currently in use:
1. Constant interpolation: The simplest method. The value of φ at the center of the

father cell T (the cell before refinement) is taken as the value of φ at the center
of the child cells Ti (the cells that have been created by refining T ).

2. Taylor expansion: We use a Taylor-expansion

φTi
= φT +∇φT · di,

where di is the difference vector of the coordinate vectors of the cell centers of T
and Ti.

Remark 6.2. It has to be mentioned that the interpolation process significantly dis-
turbs the convergence of the algorithm, which is because there is no reason why the
newly interpolated values should fulfill the continuity or momentum balance equation
of the Navier-Stokes system. They can merely be seen as a good initial guesses on a
new mesh, based on a solution that fulfills the equations on the old mesh.

6.3.2 Calculation of the computational error
AVL-Fire® calculates all results in three dimensions. To make the results comparable
to the results of the two dimensional finite element method, we make the solution two
dimensional by projecting the results onto the x-y-plane. Therefore we assume sym-
metry boundary conditions in the third dimension, the z-direction. The projection is
done in such a way that we take the solution values of cells that are closest to the plane
and have positive z-coordinate. In practice, this means that we have to generate the
three dimensional meshes in such a way that the element faces are either subsets of
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φT1

φT3 φT2

φT4

φT

Figure 6.7: Interpolation of values of φ to the new triangulation.

the x-y-plane or do not intersect the x-y-plane at all. Furthermore, all element edges
have to be parallel to any of the coordinate axis, i.e. only cube shaped elements can
be used.
Assume that T and Tref are two triangulations that have been projected to the x-
y-plane, together with projected solutions uh and uref for those triangulations, re-
spectively. We assume that for T ∈ T , either we have Tr ⊂ T or Tr ∩ T = 0 for all
Tr ∈ Tref . Since there is no exact solution available for most test cases, we have to
compute a reference solution uref on a very fine mesh Tref , i.e. for a triangulation of
which the global mesh size h is smaller than the local mesh size hT for all T ∈ T by
a factor C ≤ 1/2, such that h ≤ ChT for all T ∈ T . The error we want to compare is
the L2-error:

‖uh − uref‖2
L2(Ω) =

∑
T∈T
‖uh − uref‖2

L2(T ) =
∑
T∈T

∫
T

(uh − uref ) · (uh − uref ) dx

=
∑
T∈T

∑
Tr∈Tref ,

Tr⊂T

∫
Tr

(uh − uref ) · (uh − uref ) dx

=
∑
T∈T

∑
Tr∈Tref ,

Tr⊂T

|T |((uh)Tr − (uref )Tr) · ((uh)Tr − (uref )Tr).

The last equality holds because uh is constant on T (particularly on Tr, since Tr ⊂ T )
and uref is constant on Tr.
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Figure 6.8: Reinterpretation of cube shaped elements as two dimensional square
shaped elements in the x-y-plane.



7 Numerical Results
In this chapter we present numerical results for several test cases to demonstrate
how the error estimation techniques from Chapter 5 perform under different circum-
stances. We compare the performance by means of the computational errors ‖u− uh‖
and ‖p− ph‖ of the velocity and pressure in different norms, the number of elements
and degrees of freedom, as well as plots of adaptively generated meshes at several
refinement steps during the calculation. Plots of solutions calculated by the finite
element method were generated using ParaView, Kitware Inc., plots of solutions by
the finite volume method by AVL-Fire® and plots of the errors were produced using
Python using the module matplotlib.
In order to allow comparison of results, since all calculations in AVL-Fire® are per-
formed for three dimensional geometries, while the C++ implementation calculates the
finite element results in two dimensions, we applied symmetry boundary conditions
for the third dimension, which is equivalent to having no change of the solution in the
third dimension and therefore equivalence to a two dimensional situation.

7.1 Analytical solution
In this example, we compute a flow field where the solution (u, p) is already known.
We choose the unit square as the computational domain, i.e. Ω = (0, 1)2. The solution
is a smooth function and fulfills the Dirichlet boundary condition g = (0, 0):

u(x, y) =
[
sin(2πy) [cos(2πx)− 1]
sin(2πx) [1− cos(2πy)]

]

with the pressure
p(x, y) = sin(2πx) cos(2πy).

