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Zusammenfassung 

Gehirnverletzungen als Hauptursache für Morbidität und Mortalität, induzieren multiple 

zelluläre pathologische Veränderungen, einschließlich Entzündung, Exzitotoxität und 

oxidativen Stress, Apoptosis, gestörter Plastizität und Regeneration, durch Änderung der 

Gen- und Proteinexpression, was zu langfristigen neurologischen Defiziten führt.  

Da die bestehenden Behandlungen noch ineffizient sind, sind weitere Studien notwendig, 

um die genauen molekularen und zellulären Mechanismen der zugrunde liegenden 

neuronalen Schäden nach Hirntrauma zu verstehen und bessere therapeutische 

Strategien zu entwickeln.  

MiRNAs als wichtige Regulatoren der Genexpression befinden sich reichlich im 

Nervensystem und sind bei der Aufrechterhaltung der neuronalen normalen Funktion und 

Homöostase beteiligt, welche mit der neuronalen Entwicklung, Differenzierung, 

Neurogenese, synaptischen Plastizität und Gedächtnis verbunden sind.  

Bisherige Studien zeigten wesentliche Änderungen der miRNAs im Hippocampus nach 

Hirnschädigung, besonders für miR-451, was auf seiner wichtigen regulatorischen Rolle in 

Trauma-bezogenen zellulären Ereignissen schließen lässt.  

Die vorliegende Arbeit konzentrierte sich auf die posttraumatischen Änderungen der miR-

451-Expression im Hippocampus, welcher als wesentliche Gehirnregion für Gedächtnis, 

Kognition und Emotion, beim Hirntrauma besonders gefärdet ist.  

Das temporale miR-451 Expressionsniveau nach induziertem schweren Hirntrauma in 

einem "Fluid Perkussion Schädigung" Rattenmodell, wurde über die qRT-PCR Analyse des 

ipsilateralen hippocampalen Gewebes bestimmt und als Änderung des ct-Wertes, im 

Vergleich zum Schein-Trauma dargestellt.  

miR-451 wurde am Tag 1 post-trauma über-exprimiert gefunden, am Tag 4 invariant, nach 

1 Woche (p=0,0016) und nach 2 Wochen (p=0,0015) statistisch signifikant unter-

exprimiert und nach 3 Wochen nur leicht unter-exprimiert.  
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Abstract 

Traumatic brain injuries are a major cause of morbidity and mortality, inducing multiple 

cellular pathological changes, including inflammation, excitotoxicity and oxidative stress, 

apoptosis, impaired plasticity and regeneration, by altering the gene and protein 

expression patterns, resulting in long term neurological deficits. 

Since the existing treatments are still inefficient, further studies are request to elucidate 

the exact molecular and cellular mechanisms underlying the neuronal damage following 

TBI, for to develop better therapeutic strategies. 

Abundant in the nervous system, miRNAs as gene expression key regulators are involved 

in the maintaining of neuronal normal function and homeostasis that is related to 

neuronal development, differentiation, neurogenesis, synaptic plasticity and memory. 

Studies revealed post-TBI altered hippocampal miRNAs, particularly miR-451, suggesting 

its critical regulatory role in injury-related cell events. 

The present work was focused on post-injury miR-451 expression changes in 

hippocampus, as an essential brain region for memory, cognition and emotion, vulnerably 

to TBI. 

After induced severe TBI in a rat “fluid percussion injury” (FPI) model, miR-451 temporal 

expression level, determined by qRT-PCR analysis of ipsilateral hippocampal tissue, 

presented as change in threshold cycle (ct), compared to sham operated animals, was 

found up-regulated at day 1, invariant at day 4, statistically significant down-regulated at 

1 week (p=0.0016) and 2 weeks (p=0.0015), being less decreased at 3 weeks’ time point. 
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1. THEORETICAL BACKGROUND 

1.1. Traumatic brain injury  

Traumatic brain injury (TBI) as an insult to the brain due to an external physical force to 

the cranium causes structural and functional impairment of the brain, still representing 

the leading cause of death and disability in individuals under the age of 50 worldwide (1). 

Each year occur in the U.S. about 1.7 million TBI-related deaths, hospitalizations, and 

emergency department visits (2).  

Upon Glasgow coma scale (GCS) score after resuscitation, TBI is graded in mild, moderate 

and severe (Tab.1). Mild TBI (GCS 13–15) corresponds to a concussion with full 

neurological recovery. In moderate TBI (GCS 9–13) the patient is exhausted or stuporous, 

and in severe TBI (GCS 3–8) the patient is comatose, incapable to open the eyes or follow 

demands, having an increased risk of death due to hypotension, hypoxemia (low oxygen 

level in the blood), and edema (brain swelling), if these are not adequately treated (3). 

Table 1: Glasgow coma scale, based on the level of TBI patient consciousness  

Eye opening Motor response Verbal response 

Spontaneous   4 Obeys                          6 Oriented                     5 

To speech        3 Localises                     5 Confused                    4 

To pain             2 Withdraws                 4 Inappropriate            3 

None                1 Abnormal flexion      3 Incomprehensible    2 

 Extensor response    2 None                           1 

 None                           1  

 

 TBI pathophysiology 1.1.1.

TBI pathophysiology comprises numerous complex mechanisms that are interconnected 

and can be succinctly described by the following three stages:  

(a) The first stage or primary insult (mechanical damage) occurring at the moment of 

impact, being “ischemia-like”, is described by direct tissue damage with succeeding 

impairment of cerebral blood flow (CBF) and metabolism, and can’t be therapeutically 

influenced. 
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(b) The second stage or secondary insult (non-mechanical, delayed damage) named also 

“catabolic- or self-digesting-like” is represented through a pathophysiological cascade 

(Fig.1), which is triggered by cerebral ischemia along with inadequate intracranial 

pressure (ICP) and is sensitive to therapeutic interventions. 

(c) The third stage or brain specific recovery stage includes endogenous restorative brain 

plasticity processes like neurogenesis, angiogenesis, axonal remodeling and 

synaptogenesis, which can be also subject of curative intervention. 

     TBI 

                                                                Blood flow reduction / ischemia 

 

 

 

                                                         

Glutamate Neurotransmitters excessive release 

                Glutamate-Receptors excessive stimulation = Excitotoxicity 

 

 

 
 
 
 
 

mitochondrial    +    membrane    +     free radicals    +     cytoskeletal     +       inflammation 
  dysfunction             disruption,        overproduction         breakdown,                 processes 
                                     edema,           (Oxidative stress)       DNA fragmentation 
                                   BBB failure                                              and repair failure 

                                                                             

                                                           Apoptotic / necrotic neuron death 

Figure 1: TBI pathophysiological cascade leading to neuron death  

                                                Glucose + O2 supply reduction 

Neuron                                                              (ATP depletion / Na+ K+ - ATPase failure) 

                                                   Membrane depolarisation 

 

                                            

                                        Membrane depolarisation and Ca2+ increase 

                         

                        

 

                 Ca2+ excessive influx / cell overload 

Postsynaptic                                                        

Neuron                               Ca-dependent enzymes over activation 

                  (calpain, phospholipases, proteases, kinases, endonucleases, nNOS) 

))caspases 
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The TBI pathophysiology is reviewed in Fig.1 as an imbalance between the cerebral blood 

flow (CBF) and metabolism processes (4, 5) with subsequent neurotoxic cascade that 

finally leads to the membrane degradation of brain vascular and cellular structures in 

addition to the two forms of cell death: necrosis, as premature cell death in living tissue 

and apoptosis, as gene-directed “cell suicide” that affects only individual cells, leaving 

adjacent cells intact (6, 7). Acute trauma to the brain initiates a blood-flow reduction and 

consequent ischemia along with glucose and oxygen supply reduction. Therefore the ATP-

stores decrease and energy-dependent membrane ion pumps fail with subsequent cell 

membrane depolarisation, thus compromising the brain homeostasis (8 , 9, 10).  

After TBI astrocytes become “reactive” through phenotypic changes like: cytoplasm 

enlargement, elongation of the processes, up-regulation of glial fibrillary acidic protein 

(GFAP). Reactive astrocytes stimulate proinflammatory cytokines expression, swell and 

contribute to cerebral edema, failing to regulate the extracellular glutamate (11). 

Excitotoxicity is due to the toxic action of massive release of glutamate excitatory 

neurotransmitters, which affects neurons and astrocytes through over-stimulation of 

glutamate receptors.  

The succeeding down-stream neurotoxic cascade includes: an excessive Ca2+ influx and 

the over-activation of Ca-dependent enzymes along with free radicals overproduction and 

subsequent oxidative stress, mitochondrial dysfunction, membrane disruption, edema 

formation, blood brain barrier (BBB) integrity failure, inflammation processes, cytoskeletal 

break-down, DNA fragmentation and repair failure, leading after all to cell death and 

tissue destruction (12, 13, 14, 15).  

 TBI treatment strategies 1.1.2.

As previously mentioned, beside the pathophysiological cascade, TBI induces also 

endogenous restorative brain plasticity processes like: neurogenesis (new neurons 

generation), angiogenesis (new capillaries from pre-existing vessels) and vasculogenesis 

(de novo blood vessels formation), axonal remodelling (axonal sprouting and pruning), 

synaptogenesis (new synapses formation). These processes provide promising treatment 

opportunities by amplifying them to promote post-TBI functional recovery (16, 17). 
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During life the neurogenesis generates continuously new neurons, mainly in two regions 

of the mammalian brain (A): subventricular zone (SVZ) of lateral ventricles (B) and 

subgranular zone (SGZ) within the dentate gyrus of hippocampus (C), Fig.2 (16, 18, 19). 

 

Figure 2: Schematic representation of the neurogenic niches in adult rodent brain (18) 

In SVZ the astrocyte-like neural stem cells (NSC) called type B1 cells generate type C cells 

that rapidly proliferate producing type A neuroblasts, which migrate through the rostral 

migratory stream (RMS) to the olfactory bulb (OB) where they mature into interneurons. 

Within SGZ the radial glial-like NSC, progenitors, undifferentiated precursors or type 1 

cells, located at the bordure between hilus and granule cell layer (GCL), having a single 

radial process toward molecular layer (ML), give rise to “fast proliferating” type 2 cells 

that develop to neuronal lineage, differentiating into type 3 neuroblasts that become 

immature neurons extending dendrites toward molecular layer (ML), projecting their 

axons through hilus toward CA3 region and maturing during several weeks into dentate 

granule neurons that integrate into pre-existing hippocampal circuitry of GCL. 
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In rats was observed that TBI stimulates cell proliferation in hippocampus, where most of 

the new-born neurons of subgranular zone (SGZ) that survive 10 weeks after TBI can 

differentiate into mature neurons, contributing to cognitive recovery.  Moreover, 

neuroblasts of sub ventricular zone (SVZ) migrate into “injured areas” instead into rostral 

migratory stream (RMS) and differentiate into neurons and glia (16).  

To improve post-TBI functional recovery, experts suggest a combination of 

neuroprotective with neurorestaurative therapies, including drugs that reduce acute and 

delayed effects of TBI, stem cell-based along with pharmacological therapies for brain 

repair and brain cooling to stabilize the cerebral metabolism (16, 17, 20-27). 

 

1.2. microRNAs 

microRNAs are a class of small, 20-25nt long, single-stranded, highly conserved, non-

coding RNA transcripts that negatively regulate the protein synthesis by targeting mRNAs 

at post transcriptional level (1, 28-37). 

miRNAs play an important role in diverse biological processes such as cell cycle, 

development, cell proliferation and differentiation, apoptosis, metabolism, angiogenesis 

as well as immunity.  Hence their dysregulation is associated with inflammation, 

autoimmunity, viral infections, heart diseases, neurodegeneration, and cancer (37-39). 

In central nervous system (CNS) miRNAs are abundant, acting as key modulators of 

development and plasticity (30, 32, 39), therefore their altered expression is linked to the 

pathology of various neurological and neurodegenerative disorders (28, 32, 37, 39-42). 

 miRNAs biogenesis 1.2.1.

Most of the miRNAs genes are located in intergenic regions, but some are found also in 

introns or exons of non-coding genes or inside of introns of protein-coding genes (32). 

miRNA genes are typically transcribed by RNA polymerase II (few human miRNAs by 

polymerase III) to an “up to several thousand nt long” initial RNA transcript, the so-called 

primary miRNA (pri-miRNA), which possesses a characteristic “stem-loop structure” that 

can be recognized and cleaved by ribonuclease III (RNase III) endonuclease Drosha within 

the nucleus (28, 40).  
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The cleavage product, named precursor miRNA (pre-miRNA), is a -70nt long hairpin RNA 

with a 2nt 3’-overhang, which is recognized by Exportin-5 and transported from nucleus 

to the cytoplasm in a Ran/GTP-dependent manner.  

For an efficient cleavage Drosha requires a protein partner, Pasha/DGCR8 that has a 

double-stranded RNA-binding domain (dsRBD) (35). DGCR8 (DiGeorge syndrome critical 

region 8) protein increases eight fold Drosha activity and DGCR8 or Drosha knockdown 

(KD) induces pri-miRNAs accumulation, whereas pre-miRNAs amount decrease (32).  

Some miRNAs bypass Drosha/DGCR cleavage: miRtrons as a subclass of miRNAs, encoded 

in introns of protein-coding genes, small hairpin shRNA-derived miRNAs, endogenous 

small interfering siRNA and also small nucleolar snoRNAs with a miRNA-related function 

outside of nucleolus (32, 39). 

In cytoplasm Dicer, another conserved RNase III enzyme, together with its dsRBD protein 

partners, TAR RNA-binding protein (TRBP) and PACT, further process pre-miRNA into a 

miRNA-miRNA* duplex, consisting of the ~21nt mature miRNA strand and its star 

sequence, which is then unwound by the helicase armitage.  

