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Abstract 

The systems biological view on microorganisms using genome scale metabolic models enables 
inference on physiological capacities which can be used for biotechnological purposes e.g. to 
increase the yield of a certain desired product or decrease unwanted byproduct formation. 
Furthermore metabolic models give hints on essential genes which are useful for metabolic 
engineering.  
 
In the course of this thesis, genome scale metabolic models of five biotechnologically-relevant 
Escherichia coli strains - MG1655, W3110, HMS174, RV308 and BL21(DE3)- were corrected, 
refined and extended. In parallel, each of the strains was subjected to batch cultivations, 
whereas substrate consumption rates and biomass formation were measured. These values in 
turn were used as input parameters for model simulation. Furthermore, knock out simulations 
were performed in order to find genes, which are essential to only one of the strains despite 
high homology of the genome. 
 
Depending on the strain roughly 50 genes were added to the network reconstructions, equaling 
an extension of the gene lists of 3 %, encoding for around 30 new reactions. Furthermore 
incorrect predictions regarding gene essentiality was corrected. Using these improved models, a 
strain-specific essentiality of RV308 for, folD, a gene involved in folate metabolism, was found. 
Batch cultivations on minimal medium supplemented with glucose yielded similar growth rates 
for strains MG1655, W3110 and BL21(DE3), whereas HMS174 grew roughly 20 % slower and 
RV308 grew significantly faster (22 %). As substrate uptake rates were the only input 
parameters or model simulation, simulated growth rates were more than twice as high as the 
experimental ones. 
 
Future focus should therefore be put on a more extensive analysis of cultivation (by-)products 
to have additional input parameters at hand. Additionally, strain-specific differences in the 
biomass composition should be investigated in order to fundamentally improve in silico 
predictions. 
 

Keywords: Genome scale metabolic models, Escherichia coli cultivation, Knock out simulation
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Zusammenfassung 

Die systembiologische Betrachtung von Mikroorganismen unter der Verwendung von Genom-
basierenden metabolischen Modellen ermöglicht Rückschlüsse auf deren metabolische 
Kapazität. Dieses Wissen kann für biotechnologische Anwendungen herangezogen werden z.B. 
zur Verbesserung der Produktausbeute, aber auch zur Senkung der Produktion von ungewollten 
Nebenprodukten. Weiters liefern diese Modelle wichtige Hinweise zur Rolle gewisser Gene für 
den Organismus, welche in Klonierungsstrategien Eingang finden. 
 
Im Laufe dieser Arbeit wurden die Modelle von fünf biotechnologisch-relevanten Escherichia 
coli Stämmen - MG1655, W3110, HMS174, RV308 und BL21(DE3)- korrigiert und erweitert. 
Parallel dazu wurde jeder Stamm in Erlenmeyerkolben kultiviert, wobei Wachstumsraten und 
Substratverbrauch gemessen wurden. Des Weiteren wurden Knock-out Simulationen 
durchgeführt, um stammesspezifische essentielle Gene zu finden. 
 
In Abhängigkeit des Stammes wurden circa 50 Gene den metabolischen Netzwerken 
hinzugefügt. Dies entspricht einer Vergrößerung der Genlisten um 3 % beziehungsweise 30 
neuen Reaktionen. Außerdem wurden inkorrekten Vorhersagen bezüglich essentieller Gene 
ausgebessert. Im Zuge von Simulationen der verbesserten Modelle wurde eine 
stammesspezifische Letalität von RV308 für folD, einem Gen, das in den Folatmetabolismus 
involviert ist, gefunden. Escherichia coli Kultivierungen in Minimalmedium mit Glucose lieferten 
ähnliche Wachstumsraten für MG1655, W3110 und BL21(DE3), wobei HMS174 rund 20 % 
langsamer und RV308 22 % schneller anwuchsen. Da jedoch einzig Substrataufnahmeraten als 
Inputparameter zur Modellsimulation verwendet wurden, waren die simulierten 
Wachstumsraten mehr als doppelt so hoch wie die experimentell bestimmten. 
 
Der Schwerpunkt zukünftiger Arbeiten sollte daher auf die Analyse von 
Fermentationsbeiprodukten gelegt werden, um zusätzliche Inputparameter parat zu haben. 
Außerdem sollte die Biomassezusammensetzung der einzelnen Stämme näher untersucht 
werden, um in silico Vorsagen grundlegend zu verbessern. 
 

 

Stichwörter: Metabolische Modelle, Escherichia coli Kulturen, Knock out Simulation 
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Chapter I Introduction 

High-throughput technologies paved the way for new emergent 

fields in life science 

Thanks to the improvement of high-throughput technologies, the available knowledge of the 
physiology of organisms has expanded rapidly. Major tools are “Next Generation Sequencing” 
methods, which enable the functional and cross-species study of genomes, as well as microarray 
technology or mass spectrometry. Those achievements finally led to a shift in scope from an 
isolated view on selected reactions to a systemic sight on biological processes, thus creating the 
new field of systems biology [1]. A second important stream in life science emerged from the 
desire for optimization of host strains for biotechnological applications: Metabolic engineering 
focuses on optimization of organisms by redirecting fluxes in certain pathways through 
knockouts or heterologous pathways by means of synthetic biology [2]. Systems biology can 
therefore serve as “scaffold” for metabolic engineering strategies, aiding the discovery of 
possible pathway targets [3].  

The wealth in data and complexity made it furthermore necessary to enrich also the (bio-) 
informatical side by developing data management tools and powerful algorithms. 

The following sections will be shading light on both the mathematical and the biological side of 
systems biological approaches to metabolic modeling. 
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Section A:  Formal approaches to study biochemical processes 

Having evolved from chemical reaction kinetics, mathematical models have a long tradition e.g. 
in studying enzyme mechanics and kinetics, such as Michaelis- Menten kinetics [4]. There are 
three major groups of mathematical descriptions of biological processes, which differ in detail 
and purpose. These are the detailed kinetic models, the graph-based approach and 
stoichiometric models. 

Kinetic models describe dynamic phenomena such as enzyme mechanistic, such as inhibition 
effects, on a very detailed level, requiring a high level of quantitative information of time 
dependent processes, which are formalized as ordinary differential equations. Kinetic models 
are inherently very complex and demanding in terms of molecular biology labor since they need 
biological information for proper parameter estimation. Therefore they are limited to well-
studied pathways, such as glycolysis [5]. 
 
The graph-based approach in turn tries to explain dependencies and interconnections within the 
network to study the robustness of certain pathways and does not require any kinetic 
information. This approach therefore provides only qualitative information, such as pathway 
lengths, co-participation of metabolites and co-connectivity of reactions [6]. 
 
Stoichiometric network analysis in turn uses reaction stoichiometries of the network and applies 
certain assumptions/constraints (see below), so that it is possible to infer quantitative 
information of the system, despite data scarcity [7]. 

The most popular methods applied to stoichiometric networks are elementary flux mode 
analysis and flux balance analysis: 

An elementary flux mode (EFM) [8] is a non-decomposable steady-state pathway, which 
represents minimal entities of a network and therefore cannot be further simplified.  For 
analysis, all possible EFM of a system are calculated, which imposes a great demand on 
computational hardware. Still, all possible solutions are at hand and can be put into 
consideration for metabolic engineering strategies. 

Flux balance analysis, on the other hand [9] organizes metabolites and reactions in form of a 
matrix of stoichiometric coefficients. The objective is calculated by constraining the possible flux 
space to a certain maximum or minimum. Since it is the method used in this thesis, it will be 
discussed in further detail in the following section.  

It should further be noted, that there exist also “intermediate” modeling approaches, seeking  
to bridge stoichiometric and kinetic modeling. Steuer et al [10] for example proposed an 
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approach called structural kinetic modeling. Thereby, a set of local linear models is created at 
each parameter point in the model space, which can be subjected to further statistical analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
This classification of modeling approaches according to their underlying paradigm given above 
(Figure 1) is not comprehensive, as modeling of metabolism is a vast and fast growing field. A 
similar and yet more detailed comparison of model methods is given by Tomar and De [12]. 
In conclusion, it should be mentioned that Karr et al. recently published a whole-cell model of 
Mycoplasma genitalium [13], which is a superposition of various modelling approaches. The 
organism is divided into modules, representing independent models, which are simulated using 
different modeling strategies (see above). These models are aggregated to a greater whole, 
since the output values of one model are used as input parameters for another. 
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Figure 1 Overview of major modeling approaches. 
The choice of an appropriate modeling approach is a compromise based on system size and 
demand on wealth of detail. Since network analysis and stoichiometric analysis do not 
require kinetic information they are suited for analysis of large scale systems. In contrary 
kinetic models require measured parameters, but still allow most precise simulations (as 
extracted from Steuer et al. [11]). 
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Flux Balance Analysis  

Probably the most prominent method applied to stoichiometric metabolic models is flux 
balance analysis (FBA) [14].  

The basis of FBA is a matrix composed of stoichiometric coefficients of metabolites participating 
in reactions. These reactions in the network are bounded by constraints, which are imposed in 
two ways: as reaction equations, balancing input and output metabolites, and as inequalities of 
upper and lower boundaries to the system, which reflect enzymatic capacities or 
thermodynamic constraints etc. However, it is impossible to measure every reaction flux rate, 
thereby leaving this system underdetermined. Therefore there exists a solution space (Figure 2), 
having multiple feasible solutions, instead of only one. The flux space is subjected to various 
optimization procedures such as linear programming or mixed linear integer programming, 
depending on the context. To this purpose, an objective flux needs to be defined, which is 
optimized, hence minimized or maximized. Intuitively, this objective of optimization must meet 
cellular purposes in order to obtain meaningful predictions. Most often, biomass production is 
chosen as objective for (micro-)organisms, since they strive for optimal growth. However, also 
other objectives might be chosen. For example for finding optimal sets of reactions for energy 
efficiency such as minimization of ATP consumption [15]. 

The stoichiometric matrix S has a size of m x r. Each row (m) denotes a metabolite whereas the 
columns r represent the reactions. In case the metabolite is consumed within a reaction, it has a 
negative coefficient and vice versa. If one metabolite is not used in the reaction, the coefficient 
is zero. As only few metabolites participate in a given reaction, it is a sparse matrix, consisting 
mostly of zeros. This matrix is applied for the calculation of fluxes according to Equation 1 that is 
based on the principle of mass conservation. 

  

  
                                                                              (1) 

Where C [mmol/gDW] is the concentration vector of metabolites (m) per gram dry weight of 
cells (gDW), v (mmol/(gDW*h)) the reaction rate flux vector of n reactions and µ (1/h) is the 
specific dilution rate which leads to volume change in the system. 

As the rate of dilution in the system is insignificant compared to the rate at which metabolites 
are being consumed or produced, the term    is negligible. 

Equation 1 can be further simplified by assuming, that at steady-state, no metabolites are 
accumulated, and therefore the metabolite concentration is constant over time (Equation 2). 

 
                                                                         (2) 
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As mentioned previously, many fluxes are inaccessible to biochemical investigation, so that 
these fluxes are not fixed to a certain flux rate, but are constraint within bounds by different 
constraints (Table 1).  

Table 1 Overview on constraints imposed on the system 
Some constraints are dependent on the environmental conditions, such as available substrates, hence 
representing adjustable constraints, whereas other constraints rely on physical laws (such as 
stoichiometry) and are nonadjustable. “m” denotes measureable parameters such as fluxes and” k” 
kinetic constants (adapted from Llaneiras and Picó [7]). 
 

 

Constraint Type Mathematical formulation 

Systematic stoichiometry nonadjustable 0 = S x v 

Enzyme/transport capacities nonadjustable v < vmax 

(ir)reversibility of reaction fluxes adjustable v > 0 

Measurable fluxes adjustable v = vm or vmin<v < vmax 

Regulatory constraints adjustable e.g. v1 = 0 if v2 = 0 

Kinetic constants adjustable V = k * Cm 

The solution space can be calculated by optimizing – either minimizing or maximizing- the 
objective.  

Z = cTv                                                                                     (3) 

The scalar Z results from multiplication of the flux vector with the transposed objective weight 
vector c which ranges from 0 to 1 (by convention), denoting how much a reaction contributes to 
a certain phenotype. For example, if optimal growth shall be simulated the biomass producing 
function is weighted as 1. 

 
 
Figure 2 Geometrical representation of constraint-based modeling approach. 
Here, a coordinate system is spanned by three flux vectors v1-3. Applying constraints such as lower (ai) 
and upper bounds (bi) and by assuming of steady state, a flux cone is crated representing the allowable 
solution space. Within this space, the solution (Z) is retrieved by optimizing a given objective [9].   
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Redundant pathways, leading to the same metabolite, grant stability, allowing an organism to 
survive through perturbancies, such as gene deletions or other stressful situations. However, it 
also implies that there might not be a single best solution, as returned by the optimization 
procedure, but a variety of flux distributions leading to the same optimum. Therefore it is highly 
misleading to assume that the flux distribution obtained by mathematical optimization of the 
flux space has any biological significance as long there is no deeper study on  flux variability [16]. 
This issue will be further expanded in the following chapters.  

Apparently, the model is prone not to reflect a desired metabolic status of the studied organism 
once any constraint is set incorrectly or alternative optimal solutions are not considered for 
their feasibility. However, the applicability of FBA is literally constraint by many assumptions: 
Firstly, there is the assumption of temporal homogeneity as in Equation 2, which restricts the 
predictive capacity to continuous cultivations. Furthermore, the biomass function [17], implies 
homogeneity of biomass production within cells of a population and over time.  

Therefore many derivatives of FBA have been developed which seek to improve the predictive 
power e.g. by adding constraints. Some examples are given in Table 2. 
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Table 2 A (non-) comprehensive overview of some FBA derivates 
Since FBA is a widely applied method, it is steadily improved. This overview lists some arbitrarily chosen 
derivates, as also discussed in [18]. 

 

Method Description Reference 

flexFBA   A flexible proportion of reactants and product 
stoichiometry is assumed for the biomass function 
accounting for varying biomass composition. 

[19] 

tFBA Time linked simulation accounts for varying 
byproduct proportions over time. 

[19] 

FBrAtio Flux ratios weight the contribution of convergent 
pathways to a given product pool. 

[20] 

MD-FBA  The simulation also accounts for dilution of 
intermediate metabolite pools. 

[21] 

coupledFBA Constraints are applied to link a non-metabolic 
network to the  S matrix, e.g. for linking the  
transcriptional/translation framework to the 
metabolic matrix. 

[22] 

dFBA Changing flux constraints account for dynamic 
change in nutrient concentration during short time 
intervals. 

[23] 

rFBA Transcriptional regulation via a boolean vector is 
imposed on the reaction network (reactions are 
either on or off). 

[24] 
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Genome Scale Metabolic Models  

Network reconstruction process and examples 

The reconstruction process of (genome-based) metabolic networks should be taken with great 
care of as the quality of reconstruction determines the outcome, hence a predictive, reliable 
simulation. Among published procedures [25, 26], the standard procedure for model 
reconstruction proposed by Thiele and Palsson in 2010 [27] is the richest in detail: This 96 step 
protocol designed as standard operation procedure explains all necessary stages starting with 
the assembly of a draft reconstruction to the dissemination of the final model. 

Overall, the process can be roughly divided into four stages:  

Firstly, a draft reconstruction based on the sequenced genome is set up. Nowadays, the genome 
is generated at high speed and low cost using “Next Generation Sequencing” methods. Still it 
needs to be well annotated and lined with biochemical information. Although it seems tedious 
to organize several instances, such as reactions, metabolites and genes, the draft reconstruction 
process can be automated to a larger part and needed information can be extracted from 
various databases, such as MetaCyc1, NCBI2 and KEGG3 [28]. Even through this appears to be 
comfortable, one should always keep in mind, that it is difficult to maintain the quality within 
vast data sets and comparability among the databases [29]. Liberal and Pinney [30] for instance, 
tackled missannotations in genome sequences by developing a method, which is able to predict 
annotation accuracy. Interestingly, they observed a clear negative correlation between 
annotation accuracy in prokaryotic network reconstructions and phylogenetic distance to 
Escherichia coli, a popular model organism. This emphasizes the importance of biochemical 
background information on an organism for the quality of a model. 

Once a draft genome network representation is available, the reconstruction is manually refined 
and reconciled. Since not all genes found in databases suit the scope of the model e.g. proteins 
without any metabolic function, the network reconstruction needs to be revised. This refining 
process should not be underestimated as the results from the first step should be reconsidered. 
Further literature research is indispensable, as databases are not complete. After the 
reconstruction has been reviewed, it can be converted into a mathematical model which can be 
simulated using various toolboxes. For example, the RAVEN toolbox, is a novel toolbox, which 
largely automates the annotation of reconstructions whereas the COBRA toolbox [31] has been 
established as “golden standard” in many laboratories worldwide, as it contains a vast collection 
of functions for model analysis network reconstruction refinement. To date, there are software 
solutions available based on different environments, e.g. in R (Sybil package), the DOS 

                                                      
1
 http://www.metacyc.org/ 

2
 http://www.ncbi.nlm.nih.gov/ 

3
 http://www.genome.jp/kegg/ 
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command line (FASIMU [32]), MATLAB (RAVEN Toolbox, COBRA Toolbox) or Java (Optflux [33]). 
Some of these tools will be further discussed in Chapter 2.  

Furthermore models need to be evaluated experimentally to check its predictions. This can be 
done with regard to growth on various substrates or by creation of mutants. This data in turn 
can be used for iterative model correction.  

The final models can be stored and compared in repositories such as BiGG4 or MetaNetX5 [34]. 

