

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

III

Danksagung

Dank gilt meinem Betreuer Assoc. Prof. Dipl.-Ing. Dr. techn. Wilfried Gappmair

für die fachkundige Unterstützung während des Diplomarbeitsprozesses. Ich

danke allen Beraterinnen und Beratern bei Joanneum Research, die mich bei

diesem Vorhaben unterstützt haben. Besonders hervorheben möchte ich meine

Ansprechperson Dipl.-Ing. Dr. techn. Joannes Ebert, der mir jederzeit bei Fra-

gen und Anliegen zur Verfügung stand. Danken möchte ich außerdem Dipl.-Ing.

Eral Türkyilmaz, Dipl.-Ing. Michael Schmidt, Dipl.-Ing. Dr. techn. Michael

Schönhuber, Mag. Sabine Kastner-Puschl und Dipl.-Ing. Harald Schlemmer für

deren Hilfe und Beratung.

IV

Kurzfassung

Kommunikation ist eine der wichtigsten Aufgaben zwischen Satelliten und Bo-
denstationen, wie sie zum Beispiel bei Telemetrie und Telekommandos zum
Einsatz kommt. Die erlaubten Kommunikationsschemata sind im CCSDS-
Standard definiert. Das Ziel der vorliegenden Arbeit ist es, eine praktische
Übersicht für die auf Software basierende Modulation bzw. Demodulation von
Signalen zu geben. Zudem soll ein PC-basiertes System für die Signalverarbei-
tung in Echtzeit empfohlen werden. Das System soll auch fähig sein, den Erfor-
dernissen mit hoher Zuverlässigkeit gerecht zu werden, die unterstützend für
Weltraummissionen benötigt werden.

Diese Diplomarbeit enthält die grundsätzlichen Strukturen wie auch die detail-
lierte Beschreibung von verfügbaren digitalen Kommunikationsmethoden. Ein
auf MATLAB basierter Simulator wurde entwickelt und eingesetzt, um die Per-
formance und die Eigenschaften von Algorithmen für Kanalkodierung, Modulati-
on, Demodulation sowie eine datengestützte und nicht datengeschützte Syn-
chronisation zu evaluieren.

Darüber hinaus soll diese Arbeit die Planung und Dimensionierung von PC-
basierten Systemen veranschaulichen. Um die nötige Rechenleistung schätzen
zu können, wird die Rechenkomplexität für alle erwähnten Algorithmen unter-
sucht. Unglücklicherweise ist momentan keine CPU leistungsfähig genug, um
die ganze Signalverarbeitung in Echtzeit seriell durchführen zu können. Des-
halb ist die Untersuchung der Parallelisierung ein wichtiger Teil dieser Arbeit.

Die Ergebnisse zeigen, dass es möglich ist, ein auf Software basiertes System
für ein CCSDS-Modem mit einer Leistung von bis zu 40 Millionen Symbolen pro
Sekunde zu entwickeln.

V

Abstract
Communication is one of the major tasks between space and ground segments,
most prominently exemplified by telemetry and telecommand. The allowed
communication schemes are defined by the CCSDS standard. The purpose of
this work is to get a practical overview of software defined radio-based modula-
tion and demodulation of these signals, and then recommend a PC-based sys-
tem for real-time signal processing. Furthermore, the system has to be able to
satisfy the requirements of high reliability required to supply space missions.

The thesis contains the basic structures as well as a detailed description of the
available digital communication methods. A MATLAB-based simulator has been
developed and used to evaluate the performance as well as the properties of
the usable algorithms for channel coding, modulation, and synchronization.

In addition, this thesis presents the planning and dimensioning of a PC-based
system. To be able to estimate the needed resources, the computational com-
plexity is evaluated for all of the above mentioned algorithms. Unfortunately,
none of the today available CPUs is strong enough to be able to do the com-
plete signal processing in real time. Therefore, the examination of the possibili-
ties for parallel organization is an important part of this work as well.

The results show that to date it is possible to build a software-based system for
a CCSDS modem up to 40 Msymbols per second.

VI

Acronyms

AVX…………… Advanced vector extension
AWGN Additive white Gaussian noise
BER Bit error rate
BPSK…………... Binary phase shift keying
CCSDS………… Consultative Committee for Space Data Systems
CPU……………. Central processing unit
CRLB Cramer-Rao lower bound
DA Data-aided
DD Decision-directed
ECSS………….. European Cooperation for Space Standardization
FB Feedback
FEC Forward error correction
FF Feedforward
FLOPS………… Floating point operations pro second
GMSK………….. Gaussian minimum shift keying
GPU……………. Graphical processing unit
ISI Inter-symbol interference
LUT Look-up table
L&R Luise-Reggiannini
MF Matched filter
ML Maximum likelihood
M&M Morelli-Mengali
NCO Numerically controlled oscillator
NDA Non-data-aided
O&M Oerder-Meyr
PLL Phase-locked loop
PSK Phase shift keying
QAM Quadrature amplitude modulation
QPSK………….. Quadrature phase-shift keying
RCos Raised cosine
RRCos Root-raised cosine
SNR Signal-to-noise ratio
TCM……………. Trellis coded modulation
TDMA Time-division multiple access
V&V Viterbi-Viterbi

VII

Table of Contents

1. Introduction ... 1

2. Framework .. 2

2.1 Introduction ... 2

2.2 Basic structure of framework ... 2

2.3 Basic files and usage of simulation framework .. 2

2.4 Main parts of a baseband digital communication system model 5

2.5 Baseband channel model .. 5

2.6 Some examples of frequently used measurements with the framework 7

3. Channel Coding .. 8

3.1 Simulation Model .. 8

3.2 Main coding techniques used in CCSDS standard .. 9

3.3 Convolutional coding ... 9

3.4 Reed-Solomon code ..15

3.5 Concatenated codes ..17

4. Modulation .. 19

4.1 Pulse code modulation ...19

4.2 Pulse shaping ..20

4.2.1 Root-raised cosine filter ..22

4.2.2 IIR filter ..25

4.2.3 Gaussian filter ..27

4.3 Modulation ...29

4.3.1 M-ary phase shift keying ..30

4.3.2 4D-8PSK-TCM ...32

4.3.3 Offset QPSK ..33

4.3.4 Phase modulation ..35

4.3.5 GMSK ..36

5. Synchronization .. 41

5.1 Introduction ..41

5.2 Channel model parameters for space usage ..41

5.3 Possible transmitter structures ...45

5.4 NDA synchronization algorithms for PSK based modulations51

VIII

5.4.1 Timing estimation (O&M, MaxE) ...51

5.4.2 Phase error estimation (V&V) ...53

5.4.3 Phase estimation in OQPSK case ..54

5.4.4 Frequency estimation (V&V)...55

5.5 NDA synchronization algorithms for GMSK ..56

5.6 DA synchronization – feedback structures ...58

5.6.1 ASM based frame synchronization ...58

5.6.2 Phase estimation in M-PSK systems ..58

5.6.3 Frequency estimation ...59

5.6.4 Timing estimator ...60

5.6.5 Timing estimator in GMSK ...60

5.7 Basic receiver structures and demodulation examples62

5.7.1 OQPSK ..62

5.7.2 8-PSK ..64

5.7.3 GMSK ..65

6. Parallel Organization ... 66

6.1 Introduction ..66

6.2 Parallel organization of the used algorithms ...66

6.3 CPU implementation ..70

6.4 Cuda ..73

6.5 Recommended system plan ...78

7. Conclusion .. 81

8. Literature ... 82

9. Appendix ... 84

1

1. Introduction

Human presence in space has a history over 50 years. After some decades of

reduced attention, in the last years space industries have a growing perspec-

tive.

Communication is one of the major tasks of all equipment in space. Without

reliable communication the devices are not able to carry out the tasks they have

been developed for. If the costs of space technologies are taken into considera-

tion, it is easy to understand why the exact communication tests, and reliable

communication devices are so important.

The standard modulation methods and coding techniques in space technologies

are defined in CCSDS standard. Customer can choose from these modules,

and build an own communication method optimized to individual needs, similar

to LEGO.

The today used ground stations use in general standardized connections, and

modules to be able to adapt the transceiver to consumer needs. Because of the

changes in the hardware structure of the devices, and the need of high reliabil-

ity, integration tests are needed all the time, which costs a lot in time and money

too.

Today software radio can offer an alternative solution. Software based modular

systems do not need integration tests all the time, because in this case the

changes appear only in software. Another advantage of the SDR based system

is that redundancy can be easier achieved. With the increased computational

capacity of processors and the appearance of GPU based systems a decreased

number of processing units are needed. The software based systems can be

cheaper because of the usage of standard devices, and will be always more

capable with time.

The purpose of this study is to get a practical sight of the usable algorithms and

data structures, by taking into consideration the structure of modern CPUs

GPUs, and the possibility of parallel organization.

2

2. Framework

2.1 Introduction

The purpose of this framework is to provide a powerful, easy to use platform, for

development and evaluation of baseband transmitter, receiver algorithms, and

structures relevant for satellite communication.

2.2 Basic structure of framework

The framework is based on Matlab/Simulink. The communication model is im-

plemented in Simulink, with algorithms implemented in blocks. The configura-

tion of the communication model blocks can be made in Matlab with global vari-

ables. All these variables are included by blocks_config.m file, they can be di-

rect edited here. The basic communication simulation can be made by calling

the Simulink simulation file from Matlab. The variables for the simulation (SNR,

Timing error …) can be edited directly before the call of the simulation.

2.3 Basic files and usage of simulation framework

Framework.slx

The simulation can be separated to five sections followed by each other from

left to right (Figure 1):
o Bit pattern generation
o Baseband transmitter structure
o Baseband channel model
o Baseband receiver structure
o Processing of received data

The basic used signal structure is frame based. Each signal is stored in a col-

umn vector, and the sample time is chosen to 1.

Each block can be configured through Matlab global variables. The recom-

mended name convention is that each variable has a prefix (T_Transmitter,

CH_Channel, R_Receiver), and a good readable unique name. Each used vari-

able has to be stored with a default value in blocks_config.m.

3

Blocks_config.m
In this file are all parameters needed for the framework. It is separated to four

main structures (Transceiver, Channel model, Receiver, Other blocks), and has

some longer notes in the end, these notes are quoted by blocks. Structure of

the blocks:
% Filter: Root raised cosine
 T_Rolloff_factor=0.8;
 Group_delay=10; % delay in symbols (filterlength)

It has to be taken into consideration, that Simulink compiles the Matlab function

blocks to C to significantly improve the simulation speed. It has some draw-

backs; the main is that Simulink has to know the block size before compilation.

With other words, the length of the output vector cannot depend on any input

variable of the block! If it has to be, it is possible to have variable size blocks,

but they are not supported from all Simulink blocks, and they must have a hard

limit of maximal block size too. In general, if the output length depends on input

variables, and no variable size block is usable, then the parameter has to be

given in the file, and in blocks_config.m file has to be noted where it can be ed-

ited.

How to run simulation from Matlab?

A basic simulation has this structure:
1. Call the default configuration

 blocks_config;

2:1 Basic simulation framework Figure 1: Framework

4

2. Change some variable values:

SNR_values=15; % The SNR values to compute

3. Call the simulation:

 sim('SIM_Framework');

4. Process the data from simulation.

plot(signal);

Modules_to_ use.slx

All developed and used Simulink blocks can be found in this slx file. All the
blocks are categorized into subsystems. The Channel model is the only excep-
tion; it is simply usable in this form.

 Figure 2: Modules

5

2.4 Main parts of a baseband digital communication system model

A baseband digital communication system model does not contain a model for

the RF modulator, and the other parts of the RF chain (C. C. Bissell, D. A.

Chapman, 1992) (red blocks in Figure 3). The main purpose of the baseband

model is to make the computation faster by omitting the unnecessary RF parts

from the simulation, and by replacing the RF channel model with an equivalent

baseband channel model.

Figure 3:Main parts of a digital transmitter

Transmitter: The transmitter has a similar structure in almost all cases. It has

an encoder to give some redundancy to the bit pattern. Then a modulator

makes a baseband signal from the bit pattern, with some combination of pulse

code modulation, modulation, and filtering.

Channel model: In baseband system model this baseband signal is directly

distorted by a baseband model of the used channel.

Receiver: The purpose of the receiver is to recover the original data sequence.

