
Dipl.-Ing.(FH) Florian Pölzlbauer

Communication-Centric Task Allocation
for Designing and Maintaining Networked

Embedded Real-Time Systems

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der technischen Wissenschaften
(Dr. techn.)

eingereicht an der

Technischen Universität Graz

Betreuer:

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. Eugen Brenner

Institut für Technische Informatik

Graz, im August 2014

EIDESSTATTLICHE ERKLÄRUNG
AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere
als die angegebenen Quellen / Hilfsmittel nicht benutzt, und die den benutzten Quellen
wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das im
TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Dissertation iden-
tisch.

I declare that I have authored this thesis independently, that I have not used other
than the declared sources / resources, and that I have explicitly marked all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present doctoral dissertation.

. .
Datum / Date Unterschrift / Signature

i

Kurzfassung (German)

Die vorliegende Arbeit widmet sich Methoden für Entwurf und Synthese von verteilten,
echtzeitfähigen, eingebetteten Systemen. Der Trend weg von monolithischer Software
hin zu modularen Software-Komponenten erhöht zwar Flexibilität und Wiederverwend-
barkeit, bedarf jedoch auch zusätzlicher Design-Entscheidungen: Wie sollen die Soft-
ware-Komponenten auf Prozessoren verteilt werden; finden einer effizienten Netzwerk-
Konfiguration; finden eines geeigneten Schedules für Software und Kommunikation.

In der Literatur werden diese Aufgaben meist nur für das Design-Szenario adressiert,
bei dem ein System vollkommen neu entwickelt wird. Vorliegende Arbeit fokussiert je-
doch auf ein evolutionäres Design-Szenario, d.h. ein System wird durch Weiterentwick-
lung eines Vorgänger-Systems entworfen, wodurch sich diverse Design-Constraints ergeben.
Zusätzlich muss beim Erstentwurf beachtet werden, dass das System in Zukunft verändert
werden kann, und es bei einem System-Upgrade rückwärts-kompatibel bleibt. All diese
Anforderungen erschweren den Entwurf, spiegeln jedoch industrielle Entwicklungsprozesse
wider.

Der wissenschaftliche Neuwert dieser Arbeit ist: Betrachtung von Constraints für die
Software-Verteilung und Netzwerk-Konfiguration; Minimierung der Netzwerk-Auslastung
durch optimiertes Frame Packing; Entwurf von erweiterbaren Netzwerk-Konfigurationen;
Upgrade einer Netzwerk-Konfiguration unter Beibehaltung der Rückwärts-Kompatibilität.
Die Methoden wurden in einem Prototypen implementiert und anhand realistischer Daten-
sätze evaluiert.

Schlagwörter: Softwareverteilung, Netzwerk-Konfiguration, Frame Packing, Scheduling,
Design-Constraints, Erweiterbarkeit, Rückwärts-Kompatibilität, Echtzeitsysteme, Opti-
mierung, Entwurfsraum Exploration

iii

Abstract

This work contributes to methodologies for designing networked embedded real-time sys-
tems. Recent trends in embedded systems show a shift from large monolithic software-
systems towards smaller reusable software-components. This offers increased flexibility,
but also leads to additional design-decisions which need to be taken. The design-decisions
include: which application software-component to allocate onto which processor; how to
configure data-transmission between processors via networks and gateways; how to sched-
ule task-execution and data-transmission.

While most related work in the literature addresses the scenario that the system is
designed “from scratch”, this work instead focuses on designing the system in an evolu-
tionary manner. This means that legacy decisions have to be taken into account, which
poses significant constraints on the design space. In addition, the system shall be designed
in a way that it is extensible towards future modifications. If the system is upgraded, the
new configuration shall be backward-compatible to the old configuration. All these re-
quirements make the engineering task hard to solve, but at the same time ensure that the
nature of industrial embedded systems is adequately captured.

The main contributions of this work are constraint-aware task allocation, network
configuration (especially frame packing) which minimizes bandwidth-utilization, extensible
network configuration, and backward-compatible network configuration. All proposed
methodologies have been implemented as proof-of-concept algorithms, and successfully
evaluated on realistic data-sets.

Keywords: task allocation, network configuration, frame packing, scheduling, design-
constraints, extensibility, backward-compatibility, real-time systems, design space explo-
ration, optimization

v

Acknowledgement

The contributions of this thesis were elaborated in the course of the projects BNO-II and
HYBCONS that were financially supported by the COMET – Competence Centers for
Excellent Technologies program of the Austrian Federal Ministry for Transport, Innova-
tion and Technology (BMVIT), the Federal Ministry of Science, Research and Economy
(BMWFW), the Austrian Research Promotion Agency (FFG), the province of Styria and
the Styrian Business Promotion Agency (SFG).

Foremost, I want to thank Prof. Eugen Brenner for supervising this thesis, for his
guidance, for his valuable discussions and feedback concerning technical aspects, and for
his patience.

I want to thank VIRTUAL VEHICLE for enabling me to spend 3 months abroad,
while working in the HYBCONS project. Thanks to Prof. Alan Burns, I could spend this
time at the University of York in the Real-Time Systems research group. During that time
I had valuable discussions with Prof. Alan Burns, Dr. Rob Davis, Dr. Leandro Soares
Indrusiak and especially with Dr. Iain Bate. These discussions helped me to narrow and
focus my research questions. Thanks to the group’s openness, just a few days after arriving
there, it felt like being a permanent member of the research group.

I also want to thank my work-colleges at VIRTUAL VEHICLE for valuable discussions
and feedback. Thank goes to Dr. Daniel Watzenig, Dr. Hannes Stippel, Dr. Martin
Benedikt, and especially to Dr. Allan Tengg and Mario Driussi.

Additional thanks goes to: Dr. Marek Jersak for a presentation on scheduling analysis
back in 2007, which initiated my interest in real-time systems in the first place; Prof.
Christian Magele for his valuable insights concerning meta-heuristics and optimization; Dr.
Raimund Kirner for the tool calc_wcet_167; Dr. Mike Holenderski for the tools grasp

and real-time view; Dr. Paul Emberson for the tool GenTAP and for research questions
I could derive from reading his PhD thesis; and several engineers at AVL, Delphi, Audi,
BMW and VW for discussions which increased my insight into industrial requirements for
designing embedded systems (especially automotive systems).

Finally, I want to thank my family and friends for their support and patience.

Graz, Austria
August 2014 Florian Pölzlbauer

vii

Contents

Abstract v

Glossary (Abbreviations, Symbols, Terms, and Definitions) xiii

1 Introduction 1

2 Related Work & State of the Art 3

2.1 Real-Time System Model . 3

2.1.1 Real-Time Task Model . 4

2.2 Real-Time Analysis . 4

2.2.1 Execution Time Analysis . 5

2.2.2 Response Time Analysis / Schedulability-Test 6

2.3 Real-Time Scheduling . 7

2.3.1 Time-Triggered . 7

2.3.2 Event-Driven . 8

2.4 Priority Assignment . 8

2.5 Task Allocation . 10

2.5.1 Graph Theory . 10

2.5.2 Heuristics . 10

2.5.3 Meta-Heuristic Search and Optimization 11

2.5.4 Alternative Formulation . 12

2.6 Automotive Standards . 12

2.6.1 CAN . 12

2.6.2 LIN . 12

2.6.3 FlexRay . 12

2.6.4 OSEK/VDX . 13

2.6.5 AUTOSAR . 14

3 Research Question 17

3.1 Conclusion and Open Issues of State of the Art 17

3.2 Hypothesis . 18

3.3 Research Questions . 18

4 Search Framework for Finding Optimal System Configurations 19

4.1 System Model . 19

4.1.1 Limitations . 20

ix

4.1.2 Extensions to Overcome Limitations 21

4.2 Basic Search Framework – Simulated Annealing 23

4.2.1 Accept Move . 25

4.2.2 Cooling . 25

4.2.3 Neighbour . 26

4.2.4 Cost . 27

4.2.5 Tabu Search . 31

4.2.6 Parameter Identification . 31

4.3 Extensions . 31

5 Configuration of Communication Infrastructure 33

5.1 Introduction, Assumptions, and Definitions 34

5.2 Frame Packing – Why? . 35

5.3 The Frame Packing Problem . 37

5.3.1 The Bin Packing Problem . 38

5.4 Literature Review Refinement – Frame Packing 40

5.4.1 Summary . 42

5.4.2 Open Issues . 43

5.5 Optimized Frame Packing . 43

5.5.1 Trade-Off Optimality Criteria . 44

5.5.2 Heuristic for Optimized Frame Packing 47

5.6 Experimental Evaluation – Frame Packing 48

5.6.1 Test Case Generation Tool – GenFPP 48

5.6.2 Test Cases & Evaluation Metrics . 50

5.6.3 Results . 51

5.6.4 Conclusions . 64

5.7 Including Frame Packing into System Configuration 65

5.7.1 Complexity of Frame Packing Solving 65

5.7.2 Cost-Function for Frame Packing Performance 66

5.7.3 Experimental Evaluation . 66

5.7.4 Conclusion & Future Work . 71

5.8 Gateway Configuration . 73

5.8.1 Literature Review Refinement – Configuration for Multi-Bus Systems 76

5.8.2 Including Gateway Configuration into System Configuration 76

5.9 Conclusions . 77

6 Satisfying Design Constraints 79

6.1 Design Constraints . 79

6.2 Literature Review Refinement – Constraints 82

6.3 Approach to Satisfy Constraints . 82

6.4 Extending the Search Framework . 85

6.4.1 Cost Function . 85

6.4.2 Task Allocation & Message Routing 86

6.4.3 Frame Packing . 89

6.4.4 Gateway Configuration . 91

6.5 Experimental Evaluation – Constraint Handling 91

x

6.5.1 Test Cases & Evaluation Metrics . 91
6.5.2 Results . 92

6.6 Concluding Remarks . 96
6.7 Additional Applicability of Methodology . 96

7 Evolving System Configurations 97
7.1 Automotive Product Development Process 97
7.2 Scope & Outline . 99
7.3 Extensible Bus Configuration . 99

7.3.1 Problem Statement & Definition . 101
7.3.2 Literature Review Refinement – Extensibility and Robustness 102
7.3.3 Strategy & Metric . 103
7.3.4 Solving Methodology . 105
7.3.5 Experimental Evaluation – Extensible Bus Configuration 107
7.3.6 Concluding Remarks . 111

7.4 Extending Bus Configuration under Backward Compatibility Constraints . 112
7.4.1 Scenarios & Definitions . 112
7.4.2 Problem Statement . 113
7.4.3 Literature Review Refinement – Extend Bus Configuration 114
7.4.4 Solving Methodology – Extend Frame Packing 114
7.4.5 Solving Methodology – Extend Frame Schedule 115
7.4.6 Experimental Evaluation – Extend Bus Configuration 121

7.5 Concluding Remarks . 122
7.6 Outlook . 122

8 Conclusion 123
8.1 Achievements . 123
8.2 Open Issues . 124
8.3 Future Research Directions . 124

List of Algorithms 127

List of Figures 129

List of Tables 131

References 133

Own Publications 141

A AUTOSAR 143
A.1 System Template . 143

xi

Glossary

Within this chapter the abbreviations, symbols, terms and definitions which are used
throughout this work are presented. They are used frequently throughout the entire
thesis.

Abbreviations

AUTOSAR automotive open system architecture – Standardization of the software-
platform for automotive electronic systems. It is closely related to the OSEK/VDX
standard.

BPP bin packing problem – NP-hard optimization problem: How shall a set of items be
packed into a set of bins in an optimal way.

CAN controller area network – Protocol for serial communication network. Network
arbitration is based on frame priority.

DMPO deadline monotonic priority ordering – Priority ordering approach where prior-
ities are assigned inverse-proportional to the deadlines. Tasks with short deadline
get high priority, tasks with long deadline get low priority.

DSE design space exploration – Methodology for systematically exploring the design
space.

ECU electronic control unit – Term which is mainly used in the automotive domain. It
contains a CPU, memory, IOs and bus-interfaces. It can be seen as a synonym for
processor.

EDF earliest deadline first – Scheduling policy where the priority of a task is defined at
runtime. The task which is closest to its absolute deadline gets the highest priority.

FPP frame packing problem – NP-hard optimization problem: How shall a set of messages
be packed into a set of frames in an optimal way.

FlexRay FlexRay – Protocol for serial communication network. Network arbitration is
based on a hybrid approach: both TDMA and priority-based.

GA genetic algorithm – Meta-heuristic which mimics the process of natural selection. It
is used for solving optimization problems.

xiii

GenFPP generate frame packing problem – Algorithm/tool for generating pseudo-random
synthetic frame packing problem instances.

ILP integer linear programming – Technique for the optimization of a linear objective
function, subject to linear equality and linear inequality constraints.

LIN local interconnect network – Protocol for low-speed, low-cost serial communication
network. It follows a master/slave approach (LIN-master sends a data-request and
LIN-slave returns the corresponding data) and uses a TDMA arbitration schema.

MILP mixed integer linear programming – A derivate of integer linear programming (ILP)
where decision variables can either be integer or boolean.

MOST media oriented systems transport – Protocol for high-speed communication net-
work. In automotive systems, it is mainly used for audio/video data.

OEM original equipment manufacturer – In the automotive domain, OEM is a synonym
for car-manufacturer, such as Audi, BMW, Daimler, VW, etc. The OEMs work
closely together with their suppliers.

OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug
(English: Open Systems and the Corresponding Interfaces for Automotive Electron-
ics) / Vehicle Distributed eXecutive – Standardization of the software-platform for
automotive electronic systems. It contains 3 main parts: operating system, commu-
nication, network management.

RTA response time analysis – Schedulability-test, which calculates the WCRT of each
task, and checks if the WCRT does not exceed the deadline.

RTOS real-time operating system – Operating system that uses a real-time scheduler.
This allows to upper-bound the timing behaviour of the system, and thus to give
timing guarantees.

SA simulated annealing – Meta-heuristic which mimics the process of cooling molten
metal. It is used for solving optimization problems.

TAP task allocation problem – NP-hard optimization problem: How shall a set of tasks
be allocated on a set of processors in an optimal way.

TDMA time division multiple access – Scheduling schema which divides the available
time into a set of time-slots.

Tier supplier – In the automotive domain, Tier is a synonym for supplier. The suppliers
work closely together with the OEMs. From the OEMs view, there are several levels
of Tiers. First-level Tiers supply components such as ECUs, engines, transmissions,
etc. Second-level Tiers supply components such as micro-controllers.

TT-CAN time-triggered CAN – Protocol for serial communication network. It uses
TDMA on top of CAN.

xiv

WCET worst-case execution time – The max. time it takes to execute a task. This time
does not include any interference or blocking.

WCRT worst-case response time – The max. time from a task being activated until it
finishes executing. This time includes all interferences and blocking.

WCTT worst-case transmission time – The max. time it takes to transmit a frame via a
bus-system. This time does not include the time it takes to arbitrate the bus-system.

xv

Symbols

Within the context of real-time analysis the following symbols are used:

Symbol Description

Bi blocking of task i due to lower priority tasks
Ci WCET of task i
Di deadline of task i
Ii interference of task i due to higher priority tasks
Ji release jitter of task i
Oi offset of task i
Pi priority of task i
Ri WCRT of task i
Ti period of task i
Ui utilization of task i
Zi worst-case computation cycles of task i

At several points within this work set theory is utilized. Thereby, the following elements,
sets and set-operators are used:

Symbol Description

τ task
m message
f frame
β bus
ρ processor
T set of tasks
M set of messages
F set of frames
B set of bus-systems
P set of processors
∪ union of sets
∩ intersection of sets
\ complement of sets

xvi

Terms

In the literature different terms are used in order to describe equivalent elements and
methodologies. In order to avoid this confusion, the following terms are used:

Term Description Alias in Literature

task
the smallest unit handled by
a scheduler

process, module, software,
thread, component, job, oper-
ation

job an invocation of a task –

task cluster a group of tasks task group

message data exchange between tasks
signal, data link, communica-
tion link, data element

software tasks & messages task graph

frame
the smallest unit transferred
via a bus

packet, message, telegram

processor
electronic device consisting
of µC and peripherals

processing node, node, ECU,
cluster

bus
communication medium con-
necting processors

network, communication link

hardware processors & bus-systems –

task allocation
local assignment of tasks to
processors

task assignment, task map-
ping, scheduling

task clustering grouping of tasks task grouping

task cluster allocation
local assignment of task clus-
ters to processors

task merging

scheduling

temporal assignment of tasks
& frames (time-triggered:
time slot planning; priority-
based: priority assignment)

–

frame packing
assignment of messages to
frames

message packing, signal pack-
ing, data element allocation

configuration
allocation & frame packing
& scheduling

–

xvii

Definitions

Based on the proposed terms, the following definitions of feasibility can be stated. These
definitions will be used throughout this work.

Configuration is feasible iff

task allocation,
message routing,
frame packing,
resource utilization, and
scheduling

are feasible.

Task allocation is feasible iff

{
no allocation constraints are violated, and
each task can be allocated to a processor.

Message routing is feasible iff

{
no routing constraints are violated, and
each message can be routed to its destination.

Frame packing is feasible iff

{
no packing constraints are violated, and
each message can be packed into a frame.

Resource utilization is feasible iff ∀ resources : u ≤ 100%

Scheduling is feasible iff

time slot plan,
priority assignment, and
real-time behaviour

are feasible.

Time slot plan is feasible iff

{
no time slots are overlapping, and
∀ time-triggered objects : C ≤ time slot length

Priority assignment is feasible iff priorities are unique.

Real-time behaviour is feasible iff

{
∀ schedulable objects : R ≤ D
∀ end-to-end-delays : R ≤ D

xviii

Chapter 1

Introduction

In recent years, a common trend in electronic devices can be observed: key product fea-
tures are defined by embedded software (e.g. software-defined radio instead of traditional
radio-transceivers). This trend is also true for mechatronic systems, such as cars. Esti-
mates state that up to 80% of customer-visible innovation in a modern car originates from
embedded software. Often, these are time- and safety-critical features (e.g. steer-by-wire).
In addition, the use of embedded software enables a wider range of product-variants, as well
as increased flexibility. During the last several years, the most significant trends [13, 50]
in embedded computing (especially in the automotive domain) are:

• from federated to integrated architecture:
In a federated architecture, each functionality is implemented on a dedicated hard-
ware unit. In several cases, the function is implemented in a bare bone manner, i.e.
no operating system is underlying. In an integrated architecture, several functionality
is implemented on one hardware unit. In most cases, an operating system is used.

• from special-purpose to general-purpose hardware:
In the past, functionality was often implemented by special-purpose hardware (e.g.
FPGA). Current trends are (more and more) towards using general-purpose process-
ing units, and implement functionality in software.

• component-oriented software and middleware [5]:
In order to improve reuseability of functionality, software is developed according to
component-oriented approaches, where the components have standardized interfaces.
In addition, hardware-specific functionality is encapsulated by a middleware, thus
making the application-software quite hardware-independent.

• increased complexity and more product-variants:
Modern products (such as cars) contain ever more functionality. In addition, the
manufacturers provide ever more product-variants.

These trends – in combination with the need of ever shorter time-to-market – lead to new
challenges for embedded-systems engineers:

• Hardware-independent software-components, with standardized interfaces, allow to
move the software to different processors. The number of possibilities grows exponen-

1

tially, therefore it would be very helpful to provide the engineers with a methodology
which assists the engineer with respect to this decision-making.

• Moving software-components between processors has a significant impact on the
communication-demand between the processors. Therefore, a methodology for allo-
cation software-components to processors needs to go hand-in-hand with a method-
ology for configuring the bus-communication between processors.

• Many industrial systems (such as cars) are developed in an evolutionary manner,
i.e. a previous product-version is taken as a baseline, and this version is extended by
new features and/or some changes are applied, in order to satisfy the “new system
requirements”. Therefore, a set of constraints to the design-space may exist. These
constraints must be considered and handled appropriately.

The objective of this thesis is to address these challenges, and to provide methodolo-
gies for solving them. To a large degree, the methodologies developed within this thesis
are generally applicable to a wide range of embedded real-time systems. However, the
problems are inspired by the automotive domain and their standards.

Outline

The thesis is structured as follows. First, some basics are addressed: Chapter 2 gives an
overview of related work and state-of-the-art. Chapter 3 states the research questions of
the thesis. Then, the core of the thesis is presented:

• Chapter 4 describes the basic search- and optimization-framework, and outlines
which aspects are subject to enhancements.

• Chapter 5 develops a methodology which allows to design a realistic and efficient
configuration of the cross-processor communication infrastructure. Key aspect is
frame packing for minimizing the network bandwidth demand.

• Chapter 6 develops a methodology, how a set of heterogeneous design-constraints
can be handled efficiently. This is key to solve realistic industrial problems which
are subject to design- and legacy-constraints.

• Chapter 7 enhances the methodology for communication configuration by 2 aspects:
(1) How to design a communication configuration which is capable of handling future
changes? (2) How can the communication configuration be extended / upgraded in
a way that it maintains compatible to a previous configuration? These aspects are
key to evolve a system design.

Finally, chapter 8 concludes the thesis and highlights relevant future research directions.

2

Chapter 2

Related Work & State of the Art

In nowadays cars, electronics and embedded software are key factors for innovation. Most
of these automotive embedded systems have to satisfy real-time behavioural requirements.

“A real-time computer system is a computer system in which the correctness
of the system behaviour depends not only on the logical results of the computa-
tions, but also on the physical instant at which these results are produced.”

– Hermann Kopetz [40]

Designing such embedded real-time systems is a challenging engineering task. It in-
volves a set of challenging design decisions as well as analysis steps.

2.1 Real-Time System Model

Nowadays, the majority of embedded real-time systems are implemented by a set of
software-tasks which are executed on a set of processors. Thus, a real-time system can be
described by two model-aspects:

• software – A set of software-tasks implement the business logic of the real-time
application. Each task is responsible for a certain aspect of the application. Tasks
exchange data via messages. The entire application can be modeled as a directed
graph where nodes represent tasks and edges represent messages.

• hardware – A set of processors execute the software-tasks. The processors are inter-
connected via bus-systems. The hardware can be modeled as an undirected graph
where nodes represent processors and edges represent bus-systems.

In order to make it easier to execute a software-task on different processors, hardware-
specifics are encapsulated in dedicated software-modules. This concept is often referred
to as a middleware approach.

3

2.1.1 Real-Time Task Model

The task model is a representation which models the temporal aspects of a software com-
ponent. It allows to model (and analyse) the execution of a software-task on a processor.
Likewise, it can also be used to model the transmission of a frame via a bus-system.

A task can be in one of several states (see figure 2.1). These states are in alignment
with the real-time operating system (RTOS) scheduler capabilities. Most RTOS support
the following states:

• ready – task is activated by its triggering event, and waiting to be executed

• running – task is currently executed

• blocked – task is waiting for a shared resource, which is currently used by another
task. This state is also known as waiting.

• inactive – task has finished executing (or has never been triggered yet). This state
is also known as suspended.

Figure 2.1: State diagram of preemptive real-time task with blocking [52]

Figure 2.2 shows the different timing aspects of the task model. It is plotted using the
tool grasp [34].

2.2 Real-Time Analysis

Real-time systems are systems, which have to fulfill timing requirements. A response of
the system is valid, only if (a) the response is correct, and (b) occurs within a defined
time-frame. Thus, if a correct response occurs too early or too late (i.e. does not satisfy

4

Time Description Symbol

arrival time time at which task arrives (i.e. is triggered by event) ↓
release time time at which task is released (i.e. starts to execute) ri
release jitter jitter of releases Ji
execution time during which task executes

preemption
time during which task is preempted by higher-priority
tasks

finishing time time at which task finishes executing fi
deadline time at which task must finish ↑

deadline (rel.)
time within which task must finish (i.e. relative to task’s
arrival)

Di

period time between two consecutive triggering of task Ti

Figure 2.2: Gantt-chart of real-time tasks

the timing requirements), the response is not valid. In order to guarantee that a real-time
system meets all its timing requirements, real-time analyses have to be performed. These
focus on two aspects:

• execution time – For each software-task it needs to be analysed, how long it takes to
execute it on a certain processor. By definition, the execution time does not contain
any interference by any other task. The max. execution time is referred to as the
worst-case execution time (WCET).

