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wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

1Beschluss der Curricula-Kommission für Bachelor-, Master- und Diplomstudien vom 10.11.2008;
Genehmigung des Senates am 1.12.2008

II



Acknowledgements

First I would like to express my sincere appreciation to Erich Leitgeb for his supervi-
sion and useful comments, as well as his cordial, welcoming disposition. He has been
very supportive of my work and always took the time to answer any of my questions
on short notice.

I would like to show my deepest gratitude to Franz Graf, who has been supporting me
for many years, not only in the course of this thesis. I have greatly benefited from his
experience and guidance. Not only is he very competent professionally, but he always
has an open ear for the people around him and is the first one to lend a helping hand,
even when it comes to carrying couches up the stairway.

I want to thank Bernhard Rettenbacher, name giver and father of the original Chronos
framework, and Susanne Rexeis for valuable discussions concerning my work, as well
as Harald Rainer for enduring them without a grumble (mostly).

Above all I would like to thank all of my family, particularly my parents Inge and Ilja
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Abstract

For this thesis a software framework with the purpose of simplifying and standardizing
the work-flow of transforming a prototyped set of algorithms into a fully-fledged and
expandable real-time stream processing system was to be designed and implemented.
The system should be kept general and scalable to large, multimodal data stream
applications, capable of being integrated into existing infrastructure. The software itself
is closed source, however, an in-depth overview of its substance and a background
on the underlying technologies will be given. The framework’s use cases and work-
flow as well as design criteria are going to be exemplified and the distinction to
related frameworks characterized. After fundamentals have been established, the
architecture is going to be described in greater detail, followed by the specifications
needed to configure and utilize the framework for custom use. To further promote an
understanding of the subject, three real-world applications employing the framework
will be presented.
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Zusammenfassung

Im Zuge dieser Diplomarbeit war ein Software-Framework zu entwickeln, das den
Prozess der Transformation eines prototypisch entworfenen Signalverarbeitungsalgo-
rithmus in ein voll funktionsfähiges und erweiterbares Echtzeit-System vereinfachen
und vereinheitlichen sollte. Das Framework sollte möglichst allgemein gehalten sein,
auf große, multimodale Datenstromapplikationen skalieren und in bestehende In-
frastrukturen integrierbar sein. Die im Zuge dieser Arbeit entstandenen Quellcodes
sind geschützt und nicht für eine Veröffentlichung vorgesehen. Es werden jedoch die
wesentlichen Inhalte, Schnittstellen, sowie die verwendeten Technologien vorgestellt
und erläutert. Die wichtigsten Entwurfskriterien für die Entwicklung, sowie Anwen-
dungsfälle des Frameworks werden beschrieben und die Abgrenzung zu verwandten
Frameworks charakterisiert. Nach Vermittlung der notwendigen Grundkenntnisse
werden die Software-Architektur und die für den Einsatz in eigenen Applikationen
nötige Vorgehensweise näher erläutert. Um das Verständnis für die Funktionalität
des Frameworks zu vertiefen, werden drei in die Realität umgesetzte Anwendungen
vorgestellt.
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1. Introduction

This chapter will motivate this work and provide the reader with an introduction to the
problem domain. A short review of the most relevant topics and related frameworks
will be given.

1.1. Motivation

Development of a novel hardware/software product employing signal processing and
pattern recognition algorithms is an intricate process and generally cycles through
several stages. After a theoretical concept has been laid out, a first algorithmic proto-
type has to be developed. It is not recommendable to employ a low-level language
like C to tackle this task right from the start, as it is time-consuming and cumbersome
to fine-tune parameters or change algorithmic components as well as to easily get test
data into or out of the algorithm. On these grounds, prototyping environments (e.g.
MATLAB, Octave, SciPy) alleviating a lot of the work required to set up a first demon-
stration system are available on the market. However, it can be difficult to integrate
these kinds of prototyped demonstrators into a real-world environment, employing
various hard- and software-interfaces and requiring the algorithm to perform in an
on-line manner. A classical approach would be to finalize the algorithm inside of a
prototyping environment and in a second phase reimplement it in a for real-time
applications more appropriate programming language. Subsequently the algorithm
has to be embedded into a custom application, serving as an interface to the user
and to external components like capturing-hardware or automation systems. At this
point, the algorithm can be tested for meeting on-line requirements, that is - Is the
algorithm capable of processing an incoming data stream in real-time? If the answer is
no, the algorithm has to be revised and possibly reimplemented. It can be difficult to
meet the on-line constraint if computations to be made are complex or the number of
channels to process is large. Should an adaption of algorithms become necessary, it is
sensible to go back into the prototyping environment, where the effect of algorithmic
adjustments can easily be monitored. After the prototype has been adjusted, changes
need to be translated to the on-line implementation once more. Keeping the prototype
implementation and the on-line version coherent is an important but tedious task and
can be prone to errors. Traditional development processes keep cycling between the
two stages of prototyping and adaption of the on-line system until aspired goals are
met.

1



1. Introduction

In this thesis a software framework, Chronos Realtime, was to be developed, that would
concentrate on finding a common denominator between different applications of
on-line signal processing and pattern recognition systems and enable a consistent and
straight-forward way to make the move from a prototyped algorithm to a comprehen-
sive on-line system as little time-consuming as possible. The name Chronos stems from
an already existent, house-internal framework developed at Joanneum Research. It
has been used to support implementation of signal processing algorithms purely in
MATLAB. Chronos Realtime is however not based on the original Chronos framework
and is not to be understood as replacement, but as a complement. The two are related
only semantically, covering different parts of the development cycle. Background of
this work was most notably the development of various acoustical monitoring systems.
However, much attention has been paid to the criterion of keeping the applicability
of the framework as general as possible and hence suitable to a wide variety of use
cases. In principle any kind of data may be processed if suitable extension modules
are implemented. A multimodal use-case, integrating both audio and image streams
has already been realized successfully (see section 6.2.2).

1.2. Software Framework

Seeking a better understanding of the subject, the term software framework shall be
discussed first. As there is no unique and generally accepted definition available, the
most distinctive characteristics shall be highlighted. In general, a framework is a real
or conceptual structure intended to serve as a support or guide for the building of
something that expands the structure into something useful [13f]. Similar to a software
library, it offers a collection of reusable components, providing functionality common
to a class of problems. However, a framework goes further than that. In contrast
to an ordinary library, it also provides the user with a superordinate application
architecture. The overall program’s flow of control is laid out by the framework, which
is referred to as inversion of control. This promotes a more consistent way of coding
and facilitates the readability of application code for external developers familiar with
the framework. Specific applications are customized by extension and configuration.
Frequently, frameworks also tend to be more extensive than libraries, providing a
holistic workflow and possibly a set of external tools to aid in the development of an
application within the problem domain.

1.3. Problem Domain

The main objective of Chronos Realtime is to aid in development of big-scale on-line
stream and signal processing systems. On-line can be understood as operating in real-
time, but is not to be confused with the property of hard real-time, a common term in

2



1. Introduction

informatics [Tan09]. More specifically, the system is designed to meet soft real-time
requirements, meaning occasional excessive processing delays are tolerable but should
be kept to a minimum. The overall system is expected to be capable of managing the
incurring amount of data without falling back over time. A minor amount of non-
deterministic lag is acceptable. In the following, on-line and real-time are going to be
used interchangeably. Big-scale in this context means that the number of signals to be
processed in parallel could potentially be very large, reaching up to thousands. These
systems typically need to be embedded into an existing infrastructure to interface with
the outside world. Despite the heterogeneity of possible applications, they usually
share common operational procedures. The various building blocks of a distributed
Chronos application are going to be referred to as modules in the upcoming chapters.
A module generally consists of a separate executable, implementing a framework-
specific communication protocol and running on an arbitrary workstation connected
to a computer network.

1.3.1. Real-Time Digital Signal Processing

Digital signal processing is concerned with the analysis or modification of digitized
signals, most often motivated by the objective of extracting or enhancing contained
information of interest. A signal defines the variation of some physical quantity as a
function of one or more independent variables over time. If both time and signal values
are discretized, the signal is referred to as digital. These signals generally originate
from A/D converted sensor measurements. In this context a single reading of a sensor
at one time-point is referred to as sample (not to be confused with the definition of a
sample in the field of statistics) and is most often acquired at a fixed rate, the so called
sampling rate. To enable processing of a signal in real-time, the applied algorithms need
to be adequately fast to process at least as many input samples as are acquired within
a certain epoch. When the sampling rate is higher than e.g. > 20 Hz and the signal
is one-dimensional, samples are commonly grouped together into so called frames
and processed at once. To add to the confusion, in image processing the term frame
usually refers to one image at a particular point in time (i.e. one two-dimensional
sample). Chronos Realtime however is consistent with both of these nomenclatures, i.e.
when processing audio signals, a frame consists of a consecutive sequence of samples
(potentially of multiple channels sampled at the same time interval from different
sensors), when processing image sequences a frame consists of a single image (or
multiple images sampled at the same point in time from different sensors).

Figure 1.1 illustrates the basic structure of a simple but typical real-time signal
processing application within the context of this framework. Input data is acquired
from various sensors (in this case multiple microphones) and processed by one or
several custom algorithms generating an application specific output. The output could
either belong to the same domain as the input, or represent a different signal type,
like a classification result. Depending on the setting, the output might either be

3



1. Introduction

Figure 1.1.: Block Diagram of a Simple Processing Application

post-processed, forwarded to some sort of interface or cause specific actions within
the scope of application. Data Acquisition, Processing and User Interfaces could
potentially be located on different machines, according to hardware requirements,
available processing power and geographical situation. Apart from the processing
algorithms themselves, auxiliary components are often needed to fulfill application
requirements. In the illustrated example the captured signals are additionally relayed
to a circular buffer, enabling a user to listen to data from the past (e.g. after the
analysis components have detected an event). The framework should not impose any
restriction on these possibilities but promote an easy integration of heterogeneous
components.

1.3.2. Algorithm Prototyping

Algorithm prototyping in the context of this work refers to the process of signal
analysis and development of new solutions to problems within the domain of stream-
and signal-processing. Most commonly these tasks are carried out by means of a
specialized prototyping environment, consisting of a high-level scripting language and
a set of domain-specific tools and libraries. Within such an environment, algorithms
may be developed and tested quite conveniently. However, often execution times are
prohibitively slow and integration of low-level device drivers and protocols might
prove difficult. Making an algorithm capable of on-line processing requires additional
consideration. This work suggests a way to enable a rapid development and integration
of prototyped algorithms into Chronos Realtime using Simulink (see sections 2.2.1 and
3). Support of further prototyping environments (e.g. Python/SciPy) is conceivable as
a future extension.

1.4. Design Goals

Before engaging in the design process of a piece of software, it is important to establish
a set of conceptual priorities. Since different design goals often tend to be conflicting,
the final decision can only result in a compromise. A typical example of such a trade-
off would be execution speed versus memory consumption. For a software library

4



1. Introduction

or framework, these decisions generally tend to be even more tenuous, since final
applications are not known during design phase. Therefore the most important goals
shall be presented and discussed in the following.

1.4.1. Flexibility

Flexibility and generality are inarguably the primary objectives of any software
framework. It is nevertheless a very sensible topic, as flexibility and ease of use often
are conflicting attributes. A framework should put as little restrictions on its field
of application as possible. On the one hand, common functionalities of applications
should be encapsulated, on the other hand the desirable level of generality is very
difficult to determine for unknown future applications. A too generic and flexible
design can lead to an overly complex framework, drastically reducing its benefit over a
custom solution. Going too far in the other direction however, might narrow down the
application domain to only a very specific set of problems. Main area of application
and background of this work was the domain of acoustic signal processing systems.
However, a major design goal was to equally facilitate more interactive use cases
and ones involving a variety of sensor signals. This is due to multi-modal processing
and sensor fusion being important factors in achieving more reliable machine-made
decisions. Therefore the framework’s interfaces have not been devised specifically for
audio signals, but are formulated so as to facilitate arbitrary signal types (as long as a
sequential processing of these signals is reasonable).

1.4.2. Scalability

Signal processing and pattern recognition tasks can become very computationally
expensive for complex problems. Particularly when a multitude of different signals
needs to be processed simultaneously, even a powerful workstation may reach its lim-
its. To tackle this problem, one of the main goals of this work is to innately support the
distribution of an application over several computing devices. This way, an algorithm
may be scaled to very large problems by simply adding more hardware, an approach
commonly referred to as cluster or grid computing. The proposed targets for applica-
tions of this framework are standard PCs and workstations, however, any platform
running Windows, Linux or Java is a potential candidate. The complexities generally
arising from a distributed scenario should be encapsulated as much as possible by the
framework. Processing of additional channels or separating an algorithm into several
stages should require no knowledge about the internals of distributed computing by
an application engineer. Her job is to devise how an algorithm might be split into
several parallelizable parts on a higher level.
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1. Introduction

1.4.3. Extensibility

It should be possible to extend the framework through custom components without
requiring too much effort or intricate knowledge of its internals. While a solid foun-
dation of a common range of functions should be inherently provided, every novel
application brings new requirements into the equation that cannot be accounted for
during framework design. Interfaces and inheritable classes should therefore be de-
signed in an understandable way that is easily extendible by an application developer.
Integration of third party tools and libraries should be promoted by the architecture.

1.4.4. Cross-Platform, Cross-Language

Cross-Platform in context of Chronos Realtime does not only refer to the ability of com-
piling the whole application for several operating systems, but to actually distribute
a single application across different platforms. This is provided for through the ICE
middleware (section 2.1.2), available for Windows, Linux, MacOS as well as in plain
source code. It allows multiple machines connected to a common network to work
together on the same problem. Different hardware- and software-platforms tend to
have distinctive advantages and disadvantages. It can therefore proof beneficial to
choose the platform most fit for a particular application component. For example
it might be advantageous to use MacOS for the task of audio capturing and Win-
dows for providing a user interface in one specific use-case. The same argumentation
applies to usage of different programming languages. While not one of the main
priorities, this design goal plays a role in architecture and coding standard choices
and is non-negligible.

1.4.5. Robustness

In certain areas, particularly monitoring scenarios, applications are expected to run for
a very long time, potentially years non-stop. Downtimes may not only be expensive
for the responsible party, but also impair safety of the monitored system. Distributed
systems are typically susceptible to a lot of different error scenarios, some of which are
difficult to predict or test beforehand. Clean error-handling possibilities are therefore a
requirement that needs to be thought of at design time. If one succeeds in overcoming
the associated difficulties, distribution can lead to increased robustness of the overall
system. If only one component fails, all other independent components can continue
to carry out their work without interruption. Critical components may be mirrored,
so in case one component fails, the redundant one may take over on-the-fly. Chronos
Realtime should be able to handle network failures and partial application crashes and
never expect reliable communication between components. If errors occur they are to

6



1. Introduction

be logged accordingly. More advanced features like component mirroring are not part
of the first version but are considered subject of future work.

1.5. Related Frameworks

1.5.1. CLAM

CLAM (C++ Library for Audio and Music) is an object-oriented open source research
and application framework that originated at the Music Technology Group at Univer-
sitat Pompeu Fabra, Barcelona, with the aim to be a lingua franca for several projects
that were taking place in the group [Ama04] [AA05] [13b]. As the name implies its
main purpose lies in the development of audio and music applications. Like Chronos
Realtime it offers stream based processing fit for real-time implementations. The project
has been in development since 2000 and profits from the many contributions of differ-
ent developers since, therefore offering a comprehensive set of tools. However, CLAM
is licensed under the GPL scheme and thus unfit for many commercial applications
(inquiries about the dual license scheme have remained unsuccessful). The main
differentiating factors of Chronos Realtime are its inherent distribution and support of
other media types than audio. Integration into the MATLAB/Simulink prototyping
environment is also not given by CLAM. However, it would be feasible to add this
functionality to the framework, due to its open and extendible nature.

1.5.2. DataTurbine

DataTurbine [Fou+12] [13d] is a JAVA based open source real-time data streaming mid-
dleware. Similarly to Chronos Realtime it may be used to read data from a sensor and
stream it over a network to a number of recipients. Its focus however lies on the collec-
tion and reliable transport of sensor data and less on rapid prototyping and real-time
signal processing. To this end it also follows a different network topology. Although
similar from a user’s point of view, as there are so called Sources (corresponding to
Data Providers in Chronos Realtime) and Sinks (corresponding to Data Clients in Chronos
Realtime), which may be ”connected” to each other independently of their location
within the network, in DataTurbine the flow of data takes an indirect route via a so
called DataTurbine Server. This server acts as a circular buffer for data streams arriving
from the sources, decoupling sources and sinks from each other. This approach has
some advantages with regard to data safety and error handling compared to a direct
streaming solution (as employed in Chronos Realtime), but adds some overhead and
delay to the overall stream. Particularly if a DataTurbine Server is not located on the
same machine as the respective sink, the stream has to take an extra indirection via an
additional host. It should be mentioned that Chronos Realtime offers a circular buffer
component, which may be used to emulate a behaviour similar to DataTurbine. In
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principle DataTurbine could have been adopted as a streaming backend for Chronos
Realtime, however ZeroC’s ICE offers better flexibility and performance in that respect.
As a result there is a certain overlap in the application range of DataTurbine and
Chronos Realtime.

1.6. Example Applications

To gain further insight into why the developed framework might be useful, it is
advisable to skim through section 6.2, where a few example applications have been
described. These applications are real-world use cases that have been implemented
using Chronos Realtime or a precursor thereof. An introduction to the different use-
cases will be given and the involved components as well as their interaction between
each other will be covered.
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2. Employed Technologies

In this chapter, an overview of technologies employed in this thesis shall be given. It is
not meant as an extensive review of the different topics, but rather a justification as to
why these particular technologies have been chosen. A brief overview will however be
given on each subject, to provide the reader with sufficient knowledge for subsequent
chapters.

2.1. Distributed Computing

Distributed computing is a field of computer science that studies distributed systems.
A distributed system is a software system in which components located on networked
computers communicate and coordinate their actions by passing messages. [Cou+11]

2.1.1. Ethernet

Ethernet (IEEE 802.3) is a networking standard developed for use in Local Area
Networks. Originally it was specified for a bandwidth of 10 MBit/s in the year 1983

[Tan02], but due to its sweeping success has been revised several times. Today 1 GBit/s
is standard for home and office workstations, with 100 GBit/s (IEEE 802.3ba) on the
horizon. It is due to this tremendous speed increase, that distributed multimedia
applications have gained a lot of attraction in recent years. Formerly the high data
rates prohibited an extensive distribution and favored either local or expensive spe-
cialized solutions. An uncompressed PCM audio stream of CD quality (44100 Hz, 16

bit) accounts for a bitrate of 705.6 kBit/s per channel. This suggests that an idle 1 Gbit
link would theoretically be capable of streaming slightly more than 1400 channels
simultaneously. However there generally are several layers of protocols running on
top of Ethernet handling the connection and streaming process on a higher level,
which causes significant overhead. Despite this, the aforementioned numbers serve
to exemplify the potential of audio streaming via Ethernet, even more so under the
advent of 100 GBit technology. For video the rationale is similar, although video will
usually still have to undergo some sort of compression for streaming. A conventional
DVD quality video stream (MPEG2 encoded) has a maximum bitrate of 9.8 MBit/s, so
around 100 of them could be transmitted in parallel via a 1 GBit link, again ignoring
protocol overhead, packet loss and similar network specific obstacles. However, for
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real-time systems often lower quality streams are sufficient, leading to an even higher
number of channels. The practically achievable goodput is strongly implementation
dependent and has been measured for Chronos Realtime in different scenarios (see sec-
tion 4.4) using the system clock. Due to the described advances in network technology,
Ethernet streaming has recently become a big topic in the field of professional audio
broadcasting. Protocol standards and products have been developed based on well
established IP and Ethernet technology to replace the traditional analog distribution of
audio with digital networking solutions. These new technologies are readily available
and have already been successfully applied in live performances. Well-established
examples are the commercial product called Dante by Audinate Pty Ltd [13a] and the
open standard RAVENNA [13j].

