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I 

ABSTRACT 

 

The aim of this thesis was to validate and improve the primary breakup model used for the 

Lagrangian spray calculation in the CFD code AVL FIRE. Several improvements of the primary 

breakup model are presented and validated with measurements. To further improve the 

primary breakup models a detailed information about the region near the nozzle orifice is 

necessary. This region is visually hard to capture due to the dense spray. Therefore Large Eddy 

Simulations (LES) of the disintegration of a liquid jet under different flow and ambient 

conditions were performed. The transient inflow boundary condition was created by an LES 

of a fully developed turbulent pipe flow. These simulations were used to validate the Coherent 

Structure Model (turbulence model) from Kobayashi (2005) on different mesh sizes with 

Direct Numerical Simulation (DNS) data. 

 

Key words: primary breakup, LES, liquid jet, atomization, pipe flow 



 

II 

KURZFASSUNG 

 

Das Ziel dieser Arbeit war die Validierung und Verbesserung des Primärzerfallsmodells für die 

Lagrange Spray Berechnung in der CFD Software FIRE von AVL. Mehrere Verbesserungen am 

Primärzerfallsmodell wurden vorgenommen und mit Messungen validiert. Um diese 

Zerfallsmodelle weiter zu verbessern sind detaillierte Informationen über den Strahlzerfall in 

der Nähe der Düsenöffnung notwendig. Dieser Bereich ist optisch sehr schwer zu erfassen, da 

er durch dichten Sprühnebel verdeckt ist. Daher wurden Large Eddy Simulationen (LES) vom 

Zerfall eines Flüssigkeitsstrahls unter verschiedenen Strömungs- und Umgebungsbedingungen 

durchgeführt. Die dafür notwendigen transienten Randbedingungen wurden mithilfe weiterer 

LES von voll entwickelten turbulenten Rohrströmungen erstellt. Diese Simulationen wurden 

genutzt um das Coherent Structure Model (Turbulenzmodell) von Kobayashi (2005) auf 

unterschiedlichen Gittern mit Ergebnissen einer Direct Numerical Simulation (DNS) mit 

ähnlicher Reynoldszahl zu vergleichen. 

 

Schlüsselwörter: Primärzerfall, LES, Strahlzerfall, Spray, Rohrströmung 
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V 

NOMENCLATURE 

Latin symbols 

𝑎 Thermal diffusivity [m²/s] 

𝐴 Area [m²] 

𝐶 Constant [-] 

𝑐 Speed of sound [m/s] 

𝑐𝑝 Specific heat capacity at constant pressure [J/kgK] 

𝐷 Diameter [m] 

𝐸 Energy [J] 

𝑀 Mass [kg] 

𝑝 Pressure [Pa] 

�⃗� Heat flux [W/m²] 

𝑟 Radius [m] 

𝑅 Universal gas constant [J/molK] 

𝑡 Time [s] 

𝑇 Temperature [K] 

𝑢 Velocity component, usually in x-direction [m/s] 

𝑢+ Non-dimensional velocity [-] 

𝑣 Velocity component, usually in y-direction [m/s] 

𝑉 Volume [m³] 

𝑤 Velocity component, usually in z-direction [m/s] 

𝑥 Coordinate [m/s] 

𝑦 Coordinate [m/s] 

𝑦+ Non-dimensional distance from the wall [-] 

𝑧 Coordinate [m/s] 

   

Greek symbols 

𝛼 Void fraction [-] 

𝜅 Isentropic exponent [-] 

𝜆 Thermal conductivity [W/mK] 

𝜇 Dynamic viscosity [Ns/m²] 

𝜈 Kinematic viscosity [m²/s] 

𝜌 Density [kg/m³] 



 

VI 

𝜎 Surface tension [N/m] 

𝜏 Shear stress [N/m²] 

   

Abbreviations 

CFD Computational fluid dynamics  

DDM Discrete droplet model  

DNS Direct numerical simulation  

Ec Eckert number  

IC Internal combustion  

LES Large eddy simulation  

Ma Mach number  

Oh Ohnesorge number  

Pr Prandtl number  

Re Reynolds number  

SGS Sub grid scale  

SMD Sauter mean diameter  

TKE Turbulent kinetic energy  

VOF Volume of fluid  

We Weber number  
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1 Introduction 

For the development of IC engines many test bed runs are needed to optimize the still 

growing number of parameters that influence efficiency and emissions. Simulating the 

combustion becomes more and more important to help understand combustion 

processes and pollutant formation. Especially for Diesel engines, the spray formation is of 

high interest, since combustion and injection take place simultaneously. Multiple pilot and 

post injections are used to reduce noise level and emissions. High-pressure fuel injection 

is used for better spray atomization and smaller droplet diameters and therefore faster 

evaporation. 

The surface of a liquid jet that emerges from a nozzle is deformed by disturbances coming 

from turbulence, cavitation or oscillations of the fuel system. If the turbulence is high 

enough or if the disturbances are amplified by aerodynamic forces drops detach from the 

jet surface. This process is called primary breakup. When these drops further disintegrate 

into smaller drops, so-called secondary breakup is happening. The length of the coherent 

liquid structure of the spray is called the liquid core length. Figure 1 illustrates the 

disintegration of a liquid jet. 

 

Figure 1: Liquid jet disintegration 

The liquid core is very hard to observe due to the dense spray that covers the core region. 

Due to this fact, and because the nozzle flow conditions strongly influence the spray 

formation, one task of this thesis was to perform Large Eddy Simulations of the 

disintegration of a liquid jet emerging from a nozzle, described in chapter 4. The exactly 

defined inflow conditions that are possible in simulations make it easier to study the 

different mechanisms of breakup. In this thesis, a fully developed turbulent pipe flow was 
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used as an inflow boundary condition. The flow field was generated by an LES of a 

turbulent pipe flow as described in chapter 3. 

During the development of a new Diesel engine, simulations of the spray formation and 

combustion can reduce test bed runs. The computational costs of DNS and LES, however, 

are much too high to simulate multiple engine cycles. That’s why models are necessary to 

reduce the computation time. Today mostly Lagrangian spray models are used, where the 

liquid that emerges from the nozzle is modeled by blobs. These blobs are initialized with 

the flow properties at the nozzle orifice. Special primary breakup models are used for the 

initial breakup of these blobs. Further breakup is modeled by secondary breakup models. 

Sometimes the nozzle flow is simulated separately, and the flow properties at the nozzle 

orifice are stored to a so-called nozzle file. This nozzle file is then used in a Lagrangian 

spray simulation. Figure 2 illustrates this process. 

 

Figure 2: Simulation of spray formation 

These models are well accepted and commonly used in engine development nowadays. 

In contrast, the separate nozzle flow simulation is not so often used. The 3D CFD software 

FIRE from AVL offers this feature, and one task of this thesis was to improve the primary 

breakup model in FIRE to allow the use of a nozzle file that not only contains the main, 

but also pilot and post injections. Of special interest is the transient phase when the 

injector needle is opening or closing. Chapter 5 deals with this task. 
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2 Theory 

2.1 The fundamental equations 

The fundamental equations are based on the following 3 axioms: 

1. Mass cannot be created or destroyed. 

2. The change of momentum of a body with time is the sum of the forces acting on 

it. 

3. The change of internal and kinetic energies of a body with time is the sum of the 

power of the forces acting on it and the transferred thermal power. 

Starting from a Lagrangian (mass based) consideration, we observe some mass points as 

they are moving with the flow of a continuum. The considered mass points occupy a 

control volume �̅� = �̅�(𝑡) that changes its shape in time. Applying the 3 axioms to the 

control volume, the following equations can be derived: 

Mass 
𝑑𝑀

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉
�̅�(𝑡)

= 0 (2.1) 

Momentum 
𝑑𝐼

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌�⃗�𝑑𝑉
�̅�(𝑡)

=∑𝑓 (2.2) 

Energy 
𝑑𝐸

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌 (𝑒 +

1

2
�⃗�2) 𝑑𝑉

�̅�(𝑡)

= �⃗�∑𝑓 +∑(�̇� + 𝑆𝑒) (2.3) 

In these equations, 𝑓 is a force, �̇� is the rate of heat flow (conduction or convection) and 

𝑆𝑒 is a heat source. The heat source could be a chemical reaction (combustion) inside the 

control volume. 

Using the Reynolds transport theorem, these equations can be transferred from 

Lagrangian to Eulerian coordinates. 

𝑑

𝑑𝑡
∫ 𝜙𝑑𝑉
�̅�(𝑡)

=
𝜕

𝜕𝑡
∫ 𝜙𝑑𝑉 +∮ 𝜙(�⃗� ∙ �⃗⃗�)𝑑𝐴

𝑆𝑉

 (2.4) 
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The total change in time of the integral of a scalar or vectorial quantity 𝜙 over the time 

dependent volume �̅�(𝑡) is the sum of the local change and the convective change (flow 

across the surface of 𝑉). 

With the divergence theorem (Gauß’s theorem), the surface integral can be transformed 

into a volume integral. 

∮ �⃗⃗� ∙ �⃗�𝑑𝐴
𝑆

= ∫ ∇⃗⃗⃗ ∙ �⃗�𝑑𝑉
𝑉

, (2.5) 

where �⃗� is a vector field. Since 𝑉 does not depend on time, the Reynolds transport 

theorem can be written as 

𝑑

𝑑𝑡
∫ 𝜙𝑑𝑉
�̅�(𝑡)

= ∫ [
𝜕𝜙

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜙�⃗�)] 𝑑𝑉

𝑉

 (2.6) 

The forces that act on the volume are 

Surface forces 𝐹𝑠⃗⃗⃗⃗ = ∮ (𝜎 ∙ �⃗⃗�)𝑑𝐴
𝑆

= ∫ ∇⃗⃗⃗ ∙ 𝜎𝑑𝑉
𝑉

 (2.7) 

Mass forces 𝐹𝐵⃗⃗⃗⃗⃗ = ∫ 𝜌𝑓𝐵⃗⃗ ⃗⃗ ⃗𝑑𝑉
𝑉

 (2.8) 

The rate of heat flow can be written as 

�̇� = −∮ (�⃗� ∙ �⃗⃗�)𝑑𝐴
𝑆

= −∫ (∇ ∙ �⃗�)𝑑𝑉
𝑉

 (2.9) 

Let �⃗� denote the heat flux vector and �⃗⃗� the outward normal to the surface, then −(�⃗� ∙ �⃗⃗�) 

is the heat flux into the volume. The heat source is defined as 

𝑆𝑒 = ∫ �̇�𝑄𝑑𝑉
𝑉

 (2.10) 

where �̇�𝑄 is the volumetric rate of heat production. 

The resulting conservation equations read 
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Mass 
𝑑𝑀

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉
�̅�(𝑡)

= ∫ [
𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗�)] 𝑑𝑉

𝑉

= 0  

Momentum 
𝑑𝐼

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌�⃗�𝑑𝑉
�̅�(𝑡)

= ∫ [
𝜕𝜌�⃗�

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗��⃗�)] 𝑑𝑉

𝑉

= 𝐹𝑠 + 𝐹𝐵  

Energy 𝑑𝐸

𝑑𝑡
=
𝑑

𝑑𝑡
∫ 𝜌 (𝑒 +

1

2
�⃗�2) 𝑑𝑉

�̅�(𝑡)

 

= ∫ [
𝜕𝜌 (𝑒 +

1
2 �⃗�

2)

𝜕𝑡
+ ∇⃗⃗⃗ ∙ 𝜌�⃗� (𝑒 +

1

2
�⃗�2)] 𝑑𝑉

𝑉

 

= �⃗�∑𝑓 +∑(�̇� + 𝑆𝑒) 

 

 

This leads to the integral forms of the basic equations 

Mass ∫ [
𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗�)] 𝑑𝑉

𝑉

= 0 (2.11) 

Momentum ∫ [
𝜕𝜌�⃗�

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗��⃗�)] 𝑑𝑉

𝑉

= ∫ [∇⃗⃗⃗ ∙ 𝜎 + 𝜌𝑓𝐵⃗⃗ ⃗⃗ ⃗] 𝑑𝑉
𝑉

 (2.12) 

Energy 

∫ [
𝜕

𝜕𝑡
(𝜌 (𝑒 +

1

2
�⃗�2)) + ∇⃗⃗⃗ ∙ 𝜌�⃗� (𝑒 +

1

2
�⃗�2)] 𝑑𝑉

𝑉

= ∫ [�⃗� (∇⃗⃗⃗ ∙ 𝜎 + 𝜌𝑓𝐵⃗⃗ ⃗⃗ ⃗) − (∇ ∙ �⃗�) + �̇�𝑄] 𝑑𝑉
𝑉

 

(2.13) 

The stress tensor for Cartesian coordinates looks like 

𝜎 = [

σxx 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑧𝑦 𝜎𝑧𝑧

]  

By separating the pressure from the normal stresses, only the deformation induced values 

remain in the tensor 𝜏 

𝜎𝑥𝑥 = −𝑝 + 𝜏𝑥𝑥;    𝜎𝑦𝑦 = −𝑝 + 𝜏𝑦𝑦;     𝜎𝑧𝑧 = −𝑝 + 𝜏𝑧𝑧   
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So the stress tensor can be written as 

𝜎 = [

σxx 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜎𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑧𝑦 𝜎𝑧𝑧

] = −𝑝𝐼 + [

τxx 𝜏𝑦𝑥 𝜏𝑧𝑥
𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑧𝑦
𝜏𝑥𝑧 𝜏𝑧𝑦 𝜏𝑧𝑧

] = −𝑝𝐼 + 𝜏, (2.14) 

where the values 𝜏𝑖𝑗 are the deformation induced stresses and 𝐼 is the unit tensor. 

With the stress tensor given by equation (2.14), the differential form of the conservation 

equations look like 

Mass 
𝜕𝜌

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗�) = 0 (2.15) 

Momentum 
𝜕𝜌�⃗�

𝜕𝑡
+ ∇⃗⃗⃗ ∙ (𝜌�⃗��⃗�) = −∇⃗⃗⃗𝑝 + ∇⃗⃗⃗ ∙ 𝜏 + 𝜌𝑓𝐵⃗⃗ ⃗⃗ ⃗ (2.16) 

Energy 𝜕

𝜕𝑡
[𝜌 (𝑒 +

1

2
�⃗�2)] + ∇⃗⃗⃗ ∙ 𝜌�⃗� (𝑒 +

1

2
�⃗�2)

= �⃗� (∇⃗⃗⃗ ∙ 𝜎 + ρfB⃗⃗ ⃗⃗ ) − (∇ ∙ �⃗�) + �̇�𝑄 

(2.17) 

For Newtonian fluids, the stress-strain relationship is known as 

τxx = 𝜇 [2
𝜕𝑢

𝜕𝑥
−
2

3
(∇⃗⃗⃗ ∙ �⃗�)]  

τyy = 𝜇 [2
𝜕𝑣

𝜕𝑦
−
2

3
(∇⃗⃗⃗ ∙ �⃗�)]  

τzz = 𝜇 [2
𝜕𝑤

𝜕𝑧
−
2

3
(∇⃗⃗⃗ ∙ �⃗�)]  

τxy = 𝜏𝑦𝑥 = 𝜇 [
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
]  

τyz = 𝜏𝑧𝑦 = 𝜇 [
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
]  

τzx = 𝜏𝑥𝑧 = 𝜇 [
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
]  

Following Steiner (2010), for a Newtonian fluid, the stress tensor σij can be written as 
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σij = −𝑝𝛿𝑖𝑗 −
2

3
𝜇(∇⃗⃗⃗ ∙ �⃗�)𝛿𝑖𝑗⏟        
𝑑𝑖𝑙𝑎𝑡𝑎𝑡𝑖𝑜𝑛

+ 2𝜇𝑆𝑖𝑗⏟  
𝑙𝑖𝑛𝑒𝑎𝑟 𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖=𝑗

𝑎𝑛𝑔𝑙𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖≠𝑗

, 
(2.18) 

where 𝑆𝑖𝑗 denotes the rate of strain tensor 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) (2.19) 

 

2.1.1 Incompressible flow 

For incompressible flow 𝜌 = 𝜌(𝑇), the continuity equation reduces to 

∇⃗⃗⃗ ∙ �⃗� = 0  , (2.20) 

which means that volume dilatation is zero.  

The resulting momentum equation for a Newtonian, incompressible fluid read 

𝜕�⃗�

𝜕𝑡
+ (�⃗� ∙ ∇⃗⃗⃗)�⃗� = −

1

𝜌
∇⃗⃗⃗𝑝 + 𝜈∆�⃗� + 𝑓𝐵 (2.21) 

For incompressible Newtonian fluids with negligible rate of viscous heating, all types of 

flows without heat transfer can be described by these equations. An exact solution is only 

possible for special laminar cases in simple geometries. Even the numerical solution is 

sometimes difficult or even impossible. 

The energy equation in compact form reads 

𝜌
𝑑

𝑑𝑡
(𝑒 +

1

2
|�⃗�|2) = 𝜌(�⃗� ∙ 𝑓𝐵) − (∇⃗⃗⃗ ∙ 𝑝�⃗�) + (∇⃗⃗⃗ ∙ [𝜏 ∙ �⃗�]) − (∇ ∙ �⃗�) + �̇�𝑄 (2.22) 

The balance equation for mechanical energy, kinetic and potential, can be obtained by 

multiplying the momentum equation with the velocity vector. This leads to the equation 

of mechanical energy 

𝜌
𝑑

𝑑𝑡
(
1

2
|�⃗�|2) = −(�⃗� ∙ ∇⃗⃗⃗𝑝) + (�⃗� ∙ [∇⃗⃗⃗ ∙ 𝜏]) + 𝜌(�⃗� ∙ 𝑓𝐵) (2.23) 
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𝜌
𝑑

𝑑𝑡
(
1

2
|�⃗�|2) = 𝑝(∇⃗⃗⃗ ∙ �⃗�) − (∇⃗⃗⃗ ∙ 𝑝�⃗�) + (∇⃗⃗⃗ ∙ [𝜏 ∙ �⃗�]) − (𝜏: ∇⃗⃗⃗�⃗�)

+ 𝜌(�⃗� ∙ 𝑓𝐵) 

(2.24) 

The term (𝜏: ∇⃗⃗⃗�⃗�) is called the dissipation function and is often denoted as Φ𝜇. 