• response time – As several tasks may be executed on the same processor, there may
be interference between these tasks (e.g. by preemption). The response time is the
time it takes to execute a task, including all interferences. The max. response time
is referred to as the worst-case response time (WCRT). This WCRT must be smaller
or equal the defined deadline.

2.2.1 Execution Time Analysis

For real-time systems, it is important to know how long it takes to execute a software-task
on a certain processor. Thereby, the max. time – the so called WCET – is of special
interest.

“Timing analysis attempts to determine bounds on the execution times of a task
when executed on a particular hardware. The time for a particular execution

5

depends on the path through the task taken by control and the time spent in
the statements or instructions on this path on this hardware. Accordingly, the
determination of execution-time bounds has to consider the potential control-
flow paths and the execution times for this set of paths.”

– Wilhelm et al. [83]

In the literature, several approaches have been proposed to determine the WCET.
In [83] a detailed overview is provided. Basically, the approaches can be categorized as
follows:

• measurement-based – These methods execute the task on the given hardware or a
simulator for some set of inputs. They then take the measured times and derive the
maximal observed execution times (and the execution time distribution).
The main issue concerning measurement-based approaches is that the measured
execution time is dependent on the used input-data, since different inputs lead to
different execution-paths through the software-task.

• static – These methods do not rely on executing code on real hardware or on a simu-
lator. They rather take the task code itself, maybe together with some annotations,
analyze the set of possible control flow paths through the task, combine control flow
with some (abstract) model of the hardware architecture, and obtain upper bounds
for this combination.
The main issue concerning static approaches is to provide an accurate model of the
hardware. This is especially challenging for modern hardware.

• hybrid – These methods try to combine the benefits of both approaches. Static
methods are used for finding adequate control-flows, measurement-based approaches
are used to determine the execution-time for that path.

In this thesis, determining the WCET is not the research-focus. Therefore, it is as-
sumed that the WCET is known for each task.

2.2.2 Response Time Analysis / Schedulability-Test

A schedulability-test is a formal analysis which determines if a set of tasks is schedulable
according to a scheduling policy. Schedulability-tests can be categorized as follows:

• necessary – If the schedulability-test is negative, the task-set is definitely not schedu-
lable (e.g.: if utilization > 100% then the task-set is not schedulable). However, if
the schedulability-test is positive, the task-set may still be un-schedulable.

• sufficient – If the schedulability-test is positive, the task-set is definitely schedulable.
However, if the schedulability-test is negative, the task-set may still be schedulable
[19].

• exact – The schedulability-test always gives the correct answer.

6

In this thesis, exact schedulability-tests are used. One class of exact schedulability-
tests is the response time analysis (RTA). Its main benefit is that it not only gives a correct
true/false result. By calculating the WCRT more insight can be gained, especially when
the results are plotted via a gantt-chart which visualizes blocking- and preemption-times
(see figure 2.2).

For a set of independent tasks, which are scheduled according to fix priority preemptive
scheduling, the WCRT of each task is calculated as follows [2]:

Ri = Ji +Bi + Ci +
∑

k∈hp(τi)

⌈
Ri + Jk
Tk

⌉
Ck (2.1)

where the longest time a task can be blocked (due to waiting for a shared resource) is:

Bi = max
k∈lp(τi)

{Ck} (2.2)

In a similar way, the scheduling of frames on a CAN can be calculated [21]. The RTA
is performed for the so called critical instance. However, in case the tasks have offset-
dependency between them, the above stated equation produces overly-pessimistic results.
Therefore, offset-aware RTA can be used, in order to get more precise results [53,80].

2.3 Real-Time Scheduling

In order to satisfy the real-time behaviour constraints, real-time systems use RTOS and
real-time aware communication protocols. At runtime of the system, the software-tasks are
scheduled by the RTOS scheduler, and the bus frames are transmitted according to the bus
protocol. Therefore, different scheduling policies have been proposed in the literature, and
a set of them have been implemented in industrial systems. The most common scheduling
policies are:

2.3.1 Time-Triggered

Each task is executed at pre-defined points in time. All information, at which time each
task is executed, is stored in a scheduling table which needs to be built at design time.
There must not be any temporal overlap within the scheduling table entries. This approach
is also known as time division multiple access (TDMA).

• pros – As every action happens at pre-defined points in time, the system is precisely
deterministic.

• cons – Building the scheduling table is challenging. If changes need to be applied to
the system configuration, it may be necessary to re-build the entire scheduling table.
Thus, this approach is not flexible nor easily extensible. Only few RTOS support
this approach.

7

2.3.2 Event-Driven

A task may be triggered at any point in time. However, most systems use periodic trigger-
ing patterns. If several tasks are triggered within the same time-frame, a schema is used
to determine the execution order of the tasks. In most cases the schema is priority-based.
Thus, planing a schedule boils down to assigning priorities to tasks.

• pros – The system can be easily adapted to changing requirements, simply by as-
signing new priorities. Thus, the approach is suitable to build flexible and extensible
systems. Most commercial RTOS use priority-based scheduling.

• cons – As tasks may interfere with each other (e.g. by preempting each other) the
system becomes less deterministic. However, the timing behaviour of the system can
still be estimated by an upper bound (e.g. by using RTA).

Within this schema, there are different principles to determine the priorities:

• fix priority – At design-time, each tasks is assigned an unique priority. This priority
is never changed. The only exception is to temporarily raise the priority of a task,
in order to avoid deadlocks when using shared resources [46].

• dynamic priority – The priority of each task is determined at runtime. It may change
at any time. A commonly known priority assignment policy is earliest deadline
first (EDF).

Remarks

Of course, there is no single best scheduling policy. Each approach has its benefits and
shortcomings. [45] gives a good comparison of time-triggered vs. event-driven scheduling.
This work is especially recommended, as it also gives insight into system-performance of a
system which is comprised of both policies (e.g. event-driven processor and time-triggered
bus-system). In [12] a comparison of fix priority and EDF is provided. The comparison
findings are summarized in table 2.1.

For this thesis a pragmatic decision is made: RTOS which are used in the automotive
domain specify that fix priority has to be used. Thus, fix priority task scheduling is used
within this thesis.

2.4 Priority Assignment

Designing a schedule for a real-time system which uses the fix priority scheduling policy,
boils down to assigning a priority to each task. The problem is defined as follows:

Given a set of tasks T = {τ1, τ2, ..., τn} which shall be scheduled on a processor.
Each task is defined by its WCET, the period at which it is triggered, and its
deadline. Find a priority assignment, such that all tasks meet their deadline.

In the literature, a set of strategies have been proposed for solving this problem. Most
commonly known approaches are:

8

Policy Pros Cons

RM

• supported by many RTOS

• high-priority tasks will always
be executed, even if processor
is highly utilized

• jitter of response time is small
for high-priority tasks

• if processor is highly utilized,
low priority tasks are likely to
miss their deadline

• higher number of preemptions
and context switches

• jitter of response time is large
for low-priority tasks

EDF

• all tasks meet their deadlines,
even if processor is highly uti-
lized (up to 100%)

• fewer number of preemptions
and context switches

• jitter of response time is
evenly distributed

• only supported by few RTOS

• higher implementation com-
plexity of scheduler

• if processor is overloaded then
all tasks will miss their dead-
lines

Table 2.1: Comparison: RM vs. EDF

• rate monotonic (RM) – The priority of the tasks is assigned inverse-proportional to
their period. Tasks which have a short period are assigned a high priority, tasks
which have a long period are assigned a low priority. This approach is proven to
be optimal for a set of independent tasks, where the task’s deadline is equal to its
period [44].

• deadline monotonic (DM) – The priority of the tasks is assigned inverse-proportional
to their deadline. Tasks which have a short deadline are assigned a high priority,
tasks which have a long deadline are assigned a low priority. This approach is also
known as deadline monotonic priority ordering (DMPO), and is proven to be optimal
for a set of independent tasks, where the task’s deadline is less than or equal to its
period [4].

• Audsley’s algorithm (OPA) – Audsley found that the WCRT of a task is influenced
by higher-priority tasks, but not by lower-priority tasks. From that he derived an
optimal priority assignment (OPA) algorithm, which assigns each task the lowest
priority at which it is still schedulable [1, 3].

9

2.5 Task Allocation

Within the real-time systems community, the task allocation problem (TAP) is one of the
main research questions. The TAP is defined as follows:

Given a software-application consisting of a set of tasks T = {τ1, τ2, ..., τn}
which communicate via a set of messages M = {m1,m2, ...,mk}. Further
given an execution-platform consisting of a set of processors P = {ρ1, ρ2, ..., ρo}
which are interconnected via a set of bus-systems B = {β1, β2, ..., βp}. Find a
feasible allocation of tasks to processors (and messages to bus-systems). The
allocation should be optimal, according to defined optimization-criteria.

The TAP is known to be a NP-hard optimization problem. In the literature, a set of
approaches to solve the TAP have been proposed. These approaches can be grouped by
the solving-principles which are applied.

2.5.1 Graph Theory

Early work [77] address the TAP by using graph theory. The goal is to allocate a task
graph onto 2 identical processors. The optimization objective is to maximize the parallel
execution time, by minimize the communication between processors. This problem could
be solved by using max-flow/min-cut algorithms. Communication demand is indicated by
edge-weights in the task graph.

Later work [42] extended the problem to > 2 processors, and address it as a quadratic
binary program. However, both approaches do not consider constrained processing power
of the processors nor any real-time behavioural requirements.

In [10, 11] the TAP is solved using clustering algorithms. Again, the optimization
objective is to minimize the communication between processors, thus reducing the bus
utilization.

2.5.2 Heuristics

Several authors have developed heuristics for solving soft real-time TAP. Here, the
optimization-objective is to minimize response time of tasks and/or to balance processor-
load. However it is not guaranteed that task deadlines are met in every case (i.e. hard
real-time systems).

In [16] a two-stage approach is presented: First, tasks are clustered. Second, the
task-clusters are allocated to processors. Clustering reduces the size of the allocation
design-space. Tasks are clustered in pairs so that tasks which exchange much data are put
into a cluster. This reduces the communication demand between processors.

In [54] the optimization-objective is to minimize the max. task response time. The
author uses a branch and bound approach with a tailored heuristic for exploring high
quality parts of the solution space, while much of the search tree can be bounded. The
exhaustive nature of branch and bound algorithms ensures that an optimal solution is
guaranteed.

In [71,72] an approach similar to the two-stage approach (i.e. clustering and allocation)
is applied to solve the TAP for safety-critical hard real-time systems. Here, tasks may have

10

replicated tasks, and the replica-tasks must be allocated onto separated processors. The
approach constructs a static cyclic schedule.

In [67] the authors present a heuristic for allocating hard real-time tasks to processors
which are connected to a multi-cluster network (i.e. time-triggered and event-driven bus-
systems). Tasks with different trigger-method (time- vs. event-triggered) can be mapped
to the same processor, since processors use a hierarchical scheduling policy.

In [68] the approach from [67] is extended with respect to partitioning. This means
that the algorithm decides if a task shall be implemented as a time-triggered task or as an
event-triggered task. On the other hand, this approach assumes that tasks with different
trigger-method (time- vs. event-triggered) must not be mapped to the same processor.

In [37] the authors address the TAP for mixed-critical tasks. They assume that the
WCET of the tasks is dependent on the criticality-level. The authors propose an allocation
algorithm, which is based on bin-packing heuristics.

2.5.3 Meta-Heuristic Search and Optimization

Besides using problem-specific heuristics, a widely used approach is to apply meta-heuristics.

Simulated Annealing

In [81] the authors use simulated annealing (SA) to solve the TAP for hard real-time
systems. The tasks are scheduled according to fixed priority scheduling, and priorities are
assigned according to DMPO. The allocation must satisfy several constraints (resource
utilization, timing, replicated tasks to be allocated to separate processors).

In [15] the authors apply SA to the TAP with static cycle scheduling (i.e. time-triggered
scheduling). Their SA-approach uses different neighbour moves at different stages of the
search and depending on the current solution. For example, if the processors are utilized
very unbalanced, then neighbour moves are used which improve load balancing. Therefore,
heuristic information is being encoded into the neighbour moves, rather than the cost
function. The schedule is created according to a latest possible start time heuristic.

In [75] the author apply SA to solve the TAP for homogenous multi-DSP systems with
point-to-point communication. The approach considers task-to-processor constraints and
task-replica constraints. In addition, a static schedule is generated for each processor.

Genetic Algorithm

Unlike SA, which is based on the manipulation of a single solution, genetic algorithm (GA)
is based on a population. Within that population genetic operations (e.g. re-combination,
mutation, selection, etc.) are applied, in order to generate new solutions.

In [79] GA is used to solve the TAP for a soft real-time application. The authors pro-
pose an improved way to encode the genome, resulting in an improved search-performance.
The approach is demonstrated on a sensor fusion application. The hardware platform con-
sists of a set of processors, connected via Ethernet.

In [6] the TAP is addressed as part of an architecture synthesis problem. Beside
allocation of tasks, also scheduling of tasks and selection of hardware (i.e. ASIC vs.
general purpose processor) is addressed. The author applied 3 different meta-heuristics:

11

SA, GA, and tabu-search. The author’s conclusion is that tabu-search being the best
approach for this particular problem.

2.5.4 Alternative Formulation

In [85] the TAP (as well as the priority assignment) for hard real-time tasks is formulated
via mixed integer linear programming (MILP). Processors, which may have different pro-
cessing capabilities, are interconnected via a CAN bus-system. Optimization-objective is
to minimize end-to-end latencies.

In [25] the TAP is solved, while taking into account several constraints (e.g. limited
resources, timing, dedicated processors, task grouping, task separation). The authors
apply a constraint programming approach to solve the problem.

2.6 Automotive Standards

Within the automotive domain, a set of standards have been established which are used to
implement automotive embedded real-time systems. A sub-set of them – which are most
relevant for this thesis – are covered in this section.

2.6.1 CAN

The controller area network (CAN) standard [14] specifies a wired serial communication
bus. It allows to transmit up to 8 bytes of payload per frame. The baudrate has to be set
in alignment with cable length and topology. In automotive systems, typical baudrates
are 125, 250, 500 and 1000 kb/s.

CAN is a multi-master bus. The arbitration of the bus is based on bit-wise CSMA/CA
(carrier sense, multiple access, collision avoidance). Each frame has an unique ID which
is used for frame-identification, and also determines the frame’s priority. Thus, CAN can
provide real-time behaviour, and can be analysed according to fix priority non-preemptive
scheduling [21].

The time-triggered CAN (TT-CAN) standard [82] is an extension towards time-triggered
scheduling, and represents a higher-level protocol for CAN.

2.6.2 LIN

The local interconnect network (LIN) standard [43] specifies a low-speed wired serial com-
munication bus. It allows transmitting up to 8 bytes payload per frame. The baudrate is
up to 19.2 kb/s.

LIN is a master/slave bus. The LIN-master sends requests to LIN-slaves, and the
LIN-slaves answer (either to the master, or to another slave). The LIN-master schedules
the entire communication according to TDMA.

2.6.3 FlexRay

The FlexRay (FlexRay) standard [28] specifies a wired serial communication bus which is
specially designed towards reliability. It allows transmitting up to 254 bytes of payload
per frame. The baudrate is up to 10 Mb/s. FlexRay can be configured to use 2 physical

12

channels in parallel. This can either improve reliability (e.g. by transmitting replicated
data via both channels) or increase throughput.

c© Ralf Pfeifer, licensed under Creative Commons Attribution-Share Alike 3.0 Unported

Figure 2.3: FlexRay communication scheduling schema

FlexRay uses a hybrid scheduling schema (see figure 2.3). Basically it uses TDMA.
However, each communication-cycle contains 2 segments: In the static segment frames
are scheduled according to TDMA. In the dynamic segment frame-arbitration is based on
frame-priority.

2.6.4 OSEK/VDX

Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug (English:
Open Systems and the Corresponding Interfaces for Automotive Electronics) / Vehicle
Distributed eXecutive (OSEK/VDX) is a standard [52] of the software-platform for auto-
motive systems. It contains 3 major modules:

• operating system (OS) – real-time execution of ECU software and base for the other
OSEK/VDX modules

• communication (COM) – data exchange within and between control units

• network management (NM) – configuration determination and monitoring

As part of the operating system specification OSEK/VDX specifies the real-time sched-
uler. It applies fix priority preemptive scheduling. Thus it can be analysed [33] using
known RTA methods. However, it also supports non-preemptive scheduling. The exten-
sion OSEK-time allows time-triggered scheduling.

As part of the communication specification OSEK/VDX specifies the communica-
tion mechanisms between software components within the same processor, as well as the
communication-stack for automotive bus protocols (such as CAN).

13

2.6.5 AUTOSAR

The automotive open system architecture (AUTOSAR) standard [5] is currently one of
the most important standardization efforts in the automotive domain. AUTOSAR builds
upon a set of other standards, and is focused on 3 main topics:

1. methodology – Definition of a methodology, how AUTOSAR-compliant automotive
software-systems shall be developed (see figure 2.5). It defines all engineering steps,
and which engineering-data is exchanged in between these steps.

2. system description – Definition of a language / format for describing an AUTOSAR-
compliant system. All elements in the language have a precise semantic. The per-
sistent representation is XML.

3. middleware – Standardization of a middleware for automotive software-systems. The
middleware is composed of a set of basic software components. Each component has
a precisely defined functionality and interfaces. The components can be grouped ac-
cording to their responsibilities: I/O drivers, communication-stack for bus-protocols,
memory management, operating system. Much of this specification is closely linked
to the OSEK/VDX standard. On top of this middleware, application software can be
executed. The application software is separated from the underlying middleware by
the runtime environment (RTE). The RTE provides a set of standardized interfaces.

Figure 2.4: Basic AUTOSAR approach [5]

Figure 2.4 outlines the basic AUTOSAR approach: The hardware-independent software-
components are mapped to ECUs, which again determines the communication demand
between processors. Once mapped, communication between software-components is es-
tablished via the middleware (indicated by RTE and basic software in the figure).

14

In terms of the operating system, AUTOSAR requires an OSEK/VDX-compliant op-
erating system. Thus, scheduling is performed according to fix priority preemptive schedul-
ing. Adequacy between AUTOSAR and the real-time scheduling theory is discussed in [32].

AUTOSAR Methodology & Thesis Goal

The AUTOSAR methodology describes the engineering steps which need to be performed
for designing an AUTOSAR-compliant system. The methodology is shown in figure 2.5.
The goal of this thesis is to provide solutions which can be applied to a sub-set of these
design steps. The focus is on the following steps:

• System Configuration Generation – allocation of software components to processors,
routing of data via bus-systems and gateways, configuration of bus-systems

• ECU Configuration Generation – scheduling the execution of software components

However, the approaches presented in this thesis are not solely focused on automotive.
The methodologies are generally applicable.

Figure 2.5: Methodology for designing AUTOSAR-compliant system [5]

15

Chapter 3

Research Question

3.1 Conclusion and Open Issues of State of the Art

Although there has been a substantial amount of research on the TAP (and related sub-
problems) over the last decades, the following open issues can be identified:

• Almost all works that address the TAP tackle cross-processor communication in a
simplified way: If the size of a message is smaller than or equal to the max. payload
of a bus frame, then each message is packed into a separate bus frame. If the size of
a message is larger than the max. payload of a bus frame, then the message is split
into several parts, each part is transmitted in a separate bus frame and the message
parts are re-joined (in order to build the initial message) at the receiving processor.
However, if the size of a message is smaller than the max. payload of a bus frame,
almost no work considers packing several messages into a single bus frame. The few
works that consider this, only loosely (or not at all) incorporate this approach into
the TAP design space exploration (DSE).
By these simplifying assumptions, one core-problem of automotive real-time system
configuration, namely the configuration of the communication infrastructure, is not
addressed in required detail.

• Almost all works that address the TAP focus on solving the problem “from scratch”.
Algorithms have a large degree of freedom while searching for a system configura-
tion. Although some works try to find configurations that are robust against future
system modifications (e.g. varying WCET of tasks), almost no work can be found
that actually addresses system configuration upgrade scenarios, where a system con-
figuration needs to be found that is based on an initial system configuration.
However, in the automotive domain, systems are usually designed by taking an initial
system as the starting point and then 1) improve this configuration, or 2) upgrade
this configuration, in order to meet the new requirements.

• Since automotive systems are design in an evolutionary manner (by improving and
upgrading an initial system), a large set of constraints may be in place. These
constraints represent legacy system configuration decisions. While performing im-
provement- or upgrade-scenarios, these additional constraints need to be considered.
However, most works do not take into account all of these constraints.

17

Although several of these additional constraints may be incorporated in state-of-the-
art TAP solving frameworks, the resulting TAP solving performance may become
poor. Therefore, the additional constraints need to be handled in an efficient way,
in order to achieve satisfactory TAP solving performance.

3.2 Hypothesis

Methods for automated search for optimal system configurations are accepted in the au-
tomotive domain, if and only if:

• all relevant sub-problems are addressed / solved in sufficient detail

• all relevant standards are taken into account

• all relevant domain-specific constraints are satisfied

• the way these methods work is transparent and can be understood by engineers (who
nowadays are designing system configurations by hand)

• these methods can be extended with moderate effort, in order to satisfy future de-
mands / issues

• the optimal system configuration satisfies all relevant legacy decisions

• the optimal system configuration can be upgraded later on, by having to apply only
moderate changes

3.3 Research Questions

The overall objective of this work is to provide methods for automated search for optimal
system configurations (especially for automotive real-time systems). In order to achieve
this objective, the following research questions are answered in this thesis:

• How can the configuration of the communication infrastructure be solved in a realistic
way? – This is answered in chapter 5.

• How can design constraints (that mainly stem from legacy decisions and safety-
relevant considerations) be incorporated into the search, and be satisfied in an ef-
ficient way? – This is answered in chapter 6.

• How can a system configuration be designed so that it can handle future modifica-
tions? How can a given system configuration be extended / upgraded in the future,
in order to meet new requirements? – These are answered in chapter 7.

18

Chapter 4

Search Framework for Finding
Optimal System Configurations

The overall objective of this work is to provide a methodology for finding near-optimal
system configurations of distributed real-time systems, in a fully automated way. The
methodology is implemented inside a search framework. In order to find a system config-
uration, the following design steps need to be performed:

• task allocation – local assignment of tasks to processors

• message routing – local assignment of messages to bus systems (and gateways)

• frame packing – packing of messages into bus frames

• system scheduling – temporal planning of system execution

• system performance analysis – schedulability, utilization, ...

All these steps are usually performed by engineers, and complex design decisions must be
taken, in order to be able to perform these steps. Consequently, the search framework
needs to be able to take the same design decisions.

Ultimately the search is executed on a computer platform (e.g. personal computer).
Thus, the system, for which a system configuration should be found, must be represented
in a way that can be handled by the search framework. Therefore, a system model is used
that captures all relevant attributes of the system.

4.1 System Model

The system is represented by two models. These models are commonly used in the liter-
ature.

• software – tasks, messages (task-graph)

• hardware – processors, bus systems, bus frames (processor-network)

19

By performing system configuration steps, the two models are merged into one system
model. The dependencies between the two models are uniquely described by the system
configuration. This configuration is the overall output of the search.

In the literature, the task-graph must be non-cyclical. This is because of some limita-
tions of schedulability tests. If there is a cycle, the release jitter (and thus also the WCRT)
becomes infinitely large, because of the circular dependencies. However, this restriction
can be weakened: The task-graph may contain cycles, if and only if at least one element of
the cycle is time-triggered. The time-triggered element does not inherit the release jitter
from its precedent’s element WCRT. This stops the circular increase of the release jitter.
For the task-graph one assumption must be satisfied: The data size of a message must
be smaller than (or equal to) the max. payload of a bus frame. This ensures that frame
packing can be performed.

For the processor-network one assumption must be satisfied: There exists at least one
path/route between each pair of processors. Consequently, the processor-network must
not consist of two (or more) independent sub-processor-networks. This assumption is also
in alignment with the domain of interest (which is automotive). However, this assumption
does not mean, that the methodology is not generally applicable to systems which do not
satisfy the mentioned assumption. Why not? Any system that contains independent sub-
processor-networks can only be configured in a feasible way, if and only if it also contains
independent sub-task-graphs. Such a system can always be split into smaller sub-systems,
and be solved at the sub-system level. Finally the system can be re-build, by merging the
solved sub-systems.