 

Genome Scale Metabolic Models of Escherichia coli 

Metabolic network reconstructions of Escherichia coli actually date back to the pre-genome 
area. The first model was built by Varma and coworkers, published in 1993. It was based purely 
on biochemical reactions, not on genetic information. Nevertheless, it was possible to compute 
growth rate, amino acid production as well as the impact of acetate and other by-products [35, 
36]. This model has been refined by Pramanik and Keasling in 1998 [37, 38] by updating the 
biomass objective function, and thorough analysis of biomass composition. By 1997, the first 
genome sequence of Escherichia coli was published [39], estimating 4288 protein coding genes.  
The first genome based reconstruction for Escherichia coli links the genetic information with the 
biochemical reaction network, which allowed gene deletion studies [40].  Within the next years, 
further refined reconstructions have been published which did not only contained more genes, 
but is also richer in scope and model aspects [43]. In 2007 an extended network reconstruction, 
iAF1260, was published, which has not only been updated for further components (reactions, 
metabolites and genes), but also for thermodynamic consistency of the reactions [42]. Thus, this 
reconstruction accounts for 48 %  of  the characterized ORFs [43]. As noticed with these models, 
they often failed to correctly predict certain growth phenotypes due to lacking enzyme 
information.  Therefore Orth et al. [44, 45] published a new model, iJO1366, in which the 
biomass objective function (BOF) was updated and some network gaps were closed. The BOF is 
an artificial reaction, which calculates the growth from substrates based on elementary 
composition [17]. Further remaining “orphan enzymes”, meaning metabolic enzymes lacking 
gene sequence link, where assigned from sequence inference with metagenomic sequence 
information [46]. 

                                                      
4
 http://bigg.ucsd.edu/ 

5
 http://metanetx.org/ 
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Figure 3 Timeline of model network reconstruction of Escherichia coli.  
Starting over twenty years ago, network reconstructions of Escherichia coli have been steadily improved 
through addition of pathways and constraints through experimental evaluation (reprinted from [47]). 

 

Furthermore, Baumler et al. [48] studied the evolution of Escherichia coli phylogeny using 
genome scale network reconstructions. In this study, iAF1260 was improved by adding new 
gene-protein-relations (gpr) through sequence homology and several models of related 
pathogenic and apathogenic strains were built by comparing genome annotations. 

So far, metabolic models have been applied in metabolic engineering, such as optimization 
production of lactic acid  or amino acids [49] as well as for basic research on finding new 
functional enzyme-gene associations from homology [50]. In 2013, Monk et al. [51] published a  
cross-strain comparison of 55 different pathogenic and apathogenic Escherichia coli strains, 
investigating the functional differences concerning auxotrophies and growth behaviour: A  
discrimination between the strains based on growth behaviour was predicted correctly in 80 % 
of the cases. 

In parallel, a “second”  generation of metabolic networks has been developed: in 2012 Thiele et 
al. [52] published another network reconstruction that was more than ten times larger with 
respect to reaction entries than all the others before. The so-called “ME”-matrix couples the 
transcriptional and translational machinery, hence “E”-matrix (“expression”), with the metabolic 
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“M”- matrix. This made it possible to predict the evolutionary evolved codon usage. However 
this wealth in detail comes with costs: First of all it is time-intensive to simulate and secondly 
since it has not been built for classical genotype-phenotype predictions it does not contain any 
gene-reaction association and can therefore not be subjected to gene essentiality simulations. 

Another reconstruction of this kind has been published in October 2013 by O’Brien et al. [53] 
which is even refined for the M-matrix as well as richer in scope and detail. Similarly, this model 
is hard to compute and needs to be accessed via COBRApy (a “sister toolbox” to the MATLAB-
based COBRA Toolbox, programmed in Phyton. This model accounts for roughly 80 % of the 
growth-associated proteome, which enables refined growth predictions through setting of 
proteomic constraints. 

  



 

12 

 

Section B:  Escherichia coli host strains 

As outlined in the previous section, it is of great importance to have a sound knowledge of the 
organism(s) of which the genome scale metabolic model should be built. The following 
paragraphs will therefore give background information on Escherichia coli and especially will 
portray the strains in use. 

Escherichia coli was first brought to public attention by Theodor Escherich in the late 19th 
century as Bacterium coli commune, which he isolated during microbiological examinations of 
infant feces [54]. Since then, this remarkable Gram negative, rod-shaped, facultative anaerobic 
bacterium has advanced to one of the most popular study objects for both fundamental and 
applied research, such as DNA recombination, pathogenesis mechanisms and genetic 
engineering; detailed examples will be given below. This extensive use, especially in the “early 
days” of fundamental research, lead to a rapid diversification of the original wild type, due to 
naive handling or intentional by UV treatments or phage infections. In 1968, Bachmann and 
coworkers [55] rigorously classified strains in use at that time which were descendants of E. coli 
K-12 and thus allowed back tracking of different strains.  Nowadays, there are five E. coli strains 
amongst all the isolates which have gained popularity in laboratories, mostly because they are 
generally regarded as safe to work with. These are Escherichia coli B, C, Crooks, W and K-12 [56].  
 
Attempts to cover the genetic diversity of Escherichia coli lead to a classification of  six 
phylogenetic groups A,B1,B2,D,C,E  based on multilocus-enzyme-electrophoresis [57], which 
clusters the K-12, B, C in group A and E. coli W in B1 [54]. Although there is an undeniable 
genetic diversity, it could be shown, that the Escherichia “core” genome can be reduced to 
roughly 2000 genes, which is less than half of the postulated number of genes that K-12  
MG1655 possesses [59]. 

To date6, there are 2127 Escherichia coli genomes registered in the Genomes Online database7. 
For this work five frequently biotechnologically applied Escherichia coli strains, the K-12 strains 
MG1655, W3110, RV308 and HMS174 as well as the E coli B strain BL21(DE3) have been used. 
The genomes of MG1655, W3110 and BL21(DE3) have already been sequenced and compared 
extensively [60, 61]. In contrary, RV308 and HMS174 have been sequenced, but not yet 
published.  

Below, strains in use are portrayed for their background more extensively. 

                                                      
6
 As accessed on 09/12/2013 

7
 http://genomesonline.org/cgi-bin/GOLD/index.cgi 
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Figure 4 Ancestral relationships between the strains used for this work. 
Relationships between the strains have been reconstructed after Bachmann et al.[55] and Daegelen et 
al. [62]. The solid lines indicate a direct ancestry/offspring relationship, whereas dashed lines indicate 
that one or more “intermediate” strains where omitted in the figure for arrangement reasons.  The 
length of pointers is chosen arbitrarily and does not reflect any phylogenetic distance.  All strains used in 
this work are related to a greater or lesser extent, the (reported) mutagenic agents exerted can be 
retrieved from literature cited in the main text.  
 

MG1655 

MG1655 has gained reputation as “wild type” strain in use because of very little strain 
alterations from the archetype.  In an early application, this strain was used for genetic mapping 
which was performed by transposition,  phage infection and combination of antibiotic 
resistances [63]. Soupene and coworkers elucidated physiological characteristics of MG1655 by 
rigorously investigating growth defects and cross regulations [64]. In a more recent study; 
MG1655 was genetically engineered for selective geraniol production by systematic knock outs 
of target enzymes, which lead to a twofold increase of geraniol production [65]. 

W3110 

As can be seen in Figure 4, W3110 is a K-12 derivate created through relatively little 
interventions. The first record in Pubmed dates back to 1966 when Paigen [66] published his 
work on the role of galactose in the galactose pathway of different wild type and mutant 
Escherichia coli strains. 
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Akinterinwa and Cirino [67] demonstrated, that the replacement of xylose kinase xylB of E coli 
(producing toxic products) and by heterologous expression of xylokinase P. stipites leads to 
production of xylitol without impairing toxic byproducts. 

HMS174 

The HMS174 strain was originally created by Campbell and coworkers for physical mapping of 
bacteriophage T7 DNA. The HMS174 was a product of recombination between W3110(thy-) and 
KL-16-99 [68].  Apart from initial studies on phage and DNA recombination analysis the scope of 
study has shifted to heterologous protein production. For example HMS174 derivate 
HMS174(DE3) pLys was applied for the expression and characterization of an immunogenic 
lipoprotein derived from Fracisella Ipp3. As could be shown, the heterologous expressed protein 
was correctly palmyotylated which resembled the native protein [69]. Most recently a knockout 
strain HMS174(DE3) was used to design a new addition system that ensures plasmid stability 
without the need of antibiotic supply [70]. 

RV308 

The Escherichia coli K-12 strain RV308 was published by the group of Maurer to identify the role 
of the right operator region for the gene regulation of phage lambda. RV308 was derived from 
RV through P1 transduction. RV308 was used in β-galactosidase assays to report for promotor 
activity in the promotor region of bacteriophage lambda [71]. The parent strain RV was derived 
from the J. Monod strain Collection. More recently, RV308 was used as expression host for anti-
HER2, since it is capable of growing to high cell densities [72]. 

BL21(DE3) 

Different to the other strains mentioned above, this strain is not derived from the K-12 line but 
originates from a Bacillus coli recorded in the Pasteur collection 1918 which was used for phage 
investigations. Studier et al reconstructed the history of E coli B similar to Bachmann’s effort for 
K-12 strains [62]. BL21, the direct progenitor of BL21(DE3),  was generated by UV and P1 
transduction from both B strain as well as from K-12 W3110 along its ancestors. BL21(DE3) was 
constructed by Studier by superinfection of phage DE3, thereby creating the lysogen BL21(DE3) 
that carries the inducible T7 RNA polymerase [62]. This was the starting point of a unique 
success story of BL21(DE3) – and mutant variations - in biotechnology. This strain has become 
one of the most popular protein expression hosts, especially because of the ability to grow to 
high cell densities , absence of proteases as well as the lack of genes for flagella biosynthesis 
[73]. 
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Objective 

Genome-scale metabolic models are providing a systemic view on networks, thus helping to 
understand the physiology of an organism.  
Since this is a “primer” project, the objective of this thesis is to refine existing genome scale 
network reconstructions of five biotechnologically-relevant Escherichia coli strains:  MG1655, 
W3110, HMS174, RV308 as well as BL21(DE3). In parallel, different available toolboxes shall be 
tested.  
A further aim is to find strain-specific pathway differences from knock out simulations which 
may allow conclusions on specific metabolic capacities. 
In parallel, batch cultivations on minimal medium of these strains are envisaged, whereas 
growth rates and substrate uptake rates shall be determined. These values shall subsequently 
serve as input parameters for model simulation.  
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Chapter II Materials and Methods 

Section A: Computational Environment 

This section contains all the necessary installation information needed. Furthermore used 
toolboxes are reviewed and compared, whereas the focus is put on RAVEN toolbox and COBRA 
toolbox respectively. 
 
Table 3 Hardware 
 

Computer Intel® Core™2Duo CPU  E6750 @ 2.66GHz 2,00 GB of RAM  

Operating 
System 

Microsoft Windows XP Professional Version 2002 Service Pack 3 

 
Since this thesis is a “primer” project, a selection of programs and toolboxes for genome scale 
metabolic modeling have been installed and tested. The software has been installed according 
to the installation information provided on web sites and manuals, respectively.  
 
Table 4 Software 
 

Software Version Comment Source/ URL 

MATLAB R2012b 
(network 
license) 

Simulation 
environment 

MathWorks 
http://www.mathworks.de/products/matlab/ 

COBRA 
Toolbox 

Version 
2.0.5 

MATLAB based http://sourceforge.net/projects/opencobra/files/cobra/ 
[31] 

RAVEN 
Toolbox 

Version 
1.07 

MATLAB based http://129.16.106.142/tools.php?c=raven 
[74] 

SBMLToobox Version 
4.1.0 

Dependency for 
COBRA and 
RAVEN toolbox  

http://sbml.org/Software/SBMLToolbox 
[75] 

libSBML Version 
5.6.0_libx
ml2-x86 

Library for 
SBML Toolbox 

http://sbml.org/Software/libSBML 
[76] 

Paint4Net Version 
1.3 

extension for 
COBRA toolbox, 
used for 
network 
visualization 

http://biosystems.lv/index.php/software/paint4net 
[77] 

 

 

http://sourceforge.net/projects/opencobra/files/cobra/
http://129.16.106.142/tools.php?c=raven
http://sbml.org/Software/SBMLToolbox
http://sbml.org/Software/libSBML
http://biosystems.lv/index.php/software/paint4net
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Table 4 Software (continued) 
 

Optflux Version 3.0.3 
(“Optflux3”) 

Java http://www.optflux.org/ [33] 

Cytoscape Version 2.8.3 Java http://www.cytoscape.org/ 

CyFluxViz 
Toolbox 

Version .093 extension for 
Cytoscape, used 
for network 
visualization 

http://www.charite.de/sysbio/people/koenig/software/
cyfluxviz3/ 
[78] 

Gurobi Version 5  
(free 
academic 
license) 

Numerical 
solver 

http://www.gurobi.com/ 

Mosek Version 
6.0.0.148 
(free 
academic 
personal 
license) 

 http://www.mosek.com/ 

Tomlab 
(cplex) 

Version 7.9 
(R7.9.0) 
 2-Jul-2012 
(trial licence) 

 http://tomopt.com/tomlab/products/ 

R  R i386 3.0.1 Simulation 
environment 

http://cran.r-project.org/  

Sybil Version 1.2.5 Systems biology 
toolbox, R 
based 

http://cran.r-project.org/web/packages/sybil/index.html 
[79] 

  

http://www.optflux.org/
http://www.charite.de/sysbio/people/koenig/software/cyfluxviz3/
http://www.charite.de/sysbio/people/koenig/software/cyfluxviz3/
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General elements of a genome scale metabolic network reconstruction 

Summarizing briefly, network reconstructions used herein contain information on reactions, 
including reaction equations, allowed bounds and involved enzymes (genes). Similarly, the list of 
metabolites gives information on elementary composition and localization. Information on 
annotated genes is also provided as enzyme names and identifies (“b-numbers”). Moreover, 
cellular compartments are listed for localization of reactions. Lastly, the reconstruction also 
comprises information on the organism to be modeled as well as on the author of the 
reconstruction.  
This listing is not exhaustive, further information on entries is given at a later point in this 
chapter. Network reconstructions used in this thesis can be found in the digital appendix. 

A common model representation:  the systems biology markup language 

As mentioned already in Chapter 1, there are many different software packages available for 
flux balance analysis, which address different problems in computational systems biology. To 
allow interoperability, a standardized data interchange format for biological models has been 
developed, called systems biology markup language (SBML) [80] Typically, the SBML file, based 
on the extensible markup language (XML) format, contains information on the SBML version 
and general information about the network reconstruction such as species and author 
information. Furthermore, flux units are specified, which are typically mmol/(gDW*h). 
Below, examples are given for compartment, metabolite, and reaction representation. A more 
detailed discussion on the SBML format is provided by David Ruckerbauer [81]. 
 
For Escherichia coli three physiological compartments are defined, namely the cytosol (c), the 
periplasma (p) and an extracellular space (e). Below, the notation for the periplasmatic 
compartment is given. As can be seen, also the relationship between the different 
compartments is supplied, as “outside of the cytoplasma”. 
 

 
<listOfCompartments> 

<compartment id="C_p" name="periplasm" outside="C_c" spatialDimensions="3"> 

</compartment> 
. 

. 

. 

</listOfCompartments> 
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Metabolites are defined in a similar way. For example glucose-6-phosphate can occur in all 
three cellular compartments (cytosol, periplasm and extracellular). An additional compartment, 
boundary (b), is specified which indicates the borders of the system to be modeled. 
Therefore, for such metabolite entries, also called exchange metabolites, the 
“boundaryCondition” (see below) is set to “true”.  
 
 
<listOfSpecies> 
. 

. 

. 

<species id="M_M_g6p_c" name="D-Glucose 6-phosphate_C6H11O9P" 

compartment="C_c" boundaryCondition="false"> 

</species> 

<species id="M_M_g6p_e" name="D-Glucose 6-phosphate_C6H11O9P" 

compartment="C_e" boundaryCondition="false"> 

</species> 

<species id="M_M_g6p_b" name="D-Glucose 6-phosphate_C6H11O9P" 

compartment="C_b" boundaryCondition="true"> 

</species> 

<species id="M_M_g6p_p" name="D-Glucose 6-phosphate_C6H11O9P" 

compartment="C_p" boundaryCondition="false"> 

</species> 
. 

. 

. 

<\listOfSpecies> 

 
 
Similarly, an example reaction, hexokinase, is provided below. The involved metabolites are 
listed separately depending on their role in the reaction, either as substrate or product. 
Additional information on stoichiometry, bounds and reversibility is also comprised in the entry. 
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<listOfReactions> 
. 

. 

. 

<reaction id="R_R_HEX1" name="hexokinase (D-glucose:ATP)" reversible="false"> 

  <notes> 

    <html:p>GENE_ASSOCIATION: b2388</html:p> 

    <html:p>SUBSYSTEM:Glycolysis/Gluconeogenesis</html:p> 

    <html:p>PROTEIN_CLASS: 2.7.1.1</html:p> 

  </notes> 

  <listOfReactants> 

    <speciesReference species="M_M_atp_c" stoichiometry="1"/> 

    <speciesReference species="M_M_glc_DASH_D_c" stoichiometry="1"/> 

  </listOfReactants> 

  <listOfProducts> 

    <speciesReference species="M_M_adp_c" stoichiometry="1"> 

    </speciesReference> 

    <speciesReference species="M_M_g6p_c" stoichiometry="1"> 

    </speciesReference> 

    <speciesReference species="M_M_h_c"stoichiometry="1"> 

    </speciesReference> 

  </listOfProducts> 

  <kineticLaw> 

  <math xmlns="http://www.w3.org/1998/Math/MathML"> 

    <apply> 

    <ci> LOWER_BOUND </ci> 

    <ci> UPPER_BOUND </ci> 

    <ci> OBJECTIVE_COEFFICIENT </ci> 

    </apply> 

  </math> 

  <listOfParameters> 

    <parameter id="LOWER_BOUND" value="     0.00000000"/> 

    <parameter id="UPPER_BOUND" value="  1000.00000000"/> 

    <parameter id="OBJECTIVE_COEFFICIENT" value="     0.00000000"/> 

  </listOfParameters> 

  </kineticLaw> 

</reaction> 
. 