When subtracting the mechanical energy given by equation (2.24) from the total energy 

given by equation (2.22), the thermal energy remains 

𝜌
𝑑𝑒

𝑑𝑡
= −𝑝(∇⃗⃗⃗ ∙ �⃗�) + (𝜏: ∇⃗⃗⃗�⃗�) − (∇ ∙ �⃗�) + �̇�𝑄 (2.25) 

By comparing equations (2.24) and (2.25) it can be seen that they only share the terms 

𝑝(∇⃗⃗⃗ ∙ �⃗�) and (𝜏: ∇⃗⃗⃗�⃗�) with different signs in each equation. Those terms represent the 

exchange of mechanical and thermal energy. Since the term 𝑝(∇⃗⃗⃗ ∙ �⃗�) can be positive or 

negative for expanding or compressing flow, it describes a reversible exchange of energy. 

The term (𝜏: ∇⃗⃗⃗�⃗�) is always positive for Newtonian fluids and therefore represents the 

irreversible dissipation of mechanical into thermal energy. 

The dissipation function for Newtonian fluids in cartesian coordinates is given by 

Φ𝜇 = (𝜏: ∇⃗⃗⃗�⃗�) = 𝜇 {2 [(
𝜕𝑢

𝜕𝑥
)
2

+ (
𝜕𝑣

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑧
)
2

] + (
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)
2

+ (
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
)
2

+ (
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)
2

−
2

3
(
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
)
2

} 

(2.26) 

For incompressible flow (∇⃗⃗⃗ ∙ �⃗� = 0) with small effects of viscous dissipation (𝜏: ∇⃗⃗⃗�⃗�), the 

equations of mechanical and thermal energies are decoupled. In this case, the change of 

mechanical energy does not influence the thermal energy and vice versa. 

There are many other formulations of the equation of thermal energy. For enthalpy and 

temperature it looks like 

𝜌
𝑑ℎ

𝑑𝑡
=
𝑑𝑝

𝑑𝑡
+ (𝜏: ∇⃗⃗⃗�⃗�) − (∇ ∙ �⃗�) + �̇�𝑄 (2.27) 
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𝜌𝑐𝑝
𝑑𝑇

𝑑𝑡
=
𝑑𝑝

𝑑𝑡
+ (𝜏: ∇⃗⃗⃗�⃗�) − (∇ ∙ �⃗�) + �̇�𝑄 (2.28) 

 

2.2 Nondimensional parameters 

For model tests it is important to know how to transfer measured results from the model 

to reality and vice versa. By non-dimensionalising the equations of motion it is possible to 

make them only relate on non-dimensional characteristic numbers. If these numbers are 

identical, then the non-dimensional flow fields are also equal. The main task of fluid 

dynamics is therefore to find the dependency between the solution of the equations of 

motion and these non-dimensional characterstic numbers. 

The non-dimensionalisation of the momentum equation is done by the use of a 

characteristic velocity U and a characteristic length L. The * indicates a dimensionless 

quantity. 

v⃗⃗∗ =
1

𝑈
v⃗⃗;     ∇⃗⃗⃗∗= ∇⃗⃗⃗𝐿;    ∆∗= ∆𝐿2;     𝑡∗ = 𝑡

𝑈

𝐿
;    𝑝∗ =

𝑝

𝜌𝑈2
  

Using these relations with the momentum equation (2.21), and omitting the volume 

forces 𝑓𝐵, results in 

𝜕v⃗⃗∗

𝜕𝑡∗
+ (v⃗⃗∗ ∙ ∇⃗⃗⃗∗)v⃗⃗∗

⏟          
𝑓𝑜𝑟𝑐𝑒𝑠 𝑜𝑓 𝑖𝑛𝑒𝑟𝑡𝑖𝑎

= −∇⃗⃗⃗∗𝑝∗⏟  
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑓𝑜𝑟𝑐𝑒𝑠

+
1

𝑅𝑒
∆∗v⃗⃗∗⏟
𝑣𝑖𝑠𝑐𝑜𝑢𝑠
𝑓𝑜𝑟𝑐𝑒𝑠

 (2.29) 

Re is the Reynolds number that describes the ratio of the forces of inertia to the viscosity 

forces. Flows that have the same Reynolds number 

𝑅𝑒 =
𝑈𝐿

𝜈
 (2.30) 

are dynamically similar. For small Reynolds number, the viscous forces dominate over the 

forces of inertia. For high Reynolds numbers, the viscous forces can be neglected. 
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To transform the thermal energy equation (2.28) to dimensionless form, the following 

dimensionless quantities are used. Let 𝑈 again denote a characteristic velocity, 𝐿 a 

characteristic length, 𝑇𝑊 the wall temperature, and the subscript 𝑅 a reference value. 

v⃗⃗∗ =
v⃗⃗

𝑈
;    ∇⃗⃗⃗∗= ∇⃗⃗⃗𝐿;    ∆∗= ∆𝐿2;     𝑡∗ = 𝑡

𝑈

𝐿
  

𝑝∗ =
𝑝

𝜌𝑈2
;     𝜙𝜇

∗ =
𝜙

𝜙𝑅
;     𝑇∗ =

𝑇 − 𝑇𝑅
𝑇𝑊 − 𝑇𝑅

  

The dimensionless energy equation without heat source is given by 

𝜌𝑐𝑝
𝑑𝑇∗

𝑑𝑡∗
= 𝐸𝑐

𝑑𝑝∗

𝑑𝑡∗
+
𝐸𝑐

𝑅𝑒
Φ𝜇
∗ +

1

𝑅𝑒𝑃𝑟
∆∗𝑇∗  , (2.31) 

where 𝐸𝑐 is the Eckert number that describes the ratio of kinetic energy to the enthalpy 

difference. 

𝐸𝑐 =
𝑈2

𝑐𝑝(𝑇𝑊 − 𝑇𝑅)
 (2.32) 

𝑃𝑟 denotes the Prandtl number, which describes the ratio of the diffusivities for 

momentum and enthalpy. It also describes the ratio of the velocity boundary layer 

thickness to the thermal boundary layer thickness and is about 1 for many gases at 

atmospheric state. 

𝑃𝑟 =
𝜈

𝑎
=
𝜈𝜌𝑐𝑝

𝜆
=
𝜇𝑐𝑝

𝜆
 (2.33) 

For ideal gases the Eckert number can also be written as 

𝐸𝑐 =
𝑈2

𝑐𝑝(𝑇𝑊 − 𝑇𝑅)

𝑐2

𝑐2
= 𝑀𝑎2(𝜅 − 1)

𝑇𝑅
𝑇𝑊 − 𝑇𝑅

   , (2.34) 

where 𝑐 = √κRTR is the speed of sound for an ideal gas, 𝑀𝑎 = 𝑈/𝑐 the Mach number 

and 𝜅 the isentropic exponent. 
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For flow with constant density 𝜌, the speed of sound 𝑐 goes to infinity and therefore the 

Eckert number 𝐸𝑐 ≪ 1. This means that, for constant density 𝜌, the power of pressure 

forces and the power of the viscous forces can be neglected. 

 

2.3 Laminar pipe flow 

In experiments on fluid systems it is observed that, at values below the critical Reynolds 

number Recrit, the flow is laminar. In laminar flow, the fluid flows in parallel layers without 

disruption between the layers. There is no motion perpendicular to the flow direction. For 

the laminar 2-dimensional fully developed flow, an exact solution of the Navier-Stokes 

equations is possible. 

The stationary, axially symmetric flow of an incompressible Newtonian fluid through a 

pipe of infinite length can be described by the following equations, as shown by Brenn & 

Meile (2008). 

Continuity equation 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕𝑢

𝜕𝑧
= 0 (2.35) 

Momentum equation in radial direction 

𝑣𝑟
𝜕𝑣𝑟
𝜕𝑟

+ 𝑢
𝜕𝑣𝑟
𝜕𝑧

= −
1

𝜌

𝜕𝑝

𝜕𝑟
+ 𝜈 [

𝜕

𝜕𝑟
(
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟)) +

𝜕2𝑣𝑟
𝜕𝑧2

] + 𝑓𝑟
𝐵 (2.36) 

Momentum equation in axial direction 

𝑣𝑟
𝜕𝑢

𝜕𝑟
+ 𝑢

𝜕𝑢

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑧
+ 𝜈 [

1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑢

𝜕𝑟
) +

𝜕2𝑢

𝜕𝑧2
] + 𝑓𝑧

𝐵 (2.37) 

If the body force is neglected and the flow is fully developed, the continuity equation 

reduces to 

𝑟 ∙ 𝑣𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  



2 Theory 

12 

Since the velocity 𝑣𝑟 on the pipe wall 𝑟 = 𝑅 must be zero 𝑣𝑟 must be zero in the whole 

flow field. This leads to the simplified momentum equations 

Momentum equation in radial direction 

0 = −
1

𝜌

𝜕𝑝

𝜕𝑟
   ,  

hence the pressure 𝑝 is no function of r. 

Momentum equation in axial direction 

0 = −
1

𝜌

𝑑𝑝

𝑑𝑧
+ 𝜈 [

1

𝑟

𝑑

𝑑𝑟
(𝑟
𝑑𝑢

𝑑𝑟
)]  

Since the term with 𝜈 does not depend on z, neither can 
𝑑𝑝

𝑑𝑧
 , and therefore it must be 

constant. After integration of the momentum equation in the axial direction, the velocity 

profile reads 

1

𝜇

𝑑𝑝

𝑑𝑧
𝑟 =

𝑑

𝑑𝑟
(𝑟
𝑑𝑢

𝑑𝑟
)  

1

𝜇

𝑑𝑝

𝑑𝑧

𝑟2

2
+ 𝐶1 = 𝑟

𝑑𝑢

𝑑𝑟
  

𝑑𝑢

𝑑𝑟
=
1

𝜇

𝑑𝑝

𝑑𝑧

𝑟

2
+
𝐶1
𝑟

  

𝑢(𝑟) =
1

4𝜇

𝑑𝑝

𝑑𝑧
𝑟2 + 𝐶1 ln(𝑟) + 𝐶2  

Since 𝑢(𝑟) needs to be finite for 𝑟 = 0, 𝐶1 = 0. At the wall 𝑢(𝑟 = 𝑅) = 0, which leads to 

parabolic velocity field 

𝑢(𝑟) = −
1

4𝜇

𝑑𝑝

𝑑𝑧
𝑅2 (1 −

𝑟2

𝑅2
) (2.38) 

The mean velocity can be calculated as 
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�̅� =
�̇�

𝐴
=

1

𝑅2𝜋
∫ 𝑢(𝑟)2𝑟𝜋𝑑𝑟 = −

1

8𝜇

𝑅

0

𝑑𝑝

𝑑𝑧
𝑅2 (2.39) 

The maximum velocity follows as 

𝑢𝑚𝑎𝑥 = 𝑢(𝑟 = 0) = −
1

4𝜇

𝑑𝑝

𝑑𝑧
𝑅2 = 2�̅� (2.40) 

Using equation (2.40), the velocity field from equation (2.38) can be written as 

𝑢(𝑟) = 2�̅� (1 −
𝑟2

𝑅2
) (2.41) 

One can see that a pressure drop 
𝑑𝑝

𝑑𝑧
 is necessary to drive the flow. This pressure drop has 

a negative value and is constant in the radial and axial directions. So 
𝑑𝑝

𝑑𝑧
 is the pressure loss 

Δ𝑝 on a pipe length L. 

𝑑𝑝

𝑑𝑧
=
Δ𝑝

𝐿
=
𝑝2 − 𝑝1
𝐿

  

This pressure loss is related to the shear stress 𝜏𝑟𝑧 at the pipe wall 

𝜏𝑤 = τ𝑟𝑧|𝑟=𝑅 = 𝜇
𝑑𝑢

𝑑𝑟
|
𝑟=𝑅

= 𝜇
1

2𝜇

𝑑𝑝

𝑑𝑧
𝑅 =

𝑅

2

𝑑𝑝

𝑑𝑧
 (2.42) 

The Darcy-Weisbach equation relates the pressure loss due to friction to the average 

velocity of the fluid flow. 

−Δ𝑝 = 𝜆
𝐿

𝐷

𝜌

2
�̅�2 (2.43) 

where 𝜆 is the dimensionless friction factor. Hence the relation 

−
Δ𝑝

𝐿
= −

𝑑𝑝

𝑑𝑧
= 𝜆

1

𝐷

𝜌

2
�̅�2  

is obtained. From equation (2.39) we get 
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−
𝑑𝑝

𝑑𝑧
= −

Δ𝑝

𝐿
=
8𝜇

𝑅2
�̅� =

32𝜇

𝐷2
�̅� =

64𝜇

𝜌𝐷�̅�⏟
𝜆

1

𝐷

𝜌

2
�̅�2  

Comparing the last two equations we obtain the Hagen-Poisseuille friction law for laminar 

pipe flow. 

𝜆 =
64𝜇

𝜌𝐷�̅�
=
64

𝑅𝑒
 (2.44) 

This means that there is a linear correlation between the wall shear stress 𝜏𝑤 and the 

mean velocity �̅� for laminar pipe flow 

𝜏𝑤 =
𝑅

2

𝑑𝑝

𝑑𝑧
=
4𝜇

𝑅
�̅� (2.45) 

 

2.4 Turbulent flow 

For Reynolds numbers higher than Recrit, the flow is unstable and may eventually turn into 

turbulent. Turbulent flow has a three-dimensional, time dependent, random velocity 

�⃗�(�⃗�, 𝑡) and pressure 𝑝(�⃗�, 𝑡) field. The fluctuating flow properties can be calculated at 

every location �⃗� and every time t with the Navier-Stokes equations. This method is called 

direct numerical simulation (DNS) and has to resolve all length and time scales. The 

computational costs of this method increase as Re3. The DNS is therefore restricted to 

lower Reynolds numbers. For the technically relevant higher Reynolds numbers, average 

values of the flow properties are used to reduce the computation time. Generally, two 

main types of averaging are used 

 Statistical averaging 

Instantaneous flow properties are split into the time-average and fluctuating 

components. This method is called Reynolds Averaged Numerical Simulation 

(RANS) and is described in chapter 2.4.1. 
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 Local averaging (filtering) 

Spatial filtering is used to separate the large scales from the small ones. The large 

eddies are resolved, and the influence of the small eddies is modelled. Simulating 

a flow field like this is called Large Eddy Simulation (LES), which will be described 

in chapter 2.5. 

 

2.4.1 The Reynolds averaged transport equations (RANS) 

The mathematical description of turbulence can be simplified by decomposing the 

instantaneous property ϕ (velocity, pressure, …) into a mean ϕ̅ and the fluctuations ϕ′ 

around the mean ϕ̅ 

ϕ = ϕ̅ + ϕ′,  

where ϕ′̅̅̅ = 0 

The ensemble average 〈ϕ〉of N samples is calculated by 

〈ϕ〉(�⃗�, 𝑡) =
1

𝑁
∑𝜙

𝑁

1

(�⃗�, 𝑡)  

For statistically stationary flow the ensemble average 〈ϕ〉 is equal to the time average ϕ̅ 

ϕ̅(�⃗�) = lim
𝑁→∞

1

𝑁
∑𝜙

𝑁

1

(�⃗�, 𝑡) = lim
𝑇→∞

1

𝑇
∫ 𝜙
𝑡0+𝑇

𝑡0

(�⃗�, 𝑡)𝑑𝑡.  

The following rules apply when using these averages on fluctuating fluid properties 𝜙 =

�̅� + 𝜙′ and 𝜓 = �̅� + 𝜓′, their combinations and derivatives. 

ϕ̿ = ϕ̅;     ϕ ± ψ̅̅ ̅̅ ̅̅ ̅̅ = ϕ̅ ± ψ̅;    �̅� ∙ 𝜓̅̅ ̅̅ ̅̅ ̅ = �̅� ∙ �̅�  

∂ϕ̅̅ ̅̅

∂s
=
∂ϕ̅

∂s
;    𝜙′̅̅ ̅ = 𝜓′̅̅ ̅ = 0  
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where s denotes x, y, z or t. Applying the decomposition of an instantaneous property into 

a mean and a fluctuation on the continuity (2.20) and momentum equations (2.21) 

without body force of an incompressible Newtonian fluid results in 

𝜕�̅�

𝜕𝑥
+
𝜕�̅�

𝜕𝑦
+
𝜕�̅�

𝜕𝑧
= 0 (2.46) 

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
+
𝜕𝑤′

𝜕𝑧
= 0 (2.47) 

 

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = −

𝜕�̅�

𝜕𝑥
+ 𝜇∆�̅� − 𝜌 (

𝜕𝑢′𝑢′̅̅ ̅̅ ̅

𝜕𝑥
+
𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+
𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) (2.48) 

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = −

𝜕�̅�

𝜕𝑦
+ 𝜇∆�̅� − 𝜌 (

𝜕𝑢′𝑣′̅̅ ̅̅ ̅

𝜕𝑥
+
𝜕𝑣′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
+
𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) (2.49) 

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
+ �̅�

𝜕�̅�

𝜕𝑧
) = −

𝜕�̅�

𝜕𝑧
+ 𝜇∆�̅� − 𝜌 (

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑥
+
𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑦
+
𝜕𝑤′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑧
) (2.50) 

The terms −𝜌 (
𝜕𝑢′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑥
+
𝜕𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑦
+
𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
), −𝜌 (

𝜕𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑥
+
𝜕𝑣′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑦
+
𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
) and −𝜌 (

𝜕𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑥
+
𝜕𝑣′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑦
+

𝜕𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕𝑧
) originate from the forces of inertia, but since they have the form of a stress tensor 

they are called apparent stresses of the turbulent flow or Reynolds stresses. These 

stresses are supplementary to the viscous stresses of a flow and are caused by the 

turbulent fluctuations. In general, the apparent turbulent stresses predominate over the 

viscous stresses. 