We choose ν = 1 and substitute this exact solution in the Navier-Stokes equation

−∆u + u · ∇u +∇p = f

in order to get an expression for f . When choosing exact solutions, one has to be
careful that the solution fulfills the continuity condition ∇ · u = 0, which is the case
here. Furthermore, ∫

Ω
p(x) dx = 0

needs to hold, since the finite element method in Chapter 4 is constructed under that
assumption in order to fix the pressure which would otherwise only be unique up to
constants.
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Figure 7.1: Taylor-Hood elements. Comparison of error drop for different cell selection
criteria: Quantile criterion with θ = 0.35 (blue), Dörfler marking with
θ = 0.85 (green) and uniform refinement (magenta). We compare degrees
of freedom versus ‖u− uh‖L2(Ω) (squares), ‖p− ph‖L2(Ω) (triangles) and
|u− uh|H1(Ω) (circles).

7.1.1 Finite element simulation
We perform the calculation using quadratic-linear Taylor-Hood elements and compare
error convergence rates for adaptive refinement with different cell selection criteria,
namely the quantile criterion and Dörfler marking. We use the residual error es-
timator as error estimation technique. Furthermore, we add results using uniform
refinement.
In Figure 7.1, for Taylor-Hood elements, we see that uniform refinement (magenta
colored line) performs best for all types of error, while the quantile criterion (blue
line) performed slightly better than Dörfler marking (green line). In that case, adap-
tive refinement offers no improvement. The orders of convergence are O(h3) for
‖u− uh‖L2(Ω), O(h2) for ‖p− ph‖L2(Ω) and O(h2) for |u− uh|H1(Ω), which is exactly
what the results from Section 4.1.3 predict.
Similar results are true for the linear-linear elements P1-P1, Figure 7.2, although the
convergence rate seems to be more stable for those elements. As orders of convergence
we get O(h2) for ‖u− uh‖L2(Ω), O(h1.5) for ‖p− ph‖L2(Ω) and O(h) for |u− uh|H1(Ω).
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Figure 7.2: P1-P1 elements. Comparison of error drop for different cell selection crite-
ria: Quantile criterion with θ = 0.35 (blue), Dörfler marking with θ = 0.85
(green) and uniform refinement (magenta). We compare degrees of freedom
versus ‖u− uh‖L2(Ω) (squares), ‖p− ph‖L2(Ω) (triangles) and |u− uh|H1(Ω)
(circles).
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7.2 Lid driven cavity flow
In the first example we investigate the flow of a fluid in a square-shaped box. This
example is used very often in the literature about computational fluid dynamics to
demonstrate certain behaviors of numerical methods. The flow is driven by drawing
an imaginary lid over the box at the upper edge Γ` (red edge, see Figure 7.3) from left
to right with velocity U0. We assume a no-slip boundary, which means that because of
friction, the fluid very close to the boundary assumes the same velocity as the boundary
itself. Therefore, the moving lid at the top of the box introduces momentum into the
system and as a consequence generates a vortex rotating clockwise because of mass
inertia. We expect the error erstimator to induce refinement primarily in the top part
of the box, particularly the corners, as well as the area covering the vortex.
For the setup of the example, we apply the boundary condition g = (U0, 0) to the
lid Γ` and g = (0, 0) on the rest of the boundary Γ\Γ`. We calculate the results for
Reynold’s number Re = 400. Reynold’s number is used for comparison of flows with
different characteristic velocity U0 but for shape similar geometries. It is computed by

Re = U0L

ν
,

where ν is the kinematic viscosity ν := µ/ρ (µ being the dynamic viscosity and ρ
the density, which are properties of the fluid) and L the characteristic length. More
information on Reynold’s number can be found in [19].

L

L

U0

Figure 7.3: Lid driven cavity flow. An imaginary lid (red arrows) on the upper edge
of the box is drawn from left to right with constant velocity U0.

7.2.1 Finite element simulation
Simulation setup

The simulation with the finite element method is carried out on the unit-square (0, 1)
as the computational domain Ω. The characteristic length is L = 1. Further, we
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(a) L = 1, |T | = 2296 (b) L = 2, |T | = 5240 (c) L = 3, |T | = 11836

Figure 7.5: Adaptive mesh refinement using the residual error estimator (5.13) at three
refinement steps.

choose ν = 1. Reynold’s number then simply corresponds to the velocity of the lid U0:

Re = U0L

ν
= U0

!= 400.

