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Abstract

In today’s automotive industry, electronics are getting more and more important in order

to meet the customers demand on higher comfort and more functionalities in cars. One

of those components, to increase the comfort, is the Keyless Go System. Those allow the

driver to lock or unlock a car without interacting with a key, through button press or

mechanically opening the lock. Most of those systems work with a Low Frequency (LF)

and a Ultra High Frequency (UHF) (ISM-Band) link, between the Intelligent Key Unit

used in the Keyless Go System (Key-Fob) and the car (Base Station). Advanced systems

also offer a LF Transponder (TRP) link, to be able to lock, unlock and start the car over

a wireless link even when the Key-Fob battery is empty.

As automotive manufacturers are facing big numbers of cars being build, it is highly

important that all the components can easily be implemented and used. This requires a

high level of automation when assembling. In case of Keyless Go Systems, an automatic

pairing of the Key-Fob and the Base Station is needed. Automatic Smart Key implements

such a automatic pairing procedure, which is later-on used in the context of the Maxim

Integrated Keyless Go System (KGO System).

Moreover, Keyless Go Systems operate with more than one Key-Fob per car, therefore

a technique needs to be found to handle the communication of multiple entities via one

communication channel. In the context of this master thesis, such techniques as well

as pairing strategies that are already used in industry are introduced and analysed. On

basis of this analysis, an algorithm is developed which fits the needs of the KGO System

perfectly. As this procedure needs to meet highest quality standards in the automotive

industry, another point of focus is verification and test of the algorithm.





Kurzfassung

In der Automobilindustrie wird die Elektronik mittlerweilen immer wichtiger, um der For-

derung der Kunden nach größtmöglichen Komfort und mehr Funktionalität des Autos

nachzukommen. Eines dieser elektronischen Komponenten, zur Erhöhung des Komforts,

sind die Keyless Go Systeme. Diese erlauben es dem Fahrer das Auto zu versperren oder

entsperren, ohne den Schlüssel aktiv zu verwenden, weder durch Tastendruck noch durch

bedienen des mechanischen Schlosses. Die meisten dieser Systeme verwenden Low Fre-

quency (LF) und Ultra High Frequency (UHF) (ISM-Band) als Kommunikationskanäle

zwischen dem intelligenten Schlüssel (Key-Fob) und dem Auto (Base Station). Manche

der Systeme besitzen auch eine LF Transponder (TRP) Schnittstelle, um ein schlüsselloses

Auf-, Absperren und Starten des Autos zu ermöglichen, selbst wenn die Batterie des Key-

Fobs leer ist.

Da Automobilhersteller sich mit sehr hohen Stückzahlen konfrontiert sehen, ist es sehr

wichtig, dass die einzelnen Komponenten leicht in das Endprodukt eingebaut werden

können. Dies erfordert ein hohes Maß an Automatisierung bei der Zusammensetzung des

Produkts, im Fall des Keyless Go Systems eine automatisierte Prozedur um die intelli-

genten Schlüssel mit dem Auto zu verbinden, zu Pairen. Ein Problem von Keyless Go

Systemen ist auch, das diese mit mehreren Key-Fobs per Auto (Base Station) operieren,

daher muss ein Weg gefunden werden um Kollisionen zu behandeln, da alle Key-Fobs mit

der Basisstation über denselben Kanal kommunizieren.

Diese Diplomarbeit beschäftigt sich mit der mit der Analyse bestehender Kollisionsma-

nagament und Pairing Prozeduren. Aus den Erkenntnissen dieser Analyse wird eine sol-

che automatisierte Pairing und Kollisionsmanagement Prozedur entwickelt, welche an die

Charakteristika des Maxim Integrated Keyless Go System (KGO System) angepasst ist.

Da diese Komponente den höchsten Qualitätsstandards der Automobilindustrie genügen

muss, liegt ein weiterer Fokuspunkt der Arbeit auf der Verifikation der Prozedur sowie

dem Test der Implementation.
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Chapter 1

Introduction

Electronics in the automotive industry are getting more and more important, as the cus-

tomer is demanding higher comfort and more functionality in cars. The range of appli-

cation reaches from security features like Electronic Stability Program (ESP), usability

features like automatically turning on the lights when unlocking, to entertainment systems

within the car.

One big field is also the car locking/unlocking system, which has developed over time

from basic mechanical keys, over remote keys to unlock or lock the car from distance,

to the latest generation; which are the Keyless Go Systems, using smart keys known as

Key-Fobs. Those Keyless Go Systems can automatically detect when to lock or unlock

the car, without any user input. Therefore the user just has to carry the Intelligent Key

Unit used in the Keyless Go System (Key-Fob), and does not need to take any action.

The Maxim Integrated Keyless Go System (KGO System) focuses on the next generation

of such a system, with enhanced functionality and improved security.

1.1 Problem

The Key-Fob is a mass product, whereas all Key-Fobs have the same initial state and just

differ in the serial numbers identifying all components. The same assumption holds for

the Base Station (BS) in the car. Therefore a procedure has to be found, that connects a

specific Key-Fob with a specific car, respectively BS. To minimize the costs, this procedure

should be done with a minimum of effort by an external handler.

1
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1.2 Project Motivation

The automotive industry is a highly competitive field of economy, where keeping the prod-

uct prices to a minimum is very important. Therefore, every component has to be chosen

by the best quality to price ratio and also the assembling of those components must be

easy. Saving money in assembling can mainly be done by automating the assembling

procedures. This also involves the pairing of Key-Fobs with BS. At the moment car man-

ufacturers use procedures that involve a high amount of manual effort to pair a Key-Fob

to the BS. As the smart Key-Fobs also have some computational power (intelligence),

this can be used to implement a procedure that automatically pairs a Key-Fob to a BS,

minimizing the manual amount of effort for this task and therefore the costs.

1.3 Non-Functional Objectives

As part of an end product, which aims for a broad field of customers, there are several

things that need to be taken into consideration when developing such systems, in order to

get a high market impact:

• Ensure high usability and easy integration in the end product

• Low power consumption, as the end product does not have a permanent supply

source and energy sustainability is an important issue nowadays.

• High Security and Quality Standards to ensure proper and reliable functionality of

the product, as malfunctioning can cause big damage.

• In order to stay competitive, besides quality and functionality pricing is very impor-

tant to the customer and the Original Equipment Manufacturer (OEM).

All those factors have been taken into consideration when developing the Maxim Integrated

KGO System and influenced design decision, which is also observable within the context

of the development of the Automatic Smart Key.

1.4 Functional Objectives and Resolution Method

The main objective of this Master Thesis is to find a procedure to automatically pairs

Key-Fobs and BS tailored to the constraints of the KGO System. This is done by first

analysing the KGO System and the pairing and collision management procedures, which

are currently state-of-the-art. After the analysis a procedure is designed and implemented
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on the Hardware (HW) of the KGO System, whereas the focus also lies on testing and

verifying the implementation.

1.5 Thesis Contents

Chapter 2 gives a short general insight to the development and advantages of the

KGO System. In the Chapters 3 and 4, existing collision management and pairing pro-

cedures are analysed and reviewed whether they fit the Maxim Keyless Go System. The

development of different approaches to solve the problem are explained and analysed

closely in Chapter 5, in order to choose the better solution for the implementation. This

theoretical definition is then followed by the chapters 6 and 7, which focus on the system

constraints, implementation and testing of the implementation.

The final chapter 8 gives an overview of the development done in the context of this thesis,

analysis them and shows development possibilities for future work.
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Chapter 2

Maxim Integrated Keyless Go

System

2.1 Functionality

The KGO System is the next generation of keyless entry and start systems for automotive

applications. It offers a more secure wireless key solution, than current systems, including

various additional functionalities.

2.1.1 Handling Multiple Key-Fobs

Due to different requirements of car-manufacturers and car rental agencies, this system is

able to handle up to eight Key-Fobs per car. This implies that the system is able to detect

and resolve collisions during communication in order to function properly.

2.1.2 Communication via UHF and LF or LF TRP

Due to the needs of the system regarding distance and usage two different Radio Frequency

(RF) channels for communication, Low Frequency (LF) and Ultra High Frequency (UHF),

are necessary. The main differences in terms of characteristics between LF and UHF

communication are the energy consumption, which is higher for LF, the fact that LF

travels through most of the obstacles, whereas UHF is blocked and the data rate which

is higher for UHF transmissions. This characteristic also defines their use in the system;

UHF is used for high distance communication between car and Key-Fob downlink1 and

1The data-flow from BS to the Key-Fob is considered downlink.

5
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uplink2, for example to lock or unlock the car remotely via pressing a button on the

Key-Fob. The LF channel, on the other hand, will be used for short range communication

downlink and locating the Key-Fob. This is necessary to either verify if the Key-Fob is

close enough to the car to unlock it or, in case of trying to start the car, if the Key-Fob is

inside the car.

In addition, the LF Transponder (TRP) functionality also enables upstream communica-

tion via the LF channel on a very small range (around 10 cm) by using special antenna

circuits on BS side and energy harvesting by the Key-Fob. This method is used to either

save battery power or in case the Key-Fob unit lacks sufficient battery supply.

2.1.3 Door-handle Interface

To extend the functionality of the KGO System, the door-handles can be equipped with

sensors. As those sensors may vary for each car-manufacturer, this system offers a universal

intelligent door-handle interface, which increases flexible of the system.

2.1.4 Keyless Entry

As described above, the system is able to locate the Key-Fob relative to the car position.

Therefore the car can be unlocked, if the door-handle is pulled and the Key-Fob is located

close enough to the car to be sure no unauthorized person is trying to get into the car.

2.1.5 Keyless Start

Once the car-start button is pressed, the car determines if the Key-Fob is within the car

and enables the start of the engine.

2.1.6 Self Diagnosis

Being able to ensure the functionality of all systems in an automotive environment are very

critical. Therefore all components of the KGO System include self diagnosis interfaces,

to verify their proper functionality during operation without any further effort by an

operator.

2The data-flow from Key-Fob to the BS is considered uplink.
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2.2 Architecture

2.2.1 System Overview

The system consists of a BS, located in the car body, and a Key-Fob unit. The BS is

responsible for managing all car sensors (e.g. door-handle) and communication with the

car electronics as well as with the Key-Fob unit. To exchange data from BS to the Key-Fob

unit, wireless communication via UHF or LF channel is used.

Figure 2.1: This block diagram illustrates the components of the KGO System in a reference

design.

2.2.2 In-Car Construction

A part of the system is included in the car body and consists of four LF antennas and one

LF TRP antenna3, which are located as illustrated in figure 2.2. The four LF-antennas are

3The LF TRP antenna consists of the same coil as a standard LF antenna, but the capacitor is not

included in the housing. The capacitor needed in the sending circuit of the LF TRP antenna can be
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necessary to cover the whole area around the car with sufficient LF field for positioning,

therefore their position is fixed. The position of the TRP antenna, on the other hand, can

vary for each car manufacturer, figure 2.2 just shows a reference design build by Maxim

Integrated.

Figure 2.2: Position of the LF antennas within the car, the patterned square represents a possible

position for the LF TRP antenna [SEA14].

2.3 Analysis of Single System Components

2.3.1 Base Station LF Transceiver SoC (BSLFTRX)

The BSLFTRX is the core of the KGO System. It manages the door-handle operations,

the LF TRP- and LF communication as well as the communication to the car-control

system and the UHF Transceiver (TRX), which is also part of the BS. Therefore this

System-on-Chip (SoC) implements following interfaces:

• An intelligent Door-handle Interface

• LF-Antennas Interface

• 3-Wire-Interface (3WI)) or Universal Asynchronous Receiver/Transmitter (UART)

(implemented as Single Wire Interface (SWI))

• General Purpose Input Output (GPIO) Pins

• Various Control and Measurement Interfaces

connected or disconnected in the BS.
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• Joint Test Action Group (JTAG) Debug Interface

• Central Processing Unit (CPU) Interfaces like AMBA Peripheral Bus (APB) or

JTAG Like Control Chain (JLCC)

• Several Special Function Pins.

The Firmware (FW) of the chip runs on an integrated microcontroller which has access to

Read-Only Memory (ROM) and Random Access Memory (RAM) memory. Also dedicated

Digital Signal Processing (DSP) parts and sate-machines, handling specific tasks, are

included in the SoC, in order to reduce the CPU load.

LF Data Transmission

The LF data transmission can either be controlled by the CPU as well as a state machine,

whereas the manual mode has the advantage that the packet length is not limited to buffer

length4. The antenna drivers, in order to create the signal carrier, and the modulation

output for Binary Phase Shift Keying (BPSK) and Quadrature Shift Keying (QPSK) are

always controlled by a state machine, which runs parallel to the CPU. The LF BS is

able to transmit and receive data via the LF link, whereas for transmitting the quality

of the LF antenna circuit has to be changed. The BSLFTRX supports Amplitude Shift

Keying (ASK) as well as BPSK and QPSK with differential encoding.