𝜏𝑡 = 𝜎
′ = (

𝜎𝑥𝑥
′ 𝜏𝑥𝑦

′ 𝜏𝑥𝑧
′

𝜏𝑥𝑦
′ 𝜎𝑦𝑦

′ 𝜏𝑦𝑧
′

𝜏𝑥𝑧
′ 𝜏𝑦𝑧

′ 𝜎𝑧𝑧
′

) = −(

𝜌𝑢′𝑢′̅̅ ̅̅ ̅ 𝜌𝑢′𝑣′̅̅ ̅̅ ̅ 𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜌𝑢′𝑣′̅̅ ̅̅ ̅ 𝜌𝑣′𝑣′̅̅ ̅̅ ̅ 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜌𝑢′𝑤′̅̅ ̅̅ ̅̅ 𝜌𝑣′𝑤′̅̅ ̅̅ ̅̅ 𝜌𝑤′𝑤′̅̅ ̅̅ ̅̅
) (2.51) 

Since six new unknowns, namely the Reynolds stresses, appear, further equations are 

needed to calculate turbulent flow. This so-called closure problem can be solved by 

turbulence models that describe the relation between Reynolds stresses and the 

quantities of the mean motion. 
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The kinetic energy of the turbulent fluctuations is very important for turbulence 

modelling.  

𝑘 =
1

2
𝑞2̅̅ ̅ =

1

2
(𝑢′2 + 𝑣′2 + 𝑤′2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (2.52) 

𝑞2 = 𝑢′2 + 𝑣′2 + 𝑤′2 (2.53) 

The balance of the quantity 𝑘 can be derived from the Navier-Stokes equations, as shown 

by Gersten & Herwig (1992) on page 769. For steady flows and constant physical 

properties it reads 

𝜌 (�⃗⃗� ∙ ∇⃗⃗⃗k)⏟      
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

= − ∇⃗⃗⃗ ∙ [𝑣′⃗⃗⃗⃗ (𝑝′ +
𝜌

2
𝑞2)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]

⏟            
𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+ 𝑃𝑅𝑂⏟
𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

+ 𝐷𝐼𝐹⏟
𝑣𝑖𝑠𝑐𝑜𝑢𝑠
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

− 𝜌𝜀̃⏟
𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 
(2.54) 

 

𝑃𝑅𝑂 = −𝜌 (𝑢′𝑢′̅̅ ̅̅ ̅̅
𝜕�̅�

𝜕𝑥
+ 𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕�̅�

𝜕𝑥
+ 𝑢′𝑤′̅̅ ̅̅ ̅̅

𝜕�̅�

𝜕𝑥

+ 𝑢′𝑣′̅̅ ̅̅ ̅̅
𝜕�̅�

𝜕𝑦
+ 𝑣′𝑣′̅̅ ̅̅ ̅̅

𝜕�̅�

𝜕𝑦
+ 𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕�̅�

𝜕𝑦

+ 𝑢′𝑤′̅̅ ̅̅ ̅̅
𝜕�̅�

𝜕𝑧
+ 𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕�̅�

𝜕𝑧
+ 𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅

𝜕�̅�

𝜕𝑧
) 

(2.55) 

𝐷𝐼𝐹 = +𝜇 [
𝜕2

𝜕𝑥2
(𝑘 + 𝑢′2̅̅ ̅̅ ) +

𝜕2

𝜕𝑦2
(𝑘 + 𝑣′2̅̅ ̅̅ ) +

𝜕2

𝜕𝑧2
(𝑘 + 𝑤′2̅̅ ̅̅ ̅)

+ 2(
𝜕2𝑢′𝑣′̅̅ ̅̅ ̅̅

𝜕𝑥𝜕𝑦
+
𝜕2𝑣′𝑤′̅̅ ̅̅ ̅̅

𝜕𝑦𝜕𝑧
+
𝜕2𝑤′𝑢′̅̅ ̅̅ ̅̅

𝜕𝑧𝜕𝑥
)] 

(2.56) 

𝜌𝜀̃ = +𝜇 [2 (
𝜕𝑢′

𝜕𝑥
)
2

+ 2 (
𝜕𝑣′

𝜕𝑦
)
2

+ 2(
𝜕𝑤′

𝜕𝑧
)
2

+ (
𝜕𝑢′

𝜕𝑦
+
𝜕𝑣′

𝜕𝑥
)
2

+ (
𝜕𝑢′

𝜕𝑧
+
𝜕𝑤′

𝜕𝑥
)
2

+ (
𝜕𝑣′

𝜕𝑧
+
𝜕𝑤′

𝜕𝑦
)
2

] 

(2.57) 

The viscous diffusion and the dissipation are often combined as 

𝐷𝐼𝐹 − 𝜌𝜀̃ = 𝜇∆𝑘 − 𝜌𝜀 (2.58) 
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The term 𝜌𝜀 is some sort of pseudo-dissipation and reads 

𝜌𝜀 = +𝜇 [(
𝜕𝑢′

𝜕𝑥
)
2

+ (
𝜕𝑣′

𝜕𝑥
)
2

+ (
𝜕𝑤′

𝜕𝑥
)
2

+ (
𝜕𝑢′

𝜕𝑦
)
2

+ (
𝜕𝑣′

𝜕𝑦
)
2

+ (
𝜕𝑤′

𝜕𝑦
)
2

+ (
𝜕𝑢′

𝜕𝑧
)
2

+ (
𝜕𝑣′

𝜕𝑧
)
2

+ (
𝜕𝑤′

𝜕𝑧
)
2

] 

(2.59) 

Since the dissipation occurs in the smallest eddies where isotropic turbulence can be 

assumed, as shown by Kolmogorov (1941), the dissipation term simplifies to 

𝜌𝜀̃ = 15𝜇 (
𝜕𝑢′

𝜕𝑥
)
2

 (2.60) 

 

2.4.1.1 Turbulent boundary layer 

Similar to laminar flow, turbulent flows at high Reynolds numbers may have boundary 

layer character. The flow consists of two main regions, an inviscid outer flow and a thin 

turbulent boundary layer close to the wall. In analogy to laminar boundary layers, the 

fundamental equations can also be simplified for the turbulent case (𝑅𝑒 → ∞, �̅� ≪ 𝑈, 

𝜕/𝜕𝑥 ≪ 𝜕/𝜕𝑦). Equation (2.49) results in 

0 = −
𝜕�̅�

𝜕𝑦
− 𝜌

𝜕𝑣′𝑣′̅̅ ̅̅ ̅

𝜕𝑦
 (2.61) 

Integrating over the boundary layer thickness, and assuming a turbulence free outer flow 

(𝑣′𝑣′̅̅ ̅̅ ̅ = 0 for 𝑦 = 0 and 𝑦 → ∞) leads to 

�̅� + 𝜌𝑣′𝑣′̅̅ ̅̅ ̅ = �̅�𝑤 = 𝑝𝑒 (2.62) 

This means that the pressure on the wall �̅�𝑤 and the pressure of the outer flow 𝑝𝑒 are the 

same, as for the laminar case. The pressure inside the turbulent boundary layer �̅� is not 
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constant, but the expression �̅� + 𝜌𝑣′𝑣′̅̅ ̅̅ ̅ is. For constant physical fluid properties this leads 

to the following equations for the turbulent boundary layer 

𝜕�̅�

𝜕𝑥
+
𝜕�̅�

𝜕𝑦
= 0 (2.63) 

𝜌 (�̅�
𝜕�̅�

𝜕𝑥
+ �̅�

𝜕�̅�

𝜕𝑦
) = −

𝜕𝑝𝑒
𝜕𝑥

+
𝜕

𝜕𝑦
(𝜏̅𝑣 + 𝜏𝑡) (2.64) 

with 

𝜏�̅� = 𝜇
𝜕�̅�

𝜕𝑦
              𝜏𝑡 = −𝜌𝑢′𝑣′̅̅ ̅̅ ̅ (2.65) 

A detailed derivation of the laminar and turbulent boundary layer equations can be found 

in Brenn & Meile (2008). For the simplified energy and k-equations please refer to 

Schlichting & Gersten (2006) on pages 514-515. 

 

2.4.2 Turbulence modelling 

A turbulence model provides additional equations that describe the correlation between 

the turbulent shear stress and the quantities of the mean motion. If the relation is given 

by algebraic equations, the model is called a zero-equation model. In general, partial 

differential equations are used that may contain even new unknowns, so that further 

model equations may be required. Depending on how many differential equations are 

used, these models are called one-equation model, two-equation model, etc.  

At high Reynolds number, the turbulent boundary layer essentially consists of two layers, 

the viscous wall layer and the fully turbulent outer flow, in which viscosity effects may be 

neglected. Since the viscous wall layer becomes very thin at high Reynolds numbers it 

suffices, to compute the turbulent outer flow and the wall shear stress 𝜏𝑊. A turbulence 

model is therefore only needed for the turbulent outer flow. The influence of viscosity is 

only introduced through the boundary condition, the universal law of the wall, that will 

be described in chapter 2.4.2.2. 
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At low Reynolds number, the whole flow field must be taken into account using a no-slip 

boundary condition at the wall. 

 

2.4.2.1 Algebraic turbulence models 

J. Boussinesq (1872) introduced a model for the turbulent shear stress 𝜏𝑡 in analogy to the 

Newtonian friction law. 

𝜏𝑡 = 𝜇𝑡
𝜕�̅�

𝜕𝑦
= 𝜌𝜈𝑡

𝜕�̅�

𝜕𝑦
, (2.66) 

where 𝜇𝑡(𝑥, 𝑦) and 𝜈𝑡(𝑥, 𝑦) are not material constants but depend on the location in the 

flow field. They are called eddy viscosity and kinematic eddy viscosity, respectively. The 

eddy viscosity is unknown but easier to model than the turbulent shear stress. 

L. Prandtl (1925) also constructed a model that describes the relation between 𝜏𝑡 and 
𝜕𝑢

𝜕𝑦
. 

He assumed that the fluctuations originate from the displacement of fluid elements 

perpendicular to the flow. The mean displacement is called the mixing length 𝑙. 

𝜏𝑡 = 𝜌𝑙
2 |
𝜕�̅�

𝜕𝑦
|
𝜕�̅�

𝜕𝑦
 (2.67) 

The mixing length 𝑙(𝑥, 𝑦) is still unknown, but easier to model. By comparing equations 

(2.66) and (2.67), the following relation can be obtained. 

𝜈𝑡 = 𝑙
2 |
𝜕�̅�

𝜕𝑦
| (2.68) 

A detailed description of those two models is given by Brenn & Meile (2008) or Schlichting 

& Gersten (2006). 

 

2.4.2.2 The universal law of the wall 

A fully developed Couette flow is a simple shear flow with constant shear stress in the 

whole flow field. The laminar case was described in detail e.g. by Brenn & Meile (2008) 
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and Schlichting & Gersten (2006). The turbulent Couette flow near the wall is of universal 

importance and therefore shall be investigated now. 

 

Figure 3: Turbulent Couette flow from Schlichting & Gersten (2006) 

Since the flow is fully developed (𝜕�̅�/𝜕𝑥 = 0) it follows from equation (2.63) that �̅� = 0. 

This means that all inertial terms in equation (2.64) vanish. Since we look at a shear flow 

without external pressure gradient we get 

𝜏̅ = 𝜏�̅� + 𝜏𝑡 = 𝜏�̅� = 𝑐𝑜𝑛𝑠𝑡 (2.69) 

Using Prandtl’s mixing length results in 

𝜏�̅� = 𝜏�̅� + 𝜏𝑡 = 𝜇
𝜕�̅�

𝜕𝑦
− 𝜌𝑙2 |

𝜕�̅�

𝜕𝑦
|
𝜕�̅�

𝜕𝑦
 (2.70) 

By introducing the so-called friction velocity 𝑢𝜏 

𝑢𝜏 = √
𝜏�̅�
𝜌

 (2.71) 

and the following dimensionless quantities 

𝑢+ =
�̅�

𝑢𝜏
 ,       𝑦+ =

𝑦𝑢𝜏
𝜈
 ,       𝑙+ =

𝑙𝑢𝜏
𝜈

 (2.72) 

we get 

1 =
𝜕𝑢+

𝜕𝑦+
+ 𝑙+

2
|
𝜕𝑢+

𝜕𝑦+
|
𝜕𝑢+

𝜕𝑦+
 (2.73) 
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When we assume that the velocity rises with the distance to the wall (𝜕𝑢+/𝜕𝑦+ > 0), we 

can solve the quadric equation and get 

𝜕𝑢+

𝜕𝑦+
=

2

1 + √1 + 4𝑙+2
 (2.74) 

Prandtl used 

𝑙 = 𝜅𝑦 ,       𝑙+ = 𝜅𝑦+ (2.75) 

to model the mixing length which was later improved by Van Driest (1956) who used the 

findings of Stokes (1851) to damp the mixing length near the wall. 

𝑙 = 𝜅𝑦 (1 − 𝑒−
𝑦
𝐴) ,       𝑙+ = 𝜅𝑦+ (1 − 𝑒

−
𝑦+

𝐴+) (2.76) 

The constant 𝜅 is called the Karman constant and has a value of 𝜅 = 0.4 which is based 

on many experiments. Following Van Driest (1956), the constant 𝐴+ has a value of 𝐴+ =

26. Integrating equation (2.74) yields 

𝑢+(𝑦+) = ∫
2𝑑𝑦+

1 + √1 + 4𝜅2𝑦+2 (1 − 𝑒
−
𝑦+

𝐴+)

2

𝑦+

0

 
(2.77) 

Close to the wall, where 4𝜅2𝑦+
2
≪ 1, we get 

𝑢+ = 𝑦+ (2.78) 

Far from the wall, where 4𝜅2𝑦+
2
≫ 1, the velocity reads 

𝑢+ =
1

𝜅
ln(𝑦+) + 𝐵 (2.79) 

Almost all turbulent flows with high Reynolds numbers and 𝜏�̅� ≠ 0 show such a velocity 

distribution. Therefore, equation (2.79) is called the universal law of the wall. The value 

for the constant 𝐵 varies in different literature from 𝐵 = 5 to 𝐵 = 5.5 
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Figure 4: Viscous sublayer, logarithmic region and integrated equation (2.77) 

 

2.4.2.3 Non-algebraic turbulence models 

The various existing non-algebraic turbulence models are classified by the number of 

transport equations that are solved in addition to the RANS equations. All of them use the 

equation for the kinetic energy of the turbulent fluctuations (2.54), based on the work of 

Prandtl (1945). The turbulent diffusion is often modelled using 

𝑣′ (𝑝′ +
𝜌

2
𝑞2) = −

𝜌𝜈𝑡
𝑃𝑟

𝜕𝑘

𝜕𝑦
 (2.80) 

For the fully turbulent outer flow, where viscosity effects can be neglected, the k-equation 

reads 

�̅�
𝜕𝑘

𝜕𝑥
+ �̅�

𝜕𝑘

𝜕𝑦⏟        
𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛

=
𝜕

𝜕𝑦
(
𝜌𝜈𝑡
𝑃𝑟𝑘

𝜕𝑘

𝜕𝑦
)

⏟        
𝑡𝑢𝑟𝑏.  𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+
𝜏𝑡
𝜌

𝜕�̅�

𝜕𝑦⏟  
𝑡𝑢𝑟𝑏.  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛

− 𝜀⏟
𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒
𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛

 
(2.81) 

The model constant is often set to 𝑃𝑟𝑘 = 1. 

With the use of equation (2.66) 𝜈𝑡 can be replaced by 𝜏𝑡 and therefore two more 

equations for 𝑘 and 𝜀 are needed to close the system. If one partial differential and one 

algebraic equation are used, the model is called a two-equation model. If it is assumed 

0
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that the eddy-viscosity 𝜈𝑡 = 𝑓(𝑘, 𝜀) is a function of 𝑘 and 𝜀, a dimensional analysis results 

in 

𝜈𝑡 = 𝑐𝜇
𝑘2

𝜀
        (𝑐𝜇 ≈ 0.09) (2.82) 

Prandtl (1945) introduced the following relation to obtain the eddy viscosity 

𝜈𝑡 = 𝑐𝑃𝐿√𝑘        (𝑐𝑃 ≈ 0.55) (2.83) 

where 𝐿 denotes a mixing length that depends on the flow. The combination of equation 

(2.82) and (2.83) yields in the so-called Prandtl-Kolmogorov formula 

𝐿 = 𝑐𝜀
𝑘
3
2

𝜀
        (𝑐𝜀 =

𝑐𝜇

𝑐𝑃
≈ 0.168) (2.84) 

 

The k-ε model 

One of the most popular and widely used turbulence models is the two-equation k-ε 

model. It was developed by Jones & Launder (1972) and uses the 𝑘 equation (2.81) and 

the following balance equation for the dissipation 𝜀 

�̅�
𝜕𝜀

𝜕𝑥
+ �̅�

𝜕𝜀

𝜕𝑦
=
𝜕

𝜕𝑦
(
𝜈𝑡
𝑃𝑟𝜀

𝜕𝜀

𝜕𝑦
) + 𝑐𝜀1

𝜀

𝑘

𝜏𝑡
𝜌

𝜕�̅�

𝜕𝑦
− 𝑐𝜀2

𝜀2

𝑘
  (2.85) 

with the model constants 

𝑃𝑟𝑘 = 1 ,       𝑃𝑟𝜀 = 1.3 ,       𝑐𝜀1 = 1.44 ,       𝑐𝜀2 = 1.87  (2.86) 

The boundary conditions for high Reynolds numbers are based on wall functions and on 

equilibrium between turbulence production and dissipation to avoid the need of resolving 

the high gradients near the wall. 

Special low Reynolds number models exist that also resolve the region near the wall. They 

can make use of the simple boundary condition that all velocities vanish on the wall, but 

have to do the costly integration to the wall.  
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For a detailed review of various turbulence models refer to Patel, Rodi, & Scheurer (1985). 

 

Reynolds stress models 

In contrast to the eddy viscosity approach, these models introduce a transport equation 

for each term of the Reynolds stress tensor. This results in 6 additional equations and 

although the predictive capabilities are better, the computational costs are often too high. 