The mature miRNA strand (guide strand) is incorporated into a protein complex that 

include Argonaute (AGO) proteins, known as RNA-induced silencing complex (RISC), 

whereas the other stand (passenger strand) is destroyed.  

miRNA guide strand within RISC complex can bind in two ways: with imperfect 

complementarity to 3’UTR (untranslated region) of target mRNA, inducing translational 

repression or with perfect complementarity to ORF (open reading frame) causing target 

cleavage.  

Dicer knock-out (KO) in C. elegans and mammalian cell lines leads to cytoplasmic pre-

miRNA accumulation, first proved for let-7, a highly conserved miRNA, with role in 

developmental timing and involved in many forms of cancer.  

As Fig.3 illustrates, most of miRNAs are processed from precursors with hairpin-structure 

by the consecutive action of the two RNase III enzymes: Drosha and Dicer. An exception 

to this makes miR-451, at which the processing is Dicer-independent and its cleavage is 

mediated by the endonuclease Ago2 (32, 40, 43, 44, 46, 47). 
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Figure 3: microRNA biogenesis pathway* 

Fig. 3 illustrates the miRNA genes transcription by RNA Pol II to generate pri-miRNAs, 

whose hairpin structures are cleaved by Drosha/Pasha, DGCR8 to release pre-miRNAs, 

which are then exported from nucleus into cytoplasm by Exportin-RanGTP, where they 

are further processed by Dicer/Loqs (Loquacious), TRBP to form an ~22 nt duplex. The 

guide strand is next selected into the RISC protein complex to function as mature miRNA; 

the other strand is degraded. Mostly miRNA imperfect complementarity to target mRNA 

induces translational repression by binding to 3’-UTR, whereas a perfect complementarity 

causes target cleavage through binding to ORF. As exception, miR-451 has a Dicer-

independent processing, being cleaved by Ago2 endonuclease. 

                                                           
* Ameres SL, Zamore PD, Diversifying microRNA sequence and function, Nature Reviews 
Molecular Cell Biology, Vol. 14, 475–488 (2013) 
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 miRNA gene expression regulation  1.2.2.

In animals, miRNA silencing of gene expression is mainly mediated by translational 

inhibition, which sometimes appears to be reversible, ensuring a dynamic miRNA 

mediated regulation, sensitive to specific cellular needs.   

Since the mRNA target complementarity to miRNA seed region is only partial, one miRNA 

can potentially have hundreds of targets and conversely individual mRNAs can be 

regulated by many miRNAs, allowing vast combinatorial possibilities, providing the 

genetic complexity, associated with a multitude of essential biological processes (28, 32, 

39, 45). 

Compared with other tissues, the brain shows enriched ADAR (Adenosine Deaminase 

Acting on double stranded RNA) activity, that affect miRNA processing by the conversion 

of adenosine (A) to inosine (I), which then will be read as guanine (G).  As consequence 

might appear changes in stem-loop stability of pri-miRNAs or in target mRNA selection, 

supposing to facilitate brain-specific expression (40). 

 miRNAs in CNS  1.2.3.

The mammalian CNS is an amazingly complex system, particularly in humans with around 

1018 synapses deriving from only about 104 protein-coding genes (48) and requires a 

similarly complex network of molecular pathways to control its huge amount of various 

cellular processes and permanent adaptation to environmental signals (49).  

It is postulated that around 50% of mammalian mRNAs are regulated by miRNAs in 

concerted action with transcription factors (TF) (50). 

The miRNAs specificity for particular mRNAs depends on the intracellular concentrations, 

which in turn reflect the balance between protein degradation and biosynthesis (50, 51). 

About 70% of all miRNAs, ubiquitous and brain-specific, are expressed in human nervous 

system to regulate its normal development and function (52, 53), in addition their 

misexpression is associated with diverse neurological diseases (51, 52, 54-62). 

The Dicer gene deletion and subsequent failure of mature miRNAs expression showed: 

loss of stem cells populations with embryonic lethality (53), drastic myelination reduction 

via impaired oligodendrocytes differentiation (56, 58, 63, 64), as well as neurological and 
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neurodegeneration disorders as a result of abnormal morphology, loss of branching, 

disturbed axonal pathfinding and cell death of neurons subpopulations in distinct brain 

regions, including midbrain, cerebellum, hippocampus and cortex (28, 32, 65, 66).  

Mature miRNAs lack in mice forebrain neurons by Dicer knock-out revealed learning 

improvement, due to better translation of “synaptic mRNAs”, proved by increased levels 

of proteins that are translated in dendrites, known to affect plasticity, like BDNF (brain 

derived neurotrophic factor) etc. (67). 

Able to regulate simultaneously many target genes, miRNAs show distinct profiles that 

are associated with various cellular processes like: neural stem cell (NSC) self-renewal and 

development, proliferation of NSC and progenitors, neuronal differentiation, maturation, 

synaptogenesis, dendrite remodelling and synaptic plasticity (50, 51, 53-58, 60-62, 68-72). 

Current research proved miRNAs conserved role in the precise regulation of mammalian 

CNS proper development and maintenance (50, 53, 56). 

Even in adult brains (dentate gyrus of hippocampus) is needed a tightly controlled 

neurogenesis for a normal cerebral function, including proliferation, fate specification, 

neuronal maturation, targeting, synaptic integration and survival of new-born neurons, 

confirming the structural plasticity in mature CNS (73, 74). 

CNS injury produces profound molecular and cellular changes through tissue disturbance 

and consequent dysregulation of signalling pathways and regulatory mechanisms, 

including injury-associated miRNAs (46, 75-78). 

Structural changes in Hippocampus are the most frequent consequences of TBI, 

confirmed by the about 60% TBI-patients with hippocampal atrophy, as well as cognitive 

and memory deficits (46).  

Studies on TBI animal models revealed altered miRNAs expression, which during the post-

injury acute phase were associated with cell pathology and stress management, targeting 

genes involved in apoptosis, protein folding and aerobic respiration and by contrast 

during the chronic phase were predicted to regulate genes of brain repair mechanisms, 

linked to cytoskeletal organisation and intracellular trafficking (46). 
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Injury-specific miRNAs may serve as plasma biomarkers to monitor brain injury since their 

expression profiles in rat brain (hippocampus) and in whole-blood correlate, showing 

more than 1.5 fold changes (79), and because of their abundance, specificity and stability 

in plasma (34, 46, 63, 78, 80). As example miR-21 was reported to be modulated in all 

types of injury serving as “common cell-death regulator” in stroke, spinal cord and brain 

injury and studies with TBI patients revealed three miRNAs as promising diagnostic 

biomarkers for severe injury: miR-16, miR-92a and miR-765 (34).   

 

1.3. miR-451  

Brain cells respond to traumatic injury through multiple pathological changes, including 

inflammation, excitotoxicity and oxidative stress, apoptosis, impaired plasticity and 

regeneration, by altering their gene and protein expression patterns, resulting in long 

term neurological deficits. 

Abundant in the nervous system, miRNAs as gene expression key regulators are involved 

in maintaining of normal neuronal function and homeostasis that is related to neuronal 

development, differentiation, neurogenesis, synaptic plasticity and memory (34, 42, 81). 

The present work was focused on miR-451 in relation with its hypothesised key functions 

in TBI pathophysiology, as next described. 

 

 TBI related functions of miR-451 1.3.1.

miR-451 is one of the well-known miRNAs that showed substantial change in expression 

after experimental TBI, as following studies (chronologically listed) reported: 

 Redell et al. 2009 (34) found miR-451 significantly up-regulation (P<0.01) at 3h and 

24h post-TBI, in rat ipsilateral hippocampus, after controlled cortical impact injury 

(CCI), by microarray analysis. Using an independent set of animals by RT-PCR analysis, 

miR-451 was found down-regulated at 3h, up-regulated at 24h and invariant at 3 days 

post-TBI, but not significantly, maybe as a result of animal-to-animal responses 

variation. The RT-PCR analysis for the contralateral hippocampus indicated a miR-451 

down-regulation at all three time points, statistically significant at 3 days’ time point.  
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 Lei et al. 2009 (82) inform about a more than two times down-regulation of miR-451 

at 6h and 48h post injury in rat brain cortex, by microarray analysis.  

 Truettner et al. 2011 (83) presented the cytoprotective effect of therapeutic 

hypothermia and miRNA profiles in rat cerebral cortex after fluid percussion injury 

(FPI), where miR-451 appeared up-regulated by both methods: microRNA array and 

RT-PCR analysis.  

In RT-PCR results miR-451 at 7hours post-TBI was increased ~ 2.84 fold in 

normotherapia animals, but appeared at sham levels in hypothermia group. At 24h, 

mir-451 was at sham levels for normotherapia, but ~ 3.16 fold increased for 

hypothermia animals.  

 Hu et al. 2012 (29) reported distinctive miRNAs expression profiles in hippocampus 

after 24h and 7 days, in rat controlled cortical impact (CCI) model, where miR-451 was 

found up-regulated at 24h time point.  

 Truettner et al. 2013 (84) inform that miR-451-overexpression, induced by stretch 

injury, leads to increased stress and vulnerability in transfected neurons.  

qRT-PCR of “uninjured cells” overexpressing miR-451 showed the most rise in the 

expression of 6 analysed genes, which respond to cellular pathologies like trauma and 

ischemia, as example both cytokines IL1-β (11 fold, p<0.05) and TNF-α (24 fold, 

p<0.05), pro-apoptotic gene Caspase 11 (7 fold, p<0.01). 

qRT-PCR of “stretch injured” cells overexpressing miR-451 compared to non-injured 

controls showed significant high expression levels (p<0.001) for the genes IL1-β, TNF-α 

and molecular chaperone HSP70, which respond to miss-folded proteins or other 

cellular stress.  

 O'Connor et al. 2013 (85) investigate the “early-life stress” induced changes to 

multiple hippocampal miRNA and their role in depressive pathology. They found that 

antidepressant treatments (with selective serotonin reuptake inhibitor fluoxetine, 

rapid acting NMDAR antagonist ketamine and electroconvulsive shock therapy (ECT) 

reversed the stress-induced changes to miR-451.   
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 Patz et al. 2013 (86) examined the cerebrospinal fluid (CSF), detecting firstly more 

abundance of microparticles1 (MPs) in brain-injured vs. non-injured subjects. Only in 

isolated CSF-MPs of brain-injured patients was found a significant amount of miR-451, 

suggesting its key role in the adaptive response to TBI. 

 

 Other known key functions of miR-451 1.3.2.

The miR-451 essential functions have been identified in a variety of biological contexts as 

numerous publications reported: 

a) miR-451 as an erythroid specific miRNA (87), highly up-regulated during erythropoiesis 

(88), induces basolateral epithelial cell polarity (89), acting as an enhancer of normal 

erythroid differentiation (88, 90-94), being required for homeostasis (95). It protects 

against erythroid oxidant stress by repressing 14-3-3zeta (96, 97). Haemolysis caused 

miR-451 overexpression in plasma, without haemolysis miR-451 is sufficiently constant to 

serve as normaliser (98). miR-451 was recommended to be used in the artificial blood 

production technique, as well as in gene therapy of hemoglobinopathies (88). 

b) miR-451 is involved in response to pathogen infection (99) and is increased significant 

in blood exposed to Gram-positive bacteria (100).  

Viral infection specifically induces miR-451 that directs a negative regulatory cascade to 

adjust dendritic cells2 cytokine production (101). 

c) miR-451 was found significantly overexpressed in diseased gingival tissues (102), in 

rheumatoid arthritis and systemic lupus erythematosus (103) and became significantly 

down-regulated in hyperplastic scars3 (104). 

                                                           
1 Microparticles are cell-derived membrane-sheathed structures that shuttle proteins, mRNA, 

miRNA to adjacent and distant cells. 

2 Dendritic cells are immune cells, present in skin, blood, inner lining of nose, lungs, stomach, 

intestines, which activated, migrate to lymph nodes, interacting with T and B cells to initiate 

adaptive immune responses. 

3  Hyperplastic scars and keloids appear in aberrant wound healing causing skin deformities. 
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d) miR-451 was early elevated in hypertrophic cardiomyopathy (105); its overexpression 

improves cardiomyocyte survival (106) and induces IPC4-mediated cardioprotection (107). 

e) miR-451 is widely dysregulated, having a critical role in tumor genesis and progression 

that can be used for diagnosis, prognosis, and treatment of cancer diseases (108):  

 miR-451 over-expression represses 14-3-3ζ promoting excessive apoptosis (109). 

 miR-451 is in fact down-regulated in glioma5 cells, but re-introduced to glioma cells 

acts as tumor-suppressor by inhibiting cell growth, proliferation and inducing cell 

apoptosis (110-112). miR-451 expression showed a direct proportionality with the 

glucose level, controlling glioma cells ability to “go or grow”, elevated miR-451 and 

glucose levels were associated with poorer prognosis (113, 114). 

 miR-451 was significantly up-regulated in saliva of esophageal cancer patients (115). 

Over-expressed miR-451 induced apoptosis and suppressed cell proliferation, invasion 

and metastasis in esophageal carcinoma, and injection of miR-451 inhibited tumor 

growth in a xenograft model of esophageal cancer (116). Other group reveals also its 

important role in regulating xenograft rejection (117). 

 miR-451 was significantly up-regulated in thyroid cancer with lymph node metastasis 

(118) and considered as suppressor of oncogenesis of T cell acute lymphoblastic 

leukemia (T-ALL) (119). 

 miR-451 over-expression is associated with strong poor prognosis for recurrence and 

survival of gastric cancer (120) and plasma miR-451 was proposed as blood-based 

biomarker for screening gastric cancer (121). miR-451 were also found significantly 

elevated in pancreas cancer patients (122). 

 miR-451 repress colorectal carcinoma cells by inhibiting cell growth (123) and caused 

a decrease in self-renewal, tumorigenicity, and chemoresistance, being suggested as 

candidate to circumvent recurrence and drug resistance (124) 
                                                           
4 IPC (Ischemic preconditioning) is an intrinsic process, whereby repeated short ischemia protects 

myocardium against a subsequent ischaemic insult; and an experimental technique for producing 

resistance to the loss of blood supply, and thus oxygen to tissue. 