Current Control Unit and Immobilizer

The Current Control Unit and Immobilizer of the SoC are used to measure the current

through the LF antenna, to be able to control the sending power. This unit includes an

Analog to Digital Converter (ADC) as well as peripheral blocks to enable the following

functionalities:

• Offset compensation to keep high resolution for small signals.

• Sufficient oversampling at small signals.

• Measuring non-sinusoidal signals.

• Direct Current (DC) as well as LF signal magnitude and phase measurements

• Temperature sensors

4If the buffer of the state-machine is reloaded, the LF datastream is discontinued. In manual mode

data can be reloaded without discontinuing the LF datastream
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Door-handle Interface

The door-handle interface can connect several doorhandle types to the SoC. It is possible

to supply the doorhandle with power as well as a single sense line to get information

from the doorhandle to the CPU. Also a simple communication protocol, used by the

doorhandle, can be implemented in the FW of the CPU.

Oscillators

Due to power management and clock distribution reasons, the SoC has several different

clock sources. Namely: a watchdog oscillator, a RC Oscillator (RCO) and a crystal

oscillator.

Diagnostics

In order to diagnose the door-handles and antennas, sufficient measurement interfaces

are implemented. This is necessary to be able to check the proper functionality of these

peripherals without any additional HW setup.

Self-Test, Debug and Self-Protection

Build-In-Self-Test (BIST), RAM parity test, test pins, overheat protection and a JTAG

debug interface are also included in the SoC, in order to increase usability and guarantee

functionality.

2.3.2 Key-Fob LF Transceiver SoC (LFTRX)

The LFTRX, used in the Key-Fob units, is a ultra low power SoC designed for long term

mobile use. The SoC includes following interfaces and components:

• 3D LF Interface

• 3WI

• Event Interface

• Measurement Interface

• External Supply Interface

• Transparent Data Interface
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• Debugging Interface

• Parallel System Bus (internal)

• 5-Button Interface for User Interaction

• Advanced Encryption Standard (AES) Cryptographic Engine

• Unique 32-bit Identification number (ID)

3D LF Interface

The SoC is a 3D LF start-up receiver and TRP. This means the SoC can be woken via a LF

or LF TRP start-up signal and the relative position of the Key-Fob to the BS LF antenna

does not influence the receiving quality, as receiving is possible in X, Y and Z channel

(respectively direction). Furthermore the SoC automatically finds the best channel for

LF or LF TRP communication, according to the signal strength. The TRX and TRP

supports (D)BPSK or ASK with PPM20 or Manchester coding using active modulation.

The LF TRP communication is used in case the battery supply is insufficient or to extend

battery life. LF TRX and TRP use power monitoring and power management, to work

energy efficient and harvest enough energy from the LF coil to generate a supply voltage.

Event Interface

This interface gathers various external events and routes them internally to the CPU.

This can be used for e.g. to trigger power management or the start-up.

Measurement Interface

Consisting of an Analog IO Pin for Received Signal Strength Indication (RSSI), an ADC, a

VDD measurement unit and two temperature sensors. The measurement interface has the

purpose of supplying the system with sufficient environmental data to perform temperature

and VDD matching, to increase RSSI measurement accuracy.

Transparent Data and Debugging Interface

For developing purpose, the SoC also includes various GPIO pins and control signals, as

well as a JTAG debug interface.
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Oscillators

The only clock source available in this SoC is a RCO with a maximum drift of ±2% from

the nominal frequency.

Power Management

Due to the desire of low power operation of this SoC, it implements several supply units,

which can be switched on and off, regarding the current usage of the SoC, to keep the

power consumption to a minimum.

2.3.3 UHF Transceiver SoC (UHFTRX)

The UHF TRX SoC consists of a microcontroller as well as several interfaces and peripheral

blocks or state machines to fulfill specific tasks and decrease the CPU load. For instance:

• 3WI or UART

• Mixed Signal Sensor Interface for up to 10 freely configurable Analog/Digital In-

put/Output (I/O) Pins

• GPIO Pins

• CPU interfaces like APB or JLCC

• JTAG Debug Interface

• Random Number Generator for Security Applications

• Temperature Sensors

There are asynchronous transmission protocol for ASK and pleioynchronous protocol for

Frequency Shift Keying (FSK) (or Minimum Shift Keying (MSK)) supported by the SoC

in the quad bands of:

• 315 MHz

• 433 MHz

• 868 MHz

• 915 MHz

Furthermore the SoC can work as master device controlling peripherals or as slave being

controlled by more powerful SoC or microcontroller and also implements several sleeping
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modes for power saving in different applications. This UHF TRX SoC is used in the BS

as well as the Key-Fob of the KGO System.

2.3.4 Usage of the Components within the Context of this Project

This project focuses on the LF TRP communication, therefore mainly the BSLFTRX

and the LFTRX will be used. The UHF TRX will just be used for programming the

BSLFTRX, as for development purposes the FW of the BSLFTRX is stored in RAM.
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Chapter 3

Analysis of State-of-the-Art

Collision Management Algorithms

As in most wireless systems, also the Maxim Integrated KGO System offers the possibility

to use multiple clients (Key-Fobs) with one host (BS). Therefore multiple access methods

and collision management are needed to ensure proper communication between all clients

and the host system. In this chapter a brief overview over multiple access methods is

given and some collision management strategies, used in wireless communication,n will

be discussed. Also a theoretical overview on those methods and strategies will be given.

The focus, although, lies on processes already used in similar wireless systems like Radio

Frequency Identification (RFID) [Fin02].

3.1 Multiple Access

The goal of multiple access methods is to divide one dimension of a communication channel

in a way, that it is possible for multiple clients to use this channel together. A commu-

nication channel can be divided into four dimensions and therefore there are four basic

multiple access methods, as explained in [Fin02]:

• Space → Space Division Multiple Access (SDMA)

• Time → Time Division Multiple Access (TDMA)

• Frequency → Frequency Division Multiple Access (FDMA)

• Code → Code Division Multiple Access (CDMA)

15
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Basically every method slices a dimension of the channel into slots and then assigns one

slot to a client, so this client can use the channel in/during this slot.

3.1.1 SDMA

The space around the host is divided into segments (for e.g. using directional antennas)

whereas one segment can be occupied by one client at a time. A constant data stream is

possible as long as the client stays in the same space-segment.

3.1.2 TDMA

A sequential series of timeslots are defined, with specific length and starting times. In

each timeslot, one client can communicate with the host. Constant data streaming is not

possible as soon as the timeslots are shorter than the data-packets.

3.1.3 FDMA

The host offers multiple frequency channels which can be used by the clients at the time,

which allows a constant data-stream.

3.1.4 CDMA

This mathematical method involves the usage of orthogonal coding, so the channel is split

in the fourth dimension - the code dimension. The data sent by a client to the host is

coded using an orthogonal spreading code. Due to this special coding the host is able

to differentiate between different data, send by different clients. Using the same physical

channel (space, time and frequency dimension do not differ), by decoding the data also

using the same system of orthogonal spreading codes. This multiple access method also

allows a constant data stream.

3.2 Anti-Collision Processes

Even when using multiple access methods, there is the need for anti-collision handling.

This is necessary, if the assignment of communication slots is not done properly or there

are more clients than communication slots, so multiple clients try to communicate within

one communication slot.
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3.2.1 ALOHA

The ALOHA1 process uses TDMA to enable multiple access to a communication channel.

Each client starts its communication at a random time, for instance when the data-packet

is ready. The performance of this stochastic process is highly dependent on the number

of clients and packets sent during a specified period of time. In [Fin02] the performance

was rated as specified in Eq. 3.1 to Eq. 3.3.

N · · · number of clients

T · · · duration of the observation period

τn · · · duration of a packet from client n

rn · · · number of packets sent from client n

G · · · traffic

S · · · channel capacity

q · · · success rate - probability of a packet to be send without collision

G =
∑ τn

T
· rn

N

n=1
(3.1)

S = G · e−2·G (3.2)

q =
S

G
= e−2·G (3.3)

Figure 3.1 illustrates the capacity of the channel versus the traffic using ALOHA. It can

be seen that the maximum capacity of 18.4% is reached with a traffic G of 0.5. This means

that the time used to send packages equals T
2 , so the channel is just used half of the time.

3.2.2 Slotted ALOHA

The Slotted ALOHA (SALOHA) procedure works similar to the ALOHA procedure, with

the difference that the time period T is now divided into timeslots. Therefore the clients

cannot send their data at any random time, they are just allowed to start sending data at

the beginning of a timeslot. A time synchronization for all clients and the host is necessary

for this procedure. This increases the capacity and the maximum traffic which can be seen

in figure 3.1.

As remarked in [Fin02], due to the timeslots, the collision interval Tc is halved. Considering

equally long packets of length τ , using the ALOHA procedure, a collision can occur if the

1The name origins from the fact that this process was originally developed for the ALOHANET in the

1970ies.
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sending interval of two clients Ts is smaller than 2 · τ . Therefore the collision interval Tc

equals 2 · τ . Using SALOHA, a collision can just occur within a interval of τ , as sending

of a packet has to start at the beginning of a timeslot. This means that the Tc equals τ

for SALOHA and moreover the capacity of the SALOHA system [Fin02] is

S = G · e−G (3.4)

which maximum is 36.8% at a traffic of G = 1.

Figure 3.1: Channel capacity versus traffic using a ALOHA based collision management. The

capacity decreases drastically as soon as the maximum is reached.

Capture Effect

In addition, the capture effect needs to be considered. In wireless systems it can happen

that collisions are not recognized because one sender simply “drowns out” the other ones.

This can improve the capacity of the channel as there are fewer collisions (data transmitted

is valid), but can also cause the “weak” clients to not be able to send their data. The
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parameter for this effect is, concerning [Fin02], the threshold b. It specifies how much

stronger a packet has to be than another one, in order to be detected without any error.

S = G · e−
b·G
1+B (3.5)

The effect is illustrated in figure 3.1, whereas a threshold b of 3 dB was chosen.

Dynamic SALOHA

As explained at the beginning of section 3.2.2, the SALOHA procedure has the best

performance for a traffic G of 1. This means that the number of timeslots equals the

number of clients, but in practice most of the time the exact number of clients cannot be

determined in advance. If there are more clients than timeslots, the capacity converges

towards zero very fast, but foreseeing many timeslots for just a few clients is also not good

in terms of performance. Therefore in practice several procedures where implemented

to offer a variable number of timeslots to the clients. For more detailed information see

[Fin02] chapter 7.2.4.2.1.

In practice there are also many different variations of the ALOHA protocol used, to work

with multichannel systems [SL03], improved by using advanced technologies like spread

spectrum coding [KH99] or Direct Sequence-CDMA (DS-CDMA) [LZ94].

3.2.3 Binary Search Based

The binary search based collision management procedure requires the implementation of

the binary search algorithm as well as proper encoding of the data and the ability to detect

the bit-position when the collision occurs. Proper encoding could be for e.g. No-Return-

to-Zero (NRZ) or Manchester [Fin02]. The algorithm itself consists of a flow of requests

from the host and replies by the clients with the goal of selecting one client from a group.

With a request, the host can select one or multiple clients depending on the requested

address or ID.

To illustrate the function of a binary search based procedure, all possible client addresses or

IDs are represented within a ID-tree (see figure 3.2). In each iteration it can be determined

on which bit-position of the address a bit error occurred. Therefore we can find a path

from the top of the ID-tree to the bottom. Table 3.1 and 3.2 show the iteration steps for

binary search scenario.
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Address

TRP 1 1001

TRP 2 1110

TRP 3 1011

TRP 4 1101

Table 3.1: IDs of the transponders used in the binary search example.

Iteration Request Address Replying Transponders Received IDs

1 ≤ 1111 1, 2, 3, 4 1XXX

2 ≤ 1011 1, 3 10X1

3 ≤ 1001 1 1001

Table 3.2: Development of the received IDs in each iteration. X indicates a collision.

Figure 3.2: Example for a ID Search tree.

In practice for every iteration, not the whole ID is transmitted, just a small portion of it.

Therefore the amount of data need to be send between the host and the clients decreases

as just parts of the ID are transmitted. In average, a binary search algorithm like its

illustrated here, needs

L(N) = ld(N) + 1 =
log(N)

log(2)
+ 1 (3.6)

iterations [Fin02], whereas N represents the number of clients.
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Figure 3.3: Average number of iterations needed vs. number of clients for a binary search collision

management process.