 

2.4.3 Turbulent pipe flow 

Looking at the momentum equation in the streamwise direction of a fully developed 

turbulent pipe flow we get 

0 = −
𝑑𝑝

𝑑𝑧
+
1

𝑟

𝑑

𝑑𝑟
(𝑟 ∙ 𝜏)  (2.87) 

𝜏 = 𝜌𝜈
𝑑�̅�

𝑑𝑟
− 𝜌𝑢′𝑣′ = 𝜏�̅� + 𝜏𝑡  (2.88) 

As for the laminar case shown in chapter 2.3, the term 
𝑑𝑝

𝑑𝑧
< 0 is constant. Integration 

leads to 

𝜏(𝑟) =
𝑟

2

𝑑�̅�

𝑑𝑧
  (2.89) 

On the wall we get 

𝜏𝑤 = 𝜏(𝑅) =
𝑅

2

𝑑�̅�

𝑑𝑧
=
𝑅

2

∆𝑝

𝐿
 (2.90) 

This means that the wall shear stress can easily be determined by measuring the pressure 

drop ∆𝑝 over a defined pipe length 𝐿. 

The velocity profile of the turbulent pipe flow cannot be calculated analytically, but 

Nikuradse found that the universal law of the wall is a good approximation up to the pipe 

axis. Using these findings, we get the following correlation between the mean flow 

velocity �̅� and the maximum velocity 𝑢𝑚𝑎𝑥. 
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𝑢𝑚𝑎𝑥 − �̅�

𝑢𝑚𝑎𝑥
=

𝑢𝜏
𝑢𝑚𝑎𝑥

3

2𝜅
=

1

𝑢𝑚𝑎𝑥
+

3

2𝜅
 (2.91) 

𝑢𝑚𝑎𝑥
+ =

1

𝜅
𝑙𝑛𝑅+ + 𝐵 ,       𝜅 = 0.4 ,       𝐵 = 5.5 (2.92) 

For the details of the derivation of equation (2.91) refer to Brenn & Meile (2008). 

The turbulent pipe flow has nearly the same velocity over a wide area of the cross section, 

as shown in Figure 5. Near the wall, the velocity profile shows high gradients that cause 

the higher wall shear stress than in the laminar case. 

 

Figure 5: Velocity field in a pipe, (a) turbulent, (b) laminar with the same volume flow 

rate as a, (c) laminar with the same pressure gradient as a; from Schlichting & Gersten 

(2006) 

The pressure loss for turbulent pipe flow was found to have a quadric correlation to the 

mean flow velocity, not a linear one as in the laminar case. Using equations (2.90) and 

(2.43) we get 

𝜏𝑤 =
𝑅

2

𝑑�̅�

𝑑𝑧
=
𝑅

2
𝜆
1

𝐷

𝜌

2
�̅�2 =

𝜆𝜌

8
�̅�2 (2.93) 

The friction factor 𝜆 is not only a function of the Reynolds number, but also of the wall 

roughness. For smooth pipes, Blasius (1911) found an empirical formula for the friction 

factor for Reynolds numbers 𝑅𝑒 ≤ 105 

𝜆 = 0.3164 ∙ 𝑅𝑒−
1
4 (2.94) 

Prandtl derived an implicit correlation from the universal law of the wall for smooth pipes 

and high Reynolds numbers 𝑅𝑒 > 105 
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1

√𝜆
= 2 log(𝑅𝑒 ∙ √𝜆) − 0.8 (2.95) 

New measurements by Gersten K. (2004) at high Reynolds numbers showed that the 

constants 2 and -0.8 should be 1.934 and -0.554 instead. 

 

2.5 Large eddy simulation (LES) 

A turbulent flow contains a wide range of length and time scales. Direct Numerical 

Simulation (DNS) has to resolve all those scales, which means vast computational costs. 

The smallest scales of a turbulent flow are defined as 

𝜂 = (
𝜈3

𝜖
)

1
4

,    𝜏 = (
𝜈

𝜖
)

1
2
 (2.96) 

where 𝜂 is the Kolmogorov length scale, 𝜏 is the Kolmogorov time scale, 𝜖 is the dissipation 

of turbulent kinetic energy and 𝜈 is the kinematic viscosity. This means that the smallest 

scales, where energy is dissipated, depend on both the dissipation rate and the viscosity. 

For a statistically steady turbulent flow, the dissipated energy at small scales must equal 

the energy supplied by the larger scales. If 𝐿 denotes the length of the largest eddies, then 

the ratio between the largest and the smallest scales can be approximated as 

𝐿

𝜂
≈ 𝑅𝑒

3
4 (2.97) 

This means that, with increasing Reynolds number, the range between largest and 

smallest scales also increases. In 3 dimensions, the required number of grid points to 

resolve all scales is given by 𝑁𝑚𝑖𝑛 = 𝑅𝑒^(9/4). This is the reason why DNS is still limited 

to lower Reynolds number flow problems. 

A Large Eddy Simulation (LES) only resolves the large eddies of the flow and models the 

effect of the smaller eddies, the so-called Sub Grid Scales (SGS), as shown in Figure 6. 
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Figure 6: Schematic representation of turbulent fluid motion (left) and velocity over time 

for one point in the flow (right); from Ferziger & Perić (2008) 

This is reasonable, since the large eddies transport the principal turbulent momentum and 

energy. Energy is transferred from larger to smaller eddies. Small eddies have a more 

universal character and are mainly responsible for the dissipation of the turbulent kinetic 

energy. The large eddies are resolved by a spatially filtered set of conservation equations, 

whereas the influence of the small eddies are modelled by so-called SGS models. Often 

used spatial filter methods are the box filter and the Gaussian filter. The general filtering 

operation for one dimension is defined by 

𝐹(𝑥, 𝑡) = ∫𝐺(𝑟)𝐹(𝑥 − 𝑟, 𝑡) 𝑑𝑟, (2.98) 

where the homogeneous filter function 𝐺(𝑟) satisfies the normalization condition 

∫𝐺(𝑟)𝑑𝑟 = 1. (2.99) 

Let 𝑟 denote the filter radius, then the filter width is defined as ∆= 2𝑟. In 3D CFD often 

implicit filtering is used. This means that the spatial discretization defines the filter 

operation and that the filter width is unknown. The filtering operation is used to 

decompose, e.g., the velocity component 𝑢(�⃗�, 𝑡) into the sum of a filtered component 

�̅�(�⃗�, 𝑡) and a residual component 𝑢′(�⃗�, 𝑡). The result appears analogous to the Reynolds 

decomposition. 

𝑢(�⃗�, 𝑡) = �̅�(�⃗�, 𝑡) + 𝑢′(�⃗�, 𝑡) (2.100) 

The important difference is that, in general, 
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𝑢′(�⃗�, 𝑡) ≠ 0 (2.101) 

The resulting filtered continuity equation for incompressible flow is equal to the Reynolds 

decomposition case. 

𝜕�̅�

𝜕𝑥
+
𝜕�̅�

𝜕𝑦
+
𝜕�̅�

𝜕𝑧
= 0 (2.102) 

𝜕𝑢′

𝜕𝑥
+
𝜕𝑣′

𝜕𝑦
+
𝜕𝑤′

𝜕𝑧
= 0 (2.103) 

The filtered Navier-Stokes equations in conservative form read 

𝜕�̅�𝑖
𝜕𝑡
+
𝜕𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅

𝜕𝑥𝑗
= −

1

𝜌

𝜕�̅�

𝜕𝑥𝑖
+ 𝜈

𝜕2�̅�𝑖

𝜕𝑥𝑗
2  (2.104) 

The residual or SGS stress tensor is defined by 

𝜏𝑖𝑗
𝑅 = 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑢�̅�𝑢�̅� (2.105) 

This leads to 

𝜕�̅�𝑖
𝜕𝑡
+
𝜕𝑢�̅�𝑢�̅�

𝜕𝑥𝑗
= −

1

𝜌

𝜕�̅�

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
(𝜈
𝜕𝑢�̅�
𝜕𝑥𝑗

− 𝜏𝑖𝑗
𝑅) (2.106) 

Similar to the RANS equations, the system of filtered equations is not closed, because the 

SGS stress tensor is unknown and must therefore be modelled. 

 

2.5.1 Smagorinsky model 

The most commonly used SGS model was proposed by Smagorinsky (1963). It is an eddy 

viscosity model and uses the following equation to relate the SGS stress 𝜏𝑖𝑗
𝑅  to the filtered 

strain rate tensor 𝑆�̅�𝑗 

𝜏𝑖𝑗
𝑅 −

1

3
𝜏𝑖𝑖
𝑅𝛿𝑖𝑗 = 𝜈𝑡 (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) = 2𝜈𝑡𝑆�̅�𝑗 (2.107) 

where 
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𝑆�̅�𝑗 =
1

2
(
𝜕𝑢�̅�

𝜕𝑥𝑖
+
𝜕𝑢�̅�
𝜕𝑥𝑗
) (2.108) 

In analogy to the mixing length, the eddy viscosity 𝜈𝑡 is modelled as 

𝜈𝑡 = 𝑙𝑠
2|𝑆̅| = (𝐶𝑠∆)

2|𝑆̅| (2.109) 

where 

|𝑆̅| = √2𝑆�̅�𝑗𝑆�̅�𝑗 (2.110) 

𝑆̅ is the filtered rate of strain, 𝑙𝑠 is the Smagorinsky length scale, ∆= (∆1∆2∆3)
1/3 is the 

filter width, and 𝐶𝑠 is the Smagorinsky coefficient. The value of 𝐶𝑠 is not constant but 

depends on the flow regime. It is zero for laminar flow, and 𝐶𝑠 ≈ 0.15 in high Reynolds 

number free turbulent flow. Near walls it needs to be attenuated, since 𝑙𝑠 ≈ 𝑦^(3/2) 

which is often achieved by a Van Driest damping function 

𝑙𝑠 = 𝐶𝑠∆(1 − 𝑒
𝑦+

𝐴+), (2.111) 

where the constant 𝐴+ often has a value of 𝐴+ = 25. 

So-called dynamic Smagorinsky models determine a local appropriate value for the 

Smagorinsky coefficient 𝐶𝑠. For a more detailed description refer to Pope (2000). 

 

2.5.2 Coherent structure model (CSM) 

This SGS model is based on the relation of coherent structures in grid-scale flow fields and 

SGS energy dissipation and was proposed by Kobayashi (2005). The advantages over the 

Smagorinsky model are that a Van Driest damping function near walls is not needed, the 

model parameter is determined locally, and that it is also applicable to laminar flows. The 

eddy viscosity 𝜈𝑡 is defined as 

𝜈𝑡 = 𝐶𝐶𝑆𝑀∆
2|𝑆̅| (2.112) 

The model parameter 𝐶𝐶𝑆𝑀 is determined locally and is always positive 
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𝐶𝐶𝑆𝑀 = 𝐶1|𝐹𝐶𝑆|
3
2𝐹Ω (2.113) 

The coherent structure function 𝐹𝐶𝑆 is defined as the second invariant 𝑄 of the velocity 

gradient tensor in grid scale flow fields normalized by the magnitude of a velocity gradient 

tensor 𝐸 and plays the role of wall damping. 𝐹Ω denotes the energy-decay suppression 

function needed for rotating flows. 

𝐹𝐶𝑆 =
𝑄

𝐸
 (2.114) 

𝐹Ω = 1 − 𝐹𝐶𝑆 (2.115) 

The constant 𝐶1 has the value 

𝐶1 =
1

22
 (2.116) 

The coherent structure is extracted by the second invariant 𝑄 which is given by 

𝑄 =
1

2
(�̅�𝑖𝑗�̅�𝑖𝑗 − 𝑆�̅�𝑗𝑆�̅�𝑗) = −

1

2

𝜕𝑢�̅�

𝜕𝑥𝑖

𝜕𝑢�̅�
𝜕𝑥𝑗

 (2.117) 

where �̅�𝑖𝑗 is the grid scale vorticity tensor and 𝑆�̅�𝑗 the grid scale strain rate tensor from 

equation (2.108). 

�̅�𝑖𝑗 =
1

2
(
𝜕𝑢�̅�

𝜕𝑥𝑖
−
𝜕𝑢�̅�
𝜕𝑥𝑗
) (2.118) 

The magnitude of the velocity gradient tensor 𝐸 is given by 

𝐸 =
1

2
(�̅�𝑖𝑗�̅�𝑖𝑗 + 𝑆�̅�𝑗𝑆�̅�𝑗) =

1

2
(
𝜕𝑢�̅�

𝜕𝑥𝑖
)

2

 (2.119) 

Since �̅�𝑖𝑗�̅�𝑖𝑗 and 𝑆�̅�𝑗𝑆�̅�𝑗 are always positive, the value of 𝐹𝐶𝑆 has definite upper and lower 

limits of 

−1 ≤ 𝐹𝐶𝑆 ≤ 1 (2.120) 
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As a result, the model parameter 𝐶𝐶𝑆𝑀 has a very narrow range, making the CSM model 

very stable even though the parameter is locally determined. 

 

2.6 Multiphase flow 

If the phase denotes the state of matter and can be solid, liquid or gas, a multiphase flow 

is the flow of a fluid with several phases. This can be two liquids, liquid and vapor from 

the same substance, liquid and a permanent gas or solids inside the flow domain. There 

are different methods available to simulate multiphase flows. 

 

2.6.1 Euler-Eulerian 

With the Euler-Eulerian method, all phases are described in the Eulerian frame of 

reference. If the discretization is fine enough, the interface between different phases can 

be tracked, but due to the computational effort this is often not reasonable or even 

feasible. Therefore, average values of the volume fraction, the velocity and the density for 

the phases in a cell are computed. The interface is not tracked, but the gradient of the 

phase volume fraction indicates its position for larger scaled surfaces. The mass 

conservation equation for each phase 𝑘 is represented by 

𝜕𝛼𝑘𝜌𝑘
𝜕𝑡

+ ∇ ∙ 𝛼𝑘𝜌𝑘�⃗�𝑘 = ∑ Γ𝑘𝑙

𝑛𝑝ℎ

𝑙=1,𝑙≠𝑘

 (2.121) 

𝛼𝑘 is the volume fraction of phase 𝑘, 𝑛𝑝ℎ is the number of phases and Γ𝑘𝑙 represents the 

interfacial mass exchange between phases 𝑘 and 𝑙. The compatibility condition 

∑𝛼𝑘

𝑛𝑝ℎ

𝑘=1

= 1 (2.122) 

must be satisfied. The momentum conservation equation equals 
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𝜕𝛼𝑘𝜌𝑘�⃗�𝑘
𝜕𝑡

+ ∇ ∙ 𝛼𝑘𝜌𝑘�⃗�𝑘�⃗�𝑘 = −𝛼𝑘∇𝑝 + ∇ ∙ 𝛼𝑘(𝜏𝑘 + 𝜏𝑘
𝑡) + 𝛼𝑘𝜌𝑘𝑓

𝐵

+ ∑ 𝑀𝑘𝑙

𝑛𝑝ℎ

𝑙=1,𝑙≠𝑘

+ ∑ �⃗�𝑘𝑙Γ𝑘𝑙

𝑛𝑝ℎ

𝑙=1,𝑙≠𝑘

 

(2.123) 

where 𝑓𝐵 is the body force vector, 𝑀𝑘𝑙  represents the momentum interfacial interaction 

between phases 𝑘 and 𝑙. The pressure 𝑝 is assumed to be identical for all phases. The term 

�⃗�𝑘𝑙Γ𝑘𝑙 represents the interfacial momentum transfer due to mass transfer. The phase 𝑘 

shear stress tensor 𝜏𝑘 assuming a Newtonian fluid is given as 

𝜏𝑘,𝑖𝑗 = 𝜇𝑘 [(
𝜕𝑈𝑘,𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑘,𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗
𝜕𝑈𝑘,𝑚
𝜕𝑥𝑚

]   , (2.124) 

where 𝜇𝑘 is the molecular viscosity. The Reynolds stress thensor 𝜏𝑘
𝑡  reads 

𝜏𝑘,𝑖𝑗
𝑡 = −𝜌𝑘𝑢′𝑘,𝑖𝑢′𝑘,𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝜇𝑘

𝑡 [(
𝜕𝑈𝑘,𝑖
𝜕𝑥𝑗

+
𝜕𝑈𝑘,𝑗

𝜕𝑥𝑖
) −

2

3
𝛿𝑖𝑗
𝜕𝑈𝑘,𝑚
𝜕𝑥𝑚

] −
2

3
𝛿𝑖𝑗𝜌𝑘𝑘𝑘 (2.125) 

 

2.6.2 Surface tracking with the Volume of Fluid (VOF) model 

In VOF models, the different fluids are modeled as single continua with variable 

properties. Therefore, only a single set of momentum equations is solved using mixture 

properties of all fluids. The central idea behind the VOF model is to solve a scalar transport 

equation for the volume fraction equation. For incompressible flow this equation reads 

𝜕𝛼

𝜕𝑡
+ ∇ ∙ 𝛼�⃗� = 0 (2.126) 

where 𝛼 is the volume fraction of the tracked phase and �⃗� the velocity of the flow. 

Assuming a flow with two phases, the possible values of the volume fraction 𝛼 of phase 2 

for each computational cell are 

𝛼 = {

0 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑓𝑢𝑙𝑙𝑦 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑝ℎ𝑎𝑠𝑒 1
0 < 𝛼 < 1 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒

1 𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑓𝑢𝑙𝑙𝑦 𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑏𝑦 𝑝ℎ𝑎𝑠𝑒 2
 (2.127) 
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The main difficulty of the VOF method lies in the discretization of the convective term of 

equation (2.127). Special schemes are necessary to prevent smearing of the interface 

caused by numerical diffusion and unphysical values of the volume fraction 𝛼 caused by 

oscillations. Schemes that ensure that the advected volume fraction field is bounded and 

monotonic are often based on the Donator-Acceptor differencing scheme proposed by 

Ramshaw & Trapp (1976). 

In many flows with fluid interfaces, the surface tension on the interface plays an important 

role. Based on the Continuum Surface Force (CSF) model Brackbill, Kothe, & Zemach 

(1992), the surface tension effects can be treated as a body force 

𝑓𝜎 = ∫ 𝜎𝜅∇𝛼𝑑𝑉
𝑉

 (2.128) 

where 𝜎 is the surface tension assumed to be constant, and 𝜅 is the curvature calculated 

by 

𝜅 = −(∇ ∙ �⃗⃗�) = −∇ ∙
∇𝛼

|∇𝛼|
   , (2.129) 

where �⃗⃗� is the unit normal vector on the interface. 