. 

. 

<listOfReactions> 
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Simulation tools 

 The “basis” toolbox used in this thesis is the RAVEN toolbox -Reconstruction Analysis and 
Visualization of Metabolic Networks- developed by Rasmus Agren et al. [74] with the main 
purpose to help the semi-automatic network reconstruction of genome scale metabolic models 
based on protein homology, but also network analysis and visualization. The RAVEN toolbox 
provides two approaches for creating a network reconstruction. In case similar networks are 
available, these can be used as template for the new model, whereas the reconstruction is 
created from protein ontology.  The second approach does not depend on existing models, but 
makes extensive use of information gathered from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database. Metabolites and reactions are extracted from KEGG and coupled to 
genes based on protein homology. Another backbone of the software is the analysis of genome 
scale metabolic models, which contains major basic FBA analysis tools such as optimization of 
objectives, gene essentiality simulation and gap identification. Another interesting feature of 
this toolbox is its visualization capacity. Opposite to COBRA toolbox, which uses rendered  
pathway maps using Java and Perl, the RAVEN toolbox allows the incorporation of maps drawn 
using CellDesigner [82], a popular tool in systems biology. The calculated fluxes can be plotted 
onto such maps. 

The Constraint Based Reconstruction Analysis toolbox (COBRA) has been created by the Palsson 
laboratory [31]. Meanwhile, it has established itself as golden standard for flux balance analysis 
and contains a wide range of functions for Flux balance analysis such as optimization problems, 
knockout studies, 13C analysis, as well as many add-ons such as Paint4Net [77]. Recently, the 
COBRA toolbox has also been implemented in Phyton [83], which was necessary due to the 
emerging model size and complexity.  

Opposite to the MATLAB toolboxes mentioned above, Optflux is an open source software 
package implemented in Java and therefore provides a user friendly graphical user interface, 
which provides laboratory scientists easy model handling. Like RAVEN and COBRA toolboxes, it 
spans basic flux balance analysis, but also provides strain optimization functions like Optknock 
[84].  The downside is the speed, as outlined below.  

Furthermore, SBML -models can be analyzed in R [79]. This Sybil package, developed in 2013  by 
Dietrich et al. [79] is far more time-efficient than similar calculations performed in MATLAB due 
to algorithm architecture and implementation. According to the authors, flux variability analysis 
(FVA) is 53 times faster with Sybil than with COBRA and over hundredfold faster than Optflux. 
There are a myriad of available software tools, a good overview is given by  Tomar et al. [12]. 
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RAVEN versus COBRA Toolbox 

The format of choice for network representation is Excel since it is comparably easy to handle.  

In analogy to the SBML file, the Excel workbook gives information on the network 
reconstruction and contains reaction, metabolite and gene lists as well as information on the 
compartments included in the reconstruction. Excel files of all network reconstructions can be 
found in the appendix or supplied along with published network reconstructions, such as 
iAF1260 [42]. 

For simulation, the “raw” network reconstructions, “stored” in Excel files in turn can be 
converted into SBML file. Although SBML enables the free exchange of XML files between 
different software packages, this freedom of exchange is restricted: Although both COBRA and 
RAVEN toolbox support an Excel format for “network storage”, which can be imported into as 
model into MATLAB workspace, these models have slight differences in there informational 
content as illustrated in Table 5. 

As the network reconstructions in Excel have a slightly different informational content, so do 
the subsequent SBML files, which are imported into MATLAB workspace. Since COBRA is taken 
as “golden standard”, other toolboxes expect the SBML files to contain species information 
according to COBRA toolbox conventions. Once this “standard” is disregarded by lacking of 
distinct compulsory species, successful interchange to other toolboxes is impeded (Chapter 3, 
function xls2Rmodel.m). 
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Table 5 Comparison of features from a SBML file which can be accessed within a MATLAB workspace. 
Here, the reconstruction (here iJO1366_raven.V1.xml) is loaded into MATLAB workspace by either 
RAVEN or COBRA toolbox as a structure.  Although the structure contains common core variables, 
regardless of the toolbox, both toolboxes may contain additional (optional) variables. A summary of 
structure variables and their classes are given below, albeit a detailed description of each variable can be 
found in the appendix, as well as the reconstructions themselves. Bold variables are obligatory input 
variables for simple FBA analysis. 
 

COBRA Toolbox Common core features RAVEN Toolbox 

metCharge: [1843x1 int32] 
confidenceScores: {2628x1 cell} 

rxnReferences: {2628x1 cell} 
rxnNotes: {2628x1 cell} 

metChEBIID: {1843x1 cell} 
metKEGGID: {1843x1 cell} 

metPubChemID: {1843x1 cell} 
metInChIString: {1843x1 cell} 

 

rxns: {2628x1 cell} 
mets: {1843x1 cell} 

S: [1843x2628 double] 
rev: [2628x1 double] 
lb: [2628x1 double] 
ub: [2628x1 double] 
c: [2628x1 double] 

description 
genes: {1416x1 cell} 

rxnGeneMat: [2628x1416 double] 
grRules: {2628x1 cell} 

rxnGeneMat: [2628x1416 double] 
grRules: {2628x1 cell} 

subSystems: {2628x1 cell} 
rxnECNumbers: {2628x1 cell} 

rxnNames: {2628x1 cell} 
metFormulas: {1843x1 cell} 

b: [1843x1 double] 

comps: {4x1 cell} 
compNames: {4x1 cell} 
compOutside: {4x1 cell} 

metComps: {1843x1 cell} 
compMiriams: {4x1 cell} 

metMiriams: {1843x1 cell} 
geneMiriams: {1416x1 cell} 

 

 

 

As can be seen, the core structure does not require genetic information for basic flux analysis, 
though it is essential for certain simulations. One major difference between the toolboxes is 
information on metabolite charge. Most noticeable, the COBRA toolbox contains metabolite 
formulas and charges, as can be accessed in PubChem or ChEBI databases, whilst the RAVEN 
toolbox does not. It should be therefore noted, that models, as they are used for this thesis 
cannot be subjected to energy balancing. This issue will be further discussed in Chapter 4. 
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Network reconstructions  

As pointed out in the introduction, the network reconstruction process is a laborious task. 
However, many network reconstructions versions of Escherichia coli K-12 MG1655 exist already. 
Prior to this thesis, the latest reconstruction of MG1655 as prepared by Yamada et al. [46] has 
therefore been used as template to adapt all other strains by modifying gene lists and 
corresponding reactions based on a genome differences. Unlike other published 
reconstructions, which have been converted into models and simulated using the COBRA 
Toolbox, the network reconstructions used herein are formatted to suit RAVEN toolbox 
“convention”. 
The initial network reconstructions are listed in Table 6.  A detailed description of the revision 
process is provided in Chapter 3. 
 
Table 6 initial network reconstructions. 
Initial network reconstructions were created prior to this thesis. They have different metabolite lists and 
reaction-to-gene associations. This will further explained in Chapter 3. As for the nomenclature: 
according to previous reconstructions: „i“ stands for in silico, „W“  is the initial  of the strain and 1407 is 
the total number of genes in the network reconstruction. 
 

Strain Network reconstruction Version Metabolites Reaction-to-Gene 
Association 

MG1655 iJO1366-novel-air-
GLC_raven.xls 

6/11/2012 19:36 charged correct 

W3110 iW1407_raven.xls 31/10/2012 21:55 uncharged partially incorrect 

HMS174 iHMS1391_raven.xls 6/11/2012 22:05 charged correct 

RV308 iRV1394_raven.xls 31/10/2012 21:59 uncharged partially incorrect 
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Section B Microbial Experiments 

Materials 

Table 7 Escherichia coli host strains 
 

 

Strain Source Genotype 

MG1655 TU Graz strain 
collection 

F- lambda- ilvG- rfb-50 rph-1 

W3110 TU Graz strain 
collection 

F- lambda- IN(rrnD-rrnE)1 rph-1 

HMS1748 ATCC – 47011 F- recA1 hsdR(rK12- mK12+) (Rif R) 

RV3088 ATCC – 31608 lacIq- su-  ΔlacX74  gal IS II::OP308, 
strA 

BL21(DE3) TU Graz strain 
collection 
 

F– ompT  gal  dcm  lon  hsdSB(rB
- mB

-)  
λ(DE3 [lacI lacUV5-T7 gene 1 ind1 
sam7 nin5]) 

 
Table 8 Instruments 
 

 

Instrument Model/Supplier 

Benchtop centrifuge Biofuge „pico“,  Hereaus 

Centrifuge Eppendorf  Centrifuge 5810 R 

Laboratory scale  Kern EW (0.5 – 1500 g) 

Analytical scale Sartorius, BL1205  
(max 120 g, d = 0,1 mg) 

Orbital sShaker Infors HT Orbitron 

Spectrophotometer I Eppendorf BioPhotometer plus 

Spectrophotometer II 
(Softmax Pro 4.3 LS) 

Spectramax Plus 384, Molecular 
Devices 

Firesting9 PyroScience  

Needle -type microsensor (Orange Fiber)9 PyroScience 

pH-meter WTW Series inolab pH720 

Microtiter plates Greiner 

Deepwell plates Greiner 

Vortex Ika Vortex Genius 3 

Syringe (20 mL) Braun, Inject(R)  

Cannula (G 20 x 1 1/2" / ø 0,90 x 40 mm, yellow Braun, Sterican(R) 

                                                      
8
 Strains retrieved from Jürgen Mairhofer, Institute for Applied Microbiology, University of Natural Resources and 

Life Sciences, Vienna 
9
 Kindly provided by the group of Georg Gübitz (IFA Tulln/TU Graz) 
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Table 8 Instruments (continued) 
 

Magnetic plate Variomag MonoKomet 

Cuvettes (SemiMicro)  Greiner, Bioone 

Filter (diameter 0.2 µm) Sterileo exp. 

100 mL Erlenmeyer shaking flasks Schott Duran 

300 mL Erlenmeyer shaking flasks Schott Duran 

1 L Erlenmeyer shaking flasks SigmaX 

1 L  Erlenmeyer shaking flasks(baffled) SigmaX 

2 L Erlenmeyer shaking flaskss SigmaX 

2 L Erlenmeyer shaking flasks (baffled) SigmaX 

Water bath GFL 

Bunsen burner Campingaz 

 

Table 9 Chemicals 
 

Chemical Specifications Supplier Cat # 

Glycerol ≥98 %, Ph.Eur., 
anhydrous 

Roth 7530.4 
 

Sodium hydroxide  ≥99 %, p.a., ISO, NaOH Roth 6771.1 

Disodium hydrogen 
phosphate 

≥98 %, Ph.Eur., USP, 
Na2HPO4 anhydrous  

Roth  T876.2 

Monopotassium 
phosphate 

≥99 %, p.a., ACS, KH2PO4 Roth 3904.1 

Sodium chloride ≥99,5 %, p.a., ACS, ISO 
NaCl 

Roth 3957.1 

Magnesium Sulfate ≥99 %, p.a., ACS 
Heptahydrat 

Roth P027.1 

Calcium chloride ≥99 %, Ph.Eur., USP 
CaCl2Dihydrat 

Roth T885.1 

Glucose α-D(+)-Glucose 
Monohydrat 

Roth 6887.1 

Sodium sulfite p.a., ACS reagent, , 
≥98.0% anhydrous 

Fluka (Sigma-
Aldrich) 

71989 
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Table 9 Chemicals (continued) 
 

Chemical Specifications Supplier Cat # 

Agar General purpose, 
bacteriological grade 

Lab M Limited MC006 
(CAS#: 9002-
18-0) 

LB – Medium  Luria-Miller Roth X968.3 

LB - Agar Lennox Roth X965.3 

3,5-Dinitrosalicylic acid ≥98%  Sigma-Aldrich D 0550-10G 

Potassium sodium 
tartrate tetrahydrate 
 

C4H4KNaO6 · 4 H2O  
≥99 %, p.a., ACS, ISO 

Roth 8087.2 
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Methods 

 

Preparation of glycerol stocks 

20 mL LB medium in a 100 mL Erlenmeyer flask are inoculated with a single colony, and 
incubated overnight at 37 °C at 110 rpm orbital motion. 400 µl of this culture are mixed 
thoroughly with 1 mL of 50 % (w/w) glycerol in cryovials and stored at – 80 °C until use. 

Escherichia coli cultivation 

20 µl of Escherichia coli glycerol stock are streaked out on M9 agar plates supplemented with 2 
g/L glucose and incubated for two to three days at 37 °C or at room temperature over the 
weekend. If not used, the plate is sealed with parafilm and stored at 4°C for as long as one 
month maximally. 
50 mL M9 medium in 300 mL Erlenmeyer flasks are inoculated with a Escherichia coli single 
colony. This preculture is incubated at 37 °C at 110 rpm orbital motion for at least 20 hours. The 
main culture is set up as follows: 
Fresh medium is inoculated with preculture so that the main culture has an initial OD600 of 0.05 
in 200 mL culture volume. The main culture is “default” cultured in 1 L nonbaffled Erlenmeyer 
flasks at 37 °C and 110 rpm orbital motion; deviations of this default setting are noted 
separately. In parallel, an uninoculated negative control (20 mL of medium in 100 mL 
Erlenmeyer flasks) is incubated. Samples are taken regularly, roughly every half an hour, until 
the culture reaches stationary phase. One millilitre is taken aseptically and measured in the 
spectrophotometer. Furthermore, the sample is centrifuged and the supernatant is stored at  
-20 °C for 3,5-dinitrosalicylic acid assay analysis. 
When the cells have reached stationary phase, 50 mL of culture is spun down in falcon tubes for 
30 min at 4000 rpm (this is done in duplicates). In case the pH is measured, the supernatant is 
filter-sterilized prior to the measurement. The pellet is dried at 100 °C overnight. Thus, the cell 
dry weight (DW) is determined from the weight difference of the empty falcon and after the 
incubation at 100 °C.  The ratio of OD600- to-cell dry weight is calculated as follows 

 
      

                         
                                                                      (4) 

 
DW denotes the net bacterial dry weight, which is calculated per final OD600 (determined before 
harvesting) as well as the pelleted culture volume, typically 50 mL. 
 
As the cultivation is performed without any antibiotics, control dilution streak outs on M9 agar 
plates supplemented with 2 g/L glucose are prepared from a culture in stationary phase to 
compare the colony morphology.  
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M9 Minimal Medium 

In order to retrieve valid simulation results, it is crucial to use a minimal medium of known 
composition. The M9 minimal medium used herein10, is based on Maniatis et al. [85]. It is one of 
the most widely applied minimal medium. However many variations exist regarding e.g. vitamin 
and trace element supplementation. Even research done for development of Escherichia coli 
models is inconsistent in the composition of M9 medium used, regarding vitamins and  trace 
elements supplementation [36, 37, 45, 86, 87]. 
 

Preparation 

 
The medium is composed of four components, which are prepared separately, autoclaved or 
filter sterilized and finally mixed aseptically: 
 
A. M9 salts (stock solution, either five or tenfold) 
B. 1 M MgSO4 
C. 1 M CaCl2 
D. Substrate solution (40 % glucose) 

 
Components A-C are stored at room temperature, the Substrate solution is stored at 4 °C. 
 
 Table 10 Composition of 5 x M9 Stock Solution (pH 7.4) 

Component 
Concentration in stock 
solution [g/L] 

Final stock 
concentration [mM] 

NaH2PO4 30.0 250.0 

KH2PO4 15.0 110.2 

NaCl 2.5 42.8 

NH4Cl 5.0 93.5 
 

 
Each component is mixed until fully diluted and the pH is adjusted with NaOH pellets.  
 
One litre of M9 minimal medium is prepared by aseptically mixing 20 mL of autoclaved M9 salts, 
2 mL of 1 M MgSO4 (final concentration: 2 mM) and 0.1 mL of 1 M CaCl2 (viz. 0.1 mM final 
concentration). Furthermore the substrate, glucose, is added to a desired final concentration of 
2 g/L. The medium is always prepared freshly before use. 
 
  

                                                      
10

 http://www.cmdr.ubc.ca/bobh/recipes/MEDIA%20M1.pdf 
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3,5 Dinitrosalicylic acid assay  

In order to monitor the substrate consumption (glucose) during cultivation of Escherichia coli, 
the supernatant was assayed using the 3,5 dinitrosalicylic acid assay according to Miller [88]. In 
principio, 3,5 dinitrosalicylic acid is reduced by reducing moieties of saccharides such as 
fructose, glucose or galactose and di- or oligosaccharides such as lactose, respectively. Thus, 
under alkaline conditions, 3-amino-5-nitro salicylic acid is formed, which causes the solution to 
turn from yellow to various shades of red depending on the extent of reaction. Thus the 
concentration of reducing sugars can be spectroscopically quantified at 540 nm (Figure 5). This 
assay is the procedure of choice since it provides an easy handling at low cost. Despite being a 
relatively simple analytical method when compared to HPLC, it still has a sensitivity of at least 
500 nmol of analyte [89]. It should be noted that this method cannot distinguish between 
different reducing monosaccharides or mixtures of oligosaccharides, thus narrowing the 
spectrum of possible analytes [89]. 