The cell selection criterion in use is the quantile criterion, see Section 6.1.2 with re-
finement threshold parameter θ = 0.35, thus refining at least 35% of all elements with
the largest values for the error estimator.
We plot the meshes that were produced at different refinement steps, using the resid-
ual error estimator 5.13. The grid in Figure (7.4) was used as the initial triangulation
because it is symmetric, but not without refining it four times uniformly before calcu-
lation by dividing each triangle into four shape similar subtriangles. Quadratic-linear
Taylor Hood elements were use for this simulation.

Figure 7.4: Symmetric initial triangulation. For lid driven cavity flow, the mesh was
uniformly refined four times before using it for the calculation.

7.2.2 Finite volume simulation
Simulation setup

The flow simulation in AVL-Fire® is performed using a cuboid-shaped geometry of
dimensions 0.4m × 0.4m (the third dimension is unimportant because of symmetry
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boundary conditions). With the following material parameters for the fluid

µ = 0.001 Ns

m2

ρ = const. = 1000 kg

m3 ,

we set the lid velocity U0 to be

U0 = νRe

L
=

µ
ρ
400

0.4 m = 0.001 m

s
,

in order to achieve a flow of Reynold’s number 400.
For lid driven cavity flow with the finite volume method, meshes generated by different
error estimators at several refinement steps were plotted. Furthermore, the results
were compared by computing the difference of the solutions in the L2(Ω)-norm to a
reference solution uref on a very fine reference mesh Tref . The reference mesh was
composed of cube-shaped elements of side length 0.00125 m, while the side length of
elements for adaptive refinement was limited to a minimum of 0.0025 m.
As cell selection criterion the maximum value rule was used, see Section 6.1.2. The
reasons for this choice are of practical nature, since the maximum value rule offers the
greatest control: Once the error estimator for each element is below a threshold θ, no
further refinement is conducted and iterations of the SIMPLE-algorithm are carried
out until the convergence criterion is met.

Adaptively generated meshes

• Figure 7.6, neighbour difference criterion, see Section 5.2.3: The estimator com-
pares values of the difference of the velocity between an element and its neigh-
bours. Refinement in areas of big velocity change, like the vicinity to the lid or
the vortex is visible, as well as in the corners at the top of the computational
domain.

• Figure 7.7, third order interpolation, see Section 5.2.2: Similarly, for third order
polynomial interpolation we also get refinement in the same areas, but the esti-
mator seems to cover the whole vortex instead of just areas of bigger change in
variables.

• Figure 7.8, residual error estimator, see Section 5.2.1: Similar to before. The
main difference is here, that also the area close to the right edge of the computa-
tional domain is being refined, which is because of a change in the pressure. The
residual error estimator is the only estimator that also factors in changes in the
pressure.

Comparison of computational errors

• Figure 7.9: Plot of the number of elements N versus the error ‖uh − uref‖L2(Ω).
The results are similar, no clear advantage of one method.
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(a) θ = 3.5 · 10−4 (b) θ = 1.1 · 10−4 (c) θ = 4.0 · 10−5

(d) θ = 3.5 · 10−5 (e) θ = 2.5 · 10−5

Figure 7.6: Adaptive mesh refinement using the neighbour difference estimator, Sec-
tion 5.2.3, measuring the difference in the velocity between neighbouring
cells.
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(a) θ = 2.5 · 10−5 (b) θ = 1.0 · 10−5 (c) θ = 5.0 · 10−6

(d) θ = 2.5 · 10−6 (e) θ = 1.0 · 10−6

Figure 7.7: Adaptively refined meshes using third order interpolation for error estima-
tion.

(a) θ = 2.5 · 10−5 (b) θ = 7.5 · 10−6 (c) θ = 2.5 · 10−6

(d) θ = 1.0 · 10−6 (e) θ = 7.5 · 10−7

Figure 7.8: Adaptively refined meshes using the residual error estimator.
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Figure 7.9: Number of elements N versus the error ‖uh − uref‖L2(Ω).

• Figure 7.10: Plot of the number of elements N versus the maximum over all
elements T of the error ‖uh − uref‖L2(T ). There is apparently no advantage of
the adaptive method over uniform refinement.

• Figure 7.11: Plot of the number of elements N versus the mean over all elements
T of the error ‖uh − uref‖L2(T ). The residual estimator seems to perform better
than uniform refinement, while third order interpolation achieves at least similar
results.