2.1.2. Object-Oriented Middleware - ZeroC ICE

While Ethernet enables a basic network communication on a low level, in a distributed
application it is desirable to use higher level abstractions to encapsulate the details
of underlying protocols. Modern operating systems often provide implementations
of different Remote Procedure Call routines. They extend the well-known procedure
call abstraction to distributed systems, trying to make a remote procedure invocation
behave as if it were a local one [VKZ05]. Unfortunately they are platform specific
and generally not designed for object oriented architectures. Therefore higher level
software solutions have been developed to provide services that go beyond those
offered directly by the operating system. These solutions are referred to as middleware,
or more specifically distributed object middleware. The middleware sits in between
the application and operating system layer and encapsulates the communication
process between different applications that might be running on separate machines.
No knowledge of where exactly a call is executed is required, as the interfaces generally
behave is if they were local calls. However, one major difference to a regular function
call that needs some extra consideration in any application using a middleware
solution is the possibility of network failures. A robust distributed application must
always consider the possibility of network failures and therefore requires very careful
design, particularly in presence of multiple threads of execution.

Many different middleware architectures exist, e.g. message-oriented, message-passing,
SQL-oriented and others. One common kind of architecture is the Object Request
Broker. It allows an object-oriented treatment of remote invocations by introduc-
ing so called distributed objects. The most well-known representative is CORBA
(Common Object Request Broker Architecure), which is an open standard defined
by the Object Management Group. It enables separate pieces of software written in
different programming languages and running on different hosts to work together
as a single application. However, due to inconsistencies within the open implementa-
tions of the standard and partially poor documentation, an alternative called Internet
Communications Engine by ZeroC Inc. [13l] has been evaluated for this work. ICE has
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many similarities to CORBA (an extensive comparison may be found in [Hen04]), but
offers a simpler and more efficient design and is available under the GNU GPL as
well as proprietary license models for commercial use. It supports the C++, Java, .Net,
Ruby, Actionscript, Objective-C, Python and PHP programming languages on today’s
most common operating systems Linux, Solaris, Windows and MacOS X, as well
as iOS and Android. Therefore a distributed application may take advantage of the
benefits different languages and operating systems have to offer, to aid in tackling the
problem at hand. ICE is intuitive to use and offers comparatively fast communication
between different hosts. These properties make it appear to be a good backbone for
a distributed real-time system. UDP as well as TCP may be utilized as a transport
layer protocol. ICE uses an IDL (Interface Definition Language) for a programming
language-independent specification of object interfaces. These specifications may then
be used to automatically generate stub code in a desired language. The actual defini-
tion of declared methods is realizable by subclassing. Once instantiated and registered
with the ICE runtime, a user-defined class becomes a servant, ready to accept remote
or local method invocations. For a client to be able to call operations on this servant,
it must hold a corresponding proxy object. A proxy is an artefact that is local to
the client’s address space and represents the (possibly remote) ICE object for the
client [13e]. The necessary proxy code is implicitly generated by the aforementioned
meta-compilation step. A proxy may be instantiated via explicit specification of a host
address and port, as well as via a well-known name that may be resolved by a lookup
service. Proxies may also be used as parameters or return values of remote methods,
which is a feature the Chronos Registry (section 4.2) makes heavy use of. ICE comes
with a set of additional tools and services useful for distributed application develop-
ment. One that should be mentioned explicitly due to its importance in the current
work is IceGrid. IceGrid is the location and activation service for ICE applications
[13e]. On the one hand it may be used to resolve addresses and ports of servants
via name lookup, on the other hand it is able to remotely start, stop and distribute
executables on an arbitrary number of hosts. Additional features are replication and
load balancing as well as status monitoring of registered components. To enable this
functional range, each involved host has to run a local service or daemon called
IceGridNode. The configuration of which executables to start, where to find them and
where to deploy them is specified via XML files.
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2.2. Programming Languages, Tools and Libraries

The practical implementation of this work makes use of several tools and libraries,
which will be described in the following.

2.2.1. MATLAB/Simulink

MATLAB by Mathworks is a well-established prototyping environment for engineering
tasks. Although there are free alternatives, MATLAB currently offers one of the most
comprehensive and best supported overall packages for digital signal processing. In
principle it consists of a powerful high-level scripting language optimized for linear
algebra and numerical calculations and an extensive library of predefined functions,
partitioned into various ”toolboxes” for a wide range of different applications.

The advantage of this kind of prototyping environment is the flexibility it offers
during algorithm design. Algorithms and data can easily be inspected step by step
during runtime, visualized, imported and exported. It is quite time-efficient to try
different ideas, due to the huge set of predefined functions available. However, once
an algorithm is ready for a first tryout in a larger system, it can often be difficult
to integrate into a real-time environment. The algorithm has to be transformed into
a variant capable of real-time processing and of being integrated into some target
application. This usually means reimplementation in a lower level language like C and
adaption to the requirements of on-line processing. Not only is this step error-prone,
but it also requires a lot of development time and most likely an additional, specialized
programmer.

Simulink is an add-on product to MATLAB, extending its functionality by a graphical
programming language tool for modeling and simulation. It offers tight integration
with the MATLAB environment and may be scripted from it. Simulink is widely
used in control theory and digital signal processing for multidomain simulation
and Model-Based Design [13k]. The models are inherently suitable for real-time
operation, given sufficiently powerful processing hardware. However, to make use
of multithreading from within Simulink, the additionally available parallel computing
toolbox is required. Attention has been paid in this work, to rely on as few required
toolboxes as possible. A basic MATLAB/Simulink installation plus Simulink Coder
(former Realtime-Workshop) suffice to make full use of the developed extensions.
However, the signal processing toolbox is highly recommended and is employed in
some of the examples presented later.

The decisive benefit of using Simulink in combination with Simulink Coder is the
possibility of generating C/C++ code directly from prototyped models. This meta-
compilation process may be influenced by developing a custom ”target”, which has
been done for Chronos Realtime (see chapter 3). Vice versa it is possible to integrate
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custom C/C++ code into Simulink via the ”s-function” API. This enables integration
of third party libraries into the prototyping environment and finally into generated
code (see section 3.2 for an example). Signal processing models developed in Simulink
are inherently on-line capable due to their fundamental architecture. This makes
them ideal for integration into Chronos Realtime as building blocks for more complex
applications.

2.2.2. XML/XSD

The word XML serves as an abbreviation for the Extensible Markup Lanuage, which
is used for describing data in a structured form. The design intent behind XML is that
the format should be both human- and machine-readable. Therefore it perfectly lends
itself as a means for writing configuration files. To further enhance the usefulness
of XML in that respect, so called XML schema languages have been defined. These
languages allow their users to express a set of rules to which an XML document
should conform. In other words, they enable an application developer to specify what
a syntactically correct XML configuration file for a particular application has to look
like. The created specification aids a user in writing correct configuration files by
enabling her to automatically validate and check for schema conformity using an XML
editor. One of the most well-known XML schema languages is XSD (XML Schema
Definition). Within Chronos Realtime all necessary configuration files for assembling
an application are kept in XML where corresponding XSD files are supplied. This
is true for the Data Module specific Module Configuration and Channel Configuration
files (sections 4.2.3 and 4.2.4) as well as for the configuration of ZeroC’s IceGrid
applications.

2.2.3. C++

C++ is an object-oriented general-purpose programming language, originally devel-
oped as an enhancement to C, beginning in 1979 at Bell Labs. It is a very feature rich
language, offering a lot of flexibility. Compilers are available for a wide variety of hard-
and software platforms. Although a Chronos Realtime application may be extended
by modules written in any language supported by ICE, the core components have
been implemented using C++. According to [HS11], out of all supported languages
ICE offers the best performance in combination with C++. As compilers have been
slowly adapting the new features of C++11 in the course of this work, some of the
older components do not make use of these features and implement techniques that
could be written more elegantly by today’s standards. The newer or refactored com-
ponents however already depend on some additions of the new language standard
and therefore require a C++11 compliant compiler.
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2.2.4. Boost

Boost is the name of a comprehensive publicly available set of modern C++ libraries,
designed to augment the C++ standard libraries with an additional range of high
quality content. Boost plays a major role in the standardization of C++ today, as those
parts that have stood the test of time stand a good chance of being integrated into
the C++ standard libraries in a consistent or slightly modified way. Boost therefore
offers a sensible and compatible way to integrate modern language features into a
C++ program, even if the employed compiler or standard libraries do not natively
support them at the time. Chronos Realtime makes extensive use of Boost throughout
the entire range of its C++ source code.

2.2.5. SQLite

A Chronos application may assume different states, depending on currently running
modules and active streams between these modules. This state may either be condi-
tioned exactly as intended by the user, reside in some form of transition or assume an
error state (e.g. due to a network or software failure). It is controlled and supervised
by the Chronos Registry (see section 4.2). To enable a robust operation, it is advisable to
not only keep the current application state in memory, but to also make it persistent
by employing a database, accessing a persistent storage device. This way, even in the
event of a blackout or Registry crash, the application may automatically continue its
work after a restart or reboot. SQLite is a C library implementing a serverless SQL
(Structured Query Language) database engine. It is well-suited for the application at
hand, as it is self-contained and may be integrated directly into the Chronos Registry
executable. The library is well-established and offers good and stable performance for
smaller databases. It is managed via standard SQL statements and may therefore be
replaced by an external relational database system without too many modifications.
SQL is a special-purpose programming language designed for managing data in
relational database management systems. SQLite has been chosen for simplicity and
offers sufficient performance for current applications. It may be replaced by a different
database system in a future version of the Registry.

2.2.6. Portaudio

As the main focus of this work lies on audio processing, the functionality to capture
and playback audio via corresponding hardware has been integrated into the core
of Chronos Realtime (see sections 5.1 and 5.2). To achieve this goal in a potentially
portable way, the cross-platform C library portaudio [13h] has been used. It supports
audio recording and playback on most common operating system, utilizing several
backends, including jack, ALSA and ASIO. To enable ASIO support the library had
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to be compiled in combination with the ASIO software development kit available
from Steinberg, an important step in achieving low-latency audio using a Windows
operating system.

2.2.7. PerClass

PerClass is a commercial software package available for Windows, MacOS and Linux,
allowing for rapid development of custom machine learning and pattern recognition
solutions. It has its origins in the PRTools toolbox for MATLAB, developed at the
Delft University of Technology. As such there is still a certain level of similarity and
compatibility between the two. PerClass likewise consists of a MATLAB toolbox for
prototyping purposes, but also enables the user to compile a complex classification
pipeline (consisting of e.g. preprocessing, dimensionality reduction and various classi-
fier hierarchies) into a single file that may be addressed from a C/C++ application.
To this end PerClass ships with a C runtime library that allows for execution of
trained classifiers outside of the MATLAB environment. To close the circle, for Chronos
Realtime a Simulink block has been developed (see section 3.2), able to execute PerClass
pipelines during simulation as well as from programs generated via Simulink’s code
generation process.

2.2.8. Qt

Qt is a cross-platform, open-source C++ framework for creating GUI applications.
It first became publicly available in May 1995 [BS06] and has been in development
since. It offers a very comprehensive set of tools for GUI development in C++ and
has therefore been used to implement the Controller GUI of Chronos Realtime (see
section 5.5).

2.2.9. CppUnit

CppUnit is a unit testing framework for C++ code [13c] inspired by the original JUnit
framework for Java. It has been employed to test individual code fragments for correct
execution. This is particularly useful when compiling for different platforms, since
certain errors might not be visible on the platform used for development. Furthermore
it is highly recommendable to devise unit tests for methods making use of third
party interfaces, since these might be subject to change or show otherwise unexpected
behavior.
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2.2.10. CMake

CMake [14] is a cross-platform build system for C++. It provides a simple language
used to control the software compilation process. From the more or less generic
CMake configuration files, native makefiles and workspaces may be generated to
enable different tool chains to compile the entire Chronos Realtime framework. This
procedure severely eases the expenditure of work required to maintain cross-platform
support over the course of development.
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Realtime

This chapter will introduce the Simulink part of the framework. Simulink offers a
tight integration with MATLAB, which makes it quite suitable for transforming an
offline MATLAB algorithm into a real-time-enabled model. Prototyping an algorithm
from scratch however may also quite conveniently be done directly using Simulink. To
support a simple integration of Simulink models into a Chronos Realtime application,
the basic functionality of Simulink has been extended as a part of this thesis. This was
achieved by implementing a so called ”real-time workshop target” (see section 3.1). In
addition, a PerClass Simulink block has been developed (see section 3.2), allowing for
a quick realization of pattern recognition tasks.

3.1. Chronos DLL Target

As mentioned in the introductory section 2.2.1, it is possible to generate C code from
a Simulink Model, and to compile this code into a standalone executable, using the
Simulink-Coder add-on (formerly part of the Real-Time Workshop). There are several
different target platforms available by default, one of which may be selected by
choosing a specific system target file. Target files influence how the generated code will
be structured. This enables the code generation process to be adapted to different
environments. If full integration of a compiled model into a bigger application is
desired, the shipped system target files are only of limited use. Fortunately it is
possible to implement custom target files by hand, allowing for great flexibility. Models
may consist of any standard Simulink blocks and custom blocks (written in either
C/C++ or the embedded MATLAB language). The newly developed target does not
impose any additional restrictions on the code generation process compared to the
default ones shipped with Simulink-Coder.

Figure 3.1 illustrates the procedure of how an executable is created from a Simulink
model using custom target files. The template makefile, as well as the model code have
to be supplied for implementation of a new system target. Specialized versions of
these files have been developed as a part of this work to enable a straightforward
integration of Simulink models into Chronos Realtime applications. Instead of generat-
ing a stand-alone executable, the approach that has been taken to tackle the problem
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Figure 3.1.: Simulink Code Generation Process [The99]

An executable is compiled from a Simulink Model using instructions from a custom Template Makefile
and automatically generated source code files
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of integratability, was to create a shared C++ library providing an API that would
allow for supplying external data to the model, reading data from the model as well
as for adjusting runtime parameters. This approach not only opens the possibility
of integrating the model into a frame application, but also of exchanging models
during runtime. The target has been termed Chronos Realtime DLL Target, where DLL
stands for dynamic-link library. Typically this is the name associated with Microsoft’s
implementation of shared libraries, however, care has been taken to maintain a com-
patibility with all platforms supported by Simulink (Windows, MacOS, Linux). The
terms shared library and dll will be used interchangeably in the following, as they
refer to the same basic concept. The library resulting from the build process is named
according to the convention of the given platform. The easiest way to understand the
workflow involved in creating a Chronos shared library from Simulink is by following
a simple example, as shown in section 3.1.1. Furthermore, the API of the generated
library and how it may be used from C++ is described in section 3.1.2. Note however,
that for the integration of a compiled model into a Chronos Realtime application, no
programming is necessary, as there already exists a generic and ready-to-use Chronos
Realtime module for this task (see section 5.3).

3.1.1. Example: Creating a shared library from a Simulink Model

A simple example to illustrate the process of compiling a Simulink model into a
Chronos shared library shall be given. It assumes for the Chronos Realtime framework
to be set up correctly within the MATLAB environment (instructions on how these
practical steps are carried out are included in the source code package and are not
part of this document). The demonstration model GainPan16 (figure 3.4) is going to be
used throughout this thesis to clarify different concepts. The function of the model
may be described as receiving a stream of 16-bit stereo audio data and applying to it a
certain gain and balance configuration, similar to a stereo channel of a simple digital
mixer. The first question that arises is how to get the data into and out of the model,
or put differently, how to define the boundaries between the compiled model and the
application driving it. To this end a custom ”blockset”1 has been developed, providing
a source and a sink for use with the Chronos Realtime DLL Target (see fig. 3.2).

When used in a standalone model executed from within the Simulink environment,
the behavior of these two blocks is not particularly meaningful. The source copies any
data received at the input to its output, thus acting as a bypass (sometimes useful for
testing purposes). If the input is kept open, the output will contain all zeros. The sink
simply discards all received data in a standalone model. However, when compiled
into a Chronos Realtime DLL Target, the two blocks serve as an interface between a C++
application and the Simulink model, as defined in the library API (see section 3.1.2).
To generate an operational model, Simulink needs to know the exact signal properties

1The term blockset in Simulink refers to a collection of semantically related building blocks
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Figure 3.2.: Chronos DLL Blockset

Two custom Simulink blocks have been implemented to serve as an interface to the C++ API

of the input signal. These may be specified separately for each C++ Source via an input
mask (shown in figure 3.3). The parameters of a C++ Sink are derived automatically
and do not need to be specified. Using the described custom input and output blocks,

Figure 3.3.: C++ Source Input Mask

By double-clicking the block icon, its parameters may be configured

it is possible to proceed by building the desired algorithmic content as with any other
model. The complete example is shown in fig. 3.4. The 16-bit audio input coming from
the C++ Source AudioIn is first converted to double precision. Then a gain is applied
to both channels, which in the shown figure is set to 1. The scaled signal enters the
Panorama block, which is controlled by the pPan parameter. The Panorama block
is a subsystem defined such that depending on the value of its second inport, the
balance between the two channels of the first inport may be controlled. The meaningful
range of values for pPan is defined to be between +1.0 (first channel only) and -1.0
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Figure 3.4.: GainPan16 Simulink Model

A simple example to illustrate the described process

(second channel only). Finally the output of the Panorama block is converted back to
a 16-bit integer signal and forwarded into a C++ Sink named AudioOut. Although
non-essential for understanding the presented material, the internals of the Panorama
subsystem are depicted in figure 3.5 for completeness.

Once a model with desired properties has been created and tested in the Simulink
environment, the build procedure may be initiated. To this end a couple of settings
in the configuration parameters dialog of the model have to be adjusted. For the
purpose of real-time digital signal processing, the solver should be set to fixed-step,
as a variable step-size can not be mapped to a real-time clock. In the code generation
tab, jr dll.tlc has to be chosen as system target file and C++ as language. Figures 3.6
and 3.7 illustrate what the settings dialog should look like.