4.1.1 Limitations

There is (at least) one case, in which the traditional task-graph representation runs into
difficulties. Assume the model shown in figure 4.1. Depending on the chosen task alloca-
tion, different message routing is needed, and also has impacts on subsequent design steps
(see table 4.1). Configuration B is hard to model using the traditional task-graph. The
main problems occur during frame packing and scheduling, since the same message needs
to be used several times within different frames and buses.

Figure 4.1: Model of multi-bus system

20

Configuration A Configuration B

task allocation
T1 → P1 T1 → P1

T2 → P2 T2 → Pn
message routing M1 → B1 M1 → {B1, PGW , B2}
frame packing M1 → F1 M1 → {F1, F2}

frame scheduling F1 → B1
F1 → B1

F2 → B2

Table 4.1: Impact of task allocation on subsequent design decisions

4.1.2 Extensions to Overcome Limitations

A simple approach can be used, in order to avoid these problems. The task-graph is
represented by two views:

1. application view – This view represents the traditional task-graph. Within this
model, task allocation and resulting message routing can be performed. However,
frame packing and system scheduling is not performed in this model.

2. implementation view – This view is a more detailed representation of the application
view. An application view message that is routed via several bus systems, is repre-
sented by several implementation view messages. Each of these messages is assigned
to one bus of the route. In addition, gateway tasks are added each time a message is
routed via a gateway. These tasks represent the fact that data must be transferred
from one bus-interface to the other bus-interface of the gateway processor (which
obviously takes some time).

Figure 4.2: Transformation between application view and implementation view of multi-
bus system

Figure 4.2 shows how configuration B looks like in the implementation view. Therein,
each message is only assigned to one bus. Because of this, no problems occur during

21

frame packing and scheduling. After all system configuration steps have been performed
and system performance is evaluated, relevant data (e.g. WCRT, utilization, ...) are
transferred back into the application view.

The implementation view not only helps to avoid some problems during finding a
system configuration, it is also a more realistic representation of the real system. If a
message is routed via several bus-systems, then several instances of this message do exist.
Each of these instances is packed into different frames, and has different attributes (e.g.
WCRT). Gatewaying the message needs processing resources on the gateway and takes
time. Table 4.2 shows the equivalences between the system model and the AUTOSAR
model.

System Model AUTOSAR

task SWC, runnable
message (appl. view) system signal
message (impl. view) signal, I-PDU, N-PDU
frame frame, L-PDU
bus bus
processor ECU

Table 4.2: Equivalences between system model and AUTOSAR model

The transformation between application view and implementation view only concerns
messages. All other elements (tasks, bus-systems, processors) have a 1:1 relation. For
messages, the following transformation rules apply:

• 1 application message ⇒ 1 implementation message
if the application message is sent processor-internal

• 1 application message ⇒ N+1 implementation messages + N gateway tasks.
N is the number of gateways the application message is routed via.

• The period of the application message is inherited to all implementation messages
and gateway tasks. The data size of the application message is inherited to all
implementation messages.

The processing demand of the gateway tasks is modeled as follows: The processing
demand consists of a constant term and a linear term. The constant term represents the
effort of invoking the gateway task, the linear term represents the effort of transferring
the message data from one bus-interface to the other bus-interface. A linear relationship
between message data size and processing effort seems appropriate.

Zgw = Zinit + a · sm (4.1)

If gateways are passed by the application message, the deadline of the application
message needs to be represented by an end-to-end-delay deadline in the implementation
view. In addition, individual deadline could be derived for the involved elements. This

22

is not necessary, but can be useful for scheduling (e.g. by applying DMPO). The follow-
ing approach of splitting the end-to-end-delay deadline is proposed: The implementation
messages should be assigned a deadline which is indirect proportional to the bus baudrate
they are sent via. The rational behind this approach is: A higher baudrate enables smaller
transmission time, and thus smaller deadline can be assigned.

Dend-to-end = D1 +D2 + · · ·+Dn = b

(
1

br1
+

1

br2
+ · · ·+ 1

brn

)
(4.2)

The approach of using two views has one significant consequence: The implementation
view is dynamic. This means that the number of tasks and messages in the implementation
view are varying. This has some implications and consequences on where and how certain
design steps are performed. Details will be discussed at later point of this work.

4.2 Basic Search Framework – Simulated Annealing

The problem of finding an optimal system configuration is addressed using a meta-heuristic
search algorithm, called SA. It is a well known algorithm in the domain of artificial
intelligence. Its name and inspiration come from annealing in metallurgy, a technique
involving heating and controlled cooling of a material [38]. SA has already been applied
to solve the TAP [81]. However, the main reason for using SA is because it is shown in [26]
how SA can be tailored towards solving different aspects of system configuration: Multi-
mode systems, fault-tolerant and graceful degrading systems, as well as flexible systems
(systems that can be adapted to future requirements with small number of changes).

Also, SA is a relatively simple meta-heuristic, and thus easy to understand. This is
especially benefitial if the search has to be adopted to future requirements. Due to its
simplicity, only a few few elements need to be adopted in order to apply SA to a specific
problem. By using this meta-heuristic search technique, the entire problem is split into
two major parts:

• system configuration generation

• system configuration evaluation

Starting from an initial configuration, a new configuration is generated. This new con-
figuration is evaluated, and a cost is calculated. Based on the cost of a new configuration,
the algorithm decides if the new configuration is accepted, and thus becomes the source
for subsequent exploration. These main steps are repeated until a termination criteria is
reached. Algorithm 4.1 shows the overall search algorithm.

The search algorithm consists of the following main methods:

• neighbour – Create a new configuration, by applying modifications to the current
configuration.

• cost – Evaluate a configuration, according to a cost-function, in order to determine
the quality of a configuration.

• accept move – Determine, if the new configuration should be accepted, and thus
become the source for subsequent exploration steps. This decision depends on the
cost-values and the current temperature.

23

Algorithm 4.1: System configuration optimization algorithm (based on simulated
annealing)

Input: config.init /* initial configuration */
Data: T /* temperature */
Data: iter.max /* max. iterations */
Data: iter.at.T.max /* max. iterations at constant T */

1 begin SystemConfigurationSimulatedAnnealing
2 /* initialize */;
3 cost.init = cost(config.init);
4 config.current = config.init /* start at initial configuration */;
5 cost.current = cost.init;
6 config.best = config.init;
7 cost.best = cost.init;
8 /* search, until stopping-criteria is reached */;
9 while stop() = false do

10 while iter.at.T < iter.at.T.max do
11 /* propose new configuration */;
12 config.new = neighbour(config.current);
13 cost.new = cost(config.new);
14 /* accept move? */;
15 if acceptMove() = true then
16 /* improvement of best configuration? */;
17 if cost.new < cost.best then
18 /* remember best */;
19 config.best = config.new;
20 cost.best = cost.new;

21 end

22 end
23 iter.at.T++;
24 /* next iteration at constant T */;

25 end
26 cool(T);
27 iter.at.T = 0;
28 /* resume search at lower T */;

29 end

30 end
Output: config.best /* best configuration found */

24

• cool – Over time, the current temperature is decreased, due to a cooling schedule.
Lower temperature decreases the probability of accepting worse configurations.

• remember best configuration(s) – The currently best obtained configuration can be
stored. Alternatively, a set of near-optimal configurations can be stored, so that the
user can make the final decision on which configuration to pick.

4.2.1 Accept Move

A search algorithm is called greedy if it only accepts solutions with improved cost. This
has one major disadvantage: The search algorithm is easily trapped inside a local optimum
(e.g. minimum).

There are some ways to prevent a search algorithm to get trapped in a local optimum.
E.g. the search can be restarted at a randomly picked starting position. Another approach
is to allow exploration steps that do not improve cost. This way, the search algorithm can
escape from local optima.

Within SA, this concept is incorporated. After the cost of a configuration is evaluated,
a decision is made, if the new configuration should be picked:

• If the new configuration improves the cost of the current configuration, then the new
configuration is always picked.

• If the new configuration does not improve the cost of the current configuration, then
the new configuration is picked according to an acceptance probability.

The idea behind is as follows: At the beginning of the DSE, a wide design space should
be covered. Therefore, configurations that do not immediately improve the cost should also
be picked for subsequent exploration. This represents some kind of pseudo-random DSE.
As the search progresses the acceptance probability for worse configurations decreases.
Thus, almost only configurations that improve the cost are accepted. This represents a
narrowed/focused search towards the optimum.

The acceptance probability function that is widely used in SA literature is:

P =

{
1 if costnew < costcurrent

e
−∆cost

T otherwise
(4.3)

with:
∆cost = |costcurrent − costnew| (4.4)

Thus the acceptance probability is determined by the cost difference and the temper-
ature. High temperature ensures high probability. In order to achieve the desired DSE
behaviour, an adequate cooling schedule is needed.

4.2.2 Cooling

After a defined number of iterations, the temperature is decreased. The temperature
influences the probability of accepting worse system configurations.

T = T · coolingFactor (4.5)

25

Algorithm 4.2: Accept move to neighbour

Input: cost.current
Input: cost.new
Data: T

1 begin acceptMove
2 if cost.new < cost.current then
3 /* improvement */;
4 accept = true;

5 else
6 /* no improvement */;
7 P = exp((cost.current - cost.new)/T);
8 rnd = randomUniform() /* value in [0, 1) */;
9 if P > rnd then

10 accept = true;
11 else
12 accept = false;
13 end

14 end

15 end
Output: accept

The cooling factor should be between 0.85 and 0.99. Smaller numbers result in faster
cooling, larger numbers result in slower cooling. The cooling speed has a significant impact
on the performance of SA. In order to find an adequate cooling factor, some experiments
need to be performed. However, a cooling factor of 0.95 seems to be a good starting point,
that is also proposed in the literature.

4.2.3 Neighbour

The neighbour -function is one of the key-elements, when applying SA to solve a specific
search problem. It implements the basic modification steps that can be performed. Gener-
ally speaking, these steps represent the modification an engineer would perform manually.
The following neighbour steps are used:

• re-allocate a task to another processor

• swap the allocation of two tasks (that reside on different processors)

These steps are very common in the literature. Each of these neighbour steps is
performed, due to a defined probability (see table 4.3). This way it is possible to encode
domain-knowledge how appropriate each neighbour step is. At the same time, a certain
degree of randomness is involved.

Modifying a task allocation is performed using the application view of the task-graph.
Based on the modified allocations, message routing is performed. Again this is done in
the application view. Knowing all task allocations and message routes, the implementation
view is generated, using the transformation rules presented in section 4.1.2. Finally, system
schedulability is evaluated, using the implementation view.

26

Neighbour Move Probability

re-allocate 0.80
swap allocation 0.20

Table 4.3: Probability of neighbour moves

Re-Allocate Task

Algorithm 4.3: Re-allocate task

Input: set of tasks
Input: set of processors

1 begin reAllocateTask
2 task τ = randomly pick a task from T \ Tfixed;
3 processor ρ = randomly pick a processor from P \ Pcurrent;
4 allocate task τ to processor ρ;

5 end
Output: modified allocation

Swap Allocation

Algorithm 4.4: Swap allocation of tasks

Input: set of tasks
Input: set of processors

1 begin swapTaskAllocation
2 task τ1 = randomly pick a task from T \ Tfixed;
3 task τ2 = randomly pick a task from T \ Tfixed which resides on a different

processor than τ1 does;
4 swap allocation of τ1 and τ2;

5 end
Output: modified allocation

4.2.4 Cost

Real-time system configuration is driven by a set of objectives and constraints. Commonly
used statements are:

• System must be schedulable. No deadline must be missed.

• No resource (processor, bus) must be overloaded.

• A minimum number of processors should be used.

• Processors should be equally utilized. (load balancing)

• The utilization of bus systems should be minimized.

27

However, SA is driven by only a single value, called cost. Thus, if several optimization
objectives (and constraints) exist, they have to be combined into a single value. This task
is performed by the cost-function. Usually the individual objectives oi (and constraints)
are combined using a weighted sum. Thereby, the weights wi are used for scaling (to
similar ranges) and prioritizing.

cost = w1 · o1 + w2 · o2 + · · ·+ wn · on (4.6)

If the number of objectives grows, it becomes quite hard to find adequate weights.
To overcome this issue, the cost-function can be formulated in a hierarchical way [63].
Thereby, several objectives are combined, forming a sub-cost-function. These sub-cost-
functions are then combined forming the cost-function. In theory, several hierarchies can
be used. However, a two-level hierarchy is sufficient in most cases. In order to make the
cost-function more intuitively (to model and to read), the following concepts should be
applied:

• Each objective is formulated in a way, that it returns values between 0 and 1 (where
0 is best and 1 is worst). This way, no scaling between objectives is needed. Thus,
weights only represent the importance of the individual objective.

• The cost-function is normalized, so that it returns values between 0 and 1. This is
done at each level of hierarchy. This makes it more intuitive to read/interpret.

cost =

∑
wi · oi∑
wi

(4.7)

The way the cost-function and all its terms are modeled, is one of the most impor-
tant aspects, when applying SA to a specific problem (such as task allocation). The
cost-function shapes the entire design space, which is explored. SA performance mainly
depends on the shape of the design space (and thus on the cost-function). One of the most
important attribute of the cost-function is that it should not contain flat regions. E.g. in
order to find a schedulable system, no deadlines must be missed. If the cost-function only
outputs 0/1 (in order to represent: any deadlines missed: false/true) then it is hard to find
any appropriate search direction. If the cost-function outputs 0..1 (in order to represent:
0..100% of the tasks miss their deadline) then a search direction can be derived.

cost value

schedulability constaints guidance

task deadline message deadline resources overloaded resources used load balancing bus utilization external communication

Figure 4.3: Hierarchical cost-function

In this work a hierarchical cost-function is used. The overall cost-value is calculated by
combining two cost-sub-functions: schedulability constraints and guidance. These cost-
sub-function consist of additional cost-sub-functions.

28

Schedulability Constraints

This sub-function shall guide the search towards configurations which are schedulable. If
the configuration is not schedulable, the degree of un-schedulability can be measured by:
how many tasks/messages miss their deadline. This term should be minimized during the
search, thus leading to a schedulable system.

dv(.) =

{
1 if R > D
0 otherwise

(4.8)

costschedulability constraints =
1

2

(
1

‖T ‖
∑
τ∈T

dv(τi) +
1

‖M‖
∑
m∈M

dv(mi)

)
(4.9)

Guidance Heuristics

Although schedulability is a key-attribute of real-time systems, not all schedulable config-
urations can be considered equally “good”. Several additional attributes can be used (see
user-driven optimization objectives). In order to guide the search towards configurations
that optimize these objectives, several guiding heuristics are used.

Resource Overload

A configuration must not overload any resource. This would rule out schedulability of
the system. In addition, overloading of memory demand would also make correct system
behaviour impossible. Thus, overloading must be avoided.

ro(.) =

{
1 if u > umax
0 otherwise

(4.10)

costresource overload =
1

2

 1

‖P‖
∑
ρ∈P

ro(ρi) +
1

‖B‖
∑
β∈B

ro(βi)

 (4.11)

If umax is set to 100%, a safe upper bound is used. However, the max. can be set
smaller. E.g. the max. utilization could be set to 80%, in order to reserve resources for
future system upgrades.

Resource Usage

Cost-efficient configurations can perform their computational tasks using a minimum
amount of hardware resources. Not all resources that have been considered are used.
This attribute can be measured by: how many resources are used.

ru(.) =

{
1 if u > 0.0
0 otherwise

(4.12)

costhardware usage =
1

2

 1

‖P‖
∑
ρ∈P

ru(ρi) +
1

‖B‖
∑
β∈B

ru(βi)

 (4.13)

29

Load Balancing

By equally utilizing the available resources, the probability of finding a schedulable solution
is increased. Also, it reserves resources for future system extensions / upgrades.

costload balancing =
1

‖P‖
∑
ρ∈P
|ū− uρi | (4.14)

Bus Utilization

Tasks that reside on different processors need to communicate via external bus systems.
However, external communication leads to higher delays, which again is dependent on the
bus utilization. Therefore, bus utilization should be minimized.

costbus util =
1

‖B‖
∑
β∈B

uβi (4.15)

Processor-External Communication

An efficient way to reduce bus utilization is to allocate communicating tasks onto the
same processor. Thus communication can be performed processor-internal. This heuristic
is often used in the literature. In order to guide SA towards such configurations, the
number of messages that need to be sent processor-external is measured / punished.

pec(m) =

{
1 if srcρ(m) 6= dstρ(m)
0 otherwise

(4.16)

costprocessor-external messages =
1

‖M‖
∑
m∈M

pec(mi) (4.17)

This term only counts the number of messages which are not processor-internal. It
does not take into account their communication intensity, since this is already taken into
account in the bus utilization term.

Term Source Description Feasibility

schedulability must penalty for un-schedulable objects yes
resource overlaod must penalty for overloaded resources yes
resources used user reward for non-used resources no
load balancing user penalty for non-balanced processors no
bus utilization user reward for low bus utilization no
external communication guiding penalty for cross-processor messages no

Table 4.4: Terms of cost-function

Table 4.4 summarizes the terms of the cost-function. It also categorizes the terms
by their source (e.g. user-driven), and whether or not they determine the feasibility of a
configuration.

30

4.2.5 Tabu Search

Since SA is based on a randomized search, the question arises: Is it possible (or probable)
that SA will traverse the design space in a closed loop, so that it re-visits regions of the
design space that it already evaluated? To answer this question, a tabu-list is implemented.
In the tabu-list, all configurations that have already been evaluated are stored. Each new
configuration is compared to the elements in the tabu-list, and is evaluated only if it is a
unique configuration.

Experiments show that about 95% of all generated configurations are unique config-
urations. Thus only 5% of the generated configurations are re-visited. The drawback
of the tabu-list approach is its runtime complexity. Each new configuration needs to be
compared to all elements in the tabu-list. This has O(n) complexity for each new con-
figuration. Thus, in total this results in O(n2) complexity, where n is the number of
configurations that are evaluated by the SA.

The experiments show that the tabu-list approach does not scale well. Allowing more
than 10 000 SA search iterations results in unacceptable runtime. However, applying SA
to the TAP typically requires a high number of iterations (e.g. 100 000). Therefore, the
tabu-list approach is not applicable. However, the experimental results also show that the
number of re-visited configuration is sufficiently low (it is only 5%). Thus, the benefits
of the tabu-list do not out-balance the computational costs. Therefore, the tabu-list is
deactivated during subsequent experiments.

4.2.6 Parameter Identification

Both the SA parameters (i.e. initial temperature, cooling rate) as well as the weights
for the cost-terms need to be set. This is a challenging task. In order to find adequate
settings, a systematic approach is advised [69]. Since the search-framework which is used
in this thesis is similar to the one in [26], and the search-problem is similar as well, the
parameters from [26] are taken as a reference point.

4.3 Extensions

This initial search framework is based on state-of-the-art approaches to find system con-
figurations. However, some essential problems are not addressed:

• The configuration of the communication infrastructure is done in a too simplified
way.

• Domain-specific constraints are not addressed, thus such constraints are not handled
in an efficient way.

• The system configuration problem is solved “from scratch”. Configurations are not
evolving from existing configurations. Thus, system configuration upgrade scenarios
are not supported.

Within the next chapters these open issues are addressed, thus answering the research
questions stated in chapter 3. While answering these research questions, the search frame-
work is extended by:

31

• In chapter 5 the configuration of the communication infrastructure is addressed in
detail. Therefore, the cost function is extended. In addition, solving heuristics are
added.

• In chapter 6 domain-specific constraints are included into the system configuration
problem. In order to satisfy these constraints in an efficient way, neighbour moves
are adopted and additional cost terms are introduced. In addition, a pre-processing
phase is added.

• In chapter 7 the system configuration problem is solved in an evolutionary way.
Therefore, additional cost terms are introduced and solving heuristics are provided.

32

Chapter 5

Configuration of Communication
Infrastructure

In order to enable communication between tasks that reside on different processors, a
communication media is needed. In the early days of automotive electronics, the number
of tasks and processors was small. Thus, little communication between processors was
needed. Therefore, each data exchange could be performed via a dedicated physical line.
As the number of tasks and processors increased, so did the need for data exchange
between them. Soon, dedicated physical lines were not appropriate any more, due to
cost and weight constraints. In order to enable cost- and weight-efficient communication
between processors, a new communication media was introduced: the bus system. A bus
can be seen as several data exchange multiplexed on one physical line. Nowadays several
different bus systems (LIN, CAN, FlexRay, media oriented systems transport (MOST),
...) are used in automotive, each tailored to different requirements (such as cost, speed,
reliability, ...).

In the automotive domain, different parts of the entire electronic system are typically
developed by different suppliers (Tiers). E.g. each processor (and its software) is devel-
oped by another Tier, and integrated by the original equipment manufacturer (OEM).
Consequently, the bus systems are one of the key-elements for system integration, since all
communication between processors needs to be performed via the bus systems. Thus the
configuration of the bus systems is a crucial issue. Typically, several bus systems are used
within a car. Therefore, the inter-connecting processors (gateways) are becoming more
and more important.

The configuration of the entire communication infrastructure (consisting of bus sys-
tems and gateways) is a challenging and crucial issue, and has significant impact on the
overall system performance. However, state-of-the-art works on system configuration of-
ten simplify the configuration of the communication infrastructure. In [66] the authors
clearly point out this problem:

“Researchers have often ignored or very much simplified the communication
infrastructure. One typical approach is to consider communications as pro-
cesses with a given execution time (depending on the amount of information
exchanged) and to schedule them as any other process, without considering is-
sues such as communication protocol, bus arbitration, packaging of messages,

33

clock synchronization, and so on.”

– Pop et al. [66]

To overcome the drawbacks of these state-of-the-art approaches, methods for detailed
configuration of the communication infrastructure are presented in this chapter.

5.1 Introduction, Assumptions, and Definitions

The term communication infrastructure (as used in this chapter) comprises all bus systems
and the gateways which interconnect these bus systems, as well as the communication-
stack of the involved processors.

The configuration of bus systems consists of the following steps. At the hardware level:

• topology design – It has to be decided how the processors are interconnected via bus
systems. Depending on the bus technology, different topologies are possible (e.g.
star topology for FlexRay). Also, if more than one bus system is used, gateways
have to be inserted in order to interconnect the bus systems.

• bandwidth configuration – Bus systems can be used at different baudrates, thus
providing different bandwidth. However, the max. baudrate is constrained by the
used protocol, topology and the environment the bus is used in.

At this point, it is assumed that the configuration at the hardware level is already done
and cannot be changed. At the middleware level, the following configuration steps have
to be performed:

• message routing – Based on a given task allocation, messages need to be routed from
source processor to destination processor. This may involve several bus systems and
gateways.

• frame packing – Messages have to be packed into bus frames, before they can be
transmitted. Packing should be bandwidth-efficient.

• gateway configuration – If messages/frames are transmitted via several bus systems,
they have to be processed by the interconnecting gateways. Frames can either just
be forwarded to the next bus system, or frames can be un-packed and the individual
messages are again packed into frames for the next bus system.

• scheduling – A schedule for frame transmission has to be found for all bus systems.

Currently bus topologies in the automotive domain are still (more or less) simple.
Although several bus systems are used, they are usually connected via a single central
gateway. This pattern may be used at several levels (high-speed, medium-speed, low-
speed). Thus, message routing is a simple task, since there is only one route from the
source processor to the destination processor. In some cases there may be more routes,
however, the number of routes is very small.

34

Figure 5.1: Bus-topology of a medium-class car, featuring different bus-system intercon-
nected via gateways

Gateways are special processors that are connected to several bus systems. They can
either just process the frames of the connected bus systems, or in addition perform compu-
tational tasks. In alignment with the AUTOSAR standard (module: network management
gateway), the following assumptions are used in this work:

• Besides processing the frames of the connected bus systems, a gateway can addition-
ally perform computational tasks.

• A gateway may un-pack frames and re-pack the individual messages into new frames.

5.2 Frame Packing – Why?

Bus systems are used to enable cost- and weight-efficient communication between pro-
cessors. Since several processors are using the same bus, some kind of resource sharing
/ arbitration protocol is needed. This can either be a time-triggered (LIN, TT-CAN,
FlexRay) or a priority-based (CAN) approach.

Because of these protocols, not only the application data is transmitted, but also some
protocol overhead data. Application messages are packed into a bus frame, before they
can be transmitted via the bus. The frame not only contains the application messages,
but also protocol-specific data (e.g. header, checksum, ...). This protocol overhead data
is needed for arbitration, routing, data protection, etc.