Comparison of iteration numbers

The biggest advantage of adaptive methods becomes obvious when comparing num-
bers of iterations of the SIMPLE-algorithm for different refinement strategies. In
Figure 7.12 we can see that the number of necessary SIMPLE-iterations increases
much slower for the adaptive strategies. This could be due to the fact that the AVL-
Fire® -algorithm here uses u0 = 0 as an initial guess. Since an adaptive strategy starts
on a coarse mesh, a developed flow profile is achieved with less iterations than on a
fine grid. This flow profile is an initial guess for the next adaptively refined mesh
after the solution has been interpolated, which is why subsequent calculations need
less iterations to reach a developed flow profile on the new mesh.
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Figure 7.10: Number of elements N versus the maximum over all elements T of the
error ‖uh − uref‖L2(T ).
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Figure 7.11: Number of elements N versus the mean over all elements T of the error
‖uh − uref‖L2(T ).
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Figure 7.12: Number of elements N versus the number of iterations of the SIMPLE-
algorithm needed to meet the same convergence criteria.

7.3 Backward facing step

The next example is the simplest one containing a flow around a corner. It was chosen
to investigate how the method behaves at such corner singularities. We define an
inflow region at the left side of a box (red edge and arrows) and an outflow region at
the right side of the box (green edge and arrows), see Figure 7.13, thus simulating the
flow of a fluid through a narrow channel. For the inflow, we choose the flow direction
to be normal to the boundary and to be of constant magnitude U0 along the whole
edge. Another approach would be to define a parabolic flow profile. The box itself has
length L as its horizontal dimension (x-direction) and height H (y-direction) as its
vertical dimension. This means, that on the left side we apply the Dirichlet condition
g = (U0, 0). At the outflow region, we apply a do-nothing boundary condition. On all
other parts of the boundary we define the velocity to be zero, i.e. Dirichlet boundary
condition g = (0, 0). The volumetric forces / sources f are chosen to be zero.
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L
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L/6
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U0

Figure 7.13: The backward facing step. Inflow with velocity of absolute value U0 on
the left (red edge and arrows), outflow region on the right side (green
edge and arrows).

For adaptive mesh refinement, we particularly expect our error estimation tech-
niques to introduce refinement on the left part of the channel. There is a uniform
flow profile at the inflow edge defined as the boundary condition, therefore the flow
has to develop to a more physically natural profile with higher velocities closer to the
middle of the channel. There will be a pressure drop around the corner as well as
a vortex circulating in clockwise direction in the region directly after and below the
corner. Thus, we expect refinement not only in the area where the flow develops, but
also around the corner.

7.3.1 Finite element simulation
Simulation setup

The finite element simulation is carried out with the following dimensions for the
computational domain:

L = 1.2 m
H = 0.2 m.

Together with the parameters

µ = 1 Ns/m2

ρ = 1 kg/m3

we need to chose U0 = 300 if we want to have Reynold’s number Re = 360:

U0 = νRe

L
= 300.

As cell selection criterion we chose the quantile criterion, analogously to the lid driven
cavity flow test case, with θ = 0.25 and therefore refining more than 25% of all elements
in each refinement step. The initial triangulation in subplot (a) of Figure 7.14 was
produced by NetGen by choosing 0.05 as the maximum cell size. We use P1 − P1
elements for this simulation: They allow us to have more elements for the same number
of degrees of freedom, such that it is easier to see where the emphasis for refinement
lies.
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(a) L = 0, |T | = 804. Initial triangulation.

(b) L = 1, |T | = 1570

(c) L = 2, |T | = 3152

(d) L = 3, |T | = 6432

(e) L = 4, |T | = 13219

Figure 7.14: Adaptive mesh refinement using the residual error estimator. Refinement
directly around the corner is clearly visible, as well as in the low-velocity
area (blue) after and below the corner.
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7.3.2 Finite volume simulation
Simulation setup

For the simulation in AVL-Fire® , we chose the following dimensions for the problem:

L = 1.2 m
H = 0.2 m.

Together with

U0 = 0.0003 m/s
µ = 0.001 Ns/m2

ρ = 1000 kg/m3

we get Reynold’s number

Re = U0L

ν
= 300 L = 360.

Again, we plot meshes generated by adaptive mesh refinement using the residual error
estimator and third order interpolation as error estimation techniques. In contrary to
lid driven cavity flow, we do not investigate further the performance of the neighbour
difference criterion, since this refinement strategy placed no emphasis on the calcula-
tion region behind the corner.
The leftmost part of the computational domain was left out of the scope of the adap-
tive refinement process, since uniform velocity as boundary condition like in this case
does not appear often in practice.