If everything is set up correctly, the build process may be launched. As a result, a
shared library (e.g. GainPan16.dll or GainPan16.so) will be created and stored in the
current working directory. The generated library may then be loaded into a Simulink
Module, one of the framework’s core components (see section 5.3), which serves as a
proxy for integration into a more elaborate Chronos Realtime application. The Simulink
Module is able to process arbitrary Chronos Streams (section 4.4) using the generated file.
For clarification, the whole workflow of Simulink integration is once more summarized
visually (see fig. 3.8).

A library generated by the described process however is not bound exclusively to
being embedded into a Simulink Module. It may similarly be loaded from a custom
stand-alone application. Section 3.1.2 describes how to interface the library from C++
directly, using its exported API.
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Figure 3.5.: Panorama Subsystem

Figure 3.6.: Configuration Parameters - Solver Tab
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Figure 3.7.: Configuration Parameters - Code Generation Tab

3.1.2. C++ API

This section will give a little more insight on the way the Chronos DLL target is
implemented and how to interface with a generated dll. Care has been taken to
make integration into a C++ project as straightforward as possible. Only the model-
independent header file ”simulink model.h” has to be included to access the API.
No additional linking or any model-specific files are required for compilation of
the frame application. The generated dll exports an object oriented C++ interface.
Two classes of particular importance are SimulinkModel and its template subclass
SimulinkModel::Port. Their class diagrams are depicted in fig. 3.9 and 3.10 respec-
tively and may be referred to as an aid in understanding the remainder of this section.

The SimulinkModel class defines a static creator method CreateModelInstance, used
for instantiation of a model from a particular dll, specified by its filename. It is possible
to create multiple instances of the same model, or several different models within one
application. Once constructed, a SimulinkModel object provides all methods necessary
to interact with the underlying algorithm.

Every C++ Source and C++ Sink present in the original Simulink model becomes
a SimulinkModel::Port in its C++ counterpart and may be referred to by its path
and name. For example, the C++ Source shown in fig. 3.4 is addressed by the name
’<Root>/AudioIn’. <Root> refers to the lowest layer of the model. Every subsys-
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Figure 3.8.: From Matlab/Simulink to Chronos Realtime

To integrate a Simulink Model into Chronos Realtime it has to be compiled into a DLL and loaded into
an instance of a Simulink Module executable. Matlab code may be integrated into the model if it complies

with the Embedded Matlab language subset.
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Figure 3.9.: SimulinkModel Class Interface

tem adds one hierarchical layer. If, hypothetically, the mentioned ’C++ Source’ was
located in the ’Panorama’ subsystem instead, it would be addressed by the path
’<Root>/Panorama/AudioIn’. Specification of the full path is necessary, since the
name of a block in Simulink doesn’t need to be unique within the whole model, but
only on the same layer - similar to how most modern filesystems work. When unsure
about the path or name of a particular port, getPortNameList may be used to find
the names of all available ports. Once a SimulinkModel::Port has been retrieved, it
may be used to get data into or out of the model, depending on its PortType. Note
that a SimulinkModel object does not hold a thread of its own, but needs to be driven
externally by user code. Every time SimulinkModel::oneStep is called, simulation
time of the model moves forward by its smallest internal sample time step. It is
important to keep in mind that in a multi-rate system, not every in- and outport will
be updated at every sample instant. For this reason the Port class offers a method
PortBase::isUpdated to query for the availability of new input data at an input
port, or new output data at an output port. By utilizing these methods an unknown
Simulink model may be handled quite conveniently and generically. Note that for an
input port to the model (PortBase::SL IN), the next frame of data has to be written
to the port as soon as PortBase::isUpdated returns false. Data has to be written
using the PData T* returned by Port<PData T>::getDataToWrite. On the other hand,
for an output port of the model (PortBase::SL OUT), the next frame of data should
be read as soon as PortBase::isUpdated returns true. Data has to be read using
the PData T* returned by Port<PData T>::getDataToRead. In principle model ports
could also be dealt with according to their respective sample times, instead of calling
PortBase::isUpdated every time step. However, this approach would make a correct
execution of a general model a lot more involved.
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Figure 3.10.: SimulinkModel::Port Class Interface

26



3. From MATLAB/Simulink to Chronos Realtime

Listing 3.1 shows a simple example of how the GainPan16 model, developed in
section 3.1.1 could be driven directly from a C++ application. Although fully functional,
note that for a general multi-rate system, having multiple input and output ports,
this loop would need to be a lot more intricate, requiring an appropriate flow-control
algorithm. However, the basic principles for interfacing the model remain the same in
all cases.

Listing 3.1 Chronos DLL target C++ example

1 # include <iostream>
2 # include <simulink model . h>
3

4 i n t main ( i n t argc , char ∗argv [ ] )
5 {
6 t r y
7 {
8 auto our model = SimulinkModel : : CreateModelInstance ( ”GainPan16 . d l l ” ) ;
9 auto audio in = our model−>getPort<short >(”<Root>/AudioIn” ) ;

10 auto audio out = our model−>getPort<short >(”<Root>/AudioOut” ) ;
11 while ( our model−>getCurrentTime ( ) < our model−>getFinalTime ( ) )
12 {
13 std : : vector<short> some data = generateData<short >( audio in . getFrameSize ( ) ∗

audio in . getSignalWidth ( ) ) ;
14 / / l e t ’ s p r e t e n d t h e g e n e r a t e D a t a f u n c t i o n g e n e r a t e s N i n p u t
15 / / samples , where N i s s p e c i f i e d by t h e f i r s t paramet e r , and t h e
16 / / sample d a t a t y p e i s g i v e n by t h e t e m p l a t e argument
17 std : : copy ( some data . begin ( ) , some data . end ( ) , audio in . getDataToWrite ( ) ) ;
18 / / s i n c e GainPan16 i s a s i n g l e −r a t e sys t em
19 / / we can r e a d and w r i t e d a t a on e v e r y t ime s t e p
20 / / o t h e r w i s e we s h o u l d on ly w r i t e d a t a i f ! i s U p d a t e d ( )
21 / / a f t e r c a l l i n g ge tDataToWri t e ( ) , i s U p d a t e d ( ) w i l l r e t u r n t r u e
22 / / u n t i l t h e w r i t t e n d a t a has been consumed by t h e model
23

24 i f ( ! our model−>oneStep ( ) )
25 break ; / / s ometh ing went wrong
26

27 std : : copy ( audio out . getDataToRead ( ) , audio out . getDataToRead ( ) + audio out .
getFrameSize ( ) ∗ audio out . getSignalWidth ( ) , some data . begin ( ) ) / / f o r
c o n v e n i e n c e we j u s t r e u s e t h e s o m e d a t a v e c t o r

28 / / i f i t was a mult i−r a t e sys t em we s h o u l d c h e c k i f
29 / / t h e p o r t i s U p d a t e d ( ) b e f o r e r e a d i n g from i t
30 }
31 / / n o t e t h a t no c l e a n u p i s r e q u i r e d , t h e d l l and a l l
32 / / a l l o c a t e d memory a r e f r e e d a u t o m a g i c a l l y
33 }
34 catch ( const std : : except ion &exc )
35 {
36 std : : c e r r << ” Exception : ” << exc . what ( ) << std : : endl ;
37 }
38 return 0 ;
39 }

One more feature of the API worth mentioning is the ability to access tunable param-
eters of the model. The method getParameter returns a reference to the parameter
specified by the given index. Which parameter corresponds to which index may
be found using getParameterNameList. The parameter reference is directly modi-
fiable by use of the assignment operator. Any applied changes take effect on the

27



3. From MATLAB/Simulink to Chronos Realtime

Figure 3.11.: PerClass Simulink Model

Example illustrating the use of the developed PerClass Simulink block

next call of oneStep. Since every parameter in Simulink may potentially be a matrix,
getParameter may optionally be supplied with a row and column index, enabling
a direct access to an arbitrary matrix element. Note that the indices in this case are
zero-based, as common in C++.

3.2. PerClass Integration

PerClass is a toolbox used for classification and pattern recognition tasks (see sec-
tion 2.2.7). A perClass pipeline, taking features as inputs and producing classification
results on its outputs, may be developed and exported to a .ppl file using MATLAB. A
custom Simulink block for loading and executing these .ppl files directly into a model
has been implemented in the course of this thesis. From there the pipelines may easily
be integrated into a Chronos Realtime application, by making use of the formerly
described DLL target (see section 3.1). Figure 3.11 illustrates a simple, but typical
instance of a model that may be used for a classification task within a Chronos Realtime
application. To make the example more instructive, a simple feature extraction stage
has been included (alternatively the features might already have been calculated in
an external Chronos module). The incoming signal is reframed using a hop size as
specified by the buffer parametrization. Three simple features are calculated and sent
into the classification pipeline. To configure the perClass block, only the license path
and the .ppl file to be used need to be specified. Finally the classification result is
relayed via a C++ Sink (as explained in section 3.1.1).
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This chapter will provide a detailed overview of the architecture and application flow
of a Chronos Realtime application1. The currently implemented core components will
be introduced and their role within the framework explained. Simplified UML-like
(Unified Modeling Language) class- and sequence-diagrams will be used to summarize
and exemplify the most important interfaces. It should be noted that these diagrams
are used for documentation of existing code only and are not complete in the sense of
a software architecture model.

4.1. Fundamental Concepts

To better understand how the different components play together, it is expedient to
first gain an insight into underlying concepts. The general flow of a Chronos Realtime
application may be characterized as follows:

• acquire input data
• process acquired data
• provide processed/transformed data or control signals

In most cases input data will be captured on-line from hardware sensors like micro-
phones, accelerometers or video cameras. However, the data may similarly stem from
a TCP stream or a file. The data entering the system is then processed as defined by the
application engineer. For instance the data might run through a pattern recognition
pipeline, providing classification results on its output. These results might either
be written directly into a file or passed on to some sort of external interface. The
processing step can however be made arbitrarily complex and potentially consist of
several hierarchically structured stages. In Chronos Realtime data is generally handled
as stream and referred to as Data Stream (section 4.4). Components that handle Data
Streams in one way or the other are referred to as Data Modules (section 4.3). A Data
Module supplying data streams to other modules is called Data Provider, a Data Module
taking streams as input Data Client. A combination of both is referred to as Data
Transducer (see fig. 4.1).

1It is important to note that the Chronos Realtime framework is under constant development. The
current version (and the one described within this document) is 2.0
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Figure 4.1.: Data Module Types

Generally a Data Module is an executable of its own, albeit it is be possible for one
executable to contain several DataModule objects, if it appears sensible to do so. Each
Data Module implements one specific functionality and may potentially be executed
on a separate machine. To keep it general, a Data Module does not have any apriori
knowledge about which other Data Modules it is connected to. In other words, a general
Data Module will run idle after startup, effectively doing nothing until prompted to do
otherwise. The component responsible for this task is the Chronos Registry (section 4.2).
It is the only component invariably present in any Chronos Realtime application and is
in charge of configuring Data Modules and establishing streams in between them. The
Registry itself is configured by the user via schema based XML configuration files. It
is also possible to add configurations during run-time via API calls. The subsequent
sections will delve into this subject in more detail.

Since a Chronos Realtime application generally consists of several executables on
potentially more than one machine it is conceivably useful to have a way of starting
and stopping all of them via a single command. This may be achieved by setting up
an IceGrid application (part of the ICE middleware, see section 2.1.2). An IceGrid
application is configured through an XML file, specifying which executables to run
on which machine. Each involved machine, also referred to as node, needs to host an
IceGrid daemon with sufficient rights to launch respective executables (called servers
within IceGrid). IceGrid may also be used to monitor the different nodes and states of
each server.

Functionality of a Chronos Realtime application is generally not dependent on the
time-frame or order in which its different components are started. It is therefore
entirely possible to launch some or all of the involved executables by hand if desired.
The design is robust towards component failures due to hard- or software crashes, in
that a restarted machine or module may be reintegrated into a running system at any
point in time. This is due to a Data Module never expecting the presence of any other
module (except the Registry) and the inherent expectation that any remote method
invocation might potentially fail at any point in time.

4.2. Chronos Registry

The Chronos Registry constitutes the heart of any Chronos Realtime application. It is
responsible for configuring Data Modules and setting up streams in between them.
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4.2.1. Overview

Since a Chronos Realtime application is generally composed of a number of generic
modules, an authority is required to make them cooperate suitably for a specific
task at hand. This is the Chronos Registry’s main purpose. The knowledge of how
exactly the modules need to be interconnected has to be provided by the user or
application engineer. Static configurations (streams that should be active from start-up
to tear-down) may be read from configuration files on disk, dynamic configurations
(on-demand streams) will generally be supplied to the Registry via its API. The
format in which the Registry expects its configuration files is specified according to
purpose-built XML schema definitions. Two different types of configuration files are
to be distinguished:

• Module Configurations (section 4.2.3)
• Channel Configurations (section 4.2.4)

All configurations accepted by the Registry are stored in a database (section 4.2.5) to
make them permanent. This way the desired application state may be restored on
reboot, in case of a crash or power outage. Data Modules do not need to remember
their states as they will be reconfigured by the Registry upon incidental restarts.

Every Data Module is required to register at the Registry after start-up, announcing its
name and the ICE specific DataModule-proxy (which is containing network address).
For this to be possible, the Registry’s location must be known beforehand. This is
achieved by utilizing the lookup service provided by IceGrid. The Chronos Registry
itself must be registered as a ”well-known object” [13e] named CXR by convention.
Every other server launched within IceGrid is then able to automatically retrieve the
Registry’s proxy. A component started outside of the grid needs to be provided with
the address of the IceGrid locator via command line parameter or configuration file,
as it would otherwise not be able to resolve the Registry’s network address.

Once a Data Module has successfully registered, it will receive its configuration by
the Registry via corresponding API calls. Each Data Module is identified by a unique
name, which may be set via command line arguments when launching the respec-
tive executable. The supplied identifiers are used by the Registry to assign correct
configurations to the different Data Modules. Note that the configurations held by
the Registry are independent of hardware/network structure. In other words, it is
irrelevant to the application, which machine a particular module is running on. Since
modules are identified by name, the exact distribution of executables among different
machines does not have to be laid out beforehand and may change dynamically during
run-time.

Figure 4.2 exemplifies the process of Data Module registration. Communication is initi-
ated by the Data Module, in this example a Data Client2, by calling the Registry method

2the fragments demonstrated here equally apply to both, Data Clients and Data Providers
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Figure 4.2.: Data Module Registration

The sequence diagram shows the basic process of a Data Module registering at and getting configured by
the Chronos Registry

registerDataModule3. The Registry stores the given information in its database and
looks for module configuration entries matching the provided identifier (which is
embedded into the supplied proxy parameter). If the query is successful, the module is
configured by an according number of calls to the setParameter method. A successful
configuration completes the general registration process and the module is ready for
operation. In this case Registry proceeds to check for any stream-related configuration
assignments associated with the newly available module. These may trigger one ore
several of three different actions:

• Ask the newly registered module to publish specific streams
• Tell the newly registered module to stream data to another, already registered

module
• Tell an already registered module to stream data to the newly registered module

Section 4.4 will elaborate on the process of streaming in Chronos Realtime.

At some point, a registered Data Module might have to terminate. Before shutting
down, the module is required to call unregisterDataModule, to facilitate a clean
continuation of application flow. However, due to the fact that a variety of failures
may occur at any point in a distributed system, the unregister call may become lost.
It is therefore allowed to re-register a module with an identifier already present in
the Registry’s database. In this case, the Registry assumes that the formerly registered
module has become inoperative and carries out a complete deregistration before
accepting the new module with the same identifier.

3methods and parameters applied here are described in more detail in sections 4.2.2 & 4.3
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Figure 4.3.: Chronos Registry ICE API

Due to the central role the Registry plays within a Chronos application, it is crucial
to ensure a stable and responsive behavior. To this end, a set of worker threads is
maintained internally, asynchronously handling each API call via a queuing system.
This paradigm is also referred to as the worker-crew model [GSS02], which has been
slightly extended to incorporate a finite state machine [HS01] for handling different
execution states. On the one hand it allows for a fast response time and independent
handling of parallel requests, on the other hand, resources are reserved ahead of
time, preventing failures in times of heavy load (legitimate or due to a malicious
attack). The maximum job queue length may be restricted so that excessive requests
could potentially get rejected. This however is not a situation that should occur under
normal operating conditions.

4.2.2. ICE API

All of the Registry’s API calls relevant to a Data Module developer are documented in
figure 4.3. In the following they will be itemized and their purpose quickly summa-
rized.

• registerDataModule: Invoked by Data Modules to register at startup.

– Parameters:
1. moduleProxy: Contains identifier and address of the module to register.
2. moduleVersion: Contains version of the module to register. Allows the

Registry to detect and handle outdated Data Modules accordingly.
3. moduleParameters: Describes module specific parameters by name

and type. Additionally a parameter may be marked as required or
optional. As long as not all required parameters have been configured,
the Registry will not permit any stream configurations involving this
module.

• unregisterDataModule: Invoked by Data Modules to unregister on shutdown.

– Parameters:
1. moduleName: Identifier of the module to unregister.
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• getDataModule: Used to retrieve the proxy of an already registered Data Module
by name. Calling this method from other Data Modules should generally be
avoided since it negatively impacts generality. However, in rare cases it might be
necessary for an application specific module to make use of this feature.

– Parameters:
1. moduleName: Identifier of the module whose proxy should be retrieved.

• configureDataModule: Used to add a Module Configuration for the specified Data
Module.

– Parameters:
1. moduleName: Identifies the module to configure.
2. moduleConfig: XML string containing the desired Module Configuration

(see section 4.2.3).
3. mode: AssignmentMode for the given configuration. Possible modes are:

∗ IMMEDIATE: Only use this configuration if the module is currently
registered

∗ ONCE: Make sure to apply this configuration either immediately or
next time the module registers

∗ PERMANENT: Keep this configuration permanently, irrespective of
how often the concerned module registers and unregisters

• configureChannels: Used to add a Channel Configuration for the specified Data
Module

– Parameters:
1. moduleName: Identifies the module to configure.
2. xmlChannelConfig: XML string containing the desired Channel Config-

uration (see section 4.2.4).
3. mode: AssignmentMode for the given configuration. Possible values are

described under configureDataModule.

• setModuleParameter: Used to set a module parameter directly, instead of using
an XML string.

– Parameters:
1. moduleName: Identifies the module to configure.
2. parameterName: Name of the parameter to set.
3. param: Value of the parameter to set. The appropriate Parameter sub-

class has to be chosen according to the its data type.

• registerDataChannels: Invoked by Data Providers to make their provided chan-
nels available for subscription.

– Parameters:
1. channels: Global identifiers of the channels to register.
2. provider: Proxy of the Data Provider.
3. rtStream: Indicates if the stream is subject to real-time constraints.
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4. paramSpecs: Describes RequestParameters that are supported or re-
quired when subscribing to the specified channels.