3.2.4 Other

CSMA/CD

This Collision Sense Multiple Access with Collision Detection (CSMA/CD) procedure is

mainly used in wired Ethernet standards. It relies on fast networks and randomized access

control with no arbiter. Whenever a packet is ready, the client senses the channel and

starts sending if the channel is free. In case of a collision or an occupied channel, the client

delays the restart for a specific amount of time.

CSMA/CA

Collision Sense Multiple Access with Collision Avoidance (CSMA/CA) is used in most of

the WLAN standards. Similar to CSMA/CD the client first senses if the channel is free

before he starts sending. Contrary to CSMA/CD now the client does not send the data
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immediately, it sends a Ready-to-Send (RTS) packet to the desired host. Transmission

can just be started if the client receives a Clear-to-Send (CTS) as reply to his RTS from

the host. The whole data transmission then has to be acknowledged by the host to ensure

collision-free transmission, this is necessary as its hardly possible for clients to listen to a

wireless channel while they are sending.
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Analysis of State-of-the-Art

Pairing Procedures

Pairing defines a process which links two devices together to communicate over a secure

channel. While the usage of ubiquitous systems like Bluetooth, ZigBee or WiFi increases

more and more, also the diversity of different approaches on secure pairing methods in-

creases [KSTU09]. With this high diversity of methods, there comes one major drawback:

there is no global security infrastructure existing yet. Such an infrastructure would be

necessary, as the devices do not share any common knowledge with each other before the

communication setup, in contrast to many other communication systems. Many pairing

procedures therefore use a Out-Of-Bound Channel (OOB), which mostly involve user in-

teraction. A OOB can be physical, visual, auditive or sensitive which can be vulnerable to

Man-In-The-Middle and Evil-Twin attacks. Also the usage of a OOB forces the developers

to keep usability to a maximum, as this minimizes the probability for human errors, which

most times leads to a decrease in security. Sometimes little things, like using hyphens to

separate PIN letters [KS09] can increase robustness and usability.

This chapter mainly focuses on explaining the pairing algorithms used in Bluetooth as

those algorithms involve a minimum of user interaction.

4.1 Link Manager Protocol

The Link Manager Protocol (LMP) pairing is initialized by device A (Verifier/Initiator)

after user input, by generating a random number and sending it to device B (Claimant)

[IEE02]. Device B acknowledges the random number with the LMP accepted packet. Now

both users have to type the identical PIN (in case of Bluetooth 4 digits) into device A

23
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and B, which is used to calculate the link key Kinit. If the PINs do not match the link

key will also not match and the pairing will fail. In case the link keys Kinit match, the

LMP-authentication will succeed.

Figure 4.1: Sequence diagram of the Bluetooth LMP-Pairing.

It needs to be mentioned that the Kinit is not used for further communication. The devices

use Kinit just to exchange the necessary credentials to build a secure channel, for further

communication a link key is generated.

4.2 Secure Simple Pairing

Secure Simple Pairing (SSP) is the second generation pairing algorithm used in Bluetooth

to increase security during the pairing process. This procedure uses Elliptic Curve Cryp-

tography (ECC) and therefore there is no need for a PIN input anymore, whereas its not

prohibited to use an additional PIN input. Furthermore the value range of the link key
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Kinit is extended over 2128 possibilities [Ell11], which makes it even harder to crack.

Figure 4.2: Sequence diagram of the Bluetooth SSP.

At the beginning of SSP, the two devices establish a shared secret channel using the

Diffie-Hellman procedure, then sharing the Diffie-Hellman Key which is a 192 bit random

number [Ell11]. The random numbers are generated using elliptic curves from ECC. Each

device then uses the shared secret Kinit to calculate the control value va or rather vb,

which is displayed to the user and needs to be confirmed to finalize the pairing process.
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4.3 Other Aspects

As mentioned before, mostly OOBs are used in pairing procedures to ensure security.

Those OOB can sometimes involve special HW like buttons, cameras, microphones or

displays [SEKA11] which are not available in all systems. Therefore not every pairing

procedure can be used in every systems. Some systems also use physically secure commu-

nication channels like cables to initialize pairing.

For devices with higher computational power and displays, also games could be used for

pairing. In [GSV11] pairing based on the memory game “Simon says” is proposed, to

decrease the probability of human errors and maximize the security. Humans will be more

focused on a game, and therefore become less prone to make mistakes, than just on a

simple number input like in other pairing procedures.

Using all those OOB, also attacks on those, mostly uncontrolled, channels need to be

taken into consideration. Especially when using auditive channels, as the attacker can be

easily invisible for the user [HS13]. Therefore it needs a lot of investigation to make the

OOB channel secure.



Chapter 5

Development of a Pairing

Procedure with Collision

Management for multiple

Key-Fobs

Due to the special characteristics of the KGO System a pairing procedure or collision

management procedure from literature or other technologies cannot be applied without

modification. Therefore, this chapter describes the development of ay specific pairing

procedure with collision management for KGO System. For this theoretical definition of

the procedure a working HW setup is assumed, and therefore not all HW failure cases are

described and modeled here. This is done in order to keep the focus on the procedure

itself and not the error handling. HW errors will be discussed chapter 7.

5.1 Analysis of Pairing and Collision Management Strate-

gies

Considering the already known collision management strategies, introduce in chapter 3,

certain strategies can already be excluded. First, CSMA/CD and CSMA/CA are not

fitting to the application due to the fact that neither Key-Fobs nor the BS can perform

Transmit (TX) and Receive (RX) at the same time, so they are not able to sense collisions

while they are transmitting. This is also mentioned as one of the main criteria for the

section of collision management procedures in [LG08]. Furthermore a pure Binary Search

based algorithm can also not be implemented, as in the KGO System, a bit-wise error

27
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detection is not possible. This is due to the lack of a global time-source, which makes it

very unlikely that colliding packets are aligned in time.

The pairing includes the collision management and is completed when the credentials

between car (BS) and Key-Fob are exchanged, which consist of the car ID and the crypto-

graphic key. When and how often the pairing procedure is triggered will not be specified in

this thesis, as this is up to the OEM and should be defined by them. The only restriction

is, that the procedure can only be triggered if the Key-Fobs are in LF TRP communication

range of the BS. This is also the main security feature, as for this thesis it is assumed

that the pairing procedure can just be done within a secure environment, for example the

factory. Therefore the range of the LF TRP will always lie within the factory and cannot

be interfered by any attacker. For this reason no further security codes, encryption or

other security feature are implemented now.

The following sections will describe the procedure in detail.

5.2 Collision Identification

The basic need for a collision management system is the identifications of collisions. In

the KGO System just error detection, but no error correction is needed. Moreover, due

to the low computational power of the LFTRX SoC used on the Key-Fob and the timing

constrains, no complex solutions can be chosen. Considering those constrains and after

evaluating the results of different checksums and error detection codes in [Ngu05] and

[MK09] the Fletcher-Checksum has been identified as the best fitting solution for the

KGO System.

The Fletcher-Checksum offers a simple calculation method, which can easily be done with

a low computational effort. Furthermore it has a low probability of undetected errors

for short code word lengths, compared with a simple Cycle Redundancy Check (CRC)

checksum [MK09].

5.3 Timeslot Definition

The KGO System is designed to use only broadcast messages for BS to Key-Fob LF TRP

communication and TDMA for Key-Fob to BS LF TRP communication. Due to the lack

of a global time source and the inaccuracy of the RCO, evaluated in the Laboratory,

(∆fRCO = ±2% · fRCO) the timeslots cannot be aligned equally. Considering the lowest

possible clocked Key-Fob (fRCO−actual = fRCO − ∆fRCO), the optimal clocked Key-Fob

(fRCO−actual = fRCO) and the fastest possible clocked Key-Fob (fRCO−actual = fRCO +
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∆fRCO) as well as the inaccuracies of the timers in the Key-Fobs and the BS, the timeslots

shown in figure 5.1 and in table 5.1 have been calculated. For this calculations a ideal

guard time of 2.87 ms has been chosen, due to the timer resolution in the Key-Fob and

the BS. Of course, as all timings, also this guard time changes if ∆fRCO is not zero.

Therefore the real guard time between the timeslots is less, as table 5.1 contains the worst

case starting times (fastest possible Key-Fob) and stop times (slowest possible Key-Fob).

Figure 5.1: Timeslots used in KGO System.

Timeslot Start Time Stop Time BS Start Timer-Value BS Stop Timer-Value

ms ms ticks ticks

1 2.93 20.5 2 14

2 22 42.5 15 29

3 44 64.5 30 44

4 65.9 86.4 45 59

5 87.9 111 60 76

6 113 136 77 93

7 138 161 94 110

8 163 189 111 129

Table 5.1: Actual timeslot timings used in the KGO System.

5.4 Pairing Procedure with Stochastic Collision Manage-

ment

The first approach is to use a pure ALOHA procedure with random number sources for

LF TRP communication timeslot selection by the Key-Fob.

5.4.1 Formal Algorithm Definition

Before the timeslot of the Key-Fob is fixed by the BS, the Key-Fob uses a random number

source to determine the reply-slot-number. This could be done by doing a ADC measure-
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ment on VTP or VDD. This measurement is done for every reply, therefore every Key-Fob

re-evaluates the reply timeslot for every packet.

5.4.2 Base Station Functionality

The BS controls the procedure and takes all the decisions. For that, the BS holds a

command-set described in table 5.2.

Base Station Commands

Command Parameter Descriptions

REQUEST void Requests all Key-Fobs.

ID Sets the timeslot number and

SET TIMING timeslot number SEND LOCK for a certain

Key-Fob specified by the ID.

Start credential exchange

START CRED EXHANGE ID between BS and Key-Fob.

Address 0 is a broadcast.

Pairing failed - reset all

CLEAR void configuration registers to

enable a reuse of the Key-Fobs.

Table 5.2: Description of the commands used by the BS.

Base Station Datastructures

Data Structure Descriptions

Timing Table Maps the IDs of the successfully identified

Key-Fobs to the later on used timeslots.

Reply Table In this table the replies of the Key-Fobs

to a REQUEST command are saved.

Table 5.3: Datastructures held by the BS.

Timing Table The Timing Table is an 8x3 table, holding triple of (Timeslot number,

Key-Fob ID, valid flag). This table is used to track which Key-Fob will be assigned to

which timeslot in the SET TIMING step, of the pairing procedure. Inserting, deleting and

reading elements from this table are normal array operations.
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Timslot Number Key-Fob ID Valid Flag

Final timeslot number assigned to Full ID of the Key-Fob, that Indicates if

the Key-Fob with SET TIMING. is assigned to this timeslot. entry is valid.

Table 5.4: Timing Table structure.

Reply Table The Reply Table is an 8x3 table, holding sets of (Timeslot number, reply

Key-Fob ID, Checksum). This table is used to track which Key-Fob replied in which

timeslot to a REQUEST package. Inserting, deleting and reading elements from this table

are normal array operations.

Timslot Number Reply Key-Fob ID Checksum

Checksum received in the

Number of the timeslot, the Key-Fob ID received in packet with the Key-Fob ID

reply was received in. this timeslot. to proof the correctness of

the packet.

Table 5.5: Reply Table structure.

Execution Flow of the Base Station

5.4.3 Key-Fob Functionality

The Key-Fob is event driven by the commands received from the BS. The events can be

seen in table 5.6.

Key-Fob Event Key-Fob Action

command received

REQUEST IF SEND LOCK not set: find reply timeslot,

reply with key-ID package.

SET TIMING IF ID check passed: set timeslot number

and SEND LOCK.

START CRED EXHANGE Start credential exchange.

CLEAR Reset all configuration registers

(timeslot number, etc.).

Table 5.6: Description of the Key-Fob events triggered by received commands.
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Figure 5.2: Execution flow in the BS, of the stochastic collision management procedure.

5.4.4 Example

Consider a system with three Key-Fobs and one BS, and the communication sequence

as illustrated in figure 5.3. The BS wants to pair with all Key-Fobs, therefore it sends a

REQUEST. All Key-Fobs receive the REQUEST and do a measurement, to determine the

reply-timeslot. All three Key-Fobs reply, whereas the Key-Fob B and Key-Fob C choose

the same reply timeslot. Therefore, when the BS processes the reply table, it recognizes

a collision and successfully detect Key-Fob A. Now Key-Fob A is registered in the timing

table and a SET TIMING command is sent to the Key-Fob, so the permanent timeslot

and the SEND LOCK of the Key-Fob are set. The SEND LOCK is used to prevent

the Key-Fob from replying to further REQUEST commands and therefore cause further

collisions.