To reach this, it has to estimate the original signal from the received signal, and

then demodulate it. The estimation is done by estimating the channel parame-

ters, used for correction purposes. Although the structure of the receiver is simi-

lar to the reverse of the transmitter, because of often used feedback structures

it cannot be so generally visualized.

2.5 Baseband channel model

The mostly used channel model for satellite communication is AWGN channel

model (Figure 4). The model contains an AWGN noise generator, and some

other main effects of the channel to the signal, which have to be corrected at

receiver side. The sample time is considered to be 1. It has to be taken into

consideration for all Hz based properties.

6

Figure 4: Baseband channel model

- Timing offset
The purpose of this block is to generate timing offset. To lower the computa-
tion costs the timing offset accepts just integer numbers. Fractional timing
offsets can be generated by oversampling at transceiver side, and build a
downsample block into channel model before the receiver side. The Doppler
effect makes some timing offset error, but it is significantly smaller than the
caused frequency error, and in satellite communication it can be well propa-
gated, and corrected. For that reason, this version of channel model does
not include this effect.

- Phase/frequency offset
The purpose of this block is to generate phase, and frequency offset. The
work of model:

𝑜𝑢𝑡(𝑡) = 𝑖𝑛𝑝𝑢𝑡(𝑡) ∗ 𝑒𝑗∗𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓𝑓𝑠𝑒𝑡∗𝑡+𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡

- Phase noise
Generates additionally phase noise. CH_Phase_noise_level describes the
magnitude of the phase noise (dBc/Hz), and CH_Phase_frequency_offset
describes the deviation of the noise. For more detailed information watch
the block description.

- AWGN channel
This block adds noise to the signal. The added noise has uniform power
across the frequency band (white), and it has normal distribution in time
domain (Gaussian). The CH_SNR variable contains the average Signal
power (1) to Noise power ratio in dB.

7

2.6 Some examples of frequently used measurements with the frame-
work

Basic measurements with one setting
In general it is easier to export the needed data to workspace, and there pro-

cess it. The process is of course possible with the same code used in a Matlab

function Simulink block too.
- Timing measurements

%Time

figure('name','Time')
plot(abs(signal_after_RRC(1:500)));

- Spectrum

%FFT
figure('name','FFT')
plot(abs(fft(signal_after_RRC)));

- Eye diagram (Figure 5.)

%Eye diagram
eyediagram(real(signal_after_RRC),Upsample_factor*2);

- Scatter plot

%Scatter plot
figure('name','Scatter plot')
plot(signal_downsampled,'.');

Figure 5: Eye diagram

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-1

-0.5

0

0.5

1

Time

A
m

pl
itu

de

Eye Diagram

8

3. Channel Coding

The main goal of channel coding is to reduce the BER for a given SNR to an

acceptable level. In Channel coding we assume that we have perfect estimation

of the channel parameters, and therefore a perfectly corrected channel.

In general we have to put some redundancy to the information, and with the

knowledge of this redundancy we can get back our original bit sequence at the

receiver.

Because this redundancy makes our data packets longer (code rate), and be-

cause with one symbol we can send more bits (modulation gain), it is a better

idea to measure the effectiveness of coding not in terms of BER vs. SNR, but

BER vs Eb/No.

3.1 Simulation Model

Because we assumed that the channel is perfectly corrected, we can leave tim-

ing, and phase error from channel model. If there is no timing error we can

leave out upconversion, downconversion, and channel filter too, because they

have no influence to received data in a memory less channel. These modifica-

tions make the simulation lot faster.

The curves for uncoded BPSK case
(Left from CCSDS standard, right simulation)

9

Figure 6: Uncoded BPSK BER performance

3.2 Main coding techniques used in CCSDS standard

CCSDS standard use the following techniques (CCSDS 130.1-G-1), (ECSS-E-

ST-50-01C):
- Convolutional coding
- Reed-Solomon coding
- Concatenated codes: Reed-Solomon and convolutional
- Turbo Codes

This implementation model includes convolutional codes, Reed-Solomon and

concatenated codes

3.3 Convolutional coding

Convolutional encoder
A rate r=1/n convolutional encoder is a linear finite-state machine with one bina-

ry input, n bit outputs and an m-stage shift register. Such a finite-state encoder

has 2m possible states. The constraint length K of the convolutional code is de-

fined as K=m+1, and the code is referred to as a (K,1/n) code. In comparison to

block codes, convolutional codes encode the input data bits continuously rather

than in blocks.

0 1 2 3 4 5 6 7 8 9 10 -6
-5.5

-5
-4.5

-4
-3.5

-3
-2.5

-2
-1.5

-1

Eb/No(dB)

B
it

E
rr

or
 R

at
e

(1
0 n)

10

In general, a rate r=l/n convolutional encoder is a linear finite-state machine with

l binary inputs and n binary outputs. A rate r=l/n code can also be produced by

puncturing (leave some bit out) a convolutional code of rate r=1/n. (Figure 7)

Figure 7: The basic structure of a (7,1/2) convolutional encoder (used in CCSDS standard)

Viterbi decoder
The used decoder is the so called Viterbi decoder structure (G. D. Forney,

1973). Viterbi decoder is a maximum likelihood decoder. Although Viterbi de-

coder is continuous the principle is easier understandable through sequences.

Without bit failures not all variations of sequences is possible at the receiver,

because of the convolutional encoder. Without any bit failure at the decoder, the

convolutional code can be decoded with a simple state machine. If there are bit

failures, then it has to be investigated which sequence from all possible is the

nearest to the received sequence. The decoding process can be done with soft

decisions too. The main idea behind this is that to each received symbol is re-

lated to a likelihood value that it is 1 or 0, and this information can be used to

improve the quality of the decoder.

Figure 8 shows the K=3 trellis (four states) typically used for Viterbi decoding.

Figure 8: Viterbi decoder

11

In Figure 9 you can see the bit error rate vs. Eb/No from CCSDS standard with

several decoding methods.

Figure 9: Error performance of a Viterbi decoder

12

Implementation of hard Viterbi decoder:
Hard decision means that the Viterbi decoder operates on binary digits deliv-

ered by the demodulator.(Figure 10)

Figure 10: Hard Viterbi decoder

The model file of this structure:
SIM_Convolution_hard.slx
The used code in Matlab BER simulator:
% Convolutional code with hard decision
%
simname='SIM_Convolution_hard';
coderate=1/2; %how much coded bit mean 1 bit information
modulation=1; %how much bit is coded in one symbol
%}

The Graph:

Figure 11: BER performance of hard decoder

0 1 2 3 4 5 6 -5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Eb/No (dB)

B
it

E
rr

or
 R

at
e

(1
0 n)

13

Implementation of soft Viterbi decoder:
For soft decision decoding the demodulator does not make a decision. In this

model there are no synchronization errors. Because of that a simple complex to

real/imaginary block can be used as a demodulator.

The model file of this structure:
SIM_Convolution_unquantized.slx
The used code in Matlab BER simulator:

% Convolutional code with unquantized soft decision
%
simname='SIM_Convolution_unquantized';
coderate=1/2; %how much coded bit mean 1 bit information
modulation=1; %how much bit is coded in one symbol
%}

The Graph:

Figure 12: BER performance of non-quantized decoder

0 1 2 3 4 5 6 -5.5
-5

-4.5
-4

-3.5
-3

-2.5
-2

-1.5
-1

-0.5

Eb/No(dB)

B
it

E
rro

r R
at

e
(1

0 n)

14

Implementation of quantized soft Viterbi decoder:
To reduce the computational cost, in general a quantized version of the signal is

used for soft decision based decoding.

Figure 13:Quantized decoder

Boundary points of quantization: [-1:1/3:1]

The model file of this structure:
SIM_Convolution_soft.slx
The Graph:

Figure 14: BER performance of quantized decoder

This case the graph has some small differences to the graph from CCSDS

standard. It is because the boundary points are not the same.

0 1 2 3 4 5 6 -6

-5

-4

-3

-2

-1

0

Eb/No(dB)

B
it

E
rr

or
 R

at
e

(1
0 n)

15

3.4 Reed-Solomon code

Reed-Solomon codes are block codes. The (n,k) Reed-Solomon code code has

an input sequence length of k, an output sequence length n, and a coderate k/n.

The Reed-Solomon code can identify n-k errors, and can correct (n-k)/2 errors.

The basics of Reed-Solomon codes are easier to understand in frequency do-

main. (Wikipedia, 2014)

Encoding: The sequence has to be Fourier-transformed, and then extended

with a zero word, and then transformed back into time domain. (Figure 15)

Figure 15: Reed-Solomon encoding (from: Wikipedia)

Decoding: The received sequence has to Fourier-transformed, and then from

the last bits the error failures can be corrected. (Figure 16)

Figure 16: Reed-Solomon decoding (from: Wikipedia)

In the simulation (255,223) Reed-Solomon code is used, it can be set in

blocks_config.m . It can correct 32/2=16 errors. The length of bit pattern has to

be partible an integer multiple of k=223).

16

In figure 17 you can see the BER vs. Eb/No from CCSDS standard with

(255,223) Reed-Solomon coding.

Figure 17: Reed Solomon error correction performance

The model file of this structure:
SIM_Reed_Solomon.slx
% Reed-Solomon
simname='SIM_Reed_Solomon';
coderate=RS_K/RS_N; %how much coded bit mean 1 bit information
modulation=1; %how much bit is coded in one symbol

The Graph:

Figure 18: Simulated BER performance

0 1 2 3 4 5 6 -5
-4.5

-4
-3.5

-3
-2.5

-2
-1.5

-1

Eb/No)dB_

Bi
t E

rr
or

 R
at

e
(1

0 n)

17

3.5 Concatenated codes

Concatenated codes are useful methods to build scheme, with manageable de-

coding complexity. CCSDS standard use Reed-Solomon outer coder, and con-

volution inner coder with Viterbi decoding.

Transmitter model structure:

Figure 19: Transmitter model structure

Receiver model structure:

Figure 20: Receiver model structure

In Figure 21 you can see the BER to Eb/No from CCSDS standard with Reed-

Solomon outer code, and convolution inner code with Viterbi decoding:

Figure 21: BER performance of concatenated codes

18

For simulation a (7,1/2) convolution code is chosen as inner coder, and

(255,223) Reed-Solomon coder as outer code.

The models file of this structure:
SIM_Concatenated.slx

The used code in Matlab BER simulator:
% Concatenated codes: Reed-Solomon and Convolutional
%
simname='SIM_Concatenated';
coderate=RS_K/RS_N*1/2; %how much coded bit mean 1 bit information
modulation=1; %how much bit is coded in one symbol
%}

The Graph:

Figure 22: Simulated BER performance

0 1 2 3 4 5 6
-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

Eb/No(dB)

Bi
t E

rr
or

 R
at

e
(1

0 n)

19

4. Modulation

4.1 Pulse code modulation

To transmit a bit sequence, first it has to be associated with a signal. This is

called pulse code modulation (PCM). The digital signal is represented by an

amplitude-time-discrete signal. There are many solutions, from these the

CCSDS standard use 3 methods (ECSS-E-ST-50-05C):

23. Figure: Pulse-code modulation in CCSDS standard

20

4.2 Pulse shaping

In a transmission system, reduction of the used bandwidth is one of the most

important tasks. To reduce the bandwidth, signal filters are used. The main pur-

pose of these filters is that they have to reduce the needed bandwidth without

disturbing the demodulation process (for example by intersymbol interference).

In space communication, the recommendations of Space Frequency Coordina-

tion Group (SFCG) maximizes the usable bandwidth for each band with spectral

masks (http://www.sfconline.org). For an example see Figure 24.

24. Figure: Spectral mask

Interpolation
The basic method is to make a continuous baseband signal from the PCM puls-

es by usage of an ideal digital-analog converter (DAC), and an ideal low pass

filter. The main problems are that no ideal DAC, and no ideal lowpass filter ex-

ists.

In practice the signal has to be upsampled to a higher sample per symbol rate.

This can be done by inserting zeroes between the points of the signal. Then the

signal can be shaped by a pulse shaping filter (Figure 25).

21

Figure 25:Interpolation

Method of simulation
All simulations can be find in Filter_simulation.m file.

For simulation of upsampling, and filter structures, the NRZ-L pulse code modu-

lated signal is used:
T_bit_pattern=(T_bit_pattern-0.5)*2;
bit_pattern = [T_bit_pattern ; zeros(40,1)];

The end of the signal has to contain zeros to be able to simulate the decay of

the filter.