• unregisterDataChannels: Allows a Data Provider to unregister formerly regis-
tered channels.

– Parameters:
1. channels: Global identifiers of the channels to unregister.

• request: Invoked to supply a Data Client with input streams.

– Parameters:
1. requestSpec: The RequestSpecification holds all parameters nec-

essary for initialization of one or several data streams to a given
DataClient interface.

2. mode: AssignmentMode for the given request. Possible values are de-
scribed under configureDataModule.

• cancel: Used to cancel one specific data stream.

– Parameters:
1. streamId: Identifier of the stream to be canceled. If the stream does

not exist, the invocation will be ignored

4.2.3. Module Configuration

Some Data Modules may require configuration of certain parameters before being able
to process data. For example, an AudioCaptureUnit (section 5.1) needs to know which
audio device to capture from. The exact parameters required by one particular module
are very specific to its type, but the principle of configuration can be generalized.
An XML schema definition has been developed to enable a uniform approach to
module configuration. The Registry is capable of parsing XML strings complying
with this schema and storing the information in its database. If the respective mod-
ule is registered at the time the Registry has extracted the relevant information, it
will be configured immediately, otherwise configuration is part of the registration
procedure.

Listing 4.1 Module Configuration example for an AudioCaptureUnit

1 <ModuleConfig xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”>
2 <Parameter name=” Device ” x s i : t y p e =” S t r i n g ”>ASIO F i r e f a c e USB</Parameter>
3 <Parameter name=”SampleRate” x s i : t y p e =” Float64 ”>48000</SampleRate>
4 </ModuleConfig>

Listing 4.1 shows an example of a Module Configuration for an AudioCaptureUnit. As can
be seen, the format is kept very straightforward. The XML file consists of a sequence of
Parameter elements, enclosed by a ModuleConfig element. Parameter simply defines
a key/value pair, where the ”value” may assume one of several data types. The ”key”
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is specified by the name attribute. The ”value” corresponds to the text enclosed by the
Parameter element and is interpreted according to the type defined by the xsi:type

attribute. There are five different data types allowed in this context:

• String (Text)
• Float32 (32-bit floating point)
• Float64 (64-bit floating point)
• Int32 (32-bit integer)
• Int64 (64-bit integer)

Which parameters are allowed or even required is defined by the Data Module devel-
oper. Generally they should be known to a Chronos application engineer beforehand
(e.g. by documentation), however, their specification is transmitted to the Registry
during registration, so information about them may be queried from the database if
necessary.

4.2.4. Channel Configuration

Everything related to streaming between different Data Modules is defined by the
so called Channel Configuration. Similar to the Module Configuration an XML schema
has been defined, sufficiently expressive to carry out the entire streaming setup in
human readable form. It does however offer a more complex functional range and will
therefore be presented in several, increasingly elaborate examples. When it comes to
streaming, a clear distinction has to be made between Data Providers and Data Clients.
The former ones are able to offer and dispatch data streams, the latter ones request
and process them.

Initially, provider-specific configurations shall be illustrated, as these are responsible
for making streams available to other modules in the first place. The question might
come to mind as to why provided streams need configuration, since a provider could
simply register all streams it is capable of supplying. However, apart from the fact
that it often is not clear what exactly to provide even for a quite specific component,
another important aspect is the need to assign a unique identifier to every subscribable
stream. This has to be done by the application engineer, since identifiers cannot be
auto-generated in a semantically sound way for an unknown application. In other
words, it is necessary to tell a provider what exactly to provide and which names to
use for the provided channels. This may be achieved using the Provide tags within
a Channel Configuration XML string. Listing 4.2 shows a first, simple example for
configuration of an AudioCaptureUnit.
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Listing 4.2 Channel Configuration example-1

1 <ChannelConfig xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”>
2 <Provide>
3 <Channel>
4 <GlobalID>Accel0 Z</GlobalID>
5 <DataType>AUDIO</DataType>
6 <Loca lDescr ip t ion>
7 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ”>0</Parameter>
8 </Loca lDescr ip t ion>
9 </Channel>

10 <Channel>
11 <GlobalID>Accel1 Z</GlobalID>
12 <DataType>AUDIO</DataType>
13 <Loca lDescr ip t ion>
14 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ”>1</Parameter>
15 </Loca lDescr ip t ion>
16 </Channel>
17 <Channel>
18 <GlobalID>Accel2 Z</GlobalID>
19 <DataType>AUDIO</DataType>
20 <Loca lDescr ip t ion>
21 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ”>2</Parameter>
22 </Loca lDescr ip t ion>
23 </Channel>
24 </Provide>
25 </ChannelConfig>

The example describes the case where three tri-axial accelerometers [Gau02] are
connected to an audio interface. The z-axes of the different sensors are connected to
the physical channels 0, 1 and 2 of the audio interface. Every Channel defined in the
configuration may be subscribed to separately. The GlobalID and DataType values
characterize the channel globally within Chronos Realtime. No other channel is allowed
to share the same GlobalID/DataType tuple. Valid enumeration values within the
DataType element are:

• AUDIO
• VIDEO
• EVENT
• CONTROL
• CUSTOM

This distinction facilitates certain Data Clients in interpreting the incoming data
correctly and similarly aid the user in interpreting the configuration file.

The LocalDescription element defines the local mapping of the channel. It is specific
to the provider implementation and defined by a set of parameters. In the case of
an AudioCaptureUnit it simply consists of a single integer parameter, corresponding
to the channel number within the audio device driver. Other providers might need
different local descriptions, possibly consisting of several parameters. As in the Module
Configuration case, a parameter may take on one of the five data types:
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• String (Text)
• Float32 (32-bit floating point)
• Float64 (64-bit floating point)
• Int32 (32-bit integer)
• Int64 (64-bit integer)

For large-scale applications it can become very tedious to itemize every single channel
by hand. Most of the time, a high quantity of similar sensors are processed by a
Chronos Realtime system, hence it seems natural to index them by numbers, as seen in
the example at hand. To alleviate the problem of unmaintainably large configuration
files, a short-cut method has been devised. A more compact version of the previous
example, giving rise to the exact same outcome, is illustrated in listing 4.3. It should
be noted, that not a single line needs to be added to provide an arbitrary number of
like-wise channels.

Listing 4.3 Channel Configuration example-2

1 <ChannelConfig xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”>
2 <IndexDef in i t ion name=” chIdx ”>0 : 2</IndexDef in i t ion>
3 <Provide>
4 <ForEach index=” chIdx ”>
5 <Channel>
6 <GlobalID>Accel [ chIdx ] Z</GlobalID>
7 <DataType>AUDIO</DataType>
8 <Loca lDescr ip t ion>
9 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ” indexed−by=” chIdx ”/>

10 </Loca lDescr ip t ion>
11 </Channel>
12 </ForEach>
13 </Provide>
14 </ChannelConfig>

Two new element types have been introduced for this purpose, IndexDefinition and
ForEach. These constructs play together to enable a short-cut method for channel
enumeration. IndexDefinition allows the user to define a sequence of integer num-
bers in a MATLAB-like syntax. It may consist of white-space separated integers or
sequence expressions as the one shown in the example listing. There is no limit to how
many different indices may be specified within one configuration, but their names
must be unique, as is enforced by the schema definition. Some more valid examples
are shown in listing 4.4, all expanding to the same sequence of numbers. For more
information on the colon-syntax, [Xen99] or a similar guide may be consulted.

Listing 4.4 IndexDefinition example

1 <IndexDef in i t ion name=” chIdx ”>0 1 2 4 6</IndexDef in i t ion>
2 <IndexDef in i t ion name=” chIdx2 ”>0 : 2 4 6</IndexDef in i t ion>
3 <IndexDef in i t ion name=” chIdx3 ”>0 : 1 2 : 2 : 6</IndexDef in i t ion>

The concept of the ForEach element is borrowed from the well-known for each construct,
common in many high-level programming languages. In the context of Chronos Channel
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Configurations it is meant to read: For every element in the given index, repeat the
channels enclosed by the ForEach block and replace designated expressions by the
corresponding index value. In other words, the enclosed channels are repeated as
many times, as the index has elements.

An expression of the form [index-name] within a GlobalID element will be expanded
to the respective values of the specified index. However, only an index traversed by an
enclosing ForEach (as specified by its index attribute) may be used, or the expression
will be ignored. The same holds true for Parameter elements of type String. For
example the following parameter could be specified within the LocalDescription of
listing 4.3:

1 <Parameter name=”PortName” x s i : t y p e =” S t r i n g ”>AudioIn [ chIdx ]</Parameter>

As before, the [chIdx] expression is expanded accordingly. This differs from the
way other parameter types incorporate the indexing mechanism, as can be seen in
listing 4.3. Instead of the expression in square brackets, an indexed-by attribute is
adopted. The reasons for this seeming inconsistency are twofold. One of them is
schema validation. Would it be permissible to enter a string as a value of a numeric
type, like:

1 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ”>[ chIdx ]</Parameter>

it would not be possible to validate the data type correctly in case no indexing is used,
making the configuration more prone to errors. Another reason is the ambiguity in
interpretation of composite expressions. For example it is not immediately clear what
an expression like:

1 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ”>4 [ chIdx ]6</Parameter>

should represent, as it is not natively interpreted as a string.

The functional range of described ForEach elements has further been extended by
the possibility of nesting, which can be a useful in situations when multi-indexing
is needed (A nested ForEach loop is illustrated in listing A.1). Although the concept
is quite useful as presented, another feature has been implemented to make it more
powerful. It is called indirect indexing and has been devised to cover the following
use-case: Consider the tri-axial sensors to be connected to the audio interface in a
different way this time. Instead of using the physical channels 0, 1 and 2, they are
connected to 2, 5 and 8 (as the X- and Y-axes have been plugged in between). Therefore
a second index needs to be defined, however, it needs to be addressed by the same
ForEach block as the index chIdx. To express this relation, the symbol @ has been
introduced as a way to chain an index expression to a specific ForEach. It is written
[index1@index2] and can be read as ’insert the value that index1 takes at the position
of the currently running index2 counter’. In other words, index1 and index2 are
synchronously traversed element by element. Listing 4.5 displays the use of indirect
indexing as described. Note that in this example devIdx must obviously contain at
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least as many elements as chIdx, otherwise a runtime error will occur. Semantic errors
like this are beyond the scope of schema validation.

Listing 4.5 Channel Configuration example-3

1 <ChannelConfig xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”>
2 <IndexDef in i t ion name=” chIdx ”>0 : 2</IndexDef in i t ion>
3 <IndexDef in i t ion name=”devIdx”>2 : 3 : 8</IndexDef in i t ion>
4 <Provide>
5 <ForEach index=” chIdx ”>
6 <Channel>
7 <GlobalID>Accel [ chIdx ] Z</GlobalID>
8 <DataType>AUDIO</DataType>
9 <Loca lDescr ip t ion>

10 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ” indexed−by=”chIdx@devIdx”/>
11 </Loca lDescr ip t ion>
12 </Channel>
13 </ForEach>
14 </Provide>
15 </ChannelConfig>

This finishes the discussion on provider configuration and leads to examination of
its counterpart, the request configuration. It is responsible for the actual establish-
ment of data streams between two modules. The syntax is strongly related to the
one introduced for providers, with a few extensions and modifications. A first ex-
ample (listing 4.6) will demonstrate how a client would request the signal of the 0th
acceleration sensor’s z-axis, as it has been defined in the previous examples.

Listing 4.6 Channel Request example-1

1 <ChannelConfig xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”>
2 <Request>
3 <Channel>
4 <GlobalID>Accel0 Z</GlobalID>
5 <DataType>AUDIO</DataType>
6 <ChannelSpec i f i cs type=” TimeSeries ”>
7 <SampleRate>48000</SampleRate>
8 <SampleFormat>INT16</SampleFormat>
9 <FrameSize>1024</FrameSize>

10 <StreamFormat>PCM</StreamFormat>
11 </ChannelSpec i f i cs>
12 <ProcessingParameters>
13 <Parameter name=”Channel” x s i : t y p e =” I n t 3 2 ”>0</Parameter>
14 </ProcessingParameters>
15 </Channel>
16 </Request>
17 </ChannelConfig>

As before, the GlobalID and DataType elements are present to identify the channels,
except they are enclosed by a Request element in this case. The Registry uses these
tuples to look up the corresponding providers and to relay stream establishment to
them. If the channels have not been registered, or a provider is unavailable at request
time, the registry will store the request and prompt the provider to handle it as soon as
it becomes available. Entirely new is the ChannelSpecifics element, used to describe
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what kind of stream the client would like to receive in more detail. The allowed child
elements are dependent on the type attribute. Table 4.1 gives an overview of the
currently supported combinations.

Table 4.1.: ChannelSpecifics and child elements currently allowed in an XML channel config

type allowed child elements

TimeSeries

SampleRate
SampleFormat (in Hz)
FrameSize (in samples)

StreamFormat

ImageSequence

Width (in pixels)
Height (in pixels)

MaxFrameSize (in bytes)
FramesPerSecond

Compression

The effect induced by these specifications is the guarantee that either the stream
will comply exactly to the given requirements, or a FormatNotSupported exception
will get thrown by the provider and an according error logged by the Registry. A
provider might be capable of adapting to some or all of the specified attributes, but
it is not obligated to. For example, an AudioCaptureUnit may only sample at one
specific sample-rate at a time, which is specified in its Module Configuration and cannot
serve streams at differing rates. The application engineer is responsible for ensuring a
compatible overall configuration. However, in case of a configuration error, the logging
mechanism of the framework will generally be able to pinpoint the source of failure
quite accurately, to aid in solving potential problems.

Many providers are able to choose ChannelSpecifics for a stream automatically, so
most of the time, they could be omitted from the Channel Configuration. Note however,
that in doing so, the application is prone to unintentional behavior (e.g. due to a
wrong assumption or due to changed default behavior induced by a software update)
whose cause might be difficult to track down. Therefore it is recommendable to always
fully specify the ChannelSpecifics for each channel.

For audio or other one-dimensional streams, TimeSeries specifics are used. The
SampleRate and FrameSize elements are self-explaining. The SampleFormat expresses
the datatype of the samples within a frame of data and might take on one of the
following enumeration values:

• INT8 (8-bit integer)
• INT16 (16-bit integer)
• INT24 (24-bit integer)
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• INT32 (32-bit integer)
• FLOAT32 (32-bit floating point)
• FLOAT64 (64-bit floating point)

Note that 24-bit integers are explicitly supported, since it is a very common resolution
in professional audio applications and transmitting these streams in a 32-bit framing
would be wasteful.

Finally, StreamFormat may contain the name of a codec, in case the stream does
not conform to the default Chronos streaming format. This feature is intended for
future extensions and has not been put to practical use yet. Similarly, the Compression

element for image sequences specifies the format used to encode the images contained
in the frames to stream.

This leads to the next major new element within the example listing, the Processing-

Parameters. They can be thought of as being the counterpart to the formerly men-
tioned LocalDescriptions, but for use with Data Clients. Commonly they are used
to map a channel to a client-specific resource. In listing 4.6, which is a configuration
for an audio playback module, the processing parameter Channel is used to map the
data of Accel0 Z to the 0th channel of the audio output device. However, the semantics
of these processing parameters may go beyond just establishing a channel mapping. A
client might define any number of allowed parameters, affecting the way the received
stream is going to be processed.

As long as a stream is sufficiently characterized by its provided Channel specification,
the elements discussed so far suffice to assemble any sort of streaming configuration
between all registered Data Modules. However, there are situations when the GlobalID

and DataType parameters are not sufficient to specify the exact content a stream
should contain. This is frequently the case for Data Providers offering data not captured
in an on-line manner, but rather data from a permanent storage or buffer. An example
of this would be a file reader, providing audio from a number of WAVE files. The files
might potentially be very large and a client might not want to receive all of the data,
but only specific channels or time segments. To support this possibility the request
specification has been extended by the RequestParameters element. This allows for
an arbitrarily detailed characterization of what exactly should be supplied. A provider
may support any number of request parameters, but in general it is recommendable
to abstain from requiring any more than absolutely necessary, as it negatively affects
generality.

A final example displaying a complete Channel Configuration XML file can be found in
the appendix (listing A.1). It is meant to display all discussed features by example of a
Simulink Module Data Transducer (see section 5.3). It has been constructed to give an
overview and does not necessarily constitute the simplest possible or recommendable
solution when it comes to application design. Specifically it would not be necessary to
create a separate output port for every single band of the MFC. The corresponding
simulink model addressed by the channel configuration is shown in figure 4.4. The
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Figure 4.4.: Example of a Simulink Model used for Feature Extraction

scenario motivating this example may be described as follows: There are 16 stereo
WAVE files provided by a Chronos File Reader (see section 5.6), so in total there are
32 single channels available. The audio data contained within these files are to be
streamed to the aforementioned Simulink Module in real-time simulation mode (so the
frames will arrive at a frequency dependent on the sample rate), which is particularly
useful for demonstrations and testing. The model extracts 12 MFC coefficients and
the zero-crossing rate of all 32 audio signals and makes these features available to
other Chronos clients in the system. To get more insight on the exact meaning of the
specific LocalDescriptions, ProcessingParameters and RequestParameters used
in listing A.1 please refer to the corresponding Core Data Module descriptions in
chapter 5.
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4.2.5. Database Layout

The Chronos Registry uses a database backend to store information about all registered
Data Modules and their respective configurations. This has been implemented to allow
for a more stable operation of Chronos applications. The rationale behind this notion
is that the Registry corresponds to the Achilles heel of the architecture. If any other
component or even a whole server crashes, only the particular functionalities carried
out by the affected modules go missing. As soon as they are back online, they will
re-register and streams will be re-established. There are barely any other consequences,
since the modules’ states are administrated by the Registry. However, if the Registry
itself or the computer it is running on crashes, no new streams may be established and
no freshly started Data Modules may be configured during downtime. If the Registry
kept track of Data Modules in memory only, it would not be able to locate the ones
that have been registered before it went down, nor would it know if they had already
been configured - the application state would be corrupt and the failure could only be
recovered from with a full restart. On the other hand, when the state is stored on disk,
the Registry is able to proceed with little consequence.

In its current implementation, an SQLite database has been chosen as a backend. It is a
very lightweight, relational SQL database and shines in ease of use, since no additional
server application is required. The whole functionality is implemented within the
client and the storage consists of a simple file. The C interface has been encapsulated
so as to make a potential switch to another database system unproblematic.

Figure 4.5 illustrates the devised database layout. As can be seen it consists of 7 tables
representing the current state of configuration. The abbreviations PK and FK refer to
the terms Primary Key and Foreign Key respectively.