 

2.6.3 Discrete Droplet Model (DDM) 

The Discrete Droplet Model is an Euler-Lagrangian approach for simulating dilute 

dispersed liquid phases in multiphase flows. The dispersed liquid phase is described in the 

Lagrangian frame of reference, while the continuous phase is described in the Eulerian 

frame. Fluid particles or droplets that share similar properties like diameter, velocity or 

temperature are grouped to so-called parcels. The momentum equation for a parcel reads 

𝑚𝑑

𝑑�⃗⃗�𝑖𝑑
𝑑𝑡

= �⃗�𝑖𝑑𝑟 + �⃗�𝑖𝑔 + �⃗�𝑖𝑝 + �⃗�𝑖𝑣𝑚 + �⃗�𝑖𝑏   , (2.130) 

where 𝑚𝑑 is the particle mass and �⃗�𝑖𝑑𝑟 is the drag force, given by 
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�⃗�𝑖𝑑𝑟 =
1

2
𝜌𝑔𝐴𝑑𝐶𝐷|�⃗⃗�𝑟𝑒𝑙|�⃗⃗�𝑟𝑒𝑙   . (2.131) 

𝜌𝑔 is the gas density, 𝐴𝑑 the cross-sectional area of the droplet, 𝐶𝐷 the drag coefficient, 

which is generally a function of the particle Reynolds number, and �⃗⃗�𝑟𝑒𝑙 the relative 

velocity between the parcel and the gas. �⃗�𝑖𝑔 denotes a force including gravity and 

buoyancy 

�⃗�𝑖𝑔 = 𝑉𝑝(𝜌𝑑 − 𝜌𝑔)�⃗�   , (2.132) 

where 𝑉𝑝 is the volume of the parcel, 𝜌𝑑 the droplet density and �⃗� the gravity force vector. 

The pressure force �⃗�𝑖𝑝, the virtual mass force �⃗�𝑖𝑣𝑚 taking into account acceleration of the 

medium surrounding the drops, and external forces �⃗�𝑖𝑏 (electrostatic, magnetic) are often 

neglected due to their minor magnitude in spray injection compared to the drag force. 

Dividing equation (2.130) by the particle mass 𝑚𝑑 and inserting the relevant forces results 

in 

𝑑�⃗⃗�𝑖𝑑
𝑑𝑡

=
3

4
𝐶𝐷
𝜌𝑔

𝜌𝑑

1

𝐷𝑑
|�⃗⃗�𝑔 − �⃗⃗�𝑑|(�⃗⃗�𝑔 − �⃗⃗�𝑑) + (1 −

𝜌𝑔

𝜌𝑑
) �⃗� (2.133) 

where 𝐷𝑑 is the droplet diameter, �⃗⃗�𝑔 is the velocity of the continuous phase and �⃗⃗�𝑑 is the 

current parcel velocity. The new parcel velocity �⃗⃗�𝑖𝑑  can then be calculated by integration 

of equation (2.133). Another integration yields the particle position vector. 

The effect of the dispersed phase on the continuous phase is modelled via source terms 

in the conservation equations of the continuous phase. 

 

2.7 Spray formation 

Depending on the properties of the liquid and the surrounding gas, and on the relative 

velocity, the breakup of a liquid jet is governed by different breakup mechanisms. These 

mechanisms are usually characterized by the distance between the nozzle and the point 

of first droplet formation, the so-called breakup length, and the size of the droplets 

produced by the breakup.  
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2.7.1 Breakup regimes 

Ohnesorge (1931) showed that the disintegration process can be classified by three 

regimes using the liquid Weber number 

𝑊𝑒𝑙 =
𝑢2𝐷𝜌𝑙
𝜎

 (2.134) 

and the Reynolds number 

𝑅𝑒 =
𝑢𝐷𝜌𝑙
𝜇𝑙

 (2.135) 

Another characteristic number called the Ohnesorge number is a function of Re and We 

as per 

𝑂ℎ =
√𝑊𝑒𝑙
𝑅𝑒

=
𝜇𝑙

√𝜎𝜌𝑙𝐷
 (2.136) 

where 𝑢 is the jet velocity, 𝐷 the nozzle diameter, 𝜌𝑙  the liquid density, 𝜇𝑙 the dynamic 

viscosity of the liquid and 𝜎 the surface tension at the liquid-gas interface. 

 

Figure 7: Ohnesorge nomogram in the version by Reitz & Bracco (1986) 
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Since the definition of the Ohnesorge number only contains liquid properties it was 

suggested by, e.g., Reitz (1978) to include the gas to liquid density ratio and extend the 

nomogram to three dimensions. This means that, for higher gas to liquid density ratio, the 

division lines between the different regimes are moved to lower Reynolds numbers. 

 

According to Reitz & Bracco (1986) the following breakup regimes can be distinguished: 

 

A) Dripping regime 

In this regime, the liquid velocity in the nozzle is very small and drops are directly emitted 

from the nozzle when the surface tension cannot compensate the gravity anymore. The 

drops are very large. 

 

B) Rayleigh regime 

At higher jet velocity, an intact liquid column with a cylindrical surface can develop. Axially 

symmetric perturbations growing due to capillarity can lead to detachment of drops when 

the amplitude has become equal to the jet radius. The diameter of the detached drop is 

larger than the nozzle diameter. The distance to the nozzle where a drop is formed 

increases with the jet velocity at the nozzle orifice. 

 

C) First wind-induced regime 

As the velocity is further increased, the perturbations are amplified by aerodynamic 

forces. This leads to a decrease of the breakup length and smaller drops. The drop size is 

of the order of the nozzle diameter. 

 

D) Second wind-induced regime 

The unstable growth of short wavelength surface waves on the jet surface due to the 

relative motion of the jet and the ambient gas as well as turbulence that disrupt the jet 

surface lead to separation of drops from the jet core. The drop formation now no longer 
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occurs at the tip of the jet only, but drops are separated from the jet surface forming a 

cloud of small droplets that surround the jet core. The liquid core length increases with 

the initial velocity. 

 

E) Atomization regime 

This regime is characterized by a complete disruption of the jet from the nozzle exit on. 

The drop diameters are much smaller than the nozzle diameter. The liquid core is hidden 

inside the dense spray near the nozzle orifice, and its length is therefore hard to measure.  

 

2.7.2 Stability curve 

The correspondence of jet velocity and breakup length has been studied experimentally 

by many investigators. In the laminar flow regime, the breakup length increases linearly 

with the velocity. In the transition regime, the breakup length decreases, and it increases 

again in the turbulent flow region. If the jet velocity is increased further, the shape of the 

stability curve is uncertain. A review of results from different authors can be found in 

McCarthy & Molloy (1974) and Dumouchel (2008). Figure 8 shows a stability curve and 

illustrations of the breakup regimes, taken from Balewski (2009). 
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Figure 8: Stability curve and breakup regimes from Balewski (2009). The regions A, B, C, 

D and E correspond to the dripping, Rayleigh, first wind-induced, second wind-induced 

and atomization regime, respectively. 

 

2.7.3 Mechanisms of primary breakup 

The breakup of directly injected fuel jets usually lies within the atomization regime. Only 

during a short time at the beginning and at the end of injection, other regimes are 

relevant. Within the atomization regime, the breakup of the jet can be divided into two 

parts. First, the jet disintegrates into ligaments and larger droplets, named primary 

breakup. Then the subsequent secondary breakup driven by aerodynamic forces further 

reduces the droplet sizes. The dominant mechanism of the primary breakup is not as clear 

as for the secondary breakup. Reviewing various works, e.g. Baumgarten (2006), depicted 

four possible mechanisms of primary breakup, as shown in Figure 9. 
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Figure 9: Possible primary breakup mechanisms Baumgarten (2006) 

Due to the liquid turbulence created inside the nozzle and other excitations coming, e.g., 

from the fuel pump and the needle movement, the jet surface is deformed by a spectrum 

of small surface waves. Some of these surface waves are amplified by aerodynamic shear 

forces, become unstable and separate from the jet forming primary ligaments. The 

unstable surface waves grow at a finite rate with time and can therefore not explain the 

immediate breakup of a jet at the nozzle orifice. 

It is also believed that turbulence has a great impact on primary breakup. If turbulence is 

strong enough, turbulent eddies can overcome the surface tension and separate from the 

jet. 

For fully developed pipe flow (large L/D ratios), the velocity profile may change at the 

instant when the jet leaves the nozzle due to the removed wall boundary condition. The 

viscous forces accelerate the outer region of the jet and may destabilize the jet surface 

and lead to breakup. 

Cavitation induced disintegration also seems to be of big importance. The intensity and 

spatial structure of cavitation strongly depends on the nozzle geometry. When cavitation 

bubbles reach the nozzle orifice, they implode due to the high pressure of the ambient 

gas. It is unclear if this collapse energy increases turbulence or leads to direct 

disintegration of the jet. 
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A review of the mechanisms that influence the stability of a jet can be found in McCarthy 

& Molloy (1974). 

 

2.7.4 The Blob Injection model 

The most popular method to initialize the simulation of spray formation is the so-called 

blob injection method developed by Reitz & Diwakar (1987). The method assumes that 

atomization and drop breakup are indistinguishable processes within the dense spray near 

the nozzle exit. Spherical drops (blobs) with the diameter of the nozzle orifice are injected, 

which are then subject to secondary aerodynamic induced breakup. The number of drops 

injected per time step and the initial velocity of the drops are calculated from the mass 

flow rate. The spray cone angle must be defined so the drops can get a randomly chosen 

radial velocity component.  

 

2.7.5 The Taylor Analogy Breakup (TAB) model 

The Taylor Analogy Breakup model was proposed by O'Rourke & Amsden (1987). It is 

based on an analogy between a forced oscillating spring-mass system and an oscillating 

drop. The external force 𝐹 corresponds to the aerodynamic forces that deform the droplet 

and amplify the oscillation. The surface tension tries to keep the spherical form of the 

drop and therefore corresponds to the spring force. The liquid viscosity causes friction 

forces inside the droplet and corresponds to the damping force. The equation of motion 

of the damped spring-mass system reads 

𝑚�̈� = 𝐹 − 𝑘𝑥 − 𝑑�̇� (2.137) 

where 𝑥 is the displacement of the equator of the droplet from its equilibrium position, 

𝑚 the droplet mass, 𝑘 the spring constant, and 𝑑 the damping rate. In accordance with 

the analogy, the coefficients in (2.137) are 

𝐹

𝑚
= 𝐶𝐹

𝜌𝑔𝑢𝑟𝑒𝑙
2

𝜌𝑙𝑟
,   
𝑘

𝑚
= 𝐶𝑘

𝜎

𝜌𝑙𝑟3
,   
𝑑

𝑚
= 𝐶𝑑

𝜇𝑙
𝜌𝑙𝑟2

 (2.138) 
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Using the dimensionless displacement 𝑦 = 𝑥/(𝐶𝑏𝑟), the equation of motion reads 

�̈� =
𝐶𝐹
𝐶𝑏

𝜌𝑔

𝜌𝑙

𝑢𝑟𝑒𝑙
2

𝑟2
− 𝐶𝑘

𝜎

𝜌𝑙𝑟3
𝑦 − 𝐶𝑑

𝜇𝑙
𝜌𝑙𝑟2

�̇� (2.139) 

𝐶𝐹, 𝐶𝑘, 𝐶𝑑 and 𝐶𝑏 are model constants, 𝜌𝑔 and 𝜌𝑙  are the gas and liquid densities, 𝑟 is the 

spherical droplet radius and 𝜇𝑙 is the liquid viscosity. Assuming constant 𝑢𝑟𝑒𝑙, which is 

appropriate for a small time step during a simulation, the analytical solution of equation 

(2.139) is 

𝑦(𝑡) =
𝐶𝐹
𝐶𝑘𝐶𝑏

𝑊𝑒𝑔 + 𝑒
−
𝑡
𝑡𝑑 [𝐴 ∙ 𝑐𝑜𝑠(𝜔𝑡) +

1

𝜔𝑡𝑑
𝐵 ∙ 𝑠𝑖𝑛(𝜔𝑡)] (2.140) 

where 

𝐴 = (𝑦0 −
𝐶𝐹
𝐶𝑘𝐶𝑏

𝑊𝑒𝑔) ,    𝐵 = (�̇�0𝑡𝑑 + 𝑦0 −
𝐶𝐹
𝐶𝑘𝐶𝑏

𝑊𝑒𝑔) (2.141) 

with 

𝑊𝑒𝑔 =
𝜌𝑔𝑢𝑟𝑒𝑙

2 𝑟

𝜎
,   
1

𝑡𝑑
=
𝐶𝑑𝜇𝑙
2𝜌𝑙𝑟2

,    𝜔2 = 𝐶𝑘
𝜎

𝜌𝑙𝑟3
−
1

𝑡𝑑
2 (2.142) 

In contrast to other definitions, the Weber number 𝑊𝑒𝑔 is defined with the droplet radius 

and not the diameter. 𝑦0 and �̇�0 are the position and velocity of the drop equator at 𝑡 =

0. When used in combination with the blob injection model, these values are often set to 

𝑦0 = �̇�0 = 0. The TAB model only accounts for the fundamental oscillation mode 

corresponding to the lowest order spherical harmonic, which is the most important one 

for lower Weber numbers, as discussed by O'Rourke & Amsden (1987). It is assumed that 

breakup occurs only if 𝑥 ≥ 0.5𝑟, which results in 𝐶𝑏 = 1/2 and 𝑦 ≥ 1. For a Weber 

number lower than the critical Weber number 𝑊𝑒𝑔,𝑐𝑟𝑖𝑡 ≈ 6 (determined in experiments), 

no breakup occurs. The remaining model constants are determined as 

𝐶𝑏 =
1

2
,    𝐶𝑘 = 8,    𝐶𝑑 = 5,    𝐶𝐹 =

1

3
 (2.143) 

Equation (2.140) allows for the computation of the droplet breakup time. 
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The TAB model is also able to predict the spray angle. New droplets get the velocity of the 

old drop plus an additional radial velocity component 

|�⃗�𝑛| = 𝐶𝑣𝐶𝑏𝑟|�̇�|,    𝐶𝑣 ≈ 1.0 (2.144) 

This radial velocity component is equal to the deformation velocity of the old drop at the 

time of breakup. The exact direction of �⃗�𝑛 is sampled randomly. 

The TAB model results in a complete disintegration of the old drop into a number of new 

drops. The number and size of these new drops are determined by an energy balance of 

the kinetic energy of the oscillation and the surface energy before and after breakup. The 

radius of the new drops is randomly chosen from a predefined size distribution that results 

in the predicted Sauter mean radius SMR from the energy balance. 

 

2.7.6 The WAVE model 

The WAVE model was proposed by Reitz (1987). The model is based on a stability analysis 

of a cylindrical liquid jet under the influence of perturbations of its surface using a first 

order linear theory. The liquid and the surrounding gas are assumed incompressible, and 

the gas is assumed inviscid. The initial disturbances caused by turbulence grow due to 

aerodynamic forces coming from the relative velocity of the liquid and the gas (Kelvin-

Helmholtz instability). The analysis leads to an equation that relates the disturbance 

growth rate (the increase of the amplitude per time) to its wavelength. Curve fits of the 

numerical solution of this equation were generated for the growth rate Ω of the fastest 

growing surface wave and the corresponding surface wavelength Λ.  

Ω = (
𝜌𝑙𝑟0

3

𝜎
)

−0.5
0.34 + 0.38 ∙ 𝑊𝑒𝑔

1.5

(1 + 𝑂ℎ)(1 + 1.4 ∙ 𝑇0.6)
 (2.145) 

Λ = 9.02 ∙ r0
(1 + 0.45 ∙ 𝑂ℎ0.5)(1 + 0.4 ∙ 𝑇0.7)

(1 + 0.87 ∙ 𝑊𝑒𝑔
1.67)

0.6  (2.146) 

where 
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𝑂ℎ =
√𝑊𝑒𝑙
𝑅𝑒𝑙

,    𝑇𝑎 = 𝑂ℎ√𝑊𝑒𝑔,    𝑊𝑒𝑔 =
𝜌𝑔𝑟0𝑢𝑟𝑒𝑙

2

𝜎
 (2.147) 

𝑊𝑒𝑙 =
𝜌𝑙𝑟0𝑢𝑟𝑒𝑙

2

𝜎
,    𝑅𝑒𝑙 =

𝜌𝑙𝑟0𝑢𝑟𝑒𝑙
𝜇𝑙

 (2.148) 

𝑂ℎ is the Ohnesorge number, 𝑇𝑎 the Taylor number, 𝑊𝑒𝑔 is the gas Weber number, 𝑊𝑒𝑙 

the liquid Weber number, 𝑅𝑒𝑙  the liquid Reynolds number and 𝑟0 is the radius of the 

undisturbed jet. Reitz (1987) applied this theory to the breakup modeling of the blobs with 

radius 𝑟0 initialized at the nozzle orifice. New child drops are formed as the surface waves 

on the parent drop are sheared off by aerodynamic forces. It is assumed that the new 

child drops get a radius 𝑟𝑛𝑒𝑤 proportional to the wavelength Λ 

𝑟𝑛𝑒𝑤 = 𝐶1 ∙ Λ (2.149) 

The model constant 𝐶1 = 0.61 is taken from the original paper of Reitz (1987). The parent 

drop does not fully disintegrate but only reduces its radius during this breakup process.  

𝑑𝑟

𝑑𝑡
= −

𝑟 − 𝑟𝑛𝑒𝑤
𝜏𝑏𝑢

 (2.150) 

where 𝑟 is the parent droplet radius and 𝜏𝑏𝑢 is the breakup time of the model, defined as 

𝜏𝑏𝑢 =
3.726 ∙ 𝐶2 ∙ 𝑟

Λ ∙ Ω
 (2.151) 

The model parameter 𝐶2 corrects the characteristic breakup time and depends on the 

nozzle flow. This parameter needs to be adjusted to match the simulation results with 

available measurements. A lower value of 𝐶2 leads to a decrease in penetration length, 

while a higher value of 𝐶2 increases the breakup length by reducing breakup.  