The bandwidth that can be provided by a bus system is limited by the interaction of
the following properties:

• arbitration schema (time-triggered, priority-based)

• propagation delay of one bit

• cable length

• cable material (and shielding)

35

• environment the bus is operated in (having an effect on the electro-magnetic inter-
ference)

To put it short: The bandwidth of a bus system is a limited resource, and cannot
easily be increased. E.g. the baudrate of CAN is limited to 1 Mbit/s for a cable length of
up to 40 m. Thus, the available bus bandwidth has to be utilized in an efficient way.

However, most works on the TAP that can be found in the literature neglect this
important issue. They assume a simple frame packing, where each message is packed into
a separate bus frame. This simplistic assumption has several negative implications/effects:

• high number of frames are sent via the bus

• bad ratio between transmitted payload vs. transmitted bits (due to the overhead
bits)

• high utilization of the bus

• a lot of bandwidth is wasted

These effects are small, if the data size of a message is similar to the max. payload of
a frame. However, in several applications (e.g. in the automotive domain) the data size
of a message is significantly lower than the max. payload of a bus frame. Typically, the
range of data of messages (in the automotive domain) is between 1 and 16 bits, whereas
a bus frame can contain up to 64 bits of payload (CAN, LIN). The overhead of a frame is
64 bits (LIN, CAN). Thus the efficiency of the bus is:

• 50% when using all 64 bits of payload and 64 bits of overhead (64 : 64+64)

• 1.5% when using only 1 bit of payload and 64 bits of overhead (1 : 1+64)

Even in the best case, only 50% of the bandwidth can be used for the transmission
of actual data, the rest is consumed by the protocol overhead. Thus the main issue is to
use the available bandwidth as efficient as possible. This is why frame packing is heavily
used in the automotive domain. Analysis of some real systems shows that typical frames
contain between 48 and 64 bits payload.

In addition, another interesting effect can be seen, if simple frame packing (1 message
= 1 frame) is used: Due to the high number of frames that are generated, the calculated
WCRT of these frames is increased, especially for low priority frames. Thus the system
may be deemed to be unschedulable. In reality though, several messages would be packed
into a single frame, thus having less frames, and consequently having less interference on
the bus. This leads to significantly smaller WCRT of the frames.

It could be argued that this pessimism can be accepted, since it will lead to the
fact that the real system will perform better than the worst case estimation. However,
there is a major issue: System configurations that are deemed to be unschedulable are
usually rejected or punished by the TAP optimization algorithm (since in general only
feasible configurations are of interest). Thus, by rejecting a configuration that is deemed
to be unschedulable, it is likely to reject a configuration that is actually a feasible (and
potentially good) configuration, if a “realistic” frame packing would have been used.

36

Conclusion

In order to generate realistic system configurations, realistic frame packing approaches
need to be used. These approaches should be bandwidth-efficient and result in schedulable
frame-sets. The goal of this chapter is to provide methods for building such frame packing
configurations.

Symbols

Besides the symbols that are already used, the following additional symbols are used in the
context of communication infrastructure configuration, especially in the context of frame
packing.

Symbol Description Unit

sm data size of message bits
payf payload of frame bits
pmf max. payload of frame bits
ohf overhead of frame bits
bw bandwidth demand bits/s

Outline

First, the frame packing problem is defined 5.3, and an overview of state-of-the-art solving
approaches is provided 5.4. Second, an improved frame packing approach is presented 5.5.
Third, it is shown, how the frame packing problem can be incorporated into the task
allocation problem 5.7. Finally, it is shown how the frame packing problem is connected
to the gateway configuration problem 5.8.

5.3 The Frame Packing Problem

The frame packing problem (FPP) is defined as follows:

A set of messages M = {m1,m2, . . . ,mn} must be packed into a set of bus
frames F = {f1, f2, . . . , fk}, subject to the constraint that the set of messages
in any frame fits that frame’s max. payload.

Usually, the FPP is stated as an optimization problem. The most common optimization
objectives are:

• minimize the number of needed frames

• maximize the schedulability of the resulting frame-set

A message is defined by its key attributes: the sending processor ρs, the receiving
processors Pr, its data size sm, the period Tm at which the data is refreshed, and its
deadline Dm. A frame is defined by: the sending processor ρs, the receiving processors Pr,

37

Algorithm 5.1: System-level frame packing

Input: buses
Input: processors

1 begin SystemLevelFramePacking
2 frames = { };
3 foreach processor do
4 foreach bus interface do
5 messages = processor.busInterface.outMessages;
6 frames += packMessagesIntoFrames(messages) /* add to list */;

7 end

8 end
9 calcTiming(frames) /* T, D */;

10 end
Output: frames

its payload payf , its max. payload pm, the period Tf at which the frame is sent, and its
deadline Df . In general each frame may have its individual max. payload (depending on
the bus protocol, e.g. CAN), however, usually all frames on the same bus have the same
max. payload.

The FPP has to be solved for each bus-interface of each processor independently (see
algorithm 5.1) as only messages which originate from the bus-interface of the same pro-
cessor can be packed into the same frame.

The FPP can be seen as a special case of the bin packing problem (BPP). However,
the FPP has some special attributes. Thus, BPP algorithms cannot be directly applied for
solving the FPP. The main reason is that in the BPP the items have only one attribute
(i.e. size), whereas in the FPP the messages have several attributes (i.e. data size, period,
deadline). Nonetheless, the main concepts of the heuristics for the BPP can be used for
the FPP.

5.3.1 The Bin Packing Problem

The BPP1 is defined as follows:

A list of items A = {a1, a2, . . . , an}must be packed into a minimum-cardinality
set of bins B1, B2, . . . , Bm subject to the constraint that the set of items in
any bin fits within that bin’s capacity.

Based on this definition, the following equivalences between the BPP and the FPP can
be identified (see table 5.1):

In the literature several algorithms can be found for solving the BPP. [18] gives a
survey. In general the algorithms are categorized by:

• on-line – A bin packing algorithm is called on-line if it packs every item ai solely
on the basis of the sizes of the items aj , 1 ≤ j ≤ i without any information on

1Definition of problem and summary of approximation algorithms are taken from [17].

38

Bin Packing Frame Packing

item message
item size data size of message
bin frame
bin capacity max. frame payload

Table 5.1: Equivalence between bin packing and frame packing

subsequent items. The decisions are irrevocable; packed items cannot be repacked
at a later time.

• off-line – A bin packing algorithm that can use full knowledge of all items for packing
A is called off-line.

Since the BPP is known to be a NP-hard optimization problem, several heuristics for
solving the BPP can be found in the literature. Well known on-line heuristics are:

• next fit (NF) – NF makes a single scan through the list A and packs the items one
after the other into a unique, active bin. In case an item does not fit into the active
bin, the bin is closed (never to be used again), and an empty bin is opened and
becomes the new active bin. The runtime of NF is O(n).

• first fit (FF) – NF does not use the empty space in closed bins. A simple modification
gives the FF. FF also makes a single scan through the list A, but it never closes an
active bin. When packing a new item, FF puts it into the lowest indexed bin into
which it will fit. A new bin is started only if the item does not fit into any non-empty
bin. The runtime of FF is O(n log n).

• best fit (BF) – BF behaves like FF, except that it puts the next item into the bin
into which it will fit with the smallest gap left over.

However, these algorithms do not always work well; e.g. on lists ordered by increasing
item size. Well known off-line heuristics are:

• next fit decreasing (NFD) – First sort the list A by decreasing item size, and after-
wards behave like NF.

• first fit decreasing (FFD) – First sort the list A by decreasing item size, and after-
wards behave like FF.

• best fit decreasing (BFD) – First sort the list A by decreasing item size, and after-
wards behave like BF.

Since the FPP is solved at design time, off-line BPP algorithms are of main interest
for solving the FPP.

39

5.4 Literature Review Refinement – Frame Packing

Although the FPP is similar to the BPP, there are some differences. In the BPP only
two attributes (item size, bin capacity) are used. For those attributes equivalence can be
found in the FPP. However, in the FPP additional attributes (message period, message
deadline, frame period, frame deadline) need to be taken into account. Unfortunately
no equivalences can be found for those attributes in the BPP. Because of this, BPP
algorithms cannot be applied directly for solving the FPP. This is why some (however
few) FPP algorithms can be found in the literature.

In [74] two algorithms are presented. Both algorithms have a preparation step, in
which the messages are sorted in increasing order according to their deadline.

1. Fixed Frame Size – A frame (with fixed frame size) is created. Messages (from the
sorted list) are packed into the frame, as long as there is space left in it. If a message
does not fit into the frame any more, the frame is closed, and a new frame is created.
From that point on, no more messages are packed into the closed frame (even if a
message may still fit).
This algorithm mimics the next fit decreasing heuristic of the BPP. By closing a
frame as soon as a message does not fit, frames will not be highly filled. This may
seem like a poor decision, but actually it is not. Since the messages are sorted by
their deadline, closing frames helps to create frames where the packed-in messages
have similar deadlines. Since the deadline of the frame must be the smallest deadline
of the packed-in messages, closing frames helps to avoid wasting bandwidth.

2. Linear Frame Selection – A frame is created with the min. possible frame size.
Messages are packed into the frame. As soon as a message does not fit, a decision
is made: Either create a new frame, or increase the size of any existing frame. The
decision is made based on the resulting bandwidth costs.
This algorithm mimics the best fit decreasing heuristic of the BPP. Since frames are
not closed at the first occurrence of a non-fitting message, the resulting frames are
filled close to the capacity. However, the messages inside a frame may have more
diverse deadlines, thus resulting in a higher bandwidth wasting.

In these two approaches, schedulability of the frames is not taken into account during
packing.

In [73] a slightly modified approach is presented. At first, messages are sorted in
increasing order according to their period. The algorithm mimics the best fit decreasing
heuristic for the BPP. A frame is created, messages are packed-in until a message does
not fit. At that point the algorithm jumps to the end of the sorted message-list, creates
a frame and packs messages from the end of the list until a message does not fit. The
algorithm jumps back to the front of the message-list (to the index where it was before).
This is repeated until all messages are packed.

By packing messages from both ends of the list alternately, the algorithm tries to avoid
packing messages with too diverse periods into one frame. This reduces the wasting of
bandwidth.

After packing of all frames, a frame-relaxation phase is performed. This attempts to
separate some messages from frames (by putting them into new/empty frames), in order
to make the resulting frame-set more schedulable.

40

In [66] the FPP is included into the scheduling problem. Besides finding a set of
frames, the priority of frames and tasks is also found. In addition the time-slots are found
for time-triggered frames and tasks. The FPP is addressed by two algorithms:

1. SA – In order to find high-quality frame packing solutions, SA is used. Therein, a
neighbour configuration is found by:

• moving a message from one frame into another frame (or into a new frame)

• swapping the priority of frames

• swapping the slot sequence for time-triggered frames

2. Heuristic – Messages are sorted due to their offset. Afterwards, adjacent messages
are packed into frames. Packing solutions are evaluated in order to determine the
schedulability.

In [85] the FPP is included into the TAP. Both problems are formulated as a MILP
problem. For the FPP the following constraints are assumed: Messages can only be packed
into the same frame, if all of the following is true:

• they are sent from the same processor

• they are sent to the same processor

• they have the same period

• they fit into the frame (message.size ≤ frame.payload.left)

The optimization goal is to minimize the end-to-end delay. However, the exact steps in
order to pack the messages into frames are not transparent, since they are taken within
the MILP solver. The solving routines of the MILP solver are not described.

In order to solve the entire configuration problem, a two-phased approach is used. In
phase one, near-optimal task allocation and task priority assignment is searched. Thereby
simple frame packing (1 message = 1 frame) is used and frame priorities are set based on
the DMPO. The solution is found by using a MILP solver. Based on the best solution of
phase one, the configuration is refined within phase two. Thereby task allocation is fixed.
Frame packing, task and frame priority assignment is refined. Again, the solution is found
by using a MILP solver.

In [87] the approach of [85] is extended towards extensibility. The additional question
is: How much can the WCET of tasks be increased, until end-to-end delays violate their
deadlines. Again, a two-phased approach is used: In phase one an initial task allocation is
found, assuming simple frame packing (1 message = 1 frame), and given priorities for tasks
and frames. A MILP solver is used. In phase two, frame packing and priority assignment
is refined, using heuristics. First, frame packing is refined. Therefore, task allocation is
fixed. Messages are grouped based on the processor that sends them and their periods.
Messages within a group are sorted according to their priority. The priority is assumed to
be given. The grouped and sorted messages are then packed into frames, as long as their
size fit into a frame. Later, priority assignment is refined. Therefore, task allocation and
frame packing is fixed. Initial priorities are assigned to tasks and frames, based on DMPO.
Then, priorities are iteratively changed, due to the criticality. The criticality states, how

41

much a change in task WCET influences the probability of missing the deadline of tasks
and frames. Elements with high criticality are assigned high priority.

Besides these approaches that are tailored to the automotive domain, frame packing
can also be found in other domains. Although these approaches show some interesting
aspects, in general they cannot be applied to the automotive FPP directly.

In [49] frame packing is used to enhance the performance of the Totem protocol. The
goal is to reduce overhead data. The idea is as follows: Each message has a message header.
However, two instances of the same message have the exact same information inside their
headers. By packing several instances of a message into a frame, the information inside
the headers would be transmitted several times. Since the information inside the message
headers is the same, only one header would be needed. All other headers could be removed.
This is exactly the key idea of the proposed approach: By packing several instances of a
message into a frame, all message headers (except for one) can be removed, without losing
information. Thus, less data needs to be transmitted in total. The implementation of the
approach works as follows: Several subsequent instances of a message are buffered. When
the buffer reaches a defined level, the buffered messages are packed into a frame. During
this packing, all message headers are stripped off, only the message header of the first
message instance stays intact. This approach works, since all instances of the message
have to be transmitted to the same destination.

In [51] frame packing is used for wireless communication. There, different users are mul-
tiplexed in time and frequency. Thus, frames are two-dimensional (time and frequency),
and have a rectangle shape. The task is to place the frames into the two-dimensional
time/frequency plane. The problem is modeled as a 2D strip packing problem, and is
solved using a genetic algorithm. Thereby, the next fit decreasing height (NFDH) heuris-
tic is utilized.

5.4.1 Summary

Table 5.2 summarizes the objectives that are used by state-of-the-art FPP approaches.
It can be concluded that it is hard/impossible to compare the approaches, since different
objectives are followed.

Approach Objective

Sandstroem et al. [74] minimize bandwidth demand of frame-set
Saket et al. [73] maximize schedulability of frame-set
Pop et al. [66] maximize schedulability of system
Zheng et al. [85] minimize end-to-end-delays
Zhu et al. [87] maximize extensibility of task-set

Table 5.2: Optimization objectives of state-of-the-art frame packing approaches

Besides these differences, a common issue can be seen. In BPP algorithms, both sorting
as well as packing is performed due to the same attribute: item size. In FPP algorithms,
different attributes are used. Sorting is done by deadline/period/offset, whereas packing
is done due to messages’ data size.

42

5.4.2 Open Issues

By analysing state-of-the-art FPP approaches, the following open issues can be identified:

1. The FPP is solved by heuristics and/or approximation algorithms. Although they
may work fine in general, they all are based on a simple decision making. Packing
is performed, if the necessary condition is satisfied:

message size ≤ free frame payload (5.1)

Packing decisions, based on more sophisticated reasoning, are missing.

2. If the FPP is included into the TAP, this is always done by a two-phased approach.
Within the first phase, the TAP is solved assuming simple frame packing (1 message
= 1 frame). Within the second phase, the best task allocation from phase one is
fixed, and the FPP is solved in detail for that task allocation. The FPP is never
solved in detail during solving the TAP.

3. The FPP is always solved without taking into account sophisticated constraints, e.g.
that two messages must not be packed into the same frame.

4. The FPP is always solved “from scratch”. FPP algorithms do not address the
scenario, where there already exist some frames, and additional messages must be
packed into the existing frame-set.

In order to overcome these open issues, the following steps are taken:

1. In section 5.5 optimality criteria are derived. These criteria represent the trade-offs
that have to be taken into account, if optimal frame packing should be achieved.
These criteria are then used, in order to perform sophisticated packing decisions,
resulting in optimized frame packing results.

2. In section 5.7 the FPP is included into the TAP. Thereby the FPP is solved in detail
during the TAP.

3. In chapter 6 domain-specific constraints are introduced. It is then shown how these
constraints can be taken into account by FPP algorithms.

4. In chapter 7 system configuration upgrade scenarios are introduced. It is then shown
how the FPP can be solved for these scenarios.

5.5 Optimized Frame Packing

Besides the differences between state-of-the-art FPP approaches, one common issue can
be identified: The packing decision is based on only a single property:

message size ≤ free frame payload (5.2)

Although this is a necessary condition, it is not a sufficient one, if bandwidth-optimal
frame packing should be achieved. Since the bus bandwidth is a limited (and valuable)
resource, frame packing should be bandwidth-optimal.

43

Simply speaking: Bandwidth-efficient frame packing should cause as few overhead
data as possible. Intuitively, this can be achieved by having as few frames as possible.
Consequently, as many messages as possible should be packed into each frame. Thus, it
seems the ideal situation is to have all frames fully utilized. This means that the max.
amount of payload data is used within each frame.

The bandwidth consumption of a frame is:

bwf =
payf + ohf

Tf
(5.3)

Since a frame may have several messages packed-in, the frame must be sent at a rate
that satisfies the rate of all packed-in messages. Thus, the message with the smallest
period determines the period of the frame.

Tf = min
m∈f
{Tm} (5.4)

Packing messages with different periods into the same frame results in the situation
that certain messages are sent more frequently than needed. As a consequence, these
messages cause additional bandwidth demand.

bwm additional =
sm

Tm − Tf
if Tm > Tf (5.5)

Consequently, the ideal situation is to have fully utilized frames and all messages
inside a frame having the same (or very similar) periods. In general (since both the data
size as well as the period of messages vary) this ideal situation represents a trade-off: If
messages with different periods are packed into a frame, the frame must be sent at the
shortest period, and thus some of the messages are sent more frequently than needed. This
increases the bandwidth consumption. On the other hand, the more messages that are
packed into a frame, the fewer frames are needed. Thus less overhead data is sent. This
reduces the bandwidth consumption.

Some heuristics for the FPP that can be found in the literature. [73, 74] tackle this
trade-off by trying to pack messages with similar periods into the same frame. This is
done by sorting the messages due to their period, before packing them. However, during
packing only the necessary packing condition (see equation (5.2)) is used. Frame and
message periods are not taken into account. Because of that, bandwidth-efficient frame
packing cannot be guaranteed.

5.5.1 Trade-Off Optimality Criteria

In order to achieve bandwidth-optimal frame packing, the trade-off that has to be faced
within the FPP has to be taken into account during each packing step. For this pur-
pose, an optimality criteria is needed. Based on this criteria, near-optimal frame packing
configurations can be found.

Assume the following minimal example: There exists a frame that already has some
messages packed-in. Another message needs to be packed-in and it can fit into the existing

44

frame. The question is: Should the message be packed into the existing frame (thus
extending it), or should the message be packed into a new frame?

The optimal decision can be taken, by analysing the bandwidth demand of the two
alternatives (left and right side of equation):

payf + sm + ohf

T
′
f︸ ︷︷ ︸

extended frame

=
payf + ohf

Tf︸ ︷︷ ︸
existing frame

+
sm + ohf

Tm︸ ︷︷ ︸
new frame

(5.6)

Note that the period of a frame is determined by the message with the smallest period
inside the frame. By adding a message, the period of the extended frame T

′
f may change.

Originally it is Tf .

Tf = min
i=m∈f

{Ti} (5.7)

T
′
f = min {Tf ∪ Tm} (5.8)

Depending on the ratio between Tm and Tf , there are 3 cases for this packing situation.
For each of them, an optimal decision can be made.

Case I: Tm = Tf

If the frame’s period is equal to the message’s period, it is always beneficial to extend an
existing frame. Creating a new frame is never beneficial, because it would cause additional
overhead.

payf + sm + ohf
T

=
payf + ohf

T
+
sm + ohf

T
(5.9)

ohf < 2 · ohf (5.10)

Case II: Tm > Tf ⇒ T
′
f = Tf

The trade-off is: By extending the frame, the message will be sent more frequent than
needed, but no additional overhead is created. By creating a new frame, additional over-
head is created, but the message will not be sent too frequent.

payf + sm + ohf
Tf

=
payf + ohf

Tf
+
sm + ohf

Tm
(5.11)

sm
Tf

=
sm + ohf

Tm
(5.12)

At the threshold period of the message, the two alternatives perform equally.

T ?m = Tf
sm + ohf

sm
(5.13)

Thus, the optimal decision is:

45

• Tm < T ?m ⇒ extending the frame is beneficial

• Tm > T ?m ⇒ creating a new frame is beneficial

Case III: Tm < Tf ⇒ T
′
f = Tm

The trade-off is: By extending the frame, the frame will need to be sent more frequent,
but no additional overhead is created. By creating a new frame, the original frame will
not be sent more frequent, but additional overhead is created.

payf + sm + ohf
Tm

=
payf + ohf

Tf
+
sm + ohf

Tm
(5.14)

payf
Tm

=
payf + ohf

Tf
(5.15)

At the threshold period of the message, the two alternatives perform equally.

T ?m = Tf
payf

payf + ohf
(5.16)

Thus, the optimal decision is:

• Tm < T ?m ⇒ creating a new frame is beneficial

• Tm > T ?m ⇒ extending the frame is beneficial

Example

Table 5.3 shows the threshold period for both cases (II and III) assuming Tf = 1 , ohf = 64

sm T ?m

1 65
8 9

16 5
24 3.666
32 3
40 2.6
48 2.333
56 2.143
63 2.016

case II: Tm > Tf

payf T ?m

1 0.015
8 0.111

16 0.2
24 0.272
32 0.333
40 0.385
48 0.429
56 0.466
63 0.496

case III: Tm < Tf

Table 5.3: Optimal packing decision based on threshold-period of message

46

Algorithm 5.2: Heuristic for bandwidth-optimal frame packing

Input: messages
1 begin packMessagesIntoFrames
2 sort(messages, T, increasing) /* sort messages by T [0..n] */;
3 frame = new frame;
4 foreach message do
5 if frame.payload.left ≥ message.size then
6 /* take most beneficial decision */;
7 benefit = extendOrNew(message, frame);
8 if benefit = extend then
9 /* extend existing frame */;

10 pack(message, frame);

11 else if benefit = new then
12 /* create new frame */;
13 close(frame);
14 frame = new frame;
15 pack(message, frame);

16 end

17 else
18 close(frame);
19 frame = new frame;
20 pack(message, frame);

21 end

22 end

23 end
Output: frames

5.5.2 Heuristic for Optimized Frame Packing

By combining the basic concepts of state-of-the-art frame packing approaches with the
optimality criteria for bandwidth-optimal packing decision making, an optimized frame
packing heuristic can be derived. Algorithm 5.2 shows the optimized frame packing heuris-
tic. The main structure is based on the Fixed Frame Size approach from [74], which mimics
the next fit decreasing heuristic for the BPP. However, messages are not sorted by their
deadline, but by their period. This is inspired by [73].

The core-improvement is to incorporate the optimized packing decision making, which
is based on the optimality criteria (derived in section 5.5.1): If a message fits into an
existing frame, the message is not automatically packed into this frame – as is done in [74].
Instead, it is only packed into the frame, if this packing step is bandwidth-beneficial. If
it is not beneficial, the message is packed into a new/empty frame, although there is still
space left in the existing frame. Within the Extend Or New method, the most beneficial
decision is determined using the optimality criteria, derived in section 5.5.1.

This approach guarantees that each packing step has minimal increase of bandwidth
demand. Consequently, since each step is bandwidth-optimal, the final packing configu-
ration has the lowest possible bandwidth demand.

47

Packing Candidates

Algorithm 5.2 assumes that a set of messages is provided. In order to find these packing
candidates, the following necessary conditions need to be satisfied: Only messages, which
are sent from the same processor via the same bus-interface, can be packed into the same
frame-set.

Automotive bus systems (LIN, CAN, FlexRay) are transmitting in a broadcast manner.
Consequently, each processor connected to a bus receives all frames that are transmitted
via that bus. Each processor identifies frames which contain relevant messages, and extract
these messages by un-packing the frame. Thus, packing candidates can be found by:

• packing candidates = all out-going messages from a processor via a bus-interface

Receiving and un-packing relevant frames imposes computational effort on the proces-
sors. Thus, if relevant messages are spread over high number of frames, this may impose
significant computational effort on the receiving processors (especially if they have low
processing power). To tackle this issue, packing candidates can be pre-grouped by taking
into account the destination processors.