Configuration
The signal is constructed from T_bit_pattern with NRZ-L pulse-code modulation.

For each filter, a signal is upsampled with zero-fill interpolation with number of

zeroes Upsample_factor-1 between each symbol. In practice an upsample fac-

tor 2 to 8 is used.
 Upsample_factor=30;
 % Bit pattern to send uncomment the used one
 T_bit_pattern=[1]; %impulse
 %T_bit_pattern=[1;0;1;1;0;0;1;1;1];

Measures
The plot of the magnitude response of the filter is made with use of Matlab

fvtool. The response of the filter with some input signal is simulated and plotted.

22

4.2.1 Root-raised cosine filter

The most frequently used filter for pulse shaping is a root-raised cosine filter. It

is derived from the raised cosine filter. The basic idea behind the raised cosine

filter is that first Nyquist criterion is satisfied (J. G. Proakis, 1995) Figures 26

and 27 show the impulse response of a raised cosine filter (upsample factor: 30,

filter length: 15, rolloff factor: 0.8):

Figure 26: Impulse response of a raised cosine filter

Figure 27: Intersymbol interference with raised cosine shaped pulses

1000 1100 1200 1300 1400 1500

0

0.2

0.4

0.6

0.8

1
X: 1201
Y: 1

1220 1230 1240 1250 1260 1270 1280 1290

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

X: 1231
Y: -3.55e-07

X: 1261
Y: -1.42e-07

X: 1291
Y: 1.686e-07

23

The raised cosine filter is split into two filters to maximize SNR at receiver

(matched filter theory). The resulting filter is called root-raised cosine (RRC)

filter, because the frequency magnitude response is the root of the raised co-

sine filter (Figures 28 and 29).

Impulse response:

Figure 28: Impulse response of a RRC filter

Magnitude Response:

Figure 29: Magnitude response of a RRC filter

350 400 450 500 550 600 650 700 750 800 850

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-100

-80

-60

-40

-20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

24

An example of the signal at receive filter, to prove the concept (after the root

raised cosine filter) is provided in Figure 30:

(T_bit_pattern=[1;0;1;1;0;0;1;1;1];, NRZ)

Figure 30: Signal after receiver RRC filter

The structure of the simulation:

Figure 31: Structure of raised cosine simulation

The used code:
 % Root Raised Cosine filter
 %
 simulation='SIM_Filter_RRC';
 T_Rolloff_factor=0.8;
 Group_delay=20; % delay in symbols (filterlength)

 %}

1200 1250 1300 1350 1400 1450 1500

-1

-0.5

0

0.5

1
X: 1201
Y: 1

X: 1231
Y: -1

X: 1261
Y: 1

X: 1291
Y: 1

X: 1321
Y: -1

X: 1351
Y: -1

X: 1381
Y: 1

X: 1411
Y: 1

X: 1441
Y: 1

25

4.2.2 IIR filter

For pulse shaping, all kinds of filter can be used. Although they are not as effi-

cient as raised cosine, they are usable, and sometimes they have some ad-

vantage in practice. The continuous form of IIR filter is realizable with analog

techniques.

This simulation (Figure 32) includes a simulator for IIR analogue filters. The co-

efficients are generated by [B,A] = butter(order,cutoff frequency). It has to be

transformed to discrete domain by use of bilinear transformation.

Figure 32: IIR filter simulation

The used code:
 % IIR filter
 %
 simulation='SIM_Filter_IIR';

[TX_filter_coeff_b,TX_filter_coeff_a] = butter(3,0.03);
 %}

The main purpose of the simpulation with this coeffients is to show the

drawbacks of this structure. It is of course in this form not usable for any

communication system. The answers are not normalized to transmitted signal

power!

26

Figure 33: Impulse respond of an example IIR filter

Figure 34: Magnitude response of an example IIR filter

The filtered signal illustrates the same bit pattern as in Figure 30. It can be seen

that there is a great amount of ISI (Figure 35).

Figure 35: ISI of an example IIR filtered signal

0 50 100 150 200 250 300

0

0.005

0.01

0.015

0.02

0.025

Samples

Am
pl

itu
de

Impulse Response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-160

-140

-120

-100

-80

-60

-40

-20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

0 50 100 150 200 250 300 350 400 450

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04 X: 30
Y: 0.02492

X: 60
Y: -0.01395

X: 90
Y: 0.01148

X: 120
Y: 0.03709

X: 150
Y: -0.01467

X: 180
Y: -0.03993

X: 210
Y: 0.01537

X: 240
Y: 0.04034

X: 270
Y: 0.03435

27

4.2.3 Gaussian filter

The basic idea of Gaussian filter is to make a filter with the minimum possible

group delay. The received signal is not ISI free, but the length of the filter has

the minimal length in time domain. (H. J. Blinchikoff, A. I. Zverev, 2001)

The use of Gaussian filter as channel filter comes from structures, where the

signal before the filter and the filter itself were analog. The signal before the fil-

ter in this structure has the form of square signals. In this simulation it is made

by an FIR filter, which has an appropriately selected length by the upsample

factor.

Figure 36: Simulation structure

The used code:
 % Gaussian filter
 simulation='SIM_Filter_Gauss';
 T_Gauss_BTproduct=0.5;
 T_Group_delay=2;
 TX_filter_coeff_a=1;

Figure 37: Impulse response of an example Gaussian filter

0 20 40 60 80 100 120

0

0.005

0.01

0.015

0.02

0.025

0.03

Samples

Am
pl

itu
de

Impulse Response

28

Figure 38: Magnitude response of an example Gaussian filter

Figure 39: An example filtered signal (T_bit_pattern=[1;0;1;1;0;0;1;1;1];, NRZ)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-140

-120

-100

-80

-60

-40

-20

0

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (d

B)

Magnitude Response (dB)

50 100 150 200 250 300 350

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
X: 71
Y: 0.02151

X: 101
Y: -0.0144

X: 131
Y: 0.01913

X: 161
Y: 0.02856

X: 191
Y: -0.01906

X: 221
Y: -0.02856

X: 251
Y: 0.01907

X: 281
Y: 0.03326 X: 311

Y: 0.03098

29

4.3 Modulation

In CCSDS standard, phase modulations are used to reduce the effects of non-

linear power amplifiers on the signal.

The basic modulation formats (CCSDS 413.0-G-2) (ECSS-E-ST-50-05C) are as

follows:
- Phase shift based modulations :BPSK,QPSK,OQPSK, 8PSK TCM
- Continuous Phase modulations: MSK, GMSK

Basic properties of simulation
For simulation first a series of simulation are run on SIM file to measure SNR

performance, then the last simulation is done with high SNR (no noise addition)

to be able to see the signal properties.

Configuration

Each simulation needs an Upsample_factor, and the number of generated bits.

For PSD BER measurements, a high number of bits is recommended, for time

domain measurements there is no need for many symbols. Each simulation has

its own variables too.

Measurements

For these measurements the signal after the transmitter is used without any

noise or effects of the channel.
% Constellation
figure('name','Constellation')
plot(signal_at_transmitter(1:end),'.')
xlabel('Real');
ylabel('Imag');

% Time domain
figure('name','signal_at_transmitter')
plot(imag(signal_at_transmitter(1:end)))
ylabel('Imaginary axis of the signal');
xlabel('Sample');

% Phase in Time domain
figure('name','signal phase at transmitter')
plot(angle(signal_at_transmitter(1:end)))

30

ylabel('Phase');
xlabel('Sample');

% PSD
figure('name','PSD')
[Pxx,W] = pwelch(signal_at_transmitter);
W=(W-pi)*(Upsample_factor/(2*pi)); %normalized to 1/symbol
plot(W,10*log10(fftshift(Pxx))-max(10*log10(fftshift(Pxx))));
%Normalized to 0 dB maximum;
ylabel('PSD in dB');
xlabel('Frequency normalized to 1/Symbol');

% BER
figure('name','BER vs SNR')
plot(SNR_values, Error_ratio);
xlabel('SNR);
ylabel('Bit Error Rate');

4.3.1 M-ary phase shift keying

In PSK (L. W. Couch, 1997) systems the bit pattern is coded into the phase of a

sinusoidal function. Each state belongs to a phase in the signal domain.

CCSDS standard uses BPSK (1 bit per symbol, 2 states), and QPSK (2 bit per

symbol, 4 states).

Figure 40: BPSK and QPSK symbol mapping (Wikipedia)

The signals are usually filtered by RRC filter. An example spectrum of a QPSK

based transmitter can be found in Figure 41.

31

Figure 41: An example spectrum of a QPSK based transmitter

Code used for simulation:
% M-PSK
 simulation='SIM_MOD_M_PSK';
 M_PSK=4;

The model structure for transmitter:

Figure 42: Example BER performance measurement

-4 -3 -2 -1 0 1 2 3 4
-60

-50

-40

-30

-20

-10

0

P
S

D
 in

 d
B

Frequency normalized to 1/Symbol

-2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

SNR (dB)

Bi
t E

rr
or

 R
at

e

32

4.3.2 4D-8PSK-TCM

Usually coding and modulation are managed separately. The BER performance

to noise ratio of the M-PSK and QAM like modulation methods depend on the

Euclidian distance between the points. For coded schemes, Hamming distance

between two possible bit sequences means about the same. The main idea

behind TCM (Trellis Coded Modulation) (J. He, Z. Wang, H. Liu, 2010) is to

manage these two together to reach a greater overall distance between two

possible signal sequences.

The MPSK trellis coded modulation is based on the partitioning of one MPSK

constellation into different subsets, each subset having a minimum Euclidian

distance larger than the minimum distance of the original constellation. The

structure of a 4D-8PSK TCM modulation used in CCSDS standard can be seen

in Figure 43.

Figure 43: 4D-8PSK-TCM modulator

It has to be seen that 4D-8PSK-TCM is an 8PSK system with a special coding

technique developed for 8PSK. Because of that, the transmitted signal, the

pulse shaping methods, and the receiver structure is the same is as in 8PSK.

(Figure 44)

Figure 44: 4D-8PSK-TCM transmitter structure

33

4.3.3 Offset QPSK

One main drawback of QPSK is that there can be a 180° phase shift, which

causes large amplitude fluctuations after the lowpass filter. One solution for this

problem is to offset the signal in Q arm by half of the symbol rate. This method

as it can be seen avoid the 180 grad jumps (Figure 45)

Figure 45: QPSK and OQPSK example

Figure 46: Basic structure of OQPSK implementation (from CCSDS standard)

Figure 47: Basic structure of OQPSK implementation

34

Figure 48 comes from CCSDS standard, Figure 49 depicts the simulation re-

sults. It can be seen, that the OQPSK implementation, and my implementation

produce comparable results, with RRC filter rolloff factor 0.5. Both implementa-

tions match the SFCG recommendations.

Figure 48: OQPSK PSD from CCSDS standard

Figure 49: Floating point simulation with ideal SRRC filter (roll-off factor 0.5)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-80

-70

-60

-50

-40

-30

-20

-10

P
S

D
 in

 d
B

Frequency normalized to 1/Symbol

35

4.3.4 Phase modulation

In phase modulation, the PCM coded signal enters to a phase modulator. The

advantage of this solution is that, that if the gain is smaller than π, the base-

band signal has always a constant ingredient, which means the carrier is in the

signal included.

The simulator:

The used code:
% PM
%
 simulation='SIM_MOD_PM';
 T_Phase_gain=1;
%}

The PSD of the transmitted signal:

Figure 50: An example PSD of phase modulation

-4 -3 -2 -1 0 1 2 3 4
-140

-120

-100

-80

-60

-40

-20

0

P
S

D
 in

 d
B

Frequency normalized to 1/Symbol

36

4.3.5 GMSK

GMSK is a sort of continuous phase modulation. GMSK is the filtered version of

Minimal Shift Keying (MSK) (S. Pasupathy, 1979). In MSK each bit is coded

with a half sinus. That is why there is no phase jump in the signal. The only dif-

ference in implementation of MSK and GMSK modulation is the use of a Gauss-

ian filter in GMSK modulation. Some plots of MSK modulation in time domain

can be seen in Figure 51 and Figure 52

Figure 51: MSK modulation

Figure 52: MSK modulation

0 20 40 60 80 100 120

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
ag

in
ar

y
ax

is
 o

f t
he

 s
ig

na
l

Sample

0 20 40 60 80 100 120

-3

-2

-1

0

1

2

3

P
ha

se

Sample

37

The basic baseband implementation method (from CCSDS standard):

Figure 53: GMSK implementation (CCSDS standard)

The baseband implementation in simulator:

Figure 54: MSK and GMSK in the simulator

With the manual switches, we can switch the implementation between MSK,

and two implementation forms of GMSK (more information below).