 

2.8 Numerical solution of the Navier-Stokes equations 

As mentioned before, the equations of fluid mechanics are analytically solvable only for 

certain flow types. Often simplifications of the equations are possible, e.g. assuming 

incompressible flow, but still the resulting equations are difficult to solve. Models are used 
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to make a solution of the equations possible (e.g. turbulence models). To obtain an 

approximate solution, a discretization of the differential equations is necessary. The 

resulting system of algebraic equations can then be solved numerically. An approximation 

in space and time is necessary, and the numerical solution holds for discrete locations in 

space and time only. Different discretization methods exist, but in 3D CFD often the Finite-

Volume Method is used because it is by definition conservative. The discretization error 

is mainly determined by the approximation of the fluxes across the surfaces of the control 

volume. 

The mostly used spatial discretization for derivatives on unstructured grids is the 3-point 

Central Differencing Scheme (CDS). Assuming constant grid size Δ𝑥 it is defined as  

𝜕𝑓

𝜕𝑥
=
𝑓𝑗+1 − 𝑓𝑗−1

2Δ𝑥
+ 𝑂(Δ𝑥2) (2.152) 

𝜕2𝑓

𝜕𝑥2
=
𝑓𝑗+1 − 2𝑓𝑗 + 𝑓𝑗−1

Δ𝑥2
+ 𝑂(Δ𝑥2) (2.153) 

where 𝑂(Δ𝑥2) is the order of the discretization error, which is 2 for the given example. 

Higher-order schemes are usually only used on structured grids, where the neighbor 

determination is easier. 

Time integration schemes are necessary if transient flow is simulated. The solution for the 

current time step can only rely on the solutions of the previous time steps. This means 

that the time discretization corresponds to an extrapolation. If only the results of the 

previous time step are used, the discretization is called explicit. If the discretization also 

depends on the results of the new time step, the scheme is called implicit. Often implicit 

schemes are used because they are stable. The order of accuracy is defined by the number 

of previous time steps used in the discretization scheme. Because of the high memory 

consumption, often only 1st or 2nd order schemes are used. 

For more information on numerical methods in fluid dynamics refer to, e.g., Ferziger & 

Perić (2008). 
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3 Turbulent pipe flow simulation 

Large Eddy Simulations of turbulent pipe flow for three different bulk velocities have been 

performed to generate a boundary condition at the nozzle exit for the subsequent LES 

spray simulations. For the bulk velocity of 100 m/s, a mesh dependency test was 

performed with 3 different meshes. The results are compared to DNS data from Fukagata 

& Kasagi (2002) available for nearly the same Reynolds number.  

3.1 Simulation setup 

An LES simulation resolves most of the turbulent scales. The size of the largest eddies in a 

turbulent flow is determined by the geometry of the flow itself. For wall bounded shear 

driven flows, the length scale of the largest eddies 𝑙 can be estimated as 𝑙 ≈ 0.1𝐿 Eggels 

(1994), where 𝐿 denotes a length scale of the flow geometry that corresponds to the pipe 

diameter 𝐷 in our case. The velocity scale of these largest eddies is of the order of the 

mean fluctuating velocity and according to Eggels (1994) it can be estimated as 𝑢 ≈

(0.05⋯0.067)𝑈, where U is the bulk velocity of the flow. Since the length and time scales 

are functions of the radius for the given pipe flow, these are only rough estimates of the 

turbulent scales. The smallest resolved scales are given by the filter width that depends 

on the grid size. The used top-hat filter results in a filter width of 𝑙𝑓
3 ≈ 𝑉𝑐𝑒𝑙𝑙. The ratio 𝑙/𝑙𝑓 

describes the range of length scales of resolved motions and must satisfy the condition 

𝑙/𝑙𝑓  > 1 because otherwise even the largest scales are removed by the filtering. It is 

suggested by Eggels (1994) that for an LES the condition 𝑙/𝑙𝑓  > 2 has to be obeyed and 

that higher values are necessary for a realistic LES. The near wall region, however, needs 

a further refined mesh to capture the velocity gradients and the damping effects of the 

wall. If the near wall region is not refined, the SGS model needs to account for these 

effects. 

The temporal resolution for LES also depends on the filter width 𝑙𝑓. The time step Δ𝑡 

should be proportional to the time scale 𝑙𝑓/𝑢. In general, numerical stability limits the 

time step. For explicit time discretization schemes, the Courant-Friedrichs-Lewy number 

𝐶𝐹𝐿 limits the time step. For one dimension it reads 
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𝐶𝐹𝐿 =
𝑈Δ𝑡

Δ𝑥
=
𝛼𝑢𝑢Δ𝑡

Δ𝑥
< 1 (3.1) 

where 𝛼𝑢 is the ratio of the relevant advection velocity 𝑈 to the largest eddy velocity scale 

𝑢. Δ𝑡 and Δ𝑥 denote the time step and the mesh size. It follows that 

Δ𝑡

𝑙𝑓/𝑢
=
𝐶

𝛼𝑢

Δ𝑥

𝑙𝑓
=
𝐶

𝛼𝑢
≪ 1 (3.2) 

since in our case Δ𝑥 = 𝑙𝑓 and 𝛼𝑢 ≫ 1. This means that for explicit time discretization the 

stability criterion limits the time step Δ𝑡 and not the time scale 𝑙𝑓/𝑢. 

 

 

Figure 10: Computational domain 

The computational domain for the present pipe flow simulation shown in Figure 10 has a 

diameter D of 100 µm and length of 1 mm. A periodic inlet/outlet boundary and a wall 

boundary were applied. The length of the pipe was chosen to be 10 times the diameter to 

ensure that the largest eddies that can be stretched near the wall will fit in the domain. 

Eggels (1994) showed for a Reynolds number of 5300 that the two-point correlation 

coefficient of the streamwise velocity fluctuation is not zero for a separation distance of 

2.5 D. This implies that the pipe length should be greater than 5 times the diameter, and 

that the chosen length of 10 D is sufficient.  

The different mesh resolutions that were used for the mesh dependency test are listed in 

Table 1. A visualization of the three meshes is presented in Figure 11. The mesh M1 was 

refined near the wall, meshes M2 and M3 not. The mesh dependency tests were 

performed for a bulk velocity of 100 m/s, which corresponds to a Reynolds number of 
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5246. The calculation time for all three cases was 0.4 ms. As shown in Figure 13, this is 

long enough to ensure a fully developed turbulent flow. 

 Mesh M1 Mesh M2 Mesh M3 

Δx D/40 D/40 D/20 
Δr D/88 D/42 D/22 
Δθ 2π/160 2π/80 2π/40 
Number of cells 2176000 512000 68000 
Length scale 𝑙 D/10 D/10 D/10 
𝑙/Δx 4 4 2 
𝑙/Δr ~9 ~4 ~2 
y+ of first cell ~0.5 ~3.9 ~6.8 

Table 1: Mesh properties 

 

Figure 11: Meshes M1, M2 and M3 

 

Figure 12: Initial velocity field of case C100 

All simulations were initialized with a laminar velocity profile and a disturbance of the 

velocity field as shown in Figure 12. For some cells in the pipe center, the initial velocity 

was set to two times the maximum velocity of the laminar velocity field to accelerate the 

transition to turbulent flow. When the turbulent flow was fully developed, the averaging 

of the flow quantities was started and the instantaneous flow field was stored to a file for 
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every time step. These files were later used as boundary conditions for the LES spray 

simulations. Diesel was used as the fluid, the properties are listed Table 2. 

Temperature [K] Dynamic viscosity [Ns/m²] Density [kg/m³] 

293.15 0.00154 810.521 

Table 2: Fluid properties (Diesel) 

The simulation cases run to generate the boundary conditions for the spray simulations 

are listed in Table 3. These simulations were performed using the finest mesh M1 because 

the results of the mesh dependency test show the best results for this mesh and the 

subsequent LES spray simulation also has a very fine mesh and therefore the resolution 

of the stored instantaneous velocity field should approximately match the resolution of 

the spray mesh. 

 Case C050 Case C100 Case C150 

Bulk velocity [m/s] 50 100 150 

Reynolds number [-] 2623 5246 7870 

Calculation time [s] 0.001 0.000445 0.00043 

Flow through times [-] 50 44.5 64.5 

Time step [s] 2e-8 1e-8 1e-8 

Expected centerline velocity [m/s] 63 126 190 

CFL number [-] 0.5 0.5 0.76 

y+ of first cell ~0.3 ~0.5 ~0.7 

Table 3: Simulation cases 

The expected centerline velocity for the fully developed turbulent flow was calculated 

using the empirical correlation �̅�/𝑢𝑚𝑎𝑥 = 0.791 for a Reynolds number of 4000 found in 

Brenn & Meile (2008). The CFL number was calculated using the expected centerline 

velocity. The timestep was chosen to be small enough to allow even smaller grid sizes in 

the subsequent spray simulations. 

 

3.2 Simulation results 

All LES simulations were performed using the 3D CFD software FIRE v2013.1 from AVL with 

implicit filtering and the Coherent Structure Model described in chapter 2.5.2 as the SGS 
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turbulence model. Second-order schemes were used for time and space discretization. 

Incompressible flow was assumed. 

 

3.2.1 Mesh dependency tests 

The results of the mesh dependency tests are compared to DNS data from Fukagata & 

Kasagi (2002). The averaging of the values was re-started after 100µs when the flow was 

already fully developed, as shown in Figure 13. 

 

Figure 13: Average velocity on the pipe centerline as a function of time for the mesh M1 

The mean non-dimensional velocity profiles for the three meshes are presented in Figure 

14 to Figure 16. The results are compared to the DNS data from Fukagata & Kasagi (2002).  

 

Figure 14: Mean axial velocity normalized by the friction velocity as a function of the 

dimensionless distance from the wall for mesh M1 
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Figure 15: Mean axial velocity normalized by the friction velocity as a function of the 

dimensionless distance from the wall for mesh M2 

 

Figure 16: Mean axial velocity normalized by the friction velocity as a function of the 

dimensionless distance from the wall for mesh M3 

The output of FIRE v2013.1 was extended to include the Reynolds stresses in cylindrical 

coordinates. The average Reynolds stresses and fluctuations in cylindrical coordinates are 

compared to the DNS data Fukagata & Kasagi (2002) for the three different meshes. The 

results for the finest mesh M1 are in very good agreement with the DNS data. The results 

for the mesh M2 are still good, but the mesh M3 seems to be too coarse to capture the 

Reynolds stresses properly. 
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Figure 17: Fluctuations and Reynolds stresses for mesh M1 

  

Figure 18: Fluctuations and Reynolds stresses for mesh M2 

  

Figure 19: Fluctuations and Reynolds stresses mesh M3 

The Reynolds stress tensor 𝜏𝑖𝑗 can be expressed in terms of an isotropic 𝜏𝑖𝑗
°  and an 

anisotropic tensor 𝜏𝑖𝑗
′ , such that 𝜏𝑖𝑗 = 𝜏𝑖𝑗

° + 𝜏𝑖𝑗
′ . The isotropic part can be written as 𝜏𝑖𝑗

° =

(1/3)𝜏𝑘𝑘𝛿𝑖𝑗. The anisotropic part then reads 𝜏𝑖𝑗
′ = 𝜏𝑖𝑗 − (1/3)𝜏𝑘𝑘𝛿𝑖𝑗. A non-dimensional 

anisotropy tensor can be defined as 
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𝑏𝑖𝑗 =
𝜏𝑖𝑗
′

𝑘
=
𝜏𝑖𝑗

𝑘
−
2

3
𝛿𝑖𝑗  (3.3) 

In the case of isotropic turbulence all terms of the anisotropy tensor 𝑏𝑖𝑗 vanish. The 

diagonal elements of 𝑏𝑖𝑗 are limited to −1/3 ≤ 𝑏𝑖𝑗 ≤ 2/3. The anisotropy tensor has a 

zero trace and the non-zero invariants 

𝐼𝐼 = −
1

2
𝑏𝑖𝑗𝑏𝑗𝑖     𝐼𝐼𝐼 =

1

3
𝑏𝑖𝑗𝑏𝑗𝑘𝑏𝑘𝑖  (3.4) 

The time mean invariant analysis of Lumley (1978) is a useful tool to characterize the 

structure of turbulence. The values of these invariants that are realizable in a flow are 

bounded. This leads to the anisotropy invariant map, or so-called Lumley triangle, 

presented in Figure 20. The Lumley triangle can also be used to validate measurements, 

since all realizations of the invariants have to be inside the triangle. 

 

Figure 20: Anisotropy invariant map of the DNS data and the LES results for the three 

different meshes 
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The results show that three-component isotropic turbulence only exists near the pipe axis. 

Near the wall, the turbulence reaches a two-component state due to the damping of the 

wall-normal component. The results for the mesh M1 show very good agreement with the 

DNS data. The mesh M2 is not refined near the wall, and the two-component state of 

turbulence is not reached. The mesh M3 is obviously too coarse to reproduce the DNS 

results, but all realizations of the invariants are inside the triangle. 

 

The equivalent Smagorinsky constant 𝐶𝑠 was calculated from the mean coherent structure 

model coefficient 𝐶𝐶𝑆𝑀 and is presented in Figure 21. 

 

Figure 21: Equivalent Smagorinsky constant 𝐶𝑠 as a function of the dimensionless 

distance from the wall 

The results show that the coherent structure model damps its coefficient 𝐶𝐶𝑆𝑀 near the 

wall without the need of a special wall function. The value of the coefficient reaches higher 

values for the finest mesh M1. This is reasonable, since the definition of the eddy viscosity 

(2.112) includes the filter width Δ that corresponds to the cell size. This leads to the 

expected higher values of the eddy viscosity for a coarser grid. 

 

The ratio between unresolved and total kinetic energy is also important for LES 

simulations. It should not be too high, since the idea of LES is to resolve most of the 

turbulence. The ratios for the three meshes are presented in Figure 22. 
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Figure 22: Ratio of unresolved to total kinetic energy as a function of the distance from 

the wall. 

For the meshes M2 and M3, the results show a peak near the wall. The production of 

turbulent kinetic energy has its maximum in this region, which means that also dissipation 

is high in this region. For the coarser meshes, more of this dissipation has to be modelled. 

 

3.2.2 Flow generator 

The mesh M1 was used to generate the boundary conditions for the subsequent spray 

simulations. The export of the flow field was started after 200µs for the case C050 and 

after 100µs for the cases C100 and C150. The mean centerline velocities for the three 

cases are shown in Figure 23 to Figure 25. The results show, that with increasing Reynolds 

number, the mean centerline velocity is more stable. 
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Figure 23: Mean centerline velocity of case C050 as a function of simulated flow time 

 

Figure 24: Mean centerline velocity of case C100 as a function of simulated flow time 

 

Figure 25: Mean centerline velocity of case C150 as a function of simulated flow time 
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The downward shift of the velocity profile in the logarithmic region with increasing 

Reynolds number shown in Figure 26 was also documented by Durst, Kikura, Lekakis, 

Javanovic, & Ye (1996) for a turbulent channel flow. 

 

Figure 26: Dimensionless velocity profiles of the three cases 

The turbulent velocity fluctuations u’ normalized with the friction velocity presented in 

Figure 27 show a peak at about 𝑦+ = 12 and nearly the same curve shape for all three 
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Kasagi (2002) and show good agreement. The measurements by Durst, Kikura, Lekakis, 
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Figure 27: Distribution of turbulent velocity fluctuations u’ normalized with the friction 

velocity 

The fully developed turbulent flow for the three different bulk velocities are shown in 

Figure 28 to Figure 30. It can be seen that the turbulent structures become smaller with 

increasing Reynolds number. 

 

Figure 28: Fully developed turbulent pipe flow for a bulk velocity of 50 m/s (Re = 2623) – 

spatial distribution of the velocity magnitude 
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Figure 29: Fully developed turbulent pipe flow for a bulk velocity of 100 m/s (Re = 5246) 

– spatial distribution of the velocity magnitude 

 

Figure 30: Fully developed turbulent pipe flow for a bulk velocity of 150 m/s (Re = 7870) 

– spatial distribution of the velocity magnitude 

3.3 Conclusions 

 The mesh dependency tests showed that the CSM is able to generate excellent 

results for the finest mesh M1 and good results for the coarser mesh M2. With the 

coarsest mesh M3, the velocity profile was captured properly, but the Reynolds 

stresses were not in a good agreement to DNS data. The calculation of the mean 

equivalent Smagorinsky constant from the mean CSM coefficient showed that the 

damping effects of the wall are well captured by this model without the need for 

a special wall damping function. The value for the equivalent Smagorinsky 

constant on the pipe axis differed from the constant value of 0.1 used in the 

implementation of the Smagorinsky model in FIRE for the finest and the coarsest 

mesh. This implies that a fixed value of the coefficient is difficult to define and that 

a local evaluation is necessary. Since the distance from the wall, which is often 

hard to determine in complex flows, is not needed for the determination of the 
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CSM model parameter, and the value range of the parameter is quite narrow, it 

should also be applicable to complex geometries. 

 For the case C050 with a Reynolds number of 2623, which is not far from the 

critical Reynolds number of approximately 2300 it can be seen that the mean 

velocity on the centerline is not as stable in time as for higher Reynolds numbers. 

The variance of the mean velocity on the centerline decreases with increasing 

Reynolds number. 

 LES simulations need a fine mesh to produce results close to DNS results. Only the 

smallest scales of turbulence can be assumed isotropic, and modelling them with 

a Boussinesq approach like the Smagorinsky and Coherent Structure Model is 

appropriate. If the mesh gets too coarse, the anisotropy of turbulence cannot be 

accounted for by the models. 
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4 LES/VOF simulation of turbulent liquid jets 

LES simulations of turbulent liquid jets with a diameter of 100 µm have been performed 

to gain information on the development of the liquid core. The bulk velocities of the jet 

ranged from 50 to 150 m/s and the used liquid was Diesel fuel. The liquid jet was injected 

into quiescent air at three different densities, relevant to Diesel injection in ICE, ranging 

from 15 to 34.5 kg/m³. A so-called cold spray, without heat transfer and vaporization, was 

simulated. The velocities were chosen to represent the velocities during the opening and 

closing phases of a Diesel injector needle.  