 
 
Figure 5 Reaction of 3,5- dinitrosalicylic acid  (DNS) with reducing moieties ( such as reducing sugars).  
Under alkaline conditions, 3,5- dinitrosalicylic acid is reduced to 3- amino -5-nitrosalicylic acid, which can 
be detected at 540 nm. The reducing moiety in turn is oxidized to the respective carboxylic acid. 

 

Preparation 

For 100 mL solution, 1 g of 3,5-DNS is dissolved in 20 mL of 2 N NaOH and 50 mL of dH20. When 
it is completely dissolved, 30 g of sodium potassium tartrate tetrahydrate are added and  
the solution is filled up with dH20. to a total volume of 100 mL. 
The solution is stored in a glass vessel covered with aluminium foil to avoid bleaching effects. 
For disposal, the plates are rinsed with ethanol and disposed into the organic waste flask 
according to the MSDS. Calibration curves are prepared in the range of 4 g to 0 g glucose. The 
dilutions are prepared in 1 x M9 medium. In order to quantify reducing sugar moieties, viz. the 
concentration of substrate in the medium, the DNS assay is carried out as follows: 
The culture supernatant, which is stored at -20 °C, is thawn and centrifuged for ten minutes at 
8000 rpm. 100 µl of the sample is applied to a deep well plate and 100 µl of DNS reagent is 
added, whereas each sample is measured in triplicates. The outermost slots of the deep well 
plates are left empty to get a relative homogenous exposure to heat in the next step. The plate 
is covered with aluminium foil and placed in a boiling water bath at 98 - 100°C for six minutes. 

http://dict.leo.org/#/search=thawing&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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Once the reaction mix is cooled down to room temperature, 500 µl of dH20 are added to each 
slot. Each triplicate was transferred twice to a microtiter plate. Hence, one culture sample is 
analysed sixfold, to compensate for eventual pipetting mistakes etc. The plate is placed in the 
spectrophotometer and read out at 540 nm (Spectrophotometer II). 
 

Statistical analysis of data 

The specific growth rate µ [hr-1] is calculated by plotting the cell mass, as determined from 
measured OD600 over time. The growth rate µ is readily readable from the slope of the resulting 
curve, albeit only those data points are considered, where the substrate is not yet exhausted 
(exponential phase). The specific substrate uptake rate, qs, [mmol/(gDW*h)] is calculated 
through two different methods, the average and the logarithmic method.  
 
For the average method, the substrate concentration S [mM] is plotted against  the biomass 
concentration X [gDW/L], albeit only those values are considered, that have been included for 
the estimation of the specific growth rate.  The slope of this line is multiplied by the specific 
growth rate to determine the specific substrate uptake rate qs. 
 

                                                                                                                (5) 
 
 
The logarithmic method plots the logarithmic ratio of substrate [g/L] per biomass concentration 
[gDW/L] against the time points. Due to the applied logarithm, the linear range is smaller than 
that of the average method. The specific substrate consumption rate is derived by calculating 
the exponent of the slope from the linearization. 
 
  

                                                                      (6) 
 
 
 
Determination of the oxygen uptake rate 

 
For determination of oxygen uptake, a fiberoptic oxygen meter connected to a retractable-
needle-type microsensor (OXR50) is used.  
 
The detection is based on fluorescence quenching. In principle, a small luminophor spot at the 
tip of the senor reacts with oxygen molecules, as illustrated in Figure 6. The interaction of triplet 
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oxygen molecules with the indicator triggers a quenching of infrared emission, which can be 
detected. 
 

 
Figure 6 Detection principle of oxygen molecules by the redFlash sensor. 

A) A) If the concentration of oxygen is low the fluorescence emission of the indicatorfluorescence of the 
luminophore is not quenched, thus emitting in infrared light.  

B) B) At high concentration of oxygen molecules, the indicator emission is quenched. 
C) (figure taken from instructions manual5) 

 

According to the manual11, the sensor emits a red excitation light, whereas the resulting 
emission is recorded due to phase shift. This shift is converted into oxygen concentration or 
saturation based on Stern Vollmer Theory.  
 
In order to measure the oxygen consumption rate, a 4 mL vial is filled to the top with culture 
and closed tightly with a cap. The needle-type sensor is inserted into the vial through a tiny hole 
in the cap and the oxygen decay is recorded. The sensor is calibrated according to the 
instructions using 2-point calibration, whereas 30 g/L sodium sulfite serves as zero point and 
environmental air (at known ambient pressure, temperature and humidity) is taken as 100 % 
point. After usage, the sensor is first rinsed with 70 % ethanol and afterwards with ddH20. 
 

                                                      
11

 http://www.pyro-science.com/media/files/Manual%20Firesting%20O2.pdf as accessed 2013-12-20 

http://www.pyro-science.com/media/files/Manual%20Firesting%20O2.pdf
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Figure 7 General setup for determination of 
oxygen uptake rates. 
The measurements are undertaken in the 37 °C 
room (+/- 1 °C), where also the cultivation takes 
place. 
At the left: magnetic plate with styropor and the 
4 mL vial placed stably in the middle. In front of 
the vial lies the microsensor which is connected 
(orange fiber) to the Firesting oxygen meter (at 
the back). The oxygen meter in turn is 
connected via USB to the laptop where the 
software records incoming signals. 
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Chapter III Results 

In this chapter, the outcome of the thesis work is presented. The first part of this chapter deals 
with the correction and refinement of the network reconstructions. At the end of this part, they 
are compared and consequences of strain-specific gene deletions are visualized. Furthermore, a 
single gene deletion simulation is presented. In addition, Escherichia coli cultivations are 
compared and the gathered data is used as input parameters for model simulation. The last part 
is dedicated to the influence of different solvers (purchased from different companies) on the 
optimization result. Raw data from batch fermentations as well as source code written can be 
retrieved from the (digital) appendix. Data used for plots is tabulated at the end of this thesis. 
All pathway maps in the following passages are drawn using a slightly modified version of 
draw_by_rxn.m (draw_by_rxnMOD.m) from Paint4Net, a COBRA Toolbox extension [77] 
(Chapter 2). 

Network reconstruction revision process and comparison of 

final network reconstructions  

Revision Process of network reconstructions of E. coli K-12 strains 

Initially, the network reconstructions have been incomplete, with regard to missing compulsory 
entries such as bounds and compartment assignments, or the appearance of special characters 
within some entries, such as “&”,”<”,”>”. This impedes a conversion into SBML files from Excel 
files or an invalid SBML file is returned. Once corrected, the network reconstructions have been 
converted into models, which were used for growth phenotype comparison. Apparently, some 
strains exhibited false-negative growth behaviour, since some gene entries in the network 
reconstruction of MG1655 were removed to adapt the gene list to other strains. In the course of 
this, corresponding reactions were also deleted regardless of other isoenzymes annotated to 
this reaction. Subsequently, a literature recherche using databases including EcoCyc12, 
PathCase13, Pubmed14, has been conducted to resolve gaps in the network due to missing 
information. Thereby, a new pathway, aerobic L-ascorbate degradation [90], has been added to 
the network. Moreover, exchange reactions for acetyl-maltose, a product of overflow 
metabolism when fed on maltose, and for gamma-hydroxybutyrate, a fermentation byproduct, 
have been included.  
In a third revision, the network reconstructions of MG1655 and W3110 have been compared to 
published reconstructions of Baumler et al. [48].  

                                                      
12

 http://ecocyc.org/ 
13

 http://dblab.case.edu/PathCaseRCMN/web/About.aspx 
14

 http://www.ncbi.nlm.nih.gov/pubmed 
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The fourth and last revision undertaken in this thesis has fundamentally improved the predictive 
capacity of gene essentiality analysis: The conversion to “RAVEN format” has confused 
isoenzymes (gene names separated by a “;”) and enzyme complexes (separation by “:”), 
respectively in W3110 and RV308 network reconstructions. The functional consequences of this 
confusion is immense, since the deletion of an enzyme within a complex erases the reaction 
within the pathway, if no further alternative isoenzyme is annotated. Thus, the gpr lists, 
containing information gene-protein relationships, needed to be revised. Furthermore exchange 
metabolites have been assigned a distinct compartment: “boundary”. This indicates metabolites 
crossing system boundaries according to RAVEN convention.  
The revision process is summed up in Figure 8, whereas a detailed list of changes to the 
reconstructed models can be found in the digital appendix. 
 
 

 

Figure 8 Overview of changes made to the initial network reconstructions at a glance.  
During the course of this thesis, the network reconstructions have been corrected and extended. 
Changes made to the networks are summarized as described in the main text. These changes have been 
substantial and crucial for functional performance. 

 

 
  

V0 
• Excel sheets (RAVEN format) of MG1655,HMS1704,W3110,RV308  (not completed, not convertable)  

V1 

• Filling of missing constraints/ cells  

• Correction of false-negative growth deficiencies 

V1b 
• Uniform  metabolite composition (charged composition in RV308 and W3110) 

V2 
• Addition of reactions 

V3 
•Cross-comparison to published reconstructions: addition and correction of gene-protein relationships 

V4 
• Systematic correction of gene-protein-relationships in RV308 and W3110 

• BL21(DE3) network reconstruction based on a published reconstruction of Escherichia coli B REL606 
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Network reconstruction of BL21(DE3) 

Additionally, a BL21(DE3) reconstruction has been set up by adapting small changes from the 
REL606 network reconstruction published by Yoon et al. [73] and a sequence comparison 
between BL21(DE3) and REL60615. 
Besides differences in flagella biosynthesis or proteases which are not included in the network, 
the genome sequence also revealed, that there are also metabolic differences such as an 
arabinose uptake system as well as a B-specific cluster for degradation or aromatic compounds, 
such as degradation of 3- and 4-hydroxy phenyl acetic acid. Contrarily, REL606 lacks evidence for 
synthesis of certain oligosaccharides of the lipopolysaccharides as well as fatty acids and O-
antigen synthesis. These reactions have been removed from the network reconstruction.  
The BL21(DE3) network reconstruction is based on the suggested changes mentioned Yoon et 
al. However, while Yoon et al. used the iAF1260 network reconstruction of MG1655, the basis 
network reconstruction used herein is iJO1366, as mentioned in Chapter 2. Further genome 
comparisons revealed only little metabolic differences between REL606 and BL21(DE3). 
Accordingly, small differences regarding galactose degradation or iron-sulfur cluster 
biosynthesis have been implemented. More detailed information on the changes can be found 
in the corresponding file. 
 

Comparison of final network reconstructions of K-12 strains  

 Roughly 50 genes (depending on the strain) have been added to the network reconstructions, 
equaling an extension of the gene lists of 3 %, encoding for 30 new reactions.  However these 
“raw” reconstructions are not consistent, since they contain gaps due to lacking source or sink 
metabolites and therefore cannot carry flux. Taking such cases out of account, the consistent 
reconstructions are roughly 13 % smaller. 
 
Table 11 Overview of final network reconstructions of MG1655 and W3110. 
Entry numbers of reactions, metabolites and genes are listed for the full reconstruction, containing also 
entries, which are never used. The numbers for the consistent network reconstructions as well as numbers 
of unused entries are also listed. 
 

Strain MG1655 W3110 

Model Raw Consistent Unused Raw Consistent Unused 

Reactions 2664 2407 257 2657 2387 270 

Metabolites 1826 1606 220 1826 1593 233 

Genes 1462 1325 137 1455 1314 141 
 

 

                                                      
15

 Files of insertions/ deletions (indels) between REL606 and BL21(DE3) were kindly provided by Peter Krempl 
(Austrian Center for Industrial Biotechnology ACIB) 
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Table 12 Overview of final network reconstructions of HMS174 and RV308 and BL21(DE3) 
Entry numbers of reactions, metabolites and genes are listed for the full reconstruction, containing also entries, 
which are never used. The numbers for the consistent network reconstruction and numbers of unused entries 
are also listed. 
 

Strain HMS174 RV308 BL21(DE3) 

Model Raw Consistent Unused Raw Consistent Unused Raw Consistent Unused 

Reactions 2651 2374 277 2647 2361 286 2646 2305 341 

Metabolites 1824 1590 234 1820 1574 246 1833 1539 294 

Genes 1445 1298 147 1446 1298 148 1431 1243 188 
 

 
Figure 9 illustrates, that none of the K-12 strains compared herein possesses unique strain-
specific genes. Once, the network reconstructions are reduced to the active entries, the total 
number of genes decreases, indicating, that many genes are not connected to the general 
metabolism. Furthermore, the number of “none-core” genes increases, as upon gene deletion 
according to sequence comparisons, so that further “collateral” genes in a pathway are 
inactivated. The deletions of genes due to assumed sequence differences lead to the deletion of 
whole pathways as artificial dead-end and no-source reactions, respectively. 
 
 
 
 
 
 
 



 

38 

 

A 

 

B 

 
Figure 9 Comparison of gene list entries in Escherichia coli K-12 network reconstructions  
Some reactions (and associated genes) not connected with the network. Some are never used due to gaps 
in the network, leaving it partly inconsistent. Therefore strain-specific gene deletions “passively” inactivate 
other genes in the affected pathways. As a gene deletion may inactivate genes in the common core set for 
the number of genes shared by only two or three of the strains increases.  
A)  Venn diagram of numbers of genes in the full/inconsistent network reconstruction 
B) Venn diagram of genes in the consistent network reconstruction.  
The Venn Diagrams have been generated using VENNY (by Juan C. Oliveros)  
http://bioinfogp.cnb.csic.es/tools/venny/ as accessed February 10th, 2014 

 
 
Comparing the Venn diagrams (Figure 9), a difference of four genes among common genes of 
MG1655 and RV308 becomes obvious:  The deletion of a galactitol transporter (reaction 
“R_GALTptspp” b2092:b2093:b2094) leads to the inactivation of consecutive reactions (Figure 
10). Since this transporter is the only source for galactitol-1 phosphate, it will therefore no 
longer be processed to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate, both 
metabolites of central carbon metabolism. Another example is allose uptake, which is entirely 
missing in W3110 and HMS174 (pathway is not shown here). 
An additional example is 2-Oxopent-4-enoate (M_op4en[c]), which has two influx branches: one 
from 3-(2,3-Dihydroxyphenyl)-propanoate and the other one from 2,3-dihydroxicinnamic acid. 
As the genes b0347, b0348 and b0349 do not exist in the genome sequence of RV308, the 
reactions “R_3HCINNMH”,”R_3HPPPNH”, „R_DHCINDO“, „R_HPPPNDO“, „R_HKNDDH“, 
„R_HKNTDH“ as illustrated in Figure 10 are erased  from the pathway and so are all upstream 
reactions, having 2-Oxopent-4-enoate as single sink metabolite, respectively. 

http://bioinfogp.cnb.csic.es/tools/venny/
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A 

 
 
 
 
 

 
 

 
B 

 
 

Figure 10 Pathways which are inactive in network reconstructions of W3110 and HMS174. 
A:  Galactitol catabolism.  B:  3-phenylpropionate and 3-(3-hydroxyphenyl)propionate degradation 
Some bulk metabolites such as H2O, and NADP/NADPH have been removed to reduce complexity of  
the figure. Details on the reactions can be retrieved directly from the network reconstructions. 

 
 
Regarding the function of the inactivated genes, Figure 11 reveals that mostly genes are 
affected which are involved in the biosynthesis of cofactors and prosthetic groups. Since the 
network reconstruction of MG1655 lacks recycling reactions, creating dead ends that cannot 
carry flux. Another noticeable proportion of genes is involved in transport processes or is not 
assigned to any specific pathway. 
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Figure 11 Inactive genes sorted by subsystem affiliation in the consistent model of MG1655. 
Subsystems are a way to functionally cluster genes. In this figure, the inactive genes found in the 
consistent model of MG1655 (iJO1366_raven.V4.xml) are clustered per subsystem affiliation. Most of the 
inactive genes belong to cofactor biosynthesis pathways. Furthermore genes involved in transport 
reactions or without distinct classification are affected. Smaller fractions (below 3%) such as metabolism 
of amino acids and nucleotides are cumulated (22%). A similar proportion of affected subsystems could 
also be observed for the other models (W3110, HMS174, RV308 and BL21(DE3)). 
 

Data concerning model (in-) consistency and inactive genes can be found in the appendix 
(“ConsistentModel.xlsx”). 
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Gene essentiality analysis 

In order to investigate major physiologic differences, the Escherichia coli models have been 
subjected to a series of in silico single gene deletions. The algorithm used for calculation is FBA, 
however, there exist more elaborate algorithms such as regulatory on/off minimization (ROOM)  
[91] or minimization of metabolic adjustment [92], which predict mutant growth rates from 
gene knock outs more precisely than FBA. However, these algorithms are also more time-
intensive.  
The objective herein is, to find unique essential genes, which are lethal in only one of the 
models, despite only little differences in the gene lists. 
 
Table 13 Effect of folD (b0529) knock out under aerobic conditions.  
The crosses indicate a fatal knock out. This knock out has been performed 
under aerobic conditions using FBA algorithm. The script KOv5.m can be 
found in the appendix.  This gene deletion is not lethal, when performed 
under anaerobic conditions (therefore not shown here). 