• packing candidates = out-going messages from a processor via a bus-interface, having
the same destination processor

This pre-grouping does not invalidate the optimality of the presented algorithm. How-
ever, it reduces bandwidth-efficiency. For experimental evaluation, pre-grouping is not
applied.

5.6 Experimental Evaluation – Frame Packing

In order to evaluate the optimized frame packing heuristic, a set of experiments need to
be performed. These experiments should cover a wide range of potential FPP instances
that might occur in real-life industrial use cases. Therefore, a test case generation tool
was developed, which is capable of generating synthetic pseudo-random FPP instances.

5.6.1 Test Case Generation Tool – GenFPP

In order to generate test cases for the FPP, the tool/algorithm generate frame packing
problem (GenFPP) is developed. Based on a set of parameters which specify the desired
FPP, GenFPP generates a FPP which satisfies that specification. Algorithm 5.3 shows
the test case generation methodology. Input parameters are:

• bus baudrate [baud/s]

• nominal bus utilization, due to payload only [% of bus baudrate]

• number of sending processors

• range of message’s size (min., max.) [bits]

• range of message’s period (min., max.) [s]

48

Algorithm 5.3: GenFPP – Test case generation tool for frame packing problems

Input: bus baudrate
Input: nominal bus utilization /* payload only; % of bus baudrate */
Input: number of processors
Input: size.min , size.max /* range of message’s data size */
Input: T.min , T.max /* range of message’s period */
Input: T.dist /* distribution of message’s period */

1 begin GenerateFPP
2 /* generate hardware model */;
3 processors = { };
4 bus = new bus(baudrate);
5 for 1 to nr.processors do
6 processor = new processor;
7 processor.connectTo(bus);
8 processors.add(processor) /* add to list */;

9 end
10 /* generate messages */;
11 bwd.target = bus.baudrate * nom.bus.util/100;
12 bwd = 0 /* bandwidth demand of messages */;
13 messages = { };
14 repeat
15 message = new message;
16 message.size = randomUniform(size.min, size.max);
17 if T.dist = uniform then
18 message.T = randomUniform(T.min, T.max);
19 else if T.dist = log uniform then
20 message.T = randomLogUniform(T.min, T.max);
21 end
22 message.D = message.T;
23 bwd += message.size / message.T /* update bandwidth demand */;
24 messages.add(message) /* add to list */;

25 until bwd ≥ bwd.target ;
26 /* assign messages to processors */;
27 foreach message do
28 p = randomUniform(nr.processors);
29 processor = processors[p];
30 assign(message, processor);

31 end

32 end
Output: hardware model
Output: outMessages per processor

49

• distribution of message’s period (uniform or log uniform)

The following should be considered concerning the parameters:

• An uniform distribution of message’s periods represents a general test case. By using
a log uniform distribution, the number of periods between 1 and 10 is the same than
between 10 and 100, etc. This more precisely models industrial use cases, where
periods typically are assigned dedicated, pre-defined values (e.g. 10, 25, 50, 100,
200, ...).

• The parameter number of sending processors represents the number of processors
that are connected to a bus system. Thus it can be used to tailor the test case
towards different bus sizes. A low number (up to 5) represents a private bus that is
dedicated to a separated sub-domain (e.g. electric components of a hybrid vehicle
powertrain). A high number (10+) represents a public bus that is shared by many
applications (e.g. body electronics of a car).

5.6.2 Test Cases & Evaluation Metrics

Table 5.4 provides the parameters which are used to generate realistic FPP test cases. The
parameters are within ranges that are typical for automotive communication systems.

Parameter Value/Range Unit

bus baudrate 125, 250, 500, 1000 kbaud/s
nominal bus utilization 10, 15, 20 %
number of sending processors 1 .. 20
message size range 1 to 16 bits
message period range 5 to 1000 ms
message period distribution uniform, log uniform
number of test cases per specification 100

Table 5.4: Test case parameters for frame packing evaluation

Due to the large specification space, the experiments have to be performed fully-
automatically. Therefore, a test-framework (TestFPP) is developed. As the input TestFPP
takes the specification for FPP evaluation. For each point in the specification space, a
FPP test case is generated, using GenFPP. For this test case, the FPP is solved (using
different FPP solving algorithms), and results are stored in a file for later post-processing.

As shown in algorithm 5.3, GenFPP uses random numbers. In order to reduce the
effects that these random numbers may have on FPP results, not only one FPP test case
is generated per specification point, but several test cases are generated. Due to the
random numbers, these test cases have a slightly different message-set. By generating
several FPP test cases per specification point, statistical data can be extracted. This way
more solid results can be gained, and confidence in the results can be improved.

The FPP test cases are solved by applying the optimized frame packing heuristic. In
addition, the same test cases are also solved using the following methods, in order to have
reference results:

50

• simple frame packing (1 message = 1 frame): This approach is used in most TAP
approaches. However it represents the worst-case frame packing.

• Sandstroem et al. [74]: This state-of-the-art frame packing approach tries to mini-
mize the bandwidth demand of the resulting frame-set. Thus a fair comparison can
be done.

No comparison with other state-of-the-art frame packing approaches can be done,
since these approaches target different objectives (e.g. min. end-to-end delays). Thus a
comparison would not be fair, and also would show misleading results.

For each FPP test case, the resulting frame-set is analysed. Therefore, the following
metrics are used:

• bandwidth demand – Frame packing should minimize the bandwidth demand of the
frame-set.

• frame payload – Frames should be highly utilized, in order to have a good data-to-
overhead ratio. Thus the used frame payload should be close to maximum.

• message period variation – Messages should not be sent too frequently. Thus mes-
sages that are packed in the same frame should have similar periods. Message period
variation inside a frame should be low.

• schedulability of frame-set – Frame packing should have a positive impact on schedu-
labilty. Fewer frames should miss their deadline.

5.6.3 Results

Evaluation shows that the optimized frame packing heuristic outperforms state-of-the-
art approaches. Thus, by applying this novel heuristic, better bus configurations can be
achieved. Details of the evaluation follow below.

Bandwidth Demand

The main reason for performing frame packing is to efficiently use the available bus band-
width. For a given set of messages that need to be transmitted via the bus, the bandwidth
demand of the resulting frame-set should be as low as possible.

• The bus baudrate marks the available bandwidth of the bus, and represents a thresh-
old for feasibility. Frame-sets that exceed this threshold clearly are infeasible. How-
ever, frame-sets that do not exceed this threshold can still be infeasible, e.g. if
deadlines are missed.

• The bandwidth demand, that is induced by the messages only, is:

bwnom. =
∑
m∈M

sm
Tm

(5.17)

51

This does not include any overhead. Thus, this can be seen as a lower bound for
frame packing. However, this lower bound can never be reached by any frame packing
algorithm 1.

• The bandwidth demand that is caused by applying simple frame packing is:

bwsimple =
∑
m∈M

sm + ohf
Tm

(5.18)

This approach assumes that each message is packed into a separate frame. Thus
each frame’s payload equals the packed-in message’s data size. This frame packing
strategy can be seen as the worst case and as an upper bound for frame packing.
Any real frame packing approach will cause (significantly) less bandwidth demand.

• The bandwidth demand that is caused by applying real frame packing algorithms
is:

bw =
∑
f∈F

payf + ohf
Tf

(5.19)

Since all automotive bus protocols only allow payloads that are multiples of bytes,
the payload of each frame is rounded up to the next full byte, before calculating the
bandwidth demand.

By applying the optimized frame packing heuristic to a wide range of FPP instances, its
performance can be evaluated in detail. Table 5.5 summarizes its improved performance
(in terms of the frame-set’s bandwidth demand) for different scenarios (i.e. number of
sending processors, bus baudrate). As the reference point Sandstroem et al.’s approach is
used. The improvement is calculated by:

improvement =
|xref. − x|
xref.

(5.20)

Based on results from table 5.5, a set of conclusions and trends can be derived:

• The optimized frame packing approach outperforms state-of-the-art frame packing
(in terms of bandwidth demand of the frame-set) in any scenario. It never performs
worse.

• For a low number of sending processors, both approaches perform similar. For a
higher number of sending processors, the optimized frame packing approach performs
significantly better than state-of-the-art frame packing approaches.

• The optimized frame packing approach performs significantly well for lower bus
baudrates. For increasing bus baudrates, the optimized frame packing approach
still performs better than state-of-the-art approaches, however, the improvements
become lower.

1Assuming a CAN bus, where the max. frame payload is 8 bytes and the frame overhead is 64 bits. In
this case, the best obtainable bandwidth demand of a frame-set is twice the nominal bandwidth demand
of the message-set.

52

Improvement [%]

Processors 125 k 250 k 500 k 1000 k

1 0.0 0.0 0.0 0.0
3 6.4 1.6 0.0 0.0
5 9.7 4.0 0.8 0.1
10 14.0 8.9 4.2 1.0
15 17.7 12.4 7.2 2.3
20 18.9 14.5 9.4 3.9

message period distribution: uniform

Improvement [%]

Processors 125 k 250 k 500 k 1000 k

1 0.1 0.0 0.0 0.0
3 6.4 0.5 0.0 0.0
5 13.7 4.4 0.2 0.0
10 14.7 13.9 4.6 0.2
15 13.9 14.4 10.3 1.8
20 10.3 14.3 14.2 4.6

message period distribution: log uniform

Assumptions: sm = 1 to 16 bit, Tm = 5 to 1000 ms

Table 5.5: Improvement in bandwidth demand of optimized frame packing over state-of-
the-art frame packing

• The performance of the frame packing approaches is noticeable different for different
message period distributions (uniform, log uniform). For an uniform distribution
the highest improvements can be achieved for low baudrates and high number of
sending processors. For a log uniform distribution the highest improvements can be
achieved for low baudrates and medium number of sending processors.

In order to gain deeper insight how different frame packing approaches perform in
terms of bandwidth-efficiency, let’s investigate the bandwidth-demand of the resulting
frame-sets.

Bandwidth Demand vs. Nominal Bus Utilization: One way to evaluate the band-
width efficiency of a frame packing strategy is to plot the bandwidth-demand of the re-
sulting frame-set over the nominal bus utilization. For a linear increase in nominal bus
utilization, the bandwidth-demand of bandwidth-efficient frame packing algorithms will
increase (significantly) lower than for non-bandwidth-efficient frame packing algorithms.

Figure 5.2 shows the bandwidth demand for varying nominal bus utilization. It visu-
alizes the following scenario: 10 processors are connected to a CAN operated at 125 kb/s;
the data which is exchanged between the processors shall be increased by factor 1.5 to 2
(e.g. because additional application software was added to the processors, and these soft-

53

Figure 5.2: Bandwidth demand of frame-sets for different nominal bus utilization. Each
line represents a frame-set generated by a different frame packing strategy. Experiment-
assumptions: Tm = log uniform, br = 125 kb/s, sending processors = 10

Figure 5.3: Notched box-plot confirming the statistical significance of the improvements
from figure 5.2. Each box represents the frame-set generated by a different frame packing
strategy. The box-plot shows the case: nominal bus utilization = 10 %

54

ware need to communicate). The results clearly show that the optimized frame packing
approach significantly outperforms simple frame packing, as well as state-of-the-art frame
packing approaches.

Note that each point in the plot represents the average over 100 FPP instances. There-
fore, the improvements can also be evaluated in terms of statistical significance. An elegant
– yet powerful – way to do this is the use of a notched box-plot.

“A box-plot (also known as a box-and-whisker diagram) represents numerical
data through their five-number summaries: the smallest observation (sample
minimum), lower quartile (Q1), median (Q2), upper quartile (Q3), and largest
observation (sample maximum). It may also indicate which observations, if
any, might be considered outliers. A box-plot does not make any assumptions
of the underlying statistical distribution. Notched box-plots apply a “notch” or
narrowing of the box around the median. Notches are useful in offering a rough
guide to significance of difference of medians: if the notches of two boxes do
not overlap, this offers evidence of a statistically significant difference between
the medians.”

– Massart et al. [47]

Simply speaking: if the notches do not overlap, the above stated improvements are
statistically significant. Figure 5.3 shows the notched box-plot of one point. It confirms
that the improvements of the optimal frame packing algorithm are statistically significant.

Bandwidth Demand vs. Number of Sending Processors: Another important
aspect is how the number of sending processors impacts the performance of the FPP
algorithm. This will show, if larger-scaled networks can be efficiently configured. In
order to evaluate this aspect, the following scenario is addressed: as additional software
is added to the system, additional processors are needed to provide the processing power;
however, by wise task-allocation decisions, the data which is sent via the bus-system
doesn’t increase. The hypothesis is, that the number of sending processors however has
significant impact on the resulting bandwidth demand, since there is fewer potential to
dense packing.

Figure 5.4 shows the bandwidth demand for a varying number of sending processors.
Again, each point is an average over 100 FPP instances. A low number of sending pro-
cessors represent a private bus, whereas a high number of sending processors represents a
public bus. Analysis of the results reveals and re-confirms a set of trends and conclusions:

• Simple frame packing results in very high bandwidth demand. In many cases (how-
ever not shown in this example) the frame-set becomes infeasible due to bus overload.

• The optimized frame packing algorithm needs significantly less bandwidth, compared
to state-of-the-art frame packing.

• The optimized frame packing performs best, if the number of messages per processor
is small. This indicates that it is very efficient in finding near-optimal packing. If
the number of messages is higher, this benefit cannot be seen so clear.

55

Figure 5.4: Bandwidth demand of frame-sets for different nr. of sending processors. Each
line represents a frame-set generated by a different frame packing strategy. Experiment-
assumptions: Tm = log uniform, br = 125 kb/s, nominal utilization = 10 %

Figure 5.5: Notched box-plot confirming the statistical significance of the improvements
from figure 5.4. Each box represents the frame-set generated by a different frame packing
strategy. The box-plot shows the case: sending processors = 5

56

Figure 5.5 shows the notched box-plot or one point. Again, it reveals that the im-
provements of the optimized frame packing algorithm are statistically significant.

Knowing that the optimized frame packing approach generates frame-sets which con-
sume less bandwidth than those generated by other approaches, it is interesting see how
this bandwidth demand saving is composed of. Bandwidth demand saving can only stem
from two sources:

• overhead – Messages are packed more compact into frames, thus fewer frames are
needed, and consequently less overhead is generated. This improves the data-to-
overhead ratio.

• period variation – The messages that are packed into a frame have very similar
periods, thus messages are not sent more frequently than needed.

Less overhead data can only be achieved, if frames are packed dense, thus needing fewer
frames. An interesting fact is, however, that the optimized frame packing approach gen-
erates more frames than state-of-the-art approaches. On average, 10.1% more frames are
generated, and thus more overhead is generated. However, the frames that are generated
by the optimized frame packing approach contain messages with more similar periods.
As a consequence, messages are not sent too frequently, thus saving bandwidth. This
bandwidth-saving over-compensates the increased overhead data.

These results clearly show how the optimized frame packing approach is able to outper-
form state-of-the-art approaches: The key is not to try to pack the frames as compact as
possible (like state-of-the-art approaches try to do), but as bandwidth-efficient as possible.
The trade-off optimality criteria seem to solve this task extremely well.

Payload Utilization

In order to get more insight into the results, the resulting frame-set is analysed in detail.
An important aspect of frame packing is the packing density: How much of the frame’s
available payload is used.

In industrial scenarios, where frame packing is usually performed manually, the frame
payload is utilized very high (6 to 8 of 8 bytes). These industrial frame-sets are used
as a reference, for comparing the payload utilization of the optimized frame packing ap-
proach. By analysing the frame payload after applying automated frame packing, it can
be determined how “close” these approaches can get to industrial scenarios. This will give
indications on how well automated frame packing approaches will get accepted within
industry.

Figure 5.6 shows the probability distribution of frame payloads. The industrial frame-
set uses quite high packing density. About 50% of all frames use 8 bytes payload, 15% use
7 bytes and 20% use 6 bytes. The remaining 25% use 5 or less bytes.

However, the frame-set generated by automated frame packing approaches use even
higher packing density. About 70% of the frames use 8 bytes, 20% use 7 bytes, and
the remaining 10% use 6 or less bytes. Sandstroem et al. generate slightly more frames
with 8 bytes payload, thus needing fewer frames. The optimized frame packing approach
generates slightly more frames using 7 bytes.

57

Figure 5.6: Payload utilization for different frame packing strategies

The results show that automated frame packing approaches can achieve a packing
density that is even higher than industrial approaches. This gives indication that the
automated approaches are efficient, and may get accepted in industrial use cases.

By analysing manually generated industrial frame-sets, additional insight can be gained.
It seems, bandwidth consumption is not the only issue that is considered during manual
frame packing. Additional aspects are considered.

• In several cases, messages are not only packed due to bandwidth demand, but also
due to logical grouping. This means to group messages that are associated to similar
functions or have a similar semantic (e.g. engine speed and engine torque). This
will be re-visited in chapter 6.

• In some cases, frames are not fully utilized in order to leave some free space left for
future extensibility. This will be re-visited in chapter 7.

Schedulability

Besides minimizing the bandwidth demand, it is of upmost importance that the frame-set
is schedulable. Thus, another interesting aspect of frame packing is its impact on the
schedulability of the resulting frame-set.

Since a frame consists of several messages, the frame must satisfy the deadlines of all
packed-in messages. Thus the deadline of a frame is [73]:

Df = min{Dm − offset(Tmin, Tm)} (5.21)

As deadlines may be arbitrary (do not need to match the period), priority assignment
for frames should be performed due to the DMPO policy [4] which is known to be optimal
for independent elements (here: frames). In order to evaluate the schedulability of the
frame-set1, WCRT analysis is applied [21]. Results are expressed by the un-schedulability
ratio, i.e. the number of un-schedulable frames compared to the number of frames.

1A more fine-grained approach would be check schedulability of messages instead of frames. This can be
achieved, since messages inherit their WCRT from the frame they are packed in. For the sake of simplicity,
schedulability is checked at frame-level. However, this does not decrease the expressiveness of the results.

58

Figure 5.7 shows the un-schedulability ratio for varying nominal bus utilization. It
shows that an increased utilization leads to an increased un-schedulability. However, the
proposed packing strategy leads to a lower number of deadline-misses.

Figure 5.7: Un-schedulability of frame-set for different nominal bus utilizations. Each
line represents a frame-set generated by a different frame packing strategy. Experiment-
assumptions: Tm = log uniform, br = 125 kb/s, sending processors = 10

Figure 5.8 shows the notched box-plot, confirming that the results are statistically
significant.

In addition, the impact of number of sending processors on schedulability of the frame-
set is investigated. Figure 5.9 shows the results: a higher number of sending processors
lead to a higher number of deadline-violations. Again, the proposed optimized frame
packing strategy outperforms state-of-the-art approaches.

Figure 5.10 shows the notched box-plot, confirming the statistically significance of the
resuts.

Overall, the results can be summarized as follows;

• Simple frame packing generates a high number of frames. Because of that, a high
number of frames (especially low priority frames) miss their deadline.

• By using real frame packing approaches, the number of frames is significantly re-
duced. Based on the lower number of frames, the interference between frames is
also significantly reduced. As a consequence, significantly fewer frames miss their
deadline.

• The optimized frame packing strategy outperforms all other strategies w.r.t. schedu-
lability in most cases (in some cases they perform equivalent).

59

Figure 5.8: Notched box-plot confirming the statistical significance of the improvements
from figure 5.7. Each box represents the frame-set generated by a different frame packing
strategy. The box-plot shows the case: utilization = 10 %

Figure 5.9: Un-schedulability of frame-set for different nr. of sending processors. Each
line represents a frame-set generated by a different frame packing strategy. Experiment-
assumptions: Tm = log uniform, br = 125 kb/s, nominal bus utilization = 10 %

60

Figure 5.10: Notched box-plot confirming the statistical significance of the improvements
from figure 5.9. Each box represents the frame-set generated by a different frame packing
strategy. The box-plot shows the case: sending processors = 5

Robustness of Schedulability

Another important aspect of schedulability is its robustness. The question this metric tack-
les is: How much does schedulability of the frame-set change, if there exists uncertainties
in parameters? In order to answer this question, sensitivity analysis is applied.

Thereby, several different parameters could be varied. However, not all variations make
sense, due to the lack of occurrence in real-life systems. Table 5.6 provides an overview of
parameters and an estimation how realistic these variations are in real-life systems.

Parameter Probability of Real-Life Variation

sm message data size does not change during run-time of system
Tm message period does not change, however may have some jiter
payf frame payload does not change during run-time of system
Tf frame period does not change, however may have some jitter
Cf frame transmission time is subject to variation due to bit-stuffing

(CAN); may also vary if frame transmission
is corrupted and therefor the frame must be
re-transmitted, thus increasing Cf

br bus baudrate does not change during run-time of system

Table 5.6: Possible parameters for sensitivity analysis of frame scheduling

It is concluded that the most realistic parameter variation is the frame transmission
time (Cf). Thus, sensitivity analysis is performed due to this parameter in the following
manner:

61

• If the frame-set is schedulable, Cf is up-scaled until the frame-set becomes un-
schedulable (i.e. a scaling-factor larger than 1.0). The more Cf can be up-scaled,
the more robust is the frame-set.

• If the frame-set is un-schedulable, Cf is down-scaled until the frame-set becomes
schedulable (i.e. a scaling-factor smaller than 1.0). The more Cf needs to be down-
scaled, the more “un-schedulable” is the frame-set.

C
′
f = Cf · scale C ∀f ∈ F (5.22)

Figure 5.11 shows the sensitivity-analysis results for a varying nominal utilization. In
this particulat plot, the frame-sets are un-schedulable, thus Cf needs to be down-scaled.
The results show, that the frame-set generated by the optimized frame packing approach
need the fewest down-scaling. This indicates the increased robustness.

Figure 5.11: Sensitivity analysis: Impact of transmission time on schedulability for dif-
ferent nominal bus utilizations. Each line represents a frame-set generated by a different
frame packing strategy. Experiment-assumptions: Tm = log uniform, br = 125 kb/s,
sending processors = 10

Figure 5.12 show the notched box-plot, which confirms the statistically significance.
Figure 5.13 shows the results for a varying number of sending processors. It reveals

that the number of sending processors has a significant influence on the robustness of the
frame-set. Best robustness is found for a small number of sending processors. It also shows
clearly that the optimized frame packing strategy outperforms state-of-the-art ones.

Figure 5.14 shows the notched box-plot, confirming the statistical significance.
Note: Although bus baudrate does not change during run-time in real-world scenar-

ios, sensitivity analysis can be performed due to this parameter as well. From these
experiments interesting results can be derived. They can be used in order to answer a
design-related question: Which (min.) bus baudrate is necessary in order to achieve real-
time communication for a given frame-set? This approach helps to find the best-fitting

62

Figure 5.12: Notched box-plot confirming the statistical significance of the improvements
from figure 5.11. Each box represents the frame-set generated by a different frame packing
strategy. The box-plot shows the case: nominal bus utilization = 10 %

Figure 5.13: Sensitivity analysis: Impact of transmission time on schedulability for differ-
ent nr. of sending processors. Each line represents a frame-set generated by a different
frame packing strategy. Experiment-assumptions: Tm = log uniform, br = 125 kb/s,
nominal bus utilization = 10 %

63

Figure 5.14: Notched box-plot confirming the statistical significance of the improvements
from figure 5.13. Each box represents the frame-set generated by a different frame packing
strategy. The box-plot shows the case: sending processors = 5

bus configuration for a given communication demand. This way, cost-efficient solutions
can be developed.

5.6.4 Conclusions

The optimized frame packing heuristic, which mimics the next fit decreasing (NFD) heuris-
tic for the BPP, outperforms state-of-the-art frame packing approaches due to several
aspects. Since there are other heuristics for the BPP, the question arises, if another BPP
heuristic would form a better starting point for developing a heuristic for the FPP. In
order to answer this question, two more FPP heuristics were developed and evaluated:
one mimics the first fit decreasing (FFD) and the other one mimics the best fit decreasing
(BFD) heuristic for the BPP. For both cases, the trade-off optimality criteria for the
FPP were also included. The same experiments as described in the previous section have
been performed, in order to evaluate these two heuristics. These experiments show the
following:

• The FFD approach performs similar to Sandstroem et al. In some cases FFD per-
forms even worse.