The used code:
% GMSK
%
 simulation='SIM_MOD_GMSK';

 T_Gauss_BTproduct=0.5;
 T_Group_delay=2;

 %Note: In transmitter block you can switch on/off Gaussian filters
 %Note2: To run BER measure with MSK the error rate calculation has

to

 %be set manually
%}

38

PSD:

Figure 55: PSD of a GMSK signal from CCSDS standard:

Figure 56: PSD of a GMSK signal from simulation (BT=0.5)

-4 -3 -2 -1 0 1 2 3 4
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

P
S

D
 in

 d
B

Frequency normalized to 1/Symbol

39

Figure 57: PSD of a GMSK signal from simulation (BT=0.25)

-4 -3 -2 -1 0 1 2 3 4
-90

-80

-70

-60

-50

-40

-30

-20

-10

0
P

S
D

 in
 d

B

Frequency normalized to 1/Symbol

40

Scattering plots
Both plots where made with BT=0.25 Gaussian filter. In the first plot the filter is

after the phase modulator, and in the second plot the filter is for the phase

modulator.

Plots in Figure 57 are from simulator. In Figure 58 the same plots can be found

from CCSDS standard.

Figure 58: Scattering plots from simulator

Figure 59: Scattering plots from CCSDS standard

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Real

Im
ag

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

41

5. Synchronization

5.1 Introduction

Synchronization is one of the most the most important tasks in modern commu-

nication. The main idea is to estimate the channel parameters from the received

signal, and correct the signal with it. There is in general a lower bound for this

estimation (Cramer-Rao lower bound CRLB), However, many algorithms which

can reach it, are in general in practice not applicable most times, because of the

computational complexity, or simply not exist. Because since many solutions

exist for this problem, the development of a good receiver is a highly complex

task.

There are two main categories for synchronization algorithms:
- NDA - Non Data Aided - This kind of algorithms does not require the data for

correction
- DA – Data Aided – the knowledge of data is required for synchronization.

The purpose of this implementation is to show a possible solution of synchroni-

zation for modulations used in CCSDS standard.

5.2 Channel model parameters for space usage

The first task is to investigate the parameters for channel model and the limits

where the algorithms have to work.

Frequency error
First the a priori known frequency error caused by Doppler effect has to be re-

moved. It can be calculated by use of the known position and speed of the sat-

ellite. After this correction remains only the frequency instability caused by

spacecraft transmitters. There is a maximum defined for allowed frequency in-

stability in CCSDS standard (CCSDS 413.0-G-2):

42

In addition for Category B missions the short term frequency stability shall be such

that the resulting phase error when tracking the carrier with a second‐order PLL with

loop bandwidth 2BL as specified for the mission, does not exceed 10 degrees peak in

high signal to‐noise conditions and in non‐coherent mode.

NOTE 1 The “short term frequency stability” includes phase noise contribution and

any “instantaneous” phase or frequency variations (“discontinuities”) due to

technological aspects and related to oscillator implementation.

NOTE 2 Depending on the link budget and on the ground station 2BL value, this re-

quirement may have strong impact on the onboard subsystem architecture and the selec-

tion of the proper oscillator technology.

This model works in baseband, so the frequency error has to be taken into con-

sideration in phase change per symbol period. The available symbol rates in

CCSDS standard are:

43

The worst case is the usage of a 34500 MHz carrier with 2*10-5 and 100 sam-

ples per second. In this case the frequency error is 34500*106*2*10-5=0.69

MHz, which means 6900 rotations of the vector per symbol period, which is

more than 2 π of the signal. This means the possible frequency error can be

overall between ±π radian per symbol. Normally, the used upsample factor is

between 2 and 8, which much less than 6900. This means that this simulator

can use ±π frequency error per sample too, which makes the simulation easier.

Phase noise
Limits from ECSS standard:
a. The phase noise of the unmodulated carrier shall be measured in noncoherent mode.

b. Phase noise of the unmodulated carrier, integrated between 100 Hz and 1 MHz shall

be less than 2 r.m.s. at UHF for the 2 200 MHz – 2 300 MHz band.

c. Phase noise of the unmodulated carrier, integrated between 100 Hz and 1 MHz shall

be less than 6 r.m.s. at SHF for the 8 025 MHz – 8 500 MHz band.

d. Phase noise of the unmodulated carrier, integrated between 100 Hz and 1 MHz shall

be less than 10 r.m.s. at EHF for the 25,5 GHz – 27,0 GHz and 31,8 GHz – 32,3 GHz.

bands.

e. If specifications 6.2.6b, 6.2.6c and 6.2.6d are not met over the indicated inte-

gration ranges, integration shall be carried out taking into account the mission

selected loop bandwidths and symbol rates.

44

This model use phase noise in dBc/Hz, which makes possible to model the

phase noise in a more complex way. The implementation requires a worst case

phase noise which can be calculated from the given limits in ECSS standard,

this means -31 dBc/Hz in this case.

SNR
The enabled coding methods in CCSDS standard has been investigated in

chapter 3. It can be seen, that less than 1 dB SNR the number of errors are too

high, it does not make sense to use that low SNR for communication with these

coding techniques. This means that there is no need for synchronization below

this limit.

In the simulation model, SNR is given in energy/symbol, instead of energy/bit.

QPSK signals have the same performance as BPSK, if they are computed in

terms of Eb/No, but because one symbol contains 2 bits, QPSK needs twice

more energy/symbol than BPSK for the same BER performance. Since in the

simulation the energy/ symbol is normalized to 1, the limit for QPSK/OQPSK is

about 4 dB SNR. GMSK has about the same BER performance as BPSK, so 1

dB is the chosen limit in this case for synchronization.

45

5.3 Possible transmitter structures

The second task is to implement some frequently used transmitter and receiver

models without parameter estimation and correction. Although there are many

possibilities, the CCSDS standard (CCSDS 413.0-G-2) has some recommenda-

tion to the used structures.

CCSDS recommendations

MODULATION METHODS FOR SRS, CATEGORY A

Because of the wide range of applications, ranging from the low-Earth orbiters to the science

spacecraft at the edge of the Category A region (2×106 km), a number of different

modulation schemes were retained in recommendation 401(2.4.17A) B-1:

– GMSK2 (BTs=0.25) with precoding;

– Filtered OQPSK2 with various options:

• Baseband SRRC2, α=0.5;

• Baseband Butterworth 6 poles, BTs=0.5;

• Other types of bandpass filters provided that the equivalent baseband BTs is not

greater than 0.5 and they ensure compliance with SFCG Recommendation 21-2R2

(or latest version) and interoperability with cross-supporting networks.

MODULATION METHODS FOR SRS, CATEGORY B

For SRS Category B missions, only one modulation was retained in recommendation

401(2.4.17B) B-1 and recommendation 401(2.4.20B) B-1:

– GMSK2 (BTs=0.5) with precoding.

MODULATION METHODS FOR EESS AT 8 GHZ

Recommendation 401(2.4.18) B-1 contains three modulation options recommended for EESS

missions:

– 4D 8PSK TCM;2

– GMSK2 (BTs=0.25) with precoding;

– Filtered OQPSK2 with various options:

• Baseband SRRC2, α=0.5;

• Baseband Butterworth 6 poles, BTs=0.5;

• Other types of bandpass filters provided that the equivalent baseband BTs is not

greater than 0.5 and they ensure compliance with SFCG Recommendation 21-2R2

(or latest version) and interoperability with cross-supporting networks.

For NDA based synchronization algorithms there is no impact of the coding to

the estimation. To reduce computational complexity in the simulator, there is no

need to use them. In DD algorithms there are two methods to use the infor-

46

mation. First is to use the decoded signal as a reference assumed that there is

no difference between the transmitted and the corrected bit pattern. The second

idea is to use the failure detection mechanism of the coding. This means to try

out some correction, and choose that where the number of the failures were

minimal. This is the so called maximum likelihood principle.

Frame Synchronization
CCSDS standard use attached sync marker (ASM) for frame synchronization.

The bit pattern is attached for the modulation/convolutional block. The format of

the bit pattern is as follows:

The chosen transmitter structures and the chosen receiver structure
without correction
This implementation contains the main models for the CCSDS recommendation

by taking into consideration other possible structures too (for example BPSK).

OQPSK

Figure 60: QPSK transmitter

Figure 61: OQPSK modulator subsystem

The basic structure of the receiver of OQPSK is based on QPSK receiver. This

is simply a downsampling, and demaping of the received signal. The only

change is that, before downsampling, the signal needs to be shifted back.

47

8PSK

Figure 62: 8PSK based transmitter

Since the 4D-8PSK-TCM is a coded version of 8PSK, the synchronization of

4D-8PSK-TCM is the same task as the synchronization of 8PSK.

GMSK

Figure 63: GMSK based transmitter

There are two main GMSK receiver structures:
- Coherent receiver : The receiver has complete knowledge of the carrier phase
- Noncoherent receiver : No knowledge of carrier phase needed

48

Coherent receiver: The standard high quality GMSK receivers are based on

coherent structure, and Laurent decomposition of the GMSK signal. There is a

study ordered by ESA (R. Abello, N. James, R. Madde, 2007), which shows a

possible structure of this receiver optimized for requirements of space commu-

nication

BER performance of the cited coherent receiver can be seen in Figure 64.

Figure 64: BER performance of the cited coherent receiver

Noncoherent receiver: The main drawback of the coherent receiver is the

needed knowledge of carrier phase, and the lack of opportunity for parallel or-

ganization, because of the feedback structure. In this implementation a nonco-

herent receiver structure is used with maximum likelihood detector.

The main idea behind the detector is to reproduce all possible GMSK signal

patterns and subtract them from the received signal. If there is a pass, then just

the noise remains, which has less energy than the noise plus some remaining

49

signal. This is a maximum likelihood detector for GMSK signal (Figure 65 and

66).

Figure 65: Possible GMSK signal patterns

Figure 66: An example signal

A Matlab implementation of the receiver can be found in Appendix (Section 9.1).

Because of the high number of bits, there are too many variations to compute.

The number of variations has to be reduced, without losing too much perfor-

mance. It can be seen that the nearby bits have more influence to a bit than

other bits. (The bits cannot be analyzed alone because of ISI between bits, the

influence of the bits to each other make a chain, which has to be taken into

consideration in a maximum likelihood estimator). The main idea is to apply the

algorithm just for several bits once, and calculate the most probably bit pattern.

If it is made with a sliding window, there will be more estimation for each bit.

From this estimations can be calculated an estimated value for the bit, in the

simplest case with the calculation of mean. The quality of the receiver can be

improved with a usage of a larger window, with investigate the possible shaping

5 10 15 20 25 30 35 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 5 10 15 20 25 30 35 40
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

50

of result bits, or with the use the probabilities of each. The BER performance of

the detector can be found in Figure 67 and 68 and the Matlab code in Appendix

(Section 9.1).

BER performance:

Figure 67: BER performance with a window length 5, without coding, BT= 0.5

Figure 68: BER performance with window length 9, BT= 0.25

0 1 2 3 4 5 6 7
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

SNR

B
it

E
rro

r R
at

e

0 1 2 3 4 5 6 7
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

SNR

B
it

E
rro

r R
at

e

51

5.4 NDA synchronization algorithms for PSK based modulations

For non-data aided (NDA) synchronization, knowledge of the data is not needed

(J. G. Proakis, 1995). Two different structures are used, feed-forward and feed-

back algorithms. In general the advantages of feed-forward algorithms are that

they are more organized in parallel, the performance of these algorithms is sim-

pler to estimate and they have no stability problems. In contrast, feedback algo-

rithms can follow small deviations of the parameters continuously.

The feedforward structure estimators usually estimate the parameters from a

small numbers of symbols. Because these parameters are having just few var-

iations in time, it is possible to make more observation in a large dataset, and

then create average of these. With more observation the quality of the estimator

can be highly improved. This structure can be very useful in this implementation

because it is highly organized in parallel, and the parameters are having just a

very small deviation in time, because of the high quality oscillators used in

space communication.