  

substrates/models MG1655 W3110 HMS174 RV308 BL21(DE3) 

acetate 
   

x 
 acetaldehyde 

   
x 

 α-ketoglutarat 
   

x 
 ethanol 

   
x 

 D – fructose 
   

x 
 fumarate 

   
x 

 D-glucose x x x x x 

L –glutamine 
   

x 
 L- glutamate 

   
x 

 D-lactate 
   

x 
 L-malate 

   
x 

 pyruvate 
   

x 
 succinate 

   
x 

 

Upon single gene deletion, one interesting essential gene has been found (Table 13), namely 
foldD (b0529), which is involved in folate metabolism. Folates are essential cofactors that 
mediate the transfer of one-carbon units from donor molecules in many pathways. Thus, they 
are involved in amino acid metabolism, such as methionine biosynthesis, interconversion of 
serine to glycine and vice versa, and histidine catabolism [93].  
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Figure 12 Formyltetrahydrofolate metabolism in Escherichia coli K-12. 
Briefly, derivates of folate can be easily interconverted into one another. The formyltetrahydrofolate 
deformylase (R_FTHFD; top of the figure) produces tetrahydrofolate (M_thf[c]) from 10-
Formyltetrahydrofolate (M_10fthf[c]), which can be back-converted under ATP consumption by formate-
tetrahydrofolate ligase (R_FTHFLi). 10-Formyltetrahydrofolate can be furthermore produced from 5,10-
Methenyltetrahydrofolate (M_methf[c]) which in turn could also be metabolized to 5-
Formyltetrahydrofolate (M_5fthf[c]).  
The gene of interest, folD (b0529), encodes a bifunctional 5,10-methylene-tetrahydrofolate 
dehydrogenase/ 5,10-methylene-tetrahydrofolate cyclohydrolase (R_MTHFC, R_MTHFD), which catalyzes 
the interconversion of  5,10-methenyltetrahydrofolate  to 10-formyltetrahydrofolate  and the NADP 
dependent interconversion of 5,10-methylenetetrahydrofolate  to 5,10-Methenyltetrahydrofolate.  
(Drawn according to subsystem “folate metabolism” of the network reconstruction; protons and H2O are 
not shown in this figure). 
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Figure 12 illustrates a part of the folate metabolism, more precisely: metabolism of folate 
derivates. The gene, which is knocked out in this in silico experiment is folD (b0529) which 
encodes a bifunctional 5,10-methylene-tetrahydrofolate dehydrogenase/ 5,10-methylene-
tetrahydrofolate cyclohydrolase involved in reactions “R_MTHFC” and “R_MTHFD”. It catalyzes 
the interconversion of  5,10-methenyltetrahydrofolate  to 10-formyltetrahydrofolate  and the 
NADP-dependent interconversion of 5,10-methylenetetrahydrofolate  to  
5,10-Methenyltetrahydrofolate. Knocking out folD hence leads to a fatal lack of supply in  
10-formyltetrahydrofolate and 5,10-methylenetetrahydrofolate.  
 
The absence of the 2- methylcitrate cycle (Figure 13) sets Escherichia coli RV308 apart from the 
other network reconstructions: 
 

 

Figure 13 2-methylcitrate cycle of Escherichia coli. 
Oxaloacetate and propanoyl-CoA are transformed 
to methylcitrate and coenzymeA by  
2-methylcitrate synthase (b0333). Methylcitrate in 
turn is converted into cis-2-methylaconitate by 
2-methylcitrate dehydratase (b0334).  
2-methylisocitrate dehydratase catalyzes the 
reversible conversion between 2- methylaconitate 
and methyliscocitrate (b0118), which can 
methylisocitrate lyase (b0331) then catabolized to 
succinate and pyruvate, two bulk metabolites to 
fuel central carbon metabolism [94].  
 

 
This pathway seemingly has to have a compensating effect, when taking into account, that for 
the other models, growth was predicted for 12 out of 13 substrates (Table 13). This raises the 
question, why the knockout of folD has a broader fatal effect, if the 2- methylcitrate cycle is 
absent under aerobic growth condition. Therefore a series of control simulations have been 
performed, which are collected in the script clarifyKO.m, and following further observations 
have been made: 
 
In the simulation, RV308ΔfolD does not grow under aerobic conditions. Similarly, the other 
models also do not grow, if one of the reactions of the cycle is deleted. However, pyruvate and 
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succinate substitution (artificial drains) do not restore growth, strengthening the hypothesis, 
that this pathway might be redundant. Substitution of an intermediate byproduct, acetyl-CoA, 
does not lead to restored growth either. Therefore the bottleneck has to be at the beginning of 
the pathway, rather than its end: This pathway is a sink for oxaloacetate and propanoyl-CoA, 
albeit the first one named, is a bulk metabolite, whilst the other one is not.  
The removal of one single reaction of the pathway creates a dead end, and therefore inactivates 
all reactions involved in the biosynthesis of propanoyl-CoA. Interestingly, growth is also restored 
by enabling free exchange of formate, which is a fermentation byproduct and further 
metabolized in formyltetrahydrofolate metabolism as illustrated in Figure 12. These findings 
suggest that the inactivation of reactions due to the dead end at propanoy-lCoA has a cross-
effect on the metabolisation of formate. When aerobic conditions are simulated, reactions 
regulating the production of (anaerobic) fermentation byproducts are disabled, so that there is 
no further sink for formate except for non-aerobically regulated reactions such as folate 
biosynthesis. 
 

 

Figure 14 Crucial reactions affected by 
oxygen regulation. 

Upon oxygen regulation, 152 are shut off 
(when growth on glucose is simulated; 
regulateModelv3.m). However, only those 
listed beside are crucial for in silico vitality.  
All reactions in the network need a source and 
a sink in order to carry flux. In case of folD 
knockout, there is no further source for 
formate which is unaffected by oxygen 
regulation. Furthermore there has to be a sink 
for propanoyl-CoA as well (see Figure 13).  
2-oxobutanoate formate lyase (R_OBTFL) 
metabolizes 2-Oxobutanoate (M_2obut[c]) 
and CoA (M_coa[c]) to formate (M_for[c]) and 
propanoyl-CoA (M_ppcoa[c]).  Alternatively, 
formate is synthesized by pyruvate-formate-
lyase (R_PFL) from CoA and pyruvate 
(M_pyr[c]), thereby producing Acetyl CoA 
(M_accoa[c]). Furthermore formate can also 
be im-or exported by formate transporters 
(R_FORtppi,R_FORt2pp). 

 
 
 



 

45 

 

Summarizing, the lethality of folD is of systemic nature and not due to a trivial metabolite 
essentiality. Moreover, when glucose is used as substrate for growth simulation, a more 
stringent regulation is applied on the models, according to Covert et al. [95]. Hence, the 
compensational effect of the 2-methylcitrate cycle (as sink for propanoyl-CoA) gets extinct as 
formate becomes a dead end metabolite as well and therefore the knockout of folD is lethal for 
all models on glucose under aerobic conditions. 
 

Escherichia coli cultivations 

The different Escherichia coli K-12 and B strains have been cultivated and analyzed as described 
in Chapter 2. The growth rates have been determined by OD600 measurements and dry weight 
determinations. Thereby a conversion factor OD600-to-gDW/L (gram dry weight per litre) 
determined is used for all batches and all samples, which has also been mentioned in the 
literature[36]. The glucose uptake rate has been measured using the DNS-assay. The sample 
values can be retrieved from the appendix.  
 
First of all should be noted, that the calculation of the specific substrate uptake rate qs 
[mmol/(gDW*L)] is error prone, if calculated incorrectly. Figure 15 illustrates the effect of 
different calculation methods on qs. The “average method”, where the inversed growth yield 
per substrate is multiplied with the growth rate µ, is often used because of its simplicity. The 
“logarithmic method” as proposed by Görgens et al. [96], calculates the consumption rate from 
a logarithmic linearization. The detailed formulas for calculation can be found in Chapter 2. 
 

  
Figure 15 Comparison of calculation methods for determination of specific glucose uptake rates.  
The two determination methods (as described in Chapter 2) are compared for MG1655 at different settings. 
The strain has been cultivated in 1 litre non-baffle “nb” (10 batches), baffled “b” (7 batches) shaking flasks, 
as well as in 2 L unbaffled flasks (4 batches) and baffled flasks (11 batches) at 37 °C and 110 rpm orbital 
motion. The average values are marked black and displayed beside each data series. The dark green area 
represents the 25th percentile and the light green one the 75th percentile. 
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As can be seen in Figure 15, qs values vary depending on the calculation method used. While the 
values calculated with the logarithmic method show a trend towards higher rates with higher 
flask volume and baffle, the average method returns values that have a higher coefficient of 
variation and are even contradictory to the other method. Therefore all substrate uptake rates 
further used in this thesis are calculated using the logarithmic method. Switching the cultivation 
setting to baffled flasks and bigger flask volume influences the substrate uptake rate by 
improved mixing and better aeration thereby causing higher growth rates. However the overall 
increase when changing the settings from 1 L unbaffled to 2 litre baffles are relatively small. 
 

 

Figure 16 Comparison of growth 
rates µ at different settings   
Escherichia coli MG1655 has been 
cultivated at different setting (see 
Figure 14) in M9 minimal medium 
(supplemented with 2 g/L glucose) 
at 37 °C and 110 rpm. Tabulated 
values can be retrieved from the 
appendix (starting with Table 19). 
The dark green area represents the 
25th percentile and the light green 
one the 75th percentile. 
 

 
As expected, the growth rates show a similar tendency, towards faster growth, when the setting 
is switched to baffled flasks or 2 litre flasks, through the increase seems to be more obvious 
than observed with the substrate consumption rates. 
 
In order to further address strain-specific growth differences, MG1655, W3110, HMS174, RV308 
and BL21(DE3) have been cultivated at default settings, 1 litre nonbaffled, on 2 g/L initial 
glucose concentration in M9 minimal medium as described in Chapter 2. The resulting growth 
rates and substrate uptake rates are compared in Figure 17 and Figure 18, respectively. 
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Figure 17 Growth rates (µ) of different 
Escherichia coli strains. Strains cultured in 200 
mL M9 supplemented with 2 g/L glucose, at 37 °C 
and 110 rpm orbital motion. 
 

Figure 18 Specific substrate uptake rates (qs) of  
different Escherichia coli strains. Strains cultured in 200 
mL M9 supplemented with 2 g/L glucose, at 37 °C and 
110 rpm orbital motion. 
 

Both growth rate and glucose uptake rate show similar tendencies:  the closely related K-12 
strains MG1655. W3110 show similar growth and glucose uptake rates. While exhibiting a 
similar growth rate, BL21(DE3) has an slightly elevated glucose uptake rate. Contrarily, HMS174 
and RV308 both grow at lower and higher rates, respectively. Tabulated values can be found in 
the appendix. 

 
 
 

Figure 19 Comparison of biomass yield from 
glucose between the strains. 
Regarding the biomass yield per substrate Yx/s 

[g/g] – determined by plotting biomass 
concentration over glucose consumption, 
there seems no clear tendency, given the  
high variances (up to 11 %) of the data.  
 

Additionally to substrate supply, the oxygen consumption plays a crucial role for bacterial 
growth rates. Since the simple shake flask setting does not allow for continuous monitoring or 
supply of oxygen, the oxygen consumption has been determined by means of a microsensor as 
described in Chapter 2. Since oxygen measurements during the course of cultivation (and 
sample taking) would have come at the expense of sample accuracy (regarding glucose 
consumption), the oxygen uptake rate has been measured in separate cultivations. Therefore, 
one measurement has been undertaken for MG1655 at exponential growth phase for each of 
the following settings: 1 L non baffled and baffled flask and 2 L baffled.  
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Figure 20 Oxygen consumption of 1 L non-baffled 
culture cells in exponential growth phase. Settings: 
M9 supplemented with glucose, 37°C orbital 
motion. At an OD600 of 1.8 (0,54 gDW/L) , a oxygen 
uptake rate of 25,7 mmol/[gDW*h] was retrieved 
(R² = 0,9962) 
 

Figure 21 Oxygen consumption of 1 L baffled 
culture cells in exponential growth phase. 

Settings: M9 supplemented with glucose, 37°C 
orbital motion. At an OD600 of 1.4 (0,42 gDW/L) , 
a oxygen uptake rate of 26,5 mmol/[gDW*h] was 
retrieved (R² = 0,9997) 
 

 

 

In Figure 20 – Figure 22 the oxygen 
concentration is illustrated for each 
setting. The resulting oxygen  
decay over time is summarized in 
Table 28 (appendix) for the different 
settings. 
 

Figure 22 Oxygen consumption of 2 L nonbaffled cultured cells 
in exponential growth phase.  
Settings: M9 supplemented with glucose, 37°C orbital motion. 
At an OD600 of 1.8 (0,54 gDW/L) , a oxygen uptake rate of 
25.7mmol/[gDW*h] was retrieved (R² = 0,9995) 
   

 

As can be seen above, the oxygen consumption is similar among the settings. This somehow 
“contradicts” the growth trend exhibited at different settings (see previous figures). However 
the values are in agreement with published values. Andersen and Meyenburg [97] for example 
determined a maximal oxygen uptake rate of roughly 20 mmol/(h*gDW) for Escherichia coli B/r 



 

49 

 

NF790, when grown on minimal medium in batches with different oxygenation rates. This 
publication was already used for studies on the influence of varying oxygenation rates on the 
metabolic model of Escherichia coli by Varma and Palsson [35]. As the values retrieved from the 
measurements lie above the postulated maximal rate, the oxygen uptake rate is set 
unconstraint for model simulation (see following paragraphs).  
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Model evaluation – comparison of experimental and simulated 

results 

In this part, the model is compared to the experimental results. Detailed information on the 
function can be retrieved from the individual toolboxes or from the appendix, in case the 
function has been written in course of this thesis work. All of the following calculations have 
been performed using the Gurobi5 solver.  
As to evaluate the model with the experimental results, the gathered values were used as 
constraints for the model simulation: Oxygen is set unconstraint, glucose uptake rates (qs) are 
set accordingly. 

Dynamic FBA simulation of MG1655 cultivation 

First of all, it is important to elicit, which of the growth conditions fit best to the simulation. 
 To this purpose, the uptake rates are modified in the model and the simulated growth rate µ 
[1/h] is compared to the experimental one. As can be seen in Table 14 below, the simulated 
result is more than twice the value as the corresponding experimental setting.   
 
Table 14 Comparison of experimental and simulated growth rates at different substrate uptake rates 
(qs). Experimentally determined values have been used as input parameters for growth simulation.  
Settings: model: iJO1366_raven.V4.xml; oxygen bounds unconstraint, qs set accordingly, function used 
for simulation: optimizeCbModel.m (COBRA Toolbox). 
 

Setting Cultivation  µ [1/h] Simulation  µ [1/h] 
Relative difference (%) 

(cultivation and simulation) 

1L nb 0.47 1.03 75 

1L b 0.54 1.11 69 

2L nb 0.49 1.07 74 

2L b 0.58 1.13 64 

 
Apparently the growth rates do not vary to the same extent with changing settings as the 
experimental rates. This furthermore indicates that the growth rates are not exclusively based 
on changing substrate uptake rates but also on other parameters such as oxygen supply. Also 
the difference between simulation and experiment is smallest for the cultivation in 2 litre 
baffled flasks. This supports the assumption that this setting provides the best growth 
conditions through improved mixing and oxygen supply among all settings tested. 
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A ruled out previously, the measured oxygen uptake rates do not fit to the growth trend 
observed. As the measurements have not been undertaken in situ but treated like isolated 
samples, which possibly lead to a falsification. Therefore the oxygen supply variability is tested, 
albeit experimental determined biomass and glucose values serve as input parameters and 
oxygen supply is minimized and maximized. 
 
According to the optimization (optimizeCbModel.m), the oxygen uptake rate can vary in 
between 7.2 and 294.6 mmol/(gDW*h), at the given glucose supply for the observed growth 
rate. Therefore the experimentally determined values (Figures 20 - 22) lie in full range.   
 
At the end of cultivation, decay in pH (roughly 0.5 pH units) was observed, which indicate the 
production of acidic byproducts. These byproducts have not been measured, since the emphasis 
of this thesis laid on refinement of the reconstructions, the laboratory setup was therefore kept 
simple.  
 
Table 15 lists initial medium composition as well as major secretion fluxes during growth 
simulation the medium components. The simulated flux rates are retrieved from the 
exponential phase which assumes “optimal conditions”. 
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Table 15 feed composition. 
The bounds of uptake fluxes (substrates) are 
mostly unconstraint. Still, the range is not fully 
utilized for optimal growth. Model: 
iJO1366_raven.V4.xml.Constraints as below, 
biomass objective function (c = 1) to the 
experimental growth rate 
algorithm:optimizeCbModel.m. 

Table 16 Major secreted metabolites. 
Simulated growth rate and growth byproducts are 
listed below. Settings as in Table 15 feed composition. 

 
 

Secreted metabolite Flux rate 
[mmol/(gDW*h)] 

h2o 52.95 

co2 33.57 

h 14.86 

succ 0.61 

biomass growth [h-1] 0.58 

ac 0.49 

cyt 0.22 

thymd 0.19 

 
 

Substrate Uptake 

bounds 

Uptake fluxes 

ca2 -1000 -0.0030 

cbl1 -0.01 0.0000 

cl -1000 -0.0030 

co2 -1000 8.3950 

cobalt2 -1000 0.0000 

cu2 -1000 -0.0004 

fe2+ -1000 -0.0048 

fe3+ -1000 -0.0045 

glc -11.6 -11.6000 

h -1000 19.7888 

h2o -1000 23.6456 

k -1000 -0.1128 

mg2 -1000 -0.0050 

mn2 -1000 -0.0004 

mobd -1000 -0.0001 

nh4 -1000 -6.2385 

ni2 -1000 -0.0002 

o2 -7.16 -7.1600 

pi -1000 -0.5573 

so4 -1000 -0.1457 

zn2 -1000 -0.0002 

 
Table 17 Minimal and maximal fluxes   
[mmol/(gDW*h)] for secreted metabolites  
Flux variability analysis for secreted metabolites as 
listed in Table 16 retrieved  feasible minimal and 
maximal simulated flux rates.  