• The BFD approach performs (more or less) exactly like the NFD. The differences
between NFD and BFD are so minor that they cannot be treated as statistically
significant.

Based on these results, it can be concluded that the structure of the heuristic (NFD,
BFD) is not the most important factor. No statistically significant difference between
NFD and BFD can be discovered. The results also give strong evidence that the deter-

64

mining factor is the usage of the optimized packing decision making (based on the trade-off
optimality criteria).

At this point, the use of NFD or BFD is equivalent, since both perform the same.
However, there is one significant difference in the way they work: NFD has only one
active frame at the same time. Once a message is not packed into that frame, the frame
is closed, never to be used again. BFD however can have several active frames at the
same time, and frames are never closed. At this point, this difference is minor, and does
not affect the FPP solving algorithm performance much. However, if frame packing has
to be performed on a message-set that needs to satisfy packing constraints (e.g. that two
messages are not allowed to be packed into the same frame), this difference becomes major.
Thus, this issue will be re-visited in chapter 6, in which design constraints for the system
configuration problem are introduced. For now, NFD will be used.

5.7 Including Frame Packing into System Configuration

In the previous sections it was shown how frame packing can be solved efficiently, and in a
bandwidth-optimal manner. Now the question arises, how the FPP can be included into
the TAP. This is essential for designing realistic system configurations. In the literature,
there are only a few works [85, 87] that combine the FPP with the TAP. Beside some
minor differences, they all use the following two-phased approach:

• Within phase 1 the TAP is solved, assuming simple frame packing.

• Within phase 2 the best allocation of phase 1 is fixed, and the FPP is solved in
detail for that allocation.

Although this approach seems to work, it has a major disadvantage: During phase 1, a
high number of allocations are deemed to be infeasible, either because the bus is overloaded
or because frames miss their deadline. Usually these allocations are rejected / punished by
the TAP solving algorithm. However, these allocations are only deemed to be infeasible,
because simple frame packing (which is known to be overly pessimistic) is used. If real
frame packing would be used, most likely the bus would not be overloaded and the frame-
set would be schedulable (as shown in section 5.6.3). Thus the allocation would actually
be feasible.

By wrongly deeming a configuration to be infeasible, a high number of task allocations
are rejected, although they would be quite good solutions. This pessimism reduces the
probability of finding the best system configuration. The only way to overcome this issue
is to incorporate a real frame packing approach into the TAP DSE. By doing so, more
feasible allocations can be generated and evaluated, thus leading to a higher design space
coverage. Consequently the probability of finding near-optimal system configurations is
increased.

5.7.1 Complexity of Frame Packing Solving

Any change of task allocation (i.e. re-allocating a task onto another processor) causes a
change in the communication-demand between processors. Thus, the configuration of the
communication-infrastructure needs to be re-designed as well. Therefore, frame packing

65

and frame scheduling need to be performed for every TAP-iteration. Since a high number
of TAP-iterations are performed during DSE and optimization, the complexity of the FPP
solving methodology is a significant factor.

In [66] the FPP is solved using SA. However, solving the FPP takes up to 6 hours. In
[85,87] the FPP is solved using MILP. Solving the FPP takes 5.5 hours. These approaches
do not scale if the FPP needs to be solved for every TAP-iteration. Therefore, only low-
complexity approaches (e.g. heuristics) can be used here. The FPP solving approach
presented in section 5.5 is a low-complexity solving approach, which finds bandwidth-
optimal frame packing solutions. Therefore, this approach fits well to be integrated into
the TAP solving approach.

5.7.2 Cost-Function for Frame Packing Performance

Frame packing is dependent on message routing, which again is highly dependent on task
allocation. Therefore task allocation has a significant impact on frame packing. In return,
frame packing has significant impact on system performance (e.g. bus utilization and
system schedulability).

If the FPP solving performance is not evaluated then a significant contributor of system
performance is not taken into account. This would make it hard for the search framework
to find good regions in the design space. Therefore, FPP solving performance must be
evaluated.

Frame packing mainly influences bus utilization and frame schedulability. Indirectly
it also influences system schedulability (since frame WCRT are inherited by the receiving
tasks as release jitter). Bus utilization and system schedulability are already considered
in the cost-function (see section 4.2.4). However, these terms can also be influenced by
other sources, e.g. task allocation. For a given task allocation and message routing,
different frame packing solutions can be generated. These frame packing solutions will
have different performance. However, these differences cannot be captured by the already
used cost-terms. Therefore, an additional cost-term is needed to capture the performance
of frame packing.

Since frame packing aims at minimizing the bandwidth demand, the bandwidth demand
of the frame-set is a suitable metric for FPP solving performance. As a reference, the
bandwidth demand of simple frame packing is used.

costFPP =

∑
f∈F

payf+ohf
Tf∑

m∈Mβ

sm+ohf
Tm

(5.23)

Mβ is the set of messages that are sent via a bus system. Processor-internal messages
are not considered, since they do not induce bus bandwidth demand. This cost-term is
added to the cost-sub-function, which guides the search. Cost-terms are grouped by using
a weighted sum.

5.7.3 Experimental Evaluation

The main reason for performing frame packing is to reduce bandwidth demand, and to
increase the schedulability of communication. Obviously, the positive effects of frame

66

packing can be seen most clearly for systems with high communication demand. Hence,
mainly such systems will be used for evaluating the proposed approach of incorporating
frame packing into system configuration DSE.

Approaches & Metrics

The evaluation focuses on 3 approaches:

1. traditional – The TAP is solved, assuming simple frame packing.

2. two-phased – First the traditional TAP is solved. Afterwards the best task allocation
is fixed and refined, using real frame packing.

3. integrated – The FPP is solved in detail during TAP DSE.

The traditional approach is used by almost all works in the literature. The two-phased
approach is proposed in [85,87]. The post-processing phase, during which real frame pack-
ing is performed, will improve bus utilization and communication delays. By comparing
the traditional to the two-phased approach, these improvements should be become clearly
visible.

However, the author believes even more improved results can be achieved if real frame
packing is performed during solving the TAP. This is why the integrated approach is pro-
posed. By comparing the integrated approach to the other approaches, these improvements
should become clearly visible.

The performance of the different approaches is measured by several attributes:

• The cost of the best solution that is found by the approach represents the overall
quality of the obtained solution.

• In addition, the individual cost-terms of the best solution are analysed. This will give
more detailed insight, which aspects of the solution is improved (e.g. bus utilization).

• Besides the final values of the cost-terms, it may also be interesting to analyse how
the cost-terms evolve over search-time. This will give insight how the search is guided
through the search-space.

Selected Examples from the Literature

In [85, 87], where the two-phased approach is proposed, 2 examples are used for evalua-
tion. These examples are good candidates for the evaluation of the integrated approach.
Although several attributes of the examples are presented in the papers, some necessary
attributes are missing. Therefore, in order to reproduce the examples, the missing at-
tributes have to be assumed / estimated. These assumptions are marked as * within the
test case specifications.

Example 1 [85]

Table 5.7 gives the specification of example 1. The assumptions / estimates are as fol-
lows: The processor utilization can be estimated, since it is stated that the max. allowed

67

utilization is set to 70%. The nominal bus utilization is estimated by taking into account
the results gained in section 5.6.3. The estimated periods represent a range which is
commonly used in the automotive domain. The number of transactions is estimated due
to the stated number of end-to-end delay deadlines. Transaction length is set to shape
task-graphs which are common in the automotive domain.

Parameter Value/Range Unit

number of processors 9
processor utilization 60 to 70 % *
number of bus systems 1
bus baudrate 500 kbaud/s
nominal bus utilization 10 % *
number of tasks 41
number of messages 83
message size 1 to 64 bits
periods 10 to 1000 a 10 ms *
number of transactions 7 *
transaction length 60 to 85 % *

Table 5.7: Specification of example 1 [85]

This example system is solved, using the 3 different solving approaches. Table 5.8
provides an overview of the most important attributes of the best obtained solutions.

Metric traditional two-phased integrated

processors used 7 of 9 7 of 9 7 of 9
processor utilization 56.3 to 98.9 56.3 to 98.9 56.3 to 98.9 %
external messages 5 5 5
frames 5 2 2
bus utilization 2.12 0.94 0.94 %
deadline-violations 0 0 0

moves to schedulable system 7527 7527 361

Table 5.8: Best obtained solution for example 1 [85]

The most interesting finding for example 1 is that all approaches find the same con-
figuration. 7 of 9 processors are used. The same 5 messages are sent via the bus. This
gives strong evidence that the best possible allocation was found. Looking at the final
solution does not show much benefits for any of the approaches, except that the tradi-
tional approach results in higher bus utilization due to more overhead data. However,
a major finding is that the integrated approach converges to feasible (i.e. schedulable)
configurations much faster than the other approaches.

Figure 5.15 gives insight into the search performance of the different approaches, by
analysing how the cost-terms evolve over search-time: Using simple frame packing (tra-
ditional, two-phased) causes bus-overload for the first 25% of the search-iterations. This

68

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FPP after TAP

iteration

external messages
bus overload
message deadline missed
task deadline missed

(a) two-phased approach

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FPP inside TAP

iteration

external messages
bus overload
message deadline missed
task deadline missed

(b) integrated approach

Figure 5.15: Search performance for example 1 [85]

again causes message deadline-violations and indirectly task deadline-violations (due to
increased release jitter). By re-allocating tasks the search-framework steadily reduces the
number of messages that have to be sent via the bus. As soon as the number of cross-
processor messages reaches about 60%, the bus is no longer overloaded, and the number
of deadline-violations is significantly reduced. This clearly supports the issues raised con-
cerning applying simple frame packing.

In contrast, by applying real frame packing during TAP, the bus is never overloaded.
As a consequence, no message deadline-violations could be observed. Also the number of
task deadline-violations is significantly lower. These effects can also be seen in another
metric: search-iterations until first schedulable solution is found. Here, the integrated
approach is about 20 times faster than the traditional / two-phased approach. This shows
that the integrated approach’s agility.

Another interesting (and not expected) aspect that can be observed is that the number
of cross-processor messages is reduced slightly faster if simple frame packing is used (see
figure 5.16). This can be explained as follows: Due to the high punishment stemming
from bus-overloads and deadline-violations, the search-framework is more eager to find
configurations that have a low number of cross-processor messages. However, this benefit
does not outweigh the drawback concerning deadline-violations.

Example 2 [87]

Table 5.9 gives the specification of example 2. The following assumptions / estimates are
used: The estimated bus baudrate is a commonly used one. Also, the same baudrate is
specified in example 1. Message size is estimated due to the specification used in example
1. The number of transactions is again estimated due to the given number of end-to-end
delay deadlines. Transaction length is set accordingly.

Again, the example system is solved, using the 3 different solving approaches. Ta-
ble 5.10 provides an overview of the resulting best obtained solutions.

69

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
external messages

iteration

FPP after TAP
FPP inside TAP

(a) number of external messages

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
external communication

iteration

FPP after TAP
FPP inside TAP

(b) communication-intensity of external messages

Figure 5.16: Reduction of cross-processor communication, example 1 [85]

Parameter Value/Range Unit

number of processors 7
processor utilization 30 %
number of bus systems 1
bus baudrate 500 kbaud/s *
nominal bus utilization 10 % *
number of tasks 43
number of messages 68
message size 1 to 64 bits *
periods 10 to 1000 ms
number of transactions 6 *
transaction length 35 to 65 % *

Table 5.9: Specification of example 2 [87]

From example 2 more diverse findings can be gained. The integrated approach signif-
icantly outperforms state-of-the-art approaches (traditional, two-phased) in terms of the
best obtained solution. Most important is that the integrated approach needs fewer pro-
cessors than the other approaches. In addition, although there are more cross-processor
messages, significantly less bus bandwidth is consumed.

Figure 5.17 gives insight into the search performance of the different approaches, by
analysing how the cost-terms evolve over search-time: For all approaches the bus is never
overloaded. Also, no deadline-violations occur for messages. Using real frame packing,
also no deadline-violations occur for tasks. In contrast, by using simple frame packing
(traditional, two-phased), a few deadline-violations occur for tasks during the first 15% of
the search-iterations. These stem from increased release jitter, induced by the increased
message WCRT.

70

Metric traditional two-phased integrated

processors used 5 of 7 5 of 7 4 of 7
processor utilization 12.5 to 89.5 12.5 to 89.5 32.5 to 77.5 %
external messages 2 2 3
frames 2 2 1
bus utilization 7.2 7.2 0.72 %
deadline-violations 0 0 0

Table 5.10: Results for example 2 [87]

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
FPP after TAP

iteration

external messages
bus overload
message deadline missed
task deadline missed

(a) two-phased approach

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
FPP inside TAP

iteration

external messages
bus overload
message deadline missed
task deadline missed

(b) integrated approach

Figure 5.17: Search performance for example 2 [87]

First Conclusions

Based on the evaluation results, a set of conclusions can be drawn. By integrating real
frame packing into TAP DSE, the following benefits can be gained:

• The search converges towards feasible (i.e. schedulable) configurations much more
rapidly.

• Lower bus utilization can be achieved.

• Processors can be utilized more efficiently, thus resulting in fewer needed processors.

5.7.4 Conclusion & Future Work

The configuration of the communication infrastructure is an essential part of system con-
figuration. Frame packing is a key aspect. By incorporating frame packing into task
allocation DSE, a set of benefits can be gained: better system configurations (e.g. lower
bus utilization, increased schedulability) and better search-performance (e.g. finding a
feasible solution within less time).

71

Cost-Function

By analysing the work of [85, 87], the following conclusion can be drawn: The individual
sub-problems (task allocation, frame packing) do not have a constant importance during
the DSE.

• At the beginning, the TAP is of high importance, whereas the FPP is of low impor-
tance (indicated by using simple frame packing within phase 1).

• At the end, the TAP is of low importance (indicated by fixing one allocation within
phase 2), and the FPP is of high importance (indicated by solving the FPP in detail).

The authors claim that this approach works fine. Therefore, the approach could be
mimiced. The importance of FPP performance could be dynamically changed during the
TAP DSE. The FPP-importance should increase towards the end of the search. This can
be achieved by adding an additional factor.

(scaleFPP · wFPP) · costFPP (5.24)

The factor scaleFPP adjusts the importance of the FPP performance. A scaling of 0
means that the FPP performance is not important at all. Any higher scaling increases the
importance. The question arises: Which scaling should be used? To mimic the two-phased
approach, scaling would need to be varied from 0 to 1 by an unit step function. However,
it is probably wiser to use a smoother transition function:

• The FPP performance shall always have a significant importance during the TAP
DSE.

• The importance of the FPP performance may be lower at the beginning. This enables
for a wider TAP design space to be explored.

• The importance of the FPP performance shall increase towards the end of the TAP
DSE. This will guide the SA towards regions of the design space where high quality
frame packing can be achieved.

These considerations can be put into a transition function, as indicated by figure 5.18.
The question, to which degree a dynamic cost-function can improve the overall system
configuration performance, is beyond the scope of this thesis, and thus subject to future
research.

Frame Packing Post-Processing

Evaluation shows that the FPP solving heuristic, which is used during TAP DSE, is able
to synthesis realistic low-bandwidth bus configurations. However, the question arises, if
an even better bus configuration could be achieved by applying meta-heuristics.

Since meta-heuristics are slow, they can only be applied to the best system configu-
ration, which is available after the TAP DSE. Thus, similar to [85, 87] a post-processing
phase could be added, during which the frame packing of the best task allocation is refined,
using SA. Therefore, one of the following neighbour moves could be applied (inspired by
the neighbour moves from [66] and the refinement steps in [73]):

72

Figure 5.18: Adapting importance of frame packing performance evaluation during task
allocation design space exploration

• swap message – Move a message from the frame it is currently packed-in, into another
frame

• separate message – Move a message from the frame it is currently packed-in, into an
empty frame

• split frame – Split a frame into two frames

• merge frames – Move all messages of a frame into another frame

However, the impact of this post-processing optimization onto the system performance is
beyond the scope of this thesis, and is subject to future research.

5.8 Gateway Configuration

Sophisticated applications (such as automotive applications) are based on a complex com-
munication infrastructure (see figure 5.19). It involves several different bus systems, which
are interconnected via special connecting-processors (often referred to as gateways). To
enable communication between all processors, data may need to be routed via these gate-
ways. Thereby, data-routing can be achieved at different layers. Table 5.11 gives an
overview, tailored to the automotive domain.

In this work, the physical layer is not addressed, only higher layers are of interest:

• frame repeating – A frame which is received by the connecting-processor is sent out
to all connected bus systems. This is only possible if all bus systems use the same
protocol (e.g. CAN). One main disadvantage of this approach is that the frame is
also sent to bus systems which do not need the frame.

• frame forwarding – A frame which is received by the connecting-processor is sent
out to all connected bus systems which need the frame. This way, no non-needed
frames are sent. Again, this approach is only possible if all bus systems use the same
protocol.

73

(a) central gateway: all bus systems are con-
nected to a single gateway

(b) backbone gateway: each bus system is
connected to a gateway, and all gateways are
inter-connected via a backbone bus system

(c) multi gateway: bus systems are inter-connected in
a hierarchical manner

Figure 5.19: Gateway topologies

• message routing – A frame which is received by the connecting-processor is un-
packed, the packed-in messages are routed to their destination bus-interface, and
the messages are re-packed into new frames. Messages which are not needed at the
destination bus are removed, in order to reduce the bus utilization at the destination
bus. This approach can be applied if the bus systems use the same protocol, and
must be applied if the bus systems use different protocols. This is because different
protocols have different frame structures (e.g. max. frame payload: 8 bytes for CAN
vs. 254 bytes for FlexRay).

• gateway – In addition to message routing, the connecting-processor may also run
application tasks. Messages which are generated by these tasks may be added to the
outgoing frames, during re-packing.

Of course, the frames which are output by the connecting-processor must be scheduled
on the associated bus system according to its scheduling policy. Therefore, scheduling
attributes (such as priorities or time-slots) need to be assigned accordingly.

In this work, it is assumed that a connecting-processor may host application tasks.
Hence such processors will be called gateways. The gateway may connect different bus
systems, thus it will perform un- and re-packing of frames. This assumption is in alignment
with the concept of signal routing of the AUTOSAR standard.

74

OSI layer Connector Description (Automotive)

OSI 6 presentation gateway Additional messages that are generated
inside the gateway-processor may be
added to the outgoing frames.

OSI 3 network router Frames are un-packed, and the in-
cluded messages are re-packed into new
frames. These are sent via the dedi-
cated destination bus system.
(e.g. CAN-to-FlexRay)

OSI 2 data link bridge, switch The incoming frame is retransmitted
via the connected bus systems. This
assumes both bus systems use the same
protocol.
(e.g. CAN-to-CAN)

OSI 1 physical repeater, hub The electrical waveform is repeated, to
increase signal integrity. The incom-
ing signal is made available to all con-
nected bus systems. Thus it assumes
that all connected bus systems use the
same protocol.
(e.g. FlexRay active star)

Table 5.11: Connecting automotive bus systems at different layers

The work which is performed by the gateway (i.e. receiving of frames, un-packing of
frames, message routing, re-packing of frames) is performed by dedicated tasks. These
consume processor time. If all these tasks are modeled in detail, it is called white-box
modeling. In this work the gateway-internals are not modeled in detail, thus called black-
box modeling. The internals are just considered in terms of adding a delay, which can be
considered for end-to-end response time calculation.

Challenges: If the communication infrastructure consists of several inter-connected bus
systems, the following aspects need to be considered in the context of TAP.

• task allocation – Which tasks may be allocated onto the gateway-processors?

• message routing – What are feasible (and “good”) routes between two processors
which are connected to different bus systems?

• frame packing – In case of un- and re-packing, what is the optimal re-packing of
frames?

• frame scheduling – How shall the outgoing frames of the gateway be scheduled?

75

5.8.1 Literature Review Refinement – Configuration for Multi-Bus Sys-
tems

In [65] the scheduling problem (for communicating tasks) is solved for multi-cluster sys-
tems. The hardware consists of several processors connected to two bus systems (i.e.
TDMA and CAN). The bus systems are connected via a gateway. The goal is to find a
schedule that meets all deadlines, which minimizes the required buffer size on the gate-
way. The approach builds a TDMA-schedule, and then assigns offsets to the time-triggered
elements and priorities to event-driven elements. These steps are performed by problem-
specific heuristics. The following assumptions are made: All processors (including the
gateway) perform simple frame packing (i.e. 1 application message = 1 bus frame). The
gateway just performs frame forwarding. Task allocation is assumed to be given and is
not modified.

In [67] the approach of [65] is extended by the TAP. Task allocation is no longer a given
value, but is determined by the algorithm. The approach tackles the problem in a 3-phased
manner: In phase 1, an initial bus-access configuration as well as an initial task allocation
is built. For this configuration, a schedule is found. If the initial configuration is un-
schedulable, phase 2 is performed. Herein, task allocation and scheduling is improved. If
phase 2 doesn’t manage to find a schedulable configuration, phase 3 is performed. Herein,
the bus-access configuration is optimized. However, the entire approach does never tackle
the FPP, since simple frame packing is used (i.e. 1 application message = 1 bus frame).

In [66] the approach of [65] is extended by the FPP. Besides finding a schedule, the
issue of packing application messages into bus frames is addressed as well. A heuristic
is proposed, which packs messages according to offsets. However, this approach does not
address the TAP. Task allocation is assumed to be given, and is not modified.

Open Issues

Configuring a multi-bus system is addressed from different perspectives in the literature.
However, no work can be found which addresses all 3 aspects (i.e. task allocation, frame
packing, scheduling) at the same time. Always, some of these aspects are assumed to be
given. Thus, the question is: how can TAP, FPP, and scheduling for a multi-bus system
be solved in an integrated approach?

5.8.2 Including Gateway Configuration into System Configuration

In order to build a system configuration for a multi-bus system, several methodologies
(which have already been presented in this work) need to be combined:

• task allocation – As the gateway-processor is capable of hosting application tasks,
it can be treated as any other processor. The same task allocation methodology as
described in section 4.2.3 can be applied. Also, the same optimization objectives as
described in section 4.2.4 can be applied.

• scheduling – Application tasks which are allocated on the gateway-processor are
scheduled according to fixed-priority preemptive scheduling. Thus, state-of-the-art
priority-assignment policies (such as DMPO) can be applied.

76

• routing – Finding a feasible route for a message between any processors can be done
by applying depth-first search. Results of this design-time analysis are stored in the
routing table inside the gateway-processor.

• frame packing – In alignment with AUTOSAR’s signal-gateway, a gateway-processor
is un-packing incoming frames, and is re-packing the messages into new frames at
the destination bus-interface. Packing candidates are the routed messages as well as
the messages which are generated inside the gateway-processor. Packing can be per-
formed due to the same strategy as described in section 5.5. As the packing heuristic
has low complexity, it can be included into the TAP DSE without compromising
search-performance (as the performance-bottleneck is the schedulability-test).

5.9 Conclusions

Starting from a state-of-the-art approach (that did not incorporate some essential sub-
problems), the system configuration problem was extended by a detailed configuration of
the communication infrastructure.

By including this sub-problem into the overall DSE, realistic system configurations
can be generated. Based on such system configurations, properties and behaviour of the
system can be estimated more precisely/realistically.

77

Chapter 6

Satisfying Design Constraints

In chapter 5, the system configuration problem is solved in a more realistic manner than
state-of-the-art approaches do. The key improvement over state-of-the-art is incorporating
a more realistic communication-model which especially tackles frame packing. However,
only a small set of constraints is taken into account so far:

• task allocation – The utilization of a resource (processor, bus-system) must not
exceed 100% (or a specified threshold, e.g. 95%).

• frame packing – Messages can only be packed into the same frame if their accu-
mulated data sizes do not exceed the frame’s max. payload, and if the messages
originate from the same processor’s bus-interface.

• scheduling – The WCRT of a schedulable object (task, message/frame) must not
exceed its deadline.

These constraints mainly stem from schedulability considerations. Thus, these constraints
are widely used in the literature on task allocation and scheduling. However, in most
real-life industrial system configuration problems, a set of additional design constraints
needs to be taken into account. In this chapter, a methodology is presented, how a set
of highly heterogeneous design constraints can be handled. The focus is on methods that
are efficient, scalable, and extensible.