Now again a REQUEST broadcast is sent, this time just Key-Fob B and C reply and

choose different timeslots, so they are successfully detected. The timing table is again

updated and the SET TIMING command sent to both Key-Fobs B and C. Before starting

the credential exchange, the BS again sends a REQUEST broadcast to check if there are
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Figure 5.3: Communication sequence for the example of the pairing procedure with stochastic

collision management.

any Key-Fobs in range, which have not been registered yet. If not (timeout occurs), the

credential exchange is started and the process is finished.
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5.4.5 Proof of Correctness

If the random number sources are sufficient the procedure is correct, as there will be a

distinction of all Key-Fobs at one point, due to randomness of the number source which

chooses the reply timeslot.

5.4.6 Proof of Termination

If the random number sources are sufficient the procedure will terminate, as there will be

a distinction of all Key-Fobs at one point, due to randomness of the number source. A

deadlock cannot occur.

5.4.7 Run Time Analysis

The duration of this procedure depends on the random number source (most likely an ADC

measurement and possible calculations done with the ADC value afterward). Therefore,

a run time analysis cannot be done, until the random number source, which is used, is

identified.

5.4.8 Requirements

The requirements for this procedure are a good random number source and working LF

TRP link between BS and Key-Fob, as well as the ability of determining if a collision in

the Key-Fob-BS communication happened.

A random number source is considered good or fitting, if it delivers a probability distribu-

tion close to unit distribution over an interval of eight. As this would deliver a minimum

collision probability for choosing one out of the eight possible timeslots.

5.5 Pairing Procedure with Deterministic Collision Man-

agement

As this procedure is way more complex and implements a lot of logic and used data

structures, each part will be explained separately in the following section and then a final

overview will be given.
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5.5.1 Generating the the group ID

The group ID is generated by the BS in order to request a special group of Key-Fobs;

therefore its length is 32 bit and the group ID does not need to be unique among the

Key-Fobs. In figure 5.4 it can be seen, that depending on the iteration just a few of those

32 bits are actually used for the group ID.

Imagine three Key-Fobs within range of the BS:

ID

Key-Fob 1 011 010 011

Key-Fob 2 100 001 011

Key-Fob 3 101 001 011

Table 5.7: Key-Fob IDs.

Now the group ID for each Key-Fob depending on the iteration is defined as follows:

group ID group ID group ID

Iteration Key-Fob 0 Key-Fob 1 Key-Fob 2

0 000 000 000 000 000 000 000 000 000

1 000 000 011 000 000 011 000 000 011

2 000 010 011 000 001 011 000 001 011

3 011 010 011 100 001 011 101 001 011

Table 5.8: group IDs corresponding to the iteration and the Key-Fob ID.

It can be seen that the group ID basically is a masked version of the Key-Fob ID, with

the mask depending on the iteration. Also in iteration 0, all Key-Fobs have the same

group ID, which is all zero.

5.5.2 Relation between Key-Fob ID and Reply-Timeslot

As long as the Key-Fob is not assigned to a fixed timeslot, the timeslot for replying to the

BS is chosen dynamically. This timeslot is called reply-timeslot. The Key-Fob therefore

uses 3 bits out of the unique 32 bit Key-Fob LFTRX SoC ID. Those three bits depend

on the iteration, whereas always bit [iteration · 3] till bit [iteration · 3 + 2] are used. This

is illustrated in figure 5.2 as well. In table 5.9 it is shown which reply-timeslot would be

chosen by a Key-Fob with the ID 010 000 101 111 011, depending on the iteration:
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Figure 5.4: Usage of the ID bits depending on the iteration.

Iteration Reply-Timeslot

0 011 = 3

1 111 = 7

2 101 = 5

3 000 = 0

4 010 = 2

Table 5.9: Chosen reply-timeslot depending on the iteration and the Key-Fob ID 010 000 101

111 011.

5.5.3 Relation between Collision-Timeslot and group ID/Key-Fob ID

As seen in the sections above, there is a close relation between reply-timeslot and group ID

as well as the Key-Fob ID. In case of a collision, the reply-timeslots of multiple Key-Fobs

are equal. This means that from the timeslot number and the iteration, the BS can

calculate the group ID, respective parts of the Key-Fob ID, of all Key-Fobs involved in

the collision. Imagine following example; for the example the length of the group ID and

Key-Fob IDs is assumed to be 12 bit:
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timeslot timeslot

Iteration valid replies collision group ID estimated Key-Fob IDs

A: XXXXXXXXX010

0 − 2 000 000 000 010 B: XXXXXXXXX010

4 000 000 000 100 C: XXXXXXXXX100

D: XXXXXXXXX100

1 A: XXXXXX001010

1 3 B: XXXXXX011010

7 000 000 011 100 C: XXXXXX111100

D: XXXXXX111100

A: XXXXXX001010

2 − B: XXXXXX011010

0 000 000 011 100 C: XXX000111100

D: XXX000111100

A: XXXXXX001010

3 − − B: XXXXXX011010

5 C: 101000111100

6 D: 110000111100

Table 5.10: group IDs and estimated Key-Fob IDs depending on replies and collisions in certain

timeslots.

As the example in table 5.10 shows, the BS can learn the Key-Fob IDs as well as the

group IDs from the timeslot number in which collisions occur or replies are detected.

After iteration 1, Key-Fob A and Key-Fob B are correctly detected. This means they are

silenced (SEND LOCK is set to 1) and will not reply to further commands. Therefore

nothing can be learned about their ID, but this is not necessary anymore as the ID can

simply be requested as LF packet from those Key-Fobs, using the first group ID, recovered

in iteration 0.

5.5.4 Formal Description of the Algorithm

The BS first sends a broadcast request (iteration = 0, group ID = 0) to force all Key-Fobs

to reply. Now it detects and saves all replies and saves all collisions, as the Key-Fobs choose

their reply-timeslot as explained in section 5.5.1, with the timeslot number it occurred in,

as well as all the correct received replies from Key-Fobs. All regularly detected Key-Fobs

are assigned to a permanent timeslot and silenced, in order to keep them from interfering

with the further detection process.
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All collisions are then sequentially resolved using the iterations and group ID to divide up

the group of colliding Key-Fobs till only one Key-Fob per timeslot is left in the group and

can therefore be detected correctly. New discovered collisions are also saved and later on

resolved, until no collisions are left and all Key-Fobs in range of the BS got assigned to a

permanent timeslot. All Key-Fobs are silenced now; therefore another broadcast request

is send by the BS in order to check if there are any additional Key-Fobs left in range.

If so, the same procedure as above is applied, if not the detection process and collision

management is done.

As a last step of the pairing procedure the credential exchange can be started, to pair BS

(respective the car) and Key-Fob. For that all Key-Fobs are un-silenced, so they reply to

commands send by the BS.

5.5.5 Base Station Functionality

The BS controls the system according to the evaluation of the communication packets and

the command replies.

Base Station Commands

Command Parameter Descriptions

Requests a certain Key-Fob

REQUEST iteration or a group of Key-Fobs

ID specified by the ID

and the iteration-number.

ID Sets the timeslot number and

SET TIMING timeslot number SEND LOCK for a certain

Key-Fob specified by the ID.

Start credential exchange between

BS and a certain Key-Fob

START CRED EXHANGE ID or a group of Key-Fobs

specified by the ID.

Address 0 is a broadcast.

Pairing failed - reset all

CLEAR void configuration registers

to a reuse of the Key-Fobs.

Table 5.11: Description of the commands used by the BS.
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Base Station Datastructures

Data Structure Descriptions

Timing Table Maps the IDs of the successfully identified

Key-Fobs to the later on used timeslots.

In this table the replies of the Key-Fobs to a REQUEST

Reply Table command are saved. Therefore a mapping from reply

timeslot to reply packet (ID and checksum) can be made.

On this stack all collision are saved. One stack-entry

consists of the tuple (group ID, iteration). Whereas

Collision Stack group ID specifies which ID should be used collision

and to request the Key-Fobs involved in this iteration

the number of iterations already performed on this

collision, incremented by one.

Table 5.12: Datastructures held by the BS.

Timing Table For further information see section 5.4.2.

Reply Table For further information see section 5.4.2.

Collision Stack The Collision Stack is used to track all the collisions that have occurred.

One entry consists of iteration and group ID, that needs to be used in the REQUEST

command to make all Key-Fobs replies that caused this collision. An overflow of the

Collision Stack is not possible with a proper HW setup, as the number of collisions that

have to be saved at one time is limited. If the setup is wrong and an collision stack overflow

occurs, the procedure will terminate and report an error.

Figure 5.5: Structure of the collision stack and one collision stack entry.
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Connection of the Datastructures

After a REQUEST command Key-Fobs will reply and the Reply Table will be filled

with Key-Fob replies, according to the timeslot it was received in. Now the BSLFTRX

iterates over all Reply Table entries and processes the entries. The following actions will

be taken, depending on the Reply Table Entry:

Reply Table Entry Empty: No action taken

No collision detected in Reply Table Entry - Checksum OK Create an Entry in

the Timing Table with the corresponding Key-Fob ID.

• Find free entry in Timing Table

• Set Timing Table entry “Key-Fob ID” to current Reply Table entry “reply Key-Fob

ID”

Collision detected in Reply Table Entry - Checksum NOK: Push a new element

on the Collision Stack. The “current iteration” and “current request ID” are held by the

BSLFTRX.

• Collision Stack entry “Iteration” is set to “current iteration” incremented by one.

• Collision Stack entry “request ID” is set to

(“current request ID” | ((Reply Table “timeslot number”) << (3· “current itera-

tion”))

Base Station State Diagram and Flowcharts

States The BS implements a finite state machine and operates in 4 different states (see

figure 5.6) which will be explained in detail below.

INIT In the INIT state, the BS sends out a REQUEST command with iteration 0 and

ID 0, which means that all Key-Fobs in range will send replies. Those are saved in the

Reply Table and processed (see figure 5.7), so all successfully detected Key-Fobs are saved

to the Timing Table and all collisions on the Collision Stack, according to the algorithm-

specification. If those actions are completed without any error, the BS is set to state

HANDLE COLLISIONS, otherwise it is send to DONE.
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Figure 5.6: States of the BS in the collision management procedure.

HANDLE COLLISIONS The BS stays in this state as long as there are elements on

the Collision Stack. If all collisions are resolved, there is again a REQUEST broadcasted,

to check if any Key-Fob has been missed, due to the dominant sender problem. The

detailed program-flow in this state can be seen in figure 5.8.

CREDENTIAL EXCHANGE In this state the BS starts exchanging the credentials

with all registered Key-Fobs in the Timing Table, in order to complete the pairing.

DONE If any error occurred during the procedure, it is handled in this state. If the

procedure finished without any error, the Timing Table is returned to the BSLFTRX main

routine and the pairing procedure is terminated.
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Figure 5.7: Flow executed on the reply table (Process reply table).

5.5.6 Communication Sequence

Two Key-Fobs - No Collision

The sequence diagram (figure 5.9) illustrates the communication flow for a pairing pro-

cess, considering two Key-Fobs in range of the BS. Those two Key-Fobs have 32 bit IDs

which differ within the three LSB, which means that no collision happens after the initial

REQUEST, send by the BS.

Three Key-Fobs - Collision

Figure 5.10 shows how the communication flow looks like for three Key-Fobs within range

of the BS. The Key-Fobs 32 bit IDs do not differ within the three LSB but the ID of

Key-Fob A differs in bits 3− 5. Also the IDs of B and C differ in the bit interval from bit

6 to 8. This causes a collision after the initial REQUEST by all Key-Fobs, and a collision

between B and C after the second REQUEST.
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Figure 5.8: BS flow in the HANDLE COLLISIONS state.

After the second REQUEST, Key-Fob A is successfully detected and the permanent times-

lot as well as the SEND LOCK is set for this Key-Fob. This means that Key-Fob A is not

responding to any further REQUEST commands anymore. The collision between B and

C is resolved, as described above, and then the permanent timeslots for those Key-Fobs

can be set as well and the credential exchange can be started.
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Figure 5.9: Sequence diagram for a complete communication flow between BS and two Key-Fobs;

no collisions.
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Figure 5.10: Sequence diagram for a complete communication flow between a BS and three

Key-Fobs; collisions appear.
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5.5.7 Example

Key-Fob Name Key-Fob ID

A 111 110 011 010

B 101 000 010 010

C 100 010 011 101

D 101 110 011 010

E 100 010 110 101

Table 5.13: IDs of the Key-Fobs used in this example.

Initially the BS requests all keys by sending the REQUEST command with ID 0 and iter-

ation 0 - which equals a broadcast request. Then the reply-table is filled with information

according to the replies.

Timeslot Reply Key-Fob ID Checksum

0 − −
1 − −
2 XXXXXXXXXXXX XXX

3 − −
4 − −
5 XXXXXXXXXXXX XXX

6 − −
7 − −

Table 5.14: Reply Table after iteration 0.

Now all entries in the reply-table are processed and two entries are added to the collision

stack for timeslot 2 and 5.