 
 

Secreted 
metabolite  

Min flux 
[mmol/(gDW*h)] 

Max flux  
[mmol/(gDW*h)] 

h2o 22.25 602.87 
co2 1.53 101.48 

h -1000 535.74 

succ 0 8.65 

biomass 
growth [h-1] 

0.58 0.58 

ac 0 17.49 

cytd 0 3.62 

thymd 0 3.03 

 
In Table 16 major secretion product rates are listed. However, more than 300 secretion fluxes 
have been computed, of which the secretion rate was negligible, e.g. fmol/(gDW*h) and rather 
a byproduct of fierce numerical operations than of significance in this case. 
Besides biomass and carbon dioxide, water and acetate, also cytidine and thymidine have been 
produced. Although every internal metabolite could be theoretically found in the media e.g. 
upon necrosis [98], the rates of cytidine and thymidine are unexpectedly high. Therefore flux 
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variability analysis (FVA) has been conducted to investigate the allowed flux span. As can be 
seen in  
Table 17, the secreted values vary substantially. However it is allowed for acetate to reach also 
higher levels than returned initially (Table 16).  
 

Comparison of growth predictions of different models 

Similar to the simulations of MG1655 introduced previously, biomass growth has also been 
simulated for different strains, oxygen supply is left unconstraint and the specific substrate 
consumption rate qs is used as input parameter, the biomass objective is set to 1. This setting 
assumes that no further byproduct is produced to a larger extent since the biomass flux is 
optimized, Even though this setting is incorrect if no further constraints for secretion byproducts 
are set, it is accepted in this case due to lacking data. 
 
According to the simulations (Table 18) relative difference between simulation and cultivation is 
smallest for RV308 and biggest for BL21(DE3). Moreover the high discrepancies have been 
expected as already ruled out previously, that these settings are not optimal. 
It should furthermore pointed out, that the acetate secretion rate of BL21(DE3) is significantly 
lower than for the other strains [99]. It should be furthermore mentioned that a uniform 
biomass composition was for all strains has been assumed for matter of simplification, which is 
unrealistic as there exist obvious physiological differences within the strains. 
 
Regarding these simulations, different biomass objective functions of different network 
reconstructions of MG1655 have been used. For example the “core” biomass function only 
contains a reduced common core set of metabolites used in Escherichia coli cells. When the 
more detailed “wild type” biomass objective function is applied, the difference even increases. 
Most interestingly, the relative difference is slightly decreased, when the BOF of iAF1260 is 
used, since it is an precursor reconstruction of iJO1366 and the biomass composition has been 
refined for iJO1366.  
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Table 18 Comparison of simulated and experimentally determined growth rates using different biomass 
objective functions 
The biomass objective function has an impact on simulated growth rates. The core biomass function is a 
reduced a version of a wild type composition, necessary to account for common components among average 
Escherichia coli strains [42]. Settings as used in Table 15, glucose uptake rates as in Figure 18. 
Models: iJO1366_raven.V4.xml (MG1655), iW1407_raven.V4.xml (W3110), iHMS1391_raven.V4.xml 
(HMS174), iRV1394_raven.V4.xml (RV308), iBL_raven.V4.xml (BL21(DE3)). 

* This model does not grow, since it does not account for membrane components that are included in the 
“extended” MG1655 wild type function 
 

  
Biomass objective 

function from network 
reconstruction 

iJO1366 iAF1260 

Core Wild type Core Wild type 

Models 
µ 

cultivation 
µ 

simulation 

Relative 
difference 

(%) 

µ 
simulation 

Relative 
difference 

(%) 

µ 
simulation 

Relative 
difference 

(%) 

µ 
simulation 

Relative 
difference 

(%) 

MG1655 0.47 1.03 75 1.04 76 1.01 73 1.01 73 

W3110 0.50 1.06 72 1.07 73 1.04 71 1.04 71 

HMS174 0.40 0.93 77 0.94 78 0.91 76 0.92 76 

RV308 0.61 1.25 69 1.26 69 1.23 67 1.24 68 

BL21(DE3) 0.50 1.11 78 0* 
 

1.09 76 0* 
 

Since biomass composition is a crucial issue in metabolic modeling, it will be discussed in more 
detail in the next chapter. 
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Influence of different solvers on the computed results 

As stated in the introduction, the linear optimization yields a flux cone (flux space), with many 
different feasible flux distributions. Most noticeable, the result is dependent on the solver 
applied to the problem. Although the optimized objective, e.g. the growth rate, is unique, there 
exist many different optimal flux solutions leading to optimal growth. 

Solver performance is often measured by time efficiency, but they are also different for internal 
initial parameters and the way they itinerate through the matrix during optimization - and so do 
some results. 

Shadow prices, a derivative of the objective function, indicate how much the addition of a 
metabolite increases or decreases the objective, such as maximal ATP yield. For example, if the 
shadow price of protons (h[c]) is -0.5, viz. two additional mol protons/mol glucose (assuming 
that the influx of glucose is 1 mmol/(gDW*h)) would reduce the ATP yield by 1 mol ATP/mol 
glucose. These shadow prices vary depending on the solver applied to the optimization problem 
(Figure 23) 

 
Figure 23 Relative differences in shadow prices for Gurobi, GLPK and Mosek solver relative to Tomlab 
solver.   
The Escherichia coli core model16 is used for simulation of optimal growth using optimizeCbModel.m 
similar to the tutorial supplied by Orth et al. [9]. Additionally to the solver used in the tutorial 
(tomlab_cplex), various other solvers are applied (mosek, glpk and gurobi5).  
Whilst the optimized objective retrieved is the same, they shadow prices for other metabolites vary. The 
results of different solvers are compared in terms of difference in value compared to the tomlab solver 
[abs(solver X) – abs(tomlab)]. The absolute values are taken, as the signs of shadow price values 
between tomlab and the other solvers are always opposed. 

                                                      
16

 http://systemsbiology.ucsd.edu/Downloads/EcoliCore 
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Most noticeable, some bulk metabolites vary tremendous such as ATP or NAD and NADP, 
though this seems to be rather incidental. In any case, the results should be taken with great 
care. As already pointed out in the previous examples, a flux variability analysis should be 
performed, as only the objective is fixed to its optimum whereas all other calculated fluxes are 
allowed to vary. 
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Chapter IV Discussion and Outlook 

In the previous chapter the results were presented, dealing with many interesting aspects of 
network reconstructions and metabolic simulations. The following passages will therefore 
discuss these issues and will give possible future directions. 

Setting Standards 

The first part of the previous chapter deals with formal model discrepancies due to different 
formats of toolboxes. So far, many standards have been set to facilitate exchange of models. 
Gene annotation is standardized with b-numbers17, which have been assigned by the Blattner 
group during sequencing of the first Escherichia coli genome [39]. Contrarily, details in 
nomenclature for reactions and metabolite identifiers are not clearly defined which makes 
comparisons between reconstruction versions of different groups tedious. Recently, there are 
several initiatives undertaken to find a common namespace for metabolites and reactions, 
summarized by Bernard et al. [100]. Thereby reconciliation of metabolite lists is done in several 
steps using structural information such as the Simplified Molecular Input Line Entry System 
(SMILES) and IUPAC International Chemical Identifiers (InChI) [101]. Furthermore these 
reconciliation algorithms also make use of chemical nomenclature. Moreover, reactions are 
then refined by matching shared metabolites and through comparison of cross references from 
other sources, e.g. Enzyme Commission (EC.) numbers18. 

Another important issue is the informational content. The RAVEN toolbox does not contain 
information on the metabolite charge which impedes the calculation of the energy balance. 
However, for previous network reconstructions of MG1655 (Figure 3), a standard pH of 7.2 has 
been assumed for charged metabolites [27]. This in turn is a simplification of reality, since the 
pH may vary within cell compartments [102]. This issue is especially important when eukaryotic 
organisms shall be modeled, which exhibit a very complex compartmentalization. However it is 
a conventional decision to use either charged or uncharged metabolite lists. Here, it has been 
decided to use charged metabolite lists in the network reconstructions. As no further 
information regarding charge is provided from the “RAVEN-formatted” network 
reconstructions, the compulsory entries for metabolite charges are automatically set to zero 
when network reconstructions are analyzed using the COBRA Toolbox. This is essentially wrong 
and misleading. The metabolite list should therefore be switched to uncharged versions. 

  

                                                      
17

 B- number : “bxxxx”, whereas “xxxx”  is a four digit number. 
18

 http://www.chem.qmul.ac.uk/iubmb/enzyme/ 
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Constraining metabolic models by regulation 

In Chapter 3, a gene essentiality simulation is presented, whereas an interesting candidate gene, 
folD, which is essential in the model of RV308 has been found. This essentiality though is not 
based on missing metabolic links but rather on the constraining of fluxes due to oxygen 
regulation. Still, the importance of these findings remains doubtful, since the regulation implied 
to simulate aerobic conditions is boolean and not graduated.  
 
The regulation applied herein  is based on  Covert et al. [95] observations made from microarray 
analysis. They examined knock out strains of global transcription factors (fnr, arcA and cydAB) 
and established regulation rules based on oxygen deprivation which they found to be correct in 
80 % of the cases.  Furthermore, 18.3% of the phenotypes tested were only correct, if the 
regulatory effects were considered. Using mRNA profiling, the first proposed regulatory network 
was refined so that there were no false-positive predictions.  

As mentioned previously, the lethality of folD knock out in RV308 is based on oxygen regulation. 
This is insofar interesting, as it highlights the functions of pathway not only for their supply for 
biomass components to sponsor growth, but also as integral essential part of a network. 
However, these pathways seem to be rather minimalistic with respect to the occurrence of 
isoenzymes. Hence it seems likely, that this is a false positive result. Still, for evaluation of this 
prediction, the strains should be subjected to knockout of folD and checked for growth 
behaviour.  

Currently, no RV308 knock out strain for folD is reported in the literature. However other 
investigations of lethality in K-12 strains for folD under aerobic conditions are conflicting, 
according to Baba et al. [103], BW25113ΔfolD does not grow on LB medium. Gerdes et al [104] 
on the contrary observed, that MG1655ΔfolD is able to grow on LB medium19.  
Therefore this knock out requires further investigation. Moreover RNA microarray analysis need 
to be performed in order to clarify strain specific differences in regulation [105]. 
 
So far studies of the proteome of the strains used herein exist already, e.g. carried out by 
Marisch et al. [99]. However, major focus was put on pathogenicity factors such as motility and 
iron supply and should be expanded to other pathways too, e.g. cofactor biosynthesis.  

 
 

                                                      
19

 Remark: this information has been retrieved from EcoCyc (search enquiry : „folD”), as the web pages for 
supplementary material stated in the paper were no longer existent. 
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Comparison of experimental and simulated microbial growth 

In order to collect input parameters for model simulation, growth curves of different Escherichia 
coli strains were conducted. Even through a weak trend towards better growth conditions when 
using baffled flasks and 2 L flasks, is observable, the oxygen measurements do not support this 
hypothesis. A possible reason for this might lie in the cultivation setting itself (Erlenmeyer 
shaking flasks in orbital motion), which does not allow for in situ oxygen measurements. 
Therefore, for future experiments, a more advanced cultivation setup should be chosen to avoid 
measurement artifacts/errors.  
Besides oxygen supply, a key role is also played by secretion products. Secretion rates have 
been simulated but have not been experimentally verified here. The simulated range for acetate 
secretion for example would match reported values. Shiloach et al. [106] for example 
determined an experimental acetate secretion rate of 0.25 g acetate per 32 gDW per hour or 
Zhuang et al. [107] reported a secretion rate of 6 mmol/gDW per hour at a growth rate of 0.6 
per hour. These values however, should be handled with care, since the conditions are not 
entirely identical e.g. different strain or cultivation setup. 
 
Through comparison of growth phenotypes of Escherichia coli, it could be observed, that the 
simulated growth rates do not resemble the experimental ones. Baumler et al.[48] retrieved 
similar glucose uptake rates despite higher growth rates when cultivating W3110 and MG1655. 
Still, the discrepancy between experimental values and simulation according to Baumler et al. 
was roughly 40 % relative difference.  
Therefore, the biomass composition is a major influencing factor in simulations. 
 
The biomass objective function (BOF) is an artificial reaction accounting for biomass formation. 
Thus, it lists major cellular building blocks including nucleic acids, amino acids, saccharides and 
lipids [17]. The BOF furthermore contains vitamins and cofactors. Additionally, the BOF also 
accounts for growth associated energy cost, therefore ATP hydrolysis is also integrated within 
the reaction. 

The principal biomass composition of Escherichia coli leads back to Neidhardt et al [108]. 
Accordingly, the dry weight is comprised of 55% protein, 20.5 % RNA, 3.1 % DNA and 9.1 % 
lipids. The biomass of Escherichia coli is furthermore composed of various lipopolysaccharides 
and peptidoglycans, as well as glycogen, polyamines, cofactors and ions. 

Pramanik and Keasling [38] investigated the impact of the assumed biomass composition on the 
simulation and found, that the biomass composition is heavily influencing the simulation result. 
The predicted fluxes differed 16 % from the measured ones, in case an experimentally evaluated 
biomass composition was used. Noteworthy, the variation between simulation and experiment 
was observed to be up to 80 % in case a simplified BOF was applied.  
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Especially the lipid ratio is varying between strains and depending on the cultivation conditions 
since it is important for physiological maintenance [109] and therefore plays a crucial role for 
the quality of the BOF, even though lipids are not the biggest mass fraction within the cell. 
Unfortunately, the analysis of the lipid composition is a laborious task and requires expensive 
equipment such as GC-MS analysis. 

Therefore an algorithm has been developed by Senger et al [110] to relax the need of expensive 
measurements. They implemented a genetic algorithm which adjusts the stoichiometry of the 
biomass objective function according to the observed exchange fluxes, such as the influx of 
media components and the secretion of fermentation byproducts including acetate, lactate and 
carbon dioxide. Another group of exchange reactions is defined as TUX, total unconstraint 
exchange fluxes, which shall be minimized, since it is assumed that the major exchange fluxes 
are observable. The biomass coefficients between lower and upper bounds are mixed and 
combined several times. Afterwards, a combination of bounds which reflects lowest TUX values 
is accepted as new BOF. 

Metabolic Modeling –Quo vadis? 

As mentioned in the introduction FBA is a good method to find results despite of lacking kinetic 
information and data scarcity, respectively. Still the methods themselves have some (partially 
hidden) drawbacks: In the previous chapter, the flux variability analysis was applied manifold: 
To investigate, whether the oxygen consumption measured lies in a feasible range and secondly 
to see which are the rates at which secretion products are built. Still one should keep in mind, 
that FVA minimizes and maximizes only one reaction at a time and therefore does not consider 
correlation between reaction fluxes, which makes feasible ranges broader than they are in 
reality [16]. 

An additional obstacle is the lack of information on differentially expressed genes which 
resemble the “weight” of a reaction in the network. Even though it is possible to predict growth 
behavior of one species, it is impossible to account for strain-specific differences in gene 
expression or enzyme promiscuity [47], that is playing a key role for strain– specific growth 
rates. However, this can be resolved by extending and enriching the models with proteome and 
microarray data, as remarked already. 

A further unexpected finding concerns the connectivity of the networks. As a general ambition 
in metabolic modeling is not only to predict or analyze physiological behaviour, but also to 
collect and integrate all existing information on a certain organism. However, there are certain 
reactions that lack connectivity because they lie out of the scope of the model. For example, 
although the transcriptional and translational machinery is well described in Escherichia coli, the 
network reconstructions used herein do not include this information.  



 

61 

 

The aminoacyl-tRNA synthetase reactions in the reconstructions used herein are therefore not 
connected to the network. Furthermore certain cell wall constituents such as 
lipopolysaccharides or O-antigen, which are not included in the biomass function, are dead-end 
metabolites and therefore the reaction is shut off. This blemish of lacking connectivity is getting 
smaller with every extended reconstruction being published. For example, recently a whole-cell 
model of Mycoplasma genitalium has been published by Karr et al. [13, 111]. This model is 
integrating several modeling strategies, since there is no all-round modeling solution for every 
aspect of a complex living system. Even though it might be a long way to establish a whole cell 
model for Escherichia coli too, since the organism is more complex, the framework could be 
used as scaffold to guide future approaches of Escherichia coli models.    
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Conclusion 

This has been a “primer” project to metabolic network reconstructions of different Escherichia 
coli strains. Major emphasis has therefore been put on refinement and correction of network 
reconstructions as well as to establish a modeling environment by testing existing toolboxes and 
writing functions and scripts for data management and customization of simulations. Thus, the 
cultivation setup was kept as simple as possible. The data gathered indicated strain specific 
growth differences. Still, these could not be mirrored by model simulations, because too little 
constraints have been set.   

Now that the models are corrected, the next step should therefore be focused on a more 
elaborate laboratory setup, such as a detailed metabolome analysis for biomass elucidation as 
well as transcriptomics studies to elucidate regulatory differences between the strains. 
Furthermore, as these reconstructions are corrected, they are a good “wild type” basis for 
further simulations as there are steadily new algorithms available.  