In experiments, several disturbances of the liquid jet exist at the same time. In numerical 

experiments, an ideal flow setting is possible. The flow field of the liquid jet was initialized 

with the results of the turbulent pipe flow simulation from chapter 3. Effects of cavitation 

or fuel supply oscillations were not considered though they can have a significant 

influence on the breakup of a liquid jet, as discussed by Dumouchel (2008). This means 

that only the influences of turbulence and aerodynamic effects on the primary breakup 

are investigated. 

The requirement for grid resolution for simulating the atomization of a liquid jet is severe. 

If the grid resolution is not high enough, artificial breakup may occur when the thickness 

of a liquid structure becomes smaller than the grid spacing. Surface forces induce breakup 

and must therefore be evaluated correctly. This means that the curvature of the liquid 

surface needs to be calculated, which is only possible if the grid spacing is much smaller 

than the radius of the liquid structure. High mesh resolution, especially close to the phase 

interface as discussed by Herrmann (2011), would be necessary. Since droplets of O(1 µm) 

are produced during breakup of a liquid Diesel jet, the needed grid resolution often 

exceeds the feasible limits. Based on the available computational resources, the 

simulations of this thesis focus on the determination of the liquid core length. Droplet size 

distributions were not analyzed. The applied interface tracking is a hybrid method 

combining the Eulerian multi-fluid and the VOF approaches, as discussed by Han & 

Alajbegovic (2002). The benefit of this method is that it applies VOF where the mesh 

resolution is fine enough, while it solves the Euler-Eulerian multiphase transport 

equations (2.121) and (2.123) where the mesh resolution is too coarse. Having this in 
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mind, the presented simulations show a practical workflow to capture the liquid core and 

the larger ligaments produced near the nozzle orifice. 

 

4.1 Simulation setup 

The computational domain shown in Figure 31 was used for the spray simulations and had 

a size of 12D x 12D x 46D, where D=100µm is the nozzle diameter. A static pressure 

boundary condition was applied to all borders of the domain, except for the border at the 

nozzle orifice. A wall boundary condition was applied there. The large width and height of 

the domain were necessary to allow for the use of a static pressure boundary condition. 

Since a very fine mesh resolution is needed in the spray formation area, but not near the 

boundary, the mesh was refined towards the spray axis in 4 steps, shown in Figure 32. 

Cubic mesh cells are used, and the refinement was done by dividing a parent cell into 8 

new cubic cells. 

 

Figure 31: Computational domain size of meshes MS1, MS2 and MS3 

 

Figure 32: Refinement of meshes MS1, MS2 and MS3 in radial direction 
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A mesh dependency test was performed using three different mesh sizes near the spray 

axis. The exact properties of the meshes are listed in Table 4. 

 Mesh MS1 Mesh MS2 Mesh MS3 

Cell size [µm] 2.5 2 1.6 

Total number of cells [millions] 22 42 83 

Table 4: Mesh properties 

In other numerical experiments, e.g. Ménard, Tanguy, & Berlemont (2007), a slip-wall 

boundary condition is used for the 4 borders surrounding the spray axis, and the distance 

from the nozzle is often only 1-2 nozzle diameters. A test with such a small domain shown 

in Figure 33 was performed, and the results were compared to the results with the larger 

domain used for all other simulations in this thesis. This small domain also consists of cubic 

cells with an edge length of 2.5 µm and has no refinement. The small domain will be 

referred to as mesh MS4. 

 

Figure 33: Small computational domain MS4 

Nine cases were simulated with different gas densities and mean injection velocities. 

The inflow boundary conditions for the liquid velocity field were created by a pipe flow 

simulation as described in chapter 3. The operating conditions and phase properties of 

the simulation cases will be outlined later in the results chapter. The liquid phase has the 

same properties as the liquid used in the pipe flow simulations and corresponds to 

Diesel fuel properties. The gas phase is air and is treated as incompressible, which is 

reasonable because the Mach number under Diesel injection conditions with high gas 

temperatures will be low. 
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4.2 Simulation results 

All two-phase LES simulations were performed with the 3D CFD software FIRE v2013.1 

from AVL. The VOF model described in chapter 2.6.2 was used to track the surface 

between the two phases. The Smagorinsky model was used as the SGS turbulence model. 

Second-order schemes were used for the discretization. 

4.2.1 Influence of boundary conditions 

It was assumed that the slip wall boundary condition has an influence on the spray 

formation. Therefore the goal was to replace it by a static pressure boundary condition. 

This is only reasonable with a greater diameter of the computational domain. Therefore, 

several test simulations were performed until the final domain size of 12D x 12D x 46D 

shown in Figure 31 was chosen. The same simulation was also run on a small domain with 

a diameter of three nozzle diameters as shown in Figure 33. The phase properties for 

these two simulations where the same as used by Ménard, Tanguy, & Berlemont (2007) 

and are outlined in Table 5. The meshes MS1 and MS4 were used for comparison with a 

mean injection velocity of 100 m/s. The inflow boundary condition was generated by an 

LES pipe flow simulation.  

Phase Viscosity [Ns/m²] Density [kg/m³] Surface tension [N/m] 

Liquid 1.2E-03 696 0.06 

Gas 1.0E-05 25  

Table 5: Phase properties 

The liquid volume fraction distributions of the two simulations after a simulation flow time 

of 30µs are presented in Figure 34 and Figure 35. It can be seen in Figure 34 that near the 

slip wall a reasonable amount of liquid is present, and that the volume fraction is much 

more smeared further away from the nozzle orifice than in the case with the larger domain 

shown in Figure 35. Let �̅� denote the mean liquid volume fraction within the nozzle 

diameter 𝐷 defined as  

�̅� =
2π ∙ 4

𝐷2𝜋
∫ 𝜑(𝑟)𝑟𝑑𝑟

𝐷
2

𝑟=0

 (4.1) 
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Figure 36 shows a considerable difference for the mean liquid volume fraction within the 

nozzle diameter �̅� starting at about 10 nozzle diameters from the nozzle orifice. The main 

reason for this behavior comes from the fact that air is entrained from the lateral 

boundaries in the simulation case with mesh MS1. The mesh MS4 does not allow this due 

to the slip-wall boundary condition. 

 

Figure 34: Liquid volume fraction distribution for a mean injection velocity of 100 m/s 

after 30µs of simulated flow time using mesh MS4 

 

Figure 35: Liquid volume fraction distribution for a mean injection velocity of 100 m/s 

after 30µs of simulated flow time using mesh MS1 
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Figure 36: Mean liquid volume fraction within the nozzle diameter �̅� as a function of the 

distance from the nozzle normalized by the nozzle diameter 

 

4.2.2 Mesh dependency tests 

A mesh dependency test was performed with the three meshes MS1, MS2 and MS3. The 

phase properties listed in Table 5 are used for the simulations and the inflow boundary 

condition is again generated by a fully developed turbulent pipe flow simulation with a 

bulk velocity of 100 m/s. The mean liquid volume fractions within the nozzle diameter �̅� 

for the three meshes are presented in Figure 37. The curves for the meshes MS2 and MS3 

are nearly the same, while the curve for the coarsest mesh MS1 differs slightly, starting at 

a distance of 15 nozzle diameters from the orifice.  

Since the goal of the LES spray simulations is the determination of the liquid core length, 

we need to define what is the liquid core. Here the liquid core is defined as the region 

where the mean liquid volume fraction is greater than 0.5. This definition of the liquid 

core was also used by Heidorn & Steiner (2009). The value of the volume fraction is 

averaged in the circumferential direction and also over time, where the time averaging is 

started when the liquid volume fraction is greater than 0 for the first time. The resulting 
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images of the liquid core for all three meshes are shown in Figure 38 to Figure 40. The 

calculated liquid core length is nearly identical for the meshes MS2 and MS3, but shorter 

for the coarsest mesh MS1.  

 

Figure 37: Mean liquid volume fraction within the nozzle diameter �̅� as a function of the 

distance from the nozzle normalized by the nozzle diameter 

 

Figure 38: Liquid core visualization for mesh MS1 

 

Figure 39: Liquid core visualization for mesh MS2 
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Figure 40: Liquid core visualization for mesh MS3 

 

4.2.3 Liquid core length under different gas pressures and injection velocities 

The development of the liquid core length under different ambient gas pressures and 

injection velocities is investigated. Because the computational costs of these simulations 

is severe and mesh MS2 showed similar results as the finest mesh MS3, all further 

simulations were carried out on the mesh MS2. The liquid and gas properties and injection 

conditions are listed in Table 6 and Table 7, respectively. The results of the fully developed 

turbulent pipe flow simulations described in chapter 3.2.2 are used as an inflow boundary 

condition. The diameter of the nozzle orifice is 100µm. 

 

Phase Viscosity [Ns/m²] Density [kg/m³] Surface tension [N/m] 

Liquid 1.54E-03 810.521 0.0264 

Gas 3.90E-05 15, 25, 34.5  

Table 6: Phase properties 

Mean injection 
velocity [m/s] 

Injection Reynolds 
number [-] 

Liquid Weber 
number [-] 

Gas density 
[kg/m³] 

Gas Weber 
number [-] 

Time 
step [s] 

50 2623 7659 15 142 2E-08 
50 2623 7659 25 236 2E-08 
50 2623 7659 34.5 326 2E-08 
100 5246 30634 15 567 1E-08 
100 5246 30634 25 945 1E-08 
100 5246 30634 34.5 1304 1E-08 
150 7870 68928 15 1276 1E-08 
150 7870 68928 25 2126 1E-08 
150 7870 68928 34.5 2934 1E-08 

Table 7: Operating conditions 
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According to Reitz (1978) the mechanism of jet breakup is defined by its Ohnesorge and 

Reynolds numbers. Since the liquid properties and the jet diameter are the same for all 

simulations, the Ohnesorge number is constant at the value 𝑂ℎ = 0.0334. By adding the 

operation points listed in Table 7 to the Ohnesorge nomogram shown in Figure 41 it turns 

out that two of the three operation points lie in the second wind induced regime and one 

in the atomization regime. 

Since the nomogram does not account for the gas pressure, Hobbie & Eggers (2004) 

suggested to replace the Ohnesorge number in the nomogram by the following 

dimensionless number 

𝑍 = 𝑂ℎ√
𝜇𝑙
𝜇𝑔
𝑊𝑒𝑔 = √

𝜇𝑙
3

𝜇𝑔

𝑢2

𝜎2
𝜌𝑔

𝜌𝑙
 (4.2) 

where 𝜇𝑙 and 𝜇𝑔 are the liquid and gas dynamic viscosities, 𝑊𝑒𝑔 is the gas Weber number, 

𝑢 is the velocity, 𝜎 the surface tension and 𝜌𝑔 and 𝜌𝑙  are the gas and liquid densities, 

respectively. Adding the operating points to the new nomogram shows that they should 

all lie in the atomization regime. The operating points for a gas density of 34.5 kg/m³ are 

shown in Figure 42. The lines mark the border between the second wind induced and 

atomization regimes for each injection velocity. 
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Figure 41: Ohnesorge nomogram containing the three operation points of the 

simulations 

 

Figure 42: Nomogram according to Hobbie & Eggers (2004) for a gas density of 34.5 

kg/m³. The lines mark the border between the second wind induced and atomization 

regimes for each injection velocity. 
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liquid core is defined as the region where the mean liquid volume fraction is greater than 

0.5. The value of the volume fraction is averaged in the circumferential direction and also 

over time, where the time averaging is started when the liquid volume fraction is greater 

than 0 for the first time. The resulting liquid core lengths are presented in Figure 43. 

 

Figure 43: Liquid core length calculated from simulation results normalized by the nozzle 

diameter as a function of the mean injection velocity. The lines correspond to the 

different gas densities. 

The curves show that, for a given injection velocity, the liquid core length decreases with 

increasing gas density. The effect of the ambient gas density on the liquid core length is 

much stronger in the range of 15 to 25 kg/m³ than for the range 25 to 34.5 kg/m³. This 

effect was also observed by Hiroyasu, Shimizu, & Arai (1982) and Arai, Shimizu, & Hiroyasu 

(1985), who investigated the influence of ambient pressure on liquid jet breakup length.  

There seems to be a nearly linear correlation between the liquid core length and the mean 

injection velocity in the investigated region that does not depend on the gas density. All 

operation points definitely lie in the turbulent region of the stability curve shown in Figure 

8. The observed increase of the liquid core length with the injection velocity corresponds 

to the stability curve, and authors like Arai, Shimizu, & Hiroyasu (1985) published 

measurement results in the same Reynolds number range that also showed this trend. 

The iso surfaces representing a liquid volume fraction of 0.1 for all operation conditions 

at nearly the same spray tip penetration are shown in Figure 44 to Figure 46. 
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Figure 44: Spray formation for 50 m/s mean injection velocity and different gas densities 

after 90 µs. The iso surface represents a liquid volume fraction of 0.1 
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Figure 45: Spray formation for 100 m/s mean injection velocity and different gas 

densities after 45 µs. The iso surface represents a liquid volume fraction of 0.1 
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Figure 46: Spray formation for 150 m/s mean injection velocity and different gas 

densities after 30 µs. The iso surface represents a liquid volume fraction of 0.1 

 

 

Figure 47: Spray formation for 100 m/s mean injection velocity and a gas density of 34.5 

kg/m³. The iso surface represents a liquid volume fraction of 0.1 

Looking at the visualization of the simulation results, e.g. Figure 47, one can see how 

turbulence disrupts the jet surface right downstream from the nozzle orifice. Amplified by 

the aerodynamic forces, disturbances grow and ligaments detach from the jet surface. 



4 LES/VOF simulation of turbulent liquid jets 

74 

This phenomenon corresponds to the description of the second wind induced breakup 

regime, and not to the atomization regime. This implies that the borders between the 

different breakup regimes as defined by Reitz (1978) are probably not valid for the used 

inflow conditions. The regime borders were defined as a result of measurements where 

the nozzle flow conditions are not clearly defined and could also be influenced by, e.g., 

cavitation effects. The further increase of the liquid core length with increasing injection 

velocity also corresponds to the second wind induced regime. Further simulations with 

higher injection velocities would be necessary to clarify this point. 

 

4.3 Conclusions 

 It was shown that the computational domain size and boundary conditions have 

an influence on the simulation results for spray formation. It is therefore suggested 

that the domain diameter normal to the spray axis should be around 12 times the 

nozzle orifice diameter. Refining the mesh towards the spray axis proved to be a 

good possibility to reduce cell count and computational effort. 

 In the investigated Reynolds number range from 2623 to 7870, the liquid core 

length increases linearly with increasing injection velocity. This corresponds to 

measurement results by Arai, Shimizu, & Hiroyasu (1985). 

 The liquid core length decreases with increasing ambient gas density. The effect of 

gas density on the liquid core length is much stronger in the investigated range of 

15 to 25 kg/m³ than in the range of 25 to 34.5 kg/m³. Similar results have been 

published by Arai, Shimizu, & Hiroyasu (1985) and Hiroyasu, Shimizu, & Arai 

(1982). The increased gas density enhances the Kelvin-Helmholtz instabilities of 

the jet. 

 Regarding the ambient gas density, and following Hobbie & Eggers (2004), all 

simulations fall in the atomization regime. The visualization of the results shows 

that the disintegration of the jet does not start at the nozzle orifice, but that initial 

disturbances of the jet surface coming from turbulence are amplified by 

aerodynamic forces until ligaments detach. This and the fact that the liquid core 

becomes longer with increasing injection velocity implies that all performed 



4 LES/VOF simulation of turbulent liquid jets 

75 

simulations are in the second wind induced breakup regime. A possible 

explanation is the fact that the borders between the regimes were extracted from 

measurements where the flow conditions inside the nozzle were uncertain. 

Furthermore, a hard border between two different regimes is hard to define, as 

there are many influences on the disintegration of a liquid jet, as discussed by 

Lefebvre (1989). Further simulations with higher injection velocities would be 

necessary to extend the stability curve and see if the atomization regime is 

reached at higher Reynolds numbers. 
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5 A breakup model for transient Diesel fuel sprays 

One task of this thesis was to improve the primary breakup model currently used in the 

3D CFD software FIRE from AVL. One unique feature of FIRE is the possibility to use a 

separate injector flow simulation to gain detailed information about the nozzle flow. The 

flow properties at the nozzle orifice are stored to a so-called nozzle file. This nozzle file 

can then be used to initialize a subsequent Lagrangian spray simulation. A schematic 

description of this process is given in Figure 48. 

 

Figure 48: Schematic description of the nozzle file based Lagrangian spray simulation in 

AVL FIRE 

The injector flow simulation is normally performed as a three-phase simulation (liquid, 

vapor and air). At certain time steps during the simulation, flow properties (velocity, 

volume fraction, turbulent kinetic energy, dissipation rate, density, temperature) are 

stored to the nozzle file for each face of the spatially discretized nozzle orifice. Figure 49 

shows the flow field at a certain time stored in a nozzle file. 

The standard primary breakup model in FIRE v2013.1 FIRE for nozzle file based Lagrangian 

spray simulations takes advantage of the additional information, like the turbulent kinetic 

energy, provided through the nozzle file. It is briefly described in chapter 5.1. This breakup 

model is validated for high Reynolds and Weber numbers when the injector needle is fully 

open. Modern Diesel engines, however, work with multiple pilot and post injections, 

where these high injection velocities are not reached. The question is, if the assumptions 

made for the phase when the injector needle is fully open are valid in the transient phases 

of injection also. Chapter 5.2 deals with this question and discusses possible problems and 
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solutions that may arise from the need to simulate a whole engine cycle including multiple 

injections. 

 

Figure 49: Flow field at the nozzle orifice stored in a nozzle file. The green arrows are 

symbols for local mean velocities. 