This chapter is structured as follows: First, a set of industry-relevant constraints are
identified. After reviewing state-of-the-art solving approaches and identifying their limits,
a new solving approach is presented. Experimental results show the effectiveness of the
methodology. Finally, conclusions are drawn.

6.1 Design Constraints

Constraints tackle different aspects of system configuration, and thus are highly heteroge-
neous. Design constraints may have a variety of sources. Most relevant sources are:

• safety considerations – If safety analysis of the entire system has been performed (e.g.
hazard and risk analysis, in accordance with ISO 26262 [35]), safety requirements
can be derived. These requirements impose constraints on design decisions.

79

• compatibility to legacy systems – Automotive systems are usually designed in an
evolutionary fashion. A previous version of the system is taken as a starting point
and is extended with additional features, in order to satisfy current demands /
requirements. Thus, legacy components impose constraints on design decisions.

• engineer’s experience – Engineers who have been designing similar systems typically
have figured out “best practices”. These may exclude certain design decisions, thus
imposing additional constraints.

Other sources, such as legal requirements, company-internal guidelines, standards, etc.,
can also be mentioned. For now, the sources of the design constraints is of no concern,
the only concern is how to satisfy them. The aspect of compatibility to legacy systems will
be re-visited in chapter 7.

Constraint Class Constraint Type Literature

A: limited resources
A-1: processor CPU speed yes
A-2: processor memory yes
A-3: bus bandwidth yes

B: real-time behaviour
B-1: task deadline yes
B-2: communication deadline yes
B-3: end-to-end delay deadline yes

C: allocation (task to processor)
C-1: dedicated processors yes
C-2: excluded processors yes
C-3: fixed allocation yes

D: dependencies (task to task)
D-1: grouping no*
D-2: separation yes

E: message routing (message to bus)

E-1: processor-internal only no*
E-2: dedicated bus-systems no
E-3: excluded bus-systems no
E-4: same bus no
E-5: separated bus-systems no

F: frame packing (message to frame)
F-1: dedicated frame no
F-2: same frame no
F-3: separated frames no

* not stated as a constraint, but used as means to reduce bus utilization

Table 6.1: Overview of design-constraint types

Table 6.1 provides a summary of relevant constraint types. They can be categorized
within several classes, which correlate with the design-steps for configuring a distributed
embedded real-time system. The constraint types are generic and thus can be applied
to different domains (e.g. automotive, rail, aerospace, automation, etc.). Within the
automotive domain, the AUTOSAR standard [5] is becoming the leading standard. Within
AUTOSAR, possible design constraints have been specified in the AUTOSAR system
template. Table A.1 gives an overview / extract. Beside slightly different names, the
semantic of the constraint types from table 6.1 match well with those from the AUTOSAR

80

system template. Below is a description of the constraint types. In addition, rationals and
some examples are provided.

• A: limited resources – Embedded systems typically only have a small memory and
moderate processing power. This imposes significant constraints on which kind of
tasks they can execute.

• B: real-time behaviour – Real-time systems have to perform their tasks within pre-
defined deadlines. This is the key requirement for scheduling and schedulability-tests.

• C-1: dedicated processors – A task may only be allocated on a sub-set of processors.
This could be due to hardware requirements (e.g. a task was developed for an ARM
architecture).

• C-2: excluded processors – A task is not allowed to be allocated on a set of processors.
This is effectively the opposite of C-1.

• C-3: fixed allocation – The given allocation of a task to a processor must not be
modified.

• D-1: grouping – Two or more tasks have to be allocated on the same processor. This
could be due to mutual dependencies (e.g. two tasks sharing a data-structure).

• D-2: separation – Two or more tasks must not be allocated on the same processor.
A typical reason would be that the two tasks form a software redundancy.

• E-1: processor-internal communication – Communication between two tasks is only
allowed to occur within the same processor, but not via a bus-system. This could
be due to safety requirements.

• E-2: dedicated bus-systems – A message may only be routed via a sub-set of bus-
systems (e.g. only FlexRay may be used, since it provides a time-triggered commu-
nication schema).

• E-3: excluded bus-systems – A message must not be routed via a set of bus-systems.
This is effectively the opposite of E-2.

• E-4: same bus – Two or more messages must be routed via the same bus.

• E-5: separated bus-systems – Two or more messages must not be routed via the
same bus. Again, this could be due to redundancy.

• F-1: dedicated frame – A message must be packed into a dedicated frame. A
typical reason would be to guarantee backward-compatibility to a previous bus-
configuration.

• F-2: same frame – Two or more messages must be packed into the same frame. This
could be to guarantee data-validity (e.g. if one message represents voltage, and the
other represents current, than the calculated electric power is valid only if these two
messages arrive at the same time).

• F-3: separated frames – Two or more messages must not be packed into the same
frame. Again, this could be due to redundancy.

81

6.2 Literature Review Refinement – Constraints

Guaranteeing the real-time behaviour of a system is at the heart of the real-time systems
community. Thus, all reasonable approaches for scheduling and task allocation which can
be found in the literature address real-time constraints. Since schedulability is linked to
resource utilization, also most works address resource utilization constraints.

Most works on task allocation are wrapped around a schedulability-test. The task allo-
cation methodology deals with the resource utilization constraints, while the schedulability-
test handles the real-time constraints. In [81] such an approach, based on SA, is presented.
In addition, task separation constraints are used in order to account for redundancy.
These constraints are addressed by adding a cost-term to the cost-function which pun-
ishes constraint-violations.

In [26] allocation constraints are addressed by means of dedicated processors. By spec-
ifying only one processor, fixed allocation can be modeled as well. Also, if an excluded
processors constraint should be modeled, this could be done by setting the dedicated pro-
cessors accordingly (i.e. Pded = P \ Pex). Again, SA is used for problem solving, and the
constraints are addressed by punishing their violations.

In [25] additional constraints are addressed. Beside traditional ones (e.g. limited
resources, timing, dedicated processors) it also tackles task grouping as well as task sep-
aration constraints. The authors apply a constraint programming approach to solve the
problem, using the Choco solver.

Open Issues

Interestingly, several constraint-types are not addressed in the literature. Especially con-
straints that focus on the configuration of the communication infrastructure have not been
tackled yet. This involves aspects of message routing and frame packing. This can be ex-
plained as follows: Most works on system configuration (e.g. task allocation) use simplified
models for cross-processor communication. These models do not cover all relevant details
of the communication infrastructure. In chapter 5 this open issue is addressed. Due to
the simplified models for cross-processor communication, the use of detailed constraints
seems obsolete. For real-life systems though, these constraints are of high importance.

6.3 Approach to Satisfy Constraints

In general, there are several approaches how to satisfy constraints. Roughly, they can be
categorized into 3 classes. This classification is tightly aligned with the question, how the
(unconstrained) optimization problem is solved:

• If the optimization problem is solved by a problem-tailored heuristic, constraints can
only be addressed by directly incorporating them into the heuristic. In the worst
case, the entire heuristic may need to be re-designed, in order to address a constraint.

• If the optimization problem is solved by constraint programming, constraints can
easily be added. Therefore, the constraint must be stated by a set of equations. The
constraint-solver will take care of finding a solution.

82

• If the optimization problem is solved by meta-heuristic search, constraints can be
addressed by adding a cost-term which punishes constraint-violations into the cost-
function. The cost-term is minimized by the search, resulting in a solution where no
constraint is violated.

Requirements

In this work, the system configuration problem is solved by both meta-heuristic search
(based on SA), as well as by heuristics (e.g. frame packing heuristic). Thus design-
constraints also have to be satisfied by different approaches. The goal of this chapter is
to find a methodology for constraint handling which meets a set of requirements:

• efficient – During DSE, the number of constraint violations should be low. In the
best case, no constraint is violated. The best obtained solution should not violate
any constraint.

• scalable – The methodology should have low computational effort. This way, the
methodology can scale up to industrial-sized problem instances.

• extensible – In case that new / additional constraint types need to be taken into
account, it should be possible to extend the methodology, without re-designing large
parts of the overall methodology.

• transparent – The way the methodology works should be (easily) understandable.
This will help to extend the methodology, and to gain acceptance from industry.

Approach

A well known approach to handle large, complex problems is to apply divide & conquer
patterns. This way the overall problem is split into smaller parts, which makes it easier
to handle them. One key challenge is to find adequate dividing-points. Thereby not only
the above mentioned requirements need to be taken into account, also two main aspects
need to be thought of:

• How can a constraint type be satisfied? (e.g. by extending a heuristic)

• What are the pre-conditions that need to be satisfied, so that a constraint can be
satisfied at all? (e.g. a same frame packing-constraint can only be satisfied if the
messages are sent from the same processor, and are routed via the same bus)

In my opinion, an appropriate way is to divide the system configuration problem into the
following sub-problems. This approach tries to consider all above mentioned require-
ments. In addition it considers how each (unconstrained) sub-problem is solved.

• task allocation & message routing – Task allocation and message routing are highly
interwinded. Message routing constraints determines the design space for feasible
task allocations. Thus, these two design steps should be handled concurrently.

83

• frame packing – Some frame packing constraints can only be satisfied, if certain
task allocation and message routing pre-conditions are satisfied. However, since
frame packing is solved by a tailored heuristic (whereas task allocation is solved by
a meta-heuristic) it is advised to treat frame packing as a separated problem.

• scheduling – Scheduling decisions can be taken more or less independently from the
previous design steps. Thus, scheduling can be treated as a separated problem.

Based on the proposed dividing into sub-problems, the subproblem-specific constraints
will be addressed by the following strategies:

• task allocation & message routing – A set of admissible resources (processor for
task, bus for message) is derived. Based on these sets, tasks are allocated only to
admissible processors.

• frame packing – Frame packing is performed in several phases, each addressing a
sub-set of packing constraints.

• scheduling – Since so new constraint types are introduced, state-of-the-art approaches
can still be applied.

Guarantees

In general, only feasible system configurations (i.e. a system configuration where all con-
straints are satisfied) are of interest. In order to reach this goal, a solving methodology
needs to be developed which is capable of satisfying all design constraints. To satisfy a
constraint, two aspects need to be addressed. On the one hand, the methodology needs
to tackle the constraint itself. On the other hand, the methodology can only succeed
if the necessary pre-conditions of each constraint are also satisfied. E.g., in order to be
able to satisfy the same frame packing constraint, both messages must originate from
the same processor and need to be routed via the same bus. Thus, a key factor of the
methodology is to ensure that all necessary pre-conditions are satisfied. Only then can
constraint-satisfaction be guaranteed.

For some of the constraint types from table 6.1 a set of rules can be derived which allow
to resolve the constraint. This means that pre-condition satisfaction is guaranteed. These
resolving rules are applied within a preparation phase before starting DSE. Figuratively
speaking, by applying constraint resolving the constraints are removed from the design
space. Thus, the reduced remaining design space does no longer contain these infeasible
regions. During DSE only the probably feasible regions of the design space are explored.
Thus, DSE can be performed more efficiently.

Unfortunately, not all constraint types can be resolved. Table 6.2 shows, which con-
straint types can be resolved, which constraint types cannot be resolved, and why that is
the case.

During DSE the search framework will explore the design space, by applying modifi-
cation steps. These steps need to be enhanced, so that they incorporate the remaining
constraints, i.e. constraint satisfaction rules are encoded. However, here pre-condition
satisfaction is not guaranteed, thus infeasible system configuration can occur.

84

Type before during Rationale

A-1 x CPU utilization can only be checked after task allocation
A-2 x memory utilization can only be checked after task allocation
A-3 x bus utilization can only be checked after message routing

and frame packing
B-1 x deadline can only be checked after scheduling
B-2 x deadline can only be checked after scheduling
B-3 x deadline can only be checked after scheduling
C-1 x a set of admissible processors is derived
C-2 x a set of admissible processors is derived
C-3 x allocation algorithm does not modify the allocation
D-1 x tasks are grouped (forming a task cluster); task clusters are

handled as “single elements” by task allocation
D-2 x a set of excluded processors is derived dynamically
E-1 x sender- and receiver-tasks are grouped
E-2 x a set of admissible bus-systems is derived
E-3 x a set of admissible bus-systems is derived
E-4 x group sender-tasks; group receiver-tasks
E-5 x message routing results from task allocation
F-1 x only the dedicated frame will be used
F-2 x demand E-4; perform frame packing in multiple phases
F-3 x perform frame packing in multiple phases

Table 6.2: Constraint satisfaction time: “before” or “during” design space exploration

6.4 Extending the Search Framework

In order to incorporate design constraints into system configuration design space explo-
ration and optimization, the following aspects of the search framework need to be adopted:

• model – The system-model needs to be extended, so that constraints can be modeled.

• cost – In order to determine how many constraints are violated, an additional cost-
term needs to be added into the cost-function. The goal is to satisfy all constraints,
thus minimizing the constraint violations cost-term.

• neighbour – Methods which generate a modified system configuration need to be
extended, so that constraints are taken into account. The extended methods utilize
information from the constraint resolving phase.

6.4.1 Cost Function

In order to determine how well a configuration satisfies the constraints, the cost-function
needs to be extended with an additional cost-term. This term punishes constraint viola-
tions, and thus guides the search towards configurations where no constraints are violated.
This cost-term itself is modeled by several terms. Each term handles a certain constraint
type.

85

costconstraint violations =
of elements that violate a constraint

of elements that have a constraint associated
→ min (6.1)

Again, the individual terms are grouped, using a scaled weighted sum. This way, each
constraint type can be punished due to an individual weight, representing its importance
of being satisfied. In addition, more insight can be gained which constraint types are
violated due to which pattern. Figure 6.1 shows the extended cost-function.

cost value

schedulability constaints guidance constraint violations

C-1 C-2 C-3 D-1 D-2 E-1 E-2 E-3 E-4 E-5 F-1 F-2 F-3

Figure 6.1: Extending cost-function with term for constraint violations

Note that some constraint types from table 6.1 are not encoded into the new cost-
term. This is because they are already addressed by other cost-terms. Timing constraints
(class B) are already covered by the term schedulability constraints, resource constraints
(class A) are already covered inside the term guidance.

6.4.2 Task Allocation & Message Routing

The goal is to extend the neighbour function in a way that only feasible allocations are
generated. This means that the following constraint types are satisfied for the generated
allocations:

• task allocation (class C)

• task dependencies (class D)

• message routing (class E)

In order to achieve this goal, a set of rules are applied. These rules are based on problem-
specific domain-knowledge. Thereby, set theory is used to express most of the rules. Beside
the symbols which are already used throughout this work, several additional symbols are
introduced.

The overall goal is to have a set of admissible processors for each task. This set is
calculated in the constraint resolving phase. Then, during the DSE, the task allocation
neighbour moves only choose a processor out of these sets.

E-1: To ensure that communication is performed only processor-internal, both sender-task
and receiver-task have to reside on the same processor. This can be enforced, by
grouping the sender-task and the receiver-task, forming a task cluster. A task cluster
is treated as a single element by the allocation algorithm. This way, sender-task and
receiver-task, which both are part of the task cluster, are always allocated to the
same processor, and thus communication is always performed processor-internal.

86

Symbol Description

ς task cluster
C set of task clusters

adm admissible
ded dedicated
ex excluded

stat static
dyn dynamic
gr grouping
sep separation

E-4: In order to ensure that two messages are routed via the same bus, their sender-tasks
have to reside on the same processor, as well as their receiver-tasks have to reside
on the same processor. These pre-conditions can be enforced by grouping of tasks.
Sender-tasks are put into one task cluster, and receiver-tasks are put into another
task cluster accordingly.

E-2 & E-3: Both constraint types are used to define feasible / infeasible message rout-
ings. By combining both constraint types, a set of admissible bus-systems can be
derived for each message.

Badm =

{
B \ Bex if Bded = {}
Bded \ Bex otherwise

(6.2)

An admissible message routing implies a set of admissible processors X for the
sender- and receiver-task of the message. Only processors connected to the admissi-
ble bus-systems of the message are potential candidates for hosting the sender- and
receiver-task. This can be derived from the topology of the hardware architecture.
However, since a task may send and receive several messages, only the intersected
set is a potentially admissible processor for each task.

X =
⋂
m∈τ
P connected to Badm (6.3)

C-1 & C-2: Both constraint types are used to define feasible / infeasible allocations. By
combining both constraint types, a set of admissible processors can be derived for
each task. Thereby the set of admissible bus-systems (derived from E-2 & E-3) of
the sent and received messages needs to be taken into account as well.

Padm =

{
(P ∩X) \ Pex if Pded = {}
(Pded ∩X) \ Pex otherwise

(6.4)

D-1: In order to ensure that two tasks reside on the same processor, the tasks should be
grouped into a task cluster.

The concept of grouping of tasks can be utilized to resolve several constraint types, and
ensure their satisfaction. If two (or more) tasks are grouped into a task cluster, the

87

following rules apply: The set of admissible processors of a task cluster is the intersected
sets of admissible processors of the clustered tasks.

P(ς)
adm =

⋂
τ∈ς
P(τ)
adm (6.5)

If the tasks have grouping constraints associated, then the task cluster’s grouping con-
straint is the union of those, except itself.

ςgr =
⋃
τ∈ς

τgr \ τi (6.6)

If the tasks have separation constraints associated, then the task cluster’s separation
constraint is the union of those.

ςsep =
⋃
τ∈ς

τsep (6.7)

By performing pre-processing steps, during which all the above described rules are
applied, the task graph is transformed into a task cluster graph. Each task cluster has the
following attributes, which are of main interest for the allocation algorithm:

• a set of admissible processors

• a set of separation constraints

The allocation algorithm will perform allocation modifications to the task cluster graph.
Thereby, a task cluster is allocated only to a processor out of the set of admissible pro-
cessors. In addition, the allocation algorithm tries to consider the remaining constraint
types (e.g. grouping, separation) which could not be resolved before DSE. This can be
achieved by applying a set of rules which are performed dynamically during DSE:

C-3: If an allocation is given and defined as fixed, the allocation algorithm will not modify
this allocation during DSE.

D-2: Separation constraints can only be resolved during DSE. Based on the separation
constraints, a set of excluded processors can be derived dynamically.

Pex.dyn = P of tasks that the current task must be separated from (6.8)

Based on the set of dynamically excluded processors, the set of admissible processors
can be dynamically refined. This can be applied to tasks, as well as to task clusters
accordingly.

Padm.dyn = Padm \ Pex.dyn (6.9)

Based on these rules and considerations, the search-framework is enhanced as follows:
see algorithms 6.1 and 6.2.

88

Algorithm 6.1: Re-allocate task-cluster

Input: set of task-clusters
Input: set of processors

1 begin reAllocateTaskCluster
2 cluster ς = randomly pick a task-cluster;
3 processor ρ = randomly pick a processor, out of task-cluster’s admissible

processors Padm.dyn;
4 allocate cluster ς to processor ρ;
5 /* also consider grouping-constraints */;
6 foreach task-cluster ςgr which has grouping-constraint with cluster ς do
7 allocate task-cluster ςgr to processor ρ;
8 end

9 end
Output: modified allocation

Algorithm 6.2: Swap allocation of task-clusters

Input: set of task-clusters
Input: set of processors

1 begin swapTaskClusterAllocation
2 cluster ς1 = randomly pick a task-cluster;
3 cluster ς2 = randomly pick a task-cluster, which resides on another processor;
4 swap allocation of ς1 and ς2;

5 end
Output: modified allocation

6.4.3 Frame Packing

In order to be capable of satisfying the frame packing constraints, the following pre-
conditions need to be satisfied:

F-1: The dedicated frame is sent by the associated processor, and the message fits into
the dedicated frame’s payload capacity.

F-2: Both messages are sent from the same processor, are routed via the same bus, and
fit into a frame’s payload capacity. Thus, a E-4: same bus constraint is implied.

F-3: No pre-condition is needed.

Message routing related pre-conditions can be satisfied by the methodology which was
presented in the previous section. In order to actually satisfy the frame packing con-
straints, an extended frame packing heuristic is proposed (see algorithm 6.3). Therein,
frame packing is performed within 4 phases. Phase 1 to 3 addresses the different packing
constraint types, while phase 4 handles the unconstrained messages:

• phase 1 – Messages with a dedicated frame constraint are packed into those dedicated
frames (if possible).

89

Algorithm 6.3: Heuristic for frame packing with packing constraints

Input: messages
Input: constraints

1 begin packConstrainedMessagesIntoFrames
2 /* pack messages with packing-constraints */;
3 /* phase 1: F-1: dedicated frame */;
4 dedicated messages = filter(messages, dedicated frame constraint);
5 foreach dedicated message do
6 if dedicated message fits into dedicated frame then
7 pack(dedicated message, dedicated frame);
8 end

9 end
10 /* phase 2: F-3: separated frames */;
11 separated messages = filter(messages, separated frames constraint);
12 foreach separated message do
13 if separated message not packed yet then
14 pack(separated message, new frame);
15 end

16 end
17 /* phase 3: F-2: same frame constraint */;
18 same messages = filter(messages, same frame constraint);
19 foreach same message do
20 if same messages not packed yet and same messages fit into a frame then
21 pack(same messages, new frame);
22 end

23 end
24 /* pack messages without packing-constraints */;
25 /* phase 4: messages without constraints */;
26 remaining messages = filter(messages, (no constraint and not packed yet));
27 packMessagesIntoFrames(remaining messages) /* apply algorithm 5.2 */;

28 end
Output: frames

• phase 2 – Messages with a separated frames constraint are packed into separated
new / empty frames.

• phase 3 – Messages with a same frame constraint are packed together into a new /
empty frame (if possible).

• phase 4 – All remaining messages are packed.

Within phase 2 and 3 the approach packs constrained messages into newly generated
frames, to ensure constraint satisfaction. However, this comes at the cost of an increased
number of frames and thus decreased packing density. If packing density is of high im-
portance, the approach can be extended in a way that all already used frames are also
considered as packing-candidates within phase 2 and 3.

90

6.4.4 Gateway Configuration

In this work it is assumed that a gateway is a processor which is connected to several
bus-systems. Since these bus-systems may have different protocols (e.g. CAN-to-FlexRay
gateway) the incoming frames are unpacked, the contained messages are routed to the
according outgoing bus-interface, and the routed messages are re-packed at the outgoing
bus-interface. Therefore, the major aspect of gateway-configuration is frame packing. As
a consequence, the methodology for constrained frame packing can be directly applied to
gateways as well.

6.5 Experimental Evaluation – Constraint Handling

In order to evaluate the effectiveness and efficiency of the proposed methodology for con-
straint handling, the methodology is applied to several test cases. These test cases are gen-
erated by the tool GenTAP which can generate synthetic pseudo-random TAP instances.
However, since GenTAP does not allow stating the constraint types from table 6.1, a
two-step generation approach is used:

• step 1 – use GenTAP to generate basic TAP instances

• step 2 – extend the basic TAP instance by (pseudo-randomly) adding the additional
constraints to the TAP instance

These extended TAP instances are then fed into the system configuration methodology,
and the framework searches for an optimal system configuration.

6.5.1 Test Cases & Evaluation Metrics

The overall goal of the proposed methodology is to handle constraints efficiently during
DSE. Therefore, the following metrics are used for evaluation:

• number of DSE iterations until the first feasible system configuration is found

• number of constraint violations during DSE

• attributes of best obtained solution at the end of DSE

The generated test cases are solved using different approaches:

• guidance – No constraint resolving is applied. Only the cost-function is extended
by the cost-term constraint violations, which is guiding the search towards feasible
regions of the design space.

• proposed methodology – Constraint resolving is applied. In addition, the constraint-
aware neighbour moves are used.

Hypothesis: By applying constraint resolving and constraint-aware neighbour moves,
the constraints can be handled more efficiently than just using guidance by the cost-
function.

91

Parameter Value/Range Unit

number of bus-systems 1
bus baudrate 125 kbaud/s
number of processors 10
processor utilization 60 %
number of tasks 100
number of messages 300
number of transactions 7
period 10 to 1000 ms

Table 6.3: Test case parameters for constraint handling evaluation

Table 6.3 shows the parameters for the evaluation. This basic model is extended by
adding the specific constraint types, according to table 6.4. Note that the constraint type
of class E (i.e. message routing) can only be of interest if there exist several routes between
a pair of processors. That is true in case of redundant networks. In automotive systems,
there is currently little (or no) redundancy for bus-systems. Therefore, this constraint
type class is of lower interest in this evaluation.