5 Glioma is a high aggressive, malignant, lethal brain tumor, with median survival of about 6 

months if untreated. 
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 miR-451 was found significantly high and as suppressor in human lung cancer (125, 

126) moreover was significantly up-regulated during the development of pulmonary 

hypertension (127). 

 miR-451 was considered as tumor-suppressor through its down-regulation in 

hepatocellular carcinoma associated with high proliferation (128) along with its 

significantly decreasing in renal cell carcinoma serum (129). miR-451 growth-

inhibitory effect was described in diabetic nephropathy by induced suppression of 

Ywhaz and p38 MAPK signalling (130). 

 miR-451 was reported as significantly up-regulated in human osteosarcoma6 cells 

(131), in contrast miR-144/miR-451 cluster was down-regulated (132). miR-451 over-

expression in osteosarcoma correlates with subsequent positive response to 

chemotherapy (133). 

 miR-451 was found significantly up-regulated having tumor-suppressor function in 

breast cancer (134) and as best biomarker (p < 0.0001) in combination with miR-145 

in discriminating breast cancer from healthy controls and all other types of cancer 

(135). 

 

 miR-451 typical features 1.3.3.

miR-451 is expressed as “miR-144/451 cluster” (95, 97, 106, 107) from a highly conserved 

bicistronic locus in the vertebrate genome (44, 136). 

A microRNA pathway bypassing Dicer cleavage was described firstly for miR-451 (43, 136). 

Even though miR-451 processing in nucleus requires Drosha to create a short pre-mir-

451-hairpin of about 42nt (136, 137), in contrast to other miRNAs, this hairpin is directly 

loaded into Ago2, as sole vertebrate “Slicer” Argonaute (136) that cut it into a 30nt 

intermediate, whose 3’end will be resected to create  a ~ 23nt mature miR-451 (136, 138). 

Dicer KO cells can produce matures miR-451 but no other miRNAs, whereas Ago2 KO cells 

reconstituted with wild-type Ago2, excluding Slicer-deficient Ago2, can process miR-451 

(137, 139). 

                                                           
6 Osteosarcoma is a malignant bone tumour that usually develops in teenagers. 
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Studies confirmed that miR-451 gene and the endonucleolytic activity of animal Ago 

proteins are highly conserved, suggesting their evolutionary meaning in gene regulation. 

Therefore Ago2 is exclusively required for viability in mice, where homozygous mutants 

died shortly after birth due to anemia (138).  

In addition the expression of miR144/451 cluster is strictly Ago2 dependent and is 

required for erythroid homeostasis, along with the fact that mice deficient of it result in 

erythroid hyperplasia, splenomegaly and anemia, miR-451 having a greater impact than 

miR-144 on target gene expression (95).  

 

1.4. Hypothesis / Aims 

As a major cause of morbidity and mortality, brain injuries induce profound molecular 

and cellular alterations due to tissue damage and disturbance of cellular mechanisms and 

signalling pathways, where miRNAs play key regulatory roles (39, 41, 46, 75-78, 82). 

Since the existing treatments are still inefficient (29, 46) and many survivors must live 

with neurological deficits (14, 15), further studies are demanded to elucidate the exact 

molecular and cellular mechanisms underlying neuronal damage following TBI, aimed to 

develop better therapeutic strategies (4, 39). 

Hippocampus is an essential brain region for memory, cognition and emotion, vulnerably 

to TBI that produces major pathophysiological changes like: cell loss, disturbed neural 

circuits, impaired synaptic transmission and plasticity, leading to long-term post-TBI 

neurological deficits (29, 34, 140).  

The hypothesis that miR-451 could play an essential role in post-TBI molecular and 

cellular changes in hippocampus, is based on already published results, along with the 

findings of our own research group, for instance: 

 miR-451 presence only in CSF-MPs (cerebrospinal fluid microparticles) of brain-injured 

patients vs. non-injured patients, discovered first of all by our research group, 

suggesting its key role in the adaptive response to TBI (86) 
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 miR-451 up-regulation during “in vitro” neuronal differentiation of NTera2 (Fig.19*),  

“in situ hybridisation” marked miR-451 expression in the dentate gyrus of 

hippocampus at healthy controls, but a down-regulation at moderate brain injured 

rats (Fig.20*) (unpublished results of our research group) 

 post-TBI altered hippocampal miRNAs, including miR-451 (29, 34), suggesting its 

critical regulatory role in injury-related cell events and miR-451 substantial change in 

expression after experimental TBI (34, 82-85) 

 miR-451 key function in a variety of biological processes, like: erythropoiesis (87-98), 

cell differentiation (89), infections (99-101), autoimmune diseases (103), 

cardiomyopathy (104-106) 

 miR-451 widely dysregulation and critical role in numerous cancer types, concerning 

tumor genesis and progression (107-135), mostly being up-regulated and acting as 

tumor-suppressor (esophagus, thyroid, lung, liver, bone, breast) 

Owing to these reasons the aim of this work was to contribute at the investigation of miR-

451 as a potential key modulator of molecular and cellular mechanisms implicated in TBI 

pathophysiology, by analysing of miR-451 expression changes in hippocampus in a rat 

“fluid percussion injury” (FPI) model. 

For this purpose was used the real-time PCR (qRT-PCR) to detect miRNA-451 expression in 

ipsilateral hippocampal tissue, isolated from the brain of healthy or sham control animals 

and from severe damaged brains at 1 day, 4 days, 1 week, 2 weeks and 3 weeks.  
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2. MATERIAL AND METHODS  

2.1. Fluid Percussion Injury (FPI) trauma model 

In the present study were used small RNAs samples isolated with mirVanaTM PARISTM KIT 

from frozen (-70°C) hippocampal tissue of rats after “severe trauma” (pressure values 

more than 2.5 atm) obtained by Fluid Percussion Injury (FPI) on Sprague Dawley rats as 

trauma model, available from my colleague MSc Muammer Ücal. 

In the Tab.2 are pointed the five experimental sets used in these experiments, therefore 5 

animals for each condition, “sham” and “severe” trauma, for day 1, day 4, 1 week, 2 

weeks and 3 weeks after TBI. As “healthy” controls were used 3 animals.  

 

Table 2: Five experimental sets and corresponded animal codes 

 
healthy 

 

sham 

d1 

severe 

d1 

sham 

d4 

severe 

d4 

sham 

1w 

severe 

1w 

sham 

2w 

severe 

2w 

sham 

3w 

severe 

3w 

set 1 1450 1101 763 1080 723 1146 991 1148 985  983 

set 2 1451 1100 1188 1083 1258 1147 993 1150 987 1119 976 

set 3 1452 1103 1189 1082 1245 1288 1229 1151 1239 1120 1207 

set 4 1451 1032 1187 1038 1256 1458 1238 1283 1456 1152 1305 

set 5 1450 1102 765 1081 1242 1459 1465 1284 1460 1121 1206 

 

For the pressure recordings was used a pressure sensor connected to both: a fluid 

percussion device (Scien Instruments, NY, USA) and a computer for the standardization of 

primary physical damage.  

Tab. 3 presents the pressure values used to produce a “severe” trauma to the animals of 

the five sets.  
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Table 3: Pressure values of “severe” traumas for the five experimental sets 

 set 1 pressure 

[atm] 

set 2 pressure 

[atm] 

set 3 pressure 

[atm] 

set 4 pressure 

[atm] 

set 5 pressure 

[atm] 

severe d1 763 2,59 1188 2,82 1189 2,63 1187 2,56 765 2,53 

severe d4 723 2,89 1258 2,56 1245 2,73 1256 2,70 1242 2,82 

severe 3w 983 2,63 976 2,53 1207 2,70 1305 2,54 1206 2,97 

severe 1w 991 2,67 993 2,63 1229 3,12 1238 2,74 1465 2,74 

severe 2w 985 2,56 987 2,72 1239 2,82 1456 2,94 1460 2,72 

 

 

2.2. RNA concentration measurement 

The RNA content of the small RNAs samples, which were isolated from the ipsilateral 

hippocampal tissue of rats (“healthy controls”, “sham” and “severe trauma” animals), was 

measured with Quant-iTTM RiboGreen® RNA Assay Kit (Invitrogen).  

This method use advanced fluorophores that bind to RNA and become fluorescent. The 

intensity of the emitted fluorescence of the resulting complex is directly proportional to 

the amount of RNA target molecules in the sample.  

Because RiboGreen Reagent binds only to intact miRNA molecules, and doesn’t interfere 

with molecules of free nucleotides or contaminants, the results obtained by RiboGreen 

method are more accurate than those obtained with UV absorbance readings by 

NanoDrop ND-1000 Spectral photometer.  

Therefore RiboGreen method was at the end the method of choice to measure the 

miRNA concentration of all samples. 
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 NanoDrop method description 2.2.1.

The NanoDrop spectral photometer allows the quantification of RNA by measuring the 

optical density (OD) or absorbance at 260 and 280 nm wavelengths and calculating the 

concentration using Beer-Lambert law, which indicates a direct proportionality of the 

absorbance with the concentration.  

Generally the ratio of absorbance 260/280 of pure RNA samples is about 2.0, while a 

lower ratio of absorbance than 2.0 means a contamination with protein, phenol or other 

compounds that absorb at 280 nm wavelengths. 

The absorbance ratio 260/230 of pure RNA samples is expected to be in the range of 2.0 – 

2.2 and a ratio value lower than 1.8 may mean contaminants which absorb at 230nm.  

This measurement was done by direct pipetting of undiluted 2µl miRNA sample. Because 

the pH of the sample influences the absorbance, as blank on the Nanodrop should be 

used the solvent, not water. 

 RiboGreen method description 2.2.2.

RNA samples were treated with fluorochrom RiboGreen® reagent, which bound only to 

RNA intact molecules as previous explained. The amount of RNA in the sample was 

calculated using a RNA standard curve as a serial dilution of ribosomal RNA standard 

(rRNA) in 1x TE-Buffer, obtained as described above.  

The RiboGreen® RNA reagent was diluted 200fold, therefore 7.5µl RiboGreen® RNA 

reagent were added to 1492.5µl 1x TE-Buffer to obtain 1.5ml diluted Ribogreen reagent, 

which was protected from light in dark eppis. 

 Preparation of standard solutions 2.2.3.

The standard curve was prepared as a serial dilution using 7 decreasing concentrations of 

rRNA standard in 1x TE-Buffer, which are showed in the Tab. 4.  

The first tube contained 245µl TE buffer and 5µl rRNA standard and the every other 6 

tubes 120µl TE buffer. The serial dilution was provided by taking of 120µl from the first 

tube after properly vortexing and passing to the second, then vortexing the second tube, 
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taking again 120µl and passing them to the third tube and so on in order to obtain the 

standard concentrations.  

Table 4: rRNA concentration of the standards 

Standard Standard concentration [ng/µl] 1x TE-Buffer [µl] rRNA [µl] 

1. Std 2 245 5 

2. Std 1 120 120 

3. Std 0.5 120 120 

4. Std 0.250 120 120 

5. Std 0.125 120 120 

6. Std 0.0625 120 120 

7. Std 0.03125 120 120 

 

 Preparation of sample solutions 2.2.4.

The sample solutions were prepared by adding of 2.4µl from original isolated miRNA to 

117.6µl 1x TE buffer for to obtain 120µl miRNA (1:50) sample solution. 

 

 POLARstar optima fluorometer Analysis  2.2.5.

The seven prepared standard solutions (in decreasing concentrations: 2, 1, 1.5, 0.250, 

0.125, 0.0625 and 0.03125 ng/µl) and the 1:50 diluted miRNA sample solutions were 

passing in duplicates, 50µl each, to the black 96 well fluoroplate.  

Then 50µl Ribogreen RNA reagent (1:200) was added onto each well, excepting the two 

wells for blank, each consisting of 100µl 1x TE buffer. 

The black fluoroplate was shacked 3 min. with 300 rpm, covered with aluminium foil and 

then analysed by POLARstar optima fluorometer (emission: blue, excitation: yellow). 
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2.3. Formaldehyde Agarose Gel Electrophoresis 

After the determination of miRNA concentration, from each sample are prepared 50ng 

miRNA, solved in 20 µl, in order to use then 30 ng for “formaldehyde agarose gel 

electrophoresis” and 20ng for the “cDNA synthesis”.  

1.2% formaldehyde (FA) agarose gel electrophoresis was performed to check the results 

of the RNA concentration measurement, expecting that all the bands on the gel will show 

the same intensity, with other words each band will contain 30 ng miRNA, like Fig.15 

illustrates at Chapter 3.2.2. 

 Preparation of 1.2 % formaldehyde agarose gel  2.3.1.

The 1.2% formaldehyde agarose gel (1.2% agarose) of size 10 x 14 x 0.7 cm (a small gel) 

was prepared from 1.2 g agarose mixed with 10 ml 10x formaldehyde agarose gel buffer 

(see composition below) and 100 ml RNase-free water, followed by heating to melt the 

agarose and cooling to 65°C in a water bath.  

Then 1.8 ml of 37% (12.3 M) formaldehyde (toxic) and 1 µl Gel Red were added, mixed 

thoroughly and put onto gel support. The gel was equilibrated in 1x FA agarose gel 

running buffer for 30 min. before running. 

 

Table 5: Composition of the formaldehyde agarose gel buffers 

10x FA agarose gel buffer 
1x FA agarose gel 

running buffer 
5x RNA loading buffer 

 200 mM 3-[N-morpholino] 
propane sulfonic acid (MOPS) 

 50 mM sodium acetate 

 10 mM EDTA 

 pH to 7.0 with NaOH 

 100 ml 10x FA 
agarose gel buffer 

 20 ml 37% (12.3 M) 
FA 

 880 ml RNase-free 
water 

 16 µl saturated aqueous 
bromophenol blue solution 

 80 µl 500 mM EDTA, pH 8.0 

 720 µl 37% (12.3 M) FA 

 2 ml 100% glycerol 

 3084 µl formamide 

 4 ml 10x FA agarose gel 
buffer 

 RNase-free water to 10 ml 

 Stability 3 months at 4°C 
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  RNA samples preparation for electrophoresis  2.3.2.