• DataModules (contains information about registered Data Modules)
• NativeConfigurations (contains XML module configurations)
• ChannelConfigurations (contains XML channel configurations)
• ModuleParameters (contains module parameters)
• ParameterSpecs (contains information about parameters as supplied by the

registered Data Modules)
• ParameterSets (contains information about how parameters should be grouped

together)
• RegisteredChannels (contains information about currently provided channels)

The ModuleId used as key in various tables is an internal identifier, created when a
new Data Module registers. It is not to be confused with the ModuleName, which is the
string a Data Module uses to identify itself. The essential difference between the two
is that the ModuleName entries serve as an identifier for any Data Module that might
register using this name, while the ModuleId refers to the one specific instance of that
is currently registered. Therefore the ModuleId values in the database may only contain
a valid value while a Data Module with the name ModuleName is actually registered.
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Figure 4.5.: Architecture of the SQL Database

Each box represents a table in the database, each entry a data element, the arrows represent relations
between the different tables.

This mechanism simultaneously allows to ascertain that a particular configuration has
already been assigned, as the Registry uses the ModuleId foreign keys to link to the
corresponding primary key only after associated operations have been successful.

4.3. Data Modules

Besides the Registry, a Chronos Realtime application consists of an arbitrary number
of Data Modules. These modules are responsible for the actual data streaming and
processing procedures.

4.3.1. Overview

Data Modules are designed according to a variation of the publish/subscribe pattern
[HW03], to allow for a decoupled connection establishment between individual mod-
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Provider
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request
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Figure 4.6.: Relation between Registry, Providers and Clients

Although the Registry is responsible for administration and establishment of the data streams, the
streaming process itself is carried out peer-to-peer from Providers to Clients.

ules. This enables them to be implemented in an application-agnostic manner. The
Chronos Registry plays the role of a mediator in this context.

Three different types of Data Modules can be distinguished:

• Data Client,
• Data Provider,
• and Data Transducer,

all of which implement a common DataModule interface (see fig. 4.7). The terminology
has been changed with respect to the usual publish/subscribe wordings, as there are
subtle semantic differences. In particular a stream in Chronos Realtime may be of finite
duration and is regarded as completed after a successful transmission. It is therefore
incoherent to speak of a subscription in that respect, instead the term request has been
chosen. Furthermore it should be noted, that the Chronos Registry is never targeted
by any data streams. It is not the case that Providers stream their data to the Registry
for a further distribution to interested Clients. Instead the streams are established
peer-to-peer. Several Clients may request the same channels (also referred to as topics,
in the publish-subscribe nomenclature), but they all receive their data directly from
the Provider. Figure 4.6 illustrates these relationships.

Note that Clients and Providers are still decoupled in the sense that they don’t need to
have any a priori knowledge of each other nor does a Client have to poll for availability
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Figure 4.7.: Data Modules Class Diagram

of a specific data stream. Instead, a provider publishes its available channels (as
configured by the user) at the Registry. Similarly, a Client requests desired channels
from the Registry. The Registry stores the associated information and when both, Client
and Provider of a particular set of channels are available at the same time, tells the
Provider which channels to stream and where to stream them to. The implication of
this mechanism is that data streams do not have to take unnecessary intermediate
routes but are established directly between two participating hosts. It requires that a
direct route is available and also has the disadvantage that the streaming backend of
a Provider has to cover a more complex functionality. This problem however can be
mitigated by implementation of a reusable class in the Chronos core library, that may
be employed by all Data Providers. For C++ these requirements have been incorporated
into the Stream and RtDispatcher classes of the core library. From a user’s point of
view, a Data Module is an executable, responsible for one particular functionality. It
may be ”connected” to other modules by configuration, to realize a desired signal
flow. From a programmer’s point of view, this executable implements at least one
of the interfaces shown in fig. 4.7 and registers it at the Chronos Registry accordingly.
Common to all Data Module types is the setParameter method, which is invoked
by the Registry to set module specific configuration parameters, e.g. as specified by
the Module Configuration (section 4.2.3). Subsequent scetions will elaborate on the
differences between available Data Module types.

A Chronos application consists of an arbitrary number of Data Modules, working
together to solve a problem. In general, an application engineer has to implement
custom modules, according to the requirements of the particular use-case at hand.
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However, a number of concepts could be identified that are recurrent in many different
applications. These concepts have been distilled into a set of generic Core Data Modules
that may be reused for a wide variety of problems. Each one of them is listed and
described in chapter 5.

4.3.2. Data Provider

A Data Provider is responsible for supplying the application with data streams. These
may stem from either a live capture (on-line) or some sort of storage (off-line). The
distinction is significant, since it has implications on the streaming process. An on-line
stream is inherently clocked and is transmitted exactly from the time on it has been
requested. Every subscriber receives the same data at the same time and rate (provided
it is able to process the stream at an adequate speed). An off-line stream on the other
hand provides more freedom to a requester. Since the underlying data is permanently
available, the client may not only choose which parts of the data to retrieve, but also
at which rate. It is therefore possible for different clients to receive different data
segments from the same storage at varying transmission rates, provided the Data
Provider is offering this functionality via its Request Parameters. A typical example for
an on-line stream provider is the AudioCaptureUnit (section 5.1). An example for an
off-line stream provider is the FileReader (section 5.6). An off-line stream provider may
offer the capability of simulating an on-line stream while this is not generally true
vice-versa, since an on-line stream is potentially infinite.

On a lower level a Data Provider is a program implementing the DataProvider interface
(see fig. 4.7). The interface is held very slim to keep it from being prohibitively difficult
to implement in any of the supported programming languages. However, it has been
found sufficiently complete to realize every component required so far. It consists of
the three methods

• provideChannels

• establishStream

• cancelStream

All of them are invoked exclusively by the Registry to control the provider’s behavior.

provideChannels is used to define what to provide and which global identifiers to use.
For example a capturing module needs to know what channels to capture from a given
hardware device. When the Provider has assured that it is capable of supplying the
specified data it notifies the Registry by calling its registerDataChannels method. The
main reason for this indirection is to supersede a Provider’s need for a configuration
file parser, simplifying the implementation of a custom component.

Only after the channels have been successfully registered, a corresponding stream
may be initiated. The Registry tells the Provider to do so using establishStream. The

48



4. Framework Application Architecture

RequestSpecification holds information about which channels to stream, including
potential Request Parameters, a proxy of the DataClient to stream them to and which
stream identifier to use. The stream identifier is generated by the Registry and globally
unique within a Chronos Application.

Finally, the cancelStream operation is used to abort a stream prematurely. The Provider
is still required to close the transmission cleanly by completing the last frame of data
and attaching an EndOfStream marker (see section 4.4).

4.3.3. Data Client

The components at the receiving end of data streams are referred to as Data Clients.
Most often they serve as an interface to the ”outside world”, i.e. data is leaving the
framework’s boundaries. Possible examples include relaying the received data to a
different protocol or writing it to some hardware device buffer or storage. Similarly
to the aforementioned Provider, a Client consists of a program implementing the
DataClient interface (fig. 4.7), which defines the operations

• initProcessing,
• processData,
• and cancelProcessing.

initProcessing is invoked by Data Providers with the intention of sending a new
stream of data. Its parameters contain all available information concerning the sched-
uled stream. Most importantly this includes the unique streamId (which is necessary
for the Client to support receipt of multiple streams in parallel) and the streamDetails
(describing the underlying data type and codec specifics). The processingParameters

are used to supply the Client with additional information on how to process the stream.
They are optional and may or may not be accounted for by a specific Data Client im-
plementation. If a Client does not support any of the given processingParameters it
is to silently ignore them. After analyzing the given information, a Client may choose
to accept or reject the stream via the boolean return value.

If the Client chooses to accept the announced stream by returning true, the Provider
will initiate the streaming process by consequent invocation of the processData

method. The streamId parameter is used to identify the stream each transmitted data
package belongs to. The FlowRequest return parameter is utilized for a simple type
of flow control and may take on one of the values CONTINUE, PAUSE or ABORT. Usually
the Client will process or buffer the data immediately and return CONTINUE to receive
the next frame. However, if the Provider transmits data at a rate faster than the Client
is able to handle, it may choose to return PAUSE, which makes the Provider poll and
retransmit the last frame until the Client is ready again. If processData responds with
ABORT, the Provider is to not send any more frames concerning the respective stream.
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This will generally be the case only after cancelProcessing has been invoked on the
DataClient or a fatal error has occurred.

Finally, cancelProcessing may be called by the Registry to immediately terminate
processing of a stream, deallocating all resources reserved for this particular stream.
Note that this is not the ordinary way to finish a streaming procedure, which consists
of a trailing EndOfStream frame, attached by the Data Provider (see section 4.4). While
a stream that is terminated from Provider side will still lead to a processing of all
frames in the pipeline (on the network and possible software buffers), invocation of
cancelProcessing will discard everything that has not been handled, which may be
desirable in some situations.

4.3.4. Data Transducer

A Data Transducer is an application implementing both, the DataClient and Data-

Provider interfaces. It does not provide any additional functionality. However, there
is a certain interdependency between the received and provided channels, that is,
the input is subject to some form of operation and made available at the output in
a transformed way. This is the typical processing module in Chronos Realtime. As
opposed to a normal Data Provider, its output streams are generally driven by its
inputs. Therefore the rate at which a Data Transducer will be able to stream its data is
typically dependent on the components preceding it in the data flow. This implies that
if any of the preceding modules fails or becomes unavailable, the output streams of
the Data Transducer may also be put on halt. The exact behaviour however is definable
by the implementor.

4.4. Chronos Streams

Streaming is the process of sequentially transferring data from a server (source) to
a client (sink). In Chronos Realtime the source must have DataProvider capabilities,
while the sink needs to implement the DataClient interface. As opposed to a regular
file, a stream does not necessarily have a determined beginning or end and is therefore
potentially infinite. Another property of a stream is, that it might be restricted to run
at a specific rate, either due to client or server constraints. It is therefore not expedient
to transfer a stream as fast as possible, but to adjust transmission rate to a value
adequate for both ends. This characteristic has been accounted for in streaming design
and implementation.

Although designed with audio in mind, Chronos Realtime is capable of handling
other types of data. Additionally, all these heterogeneous types may follow different
encoding schemes. For example, in one application it might be necessary to transfer
an uncompressed 24-bit audio stream, while in another case a heavily compressed
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stream might be sufficient or desired due to bandwidth constraints. Another valuable
feature is the ability to augment a stream of data with control or meta-information (see
section 4.4.2), as it allows for a frame-exact annotation or custom actions to be carried
out. It would not be possible for a Provider to invoke operations with frame-level
accuracy on a Client, if it wasn’t by embedding them directly into the stream.

Chronos Realtime streams might stem from either an on-line or off-line source. Although
conceptually similar, there exists a distinctive difference concerning availability of
data. While in an on-line scenario it is clear that a client will receive a stream starting
at request time, in the off-line case a client may want to retrieve arbitrary parts of
available data. The implications on the provider are significant, as in the case of
multiple clients, every one of them will receive the same data at the same point in
time in the on-line case, hence the same packets may be distributed to every client.
In the off-line scenario a provider needs to keep track of every single stream and
handle clients separately. This notion explains the distinction made between the two
cases. Chronos Realtime has been designed specifically with on-line streaming in mind,
whereas off-line streaming has been added as a secondary feature. This is reflected by
the architecture and implementation of several core components.

The streaming process itself, as implemented by the C++ core library, follows a semi-
synchronous design. Although remote invocations are carried out asynchronously,
meaning the caller does not wait for the callee’s response, subsequent packets are
never transferred concurrently. Instead, the next packet is prepared for transport and
sent immediately as a positive response of the last call is received. This is a rather
simple but powerful and safe scheme, enabling reactive flow-control. Albeit potential
for optimization in certain scenarios is conceivable, the performance achieved with
this approach has hitherto proven sufficient (see section 4.4.3).

4.4.1. Stream Establishment

A Chronos Stream is generally initiated by the Chronos Registry, either due to a Channel
Configuration file or due to an invocation of the Registry’s request method. The Registry
performs a lookup to locate the corresponding Provider and prompts it to begin the
streaming procedure by calling establishStream. The Provider prepares the necessary
resources and conveys information about the upcoming stream to the intended Client
via the initProcessing operation. If the Client accepts the transmission, the Provider
goes on to continuously call processData for as long as data is available. Since most
of the information describing the stream is conveyed via initProcessing, the stream
itself does contain only little overhead. The whole process is illustrated in figure 4.8.
The format used to package the data is described in section 4.4.2.
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Figure 4.8.: Example: Stream Establishment and Transmission

The sequence diagram illustrates the communication involved in a typical streaming procedure

4.4.2. Streaming Format

Data in Chronos is generally transported in chunks called frames. The class Frame

has been defined as a base for anything that should be carried by a Chronos Stream.
Since there are many different types of information that may be transferred, the Frame

class only serves as a placeholder for derived types. Its only member mTime carries
a timestamp, which is the only information all frame types have in common. Every
available frame type4 falls into one of two categories:

• DataFrame

• and ControlFrame,

both of which are derived directly from Frame.

As the name implies DataFrame is used to transfer some type of data. Internally this
data is simply stored as a vector5 of byte arrays, which allows for maximal generality.
It would have been possible to provide different types of frames for different types
of data, to simplify data access. However, this approach would require a Client to
implement different access methods for every supported data type and introduction

4as of Chronos Realtime Version 2.0
5The vector is used because a frame may contain multiple channels. Each entry of the vector

corresponds to one channel.
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Figure 4.9.: Different Types of StreamSpecifics

of a new type would necessitate an upgrade of all involved components. Albeit many
Clients need to interpret data of different types and handle them accordingly, there
are components that are entirely type agnostic (e.g. a binary file writer) and therefore
profit a lot from this design choice. The reason for using a vector lies in Chronos
Realtime’s inherent multichannel support. A stream may carry an arbitrary number of
synchronous data channels. These may represent all the same but also heterogeneous
modalities. Particularly in audio applications it is common to transport a high number
of synchronously sampled channels in parallel. The implemented structure simplifies
accessing and processing these channels separately. A DataFrame therefore contains
the member mDataChannels, which is indexed by a channel number to retrieve the
actual RawData byte buffer. If the Client intends to process incoming data it has to
interpret it according to its content type, which is specified by the parameters of
initProcessing. The byte-order has been stipulated as little endian, to avoid CPU
intensive conversions on x86 architectures.

More specifically, initProcessing supplies the client with StreamDescriptions

to describe a stream’s content. Every channel within a stream is represented by
a separate StreamDescription, containing the GlobalID, ChannelDataType and a
StreamSpecifics object. The StreamSpecifics class serves as a base for the de-
rived

• ControlSpecifics,
• ImageSequenceSpecifics,
• and TimeSeriesSpecifics.

Each of them contains parameters relevant to interpretation of the respective stream
type. The distinction occurs due to the different properties associated with the various
supported types of data. A client may use the ChannelDataType field to infer which
StreamSpecifics subtype to cast to. If the client operates in a non-interpreting way
(e.g. a binary writer), the StreamSpecifics can be entirely ignored.
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Figure 4.9 illustrates the different types of Specifics. Most attributes are self-explaining.
The ones deserving some more elaboration are:

• mUserSpace: Used for a control channel to enable a simple form of user ad-
ministration. For example a client might choose to reject certain control frames
from a user space stream and accept them only from streams belonging to an
administration space.

• mSampleFormat: Used to specify the data type carried within the DataFrames to
enable a correct interpretation of byte arrays.

• mStreamFormat: String identifying the stream format. For a standard Chronos
Realtime time series stream this is ’PCM’. The attribute become relevant when
using compressed formats for streaming.

The second big category of frames, ControlFrame, is used for transferring commands
or other information that may influence the path of execution. A stream may constitute
a pure control stream, but interleaving data frames with control frames is permitted
and allows for a synchronized, deterministic interaction between the two. There are
several different subtypes of control frames, serving varied purposes. The receiving
client may distinguish them by dynamic casts. Due to the polymorphic design it
is possible to extend the number of types in a future version of the framework
without compromising the operativeness of existing clients. Currently the following
ControlFrame subclasses are supported:

• PropertyFrame

• EndOfStreamFrame

• DropoutFrame

• ProbeStream

A PropertyFrame is used to transmit a key/value pair. Its main purpose is the
possibility to dynamically control properties of a client. As opposed to a Module
Parameter, the parameter name is not hard-coded into the application but might
change due to module configuration. For example, a Simulink Module (section 5.3) may
load an arbitrary plugin during runtime, as specified by its configuration. However,
every plugin offers unique runtime parameters (e.g. a reverb effect is controlled very
differently from a dynamics compressor). These parameters may be addressed by use
of property frames. The structure of PropertyFrame is simple. It contains 3 members
that need to be set accordingly. mName is a string specifying the property name. mValue
is a byte array, specifying the associated value. Since a property might be used for a
variety of use cases, mValue is to be interpreted as specified by mFormat, allowing for
maximum flexibility.

An EndOfStreamFrame is always attached after a Chronos Stream transmitted its last
frame of data. This enables a client to synchronously deallocate all resources associated
with the respective stream. It does not supply any additional information.
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A DropoutFrame is used to inform a client about a gap in the incoming data. This
allows the client to initiate some form of recovery routine if necessary. As for every
type of frame, it may simply be ignored if the client is unable to handle this situation
appropriately.

Finally, ProbeStream may be used by a provider to test a client’s ability for processing
more data. As described in section 4.3.3, the return code of processData contains
information about a client’s capability to accept incoming data. To avoid wasting
bandwidth by retransmitting the same data several times during polling, a single
ProbeStream frame may be transmitted to probe for the client’s state with only
little overhead. Only after the client signals readiness, the actual data needs to be
retransmitted.

4.4.3. Performance

For dimensioning a big-scale system it is inevitable to have a notion of maximum
achievable transfer rates, that is, how much user data may be streamed between two
nodes connected to an ethernet LAN using Chronos Realtime in a practical setting.
To this end, a number of experiments have been carried out to measure the actual
goodput. For the measurements, two standard workstations were connected to form
a 1 GBit network via a customary switch. To prevent distortion of the procedure, no
other host or internet gateway was involved. This is the preferred way to run a Chronos
Realtime application in general, as an interference with traffic of external sources is
not desirable and may lead to unpredictable delays in adverse situations. Two Data
Modules have been written specifically for stream testing. A Data Provider generating
random data on-the-fly and a Data Client accepting any incoming streams, counting
the number of received media bytes and timing the total stream duration. Both have
been designed so as to use as little resources as possible (e.g. no disk access, low cpu
usage), to eliminate potential bottle-necks other than the network stream itself. In
the experimental set-up, the Provider was transferring 1 gigabyte of generated data
to the Client executing on another host. Each measurement has been carried out at
least 6 times. To simulate a real-time setting, common audio frame sizes were used
and streamed individually (the ”worst-case” scenario). This is for example the case if
data is captured from an audio device and should be processed with as little latency
as possible by another host. Note that in an off-line setting (i.e. all data is permanently
available), or if latency is not an issue, data is buffered and sent in frame containers
instead, which offers much higher streaming performance due to decreased protocol
and synchronization overhead. However, in the case of real-time processing, maximum
achievable transmission rates are insignificant as long as they surpass the rate of data
generation.