1 000 000 000 101

1 000 000 000 010

Iteration group ID

Table 5.15: Collision Stack after iteration 0.

After the initial round, the BS starts to resolve all collisions saved on the collision stack.

Therefore the latest entry from the collision stack is popped and the BS sends a REQUEST

with ID = 000 000 000 101 and iteration 1. After this the reply table looks like follows:
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Timeslot Reply Key-Fob ID Checksum

0 − −
1 − −
2 − −
3 100 010 011 101 XXX

4 − −
5 − −
6 100 010 110 101 XXX

7 − −

Table 5.16: Reply Table after iteration 1 for the first collision entry.

As can be seen in the table 5.16, now two Key-Fobs have been detected in timeslot 3

(Key-Fob C) and in timeslot 6 (Key-Fob E). Those two Key-Fobs are silenced and get

assigned to permanent timeslots 1 and 2. This means the Timing Table now looks as

follows:

Timeslot Key-Fob ID Valid

0 100 010 011 101 1

1 100 010 110 101 1

2 − 0

3 − 0

4 − 0

5 − 0

6 − 0

7 − 0

Table 5.17: Timing Table after detecting Key-Fob C and E.

Now the remaining entry in the collision stack is popped and a REQUEST with iteration

1 and group ID = 000 000 000 010 is send. The reply table then has following entries:
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Timeslot Reply Key-Fob ID Checksum

0 − −
1 − −
2 101000010010 XXX

3 XXXXXXXXXXXX XXX

4 − −
5 − −
6 − −
7 − −

Table 5.18: Reply Table after iteration 1 for the second collision stack entry.

Key-Fob B is now detected in timeslot 2 and will be assigned the permanent timeslot 3

and added to the Timing Table. For the collision detected in timeslot 3 a new entry in

the Collision Stack is made containing (iteration, group ID) = (2, 000 000 101 010). The

BS will then pop the Collision Stack entry send a REQUEST with iteration = 2 and ID

= 000 000 101 010 as specified in this entry, this will again result in a collision in timeslot

6. Therefore the entry inserted in the Collision Stack is now (iteration, group ID) = (3,

000 110 101 010). Popping this entry and sending a REQUEST with iteration 3 and ID

= 000 110 101 010 will then result in Key-Fob A replying in timeslot 7 and Key-Fob D in

timeslot 5. Now those two Key-Fobs are assigned the permanent timeslots 4 and 5.

Timeslot Key-Fob ID Valid

0 100 010 011 101 1

1 100 010 110 101 1

2 101 000 010 010 1

3 101 110 101 010 1

4 111 110 101 010 1

5 − 0

6 − 0

7 − 0

Table 5.19: Final Timing Table.

As the Collision Stack is empty now, the BS sends again a REQUEST with iteration

0 and group ID 0 to check if there are any Key-Fobs left in range. As this not the case

and no reply is received, the BS broadcasts the START CRED EXCH which initializes the

credential data-transfer. After successfully finishing the credential exchange, the procedure

is finished and the routine terminates.
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5.5.8 Proof of Correctness

The 32 bit LFTRX SoC ID is imagined like a tree, similar to figure 5.11. As the binary

search algorithm is proven correct to be able to find all items in a tree, so is the Key-Fob

selection used in this procedure.

The innovative part of this procedure is the selection of the timeslots, using the unique 32

bit ID of the LFTRX SoCs on the Key-Fobs. As the ID is considered unique, the following

statements can be made:

• Considering two Key-Fobs with IDs that just differ in one bit, after a certain amount

of iterations the difference either lies in the part of the ID that is used for the

group ID or the bits that are used to select the reply-timeslot.

• If the difference lies in the part used for the group ID, only one of those Key-Fobs

will reply to a REQUEST as the group ID just fits for one of the two Key-Fobs. No

collision possible.

• If the difference lies in the bits used for choosing the reply-timeslot, the Key-Fobs

will reply in different timeslots and therefore no collision will occur.

Therefore all parts of the algorithm are proven correct which concludes the correctness of

the algorithm.

Figure 5.11: Part of a binary tree for the ID of the LFTRX SoC. ID1 = 000 100 110; ID2 = 000

011 000; ID3 = 000 011 100; ID4 = 000 100 001

5.5.9 Proof of Termination

Every LFTRX SoC ID is unique, therefore every Key-Fob will be found due to the cor-

rectness of the binary search algorithm and the theorem that Key-Fobs either differ in

group ID or timeslot selection bits. If all Key-Fobs are found the algorithm terminates.
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5.5.10 Run Time Analysis

In order to calculate the probable runtime of the procedure a MATLAB script has been

developed.

Calculate the initial probabilities for a collision

In the first iteration the first three bits (bit 0 - bit 2) are used by all Key-Fobs to determine

the reply timeslot. Therefore we divide the total number of Key-Fobs N into subgroups of

the size N
G , all Key-Fobs with equal bits 0 - 2 are gathered in one subgroup, and therefore

will result in choosing the same reply timeslot which causes a collision. G here represents

the number of timeslots (8). So, if more than one Key-Fob from a subgroup is chosen in

our set of 8 Key-Fobs, there will be a collision in the initial round.

This can be described using a hypergeometric distribution. A collision is considered a

success, therefore in a total population of N Key-Fobs there are N
G = K Key-Fobs that

produce a collision and therefore a success if they are drawn. Key-Fobs taken from the

total population are not replaced.

Calculation of the first layer of the iteration tree

In one step a collision can be resolved, partly resolved or not resolved. Therefore following

probability trees of depth 1 are now calculated to build the base for the final probability

tree (see figure 5.12).

Now the total population of Key-Fobs is defined by the size of the collision (init col sz

= [2 : 8]). There are Ginit col sz possibilities to distribute the Key-Fobs, that produced a

collision in the last iteration, over the G (= 8) timeslots in this iteration.

The number of good distributions is that one timeslot is chosen by res col sz keys (number

of keys that will generate a collision in this iteration) and the other (init col sz - res col sz)

Key-Fobs are distributed over the other G − 1 groups, not caring about their specific

distribution.

Therefore the probability to get from a collision of size init col sz to res col sz is

#[Possible timeslots for res col sz Key-Fobs to send back] =

(
G

1

)
#[Possibilities distribute remaining Key-Fobs over G− 1 timeslots] =

= (G− 1)init col sz - res col sz
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Figure 5.12: Collision Trees for all possible collision sizes till a depth of 1 (1 iteration). The

numbers indicate the number of Key-Fobs replying in the same timeslot (res col sz).

P tree(init col sz, res col sz) =
#[good cases]

#[possible cases]

=

(
G
1

)
· (G− 1)init col sz - res col sz

Ginit col sz

=
G · (G− 1)init col sz - res col sz

Ginit col sz

Probabilities to resolve the Collision after a certain Number of Iterations

To calculate the probability of resolving a collision (of certain size) in a defined number

of iterations, all the possible paths from the root of a collision tree to the leaves in depth

iterations, are calculated and added up (example in figure 5.13).

Example: Initial collision size of 4; Resolving after 3 iterations

P term(3, 4) =P tree(2, 4) · P term(2, 2)+

P tree(3, 4) · P term(2, 3)+

P tree(4, 4) · P term(2, 4)
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Figure 5.13: Collision Tree for a initial collision of 4 and a termination at iteration 3.

Final Calculation

Now all the termination probabilities are scaled with the probability to have a collision

of certain size in the initial step. Finally all the probabilities, to detect a Key-Fob after

a certain number of iterations for all possible collision patterns in the first iteration, are

added up to get the total probability for each number of iterations.

Results

If one Key-Fob is observed within the system consisting of eight Key-Fobs, figure 5.14

shows the probability to detect this Key-Fob within a certain number of iterations. It-

eration 0 represents the initial step, where the first REQUEST broadcast is send to all

Key-Fobs. The iterations 1 to n represent the iteration steps, needed to resolve a collision

found in the initial step (iteration 0).

As can be seen in the graph, the observed Key-Fob is detected in the initial step with

a probability of 34.36%, which means this Key-Fob is not involved in a collision. This

also means, that a observed Key-Fob is involved in a collision, in the initial step of the

procedure, with a probability of 65.64%. If the Key-Fob is involved in a collision, within

iteration 0, it will be detected after iteration 1 with a probability of 61.49% and after

iteration 2 with 3.497%. This means, a observed Key-Fob in our system, is detected

within 3 steps (iterations 0 to 2), with a probability of 99.34%.

Applying this data, to the whole system of eight Key-Fobs, this means that it is very

likely that every Key-Fob is found within 3 steps. Considering the maximum number of 4

collisions of size 2 in iteration 0, this would lead to a duration of 9 steps (4x 2 iterations
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Figure 5.14: Probability of the collision management procedure terminating after a certain

number of iterations for a single Key-Fob.

for collision resolving plus iteration 0), as for every resolved collision, 2 Key-Fobs are

found. Therefore it can be assumed, that for most of the possible setups, the procedure

will terminate after 1 to 9 steps.

5.5.11 Requirements

The prerequisites for this procedure are that all the Key-Fob LFTRX SoCs have a unique

32 bit ID and a working LF TRP link between Key-Fob and BS, as well as the ability of

determining if a collision in the Key-Fob-BS communication happened.
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Chapter 6

System Analysis and Constraints

6.1 Requirements and Constraints Analysis for the Pairing

Process

6.1.1 Pairing Trigger

Defining the trigger for the pairing procedure is up to the OEM, therefore the procedure

is kept as flexible as possible. In this initial version, the procedure is designed to be able

to be triggered multiple times. Adding or deleting of single Key-Fobs is not possible for

this version, therefore every Key-Fob has to be present in every pairing run.

Furthermore it is assumed that the procedure can just be triggered within a secure envi-

ronment (see section 6.1.2) which directly influences the security features of the system.

6.1.2 Security

As this system is dealing with security critical components, one of the focus points is

security. In the first implementation of the pairing procedure with collision management,

no security measures will be added to the system due to following considerations:

• The range of the LF TRP communication is approximately 10 cm, therefore sniffing

would just be possible within the car.

• As stated in section 6.1.1, the pairing procedure can only be triggered in a secure

environment. Therefore an attacker is considered to not be able to get into the car.

For future developments of the system, advanced security measures should be implemented

in order to make the system harder to attack and the procedure also usable in a non-secure
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environment.

Secure Environment

An environment is considered to be secure, if it is highly unlikely that an attacker is able

to get close enough to the system to be able to eavesdrop on the communication between

the BS and the Key-Fobs. Also all environmental factors are within the operation ranges

of the system (e.g. supply voltage is sufficient). Such an environment is for example the

factory of the car-manufacturer or a licensed car-shop.

6.1.3 System Setup

Unexpected Number of Key-Fobs

The system maximally supports eight Key-Fobs with one BS. Therefore it is up to an

operator to place a maximum of eight Key-Fobs in range of the BS before the pairing

procedure is triggered. If the operator fails to do so, following cases can occur

i) No Key-Fobs in range

ii) More than eight Key-Fobs in range

If no Key-Fobs are in range the procedure will terminate without having paired with any

Key-Fob. If there are too many Key-Fobs in range, there will be Key-Fobs recognized in

range although the timing table is already full. In this case the BS will abort the pairing

procedure, reset all Key-Fobs that were already registered and report an error to the car-

electronics. This way the operator can check the number of Key-Fobs in range and trigger

the pairing procedure again.

Change of System Setup during the pairing process

Considering the pairing trigger constraints, it is it is assumed that the setup is not changing

during the pairing procedure (removing/adding of a Key-Fob).

Multiple Basestations

As the range of the LF TRP communication is maximum 10 cm and the triggering of

the procedure is assumed to be happening in a secure environment, it is highly unlikely

that a second BS is introduced to the system. Therefore this case is not considered in the

implementation.
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Variations in Supply Voltage

Variations of the supply voltage of the BS highly influences its functionality, in terms of

communication range. Also a total fail of the supply voltage could occur. Those scenarios

are considered to be highly unlikely considering the triggering of the procedure defined in

section 6.1.1.

Moreover, the supply of the Key-Fob will not run out as long as the supply of the BS is

given, as the Key-Fob harvests the operating energy out of the LF field in TRP mode and

is therefore not dependent on any other power supply (e.g. battery).

Checksum Collision

A collision that is not recognized due to a faulty checksum is highly unlikely to occur. If

so, it will lead to the termination of the procedure with an error code.

6.1.4 Verification of the Procedure

The first implementation of the pairing procedure does not need a detailed verification

(e.g. challenge-response for every Key-Fob) with an error handling. A simple Acknowledge

(ACK) is sufficient due to the assumptions taken in the sections above.