The RNA sample preparation for FA agarose gel electrophoresis consisted in adding 1 

volume of 5x loading buffer per 4 volumes of RNA sample (in the present work 3µl of 

loading buffer and 12µl of RNA), mixing, incubating 3min. at 65°C, chilling on ice and 

loading onto the equilibrated 1.2 % FA agarose gel. 

 Gel running conditions 2.3.3.

The gel was run at 150V for 15min. in 1x FA agarose gel running buffer.  

 

2.4. cDNA synthesis  

 Reverse transcription by Qiagen 2.4.1.

The conversion of miRNA into cDNA (first strand cDNA synthesis from RNA template) 

performed using miScript II RT Kit from Qiagen utilised HiFlex Buffer in the reverse 

transcription reaction and all RNA species were converted into cDNA (Fig. 4).  

 

Figure 4: Conversion of miRNA into cDNA using HiFlex Buffer by Qiagen Kit (141) 
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Both reactions, polyadenylation, in which mature miRNAs are polyadenylated by poly(A) 

polymerase, and subsequent reverse transcription into cDNA, are carried out in the same 

tube in parallel.  The oligo-dT primers with a 5’-universal tag and a 3’-degenerate anchor 

allowed the recognizing and amplification of mature miRNA later in the RT-PCR step, 

excluding a detection of genomic DNA (141). 

The cDNA synthesis is a reverse transcription reaction, which includes incubation of the 

reaction components (Tab. 6) for 1 hour at 37°C, followed by the reaction inactivation for 

5 min. at 95°C. 

 

Table 6: Reverse transcription reaction components, by Qiagen 

Component Volume / reaction 

HiFlex Buffer 4µl 

Nucleic Mix 2µl 

RNase free water 4µl 

Reverse Transcriptase 2µl 

Template RNA 8µl 

Total volume 20µl 

 

A mastermix (MM) was prepared on ice, as sum of the components visible in Tab. 6 

(excepting “template RNA”), multiplied by the number of reactions. A “no template 

control” or RT(-) reaction, with RNase free water instead of template RNA, was also 

included.  

MM was mixed gently and 12µl MM was dispensed into the tubes containing 8µl RNA 

template (20ng miRNA). The total volume of the reaction mix was 20µl for each reaction. 

Samples were incubated 1h at 37°C, then 5min at 95°C and finally were stored a -20°C. 
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 Reverse transcription by Exiqon 2.4.2.

The conversion of miRNA into cDNA performed using Universal cDNA Synthesis kit II from 

Exiqon, by which microRNA polyadenylation and reverse transcription occurred in a single 

reaction step.  

Analog to cDNA synthesis previous described, the reverse transcription reaction 

comprises the incubation of the reaction components (Tab.7) for 1h at 42°C followed by 

an inactivation step for 5 min. at 95°C. 

 
Table 7: Reverse transcription reaction components, by Exiqon 

Component Volume / reaction 

Reaction Buffer 4µl 

RNase free water 6µl 

Enzyme mix 2µl 

Template RNA 8µl 

Total volume 20µl 

 

A mastermix (MM) was prepared also on ice, as sum of the components of Tab.7 

(excepting “template RNA”), multiplied by the number of reactions.  

A “no template control” or RT(-) reaction, with RNase free water instead of template RNA, 

was also included.  

MM was mixed gently and 12µl MM was dispensed into the tubes containing 8µl RNA 

template (20ng miRNA). The total volume of the reaction mix was 20µl for each reaction. 

Samples were incubated 1h at 42°C, then 5min at 95°C and finally were stored a -20°C. 
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2.5. Quantitative Real Time-PCR (qRT-PCR) 

The detection of mature miRNAs in samples was done by subsequent quantitative real 

time-PCR (qRT-PCR) of cDNAs prepared before in reverse transcription reaction, by using 

miScript SYBR Green PCR Kit from Qiagen, which contains miScript Universal reverse 

primer and QuantiTect SYBR Green PCR.  

For accurate and reproducible results, U6 was used as normalisation control (reference 

gene), excluding possible variations of input RNA amount, eventual RNA degradation, 

inhibitors in RNA samples or differences in sample handling.   

 

 qRT- PCR cycling conditions 2.5.1.

The real-time PCR reactions were performed using “Roche Light-Cycler 480” at 

corresponding cycling conditions: Qiagen (Tab.7) or Exiqon (Tab.8). 

 

Table 8: RT- PCR cycling conditions / Qiagen  

Steps Time Temperature Additional comments 

PCR activation  15min 95°C HotStarTaq DNA polymerase activation  

3 step cycling:    

Denaturation 15s 94°C  

Annealing 30sec 55°C  

Extension 30s 70°C 
Perform fluorescence data collection 

Acquisition mode: single 

Melting curve:    

 10s 95°C  

 1min 50°C  

 continuous 95°C 10 acquisitions per °C 

cooling 10s 40°C  

Cycle number 45  using Roche LC 480 
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Table 9: RT- PCR cycling conditions / Exiqon 

Process step Settings, LC 480 instrument 

Polymerase Activation / Denaturation 10min, 95°C 

Amplification 10s, 95°C 

1min, 60°C 

Ramp-rate 1.6 C/s 

45 amplification cycles 

Melting curve analysis yes 

After establishing of RT-PCR for miR-451 (Chapter 3.3.), in all experiments were used 

Qiagen cycling conditions, where the annealing requirements were modified according to 

the optimal annealing conditions for Exiqon primers (1min., 60°C). 

 

 qRT-PCR Workflow 2.5.2.

Prior to RT-PCR, cDNA samples were diluted 1:80 (Exiqon) or 1:60 (Qiagen). Then two 

mastermix (MM) were prepared on ice, using the first three reaction components 

according to Tab.9: 5µl SYBR Green + 1µl 10xUP + 1µl Primer = 7µl per PCR reaction, 

multiplying by number of reactions, in duplicate, as well as a “blank”, RT(-) and MM-

control (no fluorescence signal denotes no contamination in MM).  

Table 10: Reaction setup for real-time PCR 

Components / Qiagen Vol / rxn Components / Exiqon Vol / rxn 

2x QuantiTect SYBR Green PCR 

Master Mix 
5µl SybrGreen Master Mix 5µl 

10x miScript Universal Primer 1µl Exiqon forward primer (1:4) 0.5µl 

Exiqon Primer (miR-451 or U6) 1µl Exiqon reverse primer (1:4) 0.5µl 

cDNA template (1:60) 3µl cDNA template (1:80) 4µl 

Total volume 10µl Total volume 10µl 
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For a better understanding Fig.5 displays a “96-well white plate” of a RT-PCR experiment 

from 08.05.20143 as example. 

              Date: 08.05.2013                                                   Experiment / Plate: qRT-PCR_set 4 

A1 

H 

A2 

sh d1 

A3 

sev d1 

A4 

sh d4 

A5 

sev d4 

A6 

sh 3w 

A7 

sev 3w 

A8 

RT(-) 

A9 

blank 

A10 

MM 

A11 

 

A12 

 

B1 

H 

B2 

sh d1 

B3 

sev d1 

B4 

sh d4 

B5 

sev d4 

B6 

sh 3w 

B7 

sev 3w 

B8 

 

B9 

 

B10 

 

B11 

 

B12 

 

C1 

H 

C2 

sh d1 

C3 

sev d1 

C4 

sh d4 

C5 

sev d4 

C6 

sh 3w 

C7 

sev 3w 

C8 

RT(-) 

C9 

blank 

C10 

MM 

C11 

 

C12 

 

D1 

H 

D2 

sh d1 

D3 

sev d1 

D4 

sh d4 

D5 

sev d4 

D6 

sh 3w 

D7 

sev 3w 

D8 

 

D9 

 

D10 

 

D11 

 

D12 

 

 

Figure 5: 96-well white plate of a RT-PCR experiment  

In blue are marked the well’s positions (A1-A12, B1-B12 etc.), in green sample’s names. 

Lines A and B belong to U6 reference gene, lines C and D belong to miR-451 target gene. 

On the white plate are visible 17 reactions (R) for each gene. Therefore 18 R (one 

supplementary) were necessary to calculate the component amounts for each MM as 

Tab.11 presents. 

Table 11: qRT-PCR Mastermix preparation  

MM / U6  MM / miR-451  

18 R  x  5µl = 90µl SYBR Green 18 R  x  5µl = 90µl SYBR Green 

18 R  x  1µl = 18µl 10xUP 18 R   x  1µl = 18µl 10xUP 

18 R  x  1µl = 18µl U6 primer  18 R  x  1µl = 18µl miR-451  

                       126µl total volume                        126µl total volume 

First of all, were dispensed 7µl MM into the wells of the white plate, kept on ice: from 

MM/U6 (A1 to A10, B1 to B7) and MM/miR-451 (C1 to C10, D1 to D7) respectively. Then 

were added 3µl of the correspondent cDNA template, RT(-) or RNase free water for blank. 

After mixing and spin down the prepared plate was measured at Light Cycler. 

U6 

(Exiqon) 

 miR-451  

 (Exiqon) 
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 Data analysis by ΔΔCt method 2.5.3.

The threshold cycle (ct) values for both genes, miR-451 target gene and U6 reference 

gene, provided from Light Cycler were imported into an Excel sheet and for each sample 

was calculated the “mean ct” of the duplicates.  

The expression of miR-451 target gene was then normalized to U6 reference gene, 

calculating Δct for each sample, as following difference: 

Δct = mean ct (miR-451) - mean ct (U6)                   (a) 

Changes in miR-451 expression level due to “severe trauma” were represented as change 

in Δct value of “severe” from “sham” by the formula: 

ΔΔct = Δct (sham) - Δct (severe)                                (b) 

A positive difference or positive ΔΔct value denotes an increase in abundance of miR-451 

target gene after severe trauma, while negative difference reveals a decrease in miR-451 

abundance (34). 

 

 Statistical analysis  2.5.4.

All RT-PCRs were repeated at least two times in duplicates. Data were presented as 

“mean ΔΔct ± SEM” for five animal sets, corresponding to each investigated time point 

(see Tab. 15 and 16). 

Standard error of the mean (SEM) defines the error of the mean of the sample with 

respect to the mean of the population, giving an idea about how far the found mean 

differs from the real mean and was calculated using the formula (142): 

SEM = SD/√n, where SD = standard deviation         (c) 

The comparison between groups was performed by statistical Student's t- test, in Excel.  

P-values less than 0.05 indicate statistically significant differences. A p-value of 0.05 

means 5% chance that null hypothesis (“no difference”) is true (142). 
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3. RESULTS 

3.1. Establishment of miRNA concentration measurement 

In prior experiments, the concentration of miRNA samples was measured by NanoDrop 

spectral photometer, easy to execute by directly measurement of 2µl miRNA.  

Changeable results by repeated application of the Nanodrop (ND) measurement, in 

addition to unequal bands on the gel and much more amount necessary for the 

measurement, suggested that this method is inadequate to measure miRNA 

concentration, especially when samples are provided from sacrificed animals. 

 Comparison between ND and RG concentration measurement 3.1.1.

Numerous trials indicated that the spectral photometer seams to measure all molecules 

inside the miRNA sample, also the molecules of free nucleotides or contaminants, 

resulting in inaccurate concentration values. 

Following results were selected to justify why finally RiboGreen (RG) was preferred to 

measure the miRNA concentration of all samples.   

For instance Fig.6 presents a gel of three different miRNA samples (notated by animal 

codes), measured by ND, indicating that 30ng/slot were insufficient, being undetectable; 

the bands were visible using 150ng/slot, but 4 and 5 seemed to be overloaded.  

 

Figure 6: 1.2 % FA agarose gel; ND measurement, 30ng/slot (blue) and 150ng/slot (black) 

 

In the next trial were used 100ng miRNA /slot, like Fig.7 presents.  On this gel some bands 

were undetectable (1, 9, 10, 11, 12), and the others dissimilar, indicating an inexact 

concentration measurement by ND method.  
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Figure 7: 1.2 % FA agarose gel; ND measurement, 100ng/slot  

This experiment was repeated to get sure, that no handling imperfections occurred 

before. On the next gel (Fig. 8) could be remarked a similar profile of the bands as before, 

so it seems that the measured concentrations by ND were inexact.  

 

Figure 8: 1.2 % FA agarose gel; ND measurement, 100ng/slot  

 

Preceding miRNA samples were measured then by RG, showing a better accuracy of this 

method through similar bands on the gel of Fig.9. 

 

Figure 9: 1.2 % FA agarose gel; RG measurement, 30ng/slot, sample 9 vacant (blue) 
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Tab.12 enables a comparison between the two methods, ND and RG, by listing the 

measured concentrations of miRNA samples, presented on the previous gels (Fig.7-9).  

 

Table 12: Comparison of concentration values using both methods (ND and RG) 

 miRNA samples Conc. by ND [ng/µl] Conc. by RG [ng/µl] 

  28.11.2012 29.11.2012 03.12.2013 

1. 629 64.0 49.0 16.7 

2. 1100 34.0 27.0 26.8 

3. 1084 36.0 31.0 14.5 

4. 1192 62.0 59,0 64.8 

5. 1188 31.0 24.0 24.9 

6. 651 44.0 45.0 18.0 

7. 1076 56.0 47.0 28.0 

8. 1089 53.0 45.0 22.0 

9. 717 98.0 73.0 - 

10. 1075 21.0 15.0 3.1 

11. 1095 66.0 64.0 18.6 

12. 1083 62.0 51.0 17.6 

 

In Tab.12 is notable that concentration values obtained by ND are generally higher, 

suggesting the measurement of all existing molecules in the miRNA sample, including also 

molecules of free nucleotides or contaminants, as already mentioned.  

Although ND measurement was identical operated, it can be observed their instability 

from a day to another, causing irreversible loss of miRNA amount during repeated 

measurements. 
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 Accuracy of RG concentration measurement 3.1.2.