Metabolic models are a promising tool for aiding fundamental and applied research. However, 
even though much effort has been put into the implementation of toolboxes to facilitate and 
elaborate simulation, the models should still be handled conscientiously, since one single entry 
could falsify a simulation.  
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Appendix 

Escherichia coli cultivations 

Below, results from Escherichia coli cultivations, which were presented in Chapter 3, are tabulated. Batch raw data can be 
found in the “digital” appendix. 

Table 19 Overview on MG1655 batch cultivation (in 1 L baffled Erlenmeyer flask) 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 1 L nonbaffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

9 
 

    
Average Method Logarithmic Method 

Date of cultivation 
flask 

index µ [1/h] R² (µ) Yx/s R²(Yx/s) qs [mmol/(gDW*h)] R² (qs) qs [mmol/(gDW*h)] R² (qs) 

24/07/2013 
  

I 0.47 0.9957 0.28 0.9922 9.3 0.9922 10.5 0.9896 

II 0.46 0.9947 0.26 0.9958 9.8 0.9958 10.6 0.9842 

25/07/2013 
  

I 0.46 0.9931 0.25 0.9895 9.9 0.9902 10.4 0.9965 

II 0.46 0.9959 0.29 0.9912 8.8 0.9912 10.6 0.9962 

26/07/2013 
  

I 0.5 0.9967 0.34 0.9802 8.1 0.9802 10.3 0.997 

II 0.49 0.9978 0.27 0.9683 9.9 0.9683 10.3 0.9906 

20/09/2013 
  
  
  

I 0.45 0.9962 0.26 0.9948 9.8 0.9948 10.8 0.9893 

II 0.46 0.9966 0.25 0.9884 10.4 0.9884 10.6 0.9876 

III 0.47 0.9927 0.24 0.9938 10.9 0.9938 11.5 0.9823 

IV 0.46 0.9976 0.24 0.9943 10.6 0.9943 10.5 0.9932 

Average   0.47   0.27   9.8   10.6   

SD   0.01   0.03   0.8   0.3   

CV (%)   3.1   11.1   8.6   3.3   
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Table 20 Overview on MG1655 batch cultivation (1 L baffled Erlenmeyer flask) 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 1 L baffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

      
Average Method Logarithmic Method 

Date of 
cultivation flask index µ [1/h] R² (µ) Yx/s R²(Yx/s) qs [mmol/(gDW*h)] R² (qs) qs [mmol/(gDW*h)] R² (qs) 

26/09/2013 
  
  

I 0.56 0.9989 0.33 0.9951 9.2 0.9951 11.4 0.9951 

II 0.56 0.9984 0.32 0.9968 9.6 0.9968 11.5 0.9911 

III 0.56 0.9982 0.32 0.9968 9.7 0.9968 11.1 0.9894 

11/10/2013 
  
  
  

I 0.52 0.9993 0.32 0.9912 8.8 0.9912 11.2 0.9910 

II 0.51 0.9990 0.32 0.9968 7.5 0.9947 10.8 0.9948 

III 0.54 0.9966 0.36 0.9943 8.4 0.9943 12.0 0.9934 

IV 0.55 0.9987 0.34 
0.9914 

9.0 
0.9914 

11.8 0.9950 

Average   0.54   0.33   8.9   11.4   

SD   0.02   0.01   0.8   0.4   

CV (%)   3.4   4.1   8.5   3.4   
 

Table 21 Overview on MG1655 batch cultivation (2 L nonbaffled Erlenmeyer flask) 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 2 L nonbaffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

      
Average Method Logarithmic Method 

Date of 
cultivation flask index µ [1/h] R² (µ) Yx/s R²(Yx/s) qs [mmol/(gDW*h)] R² (qs) qs [mmol/(gDW*h)] R² (qs) 

24/07/2013 
  
  
  

I 0.49 0.9963 0.25 0.9972 9.8 0.9972 10.8 0.9918 

II 0.51 0.9960 0.26 0.9904 10.6 0.9904 11.3 0.9904 

III 0.50 0.9939 0.24 0.9960 11.6 0.9960 11.5 0.9980 

IV 0.49 0.9941 0.24 0.9921 8.8 0.9921 10.4 0.9969 

Average   0.49   0.25   10.2   11.0   

SD   0.01   0.01   1.2   0.5   

CV (%)   1.8   4.4   11.4   4.5   
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Table 22 Overview on MG1655 batch cultivation (2 L baffled Erlenmeyer flask) 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 2 L baffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

      
Average Method Logarithmic Method 

Date of 
cultivation flask index µ [1/h] R² (µ) Yx/s R²(Yx/s) qs [mmol/(gDW*h)] R² (qs) qs [mmol/(gDW*h)] R² (qs) 

05/10/2013 
  
  

I 0.55 0.9990 0.31 0.9916 9.6 0.9916 11.2 0.9909 

II 0.56 0.9993 0.32 0.9905 9.7 0.9905 11.1 0.9935 

III 0.56 0.9978 0.33 0.9944 9.5 0.9944 10.8 0.9898 

08/11/2013 
  
  
  

I 0.60 0.9967 0.42 0.9946 7.7 0.9946 11.9 0.9924 

II 0.62 0.9984 0.41 0.9955 8.2 0.9955 11.6 0.9924 

III 0.61 0.9955 0.49 0.9952 6.8 0.9952 11.8 0.9816 

IV 0.60 0.9925 0.48 0.9868 6.8 0.9868 11.8 0.9847 

17/10/2013 
  
  
  

I 0.55 0.9958 0.36 0.9800 10.3 0.9800 12.0 0.9960 

II 0.58 0.9961 0.40 0.9865 8.0 0.9865 12.0 0.9818 

III 0.57 0.9979 0.42 0.9890 7.5 0.9890 12.2 0.9917 

IV 0.57 0.9978 0.35 0.9953 8.9 0.9953 12.4 0.9833 

Average   0.58   0.39   8.4   11.6   

SD   0.03   0.06   1.3   0.5   

CV (%)   4.4   16.1   15.1   3.9   
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Table 23 Overview on W3110 batch cultivation 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 1 L nonbaffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

      
Average Method Logarithmic Method 

Date of cultivation flask index 
µ 

[1/h] 
R² 

(µ) 
Yx/

s R²(Yx/s) qs [mmol/(gDW*h)] 
R² 

(qs) qs [mmol/(gDW*h)] 
R² 

(qs) 

17/09/2013 
  
  
  

I 0.48 0.9960 0.30 0.9930 8.8 0.9930 10.6 0.9949 

II 0.48 0.9972 0.30 0.9970 9.0 0.9970 10.4 0.9905 

III 0.48 0.9979 0.32 0.9902 8.2 0.9902 10.3 0.9931 

IV 0.48 0.9975 0.29 
0.9951 

9.2 
0.9951 

10.4 0.9912 

31/07/2013 I 0.50 0.9925 0.31 0.9858 8.9 0.9858 11.3 0.9936 

01/08/2013 
  
  

I 0.51 0.9970 0.31 0.9884 9.1 0.9884 11.1 0.9952 

II 0.51 0.9964 0.31 0.9849 9.1 0.9849 11.2 0.9907 

I 0.53 0.9904 0.36 0.9805 8.1 0.9805 11.4 0.9964 

Average   0.50   0.31   8.8   10.8   

SD   0.02   0.02   0.4   0.5   

CV (%)   3.8   7.0   4.8   4.2   
 

Table 24 Overview on RV308 batch cultivation 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 1 L nonbaffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

  
6 

   
Average Method Logarithmic Method 

Date of cultivation flask index 
µ 

[1/h] 
R² 

(µ) Yx/s R²(Yx/s) 
qs 

[mmol/(gDW*h)] R² (qs) qs [mmol/(gDW*h)] 
R² 

(qs) 

13/09/2013 
  
  
  

I 0.62 0.9935 0.30 0.9899 11.3 0.9899 13.2 0.9922 

II 0.62 0.9919 0.29 0.9961 11.8 0.9961 13.5 0.9938 

III 0.61 0.9950 0.26 0.9804 12.7 0.9804 12.7 0.9880 

IV 0.59 0.9947 0.29 0.9805 11.1 0.9805 12.4 0.9894 

19/09/2013 
  

I 0.62 0.9937 0.28 0.9806 11.7 0.9805 12.9 0.9988 

II 0.61 0.9918 0.29 0.9867 11.1 0.9853 13.2 0.9968 

Average   0.61   0.29   11.6   13.0   

SD   0.01   0.01   0.6   0.4   

CV (%)   2.0   5.0   5.2   3.3   
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Table 25 Overview on HMS174 batch cultivation 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 1 L nonbaffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

      
Average Method Logarithmic Method 

Date of cultivation flask index 
µ 

[1/h] 
R² 

(µ) 
Yx/

s R²(Yx/s) qs [mmol/(gDW*h)] 
R² 

(qs) 
qs 

[mmol/(gDW*h)] R² (qs) 

13/08/2013 I 0.42 0.9957 0.31 0.9834 7.5 0.9834 9.7 0.9858 

14/08/2013 
  

I 0.40 0.9909 0.29 0.9781 7.6 0.9781 9.7 0.9806 

II 0.40 0.9937 0.29 0.9866 7.4 0.9866 9.4 0.9892 

16/08/2013 I 0.42 0.9953 0.31 0.9813 7.5 0.9813 9.7 0.9861 

06/11/2013 
  
  
  

I 0.41 0.9974 0.33 0.9932 7.0 0.9932 9.6 0.9960 

II 0.40 0.997 0.32 0.9893 7.0 0.9893 9.6 0.9959 

III 0.39 0.9953 0.35 0.9795 6.1 0.9795 9.5 0.9935 

IV 0.40 0.995 0.34 0.9865 6.4 0.9865 9.6 0.9934 

07/11/2013 
  
  

I 0.39 0.9925 0.28 0.9902 7.6 0.9902 10.1 0.9866 

II 0.39 0.9927 0.31 0.9919 6.9 0.9919 9.8 0.9933 

III 0.40 0.9933 0.38 0.9825 5.7 0.9825 9.8 0.9978 

Average   0.40   0.32   7.0   9.7   

SD   0.01   0.03   0.6   0.2   

CV (%)   2.9   9.2   9.3   1.9   
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Table 27 Average glucose uptake rates qs. of MG1655 at different settings 
All batches where performed at 37 °C and 100 rpm motion, with 2 g/L glucose initial concentration. The relative difference is calculated using the 
default setting (1 L none-baffle “nb”) as reference. This tabulation is the basis for Figure 15, logarithmic method. 

setting batches 

average 

SD CV (%) 
relative difference 

(%) 
qs 

[mmol/(gDW*h) 

1 L nb 10 10.6 0.3 3.3   

1 L b 7 11.4 0.4 3.4 7 

2 L nb 4 11 0.5 4.5 3 

2 L b 11 11.6 0.5 3.9 9 
 

 

 

Table 26 Overview on BL21(DE3) batch cultivation 
Main culture settings: 200 mL  M9 supplemented with 2 g/L glucose in 1 L nonbaffled Erlenmeyer flask at 37 °C and  110 rpm orbital motion 

      
Average Method Logarithmic Method 

Date of 
cultivation 

flask 
index µ [1/h] R² (µ) Yx/s R²(Yx/s) 

qs 
[mmol/(gDW*h)] 

R² 
(qs) 

qs 
[mmol/(gDW*h)] R² (qs) 

20/08/2013 
  

I 0.49 0.9908 0.28 0.9721 9.5 0.9721 10.8 0.9939 

II 0.49 0.9908 0.25 0.9835 10.0 0.9835 11.1 0.9789 

21/08/2013 
  

I 0.49 0.9916 0.22 0.9798 11.9 0.9798 11.3 0.9917 

II 0.51 0.9914 0.23 0.9801 11.9 0.9801 11.6 0.9881 

22/08/2013 
  

I 0.46 0.9933 0.20 0.9822 13.0 0.9838 12.1 0.9781 

II 0.49 0.9910 0.20 0.9817 14.4 0.9817 12.0 0.9778 

05/11/2013 
  
  
  

I 0.48 0.9949 0.24 0.9743 10.9 0.9743 11.0 0.9915 

II 0.53 0.9918 0.26 0.9688 11.0 0.9688 11.5 0.9960 

III 0.52 0.9962 0.26 0.9734 10.7 0.9734 11.4 0.9927 

IV 0.51 0.9965 0.27 
0.9728 

10.4 
0.9859 

11.1 0.9859 

Average   0.50   0.24   11.4   11.4   

SD   0.02   0.03   1.5   0.4   

CV (%)   4.3   10.9   13.0   3.7   
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Table 28 Overview of oxygen measurements using a needle-type microsensor 
MG1655 cultures have been prepared at different settings (M9/ glucose supplement 110 rpm 37 °C) and the oxygen consumption has been 
measured. 
 

 

 
* the cell dry weight concentration has been calculated from OD600 measurements and conversion with a factor of 0.3 (OD600/gDW) 
 
Table 29 Overview of Escherichia coli batch cultivations 
Main culture: 200 mL culture (M9 2 g/L glucose) in 1 L unbaffled Erlenmeyer flask at 110 rpm orbital motion at 37 ° 

setting gDW/L* qO2  
[µmol/(L*s)] 

R² qO2 [mmol/(L*h)] qO2 [µmol/( gDW*h)] 

1 L nb 0.54 5.00E+07 0.9962 13.9 25.7 

1 L b 0.48 4.00E+07 0.9997 11.1 24.7 

2 L b 0.54 5.00E+07 0.9995 13.9 25.7 

  
qs [mmol/(gDW*h)] µ [1/h] Yx/s 

Strain batches Average SD CV (%) Average SD CV (%) Average SD CV (%) 

MG1655 10 10.6 0.3 3.3 0.00 0.01 3.1 0.27 0.03 11.1 

W3110 8 10.8 0.5 4.2 0.50 0.01 2.0 0.31 0.02 7.0 

HMS174 11 9.7 0.2 1.9 0.40 0.01 2.9 0.32 0.03 9.2 

RV308 6 13.0 0.4 3.3 0.61 0.01 2.0 0.29 0.01 5.0 

BL21(DE3) 10 11.4 0.4 3.7 0.50 0.02 4.3 0.24 0.03 10.9 
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Oxygen Measurements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cultivation Settings       

date of cultivation strain 
 

17.12.2013 
 

MG1655  
 

  

main culture parameters 
  

  

substrate glucose 
M9 minimal 
medium 

  

flask 
1L non- 
baffle 

110 rpm     

Sensor Settings 
   

Firestubg Logger  V2.37     

Sensor (Channel) 1 
 

  

Calibration 2-Point 
 

  

Temperature [°C] 36 
 

  

Pressure  (hPa) 986 
 

  

Humidity (%) 44 
 

  

Oxygen Unit µmol/L 
 

  

Sensor Code ZA7-546-218   

Sensor Type 
Z : Normal Range O2 - 
Micro/Minisensor - 
Orange Fiber 

  

 

 

time [h:m:s] time [decimal] O2 [µmol/L] 

21:25:55 21.43 5.45E+05 

21:25:56 21,43 5.26E+05 

21:25:58 21.43 5.04E+05 

21:25:59 21.43 4.89E+05 

21:26:00 21.43 4.71E+05 

21:26:01 21.43 4.53E+05 

21:26:02 21.43 4.31E+05 

21:26:04 21.43 4.17E+05 

21:26:05 21.43 4.11E+05 

21:26:06 21.44 3.99E+05 

21:26:07 21.44 3.80E+05 

21:26:08 21.44 3.55E+05 

21:26:10 21.44 3.37E+05 

21:26:11 21.44 3.26E+05 

21:26:12 21,44 3.19E+05 

21:26:13 21,44 3,05E+05 

21:26:14 21.44 2.87E+05 

21:26:16 21.44 2.65E+05 

21:26:17 21.44 2.52E+05 

21:26:18 21.44 2.35E+05 

21:26:19 21.44 2.11E+05 

21:26:20 21.44 1.87E+05 

21:26:22 21.44 1.76E+05 

21:26:23 21.44 1.71E+05 

21:26:24 21.44 1.71E+05 

21:26:25 21.44 1.74E+05 

21:26:26 21.44 1.81E+05 

21:26:28 21.44 2.43E+05 

21:26:29 21.44 2.82E+05 

21:26:30 21.44 3.51E+05 

21:26:31 21.44 3.52E+05 

21:26:32 21,44 4.01E+05 

21:26:34 21.44 3.83E+05 

 

 

OD600 1.8   

gDW/L 0.54   

qO2 µmol/(L*s) 5.00E+07 R² = 0,9962 
qO2 µmol/(L*h) 1.39E+04   

qO2 
mmol/(gDW*h) 

25.7   

bold values are taken for calculation 
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Cultivation Settings   

date of cultivation strain 

17.12.2013 MG1655  

main culture parameters 
 

substrate glucose M9 minimal medium 

flask 1L baffle 110 rpm 

Sensor Settings 
 

Firestubg Logger  V2.37 

Sensor (Channel) 1 

Calibration 2-Point 

Temperature [°C] 36 

Pressure  (hPa) 986 

Humidity (%) 44 

Oxygen Unit µmol/L 

Sensor Code ZA7-546-218 

Sensor Type 
Z : Normal Range O2 - 
Micro/Minisensor –  Orange 
Fiber 

 

 

time 
[h:m:s] 

time [decimal] O2 [µmol/L]  (continued) 

20:56:50 20.95 1.60E+06 
time 

[h:m:s] 
time 

[decimal] 
O2 [µmol/L] 