6.1.5 Requirements for the Pairing Procedure

Collisions detection

In order to implement a collision management algorithm, it is necessary to be able to

detect collisions. As defined in section 5.2, a Fletcher-16 checksum is included in the ID-

Packets sent from the Key-Fob to the BS after a REQUEST. Therefore a data integrity

check can be performed, which shows collisions if the data does not fit the checksum.

Furthermore, as mentioned in literature, also the dominant sender problem can occur.

This means that the signal from a client is that much stronger than the signal of all other

clients, so the host cannot detect a collision and just sees one client. Tests, described in

appendix A, showed that this problem can also occur in the KGO System. Therefore both

theoretical algorithms described in chapter 5 implement a final check, to avoid missing

any Key-Fobs in range due to the dominant sender problem.
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Random Number Sources

In order to implement the pairing procedure with stochastic collision management, a good

random number source is needed. In the appendix A all possible random sources on the

LFTRX SoC, which are available in TRP mode, were analysed. The results showed, that

those sources are not sufficient and do not deliver any randomness.

Also it has been considered to use pseudo-random numbers, by XORing and other math-

ematical calculations. This has been discarded due to the low computational power of the

LFTRX SoC, as a simple procedure would most likely result in many collisions, and a

complex procedure is not feasible.

32 bit Key-Fob LFTRX ID

The pairing procedure with deterministic collision management requires an unique

Key-Fob LFTRX ID. It is known that the LFTRX SoC has a unique 32 bit ID. Also

considering the number of cars produced per year, and the ascending numbering of the

Key-Fob IDs, it is highly likely that the IDs will differ within a shorter range of bits than

32. Also, in the first implementation of the procedure, the case of multiple Key-Fobs with

identical IDs is not considered. Furthermore, it is not possible that a LFTRX SoC in the

Key-Fob changes its ID, as this ID is permanently programmed in the fab.

6.2 Conclusion of the Algorithm Analysis

The analysis shows that the stochastic approach is less complex than the deterministic

approach and guarantees termination and proper functionality, if there is a proper random

number source available. As section A in the appendix shows, apparently there is no proper

random number source available at the LFTRX SoC, and therefore this procedure cannot

be used in the KGO System.

Therefore the deterministic approach is implemented, due to its guaranteed good perfor-

mance (see section 5.5.10) and the guaranteed termination. It has to be taken into account

that this solution is less flexible as it is only tailored for the KGO System and the SoCs

used in it.



Chapter 7

Implementation, Test and

Verification of the Procedure

In chapter 5 the pairing procedure with collision management was theoretically designed

and analysed. This chapter focuses on the implementation, test and verification of this

procedure within the context of the KGO System. Again it should be mentioned, that the

procedure defined in section 5.5 was chosen, due to the reasons stated in chapter 6.

7.1 Firmware Development within the Context of the Key-

less Go System

Besides the HW for the KGO System, Maxim Integrated also offers parts of the FW

needed to operate the SoCs, used in the system. As figure 7.1 illustrate, the FW is build

in a layer structure. The FW developed in the context of this master thesis will also take

advantage of the existing layers, and can be considered part of the application layer.

As the figure 7.1 shows, the FW design consist of 4 layers, which are defined as follows

from bottom up:

• Layer 0:

The Low Level Drivers form the HW Abstraction Layer. It mainly consists of register

access macros and bit masks for special SoC functionality and configurations.

• Layer 1:

The basic setup and control functions are gathered in the Physical Layer. Those

functions just implement one simple setup for a functional block.
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Figure 7.1: FW structure for the KGO System. Left the structure for the Key-Fob unit, right for the BS.
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• Layer 2:

This layer represents the FW Application Programming Interface (API) and consists

of two sub-layers:

– The functions in the MAC Sub-Layer combine multiple functionality from single

functional blocks.

– The Basic-Routines sub-layer contains already usable flows and procedures.

Although this layer should not implement any protocols specific flows which

can be redefined by a customer.

• Layer 3:

The highest level is the Application FW layer. Here customer specific flows and

protocols are implemented as well as customer application FW.

Maxim Integrated provides the Layers 0 to 2 already fully tested and verified. The im-

plementation of the pairing and collision management procedure is contained in Layer

3.

7.2 Code Design

7.2.1 Base Station LF Transceiver SoC

In order to ensure high re-usability and easy maintenance the FW is designed modular

with as few interfaces to the SoC specific functionality as possible. The structure can be

seen in figure 7.2.

The modules are described in detail in the paragraphs below.

SoC main

This is the main routine of the FW, it handles commands received via the wired interface

and also implements some debug and configuration commands in order to set up the Key-

Fobs for specific test-cases. Here also the pairing and collision management procedure is

triggered by calling PAIR main, if a specific command is received.

PAIR main

PAIR main is the top function and implements the state-machine as illustrated in fig-

ure 5.6.
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Figure 7.2: FW structure of the algorithm implementation on the BS, the colored blocks use BSLFTRX SoC specific functions and the

blocks with hatched borders represent the SoC functionality.
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PAIR send lf command

In order to separate the call of all LF interface SoC functions, they are gathered in this

function. The function takes care of the LF setup, assemble of the data packet as well as

sending and receiving of the data by calling the relating SoC specific functions.

PAIR process reply table

This function processes the data in the reply table as described in section 5.5.5 in paragraph

Connection of the Datastructures.

PAIR check reply

This function simply checks if the received function code and data match the expected

values.

PAIR report error

When the procedure terminates, this function assembles a report packet according to the

termination error code, which is send to the host via the wired interface.

PAIR databuffer to reply table

As the data received via the LF link is just stored byte-wise in a buffer, it must be

pre-processed and saved in the right format in the Reply Table. Therefore this function

separates the received data for every timeslot into function code, Key-Fob reply ID and

Checksum and saves it to the Reply Table into the according slot.

PAIR checksum check

In order to check if a packet is valid, this function uses the PAIR checksum fletcher16

function to calculate the 16 bit Fletcher Checksum over specific data, and compares it to

the received checksum.

PAIR checksum fletcher16

This function is used to compute the 16 bit Fletcher Checksum.
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SoC wired interface and SoC LF interface

Those blocks represent the BSLFTRX SoC specific function to setup and use the wired

(either 3WI or UART) and the LF interface4.

7.2.2 Key-Fob LF Transceiver SoC

As the LFTRX in the Key-Fob functionality consists just of event driven operations and

due to the low computational power of the LFTRX SoC the FW is held as simple as

possible. Therefore it consists just of two modules:

• Main Routine and Event handling

• Checksum Calculation (Fletcher)

Firmware limitations due to memory restrictions

As all of the memory except the Flash is volatile, permanent information like the timeslot

number have to be stored there. When using the Flash in the LFTRX following things

need to be considered:

• The Flash can just be written in words, whereas a word-size is 16 bits.

• Reading from the Flash can be done byte-wise.

• The Flash is initialized with all ones.

• The Flash just supports destructive writing1.

• The Flash memory can just be reset through either a mass erase or a page erase. As

also the initial configuration is stored in the Flash, a mass erase must not occur.

These facts also cause some modifications in the algorithm design. As there is no memory

location to store the SEND LOCK permanently which can be written multiple times, it

will be derived from the permanent timeslot number, which is also stored in the Flash.

If there is a valid timeslot number stored, the SEND LOCK is set. Furthermore, if a

CLEAR command is received by a Key-Fob, it does a page erase on the page which holds

the timeslot number.

1Ones can just be set to zero, no writing of ones over zeros possible.
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7.3 Conformance and Test-Case-Success

The test-cases check the conformance of the input and output. The input to the algorithm

are the IDs, initial SEND LOCKs and initial timeslot number of the eight Key-Fobs. This

input is used to configure the whole environmental setup. The outputs are the error code

and timing table. Each test-case defines a input set of size 8x3, consists of 8 triples (ID,

SEND LOCK, timeslot number), and produces a output set of (error code, timing table).

The conformance is then defined as follows:

i . . . Implementation x . . . Input Set

m . . . Model X . . . Possible Input Sets

whereas

i ≤conf m =def ∀x ∈ X : out (i for x) ==out out (m for x) (7.1)

has to hold. For more detailed definitions and derivations see appendix B.

Therefore a test-case t with the input set xt and is considered successful for a implemen-

tation i and the model m if

t = successful if out (i for x) ==out out (m for x) (7.2)

7.4 Test-Plan

The testflow is divided in three main parts, Software (SW)-in-the-Loop tests, HW-in-the-

Loop tests, and manual review. Those are defined as follows:

i) SW-in-the-Loop Test

a) Static Code Analysis with LINT

b) Manual Analysis

c) Test-Case-Generation

• Test-Case-Generation with CREST [BS08]

• Manual test-case definition

d) Model Test

e) Generate Extensible Markup Language (XML)-test-case specifications

ii) HW-in-the-Loop Test

a) Key-Fob Tests
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b) System Tests

iii) Manual Review

Figure 7.3 shows the structure of the whole Test Framework, and each component is

described in detail in the following sections. A detailed manual on how to setup the setup

can be found in appendix C, the following sections will just give an overview and evaluate

the testing.

7.4.1 Software-in-the-Loop

Manual Code Analysis

The code of the LFTRX and BSLFTRX SoCs needs to be manually examined beforehand.

This has to be done to evaluate if its feasible to model and pre-process it, in order to use

the automatic test-case-generator and the MATLAB test framework on this code. This

decision is based on the amount of statements in the code, that requires SoC specific

functionality, and are therefore hard to model, so they can be used in a SW loop.

Test-Case-Generator

For the automatic test-case-generation and code analysis, CREST (a concolic test gener-

ation tool for C [BS08]) was used. This is a simple command line tool for UNIX systems.

The tool builds on the yices [DdM06] packet, a Satisfiability Modulo Theories (SMT)

solver for constrain solving, and CIL [NMRW02], a tool to extract the control-flow graphs

from C code. Concolic testing is the technique to execute a program under test during

the test symbolic, as well as concrete. For this concolic testing, CREST supports several

searching methods to explore the maximum number of branches in the program:

• Bounded Depth-First Search

• Control Flow Directed Search

• Uniform Random Search

• Random Branch Searching

Also random input generation can be done using CREST. Branch coverage is used as

quality measurement for the tests generated with CREST. Using a better measurement,

like path-coverage, is not possible. The advantages of CREST are the easy setup and fast

compile for almost all UNIX distribution, but it has the big disadvantage that it can just

be instrumented for single source file programs. Therefore, a script has to be
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prepared to instrument CREST also on multi-file programs, like the implementation of the

pairing procedure with collision management. In order to reuse the generated test-cases,

CREST is able to export the input-vectors to text-files.

To use CREST on SW, the tested code has to be preprocessed. This means, that the

source code has to compile using a common gcc compiler, and symbolic variables have to

be defined. For further information see section C.2.1 in the appendix.

mex and gcc

The MATLAB mex framework is used together with gcc to compile the implementation

of the algorithm (in C), so it can be included in a MATLAB framework as MEX file.

Therefore all SoC specific defines and all commands, using SoC specific functions, need to

be replaced by a C model. Figure 7.4 illustrates the structure of the algorithm, which is

compiled using MEX and gcc to be included in MATLAB, whereas all replaced function

blocks are colored in red.

MATLAB Model Test Framework

The MATLAB Model Framework includes the mex compiled C implementation and the

MATLAB Model of the algorithm and applies all generated test-cases on both, to check for

conformance. Furthermore a log-file containing a test-statistic as well as XML-test-case

definition files for the HW-in-the-Loop tests are generated.

7.4.2 Hardware-in-the-Loop

Python Host SW and Test-Case-Evaluator

The Python Host SW reads the XML-test-case definition files and configures the HW setup

to perform the same test-cases already done for the SW-in-the-Loop tests. It communicates

with the BS via 3WI or UART and can also have the BS forward debug and configuration

commands to the Key-Fobs. The XML-test-case definition files contain the desired reply

of the BS for each test-case execution. Using this information, the Python Host also acts

as test-case Evaluator and generates logs and test statistics.
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HW Setup

The HW setup consists of one BS with LF TRP antenna and eight Key-Fobs. The com-

munication between BS and computer can be established either via 3WI or via UART.

As link between the Key-Fobs and the BS the LF-TRP channel is used.

Figure 7.5: Structure of the MATLAB Model Testing Framework.

7.4.3 Manual Review

In order to prevent false evaluation of HW-in-the-Loop tests due to HW errors, a manual

review of the log-files is advised to get a final overview over the test-process and perfor-

mance of the system.

7.5 Key-Fob Tests

7.5.1 Code Analysis

The code analysis shows that the LFTRX SoC (Key-Fob) FW consists of 651 Lines Of

Code (LOC), which are mainly SoC specific statements. Also the code is quite trivial, as

the Key-Fob is just event triggered and does not implement any algorithm-intelligence.