Streaming performance has been evaluated for different frame sizes and different

55



4. Framework Application Architecture

Table 4.2.: Microsoft Windows 7 streaming performance

Table 4.3.: Ubuntu Studio 13.10 streaming performance
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Figure 4.10.: Relation between Packet Size and Goodput

numbers of parallel channels6. These parameters have a substantial effect on goodput,
since they determine how much data can be integrated into one remote invocation.
The more data is passed at once, the better the transfer may be handled by the ICE
runtime, the smaller the passed data, the more synchronization overhead caused by
the Chronos Realtime streaming implementation is in place. Although there is room
for optimization in this regard, it will be seen that for current use-cases this is not
a requirement and only leads to a complication of error-handling and flow control.
Tables 4.2 and 4.3 summarize the measurement results for the two test machines
operating on either Microsoft Windows 7 or Linux7 respectively. Both operating
systems were deployed out of the box and have not been tuned specifically to the task.
As expected, higher frame sizes and more simultaneously transmitted channels lead
to higher goodput. For example a frame size of 4096 bytes has a speed-up of about
factor 4 over a frame size of 1024 bytes. Similarly, 4 channels are transmitted with
nearly 4 times the goodput as a single channel. This seemingly linear relation flattens
off at higher package sizes and eventually plateaus at the maximum achievable rate of
up to nearly 100 MB/s. The experimentally obtained plot shown in figure 4.10 may
prove helpful when optimizing a distributed application with respect to its stream
configuration. The user data contained within a frame (as represented by the x-axis)
results from the sum of the frame sizes of all channels8.

6A Chronos Stream is able to transmit several channels at once
7Ubuntu Studio 13.10 with a low latency kernel
8or the number of channels times frame size in case of a uniform frame size
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The two operating systems show very similar characteristics for different frame sizes
and an overall comparable performance. One notable distinction was that Linux
showed slightly more consistent and reproducible rates on the tests, leading to an
overall lower variance of goodput. To get an intuition about the practical relevance of
the measured rates, the ”Realtime factor” for an uncompressed PCM audio signal in
CD-quality has been included in tables 4.2 and 4.3. The interpretation of this factor
is to be understood as answer to the question ’how much faster than real-time can the
data be transmitted?’. In other words, if the factor is greater than one, the stream is
real-time capable. This leads to the result that up to about 1000 CD-quality channels
may safely be streamed simultaneously from one host to another on a 1 GBit ethernet
using Chronos Realtime (the relation to other types of media streams may be easily
derived from the given results). Although performance for small channel numbers and
frame sizes may seem a little low, it is more than sufficient for real-time transmission.
As mentioned before, when real-time is not a requirement, frames are buffered and
transmitted in bigger chunks, leading to maximum throughput even for smaller frame
sizes and channel numbers.
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Chronos Realtime may be used to implement many different applications for a diverse
number of scenarios and most of them will require the one or other custom Data
Module to be developed. However, there is a handful of basic principles that tend
to recur time and time again. Some components are required by most applications
in the exact same or an only slightly modified way. It has been tried to single out
these components by analyzing various use-cases and generalizing common schemes.
In doing so, a number of concepts for reusable Core Data Module emerged. These
concepts have been devised and implemented in C++ and are available as ready-to-use
executables for a straightforward deployment in novel Chronos Realtime applications.
For simple applications it might even be sufficient to make use of core modules
exclusively. Each of them supports a set of parameters to configure their behavior in
detail. When starting from the shell, they all follow the same conventions. Apart from
the parameters relevant to the ICE runtime, the following command line arguments
are supported:

• -h - shows a module specific help text if available
• -n [module name] - the name used by the module to register itself at the Registry

(if this parameter is missing, a unique identifier will be generated)

Since the Chronos Registry is located via the IceGrid location service, it is necessary to
supply the address of the location service to any Data Module started by hand. This
is done via the command line argument –Ice.Default.Locator, as explained in [13e].
When started from within an IceGrid application this step is superfluous and may be
omitted.

In the following sections the currently implemented Core Data Modules will be in-
troduced and their functionality outlined. To enable a quick overview of the most
important parameters, each one of the modules will additionally be summarized in
a quick reference box. This has a very practical justification as the information most
relevant for an application developer is visible at a glance. Note that the item Platform
refers to platforms the module has been tested on - it does not necessarily imply that
the module is inoperable on platforms not listed.
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5.1. Audio Capturing

Quick Reference - AudioCaptureUnit

• Type: DataProvider
• Purpose: Capturing data from an audio device
• Platform: Linux, Win32, Win64

• ModuleParameters:

– [Device]1 (String): Name of the input audio device
– [SampleRate] (Float64): Sample rate in Hz
– [FrameSize] (Int32): Frame size in samples
– [SampleFormat] (String): Data type of individual samples

• LocalDescriptions:

– [Channel] (Int32): Channel number to capture

Every real-time signal processing system needs some sort of input data to enter the
system. In object oriented design these inputs are often referred to as sources. Sources
are responsible for fetching data from a low-level layer (e.g. a device driver). In case
of the AudioCaptureUnit data is retrieved from one of the audio devices present on
the system. It is responsible for continuously reading input data from the device
driver and supplying it to the framework as a real-time stream. Apart from the
usual challenges of network streaming, this component is particularly critical in
terms of implementation because of the risk of suffering frame drops. A dropout
occurs when the software is unable to read a complete buffer of data before it is
overwritten by subsequently captured frames. Therefore the responsible routines have
to be particularly responsive and may not stall for longer periods of time. A common
buffer size for low latency operation is 512 samples, which corresponds to a full
buffer every 10.67 ms at a sampling rate of 48 kHz. Professional audio interfaces can
operate at even lower buffer sizes and therefore lower latencies as well, however this
is not generally recommendable due to the increased risk of frame loss. In the field of
audio signal processing, a frame drop is a very critical incident, since discontinuities
within the signal can lead to severe errors of subsequently computed feature values.
To counteract this risk, the high priority callback invoked by the device driver in the
AudioCaptureUnit has been reduced to the minimal code necessary. The captured audio
frame is directly transferred to a preallocated lock-free FIFO queue, which acts as a
sufficiently dimensioned buffer in case of irregularities occurring on the network. The
callback returns immediately after the memory-transfer is completed to allow for the
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next frame to arrive. Despite careful design, on non real-time operating systems like
common Windows or Linux distributions, a completely dropout-free operation can
never be guaranteed, so a way to handle the occurrence of dropouts has to be defined.
This way subsequent signal processing components at least get the opportunity to
react to signal errors accordingly. In Chronos Realtime this has been realized using the
DropoutFrame class (section 4.4.2). If a dropout is detected, this special ControlFrame
is inserted into the data stream at the position where frames are missing. Data Clients
may interpret this frame and react accordingly.

The available configuration parameters of an AudioCaptureUnit module are rather
self-explaining. Device specifies the audio device to capture from. A list of available
devices on the machine may be retrieved by calling the executable with the ’help’
command line argument -h. If nothing is specified, the default device, as defined by
the operating system settings will be used. The portaudio library has been employed
to access available audio devices. SampleFormat may be either one of the supported
datatypes (section 4.4.2). The Local Description parameter Channel may be used to
specify which channels of the audio device to capture. If nothing is defined, consecutive
channel numbers starting from 0 are used.

5.2. Audio Monitoring

Quick Reference - AudioMonitor

• Type: DataClient
• Purpose: Playing back data on an audio device
• Platform: Linux, Win32, Win64

• ModuleParameters:

– [Device] (String): Name of the output audio device

• ProcessingParameters:

– [Channel] (Int32): Channel number on the device to use for playback

An AudioMonitor is the counterpart of the AudioCaptureUnit. It is a straightforward
component, simply playing back any received audio streams on the local audio
hardware. Which output device to use may be specified by the Module Parameter
Device. If nothing is specified, the default device, as defined by the operating system
setting will be used. Instead of invoking operating system routines directly, the
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portaudio library has been used to access available audio devices. Therefore, any
driver backend supported by portaudio may be used for playback. An AudioMonitor is
only capable of processing a single incoming stream at once. If an additional stream
is established while playback is already active, the old stream will be discarded and
the new one will start to play. The number of channels N a stream may contain is
only limited by the number of channels supported by the output device. To specify
which channel of the stream should be played back on which channel of the audio
device, the Processing Parameter Channel may be used. If nothing is specified, the
streamed channels will be played back on the first N channels of the audio device. If
cancelProcessing is called on the DataClient interface of an AudioMonitor, playback
is halted immediately, discarding potentially filled data buffers. This enables a very
responsive control in case of user interaction.

5.3. Simulink Module

Quick Reference - SimulinkModule

• Type: DataTransducer
• Purpose: Loads and drives a Chronos Simulink DLL
• Platform: Linux, Win32, Win64

• ModuleParameters:

– Model (String): File path of the shared library to load

• ProcessingParameters:

– Port (String): Name of the Simulink model’s C++ Source to connect this
channel to

– ModelParameter (String): Name of the tunable Simulink parameter
controlled by this channel

• LocalDescriptions:

– Port (String): Name of the Simulink model’s C++ Sink to connect this
channel to

The SimulinkModule is used to process incoming data by means of an underlying
Chronos Simulink Dll. It is an important component to aid in the rapid transformation
from a prototyped demonstrator into a real-time system. Which dll to use is specified
by the Module Parameter Model. The model may be exchanged at any point during
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runtime if the new model is interface-compatible with the previous one. If they are
incompatible, the model may be replaced only while there are no streams going out
of or into the module. The available number and type of input and output channels is
determined by the dll. However, which ones to make available to the application needs
to be configured in the Channel Configuration. The Processing Parameter Port is used to
map an incoming channel to a specific C++ Source within the Simulink model. The
LocalDescription Port is used to map a provided GlobalId to the data coming out of a
C++ Sink of the model. Tunable parameters of a model may be controlled by Chronos
property streams. To subscribe to such a stream and assign it to a specific model
parameter the ProcessingParameter ModelParameter is used. It specifies the path to a
parameter of the model, the name of which may be identified directly in Simulink. An
example of how to set up a tunable model parameter is given in section 5.5.

The SimulinkModule is capable of driving models with differently clocked ports.
Therefore every C++ Sink and C++ Source may potentially operate on a different
sample rate. From this follows that the output rate of the SimulinkModule will generally
diverge from the input rate as well. Consequently the timestamps of data entering the
module will require a resampling step, if the absolute time in relation to the stream is
to be preserved. Since a model might introduce an externally unknown delay, only the
model itself is capable to accurately carry out the resampling procedure in a safe and
accurate way. By convention a mechanism has been established, that enables a model
developer to access the timestamp information from within the model. By creating a
C++ Source and naming it ’TimeIn’, it will automatically be supplied with timestamps
from the incoming data stream. Similarly, by creating a C++ Sink called ’TimeOut’,
new timestamps may be assigned to the outgoing data streams. The model developer
is responsible for calculating the appropriate values. If a model does not contain a
’TimeOut’ port, new system clock timestamps are generated automatically.

One restriction of the current SimulinkModule implementation is that the loaded model
must contain at least one C++ Source actively supplied with data. If only C++ Sinks
are present, no output will be generated. This is due to the model being driven by
its input streams instead of running on a clock of its own. In a future version this
constraint could be resolved by implementing an actively clocked driver in case no
input ports are present.
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5.4. Ring Buffer

Quick Reference - RingBuffer

• Type: DataTransducer
• Purpose: Buffers a configurable amount of past data on disk
• Platform: Win32, Win64

• ModuleParameters:

– [SavePath] (String): Directory the files should be stored in
– [Duration] (Int32): Minimum number of frames to buffer

• ProcessingParameters:

– [Filename] (String): Name of the file the channel should be stored in

• RequestParameters:

– StartTime (Int64): Time stamp to start streaming from (if Offset is 0)
– [Tolerance] (Float64): Specifies how much a located time stamp may

deviate from StartTime
– [Offset] (Int32): Frame offset to start streaming from relative to Start-

Time
– FrameCount (Int32): Number of frames to stream

The RingBuffer component is used to buffer a configurable amount of incoming data
frames relative to the most recent ones. It enables an application to access data not
only in real-time but to also access data from the past. The maximum amount of
data to be buffered has to be specified beforehand using the Duration parameter and
cannot be changed dynamically once the buffers have been created. Internally the
buffers have been implemented using memory mapped files that are regularly flushed
to disk. This makes the data permanent as long as it does not fall out of the specified
duration range, even in case of a power-out. Once the specified duration is exceeded,
the oldest data frames will be overwritten with the most recent ones. Every single
channel is saved to a separate file, making it simple to back-up data directly from
the file system if needed. Attention has been paid to support very large buffer sizes
>4 GB, even on 32-bit Windows. To make the RingBuffer store a channel it is sufficient
to simply establish a new stream. If a particular file name is desired for this channel it
may be specified via the Processing Parameter Filename, otherwise a suitable name is
chosen automatically. Data is stored in combination with its associated time stamps.
Therefore it is possible for a request to specify an absolute time range to stream data
from. There are several RequestParameters available for a detailed description of the
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desired time range. Generally the StartTime parameter is used to specify which time
point to start streaming from. However, this time point may be modified by the Offset
parameter, which enables a user to start the stream from a specifiable amount of
frames earlier (negative offset) or later (positive offset) than the given start time. Since
a requester will not necessarily know the exact time stamps stored in the ring buffer, it
is possible to endow the start time with a certain tolerance. The Tolerance parameter
specifies by how much time in seconds the reference start point may deviate from the
one specified as StartTime. Finally the FrameCount parameter is used to define the
number of frames to be streamed.

Requests may be dispatched very quickly, since the RingBuffer is capable of reading
and writing concurrently and it internally maintains an index, accelerating lookup
of timestamps significantly. An important constraint of the employed method is that
the timestamps of an incoming stream must always be increasing. If this constraint is
not met, the Ringbuffer might fail in locating a timestamp requested by the StartTime
parameter.

5.5. Controller GUI

Quick Reference - ControllerGUI

• Type: DataProvider
• Purpose: Graphical User Interface for control of property streams
• Platform: Linux, Win32, Win64

• ModuleParameters: -
• LocalDescriptions:

– [Widget] (String): Widget type to use for the property channel
– [MinValue] (Float64): Minimum value of the property
– [MaxValue] (Float64): Maximum value of the property
– [DefaultValue] (Float64): Default value of the property

The ControllerGUI is an interactive Data Provider, offering a dynamically configurable
graphical user interface. It allows a user to control tunable parameters of one or
several Data Clients during runtime. The number and type of controllable properties is
specified by the respective Channel Configuration. As an example consider the simulink
model presented in section 3.1.1, figure 3.4. When compiled using the Chronos Dll
Target it may be loaded into an instance of a SimulinkModule. All tunable parameters
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Figure 5.1.: Screenshot of a ControllerGUI Window

of the model are then modifiable during runtime via property frames. A configured
ControllerGUI for the GainPan16 model may look like the one shown in figure 5.1. In
this case two properties have been specified in the Channel Configuration. Listing 5.1
shows what the configuration of one property channel looks like, in this concrete
example. Apart from default (initial), minimum and maximum allowable value for
the property a widget type to be displayed in the GUI may be specified. Currently
only two types of widgets are supported:

• Dial
• and Slider.

Both of them are additionally equipped with a spinbox, where the desired prop-
erty value may be entered directly. As soon as one of the elements is modified, a
PropertyFrame is sent to all Data Clients who subscribed to the stream.

Listing 5.1 Example snippet of a ControllerGUI Channel Configuration

1 . . .
2 <Provide>
3 <Channel>
4 <GlobalID>UserVolume</GlobalID>
5 <DataType>CONTROL</DataType>
6 <Loca lDescr ip t ion>
7 <Parameter name=”DataType” x s i : t y p e =” S t r i n g ”>FLOAT64</Parameter>
8 <Parameter name=”Widget” x s i : t y p e =” S t r i n g ”>Dial</Parameter>
9 <Parameter name=”MinValue” x s i : t y p e =” Floa t64 ”>0</Parameter>

10 <Parameter name=”MaxValue” x s i : t y p e =” Floa t64 ”>1</Parameter>
11 <Parameter name=” DefaultValue ” x s i : t y p e =” Floa t64 ”>0 . 9</Parameter>
12 </Loca lDescr ip t ion>
13 </Channel>
14 . . .
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Clients subscribe to a property stream in much the same way as to any other data
stream. Using a Processing Parameter, a property may be mapped to some internal
parameter to be tuned. The exact mapping scheme is specific to the client’s imple-
mentation. An example for the SimulinkModule component is given in listing 5.2. The
property stream UserVolume is requested and assigned to the model’s Gain using the
Processing Parameter ModelParameter. Note that the same stream may be requested
several times and assigned to multiple different parameters if desired.

Listing 5.2 Example snippet of the SimulinkModule Channel Configuration corresponding
to listing 5.1

1 . . .
2 <Request>
3 <Channel>
4 <GlobalID>UserVolume</GlobalID>
5 <DataType>CONTROL</DataType>
6 <ProcessingParameters>
7 <Parameter name=”ModelParameter” x s i : t y p e =” S t r i n g ”>GainPan16/pGain/Gain</

Parameter>
8 </ProcessingParameters>
9 </Channel>

10 . . .
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5.6. File Reader

Quick Reference - FileReader

• Type: DataProvider
• Purpose: Reading data from files of various formats
• Platform: Linux, Win32, Win64

• ModuleParameters: -
• LocalDescriptions:

– FilePath (String):

• RequestParameters:

– [ChannelPath] (String): Specifies which channel of the file to read
– [StartPos] (Int64): Sample position to start reading from
– [RtSimulation] (Int32): If set, the stream will be sent at a rate according

to its timestamps instead of as fast as possible
– [OnEof] (String): Specifies how to proceed after reaching the end of file

The FileReader is designed to read files of various formats and to provide their content
to other Chronos modules. Currently supported file formats are wav, hdf5, csv and
binary. The format is determined by filename extension. If no extension is present,
binary is chosen as default setting. The FileReader has been laid out so as to enable
a straightforward addition of recognized file formats. This is achieved by simply
subclassing the internal StreamFileReader interface and implementing the desired
file format within this scheme. Once registered the new StreamFileReader is than
automatically instantiated by the internal Factory Method 2 when requested. Every file
that should be made available to the application needs to be provided with a GlobalId

using a Channel Configuration. The Local Description FilePath is used to specify where
in the filesystem the file is located. When the file stream is requested, several Request
Parameters may be specified. If a file contains multiple channels ChannelPath may
be used to specify which one of them should be transmitted. This parameter is file
format specific, as the various formats tend to organize their internal data structure
differently. For wave files e.g. simple integer numbers starting from 0 may be used
to identify a channel. The exact naming scheme should always be documented in
the respective StreamFileReaders header file. Formats that do not support multiple
channels simply ignore this parameter. If data should not be streamed right from

2see e.g. [ES10] for details on this software design pattern
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the beginning of a file but start at some offset, StartPos may be used to specify this
position in samples.