5.1 The primary breakup model 

The primary breakup model by Tatschl, v.Künsberg-Sarre, Alajbegovic, & Winklhofer 

(2000) is based upon the competing effects of turbulence, cavitation and aerodynamic 

breakup processes. The WAVE model is used to determine the aerodynamic breakup rate 

(
𝑑𝑟

𝑑𝑡
)
𝑎
= −

𝑟 − 𝑟𝑎
𝐶2𝜏𝑎

    𝑤𝑖𝑡ℎ    𝑟𝑎 = 𝐶1Λ (5.1) 

where 𝑟𝑎 is a characteristic droplet radius depending on the dominant aerodynamic wave 

length Λ, and 𝜏𝑎 is a characteristic break-up time. The model parameters 𝐶1 and 𝐶2 can 

be used to adjust the characteristic droplet radius and the break-up time, respectively. 

The turbulent break-up rate is calculated from turbulent length and time scales, 𝑟𝑡 and 𝜏𝑡, 

respectively. This approach is based on the work of Huh & Gosman (1991). 
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where the constant 𝐶𝜇 = 0.09 and 𝐶4 contains 𝐶𝜇 according to the definition of 𝜏�̃�. As for 

the aerodynamic breakup rate the model constants 𝐶3 and 𝐶4 allow the adjustment of the 

characteristic droplet radius and the break-up time. Similar to the WAVE model, child 

droplets are created when breakup occurs. The new droplets get an additional radial 

velocity 𝑣𝑟𝑎 or 𝑣𝑟𝑡 according to aerodynamic or turbulent breakup mechanism, 

respectively. 

𝑣𝑟𝑎 = 𝐶5ΛΩ (5.4) 

𝑣𝑟𝑡 = 𝐶6√
2

3
𝑘 (5.5) 

Therefore the spray angle is determined automatically by the model. Additional equations 

for the turbulent kinetic energy and its dissipation rate have to be solved to account for 

the turbulence induced break-up. The impact of collapsing cavitation bubbles on the 

primary break-up is modeled via an additional source term in the turbulence model. The 

details of this model are described in Tatschl, v.Künsberg-Sarre, Alajbegovic, & Winklhofer 

(2000). The turbulence and cavitation induced break-up competes with the aerodynamic 

one until, at a certain distance downstream from the nozzle exit, the aerodynamic break-

up processes become dominant. The transition to the secondary break-up model occurs 

when one of the following criteria is met: 

 The current diameter becomes smaller than the stable turbulent diameter 

 The current diameter becomes smaller than 10% of the initial diameter 

 The Weber number is lower than 40 and the turbulent breakup rate is smaller than 

the aerodynamic breakup rate 

The blob injection model, described in chapter 2.7.4, is used to initialize the spray 

simulation. In the current implementation of the primary breakup model, a constant 

number of blobs is released at every time step of the simulation. The release position of 

each of those blobs is chosen randomly across the nozzle orifice. The flow properties, 

stored in the nozzle file for the nearest face to the release position are used to initialize 

the blob. The initial diameters of all blobs are set equal to the nozzle diameter. 
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5.2 Improvement of the primary breakup model 

Many test simulations with different nozzle flow situations available at AVL have been 

performed during this thesis. While reviewing the results of these simulations, several 

problems with the current implementation became obvious and shall be described now. 

In the transient phase of the injection, while the injector needle moves, the flow inside 

the nozzle is not fully developed. This means that the nozzle hole often is not completely 

filled with liquid, but also contains a reasonable amount of vapor. At start or end of 

injection, even air may stream back into the nozzle hole. When the injector is fully open, 

cavitation bubbles may reach the nozzle orifice and reduce the effective nozzle diameter. 

Figure 50 shows a typical flow field at the nozzle orifice during the beginning of a pilot 

injection. The red dot in the mass flow diagram marks the time of flow field visualization. 

The green vectors represent the velocity of the liquid phase while the red faces represent 

the spatially discretized nozzle orifice. At this time, most of the nozzle orifice is not filled 

with liquid, but with vapor and air. 

 

 

Figure 50: Flow field at the nozzle orifice during a pilot injection (left). Mass flow rate 

through the injector as a function of time (right). 

In the current implementation, blobs are initialized at a random position of the nozzle 

orifice. It is obvious that this method can only work as intended when the nozzle orifice is 

fully covered with liquid, as shown in Figure 49. Otherwise blobs may be initialized with 

the velocity of the vapor or gas phase. 
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The current model sets the initial blob diameter to the nozzle diameter. This assumption 

is again only valid if the nozzle hole is totally filled with liquid. If a reasonable amount of 

the nozzle cross-section is filled with vapor and air, the blob diameter should be reduced. 

Since the model was mostly used for the simulation of one main injection at a time, a fixed 

number of blobs are initialized every time step. Since the application of the model shall 

be extended to multiple injections, this does not make sense in times when there is no 

mass flow. The creation of massless blobs in the phase between two injections should be 

avoided. 

Especially at the end of injection it was regarded by reviewing the results of the test 

simulations that blobs are initialized which neither break up nor evaporate. This 

unphysical behavior is assumed to have two reasons. When the end of injection is 

reached, the initial velocity of these blobs is rather low, and the WAVE model is probably 

not the best model to describe the breakup for lower Weber numbers. The initial blob 

diameter is set to the nozzle diameter even though in this phase of injection the nozzle 

hole is not fully filled with liquid. This unphysical large diameter prevents fast evaporation 

of these blobs. 

The following improvements to the primary breakup model are suggested after the 

evaluation of the current problems: 

 Do not initialize any blobs if the current mass flow rate is below a certain threshold 

value. 

 Only release blobs from a face where the liquid volume fraction is higher than a 

given value. 

 Calculate an initial diameter for each blob based on the fraction of the nozzle 

orifice filled with liquid at the time of initialization. 

 Switch between the breakup models, TAB or WAVE, based on the Weber number 

of each blob. For lower Weber numbers than a given threshold value, the blobs 

are handled by the TAB model, otherwise by the WAVE model. Figure 51 illustrates 

the dependence of different droplet breakup modes on the Weber number. One 

has to be aware that these results were generated using shock waves and that this 

might not fully correspond to the flow situation during a fuel injection. Otherwise 
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it is common to use this classification also for non shock wave induced breakup. 

The obtained results seem to justify this procedure. The TAB model should 

therefore be better suited to model the breakup at lower Weber numbers and is 

often used for the simulation of gasoline injection. 

 To account for the transient nature of injection, Sazhin, Martynov, Kristyadi, Crua, 

& Heikal (2008) proposed a modified WAVE model. They suggested to model the 

liquid core as a rigid body. This means that blobs constituting the liquid core do 

not experience any drag and move as a rigid jet at a velocity equal to the current 

injection velocity. This method was introduced, because they observed an under-

predicted penetration at the early stages of injection. The model is implemented 

in FIRE v2013.1 in the following way: All blobs subject to primary breakup 

experience no drag as long as they are part of the liquid core. If the injection 

velocity at the nozzle increases due to injection acceleration, this velocity is 

immediately translated to all blobs constituting the liquid core. The liquid core is 

defined by its length which has to be provided as a parameter. The simulation 

results from chapter 4.2.3 can be used to estimate the value of this parameter. 

All of these suggested improvements have been implemented in AVL FIRE v2013.1 and 

are validated in chapter 5.3. 

 

Figure 51: Domains of the droplet breakup mode from Hirahara & Kawahashi (1992) 
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5.3 Application and validation 

The improvements to the primary breakup model described in chapter 5.2 have been 

implemented in the 3D CFD software FIRE v2013.1 from AVL. The simulations used to 

analyze the current problems of the primary breakup model were performed again after 

the changes to the source code. 

The effects of the modifications can be seen in Figure 52 and Figure 53, where the 

Lagrangian spray simulation result, at the time marked in Figure 50 is presented. The 

nozzle diameter was 250µm in this case. Looking at the color coded droplet diameter in 

Figure 53 it can be seen that the blobs are initialized with a diameter of about 167µm. This 

is the effective diameter calculated from the nozzle orifice area that is really filled with 

liquid. The spray shape also looks as expected, which indicates that all blobs are released 

at faces where the liquid volume fraction was higher than the defined threshold value of 

0.9. 

 

Figure 52: Lagrangian spray result during pilot injection with color coded droplet 

diameter using the original breakup model. 

 

Figure 53: Lagrangian spray result during pilot injection with color coded droplet 

diameter using the modified breakup model. 
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The result after the end of the pilot injection is presented in Figure 54. As there is currently 

no mass flow through the injector, no new blobs are initialized. For all visible parcels, the 

TAB model is used, since their Weber number during initialization was lower than the 

threshold value of 50. Compared to the original case, the reduced initial diameter of the 

blobs and the use of the TAB model led to faster evaporation of the spray. Further tests 

should be performed to evaluate if these modifications can improve combustion 

simulation, which strongly depends on the accurate simulation of evaporation. 

 

Figure 54: Lagrangian spray result right after end of injection with color coded droplet 

diameter. 

To prove that the modified primary breakup model is able to generate valid results, they 

are compared to measurements available at AVL. These measurements were performed 

at the Toyota Central Research and Development Laboratories during a cooperation 

between AVL List and Toyota and have also been used by Nagaoka, Ueda, Masuda, von 

Berg, & Tatschl (2008). The experiments were done on an optically accessible high 

pressure cold constant volume vessel. Images of the spray were captured with a single 

shot laser pulse light source and a high resolution CCD camera. The measured spray tip 

penetration was averaged for all nozzle holes. Several mini sac (MS) nozzles were 

investigated at Toyota and some of them are chosen for the validation of the modified 

breakup model. All nozzles were tested at room temperature and high pressure ambient 

gas, as listed in Table 9. The geometrical properties and injection conditions of the nozzles 

are outlined in Table 8. The number of nozzle holes n was modified according to the nozzle 

diameter D in order to keep the same range of total mass flow rate. The roundness R at 

the nozzle hole inlet was chosen to get good agreement between the measured and 

simulated discharge coefficient Cd. For all nozzles an angle of 105° between the injector 
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axis and the nozzle hole axis was used. The needle lift curve was approximated from the 

lift sensor output and is shown in Figure 55. The used timings are listed in Table 8. The 

simulated and measured injection rates for the nozzle N1 are compared in Figure 56. 

 

Nozzle n D [mm] L [mm] R/D Cd T1 [ms] T2 [ms] T3 [ms] 

N1 5 0.14 0.8 0.1 0.81 1.0 1.24 2.0 

N2 5 0.14 0.6 0.1 0.82 1.04 1.32 2.0 

N3 5 0.14 1.0 0.1 0.80 1.04 1.32 2.04 

N4 9 0.10 0.8 0.2 0.80 1.0 1.24 2.0 

Table 8: Nozzle specifications and conditions 

Injected liquid Diesel fuel 

Dynamic viscosity of injected liquid 0.00338 Pa s 

Surface tension of injected liquid 0.027 N/m 

Density of injected liquid 810 kg/m³ 

Injection pressure 87.5 MPa 

Ambient gas CO2 

Ambient gas pressure 2.1 MPa 

Ambient gas temperature 293 K 

Table 9: Operation conditions 

 
 

Figure 55: Approximated needle lift curve 
used for calculations 

Figure 56: Comparison of injection 
volume flow rate for nozzle N1 

 

The injector flow simulations were performed at Toyota, and the resulting nozzle files 

containing the flow properties at the nozzle orifice are used together with penetration 

measurements to validate the modified primary breakup model. 
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The computational domain for the Euler-Lagrangian spray simulation is shown in Figure 

57. The maximum spray tip penetration that was experimentally measured was about 

65mm and the spray diameter at this time was about 18mm. The diameter of the 

cylindrical computational domain was 5cm (2.8 times the maximum measured spray 

diameter) and the length was 10cm (1.5 times the maximum measured spray tip 

penetration). The hexahedral mesh cells had an edge length of 1mm, resulting in a total 

number of 2.1∙105 cells. A wall boundary condition was used at the top surface of the 

domain that contained the nozzle orifice, and static pressure was applied to all other 

boundaries. The operating conditions are outlined in Table 9. The modified primary 

breakup model was used together with the WAVE model as the secondary breakup model. 

The model parameters were the same for all performed simulations. Spray shape and 

spray tip penetration results are compared to the measurements from Figure 58 to Figure 

62. All results are in good agreement with the measurements. 

 

Figure 57: Computational domain with spray 
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Figure 58: Comparison of spray tip penetration for nozzle N1 

 

0.5 ms 1.0 ms 1.5 ms 2.0 ms 

 

Figure 59: Comparison of spray shape at certain time instants after start of injection for 

nozzle N1. The spray shape images from the experiments are taken from Nagaoka, Ueda, 

Masuda, von Berg, & Tatschl (2008). 
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Figure 60: Comparison of spray tip penetration for nozzle N2 

 

Figure 61: Comparison of spray tip penetration for nozzle N3 

 

Figure 62: Comparison of spray tip penetration for nozzle N4 
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5.4 Conclusions 

 The modified primary breakup model was applied to several fuel injection test 

cases. The review of the results showed that the modifications improved the spray 

shape in the transient phase of injection, e.g. Figure 52 and Figure 53. The 

automatic calculation of the initial blob diameter, based on the area of the orifice 

filled with liquid, results in a more physical representation of the actual flow field, 

e.g. Figure 53. 

 The validation results proved that the modified primary breakup model is able to 

reproduce the measured penetration curve and the spray shape, as shown in 

Figure 58 to Figure 62. The new parameter for the liquid core length can be used 

to adjust the form of the penetration curve in the early stages of injection. This 

should especially help in cases where the penetration in the early stages of 

injection is underestimated, as mentioned by Sazhin, Martynov, Kristyadi, Crua, & 

Heikal (2008). 

 Mesh dependency is one major problem of CFD spray simulation. Especially the 

penetration results are sensitive to the mesh size, as described by Baumgarten 

(2006). The resolution of the mesh that would be needed to properly resolve the 

gas phase flow quantities violates the requirement of a void fraction close to one 

of the Lagrangian liquid phase description. Therefore the gas flow can never be 

resolved accurately near the nozzle, and the parameters of the breakup models 

have to be adjusted when a different mesh size is used to get similar results. The 

model parameters are often adjusted so that the simulated cylinder pressure for 

one engine cycle matches the measured one. If additional information like 

penetration or droplet size distribution measurements are available, they are used 

to adjust the models. It is obvious that advanced breakup models are needed that 

are more based on physics. The amount of parameters that have to be adjusted 

can then be reduced. Using the flow properties at the nozzle orifice, from a 

separate nozzle flow simulation, to initialize the Lagrangian spray simulation is a 

first step in this direction. Large Eddy Simulations of a liquid jet, as described in 
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chapter 4, could help to better understand the mechanisms of primary breakup 

and further improve the models. 
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6 Conclusions and Outlook 

The aim of this thesis was to validate and improve the primary breakup model used for 

the Lagrangian spray calculation in AVL FIRE. The primary breakup model uses the flow 

properties at the nozzle orifice of a separate 3D multiphase injector flow simulation as an 

initial condition. At the start of this thesis this method was mostly used for the simulation 

of one main injection at a time. The suggested model improvements make it possible to 

get reasonable results also for multiple injections. Of special interest was the transient 

phase of injection, because the current models are mainly validated for the phase when 

the injector needle is fully open. To further improve the primary breakup models, detailed 

information about the region near the nozzle orifice was necessary. This region is visually 

hard to capture due to the dense spray. Therefore it was investigated if Large Eddy 

Simulations of the disintegration of a liquid jet can produce reasonable results that can be 

used to further improve the breakup models. Since LES needs a transient inflow boundary 

condition, a fully developed turbulent pipe flow was simulated to generate the necessary 

data. These simulations were used to validate the Coherent Structure Model from 

Kobayashi (2005) on different mesh sizes against DNS data. 

 

6.1 Conclusions 

During the work on this thesis, several conclusions could be drawn. These are summarized 

now for each topic. 

 The results of a Large Eddy Simulation of a fully developed turbulent pipe flow, 

using the Coherent Structure Model as an SGS turbulence model, showed very 

good agreement with DNS data. This turbulence model determines the eddy 

viscosity locally and automatically dampens it near a wall, based on flow properties 

only. It should therefore also be applicable to complex geometries. The results 

further showed that a fine mesh is needed in an LES to generate valid results. Only 

the small turbulent structures can be assumed isotropic, and if the mesh is too 

coarse, the SGS turbulence models cannot account for the fact that turbulence is 

highly anisotropic. 
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 The results of several LES/VOF simulations of a turbulent liquid jet were used to 

determine the liquid core length under different inflow and ambient conditions. 

The resulting stability curve shows that the liquid core length increases with the 

jet velocity, and that it decreases with increasing ambient gas density in the 

investigated range. It was shown that the simulation of the disintegration of a 

liquid jet is possible, but comes at extremely high computational costs. If the drop 

sizes near the nozzle orifice are also of interest, the mesh size must be further 

reduced to be smaller than the smallest drops. Due to limited memory and 

computer power, this was currently not feasible. 

 The modifications to the primary breakup model for the Lagrangian spray 

improved the simulation results in the transient phase of injection when the 

injector needle moves. The validation with measurements showed good 

agreement for the penetration curve and the spray shape. Mesh dependency and 

the need to adjust the breakup model parameters are the drawbacks of the 

Lagrangian spray simulation in general. 

 

6.2 Outlook 

The LES/VOF simulations of the breakup of a liquid jet should be extended to higher 

injection velocities. This would allow to further extend the stability curve of a turbulent 

liquid jet, as shown in Figure 43, and to understand if and when the transition between 

the second wind induced and the atomization regimes happens. The next step would be 

to use highly resolved nozzle flow simulations as an inflow boundary condition of the 

LES/VOF simulations. This could help to further improve the primary breakup models, 

since the same inflow boundary condition could be used for the Lagrangian spray 

simulation. A further refinement of the computational mesh and improvements to the 

interface tracking algorithm would be necessary to also gain information about the 

droplet size distribution near the nozzle orifice. This is currently not possible due to the 

high memory and CPU power requirements, but in the near future numerical experiments 

could help to better understand the mechanisms of primary breakup. 
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