Therefore, a dynamic SW in the loop testing not feasible and this part of the FW will

just be analysed statically and in the HW loop. For those HW-in-the-Loop tests manually

defined test-cases and test-cases generated by the MATLAB Model Test Framework during

the Model Tests of the BS FW are used.
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7.5.2 Software-in-the-Loop

Static code analysis with LINT and Motor Industry Software Reliability Association

(MISRA) 2004 rules was performed and terminated with zero errors, warnings and mes-

sages. For further information concerning LINT with MISRA see [Gim01].

7.5.3 Hardware-in-the-Loop

For the HW-in-the-Loop tests the XML-test-case specification files are used, whereas one

test-case consists of a series of LF commands send to the Key-Fobs. The BSLFTRX SoC

does not implement any functionality and just works as bridge between the wired interface

and the LF link from the Computer to the Key-Fobs. Each command send to the Key-

Fobs can be evaluated separately and a test-case is considered successful if all commands

sent to the Key-Fob result in the desired replies.

As collisions cannot be specified in the XML files accurately, commands forcing collisions

result in fail-evaluation of the test-case. Therefore a manual evaluation of the log-files is

necessary. The flow of the test can be seen in figure 7.6 (left).

79 test-sequences generated from the model tests and 28 manually defined test-cases were

used for the Key-Fob HW-in-the-Loop tests. Those testcases are defined for different

setups with varying number of Key-Fobs present in range of the TRP antenna. The tests

showed that there is a bug in the LFTRX SoC when sending data in the 8th timeslot, as

all testcases in which Key-Fobs were supposed to send data in timeslot 8, failed. This bug

was investigated further with manual tests and later-on fixed with a workaround in the

FW, to prevent usage of the defective SoC functionality. The SoC bug has to be further

investigated by the Design Team, but does not affect the functionality of the FW for now.

Furthermore it showed, that the LF link is quite unstable. The error in the LF transmission

did not occur deterministic throughout the test sequences and could not be identified

as an FW error, neither on the Key-Fob nor on the BSLFTRX. This means that the

instability may be caused by imperfect measurement and laboratory Printed Circuit Board

(PCB), which are used in the development progress. Further investigation with the help

of Application Engineers to verify the functionality of the laboratory PCB is needed, in

order to isolate possible error sources.

Expect those HW induced problems, the FW worked fine and was tested on several dif-

ferent setups, where no FW errors could be found.



72
CHAPTER 7. IMPLEMENTATION, TEST AND VERIFICATION OF

THE PROCEDURE

Figure 7.6: Left: Execution flow of the Key-Fob HW-in-the-Loop tests. Right: Execution flow

of the BS HW-in-the-Loop tests.

7.6 Base Station Tests

7.6.1 Code Analysis

Analysis of the BSLFTRX SoC FW code shows, that it contains the main part of the

algorithm-intelligence, and is way more complex than the FW code of the LFTRX SoC in

the Key-Fob. Also the implementation focused on modularity, to separate the algorithm
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as good as possible from the other parts of the FW. Therefore the algorithm uses mainly

standard C functions and statements and has just a few interfaces to the SoC specific

functions.

For those reasons a SW-in-the-Loop testing is not just desirable, due to complexity of

the code, but also highly feasible, as there is only a small interface to the SoC specific

functions which can easily be modeled within the test framework. The pure pairing and

collision management procedure has 1532 LOC, which are tested SW-in-the-Loop to verify

the procedure. The whole BSLFTRX FW, which has 2378 LOC, is just tested HW-in-

the-Loop, as it contains also a lot of SoC specific commands.

7.6.2 Software-in-the-Loop

Static code analysis with LINT and MISRA 2004 rules was performed and terminated

with zero errors, warnings and messages. For further information concerning LINT with

MISRA see [Gim01].

As second step, test-case generation with CREST (see [BS08] and section 7.4.1) was done.

Using Control Flow Directed Search, CREST was able to evaluate 164 of 172 branches.

The remaining branches could not be evaluated by CREST, as those branches are catching

errors which can just occur on malfunction of the HW and could not be modeled. Those

errors are forced to occur in the HW-in-the-loop tests to also cover this branches of the

algorithm. In order to have more test-cases which can later-on be used in the Matlab

Model Test Framework and in the HW-in-the-loop tests, CREST was instructed to run

50 iterations generating random input data and export the generated input to files. In

addition, to cover extreme cases and special error cases, also 29 manual test-cases where

written, which could later-on be used in the Model Testing Framework.

Third, dynamic code testing was done, in form of Black Box Tests performed with MAT-

LAB. Therefore a framework to test all single modules (see figure 7.2) of the algorithm

as well as the whole implementation against a MATLAB model was implemented using

MATLAB mex. As input for the Black Box Tests, the 50 testcases generated by CREST,

as well as 29 manually defined testcases were used. With those tests, it was possible

to verify the functionality of the procedure and all its modules, and find some common

programming errors, as typing or off-by-one errors, in the code. Furthermore an overflow

error in the Fletcher-16 calculation, which had different effects in the MATLAB model

(double-precision arithmetic) and the implementation (8-bit precision arithmetic), was

discovered.
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7.6.3 Hardware-in-the-Loop

Using the generated XML-test-case specification files a series of HW-in-the-Loop tests were

performed. For that the 79 test-cases where used, which were previously converted to XML

testcase specification files. The flow of the test can be seen in figure 7.6 (right). It showed

that the algorithm is highly reliable and many occurring HW errors can be compensated.

As already observed in the Key-Fob tests (section 7.5.3), the LF link was unstable, which

is not caused by the FW. As the algorithm was already tested and corrected during the

SW-in-the-Loop tests, and the rest of the BSLFTRX FW consisted mainly of function

calls to tested and verified SoC functions provided by Maxim Integrated, there where no

further FW errors that could be identified by these tests.
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Conclusion and Outlook

8.1 Evaluation

The evaluation of the KGO System and the state-of-the-art procedures for pairing and

collision management showed, that it is not possible to implement a state-of-the-art pro-

cedure from literature without modification. This is due to the special characteristics and

capabilities of the components of the KGO System. In order to use those characteris-

tics effectively, a procedure, tailored to the KGO System, had to be designed. Also, as

the pairing is designed for a limited operation mode as it should be possible to pair a

Key-Fob without battery, it showed that no proper random number source is usable on

the Key-Fob. Therefore a deterministic procedure had to be chosen for implementation.

This could have lead to problems in systems with unlimited number of Key-Fobs, but as

the number is limited to eight, many error cases and could be explored and taken care of

when implementing, to make the procedure work properly for the KGO System setup.

The tests show that the implementation is working fine and fulfills all the specification,

defined at the project start, which are:

• Initial communication with up to eight Key-Fobs.

• Slot assignment procedure.

• Dummy Transmission which can later-on replaced with Key-Fob-BS communication

for car-credentials, cryptographic key and additional necessary data.

• Verifying of the pairing success, including a simple error handling.

Furthermore the algorithm is very robust and can easily be extended to be less error prone.

Also the design is easily portable, so it can easily be integrated in other FW projects or
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demonstrators of the KGO System.

Moreover the test framework can be considered a useful output of the project. It is tailored

to the needs of the KGO System, but can easily be reused as base for a more powerful

and generic functional testing framework for SoC FW. It connects SW-in-the-Loop and

HW-in-the-Loop tests to allow an easy test and evaluation of the performance of the tested

FW, because its easy to isolate the tests for specific components of the system. This is

due to the fact that all components can be tested separately, SW as well as Key-Fob-FW

and BS-FW implementation on the HW. Also the biggest part of the tests are automated,

the manual effort is minimized to setting up the framework and evaluating the results.

Although it needs to be mentioned, that the quality of the tests highly depend on the

quality of the models and the test-case-generator of the framework.

8.2 Future Work

For further development of the procedure, additional security features, e.g. cryptography,

to make the procedure safe against cryptographic attacks should be implemented. This

would also enable that the pairing procedure could be triggered also by the carholder,

not just the OEM or a mechanic. In case one Key-Fob stops working or gets lost or a

new Key-Fob needs to be added to the car on a customer request, a single pair, or single

un-pair of Key-Fobs also needs to be added.

At the moment, the procedure also just implements a very rudimentary error handling,

which mainly consists of error reports. In order to make it more independent and au-

tomated, a more sophisticated error detection and error handling could be implemented,

also considering changes in the setup during the process or failures in the Key-Fobs. A

good error detection and error handling would also increase the procedures security and

decrease its proneness to attacks.

In addition, also a final verification of the pairing procedure could be implemented, for

example using a challenge-response-procedure. This would further increase the reliability

of the system and the susceptibility to errors. Moreover the testing framework should also

be extended by a more sophisticated test-case generator, in order to have a better test

coverage (Path Coverage or Modified Condition/Decision Coverage).
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Appendix A

Characterization of the Random

Number Sources available on the

Key-Fob in TRP Mode

A.1 Measurement Description

For the stochastic collision management process, a sufficient random number source would

be necessary to find the reply timeslot for the Intelligent Key Unit used in the Keyless

Go System (Key-Fob). For this reason all possible random number sources available on

the Key-Fob LF Transceiver SoC (LFTRX) System-on-Chip (SoC) on the Key-Fob had

to be identified and characterized. As during Transponder (TRP) mode just particular

modules of the Key-Fob are active, not all possible sources could have been taken into

consideration. Possible sources are:

• VDDI - the inductive supply voltage of the LFTRX SoC on the Key-Fob. This

voltage depends on the strength of the Low Frequency (LF) field.

• VTP - temperature voltage, depending on the environmental temperature

Measuring the Received Signal Strength Indication (RSSI) is not an option, as the LFTRX

SoC does not offer RSSI measurement in TRP mode, as the analog front end to the RSSI

pins is not active.

Furthermore, this measurement setup was used to determine if the dominant sender prob-

lem can occur in this system. This would cause some more features in the implementation

of the final algorithm.
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A.1.1 Measurement Setup

On the Computer a python host Software (SW) is running to control the measurement

flow. It communicates with the Base Station (BS) via 3-Wire-Interface (3WI) or Universal

Asynchronous Receiver/Transmitter (UART), using a Maxim Integrated FDTI interface

device. The BS executes the control commands send by the computer and forwards mea-

surement commands to the Key-Fob, using the LF TRP communication channel. The

Key-Fob receives the command and executes the measurement, whereas per command

three samples are taken. Those three samples are then send to the BS via LF TRP com-

munication and from there forwarded to the Computer via 3WI or UART where they are

processed and stored by the host SW.

For the measurements of the random number sources just one Key-Fob is placed in range

of the LF TRP signal, to make sure no collisions occur, whereas the Key-Fobs vary. On

the other hand, for the dominant sender problem, eight Key-Fobs will be placed in range

to provoke collisions and keys sending at the same time.

Figure A.1: Measurement setup for doing the measurements on the Key-Fob and identifying the

dominant sender problem.

The Key-Fobs were either placed on a rooster in a horizontal plane or in a cup vertically

aligned, to simulate various placement methods within a car during production. Fur-

thermore different Key-Fobs where used for every position and measurement type (see

figure A.2). The LF TRP coil was fixed in the inside of a box beneath the rooster.

A.2 Measurement Results

The measurements have been done for 10 different Key-Fobs, at 6 different position in

horizontal (for a flat surface) and 2 in vertical (for a cup-holder). There were 300 samples
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Figure A.2: Measurement setup for characterizing the random number sources on the Key-Fob

depending on the position of the Key-Fob simulating a cup-holder and a flat space near the LF

TRP coil.

taken per Key-Fob and position with a Analog to Digital Converter (ADC) resolution of

10 bit.

VDDI

Figure A.3 shows that the probability distribution is too narrow for a cup-holder formed

as well as for a flat surface above the LF TRP antenna. Therefore its not sufficient to

use VDDI as random number source for selecting the reply timeslot, as a lot of collisions

would occur.

This is because the distance between the Key-Fob and the LF TRP antenna is small

enough, so the Key-Fob can load the capacitor, used for storing energy from the LF field,

high enough that VDDI is at the limit1.

1A limiter is controlling the maximum of the VDDI, to prevent VDDI from getting bigger than the

allowed maximum if the LF TRP field is very strong.
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Figure A.3: Probability distribution of the measurement values taken at different positions for

VDDI. (left - flat space; right - cup-holder).

VTP

As in practice the temperature in a normal environment will not show big changes, there-

fore measurements in normal laboratory environment without any temperature control is

sufficient.

Measurements show that the distribution depending on the position of the Key-Fob for a

cup-holder as well as for a flat surface this behavior is not sufficient (see figure A.4).

Figure A.4: Probability distribution of the measurement values taken at different positions for

VTP. (left - flat space; right - cup-holder).
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Dominant Sender Problem

To identify if the dominant sender problem occurs in this setup, multiple measurement

where taken, whereas for one measurement just one Key-Fob was in range of the LF TRP

antenna. For the other measurements, eight Key-Fobs where randomly arranged in the

field. For each measurement 1000 packets were send.