Since the process of reading from a file does not adhere to a natural clock (all data is
available right away) a stream requested from the FileReader module will generally be
transmitted at maximum speed. However, in some situations (particularly for tests
or demonstrators) it is useful to simulate a real-time stream as if it was originating
directly from a sensor instead of a file. If this behavior is desired, the parameter
RtSimulation should be set to 1.

Finally OnEof specifies how the FileReader should behave when reaching the end of a
file. Available options are:

• Zeros - Fills the last frame with zeros until the specified frame size is reached
• Stop - Stops immediately when EOF is reached (the last frame may contain less

samples than the specified frame size)
• Repeat - When EOF is reached the stream goes into a loop starting from the

position specified in StartPos
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5.7. File Writer

Quick Reference - FileWriter

• Type: DataClient
• Purpose: Writing data to files in a specified format
• Platform: Linux, Win32, Win64

• ModuleParameters:

– [FileFormat] (String): Format the writer should save files in (defaults to
binary files)

• ChannelParameters: -
• ProcessingParameters:

– FilePath (String): Path of the file the channel should be stored in
– ChannelPath (String): Specifies the channel that should be written to

within the file

The FileWriter is designed to write received Chronos Streams into files of various formats.
Currently supported file formats are wav, hdf5, csv and binary. The FileWriter has
been laid out so as to enable a straightforward addition of writable file formats. By
subclassing the internal StreamFileWriter interface and implementing the respective
class a new format may be supported. Which format to use for writing is specified
by the ModuleParameter FileFormat. Each StreamFileWriter registers itself using a
descriptive format identifier (usually the respective file extension), which may then be
used in the configuration to specify which format to use. The name of the file a stream
should be written to is passed by the ProcessingParameter Filename. If several channels
specify the same file, a multi-channel file is created. Which Chronos Channel should be
written to which channel within the file may be specified using ChannelPath. As was
the case with the FileReader the format of ChannelPath is specific to the respective
StreamFileWriter. For wave files e.g. simple integer numbers starting from 0 may
be used to identify a channel. When implementing a new format, the exact naming
scheme should always be documented in the respective StreamFileWriters header
file.
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5.8. Signal Generator

Quick Reference - SignalGenerator

• Type: DataTransducer
• Purpose: Providing generated signals
• Platform: Linux, Win32, Win64

• ModuleParameters: -
• ProcessingParameters:

– OscillatorGain (String): Name of the Oscillator the gain of which
should be controlled by this channel

– OscillatorFrequency (String): Name of the Oscillator the frequency of
which should controlled by this channel

• LocalDescriptions:

– [Osc(%i)Type] (String): Oscillator type
– [Osc(%i)Gain] (Float64): Oscillator amplitude
– [Osc(%i)Frequency] (Float64): Oscillator frequency

• RequestParameters:

– [RtSimulation] (Int32): If set, the stream will be sent at a rate according
to its sampling rate instead of as fast as possible

The SignalGenerator has been specifically implemented for the execution of perfor-
mance tests (section 4.4.3) and measurements. It is capable of providing signals
comprised of a superposition of configurable digital oscillators and noise. One in-
stance of a SignalGenerator may only synthesize a single signal at a time. However,
the same channel may be subscribed to multiple times within the same request, if
multi-channel streaming is desired. Furthermore it is possible for multiple clients to
concurrently receive the same waveform at differing sampling rates and sample data
types, as every client is served by a separate internal generator object. The waveform
generated by the module is determined by its Channel Configuration. More specifically,
the LocalDescription of the provided channel is used to define number, type and
initial settings of oscillators to use. The name attributes must consist of a prefix (Osc)
and an integer (%i) to identify an Oscillator, and a postfix (Type, Gain or Frequency)
to identify a specific property. Any 32-bit integer may be chosen as an identifier,
however it is sensible to enumerate starting at 0 or 1. If any property with a unique
identifier is specified, an according oscillator will be created. None of the properties
are mandatory, if omitted, default values will be used. Listing 5.3 shows an example
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of what a LocalDescription of a SignalGenerator containing two oscillators may look
like. Note that since no Gain has been specified for Osc2, a default value will be
assumed.

Listing 5.3 Example snippet of a SignalGenerator Provide Channel Configuration

1 . . .
2 <Provide>
3 <Channel>
4 <GlobalID>Synth</GlobalID>
5 <DataType>AUDIO</DataType>
6 <Loca lDescr ip t ion>
7 <Parameter name=”Osc1Type” x s i : t y p e =” S t r i n g ”>Square</Parameter>
8 <Parameter name=”Osc1Frequency” x s i : t y p e =” Floa t64 ”>200 . 0</Parameter>
9 <Parameter name=”Osc1Gain” x s i : t y p e =” Floa t64 ”>0 . 5</Parameter>

10 <Parameter name=”Osc2Type” x s i : t y p e =” S t r i n g ”>Sin</Parameter>
11 <Parameter name=”Osc2Frequency” x s i : t y p e =” Floa t64 ”>280 . 7</Parameter>
12 </Loca lDescr ip t ion>
13 </Channel>
14 </Provide>
15 . . .

Allowed values for the Type property are:

• Sin - For sinusoidal waveforms
• Triangle - For triangular waveforms
• Square - For rectangular waveforms
• Saw - For sawtooth waveforms
• Noise - For white noise

A qualitative overview of how these waveforms look like is given in figure 5.2. Each
of the periodic signals is plotted over four periods with an amplitude of 1. The noisy
waveform example consists of 3600 data points drawn from a uniform distribution
over an interval of -1 to +1.

Note that for the SignalGenerator the maximum representable dynamic range is con-
fined to the interval of -1 to +1. This implies that the multiplicative Gain factor should
similarly not exceed these values if clipping is to be avoided. The same rule applies to
the sum of the gains, if multiple oscillators are employed. However, if the synthesized
signal exceeds permissible values it is automatically limited. While for musical synthe-
sis the resulting formation of overtones may be a desirable property, for measurement
purposes it is generally to be avoided.

Albeit unambiguously a Data Provider, the SignalGenerator additionally implements
a DataClient interface to make oscillator parameters dynamically controllable via
property streams. The Processing Parameters OscillatorGain and OscillatorFrequency
are used to map a requested property channel to the respective oscillator parameter.
The initial Gain and Frequency settings specified by the Local Descriptions may there-
fore be overridden during runtime. Listing 5.4 shows an example of how a property
channel named Osc1Freq may be mapped to control the frequency of oscillator Osc1
in a SignalGenerator module.
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Figure 5.2.: Time-domain Representation of available Waveform Types

Listing 5.4 Example snippet of a SignalGenerator Request Channel Configuration

1 . . .
2 <Request>
3 <Channel>
4 <GlobalID>Osc1Freq</GlobalID>
5 <DataType>CONTROL</DataType>
6 <ProcessingParameters>
7 <Parameter name=” Osc i l la torFrequency ” x s i : t y p e =” S t r i n g ”>Osc1</Parameter>
8 </ProcessingParameters>
9 </Channel>

10 </Request>
11 . . .

Similarly to the FileReader module (section 5.6), it may be desirable to simulate real-
time behavior instead of streaming at maximum speed. This is achieved by setting the
global RequestParameter RtSimulation to 1.
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5.9. TCP Capturing

Quick Reference - TcpCaptureUnit

• Type: DataProvider
• Purpose: Capturing data from a TCP port
• Platform: Linux, Win32, Win64

• ModuleParameters:

– Host (String): Name or IP address of the host to connect to
– Port (Int32): Port number to connect to

• LocalDescriptions:

– Bytes (Int32): Channel width in bytes

The TcpCaptureUnit has been implemented to support receipt of raw TCP data streams
from an external source. This kind of communication is common in graphical or
high-level programming languages to enable a simple exchange of data between two
hosts (e.g. LabVIEW [13g] or PureData [13i] support sending and receiving data via
TCP). Since the TcpCaptureUnit acts as a client, the TCP server’s address and port
number have to be specified using respective ModuleParameters. Due to raw streams not
following a general format specification, the Provide and Request ChannelConfiguration
are utilized to describe the employed data layout.

Figure 5.3.: Two Examples of how a Stereo TCP Stream might be arranged

Consider the examples given in figure 5.3 for how a 2-channel audio signal might be
streamed. The example on the left is a simple interleaving scheme, whereas the one
on the right illustrates frame-based interleaving with a frame size of 2 (In principle
sample interleaving is just a special case with a frame size of 1). Depending on the
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employed sample bit depth, each sample may consist of several bytes. In the Channel
Configuration, provided channels have to be specified in the same order as they are
arranged within the stream and the LocalDescription Bytes has to be set to number
of bytes per sample times frame size. Listing 5.5 illustrates how a TcpCaptureUnit would
be set up for receiving a stream of 16-bit audio data conforming to the format depicted
on the right side of figure 5.3.

Listing 5.5 Example snippet of a TcpCaptureUnit Channel Configuration

1 . . .
2 <Provide>
3 <Channel>
4 <GlobalID>L e f t</GlobalID>
5 <DataType>AUDIO</DataType>
6 <Loca lDescr ip t ion>
7 <Parameter name=” Bytes ” x s i : t y p e =” I n t 3 2 ”>4</Parameter>
8 </Loca lDescr ip t ion>
9 </Channel>

10 <Channel>
11 <GlobalID>Right</GlobalID>
12 <DataType>AUDIO</DataType>
13 <Loca lDescr ip t ion>
14 <Parameter name=” Bytes ” x s i : t y p e =” I n t 3 2 ”>4</Parameter>
15 </Loca lDescr ip t ion>
16 </Channel>
17 </Provide>
18 . . .

Note that the data is not interpreted by the TcpCaptureUnit itself. A requester therefore
must provide the correct SampleFormat in its TimeSeriesSpecifics to make the
client capable of correct interpretation. Another restriction is that the byte order of the
received data has to either conform to the endianness generally employed by Chronos
Realtime streams, or must be dealt with externally. Extending the concept to support a
more elegant treatment of these issues is subject to future work.
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6.1. Custom Application Development and Configuration

This section is meant to summarize the main procedural steps on how to assemble
a custom new application using Chronos Realtime. The first questions that need to be
answered concern the applicability of existing core components. Can the application
be assembled purely from the Chronos Core Data Modules described in chapter 5?
If the answer is no - Is it expedient to enhance an existing core module with the
desired features (e.g. it is simple to add support for new file formats to the FileReader
or FileWriter core modules), or is it necessary to create an altogether new module?
If implementation of a custom module is inevitable, a convenient programming
language has to be chosen. Currently it is mostly recommendable to use C++ over any
other languages supported by ICE, due to the available core classes encapsulating a
lot of internal procedures and providing many recurring elements for Data Module
implementation. In some cases it might be necessary to resort to another programming
language due to external factors. It was a major concern to keep interfaces clear and
simple to accommodate for this situation, however a certain amount of extra work is to
be expected. The interfaces and their expected behavior are documented in section 4.3.
Whenever possible, a module should be made configurable exclusively via Channel-
and Module Configurations, so a suitable design has to be devised for this purpose.

Once all required Data Modules have been selected or implemented, appropriate
configuration files need to be created to define the precise task of each module and
how they are supposed to interact with each other (more details and examples may be
found in sections 4.2.3, 4.2.4 and chapter 5). Finally an IceGrid configuration file is
used to define how the application is to be distributed among different machines (for
more details refer to [13e], an example configuration is given in the appendix, listing
A.2).

6.2. Real-world Applications

To provide the reader with more insight into the framework’s capabilities and appli-
cation design, this section will review a couple of real-world applications and their
corresponding architecture. All of them have been realized using Chronos Realtime or
an early precursor thereof.
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Figure 6.1.: System Diagram of the Tangible Acoustic Interface Application

6.2.1. Tangible Acoustic Interface

This section describes the implementation of a real-time tangible acoustic user interface
demonstration system. The setup consists of a tri-axial acceleration sensor mounted
on a rigid, flat surface (e.g. a floor or tabletop) with the aim of detecting impacts and
estimating their location. In a real system this information might be used to trigger
specific actions, depending on the characteristics and location of the impact’s sound,
in this demonstrator however, the estimated coordinates are simply displayed on
a graphical user interface whenever an impact is identified. The theory behind the
applied signal analysis is described in [Dob+14] and is not part of this work. Here it is
of interest how the developed algorithms have been integrated into a real-time system
using Chronos Realtime with only little additional implementation overhead. Figure
6.1 illustrates the system diagram of one particular configuration of the demonstrator
where three hosts have been used to handle the task. As is generally the case, different
components of a Chronos Realtime application may be spread over as little or many
nodes as reasonable.

Each 3-dimensional box in the figure represents a separate host (or node). Shapes inside
the 3-dimensional boxes represent software components running on the respective
machine while shapes on the outside represent external hardware devices. Chronos
modules are specifically designated by the component symbol in the upper right
corner. Arrows between shapes denote interfaces. Communication channels with the
Registry are not explicitly displayed, since every Data Module is inevitably interacting
with this component.

A tri-axial acceleration sensor was connected to a National Instruments data acquisition
device as common for laboratory measurements. To read sampled data from the
device, a small ”virtual instrument” has been developed in National Instruments’
LabVIEW software [13g], acquiring frames of audio data using the standard graphical
programming tools shipped with the application (the term virtual instrument or vi
was devised by the manufacturer for a program written in LabVIEW). During the
prototyping phase this vi simply wrote acquired data frames into files, which could
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then be used for algorithm development and off-line testing. To integrate the capturing
process into Chronos Realtime, the file sinks have been replaced by a TCP/IP writer
in the otherwise unchanged vi. Once a raw stream is set up to be transmitted via
TCP, it can be transformed into a Chronos Stream via an instance of a TcpCaptureUnit
(see section 5.9). Despite the communication taking place over TCP it is legitimate to
run both, LabVIEW and the TcpCaptureUnit on the same host if desired. In the setup
presented here however, NI Node is exclusively executing the described LabVIEW
vi, therefore requiring no Chronos Realtime installation. The lion’s share of required
computations is handled by the Analysis Node. During the prototyping phase, a
Simulink model was developed, reading input data from a file and writing results
to the Matlab workspace for further inspection. The same model was then taken for
application in the real-time demonstrator, except with the file source replaced by a
C++ Source, the workspace sink replaced by a C++ Sink and the model compiled into
a shared library (as detailed in section 3.1). The generated plugin was loaded into a
SimulinkModule (section 5.3) and supplied with sensor data from the TcpCaptureUnit.
Finally a custom JAVA GUI has been written, implementing a Data Client to visualize
the estimated coordinates on a mobile device or notebook for demonstration purposes.
The stream from the SimulinkModule to the GUI module was a pure Control stream
carrying instances of PropertyFrame (section 4.4.2).

6.2.2. Interactive Beamforming on a Smartphone

Another rather small-scale application that has been implemented using a very early
version of Chronos Realtime is the tech-demo presented in [Ret+11]. It involves a
Microsoft Kinect, a Windows workstation and an Android smart phone. Kinect is
the name of an extension Module for Microsoft’s XBOX 360 platform and has been
released in November 2010. It integrates several sensors such as an RGB and depth
camera as well as a microphone line-array, consisting of four non-uniformly spaced
capsules, which can be used as an acoustic beamformer. Beamforming is a spatial
filtering technique, combining the output signals of multiple specifically arranged
microphones to achieve a desired directivity pattern. The procedure of changing
the direction of the main lobe of such a pattern is referred to as beam steering and
constitutes the gist of the application at hand. The field of view of the Kinect’s camera
is transmitted to and displayed on the cellphone. Using the phone’s touch screen, the
beamformer of the Kinect may be steered to a desired angle within the field of view
by tipping on the corresponding position. The output signal of the beamformer is
played back on the phone’s audio interface, emphasizing the sounds originating from
the selected angle and attenuating environmental noise.

Figure 6.2 shows a diagram of the employed system. The Kinect sensor bar is equipped
with an USB interface exclusively, through which it is connected to a standard PC (the
Kinect Node). Microsoft provides a special software development kit enabling a user to
access the various sensors present on the device. Apart from the raw signals a simple
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Figure 6.2.: System Diagram of the Beamforming Application

beamforming algorithm is also provided off-the-shelf. This comprehensive set of tools
has been integrated into a custom Chronos Realtime component called KinectControl,
offering both a DataProvider and DataClient interface. It implements the necessary
routines to capture audio and video signals from the camera and to control parameters
of the integrated beamformer. Naturally it has to be located on the same PC the sensor
bar is connected to. The other essential part of this system is a JAVA app developed for
the android operating system. Just as the other module it was developed specifically
for this task and integrates both DataProvider and DataProvider objects to enable
transmission and reception of Chronos streams. It serves as a graphical user interface,
displaying a live capture of the Kinect’s RGB camera and highlighting the angle the
beamformer is currently steered to (figure 6.3 shows a photograph of a cellphone
running the GUI). The stream is configured so that it is established by the Registry as
soon as KinectControl and GUI are running and stays active until one of them shuts
down. In addition there is one control stream transmitting the desired beam angles, as
chosen by the user, to the KinectControl module. Whenever the user touches the screen,
a red point lights up on the display and a PropertyFrame carrying the coordinates is
transmitted. The user interface app also receives the stream of audio data and plays
it back on the device. However, the received audio stream is not a pure data stream,
but is interleaved with control frames, updating the steering direction if it had been
modified. The GUI highlights the according region on the camera image only after this
feedback frame was received. This way the displayed steering angle and the sound
playback are always in sync, despite potential delays due to buffering.

Although all involved modules are very application specific and therefore require
exhaustive implementation efforts, the main benefit of using Chronos Realtime here
is the predefined layout of communication necessary between the distributed com-
ponents. Another benefit is the ease of extensibility, e.g. by integration of a custom
beamforming algorithm implemented in Simulink.
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Figure 6.3.: Mobile Phone running the Beamformer Tech-demo

6.2.3. Acoustic Tunnel Monitoring - AKUT

Acoustic Tunnel Monitoring is a term that has been coined by [SG05]. The idea is to
equip road tunnels with microphones, in addition to already prevailing video systems,
to further enhance the capabilities of automated traffic monitoring systems. Primary
goal of safety-measures in tunnels is the prevention of critical incidents that are a
threat to human life, the environment and tunnel operating facilities. As a secondary
goal, the impacts of critical incidents that have already happened should be kept as
low as possible. This is achieved by getting the people involved in such an incident
and other endangered tunnel users to safety as quickly as possible. A major aspect in
this context is that emergency services, such as fire-brigades, rescue teams and police
are alarmed quickly and efficiently. The reaction time of emergency services should be
kept as short as possible in order to minimize injuries, property damage and damage
to the environment [Ret+10]. As such, the response time of the operator personnel
is essential. Due to the large number of cameras assigned to a single operator, it is
not possible to monitor all of them concurrently, but instead different camera streams
are switched through sequentially. Therefore a number of automated emergency
detection systems have been deployed, all of which suffer from a rather slow reaction
time (reaching from several seconds to minutes). Almost all dangerous incidents
are accompanied by acoustic noise, which may be detected rather quickly (in the
range of a few hundred milliseconds to a few seconds) by an adequately designed
pattern recognition algorithm. At Joanneum Research a number of algorithms have
been developed specifically for this task [GRR11]. However, it is a long way from a
functional off-line prototype to a large-scale real-time system integrated into a SCADA
infrastructure. This situation has been the starting point of this thesis, as the worlds
first pilot system was to be implemented in the ”Kirchdorf-Tunnel” in Styria, Austria
[Ret+10]. The software originally deployed is still in use to this day and formed the
basis of Chronos Realtime, which has been generalized in its design to allow for a
broader applicability. Its duties cover capturing of several dozens of audio channels,
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Figure 6.4.: System Diagram of a typical AKUT Application

preprocessing, classification, event-detection, -relay and -storage, 24-hour buffering of
uncompressed audio data, live and event playback and controllability via an IEC-60870

SCADA protocol [CRW04]. The principle system diagram of this appliance is shown
in figure 6.4.