The feedback algorithms are based on a loop-like structure. If the bandwidth of

the loop filter is high, the synchronizers reaches the stable state rather quickly,

but the fluctuations in the stable state are also high, which reduces the BER

performance of the receiver.

5.4.1 Timing estimation (O&M, MaxE)

Basic idea used is that in principle RRC pulse shaped M-PSK systems have the

maximal energy in the points, where they have to be sampled (M. Oerder, H.

Meyr, 1988). The following algorithms are using this principle:

Maximal Energy: A simple solution for timing error estimation is the so called

maximal energy method.

It simply makes sums of the signal energy in samples divided by upsample fac-

tor from each other. The estimated sampling point would be where this sum is

the greatest.

Timing_estimation = place_of_max (�𝑏𝑖𝑡_𝑝𝑎𝑡𝑡𝑒𝑟𝑛[𝑛 ∗ 𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟 + 𝑞]
𝑞

)

52

The used Matlab code can be found in Appendix (Section 9.2).

It has to be taken into consideration that the performance of this algorithm de-

pends only on the length of the windows, it is calculated. Since Space commu-

nication use good quality oscillators, with only small drifts in time, the length for

calculation can be large.

Oerder&Meyr: It is possible that the needed sampling point is between two

samples. In this case the signal in the sampling point can be estimated with an

interpolator. The estimation cannot be made by maximal energy method be-

cause it calculates the nearest sample to the sampling point. The usage of

Oerder&Meyr algorithm is a possible solution for this problem.

𝑋𝐿 = � |𝑥[𝑛]|2 ∗ 𝑒−
𝑖2𝜋𝑛

𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒_𝑓𝑎𝑐𝑡𝑜𝑟

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡∗
𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

𝑛=0

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦 =
𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟

2𝜋
∗ 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡(𝑋𝐿)

The used Matlab code can be found in Appendix (Section 9.3).

If the upsample rate is much higher than the symbol rate, the maximal energy

method has an acceptable performance with reduced computational cost.

Timing error with OQPSK: Offset QPSK needs a special implementation of

timing error correction. Since there is no phase estimation available for the sig-

nal in this point, the time offset caused by the modulation cannot be undone.

Since the signal has about the same energy in all phase, neither O&M nor Max-

imal Energy method can be used without modification.

To get a usable solution, the structure of the received signal has to be investi-

gated. Basic idea is to search for the maximal energy sample separately for I

and Q channel, and then summarize this information to estimate timing error. In

an ideal case with no phase error, it is obvious that for example a maximal en-

ergy method used just for I channel does the estimation. If it is equipped to the

Q channel, the estimation will include the half symbol delay caused by offset,

which has to be removed. Since in this state there is no information about the

phase error, the signal has a random rotation, which has to be taken into con-

53

sideration. First there is no information if I and Q are swapped or not. For ex-

ample, if there is 90° phase error, the I and Q are swapped.

In other phase errors there is a crosstalk between the two channels, coming

from trigonometry. It causes problems if the phase error is about 45°, because

the energy differences in I and Q channel vanish. To avoid false estimation, the

idea is to calculate the method with 45° phase shift, and choose the biggest

value from.

The used method is to calculate the energy separated for I and Q channel like

in maximal Energy method, then summarize them with half symbol time spaces.

Then it is possible to downsample the signal with upsample factor divided by 2.

After that 2 samples per symbol remains before phase estimation.

After phase correction between the remaining two samples, the right one can be

chosen with maximal energy method after correction.

The used Matlab code can be found in Appendix (Section 9.4, 9.5).

5.4.2 Phase error estimation (V&V)

The phase error of an M-PSK based system is usually corrected after

downsampling. For phase estimation, this implementation use the Viterbi and

Viterbi (V&V) algorithm. The basic idea behind V&V is the following:

M-PSK phase has this structure at the receiver: Phase= Phase_error+n*2π/M.

If it is multiplied by M then: Phase=M*Phase_error+n*2π since the phase is re-

peated in every 2 π the result is equal to M*Phase_error, which has to be divid-

ed by M to get the phase error. The maximum estimation range of this method

is 2π/M.

Viterbi and Viterbi algorithm

V&V algorithms (A. J. Viterbi, A. M. Viterbi, 1983) use the same idea, with a

possibility to use the real part of the signal with a chosen nonlinearity:

𝜃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 = 1
𝑀
∗ 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡(∑ 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟(𝑃[𝑘]) ∗ 𝑒𝑖𝑀𝜑[𝑘]𝐿−1

𝑘=0) ; x[k]= 𝑃[𝑘] ∗ 𝑒𝑖𝑀𝜑[𝑘]

54

In this implementation the nonlinear function P[k] is reduced to unity.

V&V can be used in feed-forward form, but in this implementation it is used in

feedback form. In feedback form V&V can repair some frequency error and oth-

er deviations in signal too.

The performance of the V&V algorithm depends on the number of estimation

averaged, in feedforward case, and the bandwidth of the feedback filter in feed-

back case.

The used Matlab code can be found in Appendix (Section 9.6).

Note: in feedback form if the filter bandwidth is limited, there is a need of a large

dataset to reach stable phase estimation. Until this point is reached the BER

performance of the receiver would be less than optimal, because of not accu-

rate correction of the channel. To avoid this in a packet based system like this,

a time reverse of the packet can be used to estimate the phase of the first sym-

bol, and after it the signal can be tracked with a normal V&V feedback structure.

(Figure 69)

Figure 69: Time reverse V&V feedback example

5.4.3 Phase estimation in OQPSK case

As it can be seen the phase of OQPSK is the same as a QPSK signal with twice

the symbol rate (Figure 70). It follows that V&V can be used for estimation in

OQPSK case too without any change.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

55

Figure 70: QPSK and OQPSK signal example (from: Wikipedia)

5.4.4 Frequency estimation (V&V)

In section 4.2 it has been investigated that there can be a huge frequency error,

with small time variation. Because of these properties, the frequency error is in

this implementation estimated and corrected by DA algorithms. The possibly

remaining slow drifts can be corrected by V&V feedback structure.

56

5.5 NDA synchronization algorithms for GMSK

GMSK is a continuous phase modulation. Because of the usage of the deriva-

tion in GMSK demodulator, phase error has no, and frequency error has only a

small influence on the receiver before the detector. From the detector structure

comes that the constant deviation from frequency error has no influence too.

That is why only timing error has to be taken into consideration.

Timing Error correction
Two possible methods are investigated for this problem. A DA and an NDA so-

lution. More information about DA solution can be found in Chapter 4.6.

The main idea for a NDA solution comes from the observation, if a matched fil-

ter is used in the receiver structure; the filtered signal has usually peaks at

sampling points (Figure 71).

Figure 71: Filtered GMSK signal

Because GMSK have intersymbol interference, this peak is not always at the

sampling point. This means that the performance of the estimator depends on

the chosen BT. factor. In general with a huge number of symbols investigated,

this method can be effectively used.

With this principle the estimation can be done for example with maximal energy

method used in M-PSK case (Figure 72).

180 200 220 240 260 280 300 320 340 360

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

57

Figure 72: GMSK timing estimator in simulator

To demodulate the signal there is no need of the matched filter. That is why a

separated time shift block is used.

58

5.6 DA synchronization – feedback structures

In CCSDS standard all possible transmitter structure includes an attached sync

marker (ASM). This sync marker can be used for synchronization in several

ways. This implementation consist of a solution for ASM based frame synchro-

nization, phase estimation for M-PSK systems, a powerful frequency estimator,

and a possible solution for low SNR timing estimation.

5.6.1 ASM based frame synchronization

Frame synchronization is needed in all possible communication solution in

CCSDS standard. The beginning of each frame is marked with the ASM bit pat-

tern. Frame synchronization:
1. Search ASM in the received signal.
2. Cut the frame from the signal.

The search of the ASM is made in this implementation by finding peaks in cross

correlation of the received bit pattern and the known ASM. Since the frame size

is known it is easy to cut it from the signal. The m file used for simulation can be

found in the Appendix (Section 9.7).

5.6.2 Phase estimation in M-PSK systems

As it has been explained that V&V algorithms in an M-PSK system have an es-

timation range of 2π/M, since without any knowledge of the transmitted signal

there is no possible solution to make a choice between M possible received

signals. This implementation tries to decode all possible solutions, until ASM

can be found in one signal (Figure 73 and 74).

Figure 73: 8PSK decoder structure

59

Figure 74: Phase correction block

It has to be taken into consideration that, if the sync marker is not coded, there

are simpler solutions to find the phase of the signal.

5.6.3 Frequency estimation

It has been shown too in Section 4.2 that the frequency error can be large. The

frequencies of the onboard oscillators of satellites have a small deviation of

time. From these properties comes that a large sequence of the signal can be

used, and the result is valid for a large set of signal. So the estimation can be

calculated rarely from a chosen sequence of the signal.

To extend acquisition range there is a need of a decision aided estimator. As it

has been demonstrated in Section 4.4 that the absolute maximum repairable

frequency error of Viterbi and Viterbi in case of M-PSK system is 2π/M /symbol.

In general a smaller bandwidth is recommended to reduce the effect caused by

the noise.

The main idea is to try the receiver with all possible frequency correction, with a

resolution specified by the feedback filter. If there is a match in received signal,

then the remaining frequency error is smaller than the bandwidth of the V&V

algorithm.

To find the match in the received signal only the ASM bit patterns are available,

because there is not necessarily any information about the bit pattern of the

frame. To get a good estimation it is recommended to use more packets to es-

timate. The chosen way to find the bit patterns is to calculate cross-correlation

of the signal, and summarize the results with the known distance of markers

(frame size+ASM size). If the result is greater or equal to ASM size minus ena-

60

bled failures multiplied with the number of frames, then there is a match, and

the frequency error is found.

It makes sense to correct frequency error at least approximately before receiver

filter is applied, to push the signal into the passband frequency of the filter. Im-

plementation in simulator can be seen in Figure 75.

Figure 75: 8PSK receiver

The implementation of the ASM search can be found in Appendix (Section 9.8).

For a real process, it is recommended to use successive approximation with

different bandwidth estimators. It is more accurate with a reasonable speed im-

provement. The implementation can be found in Sim_freq_estimation.slx Sim-

ulink model file.

5.6.4 Timing estimator

In the case of presence of CRC coding it is possible to investigate the number

of errors. This knowledge can be used to recover timing error in M-PSK, and

GMSK case. The simplest method is to calculate all variations, and choose this

one where the numbers of bit errors are the least. This implementation can work

in all cases, when the signal can be decoded.

5.6.5 Timing estimator in GMSK

In GMSK systems there is a possibility to recover timing error by use of the

maximum likelihood principle too. The main idea is to calculate the implemented

61

estimator for several bits, with all possible bits, and all possible timing errors,

and choose the best variation.

62

5.7 Basic receiver structures and demodulation examples

In this section there will be some example, and BER measurements of some full

receiver structures. Because of the multi dimension structure of the task there is

no chance to simulate all possibilities. The simulations where made with ran-

dom phase, and timing error, with frequency error considered to be minimized

by the frequency error estimator.

Since ASM patterns are not coded with Reed-Solomon or turbo codes, they

have no impact to synchronization performance. There is no need to simulate

them here.

5.7.1 OQPSK

Figure 76: OQPSK receiver

Figure 77: Demod&ASM subsystem search

Figure 78: Phase and timing correction

63

BER performance:

Figure 79: BER performance of OQPSK receiver

1 1.5 2 2.5 3 3.5 4 -4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

SNR (dB)

B
it

E
rro

r R
at

e

64

5.7.2 8-PSK

Figure 80: 8PSK receiver structure

Figure 81: Demod&ASM subsystem search

BER performance:

Figure 82: BER performance of 8PSK receiver

5 5.5 6 6.5 7 7.5 8 8.5 9 -3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

SNR (dB)

B
it

E
rr

or
 R

at
e

65

5.7.3 GMSK

Figure 83: GMSK receiver structure

BER performance:

Figure 84: BER performance of GMSK receiver

1 1.5 2 2.5 3 3.5 4 4.5
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

SNR (dB)

Bi
t E

rr
or

 R
at

e

66

6. Parallel Organization

6.1 Introduction

The main goal of this chapter is to give an estimation of the needed computa-

tion speed of the modem in floating point operations per second (FLOPS), and

investigate the possible architectures to implement the modem, with the usage

of the latest available hardware this time (CPU, GPGPU).