The next gels, where miRNA samples were measured by RG method, indicated mostly 

similar bands, 30ng miRNA/slot were detectable. 

For instance on the gel of Fig.10, from twelve miRNA concentrations, only three appeared 

inadequate (red circle), band 6 being imperceptible, 5 and 7 too strong, suggesting more 

than 30ng/slot. Only miRNA samples, which denoted similar bands, could be converted 

into cDNA. 

   

Figure 10: 1.2 % FA agarose gel; RG measurement, 30ng/slot  

On following gel (Fig.11) only one miRNA sample was undistinguishable (at line 9); all the 

other bands seemed to be alike and could be converted into cDNA. 

  

Figure 11: 1.2 % FA agarose gel; RG measurement, 30ng/slot 
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Definitely the gel of Fig.12 displayed similar bands, proposing RG method to measure 

miRNA concentration.  

 

Figure 12: 1.2 % FA agarose gel; RG measurement, 30ng/slot  

 

Considering afore presented results, could be concluded that ND method is not adequate 

to measure miRNA concentration, but RG method offer high accuracy and reproducibility, 

needing small miRNA amounts and saving important miRNA quantities.  

Therefore RG method was the method of choice to measure miRNA concentration of all 

our samples, although this method is more expensive and considerably time-consuming.    
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3.2. miRNA concentration by Ribogreen method   

 Standard curves and appropriate miRNA concentration values  3.2.1.

A correct standard curve was especially important to measure exact concentrations by RG 

method, as described at Chapter 2.2.2. 

As example, Fig.13 illustrates the experiment from 25.04.2013, showing an exact standard 

curve, where the measured standards were almost precisely located on the linear slope.  

 

 

Figure 13: Standard curve of miRNA concentration measurement by RG method 

 

Accordingly to this correct standard curve, the measured miRNA concentrations resulted 

in similar values of the duplicates (Fig.14).  



 miR-451 in hippocampus following severe TBI in rat 

 

50  

 

In Fig. 14 can be remarked comparable values of the duplicates: at standards (red) and 

samples (black). This is visible at fluorescence (raw data) and respectively at the 

concentration values. 

 

Figure 14: Fluorescence values and correspondent concentration of the standards (red) 

and miRNA samples (black) 

 

 Measurement precision test by electrophoresis 3.2.2.

Accordingly to prior obtained exact concentration results, on the gel of Fig.15 could be 

achieved similar miRNA bands, proving an accurate miRNA concentration measurement 

by RG, permitting the conversion of all miRNA samples into cDNA. 
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Figure 15: 1.2% FA agarose gel of miRNA samples, RG measurement, 30ng/slot  

 

3.3. Establishment of qRT-PCR for miR-451 target gene 

 Accurate amplification plots and melting peaks 3.3.1.

In a qRT-PCR amplification plot, the fluorescence is plotted against the number of cycles, 

producing sigmoidal-shaped plots, where the threshold cycle (ct) represents the cycle at 

which appears first detectable amount. Consequently a sample containing a higher 

amount of starting template appears earlier, having a lower ct value.  

PCR products are double stranded at low temperature and SYBR Green can bind to them 

resulting in a high fluorescence. High temperatures denaturize the PCR products and 

therefore fluorescence decreases rapidly.  

The melting peaks are produced by measuring continuously the fluorescence with slowly 

increasing temperature from a low value (65°C) to a high one (95°C) and plotting 

fluorescence values against temperature. The appearance of only one peak means the 

amplification of the specific PCR product. Supplementary peaks at a lower temperature 

appear sometimes as a result of primer-dimer co-amplification. 

Fig.16-19 illustrate the amplification curves and related melting peaks for U6 reference 

gene and miR-451 target gene of the qRT-PCR experiment from 8.05.2013 as example, 

showing adequate amplification curves and single melting peaks of specific amplification 
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products. No contamination was indicated via “green” (Fig.16 and 18) or “blue” lines (Fig 

17 and 19) of the blank, RT(-) and MM samples. 

 

Figure 16: Amplification curves for U6 reference gene 

 

 

Figure 17: Melting peaks for U6 reference gene 
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Figure 18: Amplification curves for miR-451 

 

 

Figure 19: Melting peaks for miR-451 

The amplification curves and related melting peaks of the RT-PCR experiments used for 

the post-TBI miR-451 expression profile (Fig.32) are presented at Chapter 5 (APPENDIX), 

Fig.50-62, as “raw data“. 
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 qRT-PCR experiments by Exiqon 3.3.2.

It is well-known that any relative RT-PCR needs a stable reference gene or endogenous 

control to correct eventual sample-to-sample and run-to-run variations. 

As reference gene was used at the beginning a U6 primermix from Exiqon. At the 

beginning the RT-PCR trials were performed at Exiqon cycling conditions, but the 

experiments appeared many times contaminated and it was difficult to locate the errors 

or to relate them to some imperfections. 

Fig.20 displays the results of the first RT-PCR, at which could be observed contaminations 

in Blank and MM (see arrows).  

 

 

Figure 20: Amplification curves and melting peaks for U6 / 1st RT-PCR / 20.02.2013 

 

The amplified samples were then charged on a 2% agarose gel, where the contaminations 

were confirmed through the presence of same PCR product (98bp) in blank and MM, as 

Fig.21 illustrates.  
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Figure 21: 2% agarose gel of the amplified samples of 1st RT-PCR / 20.02.2013 

 

 Contamination troubleshooting 3.3.3.

The next RT-PCR experiments were set to determine the source of contamination, as 

point A) explained. 

A) To check the water, in a second RT-PCR were used one miRNA sample (1101_sh d1) as 

positive control, a blank containing water from the water aliquot utilized in the previous 

RT-PCR, another blank with water took from our lab stock of RNase free water and also a 

master mix sample (Fig.22). 

 

Figure 22: Amplification curves and melting peaks for U6 / 2nd RT-PCR / 21.02.2013 
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As Fig. 22 displays, contaminations appeared in both blanks and MM, suggesting two 

possibilities: either U6 primermix or Sybrgreen were contaminated. 

Subsequently, to verify the source of contamination a third RT-PCR experiment with three 

parallel approaches was proposed, where again same contamination profile occurred 

(Fig.23).  

 

     Figure 23: Amplification curves and melting peaks for U6 / 3rd RT_PCR / 21.02.2013 

The contamination was also confirmed on the related gel, at which the PCR product 

appeared in all slots (Fig.24). 
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Figure 24: 2% agarose gel of the samples of 2nd and 3rd RT-PCR / 22.02.2013 

Contaminations of blanks and MM at all three approaches of the 3rd RT-PCR, suggested a 

possible contamination of the water in which U6 primermix was initial diluted. Therefore 

a new U6 primermix was ordered, re-suspended in fresh RNase free water and the source 

of contamination was further followed up, as described at point B). 

 

B) Following RT-PCRs tried to exclude any source of contamination, by preparing the PCR 

plate under lamina, using for the two MM the new ordered U6 primermix, with Sybr used 

before and also from a new original vial, like Fig. 25 presents. 

   

 

     Figure 25: Amplification curves and melting peaks for U6 / RT_PCRs / 06.03.2013 

 

The contamination visible in Fig.25 was also confirmed on subsequent gel, at which the 

same PCR product appeared in all slots (Fig.26). 
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Figure 26: 2% agarose gel of the samples of RT-PCRs / 06.03.2013 

 

After these RT-PCRs it was difficult to locate or relate errors to some imperfections and 

consequently Exiqon system was abandoned.  

The following RT-PCRs were performed using a miScript PCR Starter Kit offered for free 

from Qiagen Company, as subsequent described. 

 

 qRT-PCR experiments by Qiagen 3.3.4.

The miScript PCR starter Kit offered by Qiagen company, provided own cDNA synthesis 

compounds (which were used to prepare new cDNA by Qiagen) and two different 

reference genes: Hs_miR-15a_1 and U6 / RNU6-2-1.  

First the miRNA samples of set 1 were converted into cDNA using Qiagen PCR starter kit. 

Next gel was executed to check the PCR results, proving similar bands as Fig.27 sshowed.  

 

Figure 27: 1.2% FA agarose gel of miRNA samples measured by RG, 30ng/slot 
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RT-PCRs were performed then to test the before mentioned Qiagen reference genes (15a 

and U6), provided by miScript PCR starter kit, using the Qiagen cycling conditions (Tab.8). 

Both trials looked ideal (similar duplicate amplification curves, single melting peaks of 

specific amplification products and no contaminations) (Fig.28-29). 

 

Figure 28: Amplification curves and melting peaks for “15a” gene / 19.03.2013 

 

 

Figure 29: Amplification curves and melting peaks for “U6” gene / 19.03.2013 
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Afterwards in the following RT-PCR experiment was tested U6 reference gene from 

Qiagen for the set 1 (samples of Fig.27).  

Besides a blank with water from Qiagen kit (sample 8.) was applied a blank containing 

RNase free water from our lab aliquots (sample 9.), which in previous RT-PCRs appeared 

contaminated and as Fig.30 illustrates, both blanks looked clean.  

 

Figure 30: Amplification curves and melting peaks for “U6” / 21.03.2013 

 

It is well-known that the melting peaks could be: red (one peak), blu (none), and green 

(two peaks). In this RT-PCR the duplicate of sample 1101 and of sample 723 appeared 

green (two peaks), indicating the presence of a primer dimer, besides the specific PCR 

product. 

 

 Qiagen cycling conditions optimisation  3.3.5.

Because miRNAs possess highly conserved sequences, it was possible to use in the next 

RT-PCR experiments a “human miR-451 primer” from Exiqon, already available in our lab. 

Since our lab water seemed to be clean, as proved before (Fig.30), was tested again the 

U6 primermix from Exiqon, used on 6.03.2013, which appeared to be contaminated at 

that time.  
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Consequently following RT-PCRs were performed at Qiagen cycling conditions, at which 

the annealing step was modified according to the optimal annealing requirements of 

Exiqon primers (1min, 60°C / Tab.9).  

 

 

Figure 31: Amplification curves and melting peaks for “U6” / 08.04.2013 

 

Fig. 31 illustrates proper amplification curves and corresponding melting peaks for the U6 

reference gene and miR-451 target gene from Exiqon. No contaminations were indicated 

through green or blue lines of the blank, RT(-) and MM samples. 

 

Consequently next RT-PCRs, whose results (ct values) were used to determine the post-

TBI miR-451 temporal expression profile (Fig.32), were operated at prior established 

conditions:   

 “U6 for rat” and “human miR-451”, both from Exiqon, were used as primers. 

 The real-time PCR reactions were performed using “Roche Light-Cycler 480” at Qiagen 

cycling conditions (Tab.8), at which the annealing step was modified, according to the 

optimal annealing settings for the Exiqon primers (1min, 60°C / Tab.9). 

 

Raw data of qRT-PCR experiments used for the post-TBI miR-451 temporal expression 

profile graph (Fig.32) are showing at Chapter 5 (APPENDIX), Fig.50-62 and Tab.16-24. 
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3.4. miR-451 temporal expression profile post-TBI by qRT-PCR 

The temporal expression profile of miR-451 after severe Fluid Percussion Injury (FPI), 

determined by qRT-PCR analysis of rat ipsilateral hippocampal tissue is shown in the 

graph of Fig 32.  

Data is presented as change in threshold cycle of miR-451 post severe TBI, compared to 

sham operated animals, normalized to U6 reference gene, for the examined time points: 

1 day, 4 days, 1 week, 2 weeks, and 3 weeks.  

Changes of miR-451 expression after “severe TBI” are represented as “mean ΔΔct ± SEM” 

values of the five sets (see calculation at Tab.15 and 16 of Chapter 5), corresponding to 

each examined time point (1 day, 4 days, 1 week, 2 weeks, and 3 weeks). 

The miR-451 expression level changes after “severe trauma” were statistically analysed as 

comparison between groups of the considered time points, using Student's t-test, 

performed in Excel, where significant differences were considered P-values less than 0.05 

observable in Fig. 32. 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: miR-451 temporal expression profile post-TBI, determined by qRT-PCR analysis 
of rat ipsilateral hippocampal tissue 
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As Fig. 32 illustrates, after severe TBI, miR-451 appears up-regulated in rat ipsilateral 

hippocampal tissue of day 1 comparing to sham, then at day 4 miR-451 expression 

returns to the sham level, but becomes significantly down-regulated after 1 week 

(p=0.0016) and 2 weeks (p=0.0015) relating to day 1, and later at 3 weeks’ time point 

being less decreased, looking like returning to the sham level.  

A p-value less than 0.001 denotes a 0.1% chance that „null hypothesis” or “no difference” 

between “day 1” group and “1 week” or “2 weeks” groups is true. 
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4. DISCUSSION 

4.1. miR-451 expression changes after severe TBI 

The miR-451 up-regulation at day 1 and the invariance at day 4 post-TBI correlate to the 

results of Redell et al. 2009 (34), that found by microarray analysis a significantly up-

regulation of miR-451 in rat ipsilateral hippocampus at 3h and 24h post-TBI and by RT-

PCR an up-regulation at 24h and an invariance at 3 days post-injury.  

A similar tendency was described by Truettner et al 2011 (83), regarding miR-451 

expression profiles in rat cerebral cortex with an increase of about 3 fold at 7h post-FPI  in 

normothermia animals, by RT-PCR analysis.  

Also Hu et al. 2012 (29) reported an up-regulation of miR-451 at 24h time point, in rat 

controlled cortical impact (CCI) model.  

On the other hand Lei et al. 2009 (82) found out a more than two times down-regulation 

of miR-451 at 6h and 48h post injury in rat brain cortex by microarray analysis. 

Truettner et al. 2013 (84) reported that miR-451-overexpression, induced by stretch 

injury, leads to increased stress and vulnerability in transfected neurons. “Stretch injured” 

cells overexpressing miR-451 compared to non-injured controls showed significant high 

expression levels for genes, which respond to miss-folded proteins (chaperone HSP70) or 

other cellular stress (cytokines IL-1β and TNF-α as well as pro-apoptotic gene Caspase 11). 