20:56:52 20.95 1.60E+06 20:57:29 20.96 1.21E+06 

20:56:53 20.95 1.58E+06 20:57:30 20.96 1.20E+06 

20:56:54 20.95 1.57E+06 20:57:31 20.96 1.20E+06 

20:56:55 20.95 1.56E+06 20:57:32 20.96 1.19E+06 

20:56:56 20.95 1.55E+06 20:57:34 20.96 1.17E+06 

20:56:57 20.95 1.53E+06 20:57:35 20.96 1.16E+06 

20:56:59 20.95 1.52E+06 20:57:36 20.96 1.15E+06 

20:57:00 20.95 1.50E+06 20:57:37 20.96 1.13E+06 

20:57:01 20.95 1.49E+06 20:57:38 20.96 1.11E+06 

20:57:02 20.95 1.48E+06 20:57:39 20.96 1.10E+06 

20:57:04 20.95 1.47E+06 20:57:41 20.96 1.09E+06 

20:57:05 20.95 1.45E+06 20:57:42 20.96 1.08E+06 

20:57:06 20.95 1.44E+06 20:57:43 20.96 1.08E+06 

20:57:07 20.95 1.43E+06 20:57:44 20.96 1.07E+06 

20:57:08 20.95 1.42E+06 20:57:45 20.96 1.06E+06 

20:57:10 20.95 1.41E+06 20:57:47 20.96 1.05E+06 

20:57:11 20.95 1.40E+06 20:57:48 20.96 1.04E+06 

20:57:12 20.95 1.39E+06 20:57:49 20.96 1.02E+06 

20:57:13 20.95 1.38E+06 20:57:50 20.96 1.01E+06 

20:57:14 20.95 1.37E+06 20:57:51 20.96 9.92E+05 

20:57:16 20.95 1.35E+06 20:57:53 20.96 9.83E+05 

20:57:17 20.95 1.33E+06 20:57:54 20.97 9.72E+05 

20:57:18 20.96 1.32E+06 20:57:55 20.97 9.58E+05 

20:57:19 20.96 1.31E+06 20:57:56 20.97 9.47E+05 

20:57:20 20.96 1.30E+06 20:57:57 20.97 9.37E+05 

20:57:22 20.96 1.29E+06 20:57:59 20.97 9.24E+05 

20:57:23 20.96 1.28E+06 20:58:00 20.97 9.10E+05 

20:57:24 20.96 1.27E+06 20:58:01 20.97 8.94E+05 

20:57:25 20.96 1.25E+06 20:58:02 20.97 8.85E+05 

20:57:26 20.96 1.24E+06 20:58:03 20.97 8.74E+05 

20:57:28 20.96 1.22E+06 20:58:05 20.97 8.67E+05 

 

 

OD600 1.5   

gDW/L 0.48   

qO2 µmol/(L*s) 4.00E+07 R² = 0.9997 

qO2 µmol/(L*h) 1.11E+04   

qO2 mmol/(gDW*h) 24.7   

bold values are taken for calculation 
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Cultivation Settings   

date of cultivation strain 

17.12.2013 
 

MG1655  

main culture parameters 
 

substrate glucose M9 minimal medium 

flask 2L baffle 110 rpm 

Sensor Settings 
 

Firestubg Logger  V2.37 

Sensor (Channel) 1 

Calibration 2-Point 

Temperature [°C] 36 

Pressure  (hPa) 986 

Humidity (%) 44 

Oxygen Unit µmol/L 

Sensor Code ZA7-546-218 

Sensor Type 
Z : Normal Range O2 - 

Micro/Minisensor - 
Orange Fiber 

 

 

time [h:m:s] 
time 

[decimal] 
O2 [µmol/L] (continued) 

20:31:57 20.53 1.06E+06 time [h:m:s] 
time 

[decimal] 
O2 [µmol/L] 

20:31:59 20.53 1.04E+06 20:32:41 20.54 5.13E+05 

20:32:00 20.53 1.02E+06 20:32:42 20,55 4,97E+05 

20:32:01 20.53 1.01E+06 20:32:43 20.55 4,79E+05 

20:32:02 20.53 9.97E+05 20:32:44 20.55 4,63E+05 

20:32:03 20.53 9.85E+05 20:32:46 20,55 4,47E+05 

20:32:05 20.53 9.73E+05 20:32:47 20.55 4,30E+05 

20:32:06 20.54 9.58E+05 20:32:48 20.55 4,15E+05 

20:32:07 20.54 9.43E+05 20:32:49 20.55 3,99E+05 

20:32:08 20.54 9.25E+05 20:32:50 20.55 3,83E+05 

20:32:09 20.54 9.07E+05 20:32:52 20.55 3.67E+05 

20:32:11 20.54 8.89E+05 20:32:53 20.55 3.52E+05 

20:32:12 20.54 8.74E+05 20:32:54 20.55 3.38E+05 

20:32:13 20.54 8.63E+05 20:32:55 20.55 3.20E+05 

20:32:14 20.54 8.48E+05 20:32:57 20.55 3.03E+05 

20:32:15 20.54 8.35E+05 20:32:58 20.55 2.87E+05 

20:32:17 20.54 8.20E+05 20:32:59 20.55 2.71E+05 

20:32:18 20.54 8.06E+05 20:33:00 20.55 2.57E+05 

20:32:19 20.54 7.89E+05 20:33:01 20.55 2.40E+05 

20:32:20 20.54 7.74E+05 20:33:03 20.55 2.23E+05 

20:32:21 20.54 7.59E+05 20:33:04 20.55 2.06E+05 

20:32:23 20.54 7.45E+05 20:33:05 20.55 1.90E+05 

20:32:24 20.54 7.30E+05 20:33:06 20.55 1.74E+05 

20:32:25 20.54 7.14E+05 20:33:07 20.55 1.56E+05 

20:32:26 20.54 6.96E+05 20:33:09 20.55 1.38E+05 

20:32:28 20.54 6.79E+05 20:33:10 20.55 1.22E+05 

20:32:29 20.54 6.64E+05 20:33:11 20.55 1.05E+05 

20:32:30 20.54 6.48E+05 20:33:12 20.55 8.88E+04 

20:32:31 20.54 6.33E+05 20:33:13 20.55 7.16E+04 

20:32:32 20.54 6.21E+05 20:33:15 20.55 5.49E+04 

20:32:34 20.54 6.08E+05 20:33:16 20.55 3.82E+04 

20:32:35 20.54 5.93E+05 20:33:17 20.55 2.41E+04 

20:32:36 20.54 5.75E+05 20:33:18 20.56 1.39E+04 

20:32:37 20.54 5.59E+05 20:33:19 20.56 8.95E+03 

20:32:38 20.54 5.43E+05 20:33:21 20.56 7.32E+03 

20:32:40 20.54 5.30E+05 20:33:22 20.56 7.03E+03 

 

 

OD600 1.8   

gDW/L 0.54   

qO2 µmol/(L*s) 5.00E+07 R² = 0.9995 

qO2 mmol/(L*h) 1.39E+01   

qO2 mmol/(gDW*h) 25.7   

bold values are taken for calculation   
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Source Code 

 
Basically, all functions and scripts written are customizations of COBRA Toolbox functions or 
used for data management This source code suits “RAVEN-formatted” files (Excel or SBML). 
However, on a case to case basis they are also executable on COBRA-“format” (or others).  
 

Source code for model simulation 

RegulateModelv3.m 

 

The function regulateModelv3.m applies basic (boolean) regulation on 
constraints depending on the substrate (glucose/non-glucose), or aerobic 
and anaerobic cultivation. 
 

GrowthFBA.m 
The function growthFBA.m calculates the biomass growth rate [hr^-1] 
under specified condition using FBA. A table of optimization results is 
printed 
% to the screen. Additionally, a bar diagram is returned. The table might 
also be written to an Excel file if desired. 
 

GrowthFBAv1s.m 

 

The script  growthFBAv1s.m calculates the steady-state growth rate of  the 
five network reconstructions  in use on a broad range of substrates; the 
optimization solutions are written to an output file.This script is based on 
the similar function growthFBA.m  
 

KOv5.m 

 

The script KOv5.m is used to simulate gene deletions for a set of models on 
different substrates. The models are compared for growth behaviour and 
“unique lethal genes”, viz. genes, that are only lethal in one model, but not 
in the others. A summary on retrieved genes is written. At the moment the 
script performs single gene deletion using and the growth rates of the 
mutants is calculated using FBA, however it can be easily customized such 
as for double gene deletion or on a combination of substrates too. 
 

Xls2Rmodel.m 

 

The function xls2Rmodel.m converts Excel files of network reconstructions 
to SBML files, which are analyzable using sybil package in R. A simple 
example script in R (KOexample.r) is also provided in the source code 
section. 
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Source code for data management 

Inter.m 

 

The function inter.m is called during execution of KOv5.m. It is used to find 
intersecting essential genes among different models in order to find the 
unique ones.  
 

RetrieveV3.m 

 

The function retrieveV3.m retrieves the growth rations (wild type/mutant) for 
unique essential genes of all models. This function is called during execution 
of KOv5.m. 
 

CommonMatrixV2.m 

 

The function commonMatrixV2.m is called during KOv5.m. Only essential 
genes are extracted. These genes are subjected to inter.m to find a unique 
lethal gene.  
 

FlogicMaskV3.m 

 

The function flogicMaskV4.m is called by supdatemodel4.m. It creates a logic 
mask (0 or 1) of all the entries to compare differences within common entries 
of two network reconstructions. 
 

FdevdecV3 .m 

 

The function fdevdecV4.m is called by supdatemodel4.m to find deviations 
within common entries according to the logic mask (as returned from 
flogicMaskV4.m). 
 

ConsistentModel.m 

 

Consistent models are composed only of active reactions and genes, 
respectively. Since network reconstructions used herein serve also as 
knowledge base for “all” known (metabolic) reactions and genes, not all of 
them are indeed connected to the network due to (knowledge) gaps in the 
system. This function is based on the COBRA function reduceModel.m. 
Consistent models are generated and lists of inactive and active genes are 
retrieved. 
 

Source code for comparison and extension of network reconstructions 

Supdatemodel4.m 

 

The script supdatemodel4.m can be applied to two different 
network reconstructions to find differences between them. A 
directory is created, that stores source files as well as reports on 
the differences, such as deviations among common entries as 
well as unique entries to the reconstructions. Specially, the 
“results.xlsx”-file can be used as input for 
fupdatemodelsheets2.m, to “update” network reconstructions 
based on the differences encountered. 
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Fupdatemodelsheets2.m 

 

This function updates an existing (“RAVEN-formatted”) network 
reconstruction by incorporating changes according to an 
“update” Excel file, such as addition, deletion or change of 
entries. The resulting Excel file contains an updated network 
reconstruction which can be directly transformed into a model 
for simulation. 
 

AddSBO.m  

 

The function addSBO.m adds the Systems Biology Ontology (SBO) 
terms to a model structure.  
SBO terms contribute a new semantic layer to the model and 
aims to facilitate the categorization of metabolic processes. There 
are many different ways how to categorize the occurring 
reactions in models e.g. by function, by reaction mechanism. This 
function, whatsoever adds SBO terms according to the existing 
subsystem, e.g. “alternate carbon metabolism”, entry for this 
reaction in the model.  Upon completion of this function a list of 
SBO terms is returned that can be copied into the Excel file. 
Extensive documentation on SBO terms can be found online20. 

Source code for demonstrative purposes 

COBRAtut.m 

 

The script COBRAtut.m is based on the tutorial on FBA supplied with 
Orth et al. [9]. Results of different solvers applied on the same problem 
are compared. 
 

clarifyKO.m 
The script clarifyKO.m is used to stepwise clarify the reason for unique 
lethal gene discovered using KOv5.m. Growth on different substrates is 
simulated to find crucial reactions in the network. 
 

ThesisExample.m 

 

The script ThesisExample.m contains the source code for various 
simulations presented in Chapter 3 such as comparison of strain specific 
growth behaviour. 
 

 

                                                      
20

 http://www.ebi.ac.uk/sbo/main 
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Description of model features 

Feature Description 

rxns Cell vector of rxnIDs {‘R_HEX1’,’R_GK1’,…} 

mets Cell vector of metabolite IDs {M_glc_c, M_h2o_c,…} 

S Sparse matrix of reaction and metabolites 

rev Information on reaction reversibility 

lb ub Lower bound and upper bound of allowed fluxes 

c Weight coefficient vector for objective function 

genes Lists gene IDs e.g “b0002” 

metCharge metabolite charge in physiological environment (not in RAVEN format) 

rules or gprRules Information on gene protein relations 

rxnGeneMat Matrix containing reactions and genes according to gpr. 

subSystems Returns pathway classification e.g. “Amino Acid Metabolism” 

confidenceScores Extent of reliability of the data; e.g. from database, evaluated in the laboratory. 

rxnReferences, rxnNotes literature references and notes 

rxnECNumbers EC number of enzymes involved 

rxnNames metNames Long name of enzyme(rxn) or metabolite e.g. R_HEX1_c  hexokinase 

metFormulas Charged metabolite composition 
metFormula + metCharge = netComposition as retrieved from KEGG DB 

metChEBIID,metKEGGID, 
PubChemID 

Links metabolite information from various databases 
 (ChEBI, KEGG, PubChem) 

metInChIString IUPAC International Chemical Identifier (InChI) 

b Right Hand site vector needed for solving the linear programming problem 
since A*x =b 

description Model identifier 

CompNames Compartment names such as ”c” for  cytosolic 

CompOutside Relationship of compartments e.g. cytosol lies within periplasm 

metComps Metabolite compartments e.g. M_glc_c  for cytosolic glucose 

Comp-met-gene Miriam Minimum Information Required In the Annotation of Models) 
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Supplementary Files (CD) 

A CD is appended to this thesis containing experimental raw data (batches) as well as source 
code and files concerning network reconstructions. 

Reconstructions 

a. V0 

i. iJO1366-novel-air-GLC_raven.xls 

ii. iW1407_raven.xls 

iii. iRV1394_raven.xls 

iv. iHMS1391_raven.xls 

b. V1 

i. iJO1366_raven.V1.xls 

ii. iW1407_raven.V1.xls 

iii. iRV1394_raven.V1.xls 

iv. iHMS1391_raven.V1.xls 

v. HMSupdateV0_01.xlsx 

vi. Wupdate_V0_01.xlsx 

vii. JOupdate_V0_01.xlsx 

viii. RVpdate_V0_01.xlsx 

c. V1b 

i. clarification.txt 

ii. iJO1366_raven.V1b.xls 

iii. iW1407_raven.V1b.xls 

iv. iRV1394_raven.V1b.xls 

v. iHMS1391_raven.V1b.xls 

vi. HMSupdateV1_1b.xlsx 

vii. Wupdate_V1_1b.xlsx 

viii. JOupdate_V1_1b.xlsx 

ix. RVpdate_V1_1b.xlsx 
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d. V2 

i. iJO1366_raven.V2.xls 

ii. iW1407_raven.V2.xls 

iii. iRV1394_raven.V2.xls 

iv. iHMS1391_raven.V2.xls 

v. HMSupdateV1b_2.xlsx 

vi. Wupdate_V1b_2.xlsx 

vii. JOupdate_V1b_2.xlsx 

viii. RVpdate_V1b_2.xlsx 

e. V3 

i. iJO1366_raven.V3.xls 

ii. iW1407_raven.V3.xls 

iii. iRV1394_raven.V3.xls 

iv. iHMS1391_raven.V3.xls 

v. HMSupdateV2_3.xlsx 

vi. Wupdate_V2_3.xlsx 

vii. JOupdate_V2_3.xlsx 

viii. RVpdate_V2_3.xlsx 

f. V4 

i. COMMENTS_V4.txt 

ii. iJO1366_raven.V4.xls 

iii. iW1407_raven.V4.xls 

iv. iRV1394_raven.V4.xls 

v. iHMS1391_raven.V4.xls 

vi. HMSupdateV3_4.xlsx 

vii. Wupdate_V3_4.xlsx 

viii. JOupdate_V3_4.xlsx 

ix. RVpdate_V3_4.xlsx 

g. BL21(DE3) 

i. BupdateJO_BL.xlsx 

ii. iBL_raven.V4.xls 

iii. REL606-BL21(DE3)_indels.xlsx 
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Growth curves 

a. F_MG1655_1L.xls 

b. F_MG1655_1Lbaffle.xls 

c. F_MG1655_2L.xls 

d. F_MG1655_2Lbaffle.xls 

e. F_W3110.xls 

f. F_HMS174.xls 

g. F_RV308.xls 

h. F_BL21(DE3).xls 

i. 20120627_DNS.Calibration.xls 

j. 20120926_DNS.Calibration.xls 

k. 20121030_DNS.Calibration.xls 

l. 20130908_DNS.Calibration.xls 

Source Code 

a. AddSBO.m  

b. clarifyKO.m 

c. COBRAtut.m 

d. CommonMatrixV2.m 

e. ConsistentModel.m 

f. FdevdecV3 .m 

g. FlogicMaskV3.m 

h. Fupdatemodelsheets2.m 

i. GrowthFBAv1s 

j. Inter.m 

k. KOexample.r 

l. KOv5.m 

m. RegulateModelv3.m 

n. RertieveV3.m 

o. Supdatemodel4.m 

p. ThesisExample.m 

q. Xls2Rmodel.m 

r. growthFBAv1.m 
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Further files 

further files containing raw data for tables and figures presented in this thesis 

 O2 measurements 

o 1Lbaffle.txt 

o 2Lbaffle.txt 

o 1Ldefault.txt 

o results.xlsx 

 ConsistentModel.xlsx 

 CultivationResults.xlsx 

 EcoreTutSolvers.xlsx 

 