The chosen maximum rate: In this implementation the chosen maximum rate

is 40 Msymbol per second, with 8 as upsample factor. The maximum through-

put of the system is 80 Mbit, or 40 MBit with ½ rate convolutional coding. The

chosen quantizing is 16 bit.

6.2 Parallel organization of the used algorithms

An effective implementation of an algorithm is a highly complex task, which de-

pends on the chosen architecture. The purpose of this part is to give an estima-

tion of the needed computation speed to each algorithm. As none of the modern

CPUs have enough power to calculate the whole demodulation in serial opera-

tion, the possible parallel organization has to be investigated too. The investi-

gated algorithms are as follows:

Transmitter:
Convolutional encoder, M-PSK modulation, FIR filter
Receiver:
Doppler correction, Best sample method, Differentiation, GMSK demodulation,

MPSK demodulation, Viterbi algorithm
Convolutional encoder:
Convolutional encoding use, time delays and logical operators. CCSDS stand-

ard uses 7 bit delay and 2*7 XOR logical operators.

Flop/bit Flops

14 0.56 G

67

It is not easily organized in parallel. But hardware specific implementation can

be much faster, and compared to other parts of the implementation the needed

number of computations is negligible.

MPSK modulation:
M-PSK modulation is simply an association of bits.

MPSK demodulation:
In BPSK, QPSK, 8PSK systems it can be done with simple comparison. With

each comparison 1 bit can be demodulated.

Flop/bit Flops

1 80 M

It is easily organized in parallel; each symbol can be processed alone.

FIR Filter:

A FIR filter is described by: ik

m

i
ik ucy −

=
∑=

1
,

For each sample m multiplications, and m additions are needed. As an exam-

ple, a 40 tap filter requires 80 Flop/sample, because of IQ structure it has to be

multiplied by 2. to get Flops

Flop/sample Flops

160 51.2 G

It is highly organized in parallel since each sample can be calculated alone.

Cartesian to polar coordinates
Since the investigated synchronization algorithms need less computation in po-

lar coordinates it worth’s to change coordinate system:
The magnitude of the signal can be calculated by Pythagorean Theorem.

𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 = �𝐼2 + 𝑄22 . It requires 4 flop/sample

Flop/sample Flops

4 1.3 G

The phase calculation can be done by inverse tangent. The computation speed

of inverse tangent is highly dependent on the used approximation method, since

68

the best approximation method highly depends on the architecture, it cannot be

investigated separately from implementation. More information about architec-

tures can be found in the next 2 chapters.

Look Up Table (LUT): practically not usable with PC-s, because of the memory

access time, and lack of computability with vector based calculation.

Cordic: Since Cordic needs small lookup tables, it has similar problems as nor-

mal LUT solution.

Power series: it approximates the function with a polynomial approach:

The first approximation is calculated via a polynomial with 10 steps. The expo-

nential function in the first approximation is calculated with multiplication. In

AVX-512 instruction set there are several methods to increase the speed of ex-

ponential calculation. In GPU an efficient solution is available with atanf() func-

tion.

Flop/sample Flops

74 23.7 G

It is highly organized in parallel since each sample can be calculated alone.

Doppler Correction
Frequency correction in polar coordinates:

𝜑𝑛 = 𝑚𝑜𝑑(𝐸𝑟𝑟𝑜𝑟𝑑𝑝ℎ𝑎𝑠𝑒
𝑠𝑎𝑚𝑝𝑙𝑒

∗ 𝑛 + 𝜑𝑛, 2𝜋)

Timing corrections- since this implementation does not use interpolation, timing

error can be corrected approximately by removing samples, or inserting zeroes

Flop/sample Flops

4 1.3 G

It is highly organized in parallel since each sample can be calculated alone.

Best Sample Method
In polar coordinates the calculation of best sample method is a simple square,

and addition.

69

Flop/sample Flops

2 0.7 G

It is highly organized in parallel since each sample can be calculated alone. The

sum of the results can be calculated in groups to be able to parallel calculation.

Viterbi and Viterbi
Since a complex multiplication uses 6 Flop, it is more efficient to calculate the

error in polar coordinate system.
1. Multiply phase with M, and calculate the modulus of the result with 2 π – 2

Flop/sample
2. Feedback filter -2 Flop/sample

Flop/sample Flops

4 1.3G

It is not organized in parallel, because of the feedback structure.

Differentiation:
3 Flop/sample, subtraction, compare, addition if needed

Flop/sample Flops

3 1G

It is highly organized in parallel each sample can be calculated alone.
GMSK Demodulation
The chosen demodulator scheme for GMSK use N as a parameter. With higher

N the bit error rate increases. The needed computation is 2𝑁 subtraction, and N

addition per sample:

for example if N=10:

Flop/sample Flops

2058 659G

It is highly organized in parallel since each sample can be calculated alone.

Viterbi decoder:

To build the trellis diagram each bit requires normally 𝑀2 multiplication, and M

comparison, where M is the number of possible states. In this case it is 27. Be-

cause of the special structure of rate 1/2 convolutional codes, arrive to a state is

only possible in 2 different way.

70

The required computation: 128*2 addition, 128 compare

Flop/bit Flops

384 123G

The idea for parallel organization, which can be followed in this project, is to
split the stream into n parts (or windows). Each window can be processed in
parallel by a thread running on a CPU or GPU. In order to perform the reception
at each window the initial synchronization has to be performed independently
and the output of each thread has to be merged seamlessly together(Figure
85). To enable initial synchronization at each window without losing data, the
windows must be overlapped in time.

Received Stream

Sub-Stream

Sub-Stream

Sub-Stream

Sub-Stream

Thre
ad

Thre
ad

Thre
ad

Thre
ad

Overlapped for initial synchronization

Decoded Stream

Figure 85: Parallel organization

6.3 CPU implementation

In this and in the next chapter, a 40 tap FIR filter is implemented in a modern

CPU, and GP-GPU platform. The implementation shows an example of the

main architectural aspects, and the connection between theoretical, and practi-

cal speed of the system.

The basic properties of a CPU:
- Usually high speed memory access due to multistage cache system, and effi-

cient page management
- High serial computation capabilities

71

- Low number of threads (2-8 usually), costly switch between treads (state save
needed)

- Capability to calculate with multiple data, or vectors in one time (MMX, SSE,
AVX) (D. A. Patterson, J. L. Hennessey, 1998)

Assuming that we do not use an i7-4xxx Pentium, the AVX instruction set is the

most performing one. The code using AVX intrinsics is shown below for a single

sample. The filter coefficients c and the “zero”-vector are preloaded in AVX reg-

isters. The load instructions (_mm256_loadu_ps) are placed such that one cycle

is between the load and the use of the loaded data in order to hide memory la-

tency.

Please note that it is important to use the arch: AVX compiler option. Typically

the C++ compiler use SSE for optimization as default and embed the AVX in-

trinsics into the SSE code, which results in expensive state switching of the

CPU. The used algorithm:

 a0=_mm256_loadu_ps(&data[i]); // load 8 unaligned

float

 sum=_mm256_mul_ps(a0, c0);

 a1=_mm256_loadu_ps(&data[i+8]);

 q=_mm256_mul_ps(a1, c1);

 a2=_mm256_loadu_ps(&data[i+16]);

 sum=_mm256_add_ps(sum, q);

 q=_mm256_mul_ps(a2, c2);

 a3=_mm256_loadu_ps(&data[i+24]);

 sum=_mm256_add_ps(sum, q);

 q=_mm256_mul_ps(a3, c3);

 a4=_mm256_loadu_ps(&data[i+32]);

 sum=_mm256_add_ps(sum, q);

 q=_mm256_mul_ps(a4, c4);

 sum=_mm256_add_ps(sum, q);

 sum=_mm256_hadd_ps(sum, zero); // horizontal

add pairwise

 sum=_mm256_hadd_ps(sum, zero);

 sum=_mm256_hadd_ps(sum, zero);

72

 data[i]=*(float*)∑

Time measurement on an Intel i7-3820QM processor showed that 18 lines of

code are executed exactly in 18 CPU cycles on a single core. This means that

no performance impairments from memory latency and throughput. It could also

be verified that, when using a single core, the CPU runs on its Turbo frequency

of 3.7GHz (see Intel “Turbo Boost Technology” for more details).

In a second measurements, all 4 cores of the i7-3820QM processor where uti-

lized with the filter calculation by means of 4 parallel threads. Again it was pos-

sible to verify practically the full use of the CPU cycles for filter calculation, this

time on the normal clock speed of 2.7GHz. The measurements results are

summarized in the table below.

Number of core in use

on the CPU

Measured throughput in

Msamp/s

Consumed CPU clock

speed in GHz

1 203 3,65

2 361 3,25

3 475 2,85

4 649 2,6

The results have been also compared with an implementation using just for-

loops and a standard optimizer. A throughput of 30Msamples/s has been

achieved with a single core in use.

The results allow us to derive a performance formula for FIR filters on CPUs

supporting AVX. Assuming that the filter order m is an integer multiple of 8, cal-

culation in the AVX instruction set requires

• m/8 loads
• m/8 muls
• m/8-1 adds
• 3 horizontal adds (for adding the elements of the resulting vector)
• 1 store

resulting in 3m/8+3 cycles/sample (In this case 18). Note that this is for a real

sample. For example, a 40 tap filter in I and Q requires 2*18=36 CPU cycles per

complex sample.

Comparison to theory

73

The maximum theoretically throughput of the system, based on the last chapter:

Flops Msample/S

86.4 G 1080

Theoretical capability of the system can be found:

http://download.intel.com/support/processors/corei7/sb/core_i7-3800_m.pdf

Measured real throughput of the system: 649 Msample/sec

As it can be seen, about 60 percent of the theoretical maximum computation

capabilities are achieved. It has to be taken into consideration, that theoretical

computation speed is only reachable with special problems.

6.4 Cuda

The basic properties of a GP-GPU:

- GP-GPU has high computation capability, with extremely parallel organi-
zation, and some architectural restrictions

- There are two main implementation on market: OPENCL, and Cuda.
Since today Cuda is more frequently used, and high optimized solutions
are always hardware dependent, this trial uses Cuda.

In a Cuda (M. Garland, S. Le Grand, J. Nickolls, J. Anderson, 2008) system

each thread is extremely lightweight; each has just several registers. To change

between threads, there is no need, to store the registers manually. Because of

that the change between threads has practically no delay.

The main drawback of a CUDA system is the high memory latency. There is just

a small cache block available to each CUDA core, and the read delay from

global memory is high (400-800 cycles). This latency can be hided with the run

of a lot of threads in a core in one time, so something can be done until the oth-

er threads are waiting for the global memory.

In Fermi architecture on each Cuda streaming processor (SM) is 32 cores, the

same code runs in one time in each core of an SM (Wrap). To each streaming

processor belong a shared memory, which all threads can read and write.

The 40-tap FIR filter has been also realized in CUDA. In the test program, a

block of 218 samples has been used for filtering. After some experimentation it

turned out that the use of 218 threads optimizes performance on the Kepler ar-

74

chitecture. So the kernel function is very simple calculating just the 40 taps of a

single sample. Several versions of this Kernel have been implemented to test

out different aspects of the hardware and CUDA compiler. The simplest version

is given below to illustrate such a CUDA kernel.

__global__ void kernel_gpuTest_3(float* x)

{

 const float c[40]={...};

 int idx = blockIdx.x * blockDim.x + threadIdx.x;

 x[idx+262144]=x[0]*c[0];

 for(int i=1; i<40; i++)

 x[idx+262144]+=x[idx-i]*c[i];

}

Other kernel versions try to enhance performance to optimize the use of regis-

ters, the caches, access to the memory, use of texture memory for the coeffi-

cients, loop unrolling, etc. The best version has been used for comparison with

the simple kernel.

It is also to mention that intentionally the measurements do not take the transfer

times between CPU and GPU into account, since it is assumed that a real im-

plementation will always try to add additional functionality and code to the GPU

in order to hide the transfer overhead.

In the following, the kernels has been executed on 3 different GPU platforms.