 

MiR-451 implication in TBI is also supported by numerous experiments of our own 

research group, as next described.   

Patz et al. 2013 (86) evidenced firstly that human cerebrospinal fluid (CSF) comprises 

membrane-sheathed microparticles (MPs) that shuttle proteins, mRNA and miRNA to 

local or distant target cells.  

Along with this a significant miR-451 amount was reported only in CSF-MPs isolated from 

brain-injured vs. non-injured patients, but miR-451 was never detected in CSF-MPs 

derived from healthy subjects.  
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In addition the incubation of cultured NTera27 cells with CSF derived from brain-injured 

patients demonstrated a transfer of miR-451 to these cells through the down-regulation 

of specific target genes (FGFR18 or CD1339).  But NTera2 cells incubated with CSF from 

healthy subjects (where no miR-451 was detected) showed no effect on the miR-451 

target genes.  

Moreover, CSF-MPs mediated down-regulation of miR-451 target genes was suppressed 

by adding “miR-451 antagomir” (miR-451 LNA inhibitor), in contrast to “miR-451 

scrambled”, suggesting that miR-451 specific sequence is critical for aforementioned 

target genes repression (Fig.33*).  

 

Figure 33*: Influence of CSF-MPs from TBI patients on NTera2 gene expression 

CSF of TBI patients (TBIP) regulates FGFR1 and CD133 gene expression of NTera2 cells, 

through miR-451 contained in its MPs. The black column represents the mRNA expression 

without CSF-MPs of TBI patients, the second column indicates an mRNA down-regulation 

by adding of 10ng CSF-MPs from TBI patients, the third column suggests a repression of 

                                                           
7 NTera2: human cell line with a phenotype resembling committed CNS neuronal precursor cells. 

8 FGFR1: fibroblast growth factor receptor 1, protein involved in cell division, regulation of cell 

growth and maturation, formation of blood vessels, wound healing, and embryonic development. 

9
 CD133: protein localized to membrane protrusions on adult stem cells, is supposed to maintain 

stem cell properties by suppressing differentiation. 

*
 Graph presented with friendly permission of Univ.-Prof. Dr. Ute Schäfer. 
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this down-regulation through “miR-451 antagomir” addition, and the last one shows an 

almost no effect on this down-regulation, when adding “miR-451 scrambled”.  

Experiments “in vitro” of our research group also reveal an increasing of miR-451 

expression during neuronal differentiation, from a low expression in proliferating 

neuronal stem cells to highest expression at late differentiation stage (Fig. 34*). 

 

Figure 34*: miR-451 expression during “in vitro” cell differentiation of NTera2 

 

During the 50 days neuronal differentiation of NTera2 cells “in vitro”, can be observed a 

slowly miR-451 up-regulation with the highest level at late differentiation stage, along 

with expression changes of distinct target genes, for instance: DCX (doublecortin, a 

microtubule-associated protein, required for neuronal migration), Tuj (neuron specific β 

III tubulin, a neuronal marker), GFAP (glial fibrillary acidic protein, an intermediate 

filament protein).  

The up-regulation of mir-451 at late neuronal differentiation stage, but not in the 

proliferating stage, correlates with the experimental attested miR-451 inhibition of cell-

growth and proliferation in the field of numerous cancer types, acting as tumor-

suppressor and its role in promoting cell differentiation, especially during erythropoiesis. 

                                                           
* Graph presented with friendly permission of Univ.-Prof. Dr. Ute Schäfer. 
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We could assume that miR-451-overexpression at day 1 post-TBI of the present work 

reflects a rapid adaptive response of the organism to the excessive cellular stress induced 

by severe brain trauma. This can be related to an elevated need of mature neuronal cells 

that can replace rapidly the damaged ones and subsequent acceleration of late neuronal 

differentiation stage and maturation, which is induced by high miR-451 level, linked to 

specific target genes expression changes, as Fig.33 illustrated before.  

The described effect is also in accordance with the reported mir-451 high expression in 

other biological contexts:  

 erythropoiesis, where elevated miR-451 induces basolateral epithelial cell polarity, 

acting as differentiation enhancer (87-94) and protector against oxidant stress (96, 97)  

 infections (bacterial gram-positive, viral) inducing the cytokine production (99-101) 

 autoimmune diseases like rheumatoid arthritis, systemic lupus erythematosus (103) 

 cardiomyopathy, improving cardiomyocyte survival, having protective role (105-107)   

 tumors, where its high expression promote excessive apoptosis, supressed cell 

proliferation and growth, invasion and metastasis (109-112, 116). Therefore was 

defined miR-451 as “tumor-supressor”. 

 

However, miR-451 expression returns to the sham level at day 4 and becomes significant 

down-regulated at 1 week and 2 weeks post-TBI, then later at 3 weeks-time point being 

only less under-expressed, appearing to return to the sham-level (Fig.32).  

The post-TBI miR-451 expression profile, at which the initial up-regulation at day 1 

continues with a decrease to sham level at day 4 and furthermore a significant miR-451 

down-regulation at 1 week – 2 weeks suggests a “neuronal proliferation period” (Fig.34) 

of about 2 weeks after the short initial phase of extreme cellular stress.  

 The mir-451 down-regulation linked to a neuronal proliferation phase could be 

connected to de-repression of genes like FGFR1 and CD133 (Fig.33) and processes as: 

neuronal proliferation (Fig.34), growth, blood vessels formation, wound healing.  

This aspect can be correlated with the following results from “in situ hybridization”, 

obtained by our research group, as following described.   
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In this regard Fig.35* displays a marked miR-451 expression in the dentate gyrus of 

hippocampus at healthy rats (A, B, and B’) in contrast to a down-regulation, indicated by 

no signal (C and C’), at moderate injured brain.  

Figure 35*: miR-451 expression in rat hippocampal dentate gyrus 

A-A’ and B-B’: healthy animal; C-C’: moderate brain injured animal 

 

In A, B and B’ is noticeable a pronounced miR-451 expression, especially in the 

subgranular zone (SGZ) and granular cell layer (GCL) of the hippocampal dentate gyrus.  

A’ indicates no signal, by using of a “miR-451 scrambled” as a negative control.  

C and C’ suggest via negative signal a miR-451 down-regulation doing to a moderate 

trauma (by lateral fluid percussion of < 2.4 atm), 4 hours after TBI, mainly in the ipsilateral 

hippocampus (C). 

As previous discussed, miR-451 overexpression is connected with intensive cell-

differentiation, while its down-regulation is linked to neuronal cell proliferation (results of 

our research group) along with high tumor cell growth in different cancer types and poor 

prognosis (numerous published results). 

                                                           
* Graph presented with friendly permission of Univ.-Prof. Dr. Ute Schäfer. 
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Looking at the miR-451 temporal expression profile post-TBI in rat hippocampal tissue 

(Fig.32) can be supposed that TBI comprise a “initial short period” of about one day, with 

raised miR-451, linked to extreme cellular stress, apoptosis, neuronal maturation and 

growth, followed by a “proliferative period” of 2 weeks with significant miR-451 down-

regulation and de-repression of genes as FGFR1 and CD133, related to intensive cell 

differentiation, proliferation and growth, increased DCX level along with neuronal 

migration, and a third period of “brain repair and regeneration”, at which miR-451 level 

increases again in addition to adult neurogenesis and synaptic plasticity, strong neuronal 

maturation processes, apoptosis and wound healing. 

Studies on TBI animal models associate post-injury acute phase with cell pathology and 

stress management, affecting genes involved in apoptosis, protein-folding, aerobic 

respiration, in contrast to chronic phase, particularly with regard to genes of brain repair 

mechanisms related to cytoskeletal organization and intracellular trafficking (46). 

It was also published that TBI stimulates cell proliferation in rat hippocampus, where 

new-born neurons of subgranular zone (SGZ) surviving 10 weeks after TBI differentiate 

into mature neurons, contributing to cognitive recovery. Furthermore some neuroblasts10 

of subventricular zone (SVZ) migrate into “injured areas” instead of rostral migratory 

stream (RMS) and differentiate into neurons and glia (16). 

As a consequence of all discussed facts, could be admitted that TBI comprises two distinct 

phases: an initial short acute phase as “cell pathology and stress management phase”, 

where miR-451 is up-regulated, promoting neurogenesis, neuronal maturation, apoptosis, 

followed then by a chronic phase as “brain repair and regeneration mechanisms phase”, 

in which miR-451 becomes first significantly down-regulated about 2 weeks long, with 

subsequent de-repression of genes like FGFR1 and CD133, along with intensive cell 

differentiation, proliferation and growth, increased DCX level along with neuronal 

migration and then again a miR-451 increasing, linked to neurogenesis and synaptic 

plasticity, blood vessels formation, apoptosis and wound healing.  

                                                           
10 Neuroblasts differentiate from neural stem cells and represent dividing cells that will develop 

into neurons, often after a migration phase. Neuroblasts can still undergo mitosis, whereas 

neurons are postmitotic. 
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4.2. Conclusion 

This work was aimed to contribute at the elucidation of exact molecular and cellular 

mechanisms of traumatic brain injury, by analysing the miR-451 expression level of 

ipsilateral hippocampal tissue, after induced severe TBI in a rat “fluid percussion injury” 

(FPI) model at different time points: 1 day, 4 days, 1 week, 2weeks and 3 weeks. 

This study might be considerate a novelty, since miR-451 expression level post-TBI at late 

time points (1 week, 2 weeks and 3 weeks) seems to be under-investigated. 

The qRT-PCR analysis (Fig.32) showed that miR-451 temporal expression level, comparing 

to sham control animals, was up-regulated at day 1, invariant at day 4, statistically 

significant down-regulated at 1 week (p=0.0016) and 2 weeks (p=0.0015), being of some 

decrease at 3 weeks’ time point, looking like returning slowly to the sham level. 

Concluding the results of the present work, in addition to those from the literature, along 

with the unpublished results of our research group, thoroughly discussed in the previous 

chapter, TBI could be dividing in two phases:  

 an initial short acute phase as “cell pathology and stress management phase”, where 

miR-451 is up-regulated promoting neurogenesis, neuronal cell differentiation with 

predominant maturation, required by the high need of mature neuronal cells that can 

replace rapidly the damaged ones, strong apoptosis and fast removal of damaged 

cells, followed by  

 a chronic phase as “brain repair and regeneration mechanisms phase”, in which miR-

451 becomes first significantly down-regulated about 2 weeks, with subsequent de-

repression of genes like FGFR1 and CD133, along with intensive cell proliferation and 

growth, increased DCX level along with neuronal migration and then again a miR-451 

increasing, correlated mainly to neuronal differentiation and apoptosis, in addition to 

the continuance of neurogenesis, synaptic plasticity, blood vessels formation, wound 

healing and cognitive recovery. This chronic phase could be imagine as a “long time 

repair and regeneration phase”, at which miR-451 is strong related to the complex 

adult neurogenesis processes and its expression will follow a “sinusoidal time profile” 

with up- and down-regulation periods, linked to prior discussed cellular mechanisms 

and processes of the brain.    
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5. APPENDIX 

5.1. miRNA concentration values measured by RG 

Tab.13 shows the concentration of miRNA samples of the five sets, measured by 

RiboGreen method, which were converted by Qiagen kit to cDNA, then used for RT-PCRs 

at Qiagen cycling conditions.  

 

Table 13: Concentration of miRNA samples by RG, converted into cDNA by Qiagen, used 

for the post-TBI miR-451 temporal expression profile  

 
set 1 

 

Conc. 

[ng/µl] 

set 2 

 

Conc. 

[ng/µl] 

set 3 

 

Conc. 

[ng/µl] 

set 4 

 

Conc. 

[ng/µl] 

set 5 

 

Conc. 

[ng/µl] 

healthy 1450 20,40 1451 69,20 1452 34,80 1451 69,20 1450 20,40 

sh d1 1101 21,00 1100 26,80 1103 9,50 1032 10,60 1102 24,40 

sev d1 763 13,30 1188 24,90 1189 9,00 1187 11,50 765 10,00 

sh d4 1080 18,20 1083 17,60 1082 15,30 1038 24,10 1081 15,70 

sev d4 723 28,30 1258 44,60 1245 21,90 1256 17,90 1242 4,42 

sh 1w 1146 3,44 1147 3,16 1288 4,03 1458 41,30 1459 52,80 

sev 1w 991 6,63 993 5,18 1229 29,40 1238 44,30 1465 29,10 

sh 2w 1148 4,75 1150 5,68 1151 5,03 1283 14,60 1284 4,90 

sev 2w 985 3,02 987 2,17 1239 4,84 1456 33,80 1460 23,20 

sh 3w   1119 13,30 1120 23,90 1152 40,50 1121 23,30 

sev 3w 983 22,00 976 8,90 1207 16,70 1305 31,50 1206 24,10 

 

As next Tab.14* presents the concentration of miRNA samples, measured by RG, which 

were converted into cDNA by Exiqon kit and are kept at -20°C, remaining to be used in 

future experiments.  

                                                           
* Concentration values are absent in case of miRNA samples deficit. 
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Table 14: Concentration of miRNA samples by RG, converted into cDNA by Exiqon 

 
 Set 1 

Conc. 

[ng/µl] 
Set 2 

Conc. 

[ng/µl] 
Set 3 

Conc. 

[ng/µl] 
Set 4 

Conc. 

[ng/µl] 
Set 5 

Conc. 