Adaptively generated meshes

• Figure 7.15, residual error estimator, see Section 5.2.1: We see refinement at the
left part where the flow develops, as well as refinement around the corner singu-
larity early on. Further refinement is placed in the direction of the flow and in the
area below the corner (blue area) where a clockwise flowing vortex of low velocity
develops because of a pressure drop. The residual is better capable of capturing
this area because it factors in the pressure, while the third order interpolation
techniques do not. The generated meshes looks similar to the meshes produced
by the finite element simulation, Figure 7.14.

• Figure 7.16, third order interpolation, see Section 5.2.2: More focus for refinement
is laid in the direction of the flow. The backflow vortex in the area after and below
the corner is not captured that well as by the residual estimator.
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(a) θ = 5.0 · 10−6

(b) θ = 2.5 · 10−6

(c) θ = 1.0 · 10−6

(d) θ = 7.5 · 10−7

(e) θ = 5.0 · 10−7

Figure 7.15: Adaptive mesh refinement using the residual error estimator. Refinement
directly around the corner is clearly visible.
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(a) θ = 2.5 · 10−6

(b) θ = 1.0 · 10−6

(c) θ = 6.0 · 10−7

(d) θ = 2.0 · 10−7

Figure 7.16: Adaptive mesh refinement using third order polynomial interpola-
tion (Section 5.2.2). Less emphasis is laid by this estimator on the region
behind and below the corner than by the residual estimator.
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Figure 7.17: Number of elements N versus the error ‖uh − uref‖L2(Ω).

Comparison of computational errors

• Figure 7.17: Plot of the number of elements N versus the error ‖uh − uref‖L2(Ω).
Overall performance in the sense of a drop of L2(Ω)-error seems to stay the same.
Third order interpolation performs worse at later iterations, probably because
the right half of the channel was left untouched by refinement which would also
contribute to the error.

• Figure 7.18: Plot of the number of elements N versus the maximum over all
elements T of the error ‖uh − uref‖L2(T ). Adaptive refinement seems to be per-
forming worse than uniform refinement concerning reduction of the highest L2(T )-
error per element T .

• Figure 7.19: Plot of the number of elements N versus the mean over all elements
T of the error ‖uh − uref‖L2(T ). The mean L2(T )-error seems to drop faster with
adaptive refinement than with uniform refinement.

Comparison of iteration numbers

Even more than in the case of lid driven cavity flow, in the backward facing step case
adaptive refinement provides a huge improvement in terms of iteration numbers, as can
be seen in Figure 7.20. This again is probably due to multilevel effects, i.e. solutions
computed on coarser meshes are better initial guesses for the solution process on finer
meshes.
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Figure 7.18: Number of elements N versus the maximum over all elements T of the
error ‖uh − uref‖L2(T ).
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Figure 7.19: Number of elements N versus the mean over all elements T of the error
‖uh − uref‖L2(T ).
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Figure 7.20: Number of elements N versus the number of iterations of the SIMPLE-
algorithm needed to meet the same convergence criteria.





8 Conclusions
Based on Chapter 7 we can observe the following effects when using adaptive mesh
refinement:
Finite volume simulation: Adaptive mesh refinement offers a great possibility to mas-
sively reduce the necessary number of iterations due to multilevel effects, i.e. solutions
on coarser meshes are good initial guesses for the further simulation on finer meshes.
Furthermore, the residual error estimator is better able to capture physical details
of the flow like the small vortex behind and below the corner in the backward fac-
ing step test case than the other error estimation techniques, see Section 7.3, which
may or may not be desirable depending on the purpose of the simulation. Its main
difference compared to other error estimation techniques is that it also factors in the
pressure into the error estimation process, which the other presented estimators do
not. An improvement in error decline for simulations employing adaptive refinement
when comparing to a reference solution on a very fine grid was not observable as op-
posed to uniform refinement.
Finite element simulation: It was shown that the residual error estimator for finite
elements induces refinement similar to the refinement induced by the residual error
estimator for the finite volume method. When applying adaptive refinement using the
residual error estimator for the solution of an example with a known smooth exact
solution, no improvement of convergence rates could be observed. The number of
necessary Newton iterations stayed the same regardless of the number of elements and
whether uniform or adaptive refinement was used.
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