The following external interfaces are to be handled by the system:

• N audio input channels
• one or more audio output channels for playback
• service interface for system configuration and maintenance
• SCADA interface for interaction with tunnel operator personnel
• optionally an RTP/RTSP interface for external data storage

In this configuration the audio input consists of N A/D converted audio signals
captured by one or more professional audio interfaces (N may range from a few
dozen to several hundred microphones, depending on the length of the tunnel).
The signals are transformed into Chronos streams by an AudioCaptureUnit. If one of
them is to be played live the stream is forwarded to the AudioMonitor component,
outputting it on the audio device. Optionally an encoder for external data storage
may be present, subscribing all audio channels to be stored. Finally, all captured
streams are forwarded to the SimulinkModules carrying out signal analysis to detect
and classify potentially critical audio events. Since the analysis is computationally
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expensive, a single workstation is not capable of processing all audio channels in
real-time. Therefore the work may be distributed among M machines, each of which
processes N/M channels. Since there are interdependencies between the signals of
consecutive microphones, the individual outputs of the first analysis stage are merged
together by the EventModeller in a separate step, forming the final event results of the
system. The EventHandler is responsible for logging and filtering the raw events and
forwarding a definable selection to the IEC Communicator, the component responsible
for interfacing the SCADA system to display the detections on the alarm screens
of the tunnel control center. The operators are able to send a couple of commands
(e.g. disabling certain microphones or playback of live streams), which are accepted
by the IEC Communicator and relayed to the SystemController. The SystemController
is a custom component, encapsulating very application specific control features and
system monitoring functionality (e.g. if a channel is to be played back or detection
of a particular channel or a whole tunnel tube is to be disabled, the SystemController
knows how to reconfigure the system accordingly). While the IEC Communicator is
only allowed to execute a reduced set of commands provided by the SystemController
(as defined in the requirements specification), the ServiceInterface component provides
full control access to the system via a web interface. This allows system administrators
a simplified way of monitoring and reconfiguring the application during runtime.
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For this thesis, a software framework capable of rapidly transforming data stream
processing algorithms from a prototyping environment into a distributed real-time
system has been designed and implemented. An illustration on how to integrate a
Simulink model into a generic, prefabricated frame application using code generation
has been given. Support of other prototyping environments is intended but has not yet
been implemented. The main objective of Chronos Realtime is to allow for a modular
composition of distributed streaming applications using basic building blocks. The
devised architecture for this task has been described and core modules as well as
their configuration procedure have been introduced. Proposed components have been
implemented in C++ using the ICE middleware for network communication. Mea-
surements have been carried out to assure real-time capabilities of the implemented
data streaming procedure and to give an estimate of achievable throughput for dimen-
sioning a distributed system. To verify its applicability to diversified scenarios, the
framework has been applied to various use-cases, three of which have been presented.
All of them were realizable with considerably less effort than an implementation
from scratch would have required. Furthermore the efficiency of cross-language, cross-
platform applications could be verified. It can therefore be concluded that the devised
architecture is capable of generalizability and implementation of new systems using
Chronos Realtime is feasible.

The framework has been outlined in its first operational version. As with any piece of
software, there is a lot of room for improvement and extension. Among the features
most eligible for future updates are better monitoring capabilities of active stream
states and more control over error mitigation routines. Error handling is a particularly
intricate task, since different use-cases often turn out to require different actions in case
of particular error scenarios. Most common scenarios would have to be identified and
a concept for configuring alternative methods of handling them devised. Application
configuration is generally a laborious task and could be simplified by implementation
of a graphical user interface tool. This would allow for a more intuitive composition of
a distributed application and alleviate a user of the burden to write XML configuration
files by hand. Another extension beneficial to the framework would be a better
integration of further prototyping environments. The programming language Python
is of particular interest, since it enjoys high popularity and features a vast amount of
libraries available from all fields of application. Since Python is capable of interfacing
with ICE directly, it could potentially be integrated into a Chronos Realtime without
requiring a meta-compilation step, if processing performance is sufficient. To further
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enable a more robust runtime operation it would be expedient to add mirroring
capabilities to the Chronos Registry. In other words, several redundant instances,
distributed among different hosts, concurrently reside in operation, all sharing the
same state. In case of a breakdown of one machine, an application transparent take-
over would take place. A promising way of implementing this feature would be
to resort to a database back-end inherently supporting distributed replication and
utilizing the automatic end-point deduction already inherent to ICE proxies.

Finally it can be said that there is always room for enhancement of existing core
data modules and addition of new ones, as their general benefit becomes apparent.
Due to its modular, decoupled architecture, implementation of new modules can not
negatively affect the framework’s core.

84



Bibliography

[13a] Audinate. 2013. url: http://www.audinate.com/ (cit. on p. 10).

[13b] Clam. 2013. url: http://clam-project.org/ (cit. on p. 7).

[13c] CppUnit. 2013. url: http://sourceforge.net/projects/cppunit (cit. on
p. 15).

[13d] DataTurbine. 2013. url: http://www.dataturbine.org/ (cit. on p. 7).

[13e] ICE Manual. 2013. url: http://doc.zeroc.com/display/Ice/Ice+Manual
(cit. on pp. 11, 31, 59, 76).

[13f] IT standards and organizations. July 24, 2013. url: http://whatis.techtarget.
com/glossary/IT-Standards-Organizations (cit. on p. 2).

[13g] LabVIEW. 2013. url: http://www.ni.com/labview (cit. on pp. 74, 77).

[13h] Portaudio. 2013. url: http://portaudio.com (cit. on p. 14).

[13i] Pure Data. 2013. url: http://puredata.info (cit. on p. 74).

[13j] RAVENNA. 2013. url: http://ravenna.alcnetworx.com/ (cit. on p. 10).

[13k] Wikipedia - Simulink. July 12, 2013. url: https://en.wikipedia.org/
wiki/Simulink (cit. on p. 12).

[13l] ZeroC. 2013. url: http://www.zeroc.com/ (cit. on p. 10).

[14] CMake - Cross Platform Make. 2014. url: http://www.cmake.org (cit. on
p. 16).

[AA05] P. Arumı and X. Amatriain. “CLAM, an object oriented framework for
audio and music.” In: LAC2005 Proceedings (2005), p. 43 (cit. on p. 7).

[Ama04] X. Amatriain. “An Object-Oriented Metamodel for Digital Signal Process-
ing.” In: (2004) (cit. on p. 7).

[BS06] J. Blanchette and M. Summerfield. C++ GUI Programming with Qt 4. Prentice
Hall, 2006 (cit. on p. 15).

[Cou+11] G. Coulouris et al. Distributed Systems: Concepts and Design, 5th Ed. Addison-
Wesley, 2011 (cit. on p. 9).

[CRW04] G. R. Clarke, D. Reynders, and E. Wright. Practical Modern SCADA Protocols:
DNP3, IEC 60870.5 and Related Systems. Newnes, 2004 (cit. on p. 81).

85

http://www.audinate.com/
http://clam-project.org/
http://sourceforge.net/projects/cppunit
http://www.dataturbine.org/
http://doc.zeroc.com/display/Ice/Ice+Manual
http://whatis.techtarget.com/glossary/IT-Standards-Organizations
http://whatis.techtarget.com/glossary/IT-Standards-Organizations
http://www.ni.com/labview
http://portaudio.com
http://puredata.info
http://ravenna.alcnetworx.com/
https://en.wikipedia.org/wiki/Simulink
https://en.wikipedia.org/wiki/Simulink
http://www.zeroc.com/
http://www.cmake.org


Bibliography

[Dob+14] K. Dobbler et al. “Vibroacoustic Monitoring: Techniques for Human Gait
Analysis in Smart Homes.” In: 6. AAL Kongress. Ed. by R. Wichert and
H. Klausing. Berlin: Springer Verlag, 2014. isbn: 978-3-642-37987-1 (cit. on
p. 77).

[ES10] K. Eilebrecht and G. Starke. Patterns kompakt 3rd. Ed. Entwurfsmuster für
effektive Software-Entwicklung. Spektrum, Akademischer Verlag, 2010 (cit.
on p. 68).

[Fou+12] T. Fountain et al. “The open source dataturbine initiative: empowering the
scientific community with streaming data middleware.” In: Bulletin of the
Ecological Society of America 93.3 (2012), pp. 242–252 (cit. on p. 7).

[Gau02] G. Gautschi. Piezoelectric sensorics: force, strain, pressure, acceleration and
acoustic emission sensors, materials and amplifiers. Springer, 2002 (cit. on
p. 37).

[GRR11] F. Graf, G. Rattei, and G. Ruhdorfer. “Giving tunnels ears – installation
of the first acoustic monitoring system for road tunnels worldwide.” In:
Internationaler Tunnelkongress, Hamburg (May 2011) (cit. on p. 80).

[GSS02] R. P. Garg, I. A. Sharapov, and I. Sharapov. Techniques for optimizing applica-
tions: high performance computing. Prentice Hall PTR, 2002 (cit. on p. 33).

[Hen04] M. Henning. “A new approach to object-oriented middleware.” In: Internet
Computing, IEEE 8.1 (2004), pp. 66–75 (cit. on p. 11).

[HS01] Y. Hardy and W.-H. Steeb. “Finite State Machines.” In: Classical and Quan-
tum Computing. Springer, 2001, pp. 229–250 (cit. on p. 33).

[HS11] M. Henning and M. Spruiell. “Choosing Middleware: Why Performance
and Scalability do (and do not) Matter.” In: (2011) (cit. on p. 13).

[HW03] G. Hohpe and B. Woolf. Enterprise integration patterns: Designing, building,
and deploying messaging solutions. Addison-Wesley, 2003 (cit. on p. 45).

[Ret+10] B. Rettenbacher et al. “A pilot system for acoustic tunnel monitoring.”
In: Proceedings of 1st EAA EuroRegio Congress of Sound and Vibration (2010)
(cit. on p. 80).

[Ret+11] B. Rettenbacher et al. “Interactive Sound Source Localization using Nat-
ural User Interfaces and Mobile Devices.” In: Forum Medientechnik - Next
Generation, New Ideas. Ed. by A. Frotschnig and H. Raffaseder. 2011 (cit. on
p. 78).

[SG05] M. Steiner and F. Graf. “Akustisches Tunnelmonitoring.” In: 3. Interna-
tionaler Fachkongress - Verkehr und Sicherheit in Straßentunneln, Hamburg.
2005 (cit. on p. 80).

[Tan02] A. Tanenbaum. Computer networks 4th ed. Pearson Education), 2002 (cit. on
p. 9).

86



Bibliography

[Tan09] A. Tanenbaum. Modern operating systems 3rd ed. Pearson Education, Inc.,
2009 (cit. on p. 3).

[The99] Inc. The MathWorks. Real-Time Workshop. For Use with SIMULINK. Jan.
1999 (cit. on p. 18).

[VKZ05] M. Völter, M. Kircher, and U. Zdun. Remoting Patterns. Foundations of
Enterprise, Internet and Realtime Distributed Object Middleware. John Wiley
and Sons Ltd, 2005 (cit. on p. 10).

[Xen99] C. Xenophontos. A Beginner’s Guide to MATLAB. Technical Report. Clarkson
University, 1999 (cit. on p. 38).

87



Appendix

88



Appendix A.

Configuration Examples

A.1. Simulink Module Channel Configuration Example

Listing A.1 Complete Channel Configuration of a Simulink Module Data Transducer used
for feature extraction

1 <ChannelConfig xmlns :xs i=” h t t p : //www. w3 . org /2001/XMLSchema−i n s t a n c e ”>
2 <IndexDef in i t ion name=” chIdx ”>0 : 1 5</IndexDef in i t ion>
3 <IndexDef in i t ion name=” mfccIdx ”>1 : 1 2</IndexDef in i t ion>
4 <Request>
5 <ForEach index=” chIdx ”>
6 <Channel>
7 <GlobalID>Test C [ chIdx ]</GlobalID>
8 <DataType>AUDIO</DataType>
9 <ChannelSpec i f i cs type=” TimeSeries ”>

10 <SampleRate>44100</SampleRate>
11 <SampleFormat>INT16</SampleFormat>
12 <FrameSize>4096</FrameSize>
13 <StreamFormat>PCM</StreamFormat>
14 </ChannelSpec i f i cs>
15 <RequestParameters>
16 <Parameter name=”ChannelPath” x s i : t y p e =” S t r i n g ”>0</Parameter>
17 </RequestParameters>
18 <ProcessingParameters>
19 <Parameter name=” Port ” x s i : t y p e =” S t r i n g ”>AudioIn</Parameter>
20 </ProcessingParameters>
21 </Channel>
22 <Channel>
23 <GlobalID>Test C [ chIdx ]</GlobalID>
24 <DataType>AUDIO</DataType>
25 <ChannelSpec i f i cs type=” TimeSeries ”>
26 <SampleRate>44100</SampleRate>
27 <SampleFormat>INT16</SampleFormat>
28 <FrameSize>4096</FrameSize>
29 <StreamFormat>PCM</StreamFormat>
30 </ChannelSpec i f i cs>
31 <RequestParameters>
32 <Parameter name=”ChannelPath” x s i : t y p e =” S t r i n g ”>1</Parameter>
33 </RequestParameters>
34 <ProcessingParameters>
35 <Parameter name=” Port ” x s i : t y p e =” S t r i n g ”>AudioIn</Parameter>
36 </ProcessingParameters>
37 </Channel>
38 </ForEach>
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39 <RequestParameters>
40 <Parameter name=” RtSimulat ion ” x s i : t y p e =” I n t 3 2 ”>1</Parameter>
41 </RequestParameters>
42 </Request>
43 <Provide>
44 <ForEach index=” chIdx ”>
45 <ForEach index=” mfccIdx ”>
46 <Channel>
47 <GlobalID>MFCC[ mfccIdx ] C [ chIdx ]</GlobalID>
48 <DataType>CUSTOM</DataType>
49 <Loca lDescr ip t ion>
50 <Parameter name=” Port ” x s i : t y p e =” S t r i n g ”>Mfcc [ mfccIdx ]</Parameter>
51 </Loca lDescr ip t ion>
52 </Channel>
53 </ForEach>
54 <Channel>
55 <GlobalID>ZCR C[ chIdx ]</GlobalID>
56 <DataType>CUSTOM</DataType>
57 <Loca lDescr ip t ion>
58 <Parameter name=” Port ” x s i : t y p e =” S t r i n g ”>Zcr</Parameter>
59 </Loca lDescr ip t ion>
60 </Channel>
61 </ForEach>
62 </Provide>
63 </ChannelConfig>
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A.2. IceGrid Application Example

Listing A.2 IceGrid configuration for GainPan16 application

1 < !−−Chronos R e a l t i m e T e s t A p p l i c a t i o n : GainPan−−>
2 <i c e g r i d>
3 <a p p l i c a t i o n name=”GainPan”>
4 <node name=” TestMaster ”>
5 <server id=”CXR” a c t i v a t i o n =”always” exe=” C:\Users\ fim\P r o j e k t e \svn\

Chronos\Realtime\ trunk\cpp\bin\Release\CXRegistry . exe ” pwd=” C:\Users\
fim\P r o j e k t e \svn\Chronos\Realtime\ trunk\ t e s t s \gainpan\ resources ”>

6 <option>−c</option>
7 <option>C:\Users\ fim\P r o j e k t e \svn\Chronos\Realtime\ trunk\ t e s t s \gainpan\ conf ig

</option>
8 <p r o p e r t i e s>
9 <property name=” I c e . ThreadPool . C l i e n t . SizeMax” value=”5”/>

10 <property name=”CXRAdapter . ThreadPool . S ize ” value=”3”/>
11 <property name=”CXRAdapter . ThreadPool . SizeMax” value=”15”/>
12 </ p r o p e r t i e s>
13 <adapter name=”CXRAdapter” endpoints=” tcp ” id=”CXRAdapter”>
14 <o b j e c t i d e n t i t y =”CXR” type=” : : c h r o n o s X : : C X R e g i s t r y ”/>
15 </adapter>
16 </server>
17 <server id=”CU” a c t i v a t i o n =”always” exe=” C:\Users\ fim\P r o j e k t e \svn\Chronos\

Realtime\ trunk\cpp\bin\Release\AudioCaptureUnit . exe ” pwd=” C:\Users\ fim\
P r o j e k t e \svn\Chronos\Realtime\ trunk\ t e s t s \gainpan\ resources ”>

18 <property name=”CU. ThreadPool . S ize ” value=”3”/>
19 </server>
20 <server id=”SLM” a c t i v a t i o n =”always” exe=” C:\Users\ fim\P r o j e k t e \svn\Chronos\

Realtime\ trunk\cpp\bin\Release\SimulinkModule . exe ” pwd=” C:\Users\ fim\
P r o j e k t e \svn\Chronos\Realtime\ trunk\ t e s t s \gainpan\ resources ”>

21 <property name=”CU. ThreadPool . S ize ” value=”2”/>
22 </server>
23 <server id=”AM” a c t i v a t i o n =”always” exe=” C:\Users\ fim\P r o j e k t e \svn\Chronos\

Realtime\ trunk\cpp\bin\Release\AudioMonitor . exe ” pwd=” C:\Users\ fim\P r o j e k t e
\svn\Chronos\Realtime\ trunk\ t e s t s \gainpan\ resources ”>

24 <property name=”CU. ThreadPool . S ize ” value=”2”/>
25 </server>
26 <server id=”GUI” a c t i v a t i o n =”always” exe=” C:\Users\ fim\P r o j e k t e \svn\Chronos\

Realtime\ trunk\cpp\bin\Release\Control lerGui . exe ” pwd=” C:\Users\ fim\
P r o j e k t e \svn\Chronos\Realtime\ trunk\ t e s t s \gainpan\ resources ”>

27 </server>
28 </node>
29 </ a p p l i c a t i o n>
30 </ i c e g r i d>
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