[ng/µl] 

Day1 

Sham+hbot 1085 20.6 1086 17.7 1087 16.4 1084 14.5 1295 35.0 

Moderate 757 16.3 767 3.5 761 - 1192 64,8 1255 34.6 

Mod+hbot 657 14.1 653 2.6 659 12.2 1191 31.0 1190 69.7 

Sev+hbot 1040 9.6 1053 9,6 655 20.0 651 18.0 1303 27.6 

Day2 

Sham 1068 24.7 1070 12.0 1071 9.8 1076 28.0 1034 19.6 

Sham+hbot 1090 27.8 1091 22.8 1088 41.1 1089 22.0 1296 24.8 

moderate 713 14.2 715 16.1 711 - 717 - 1249 29.1 

severe 1002 15.5 719 - 1003 16.5 1204 29.0 1250 18.0 

Mod+hbot 671 13.3 667 - 669 15.6 1197 38.0 1201 59.9 

Sev+hbot 663 14.0 661 3.0 1195 41.0 1196 45.0 1200 38.0 

Day3 

Sham 1072 14.7 1073 7.0 1074 12,0 1075 3.1 1036 26.4 

Sham+hbot 1093 42.6 1094 17.7 1092 33.0 1095 18.6 1297 24.0 

moderate 751 2.9 753 7.9 998 9.3 1222 53.0 1223 34.5 

severe 997 24.5 733 2.5 1170 29.8 1216 44.0 1220 36.5 

Mod+hbot 645 18,9 643 - 647 15.1 1218 53.0 1214 32.4 

Sev+hbot 637 15.0 633 - 1012 19.4 1217 42.0 635 30.1 

Day4 

Sham+hbot 1096 16.8 1097 20.0 1098 11.7 1099 20.5 1298 22.3 

Moderate 731 19.7 727 - 729 38.9 1257 50.0 1254 22.2 

Mod+hbot 641 19.8 625 - 639 26.5 1253 33.7 1171 17.7 

Sev+hbot 1014 15.8 627 2.6 629 16.7 1259 37.5 631 22.5 
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5.2. Raw data of standard curves and measured concentrations by RG 

The standard curves together with appropriate concentrations of all RG measurements 

are visible in Fig. 36-49, where could be remarked: exact standard curves, standards 

almost precisely located on the linear slope, comparable values of the duplicates, 

observable at both, fluorescence and miRNA concentration values. 

 

Figure 36: RG measurement on 25.10.2012 
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Figure 37: Raw data of RG measurement on 24.10.2012 
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Figure 38: Raw data of RG measurement on 29.10.2012 
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Figure 39: Raw data of RG measurement on 03.12.2012 
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Figure 40: Raw data of RG measurement on 04.12.2012 
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Figure 41: Raw data of RG measurement on 07.12.2012 
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Figure 42: Raw data of RG measurement on 29.12.2012 
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Figure 43: Raw data of RG measurement on 07.01.2013 
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Figure 44: Raw data of RG measurement on 04.12.2012 
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Figure 45: Raw data of RG measurement on 05.02.2013 



 miR-451 in hippocampus following severe TBI in rat 

 

83  

 

 

Figure 46: Raw data of RG measurement on 05.02.2013 
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Figure 47: Raw data of RG measurement on 03.05.2013 
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Figure 48: Raw data of RG measurement on 12.06.2013 
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Figure 49: Raw data of RG measurement on 10.07.2013 
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5.3. miR-451expression levels normalized to U6 reference gene (Δct) 

MiR-451 expression levels normalized to U6 reference gene as Δct values were calculated 

as a difference between the means of the threshold cycle’s duplicates and are presented 

in Tab.15.  

 

Table 15: miR-451expression levels normalized to U6 as Δct values 

 

 
Δct = mean ct (miR-451) – mean ct (U6) 

 

Exp. date healthy sh d1 sev d1 sh d4 sev d4 sh 1w sev 1w sh 2w sev 2w sh 3w sev 3w 

set 1 

30.04.13 10,04 11,47 10,69 12,25 10,54 
    

 9,96 

03.05.13 9,81 11,95 10,34 11,15 10,71 
    

 10,95 

14.05.13 10,72 12,23 11,76 12,49 12,18 
    

 11,36 

04.06.13 10,85 
  

11,77 11,41 
      

19.06.13 9,76 
    

9,77 9,99 10,64 11,97 
  

21.06.13 9,49 
    

9,61 9,99 10,49 11,95 
  

set 2 

02.05.13 9,18 12,76 10,30 10,88 12,61 
    

10,64 13,54 

10.05.13 9,99 13,51 10,97 11,87 12,84 
    

11,40 14,27 

04.06.13 10,85 
  

10,86 12,27 
      

19.06.13 9,76 
    

11,02 11,41 9,50 11,85 
  

21.06.13 9,49 
    

11,00 11,49 9,48 11,72 
  

set 3 

06.05.13 10,07 9,73 10,03 13,00 10,89 
    

12,31 11,84 

10.05.13 10,34 9,75 10,00 13,08 11,34 
    

12,34 11,53 

04.06.13 10,85 
  

13,00 10,76 
      

11.07.13 9,80 
    

8,74 8,91 12,10 11,78 
  

16.07.13 9,80 
    

9,62 11,41 11,32 10,74 
  

set 4 

08.05.13 9,91 11,92 9,08 12,95 14,71 
    

11,32 11,28 

14.05.13 10,78 12,50 9,42 13,36 14,27 
    

10,48 10,58 

04.06.13 10,85 
  

13,17 14,83 
      

11.07.13 9,80 
    

9,07 11,62 10,17 10,78 
  

16.07.13 9,80 
    

10,31 12,99 10,25 12,14 
  

set 5 

17.05.13 10,49 
        

12,63 11,56 

11.07.13 9,80 8,29 9,77 11,69 12,11 8,36 11,43 8,53 12,03 12,09 11,05 

15.07.13 8,31 6,75 8,37 10,65 10,69 6,60 9,86 7,25 10,60 10,82 9,83 

 

These values were used in Excel to generate the post-TBI miR451 temporal expression 

profile, illustrated in Fig.32. 
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5.4. miR-451expression alteration due to severe trauma (ΔΔct) 

Alterations in miR-451 expression level due to “severe trauma” were represented as ΔΔct 

values, obtained by subtraction of “severe Δct” from “sham Δct”, like Tab. 16 presents. 

Table 16: ΔΔct, mean and SEM values for the five sets 

 
 

 
 

 
ΔΔct = Δct(sham) – Δct(severe) 
 

1d 4d 1w 2w 3w 

Set 1 

30.04.2013 0,78 1,71 
   

03.05.2013 1,61 0,43 
   

14.05.2013 0,48 0,31 
   

04.06.2013 
 

0,36 
   

19.06.2013 
  

-0,22 -1,34 
 

21.06.2013 
  

-0,38 -1,46 
 

Set 2 

02.05.2013 2,46 -1,73 
  

-2,90 

10.05.2013 2,55 -0,97 
  

-2,87 

04.06.2013 
 

-1,41 
   

19.06.2013 
  

-0,39 -2,35 
 

21.06.2013 
  

-0,49 -2,24 
 

Set 3 

06.05.2013 -0,31 2,12 
  

0,47 

10.05.2013 -0,25 1,75 
  

0,81 

04.06.2013 
 

2,24 
   

11.07.2013 
  

-0,17 0,32 
 

16.07.2013 
  

-1,79 0,59 
 

Set 4 

08.05.2013 2,84 -1,76 
  

0,04 

14.05.2013 3,08 -0,91 
  

-0,09 

04.06.2013 
 

-1,66 
   

11.07.2013 
  

-2,55 -0,61 
 

16.07.2013 
  

-2,68 -1,89 
 

Set 5 

17.05.2013 
    

1,07 

11.07.2013 -1,48 -0,42 -3,07 -3,50 1,05 

15.07.2013 -1,63 -0,04 -3,27 -3,35 0,98 

mean ΔΔct  0,92 0,001 -1,50 -1,58 -0,16 

SEM  0,51 0,37 0,41 0,44 0,53 

P values 
p 1d & 1w 0.0016 

P 1d & 2w 0,0015 

 

A positive ΔΔct value indicates an increase of miR-451 expression level, while a negative 

ΔΔct value reveals a miR-451 down-regulation, after severe brain trauma. In Excel were 

calculated also SEM and P values (see explanations at Chapter 2.5.3. and 2.5.4).  
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5.5. Raw data of qRT-PCRs  

 Amplification curves and melting peaks of the five sets 5.5.1.

The amplification curves and related melting peaks for U6 reference gene and miR-451 

target gene of the RT-PCR experiments, whose results were used to determine the post-

TBI miR-451 expression profile (Fig.32), are presented in Fig.50-62. As already mentioned, 

U6 reference gene aimed to correct eventual sample-to-sample and run-to-run variations. 

Following figures illustrate adequate amplification curves and single melting peaks of 

specific amplification products. No contamination are indicated via “green” (at 

amplification curves) or “blue” lines (at melting peaks) of the blank, RT(-) and MM 

samples.  

 

Figure 50: Amplification curves and melting peaks for set1 / 30.04.2013 

 

Figure 51: Amplification curves and melting peaks for set1 / 03.05.2013 
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Figure 52: Amplification curves and melting peaks for set 1 & set 4 / 14.05.2013 

 

 

Figure 53: Amplification curves and melting peaks for set 2 / 02.05.2013 

 

 

Figure 54: Amplification curves and melting peaks for set 2 & set 3 / 10.05.2013 
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Figure 55: Amplification curves and melting peaks for set 3 / 06.05.2013 

 

 

Figure 56: Amplification curves and melting peaks for set 2 & set 3 / 08.05.2013 

 

 

Figure 57: Amplification curves and melting peaks for set 5 / 17.05.2013 
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Figure 58: Amplification curves and melting peaks for day 4 (set 1-4) / 04.06.2013 

 

 

Figure 59: Amplification curves and melting peaks for set 5 / 15.07.2013 

 

 

Figure 60: Amplification curves and melting peaks for 1w-2w (set 3 and set 4) /16.07.2013 
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Figure 61: Amplification curves and melting peaks for 1w-2w (set 1 & set 2) /19.06.2013 

 

 

Figure 62: Amplification curves and melting peaks for 1w-2w (set 1 & set 2) / 21.06.2013 

 

The RT-PCRs experiments (Fig.50-62), whose results (ct values) were used to determine 

the post-TBI miR-451 temporal expression profile of Fig.32, were operated at prior 

established RT-PCR conditions (see Chapter 3.3.).  

“U6 for rat” and “human miR-451”, both from Exiqon, were used as primers. 

The real-time PCR reactions were performed using “Roche Light-Cycler 480” at Qiagen 

cycling conditions (Tab.8), at which the annealing step was modified, according to the 

optimal annealing settings for the Exiqon primers (1min, 60°C / Tab.9). 
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 Threshold cycle (ct ) values of the five sets 5.5.2.

Following tables (17 - 24) present the results of the qRT-PCR experiments (all measured 

threshold cycle “ct” values or crossing points “cp”) performed by “Roche Light-Cycler 

480”, used to generate the post-TBI miR-451 temporal expression profile of Fig.32. 

Table 17: ct values for set 1 

set 1 30.04.13 03.05.13 14.05.13 

mir-451 cp1 cp2 mean cp1 cp2 mean cp1 cp2 mean 

1450_h 28,63 28,30 28,47 29,68 29,65 29,67 30,99 30,88 30,94 

1101_sh d1 29,30 29,32 29,31 - 30,52 30,52 32,67 32,72 32,70 

763_sev d1 27,35 27,19 27,27 28,02 28,47 28,25 29,46 29,29 29,38 

1080_sh d4 30,12 28,69 29,41 29,77 30,01 29,89 30,89 30,95 30,92 

723_sev d4 28,88 28,59 28,74 30,10 30,16 30,13 31,80 31,62 31,71 

1118_sh 3w 29,74 29,94 29,84 31,11 31,58 31,35 30,42 - 30,42 

983_sev 3w 27,55 27,49 27,52 29,27 29,33 29,30 29,96 29,97 29,97 

U6 cp1 cp2 mean cp1 cp2 mean cp1 cp2 mean 

1450_h 18,28 18,58 18,43 19,78 19,93 19,86 20,02 20,42 20,22 

1101_sh d1 17,76 17,93 17,85 19,02 18,13 18,58 20,66 20,27 20,47 

763_sev d1 16,48 16,69 16,59 17,72 18,09 17,91 17,62 17,62 17,62 

1080_sh d4 17,03 17,29 17,16 18,93 18,56 18,75 18,55 18,32 18,44 

723_sev d4 17,86 18,53 18,20 18,94 19,9 19,42 19,56 19,50 19,53 

1118_sh 3w 17,92 17,96 17,94 19,77 19,34 19,56 20,27 20,29 20,28 

983_sev 3w 17,45 17,67 17,56 18,80 17,9 18,35 18,60 18,62 18,61 
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Table 18: ct values for set 2 

set 2 02.05.13 10.05.13 

mir-451 cp1 cp2 mean cp1 cp2 mean 

1451_h 26,55 27,50 27,03 28,88 28,85 28,87 

1100_sh d1 30,08 29,90 29,99 31,07 31,25 31,16 

1188_sev d1 28,57 28,61 28,59 29,58 29,41 29,50 

1083_sh d4 29,88 29,83 29,86 31,05 31,11 31,08 

1258_sev d4 30,72 30,86 30,79 31,77 31,99 31,88 

1119_sh 3w 27,92 28,16 28,04 29,15 29,34 29,25 

976_sev 3w 31,81 31,81 31,81 33,83 33,98 33,91 

U6 cp1 cp2 mean cp1 cp2 mean 

1451_h 17,62 18,08 17,85 18,76 18,99 18,88 

1100_sh d1 17,00 17,46 17,23 17,48 17,82 17,65 

1188_sev d1 18,16 18,42 18,29 18,23 18,83 18,53 

1083_sh d4 18,98 18,97 18,98 18,97 19,45 19,21 

1258_sev d4 17,80 18,56 18,18 19,00 19,09 19,05 

1119_sh 3w 17,31 17,49 17,40 17,73 17,96 17,85 

976_sev 3w 17,87 18,67 18,27 19,58 19,69 19,64 

 

Table 19: ct values for set 3 

set 3 06.05.13 10.05.13 

mir-451 cp1 cp2 mean cp1 cp2 mean 
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1452_h 28,48 28,65 28,57 29,04 29,56 29,30 