As figure A.5 shows, that for one Key-Fob in range, all packets could be received without

any problems. For eight Key-Fobs just 20% of the packets could be received, less than

10% were corrupt and in more than 70% of the cases no valid packet could be received.

Figure A.5: Measurement setup for doing the measurements on the Key-Fob and identifying the

dominant sender problem.

A.3 Conclusion

The measurements show, that no available random number source on the Key-Fob is

reliably and therefore useable in practice. This means an algorithm relying on a good
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random number source is not an option for the implementation. Furthermore it is shown

that the dominant sender can occur in some few cases, and in order to build a reliable

system, this must be considered in the design of the algorithms.



Appendix B

Definition of Conformance

The observations made in the following sections are based on the observations and as-

sumptions made in [Tre96]

B.1 Symbol Description

B.1.1 Model

The model m describes the algorithm and is verified to be correct.

B.1.2 Implementation

The Implementation i is derived from the model and represents the Implementation Under

Test (IUT).

B.1.3 Input

A set of inputs x consists of the 8x3 matrix; one (Identification number (ID), SEND LOCK,

timeslot number) triple for each Intelligent Key Unit used in the Keyless Go System

(Key-Fob).

The input set x can be chosen from all possible inputs in X, whereas a valid input set

relies following restrictions:

i) All IDs in one set have to be unique.

ii) SEND LOCK ∈ {0, 1}
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iii) timeslot number ∈ [0, 7]

B.1.4 Output

A output set consists of the tuple (error code, timing table). The error code is a scalar

and timing table a 8x2 matrix, as defined in section 5.4.2.

B.1.5 Equality

Software-in-the-Loop

The equality operator ==out SW for two output sets o1 = (error code1, timing table1) and

o2 = (error code2, timing table2) is defined as follows:

o1 == o2 iff

error code1 == error code2

∀idx ∈ [0, 7] : timing table1[idx].valid == timing table2[idx].valid

∀idx ∈ [0, 7] : timing table1[idx].key fob id == timing table2[idx].key fob id

Hardware-in-the-Loop

The equality operator ==out HW for two output sets o1 = (error code1, timing table1) and

o2 = (error code2, timing table2) is defined as follows:

o1 == o2 iff

error code1 == error code2

∀idx ∈ [0, 7] : timing table1[idx].key fob id ∈ timing table2 :

idx2 ∈ [0, 7] : timing table1[idx].key fob id == timing table[idx2]2.key fob id

idx2 ∈ [0, 7] : timing table1[idx].valid == timing table[idx2]2.valid

B.2 Derivation of conformance

A implementation of the algorithm is conform to a model if the output for model and

implementation equal for the same input set.

i . . . Implementation x . . . Input Set

m . . . Model X . . . Possible Input Sets
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i ≤conf m =def ∀x ∈ X : out (i for x) ==out out (m for x) (B.1)

whereas the ==out operator can either be replaced by ==out SW or ==out HW .



88 APPENDIX B. DEFINITION OF CONFORMANCE



Appendix C

Setting up the Test Framework

C.1 Overall Description

Figure C.1 illustrates the structure of the Maxim Integrated Keyless Go System

(KGO System) test/development framework. To follow the data-flow start at the up-

per left corner. The automatic test-case generator, in this case CREST ([BS08]), is used

to generate input-sets to test the C implementation.

C.2 Setting up the Components

C.2.1 CREST

To setup CREST for a UNIX system, the following packets need to be installed

• build-essentials

• gcc

• glibc

• yices version 1.0.39 (http://yices.csl.sri.com/download-old.shtml)

• CREST https://github.com/jburnim/crest

yices and CREST can be installed by downloading the archive from the website and

following the instructions in the README.
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Figure C.2: Folder-structure.

Preparing the algorithm

In order to instrument CREST to generate test-cases, first a dummy main has to imple-

mented, you can see the listing with comments below:

1 uint32 t e s t c a s e k e y f o b i d [LF TRP NUM TIMESLOTS ] ;

2 uint8 t e s t c a s e k e y f o b t s n [LF TRP NUM TIMESLOTS ] ;

3 uint8 t e s t c a s e s e n d l o c k [LF TRP NUM TIMESLOTS ] ;

4

5 void main ( )
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6 {
7 uint8 cnt = 0 ;

8

9 stat ic t im ing ent ry xdata t i m i n g t a b l e [LF TRP NUM TIMESLOTS ] ;

10

11 uint32 t e s t c a s e k e y f o b i d [LF TRP NUM TIMESLOTS ] ;

12 uint8 t e s t c a s e k e y f o b t s n [LF TRP NUM TIMESLOTS ] ;

13 uint8 t e s t c a s e s e n d l o c k [LF TRP NUM TIMESLOTS ] ;

14

15 CREST int ( t e s t c a s e k e y f o b i d [ 0 ] ) ;

16 CREST int ( t e s t c a s e k e y f o b i d [ 1 ] ) ;

17 CREST int ( t e s t c a s e k e y f o b i d [ 2 ] ) ;

18 CREST int ( t e s t c a s e k e y f o b i d [ 3 ] ) ;

19 CREST int ( t e s t c a s e k e y f o b i d [ 4 ] ) ;

20 CREST int ( t e s t c a s e k e y f o b i d [ 5 ] ) ;

21 CREST int ( t e s t c a s e k e y f o b i d [ 6 ] ) ;

22 CREST int ( t e s t c a s e k e y f o b i d [ 7 ] ) ;

23

24 for ( cnt = 0 ; cnt < LF TRP NUM TIMESLOTS; cnt++)

25 {
26 t e s t c a s e k e y f o b t s n [LF TRP NUM TIMESLOTS] = 0 ;

27 t e s t c a s e s e n d l o c k [LF TRP NUM TIMESLOTS] = 0 ;

28 }
29

30 uint8 e r r o r c o d e = PAIR main ( t i m i n g t a b l e ) ;

31 }

Second, all algorithm source code needs to be copied into one file. This is done with

the Prepare C file.sh script, in the ./test/Pairing/CREST/PAIR CREST folder. The re-

sulting file then has to be manually checked as the script may produce non-compile-able

code.

C.2.2 Matlab Model Testing Framework

The Framework consists of several components:

• Core script, which handles the execution flow of the framework as well as the test-

case evaluation and generating of the log files and compiling of the C implementation

to mex.

• TESTCASEGEN files are part of the Extensible Markup Language (XML)-File gen-

erator. These functions are used to generate the needed test-case specifications on-

the-fly, during the Software (SW)-in-the-Loop tests.

• MODEL PAIR functions implement the Matlab model of the pairing algorithm with
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collision management.

• The directories CREST and Manual-test-cases hold the input vector files for the

test-cases.

• C-MEX holds the C environmental model file as well as all compiled mex files.

No further configuration is needed if all scripts are executed properly. Paths to new

test-case input vector files can be added in TEST framework main.m.

C.2.3 Hardware Setup

The Hardware (HW) setup consists of a Base Station (BS) (Base Station LF Transceiver

SoC (BSLFTRX)) and at least nine Key-Fobs (Key-Fob LF Transceiver SoC (LFTRX)),

whereas the number of Key-Fobs has to be manually changed for the different test-cases.

The BSLFTRX has to be programmed with the KGO base station pairing Firmware (FW)

and all used Key-Fobs with KGO key pairing fw. It has to be noted that it is necessary

to set the right debug ID and debug timeslot for the Key-Fobs in the KGO key pairing fw

FW, before compiling and programming, in order to be able to automatize the test-flow.

DBG ID DBG TSN

1 0

2 1

3 2

4 3

5 4

6 5

7 6

8 7

9 0

Table C.1: Debug values for the Key-Fobs.

C.3 Testing

LINT is included in the Keil framework provided by Maxim Integrated, using the MISRA

2004 rules. In order to run crest following commands have to be executed:

1 cd PAIR CREST

2 . . / bin / c r e s t c a l l \ c \ f c t . c

3 . . / bin / r u n c r e s t . / a l l \ c \ f c t 50 −random input
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Then TEST framework main.m in ./test/Pairing has to be executed to run the Mat-

lab Model Testing Framework. This framework will generate the test-case XML files in

./test/Pairing.

For the hardware setup, the script provided in ./test/System tests need to be executed,

whereas first the absolute paths in the script need to be adjusted. This will generate

log-files for all the executed test-cases, which can be found in the same directory. For all

test-cases the right number of Key-Fobs in the HW setup have to be set manually.
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Packet Definition

D.1 REQUEST

This command requests a specific group of Key-Fobs to reply to the Base Station (BS)

with their ID.

D.1.1 Base Station to Key-Fob

Figure D.1: REQUEST-Packet dataload downlink.

D.1.2 Key-Fob to Base Station

Figure D.2: REQUEST-Packet dataload downlink.

D.2 SET TIMING

Sets the permanent timeslot number for a specific Key-Fob.
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D.2.1 Base Station to Key-Fob

Figure D.3: SET TIMING-Packet dataload downlink.

D.2.2 Key-Fob to Base Station

Figure D.4: SET TIMING-Packet dataload downlink.

D.3 START CRED EXCH

Starts the credential exchange between BS and Key-Fob to finalize the pairing procedure.

D.3.1 Base Station to Key-Fob

Figure D.5: START CRED EXCH-Packet dataload downlink.

D.3.2 Key-Fob to Base Station

Figure D.6: START CRED EXCH-Packet dataload downlink.
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D.4 CLEAR

Resets the Key-Fob and forces it to perform a page erase.

D.4.1 Base Station to Key-Fob

Figure D.7: CLEAR-Packet dataload downlink.

D.4.2 Key-Fob to Base Station

No response by the Intelligent Key Unit used in the Keyless Go System (Key-Fob).

D.5 DBG SET 32 BIT ID

This command is for testing and debugging purposes. A temporary 32 bit ID for the

LFTRX SoC on the Key-Fob can be set.

D.5.1 Base Station to Key-Fob

Figure D.8: DBG SET 32 BIT ID-Packet dataload downlink.

The dummy bytes are necessary to ensure that the Key-Fob has enough time to process

the command.



98 APPENDIX D. PACKET DEFINITION

D.5.2 Key-Fob to Base Station

Figure D.9: DBG SET 32 BIT ID-Packet dataload downlink.
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Abbreviations

3WI 3-Wire-Interface

AES Advanced Encryption Standard

AMBA Advanced Microcontroller Bus Architecture

APB AMBA Peripheral Bus

API Application Programming Interface

ACK Acknowledge

ADC Analog to Digital Converter

ASK Amplitude Shift Keying

BIST Build-In-Self-Test

BPSK Binary Phase Shift Keying

BS Base Station

BSLFTRX Base Station LF Transceiver SoC

CDMA Code Division Multiple Access

CPU Central Processing Unit

CSMA/CD Collision Sense Multiple Access with Collision Detection

CSMA/CA Collision Sense Multiple Access with Collision Avoidance

CTS Clear-to-Send

CRC Cycle Redundancy Check
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DC Direct Current

DSP Digital Signal Processing

ECC Elliptic Curve Cryptography

ESP Electronic Stability Program

FDMA Frequency Division Multiple Access

FW Firmware

FSK Frequency Shift Keying

GPIO General Purpose Input Output

HW Hardware

ID Identification number

I/O Input/Output

IUT Implementation Under Test

ISM-Band Industrial, Scientific and Medical radio band

JLCC JTAG Like Control Chain

JTAG Joint Test Action Group

KGO System Maxim Integrated Keyless Go System

Key-Fob Intelligent Key Unit used in the Keyless Go System

LF Low Frequency

LFTRX Key-Fob LF Transceiver SoC

LMP Link Manager Protocol

LOC Lines Of Code

MISRA Motor Industry Software Reliability Association

MSK Minimum Shift Keying

NRZ No-Return-to-Zero

OEM Original Equipment Manufacturer

OOB Out-Of-Bound Channel

PCB Printed Circuit Board
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QPSK Quadrature Shift Keying

RAM Random Access Memory

RCO RC Oscillator

RF Radio Frequency

RFID Radio Frequency Identification

ROM Read-Only Memory

RSSI Received Signal Strength Indication

RX Receive

RTS Ready-to-Send

SALOHA Slotted ALOHA

SDMA Space Division Multiple Access

SoC System-on-Chip

SSP Secure Simple Pairing

SMT Satisfiability Modulo Theories

SW Software

SWI Single Wire Interface

TDMA Time Division Multiple Access

TRP Transponder

TRX Transceiver

TX Transmit

UART Universal Asynchronous Receiver/Transmitter

UHF Ultra High Frequency

UHFTRX UHF Transceiver SoC

XML Extensible Markup Language
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