The specification (from “deviceQuery”) is given below:

Quadro K1000M
 CUDA Driver Version / Runtime Version 5.5 / 5.5

 CUDA Capability Major/Minor version number: 3.0

 Total amount of global memory: 2048 MBytes (2147483648 bytes)

 (1) Multiprocessors, (192) CUDA Cores/MP: 192 CUDA Cores

 GPU Clock rate: 851 MHz (0.85 GHz)

 Memory Clock rate: 900 Mhz

 Memory Bus Width: 128-bit

 L2 Cache Size: 262144 bytes

 Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

75

 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

 Total amount of constant memory: 65536 bytes

 Total amount of shared memory per block: 49152 bytes

 Total number of registers available per block: 65536

 Warp size: 32

 Maximum number of threads per multiprocessor: 2048

 Maximum number of threads per block: 1024

 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

 Maximum memory pitch: 2147483647 bytes

 Texture alignment: 512 bytes

 Concurrent copy and kernel execution: Yes with 1 copy engine(s)

 Run time limit on kernels: Yes

 Integrated GPU sharing Host Memory: No

 Support host page-locked memory mapping: Yes

 Alignment requirement for Surfaces: Yes

 Device has ECC support: Disabled

 CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)

 Device supports Unified Addressing (UVA): No

 Device PCI Bus ID / PCI location ID: 1 / 0

 memory bandwidth: 28.8 GB/Sec

GeForce GTX 680
 CUDA Driver Version / Runtime Version 6.0 / 5.5

 CUDA Capability Major/Minor version number: 3.0

 Total amount of global memory: 2048 MBytes (2147483648 bytes)

 (8) Multiprocessors, (192) CUDA Cores/MP: 1536 CUDA Cores

 GPU Clock rate: 1059 MHz (1.06 GHz)

 Memory Clock rate: 3004 Mhz

 Memory Bus Width: 256-bit

 L2 Cache Size: 524288 bytes

 Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)

 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

 Total amount of constant memory: 65536 bytes

 Total amount of shared memory per block: 49152 bytes

 Total number of registers available per block: 65536

 Warp size: 32

 Maximum number of threads per multiprocessor: 2048

 Maximum number of threads per block: 1024

 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

 Maximum memory pitch: 2147483647 bytes

 Texture alignment: 512 bytes

 Concurrent copy and kernel execution: Yes with 1 copy engine(s)

 Run time limit on kernels: Yes

 Integrated GPU sharing Host Memory: No

 Support host page-locked memory mapping: Yes

76

 Alignment requirement for Surfaces: Yes

 Device has ECC support: Disabled

 CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)

 Device supports Unified Addressing (UVA): Yes

 Device PCI Bus ID / PCI location ID: 3 / 0

 memory bandwidth: 192 GB/Sec

GeForce GTX 480
 CUDA Driver Version / Runtime Version 6.0 / 5.5

 CUDA Capability Major/Minor version number: 2.0

 Total amount of global memory: 1536 MBytes (1610612736 bytes)

 (15) Multiprocessors, (32) CUDA Cores/MP: 480 CUDA Cores

 GPU Clock rate: 1401 MHz (1.40 GHz)

 Memory Clock rate: 1848 Mhz

 Memory Bus Width: 384-bit

 L2 Cache Size: 786432 bytes

 Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)

 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

 Total amount of constant memory: 65536 bytes

 Total amount of shared memory per block: 49152 bytes

 Total number of registers available per block: 32768

 Warp size: 32

 Maximum number of threads per multiprocessor: 1536

 Maximum number of threads per block: 1024

 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

 Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)

 Maximum memory pitch: 2147483647 bytes

 Texture alignment: 512 bytes

 Concurrent copy and kernel execution: Yes with 1 copy engine(s)

 Run time limit on kernels: Yes

 Integrated GPU sharing Host Memory: No

 Support host page-locked memory mapping: Yes

 Alignment requirement for Surfaces: Yes

 Device has ECC support: Disabled

 CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)

 Device supports Unified Addressing (UVA): Yes

 Device PCI Bus ID / PCI location ID: 2 / 0

 memory bandwidth: 133 GB/Sec

The measured values represent the 40-tap filter kernel for 218 samples run 10

times. In the following table, the measured results are compared. In addition, a

relation to the theoretical computational power (CUDA cores * GPU Clock rate)

of the GPU is given.

77

GPU Kernel Measured

time in ms

Measured

throughput

in Msamp/s

GPU theoret-

ical perfor-

mance in

Gflops/s

Flops/s/sample

Quadro
K1000M

simple 28.68 91 163.4 1796

 optimized 9.91 265 617
GeForce
GTX 680

simple 3.39 773 1626.6 2104

 optimized 1.42 1846 881
GeForce
GTX 480

simple 2.12 1237 672.5 544

 optimized 0.54 4855 139

As shown in the table the GTX 480 delivers the best performance. The interest-

ing aspect is that the GTX 480 is a Fermi architecture, which obviously performs

for this algorithm better than the Kepler architecture used by the other two

GPUs. The reason for that has been identified as a memory bottleneck due to

unaligned memory access, which is twice the size at the Kepler architecture.

Here, it was not possible to hide this memory latency with the 40 tap filter.

The intended GPU cards are Nvidia Tesla cards. For instance the Tesla K10

has a memory bandwidth of 320Gbit/s and 3072 CUDA cores. This is also true

for Fermi based Tesla cards. So at least twice the performance of the GTX 680

can be expected.

In addition, the memory transfer speeds between CPU and GPU have been

measured. The average duration of a transfer for 2^18 samples was on each

platform and each direction around 0.4ms. (Please note that the kernel function

has been invoked 10 times on the transferred data.) This means that the trans-

fer rate is around 600Msamples/s. It was possible to increase this value by use

of a pinned memory and by use of “half floats” (16 bit numbers), resulting in

around 2000Msamples/s. Furthermore it is possible to hide the resulting latency

by concurrent execution of transfer and GPU processing, which is possible on

78

today’s GPUs. However, compared to the processing in the GPU, this is still a

relevant time factor.

The conclusion of the GPU evaluation was that

- Implementation of existing algorithms from normal C++ code requires
significant redesign. It is not sufficient to port just some small critical sec-
tions to the GPU. If a GPU is used, a bigger portion of functionality must
be shifted to the GPU in order to hide transfer bottlenecks between CPU
and GPU.

- In addition, for the GPU a memory design must be developed carefully in
order to optimize transfer speeds between CPU and GPU as well as
memory access in the GPU core.

- Optimization with respect to the GPU hardware requires a lot of detailed
GPU architecture knowledge and experimentation. The achievable per-
formance cannot be really estimated beforehand, which makes planning
of the required resources risky. “Speed ups” of a factor of 5-10 compared
to 4-core Intel CPUs seems to be typical for signal processing applica-
tion.

As it can be seen, the best implementation use 139 Flop/sample, and the theo-

retical minimum is 80. So about the 58 percent of theoretical maximum perfor-

mance is achieved in this case.

6.5 Recommended system plan

Worst case computation needs are about a maximum of 1000 GFlops. As it has

been shown, the modern PC with GPU-s have enough resources to demodulate

the signal from software.

Modern PC performance:

CPU -86.4 GFlops – I7-3820M

GPU- 1626 GFlops – GTX680

It has to be taken into consideration that the maximum performance cannot be

reached; the plan of an efficient implementation of an algorithm is a highly com-

plex task, so it is recommended to plan the system architecture in a scalable

manner. The real size of the system can be easily calculated after the imple-

mentation of the algorithms.

A recommended scalable architecture:
Basic idea:

79

- A master PC records the signal, and cuts it to frames
- The slave PCs demodulate the frames and return them to master

o communication between the nodes with Ethernet 10 Gbit

Figure 86: Recommended scalable architecture

2*10 GBit switches are needed, because the theoretical maximum bandwidth of

the signal is 320Msample*2(IQ)*16 bit/sample= 10240 Mbit

Capture method in Master PC:

PCI-E FPGA based capture card

Master PC software

- Doppler correction
- Channel filter (FIR)
- Search for frequency error, and ASM bit pattern
- Cut the signal to frames, each frame has a whole sequence from

ASM to ASM
- Send the numbered frames to slave PCs for demodulation
- Collect the results from slave PCs and save them
- For request sends the data’s, statistics to a separated network

Slave PCs software

- Demodulates each frame, and sends the results back.

Master PC

10 GBit/s

 Switch

 10

GBit/s

Slave PC

Slave PC

Slave PC

Slave PC

Slave PC

Slave PC
Output

GBIT

Signal

80

In many cases a simple PC can be enough for all tasks. With this architecture

redundancy can be also achieved without doubling all resources. In calculating

the system size it has to be taken into consideration that until frequency error is

not corrected, and frames are not found by main computer, the demodulation

cannot be done. The throughput of the system has to be slightly greater as the-

oretically needed.

81

7. Conclusion

This thesis presents a possible solution for developing a software defined radio

based modem for low speed space communication. The simulated communica-

tion schemes are defined by the CCSDS standard.

A Matlab based simulator has been developed to evaluate algorithms, used for

the simulation of a communication systems. Algorithms have been evaluated for

channel coding (convolutional code, Reed-Solomon code, concatenated codes),

pulse code modulation, pulse shaping filters (RRC, IIR, Gaussian), for modula-

tion, and demodulation (PSK, 4D-8PSK-TCM, OQPSK, GMSK), and for syn-

chronization (attached synch marker, non-data aided, and data-aided synchro-

nization algorithms for PSK as well as GMSK systems).

The individual simulations show that a system built from these algorithms per-

forms well enough to satisfy the requirements. Some tests of the whole systems

also confirm this statement (OQPSK, 8-PSK, GMSK).

The worst case computation needed for real-time processing is about 1000

GFlops. It has been shown that a modern CPU or GPU alone is not enough,

that’s why a parallel system with more CPUs, GPUs, and the parallel organiza-

tion of the above mentioned algorithms is inevitable. A system with more indi-

vidual PCs and high speed network is recommended over a single multi CPU,

GPU system, to be able to provide redundancy, and a possibility for on the fly

maintenance.

82

8. Literature

A. J. Viterbi, A. M. Viterbi. (1983). Nonlinear Estimation of PSK-Modulated

Carrier Phase with Application to Burst Digital Transmission. IEEE Trans.

Inform. Theory, 29(7), 543-551.

C. C. Bissell, D. A. Chapman. (1992). Digital Signal Transmission. Cambridge

University Press.

CCSDS 130.1-G-1. (n.d.). TM Synchronization and Channel Coding - Summary

of Concept and Rationale.

CCSDS 413.0-G-2. (n.d.). Bandwidth-Efficient Modulations.

D. A. Patterson, J. L. Hennessey. (1998). Computer Organization and Design:

The Hardware/Software Interface. Morgan Kaufmann Publishers.

ECSS-E-ST-50-01C. (n.d.). Space Data Links - Telemetry Synchronization and

Channel Coding.

ECSS-E-ST-50-05C. (n.d.). Radio Frequency and Modulation.

G. D. Forney. (1973). The Viterbi Algorithm. Proceedings of the IEEE(61), 268–

278.

H. J. Blinchikoff, A. I. Zverev. (2001). Filtering in the Time and Frequency

Domains.

J. G. Proakis. (1995). Digital Communications (3rd ed.). McGraw-Hill.

J. He, Z. Wang, H. Liu. (2010). An Efficient 4-D-8PSK-TCM Decoder

Architecture. IEEE Trans. on Very Large Scale Integration (VLSI)

Systems, 18, 808-817.

L. W. Couch. (1997). Digital and Analog Communication Systems. Prentice-

Hall.

M. Garland, S. Le Grand, J. Nickolls, J. Anderson. (2008). Parallel Computing

Experiences with CUDA. IEEE Micro, 4(28), 13-17.

M. Oerder, H. Meyr. (1988). Digital Filter and Square Timing Recovery. IEEE

Trans. Commun., 36(5), 605–612.

R. Abello, N. James, R. Madde. (2007). GMSK Demodulator Implementation for

ESA Deep-Space Missions. Proceedings of the IEEE, 95(11), 2132-

2141.

S. Pasupathy. (1979). Minimum Shift Keying: A Spectrally Efficient Modulation.

IEEE Communications Magazine, 14-22.