1103_sh d1 29,27 29,24 29,26 29,24 29,52 29,38 

1189_sev d1 27,81 27,85 27,83 28,09 28,30 28,20 

1082_sh d4 30,95 31,00 30,98 31,74 31,62 31,68 

1245_sev d4 28,20 28,47 28,34 28,71 28,96 28,84 

1120_sh 3w 29,82 30,20 30,01 30,86 30,78 30,82 

1207_sev 3w 29,68 29,64 29,66 29,90 30,08 29,99 

U6 cp1 cp2 mean cp1 cp2 mean 

1452_h 18,55 18,44 18,50 19,01 18,92 18,97 

1103_sh d1 19,49 19,57 19,53 19,63 19,63 19,63 

1189_sev d1 17,84 17,76 17,80 18,19 18,20 18,20 

1082_sh d4 17,98 17,97 17,98 18,62 18,58 18,60 

1245_sev d4 17,46 17,44 17,45 17,52 17,48 17,50 

1120_sh 3w 17,69 17,72 17,71 18,48 18,49 18,49 

1207_sev 3w 17,79 17,86 17,83 18,50 18,42 18,46 

 
 

Table 20: ct values for set 4 

set 4 08.05.13 14.05.13 

mir-451 cp1 cp2 mean cp1 cp2 mean 

1451_h 28,78 28,93 28,86 29,28 29,98 29,63 

1032_sh d1 29,66 29,22 29,44 30,93 30,97 30,95 
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1187_sev d1 27,64 27,5 27,57 30,08 30,23 30,16 

1038_sh d4 29,97 29,91 29,94 32,04 33,01 32,53 

1256_sev d4 30,96 30,97 30,97 31,96 32,50 32,23 

1152_sh 3w 29,53 27,23 28,38 - 29,86 29,86 

1305_sev 3w 29,63 28,03 28,83 30,32 30,69 30,51 

U6 cp1 cp2 mean cp1 cp2 mean 

1451_h 18,89 19,00 18,95 18,80 18,91 18,86 

1032_sh d1 16,51 18,53 17,52 18,47 18,44 18,46 

1187_sev d1 18,04 18,94 18,49 20,70 20,77 20,74 

1038_sh d4 17,17 16,81 16,99 19,24 19,10 19,17 

1256_sev d4 16,92 15,60 16,26 17,94 17,99 17,97 

1152_sh 3w 16,53 17,59 17,06 19,47 19,29 19,38 

1305_sev 3w 17,87 17,23 17,55 20,04 19,82 19,93 

 

Table 21: ct values for set 5 and day 4 / set 1-4 

samples 17.05.13 day 4 / set 1 - 4 04.06.13 

mir-451 cp1 cp2 mean mir-451 cp1 cp2 mean 

1450_h 28,64 28,74 28,69 1450_h 28,88 28,97 28,93 

1102_sh d1_set5 28,03 28,11 28,07 1080_sh d4_set1 29,70 29,60 29,65 

1103_sh d1_set3 29,03 29,19 29,11 723_sev d4_set1 29,60 29,56 29,58 

763_sev d1_set1 28,59 28,57 28,58 1083_sh d4_set2 29,32 29,30 29,31 
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1081_sh d4_set5 30,65 30,49 30,57 1258_sev d4_set2 30,29 30,72 30,51 

1256_sev d4_set5 31,61 32,55 32,08 1082_sh d4_set3 31,20 31,00 31,10 

723_sev d4_set1 38,07 37,02 37,55 1245_sev d4_set3 28,31 28,49 28,40 

1121_sh 3w_set5 30,42 30,46 30,44 1038_sh d4_set4 30,67 30,70 30,69 

1206_sev 3w_set5 29,21 29,21 29,21 1256_sev d4_set4 31,84 31,73 31,79 

U6 cp1 cp2 mean U6 cp1 cp2 mean 

1450_h 18,16 18,24 18,20 1450_h 18,07 18,08 18,08 

1102_sh d1_set5 19,09 19,09 19,09 1080_sh d4_1 17,96 17,81 17,89 

1103_sh d1_set3 19,76 19,87 19,82 723_sev d4_1 18,15 18,19 18,17 

763_sev d1_set1 17,32 17,31 17,32 1083_sh d4_2 18,44 18,47 18,46 

1081_sh d4_set5 18,48 18,49 18,49 1258_sev d4_2 18,23 18,25 18,24 

1256_sev d4_set5 17,16 17,23 17,20 1082_sh d4_3 18,09 18,12 18,11 

723_sev d4_set1 26,43 26,28 26,36 1245_sev d4_3 17,63 17,65 17,64 

1121_sh 3w_set5 17,81 17,82 17,82 1038_sh d4_4 17,51 17,52 17,52 

1206_sev 3w_set5 17,65 17,65 17,65 1256_sev d4_4 16,96 16,95 16,96 

 

Table 22: ct values for set 1 and set 2 / 1w, 2w 

set 1 and set 2 19.06.13 21.06.13 

mir-451 cp1 cp2 mean cp1 cp2 mean 

1452_H 29,19 29,54 29,37 29,24 29,07 29,16 

1146_sh_1w_1 29,24 29,29 29,27 29,65 29,63 29,64 



 miR-451 in hippocampus following severe TBI in rat 

 

99  

 

991_sev_1w_1 28,74 28,8 28,77 29,23 29,15 29,19 

1148_sh_2w_1 29,42 29,49 29,46 29,54 29,71 29,63 

985_sev_2w_1 30,21 30,26 30,24 30,54 30,62 30,58 

1147_sh_1w_2 29,67 30,02 29,85 29,88 29,93 29,91 

993_sev_1w_2 30,26 30,32 30,29 30,62 30,66 30,64 

1150_sh_2w_2 28,56 28,63 28,60 28,85 29,2 29,03 

987_sev_2w_2 30,32 30,46 30,39 30,55 30,72 30,64 

U6 cp1 cp2 mean cp1 cp2 mean 

1452_H 19,62 19,60 19,61 19,64 19,69 19,67 

1146_sh_1w_1 19,50 19,50 19,50 20,05 20,01 20,03 

991_sev_1w_1 18,75 18,82 18,79 19,3 19,11 19,21 

1148_sh_2w_1 18,78 18,86 18,82 19,14 19,13 19,14 

985_sev_2w_1 18,27 18,26 18,27 18,58 18,68 18,63 

1147_sh_1w_2 18,85 18,81 18,83 18,83 18,98 18,91 

993_sev_1w_2 18,90 18,87 18,89 19,1 19,21 19,16 

1150_sh_2w_2 19,07 19,12 19,10 19,53 19,57 19,55 

987_sev_2w_2 18,55 18,53 18,54 18,95 18,88 18,92 

 

Table 23: ct values for set 5 

set 5 11.07.13 15.07.13 

mir-451 cp1 cp2 mean cp1 cp2 mean 
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1450_h 28,65 28,83 28,74 27,16 27,12 27,14 

1102_sh d1 27,64 27,73 27,69 26,93 26,84 26,89 

765_sev d1 26,89 26,89 26,89 26,59 26,62 26,61 

1081_sh d4 29,86 29,96 29,91 30,59 30,85 30,72 

1242_sev d4 31,21 31,02 31,12 30,66 30,65 30,66 

1459_sh 1w 26,54 26,53 26,54 25,79 25,96 25,88 

1465_sev 1w 28,34 28,58 28,46 27,71 27,89 27,80 

1284_sh 2w 26,94 26,78 26,86 26,5 26,47 26,49 

1460_sev 2w 28,75 28,76 28,76 28,63 28,46 28,55 

1121_sh 3w 29,58 29,74 29,66 29,61 29,53 29,57 

1206_sev 3w 28,58 28,44 28,51 28,26 28,14 28,20 

U6 cp1 cp2 mean cp1 cp2 mean 

1450_h 18,94 18,94 18,94 18,81 18,86 18,84 

1102_sh d1 19,29 19,5 19,40 20,12 20,16 20,14 

765_sev d1 17,09 17,16 17,13 18,28 18,19 18,24 

1081_sh d4 18,20 18,25 18,23 20,14 20,00 20,07 

1242_sev d4 18,99 19,02 19,01 20,04 19,9 19,97 

1459_sh 1w 18,21 18,15 18,18 18,96 19,60 19,28 

1465_sev 1w 17,02 17,05 17,04 18,02 17,86 17,94 

1284_sh 2w 18,54 18,12 18,33 19,34 19,13 19,24 

1460_sev 2w 16,71 16,74 16,73 17,88 18,01 17,95 
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1121_sh 3w 17,53 17,61 17,57 18,79 18,72 18,76 

1206_sev 3w 17,30 17,63 17,47 18,32 18,42 18,37 

 

Table 24: ct values for set 3 and set 4 / 1w, 2w 

 

set 3 and set 4 11.07.13 16.07.13 

mir-451 cp1 cp2 mean cp1 cp2 mean 

1450_h 28,65 28,83 28,74 28,65 28,83 28,74 

1288_sh 1w 27,52 27,84 27,68 28,77 29,78 29,28 

1229_sev 1w 28,29 28,32 28,31 29,61 28,8 29,21 

1151_sh 2w 29,23 29,21 29,22 29,63 31,24 30,44 

1239_sev 2w 29,96 30,04 30,00 31,75 31,52 31,64 

1458_sh 1w 28,08 28,06 28,07 27,97 28,86 28,42 

1238_sev 1w 29,82 29,77 29,80 31,45 29,54 30,50 

1283_sh 2w 27,18 27,22 27,20 27,98 28,89 28,44 

1456_sev 2w 29,11 29,1 29,11 29,45 29,47 29,46 

U6 cp1 cp2 mean cp1 cp2 mean 

1450_h 28,65 28,83 28,74 18,94 18,94 18,94 

1288_sh1w 18,94 18,94 18,94 19,76 19,55 19,66 

1229_sev 1w 19,29 19,5 19,40 17,78 17,82 17,80 

1151_sh 2w 17,09 17,16 17,13 18,94 19,29 19,12 

1239_sev 2w 18,2 18,25 18,23 20,86 20,94 20,90 



 miR-451 in hippocampus following severe TBI in rat 

 

102  

 

1458_sh 1w 18,99 19,02 19,01 17,89 18,33 18,11 

1238_sev 1w 18,21 18,15 18,18 17,9 17,12 17,51 

1283_sh 2w 17,02 17,05 17,04 18,34 18,03 18,19 

1456_sev 2w 18,54 18,12 18,33 17,46 17,18 17,32 

 

5.6. Equipment 

2720 Thermal Cycler      Applied BioSystems 

Biofuge fresco centrifuge       Heraeus 

Biofuge pico        Heraeus 

Electrophoresis chamber Hoefer® HE33    Phamacia Biotech 

Electrophoresis Power Supply Power Station 300   Labnet International 

Fridge Premium No Frost      Liebherr 

Heating block                       HLC 

Hera freeze        Heraeus 

 

5.7. Consumpton of items, plastic ware, reagents, buffers 

 

GelRed    Biotium   Cat No: 41002 

LE Agarose                 Biozym    Cat No: 340004 

 

6x Gel Loading Buffer Stock: 

Bromphenolblue 0.25% 

Xylen Cyanol FF 0.25% 

Glycerine in H2O 30% 
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Loading Buffer: 

Gel Loading Buffer Stock    100μl 

Glycerine      250μl 

RNase free H2O     250μl 

 

1x TBE Running Buffer (1000ml) 

 50ml 10xTBE Buffer (107.81g Tris, 55.03ml boric acid, 7.45ml Titriplex III) 

 950ml destilled water 

 

1x TBE Buffer for Agarose Gels (1000ml) 

 50ml 10xTBE Buffer 

 950ml destilled water 

 100µl Gel Red 

 

5.8. Marker 

 GeneRulerTM DNA Ladder Mix (0.1µg/µl, 50µg Fermentas) 5.8.1.

 

5.9. Primers 

 U6 snRNA (has, mmu, rno) PCR primer set, UniRT      (Exiqon)      5.9.1.

(miRCURY LNA™ Universal RT microRNA PCR, reference gene primer set, 200 rxns) 

Product No: 203907 

 hsa-miR-451a LNA™ PCR primer set, UniRT      (Exiqon)      5.9.2.

(target sequence: AAACCGUUACCAUUACUGAGUU) 

Product No: 204734 
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5.10. Kits 

 Quant-iTTM RiboGreen® RNA Assay Kit (Invitrogen) 5.10.1.

(Invitrogen Molecular Probes for 2000 reactions) 

Ribosomal RNA-Standard       200µl 

100µg/ml in TE-Buffer 

20x TE-Buffer                     25ml 

Quant-iTTM RiboGreen® RNA reagent        1ml 

Cat. No:  R11490 

 miScript PCR Starter Kit (80) (Qiagen) 5.10.2.

For 10 x 20 μl RT reactions and 80 x 25 μl PCRs; miScript Reverse Transcriptase 

Mix, 10x miScript Nucleics Mix, 5x miScript HiSpec Buffer, 5x miScript HiFlex 

Buffer, 2x QuantiTect SYBR Green PCR Master Mix, 10x miScript Universal Primer, 

Human RNU6B (RNU6-2) miScript Primer Assay, Human miR-15a miScript Primer 

Assay, RNase-Free Water 

Cat. No. 218193 

 miScript II RT Kit (50) (Qiagen)     5.10.3.

(For 50 cDNA synthesis reactions: miScript Reverse Transcriptase Mix, 10x miScript 

Nucleics Mix, 5x miScript HiSpec Buffer, 5x miScript HiFlex Buffer, RNase-Free 

Water) / Cat. No: 218161 

 Universal cDNA Synthesis Kit II, 8-64 rxns (Exiqon) 5.10.4.

(miRCURY LNA™ microRNA PCR, Polyadenylation and cDNA synthesis kit II (8-64 

rxns)) /   Product no.:  203301  

 miScript SYBR Green PCR Kit (200) (Qiagen)     5.10.5.

(For 200 reactions: QuantiTect SYBR Green PCR Master Mix, miScript Universal 

Primer) 

Cat. No: 218073 
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