83

Wikipedia. (2014, 10 13). www.wikipedia.org. Retrieved 10 13, 2014, from

http://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction

 84

9. Appendix

1. GMSK detector

function out = detector(signal_in, TX_filter_coeff_b)
%#codegen

%R_search_depth: sliding window size
R_search_depth=5;
shape_mask=ones(R_search_depth,1); % mask for shaping the estimation

%Initialisation
Upsample_factor=8;
T_Group_delay=2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Generate the bit patterns
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Generate all possible bit pattern
s=0:2^R_search_depth-1;
bits = de2bi(s,R_search_depth);
bits=transpose(bits);

% NRZ
bits=(bits-0.5).*2;

% Add zeros to the end
sequences=[bits/Upsample_factor*pi/2 ; zeros(T_Group_delay,numel(s))];

% Upsample, and filter

%Zero padding
sequences = upsample(sequences,Upsample_factor);
%Upsample filter
sequences = filter(ones(1,Upsample_factor),1,sequences);
%Gauss filter
sequences = filter(TX_filter_coeff_b,1,sequences);

 85

%cut the sequences to the same size as cutted from the signal
sequences=sequences(T_Group_delay*Upsample_factor:end,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Liklehood of the signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%initialize the received vector
received_vector=zeros(floor(numel(signal_in)/Upsample_factor),1);

vector=(zeros(numel(s),1));
for i=0:floor(numel(signal_in)/Upsample_factor)-R_search_depth-3;
 %multiply, and sum the sequence with the signal
 ma-

trix=repmat(signal_in((1:Upsample_factor*(R_search_depth)+1)+Upsample_

factor*i),1,numel(s))-sequences;
 %vector square
 for q=1:numel(s)
 vector(q)= transpose(matrix(:,q))*matrix(:,q);
 end
 %choose the minimal
 [value_of_max,position_of_min] = min((vector));
 %save the coeffitiens multiplied with the shape mask
 re-

ceived_vector(i+1:i+R_search_depth)=received_vector(i+1:i+R_search_dep

th)+bits(:,position_of_min).*shape_mask;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Detection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%sign of the signal, or bring coeffitiens to the covolutional decoder

out=(sign(received_vector)+1)/2;

end

 86

2. Maximize energy timing estimator

function [signal_out , R_timing_error] = Timing_recovery(signal_in)
%Estimates Timing error with O&M algorythm (NDA), and corrects it

%%
% Timing estimation with MaxE algorithm
%%
Upsample_factor=8;

%save the signal
signal_out=signal_in;
%calculates the energy of the samples
signal_in=abs(signal_in).^2;
%generates mask for the signal to choose the needed values
% for example if Upsample factor is 8 the elements are: 0,8,16,24,32

...
mask=0:Upsample_factor:numel(signal_in)-Upsample_factor;
estimation=zeros(Upsample_factor,1); % initialize estimation

%calculates the sum of the energy of the signal points in the distance

of
%the upsample factor
for i=1:Upsample_factor
 estimation(i)=sum(signal_in(mask+i));
end

%looks for the position of the biggest value
[~,R_timing_error]=max(estimation);
%removes the bias cased by the element numbering of a vector in Matlab
R_timing_error=R_timing_error-1;

%%
% Timing Correction
%%
signal_out= circshift(signal_out,-1*R_timing_error);

end

 87

3. Oerder&Meyr timing estimator

function [signal_out , R_timing_error] = Timing_recovery(signal_in)
%Estimates Timing error with O&M algorythm (NDA), and corrects it

%%
% Timing estimation with Oerder and Meyr algorithm
%%
Upsample_factor=8;

%The description of the algrithm can be found in the 4. documentation

temp1=[1:1/Upsample_factor:(length(signal_in)-

128)/Upsample_factor]*2*pi;
temp2=abs(signal_in(1:(length(signal_in)-127-Upsample_factor)));
temp1=temp2.*temp2.*transpose(exp(-1*1i*temp1));
temp1=sum(temp1);

R_timing_error=Upsample_factor/(2*pi)*angle(temp1);

%%
% Timing Correction
%%
signal_out= circshift(signal_in,round(R_timing_error));

end

4. Maximize energy method for OQPSK

function [signal_out , R_timing_error] = Timing_recovery(signal_in)
%Estimates Timing error with O&M algorythm (NDA), and corrects it

%%
% Timing estimation with Oerder and Meyr algorithm
%%
Upsample_factor=8;

 88

%Initialisation

signal_out=signal_in;
signal_i=real(signal_in).^2;
signal_q=imag(signal_in).^2;
mask=0:Upsample_factor:numel(signal_in)-Upsample_factor;

estimation=zeros(Upsample_factor*2,1);
estimation_i=zeros(Upsample_factor,1);
estimation_q=estimation_i;

%Calculate maxE method separately for I, and Q

for i=1:Upsample_factor
 estimation_i(i)=sum(signal_i(mask+i));
 estimation_q(i)=sum(signal_q(mask+i));
end

% summarizes the elements with half symbol difference

for i=1:Upsample_factor
 estima-

tion(i)=estimation_i(i)+estimation_q(mod((i+Upsample_factor/2),Upsampl

e_factor)+1) ;
end

%%%%%%%%%%%%%%%%%%%%
% Pi/4 shift
%%%%%%%%%%%%%%%%%%%%
% calculates the same with pi/4 shift of the signal

%pi/4 shift
 signal_in=signal_in*exp(-1i*pi/4);
%energy
 signal_i=real(signal_in).^2;
 signal_q=imag(signal_in).^2;

%Calculate maxE method separately for I, and Q

 89

for i=1:Upsample_factor
 estimation_i(i)=sum(signal_i(mask+i));
 estimation_q(i)=sum(signal_q(mask+i));
end

% summarizes the elements with half symbol difference

for i=1:Upsample_factor
 estima-

tion(i+Upsample_factor)=estimation_i(i)+estimation_q(mod((i+Upsample_f

actor/2),Upsample_factor)+1) ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Estimation of timing error
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[~,R_timing_error]=max(estimation);
R_timing_error=mod(R_timing_error-1,Upsample_factor/2);

%%
% Timing Correction
%%

signal_out= circshift(signal_out,-1*R_timing_error);

end

5. Correction of the remaining symbol timing error after phase error is cor-
rected

function [signal_out, out] = Timing_recovery(signal_in)
%Estimates Timing error with O&M algorythm (NDA), and corrects it

%%
% Timing estimation with Oerder and Meyr algorithm
%%

 90

Upsample_factor=2;

mask=1:Upsample_factor:numel(signal_in)-Upsample_factor;

%%
% Timing Correction
%%

%generates the two possible signal variation
signal_1=signal_in;
signal_2= circshift(signal_in,-Upsample_factor/2);

%shifts the offset bac in both case
signal_1= real(signal_1)+ 1i*circshift(imag(signal_1),-

1*Upsample_factor/2);
signal_2= real(signal_2)+ 1i*circshift(imag(signal_2),-

1*Upsample_factor/2);

% Choose the right one with maximize Energy method

if sum(abs(signal_1(mask))) > sum(abs(signal_2(mask)))
 signal_out=signal_1;
 out=1;
else
 signal_out=signal_2;
 out=2;
end

end

6. Viterbi&Viterbi with feedback structure

function [signal_out , R_Phase_error] = VV_and_phase(signal_in,

R_Phase_M, R_Phase_A, R_Phase_B)
%Estimates phase error with V&V algorythm (NDA), and corrects, the

signal

 91

%ABOUT:
% The argument of the signal will be raised to M-th.(in case N-PSK

N=M)
% Note: the maximal area for estimation is 2*pi/M

% Define variables
R_Phase_error=zeros(numel(signal_in),1);
signal_out=signal_in;
Phase_error_at_previous_symbol=0;

% Estimates the Phase Error, and corrects it in each points
for i=1:numel(signal_in)-1
 % Corrects next symbol phase with the previous estimated phase
 signal_out(i)=signal_in(i)*exp(-1i*R_Phase_error(i));
 % Phase estimation, and filter

Phase_error_at_symbol=(1/R_Phase_M)*angle(signal_out(i).^R_Phase_M);

R_Phase_error(i+1)=R_Phase_error(i)+R_Phase_A*Phase_error_at_sym

bol+(R_Phase_B-R_Phase_A)*Phase_error_at_previous_symbol;

 % Saves the states for next cycle
 Phase_error_at_previous_symbol=Phase_error_at_symbol;
 end
end

7. Find ASM

function [state,output,max_value]=

find_ASM(BIT_pattern,Number_of_bits,R_Enabled_bit_failures)
% Looks for ASM pattern. If finds, sets the state to 0
% The output is always the frame cutted after the sync pattern

%%%%%%%%%%%%%%%
%Constants
%%%%%%%%%%%%%%%

 92

ASM_bit_pattern=[0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 0 1];
num_of_zeros=128; % number of zeros inserted in sequence, read notes
 % at Transmit/insert ASM to more info before edit!

state=1;

output=BIT_pattern(1:Number_of_bits);
%Output has to be generated in this form because with just zeros there

are no limits to size for matlab compiler
output=output*0;
%%%%%%%%%%%%%%%
%Calculations
%%%%%%%%%%%%%%%

% creates NRZ values from signal (0,1)
ASM_bit_pattern=(ASM_bit_pattern-0.5)*2;
BIT_pattern_signed=(BIT_pattern-0.5)*2;

% calculates the max value, and index of the crosscorrelation
% of ASM, and input Bit pattern

[max_value, index] = max(xcorr(BIT_pattern_signed,ASM_bit_pattern));

% If ASM is detected returns with 0
% The sequence has 32 bit lenght, so the without failure the
% max_value of cross correlation is 32. Each bit failure makes
% 2 lesser maximum in cross correlation

if (max_value >= (32-2*R_Enabled_bit_failures))
 state=0;
end

% Generates the cutted bit pattern
% The xcorr function of Matlab does zero padding,
% that is why the cutted Bit_pattern started with

 93

% index-Number_of_bits+1 -num_of_zeros is in all place required be-

cause
% zero padding for timing error makes the signal longer.

if(index+1-num_of_zeros > numel(BIT_pattern)) % failure correction
 state=index;
else
 max_value=index-Number_of_bits+1-num_of_zeros;
 output=BIT_pattern((index-Number_of_bits+1-num_of_zeros):(index+1-

num_of_zeros));
end
end

8. Find ASM for DA frequency estimator

function [state,max_value,search]= find_ASM(BIT_pattern)
% Looks for ASM pattern. If finds, sets the state to 0
% The output is always the frame cutted after the sync pattern

%%%%%%%%%%%%%%%
%Constants
%%%%%%%%%%%%%%%

ASM_bit_pattern=[0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 1 1 1 0 1];
%ASM_bit_pattern=transpose(ASM_bit_pattern);

%threshold of the signal find
treshold=0.3;

%init value for state
state=1;

%%%%%%%%%%%%%%%
%Calculations
%%%%%%%%%%%%%%%

% creates NRZ values from signal (0,1)
ASM_bit_pattern=(ASM_bit_pattern-0.5)*2;
BIT_pattern_signed=(BIT_pattern-0.5)*2;

 94

% calculates the the crosscorrelation of ASM, and input Bit pattern

search= xcorr(BIT_pattern_signed,ASM_bit_pattern);

% Defining variables
mask=0:numel(ASM_bit_pattern):numel(search)-numel(ASM_bit_pattern);
estimation=zeros(numel(ASM_bit_pattern),1);

% In crosscorrelation vector the peaks are in a distance from frame

size
% from each other. The following algorithm summarize the peaks, and

looks
% for the correlated signal with some threshold.

for i=1:numel(ASM_bit_pattern)
 estimation(i)=sum(search(mask+i));
end

%choose the biggest value
max_value=max(estimation);
if (max_value>numel(search)*treshold)
 state=0;

end
end

	First name and surname, university degree already held, e:
	g:
	 BSc: Balázs Ferenczi, BSc.

	Title and subtitle of the thesis: Simulation of Critical Modules for a CCSDS Modem
	to achieve the university degree of: to achieve the university degree of
	MASTER'S THESIS: MASTER'S THESIS
	Masterstudien: [Master's degree programme: Electrical Engineering]
	submitted to: submitted to
	Graz University of Technology: Graz University of Technology
	University degree, first name and surname of the supervisor: Assoc. Prof. Dipl.-Ing. Dr. techn. Wilfried Gappmair
	Institutsname: Institute of Communication Networks and Satellite Communications
	Di: [Diplom-Ingenieur]
	Supervisor: Supervisor
	optional field: Dipl.-Ing. Dr. techn. Johannes Ebert
	Graz, month and year: Graz, February 2015