Constraint Type Apply to

C-1: dedicated processors 10% of tasks
C-2: excluded processors 50% of tasks
D-1: grouping 10% of tasks
D-2: separation 50% of tasks
E-1: processor-internal communication 10% of messages
F-2: same frame 10% of messages
F-3: separated frames 50% of messages

Table 6.4: Constraints added to basic model

6.5.2 Results

To get a better insight of how the constraints affect the search performance, each con-
straint type is evaluated separately. To verify the hypothesis the number of constraint
violations (of the best obtained configuration so far) are plotted and analysed. The y-axis
represents the constraint-violations cost-term (which is scaled between 0 and 1) and the
x-axis represents the search-iterations of the DSE. After 30 000 iterations the DSE is
stopped.

Dedicated Processors

By applying constraint resolving and using constraint-aware allocation moves, it is ex-
pected to see no constraint violations. Each generated configuration should be feasible.
In contrast, by just using guidance via the cost-function, it is expected to see several

92

constraint violations at the beginning of the DSE, and then the number of constraint
violations gradually being reduced.

Figure 6.2: Constraint violations – dedicated processors

Figure 6.2 shows the according plot of constraint violations. It confirms the validity of
the hypothesis. By applying constraint resolving and constraint-aware neighbour moves,
no constraint violations occur, i.e. every generated configuration is feasible.

When only using the guidance from the cost-term, a significant number of constraints
are violated (i.e. these are infeasible configurations). Also, the SA does not manage to
find a feasible configuration within the max. number of iterations.

Excluded Processors

Similar results as for dedicated processors can be observed, and again confirm the hypothe-
sis. By applying constraint resolving and constraint-aware neighbour moves, no constraint
violations occur. By just using the guidance of the cost-term, several constraint violations
occur.

Figure 6.3: Constraint violations – excluded processors

As figure 6.3 shows, the guidance approach manages to satisfy all constraints after
12 179 iterations. However, constraints are violated again later in the DSE. This indicates
that cost-term weights could be improved.

93

In addition it can be seen that satisfying excluded processors constraints is easier than
satisfying dedicated processors constraints. That is not surprising since dedicated processors
constraints are more restrictive.

Task Grouping

Figure 6.4 shows the evaluation for task grouping constraints. Again, it confirms the
validity of the hypothesis. By constraint resolving and constraint-aware neighbour move,
no constraints are violated. By just using cost-term guidance, a significant number of
constraints are violated, and no feasible configuration was found.

Figure 6.4: Constraint violations – task grouping

Task Separation

Figure 6.5 shows the evaluation for task separation constraints. For this constraint type,
both approaches fail to find a feasible configuration. This reflects the fact that this con-
straint type cannot be resolve before the DSE.

Figure 6.5: Constraint violations – task separation

However, the proposed methodology manages to reduce the number of constraint vio-
lations twice as much as the guidance approach. By using higher weights for the cost-term,
this could even be further improved.

94

Processor-internal Communication

Figure 6.6 shows the evaluation for processor-internal communication constraints. Again,
the hypothesis is confirmed. Constraint resolving and constraint-aware neighbour moves
significantly improve the search.

Figure 6.6: Constraint violations – processor-internal communication

Note that some constraints are violated during the first third of the DSE. This is be-
cause not all sender- and receiver-tasks were clustered, in order to address issues concern-
ing processor utilization overload. However, after about 10 000 iterations, all constraints
are satisfied. In contrast, by just using cost-term guidance, no feasible configuration was
found. The reason why the number of violations is reduced quite fast is that minimizing
the cross-processor communication is also used as an optimization objective.

Separated Frames

Figure 6.7 shows the evaluation for separated frames constraints. It confirms the hypothe-
sis, and shows the effectiveness and efficiency of constraint-aware frame packing heuristics:
No constraints are violated. In contrast, by just using cost-term guidance some constraints
are violated.

Figure 6.7: Constraint violations – separated frames

95

6.6 Concluding Remarks

Experimental evaluation shows that the proposed methodology is effective and efficient
in satisfying heterogeneous constraints. However, some researchers from the real-time
systems community have raised a reasonable question concerning the proposed approach:

“Checking constraints like D-1 or E-1 has a very low CPU cost in order to re-
ject a configuration before performing the scheduling parameter assignment and
schedulability-test. Perhaps millions of infeasible configurations can be checked
in a few seconds. Thus, why not simple reject infeasible configurations?”

– Reviewer #3 of [59]

It sounds reasonable to simply reject infeasible configurations, and only perform schedu-
lability tests for feasible configurations. This way DSE would be faster, since fewer (time-
consuming) schedulability-tests would be performed. However, it would not tackle the
issue that the cost-term guiding approach is not effective. It would still generate a lot of
infeasible configurations.

To put it simply: If I know that certain regions of the design space are infeasible,
it does not make sense to explore these regions, just to find out that they are indeed
infeasible. Instead, these regions should be ignored by the search – which is what the
proposed methodology does.

6.7 Additional Applicability of Methodology

The presented methodology allows to tackle a wide range of heterogeneous constraint
types. Constraints may stem from different sources, e.g. safety considerations. The
methodology is targeted towards automated DSE. However, the methodology can also be
used to tackle a different engineering approach: engineer-algorithm-collaboration

The key idea of this approach is: The engineer takes the most important design deci-
sions manually (e.g. allocating 10% of the tasks to processors). Then an algorithm / tool
shall take the remaining design decisions in an automated manner. Thereby, the decisions
which have been taken by the engineer are treated as constraints by the algorithm. Thus
the engineer’s decisions are not modified by the algorithm. This way, the engineer stays
in control of the DSE, while still allowing exploring a wide design space within reasonable
time.

96

Chapter 7

Evolving System Configurations

In chapter 5 the system configuration problem is solved in a realistic manner by incor-
porating a realistic communication-model, and by tackling frame packing. The solving
algorithms are allowed to take any design decision, and optimization is targeted at pre-
vailing objectives (e.g. finding a system configuration which uses minimal bus utilization).

Chapter 6 introduces a set of heterogeneous constraints, and presents a methodology
how these constraints can be handled in an efficient way. These constraints can be utilized
to address different scenarios:

• design constraints – Based on precedent engineering steps (e.g. hazard and risk
analysis) adequate strategies are developed (e.g. usage of redundancy) and resulting
constraints are derived (e.g. redundant tasks must not be allocated to the same
processor).

• user constraints – The engineer takes the most important design decisions (e.g.
allocating 10% of the tasks to processors), and then the solving algorithms shall
take the remaining decisions. However, the decisions taken by the engineer must not
be modified, thus they have to be treated as constraints by the solving algorithms.

• legacy constraints – Some components of the system may be re-used from a previous
system-version. This re-use imposes certain constraints (e.g. 1 processor including
all its tasks is re-used. Thus this allocation must not change, nor shall the bus-
interface of the processor change).

Especially the last of the scenarios is of main interest in the automotive domain. Therefore,
some insight into the product development process of the automotive domain is desirable.

7.1 Automotive Product Development Process

The development of automotive electronic systems is performed by collaborative engineer-
ing between the OEM and its Tiers. Each party has dedicated responsibilities [13]:

• The OEM is responsible for system specification and system integration. This in-
volves decisions for task allocation and (more importantly) bus configuration (i.e.
frame packing and frame scheduling) of the main bus-systems. One of the driving
objectives for the OEM is the re-use of systems between vehicles.

97

• The Tier is responsible for electronic control unit (ECU) integration. This involves
software component development and task scheduling. The bus-schedule which is
provided by the OEM acts as an integration-interface for the ECU. In addition, the
Tier configures local bus-systems (e.g. LIN for smart sensors and actuators).

To foster the re-use of systems, the OEM follows a platform-based approach: The OEM de-
signs a communication-platform (consisting of several interconnected bus-systems) which
shall be used for several vehicles within the coming years. Therefore, the bus configuration
must be extensible towards future communication demand. During the following years,
this communication-platform is used in several vehicles.

If vehicle-specific features are added, the initial bus configuration may need to be ex-
tended (e.g. an additional ECU is added which causes additional frames). Such changes
must be done in a way that the extended bus configuration stays backward-compatible
to the initial communication-platform specification, i.e. the initial bus configuration
must not be broken. After using the communication-platform for several years, a new
communication-platform is designed, and is the basis for future vehicle-projects.

Scenarios for Future Changes

Clearly, it is impossible to exactly predict which changes will occur in the future. However,
reasonable estimations can be derived by analyzing which kind of changes have occurred
in previous vehicle-projects. Based on discussions with OEMs (Audi, BMW) and Tiers
(AVL, Delphi), a set of likely change-scenarios are derived.

Change Impact on

T-1 add new task processor schedule
T-2 extend existing task’s functionality task’s WCET
T-3 modify (decrease) period / deadline of task processor schedule
P-1 add new processor bus schedule (if processor

sends frames)
M-1 add new message frame packing, bus schedule
M-2 modify (increase) data size of existing message frame packing, bus schedule
M-3 modify (decrease) period / deadline of message frame packing, bus schedule
M-4 modify (add) receiver-processor of message -
F-1 add new frame bus schedule
F-2 modify (decrease) period / deadline of frame bus schedule
F-3 modify (add) receiver-processor of frame -

Table 7.1: Scenarios for future changes

The different change-scenarios from table 7.1 can be grouped into two classes, based
on their impact: (1) changes which impact processor configuration are of main interest
for Tiers, and (2) changes which impact the bus configuration are of high interest for the
OEM.

98

7.2 Scope & Outline

This chapter focuses mainly on the interest of the OEM and thus focuses on bus configu-
ration. It addresses two aspects of the automotive design approach:

1. When designing the communication-platform, not all future requirements are known
in detail. Thus, the objective is to design a bus configuration which is (a) extensi-
ble towards future communication requirements, and (b) robust against parameter-
uncertainties. A methodology which can build a bus configuration which satisfies
these objectives is presented in section 7.3.

2. When using the communication-platform for a vehicle-project, it may need to be
adapted towards vehicle-specific features. If additional communication needs to be
performed via the bus, the bus configuration needs to be extended. In section 7.4 a
methodology is presented, how a bus-schedule can be extended in a way that it is
(a) backward-compatible to the previous version, and (b) is itself extensible towards
future modifications.

By utilizing both methodologies the OEM can tackle main engineering tasks within the
bus configuration’s life cycle.

7.3 Extensible Bus Configuration

When designing a platform, the main goal of the OEM is that the platform can be used for
several different vehicles in the coming years. For the aspect of task allocation this can be
addressed by applying load balancing. By evenly balancing the utilization of processors,
it becomes easier to add additional task later on. Load balancing can be achieved by
applying the methodologies which have been presented in chapter 4.

Even more important is the aspect of bus configuration. Why? Simply speaking,
every message / frame which is sent via a bus-system acts like a global variable between
processors. Any change which is applied to the bus configuration later on may impact on
all processors which are connected to that bus-system. Since changes are associated with
re-negotiations with Tiers, re-design of bus-interfaces, and re-verification of the system, it
is in the key interest of the OEM to design an extensible bus configuration for the platform.
The associated challenges can be best explained by looking at some small examples.

Example – Frame Packing

Assume a processor that outputs 3 messages which need to be packed into frames before
being transmitted via the bus. Assume a max. payload of 8 byte, and 64 bit frame
overhead (as applies to CAN and LIN).

• m1: 8 bit, 50 ms

• m2: 16 bit, 100 ms

• m3: 32 bit, 150 ms

99

When packing these messages into frames, different objectives can be addressed. Typ-
ically, minimizing bandwidth demand is the objective. However, considering extensibility
may be evenly important.

A: min. bandwidth B: extensibility

f1: 8+16+32 bit, 50 ms 2400 b/s f1: 8 bit, 50 ms 1440 b/s
f2: 16+32 bit, 100 ms 1120 b/s

2400 b/s 2560 b/s

At first it seems obvious that bandwidth-minimizing frame packing is the better ap-
proach. However, by taking a look at what happens if a change occurs in the future,
then this answer changes. Assume an additional message needs to be transmitted. The
additional messages must be packed in a way that the initial packing stays intact.

• m4: 16 bit, 100 ms

extending A extending B

f1: 8+16+32 bit, 50 ms 2400 b/s f1: 8 bit, 50 ms 1440 b/s
f2: 16 bit, 100 ms 800 b/s f2: 16+32+16 bit, 100 ms 1280 b/s

3200 b/s 2720 b/s

Due to the dense packing which is needed to achieve bandwidth minimization, addi-
tional messages do not fit into the existing frame. Thus, a new frame needs to be created
which causes additional overhead. However, if extensibility has been taken into considera-
tion earlier, existing frames provide free space left, and additional messages can be added
without needing to create new frames. Thus, no additional overhead is induced.

Conclusion: Extensibility-aware frame packing is a key factor for platform-based
design. Although it causes higher bandwidth demand at first, this pays off later on when
additional messages are added into existing frames. Thus, a trade-off between bandwidth-
efficiency and extensibility is the key to success.

Example – Frame Scheduling

Assume 3 frames which need to be scheduled on a CAN bus, which uses a priority-based
arbitration schema. The CAN bus is operated at 125 kbaud/s, thus each frame’s trans-
mission time is 1 ms.

• f1: T=10ms, D=4ms

• f2: T=10ms, D=7ms

• f3: T=10ms, D=9ms

It is known that for a set of independent frames DMPO is the optimal scheduling
approach [4]. Thus, f1 would get higher priority than f2 and f3. However, this only

100

determines the priority ordering, but it does not state anything about absolute priority-
levels. In the literature, the priority ordering is mapped 1:1 to priority-levels. However,
different transformations may be more beneficial in terms of extensibility.

A: dense priority-levels B: extensibility

f1: priority = 0 (highest) R = 2 ms f1: priority = 0 (highest) R = 2 ms
f2: priority = 1 R = 3 ms f2: priority = 5 R = 3 ms
f3: priority = 2 R = 4 ms f3: priority = 10 R = 4 ms

At first it seems irrelevant which absolute priority-levels are assigned to the frames.
In both cases the deadlines are met. However, the impact of the choice becomes clear if
an additional frame must be scheduled.

• f4: T=10ms, D=6ms

extending A extending B

f1: priority = 0 (highest) R = 2 ms f1: priority = 0 (highest) R = 2 ms
f4: priority = 1 R = 3 ms f4: priority = 3 R = 3 ms
f2: priority = 2 R = 4 ms f2: priority = 5 R = 4 ms
f3: priority = 3 R = 5 ms f3: priority = 10 R = 5 ms

According to DMPO the new frame f4 needs to get a priority between f1 and f2. If
there is no empty priority-level left between f1 and f2 (see case A) then the priority-
levels must be re-assigned. This may cause a significant number of changes which need
to be propagated to all effected processors. In contrast, if the priority-levels are initially
assigned in a way that there are empty priority-levels left in between them (see case B)
then additional frames can be added without causing any priority-level re-assignments.

Conclusion: Extensibility-aware priority assignment is a key for platform-based de-
sign. By leaving empty priority-levels in between frames, additional frames can be added
to the schedule later on, without needing to re-assign priorities to all frames.

7.3.1 Problem Statement & Definition

The goal of this investigation is to find a methodology for building a bus configuration
which addresses the delicate trade-off between resource efficiency and extensibility. Effi-
cient resource usage is needed to satisfy the current communication specification at reason-
able hardware-costs, whereas extensibility is needed to tackle future changes (see table 7.1).
Within this context, extensibility is defined as follows:

“Extensibility is the ability of a distributed real-time system to incorporate ad-
ditional elements (i.e. messages and frames) later on, while maintaining the
initial schedule. For time-triggered bus-systems this implies that the initial
time-slot assignment must not be modified. For priority-based bus-systems it
implies that the initial priorities must not be modified. In addition it implies
that the initial frame packing is not modified.”

101

– Pölzlbauer et al. [61]

The methodology shall build a bus configuration which minimizes the bandwidth de-
mand [60] and maximizes the extensibility [61]. It should also maximize robustness against
parameter-uncertainties to account for uncertainties concerning future changes. As exten-
sibility causes some additional bandwidth demand, this is a conflicting multi-objective
optimization problem.

7.3.2 Literature Review Refinement – Extensibility and Robustness

The research on robustness of real-time systems mainly focuses on the sensitivity of a
system to uncertainties, changes and failures. The seminal work in this area is that of
Punnekkat [70]. Punnekkat looked at by how much can individual tasks have their WCET
increased before the system is no longer schedulable and which task is the most sensitive,
i.e. which task’s deadline is exceeded. He also looked at the number of re-executions, due
to failures, that could be performed before the system was no longer schedulable.

Building on top of Punnekkat’s approach, researchers used it as part of designing
systems. In [7] sensitivity was used as an objective in a search algorithm such that robust
task allocations are obtained. Later work [86] extended this work to look at how it could
be done more efficiently using MILP. In [29] a measure of robustness is used that identifies
the degree of error in key parameters which can be accommodated when performing task
allocation. One parameter was by how much WCETs could be increased.

The research on extensibility of real-time systems tackles the issue of adding extra
functionality to systems (i.e. adding tasks as well as increasing the WCET of existing
tasks). Emberson [8, 27] used a SA algorithm to design task allocations that were robust
to change. Emberson’s approach to develop a task allocation not only satisfied the baseline,
or original, design problem but also satisfied as many potential change scenarios without
any unnecessary changes. If an unnecessary change was needed then it was minimized. A
necessary change would include adding a new task priority if a new task was introduced.

Researchers have adopted these approaches (which have originally been developed for
task scheduling) to scheduling of communication networks. In [84] a time-triggered system
is made robust to new frames (and tasks), and increases in the existing frame’s worst-case
transmission time (WCTT) (as well as task’s WCET). This work is probably the closest
to the problem at hand. However, it does not address frame packing, which introduces
additional challenges.

Research on frame packing focus on minimizing bandwidth demand [74], maximizing
schedulability [73], or maximizing reliability [78]. No work could be found in the literature
which addresses frame packing in the context of extensibility.

Open Issues

By addressing both frame packing and frame scheduling in the context of extensibility and
robustness, a set of additional questions and challenges arise:

• Shall extensibility be incorporated into frame packing, frame scheduling, or both?

• What are suitable metrics to determine extensibility at the frame-level?

102

• Can frame packing handle timing-uncertainties?

• How to balance the conflicting objectives of extensibility, robustness and resource-
efficiency?

7.3.3 Strategy & Metric

Ideally, future modifications as outlined in table 7.1 will cause no changes for the bus
configuration. Modifying the data size of existing messages and/or adding new messages
will not result in the need to add additional frames. Modifying the timing-attributes of
messages (and frames) will neither cause deadline violations nor the need to re-build the
schedule. Adding additional frames will not break the schedule.

Clearly, additional elements (i.e. messages and frames) can only be added to the bus
configuration in a low impact manner if the bus configuration provides free resources. Thus,
the strategy is to plan these free resources, when designing the initial bus configuration.

• frame level – At the frame level growth margins must be planned. This means
that frames are not fully packed with messages. Instead, a defined fraction of the
frames capacity is reserved for future demands. This reserve accounts for (a) adding
additional messages, and (b) increasing messages data size.

• schedule level – At the schedule level growth margins must be planned as well. For
priority-based bus-systems this means that not all priority-levels are used. For time-
triggered bus-systems this means that a set of non-used time-slots are added to the
schedule, in order to reserve resources for future demands. This reserve accounts for
adding additional frames.

• robustness – In order to account for modifications of timing-attributes (such as period
or deadline) the schedule should be built in a way that it is robust against timing-
uncertainties. This can be achieved by minimizing sensitivity.

In order to determine the degree of extensibility of a bus configuration (and thus measure
how close the configuration is towards the ideal situation) a set of metrics are needed.

• frame growth potential – The ability of adding additional messages or increasing the
data size of messages can be used to determine the extensibility at the frame level.
This metric measures this ability by analyzing the free payload capacity of a frame.

gpf =
payf free

payf max
(7.1)

Since this gives a growth potential for each frame, an overall value is desirable. A
reasonable estimation can be derived if the average growth potential is calculated.

gpF = avg {gpf} ∀f∈F (7.2)

If the minimum would be used, the entire configuration would be judged by a single
frame only. This would be an overly pessimistic estimation. Similarly, the maximum
would be overly optimistic, for the same reason.

103

• schedule growth potential – The ability to add additional frames into a schedule
has to be measured protocol-specific. For TDMA-based protocols, the number of
non-assigned time slots can be used.

gpTDMA =
‖slotsfree‖
‖slots‖

(7.3)

FlexRay-specific metrics which are tailored to its dynamic segment can be found
in [76]. For priority-based protocols (such as CAN) the first intuition might be to
use the number of free priority-levels as a metric. However, having free priority-levels
left does not guarantee a feasible schedule. Thus the number of additional frames
which can be added before the system becomes un-schedulable should be used as a
metric.

gpCAN =
‖Fadded‖
‖F‖

(7.4)

Thereby, the frames’ attributes (period, deadline, payload, priority) should be set
randomly, but within specified ranges (such as: low, medium, high) derived from
previous change-scenarios.

• robustness of schedule against timing-uncertainties – Robustness analysis can be
applied in order to ensure that schedulability is still guaranteed even if parameter-
uncertainties exist. Uncertain transmission time is linked to the frame’s payload, and
thus can be tackled by the frame growth potential (see above). Thus, the focus here is
on uncertainties for periods and deadlines. In order to determine the configuration’s
robustness, T and D of messages (and consequently also of frames) are decreased
until the system becomes un-schedulable. This accounts for higher sampling rates
and tighter deadlines. The more these parameter-values can be decreased the higher
is the robustness.

rob =
∆Df

Df
∀f∈F (7.5)

The individual conflicting objectives are combined into an objective-function (or
cost-function), using a normalized weighted sum. The importance of each objective is set
by its weight and can be balanced according to the OEM’s desire.

• o1 – bandwidth consumption of the frame-set, according to equation (5.19)

• o2 – frame growth potential, according to equation (7.2)

• o3 – schedule growth potential, according to equation (7.3) and (7.4)

• o4 – robustness of schedule against timing-uncertainties, according to equation (7.5)

A proposal for the weights of the objectives (see table 7.2) were derived in accordance
to discussions with industrial partners, and additional considerations. Minimizing band-
width consumption and maximizing frame growth potential are equally balanced. This
represents the trade-off between resource efficiency and extensibility. Maximizing sched-
ule growth potential gets slightly less importance. This accounts for the following: Higher
frame growth potential enables to add additional messages without the need to generate

104

additional frames for them, thus there is no impact on frame scheduling. Only if the exist-
ing frames can no longer incorporate additional messages, new frames must be generated.
Maximizing robustness gets even less importance, since it is estimated that changes in
period and/or deadlines are rare.

Objective Weight

min. bandwidth consumption 10
max. frame growth potential 10
max. schedule growth potential 8
max. robustness against timing-uncertainties 5

Table 7.2: Proposed balancing of objectives when building extensible bus configurations

7.3.4 Solving Methodology

The proposed methodology for solving the problem at hand is outlined in figure 7.11.
Starting from a given task allocation, the methodology for bus configuration consists
of two phases. First, a preliminary bus configuration is generated. Second, this bus
configuration is refined and optimized according to the stated objectives. The preliminary
bus configuration is generated by applying established bus configuration heuristics:

• bandwidth minimizing frame packing (as described in section 5.5)

• frame priority assignment according to DMPO

This preliminary bus configuration is fed into an optimization framework which is
based on SA. The framework takes a bus configuration and modifies it. The modified
bus configuration is evaluated, if the modification improves the bus configuration. This is
repeated until the search converges towards an optimum. Evaluation is performed by ap-
plying the multi-objective objective-function, which was presented earlier. A modification
between two bus configurations is generated by one of the following neighbour moves:

• move a message into another frame - Randomly choose a message, and then move
it into another frame that originates from the same processor. If the original frame
becomes empty by moving the message, the frame can be removed.

• move a message into a new/empty frame - Randomly choose a message, and then
move it into a new/empty frame with the same source-processor. The new frame
is given a priority-level close to the priority of the original frame. Either one level
above or one level below.

• swap two messages between two frames - Randomly choose a message. Randomly
choose another message that originates from the same processor. Then, swap the
packing of the two messages.

1Note that the methodology is discussed as applied to a priority-based bus-system, like CAN. If it is
applied to a TDMA-based bus-system, then the scheduling-related aspect has to be adapted accordingly:
Instead of modifying the priority assignment of a frame, the time-slot assignment is modified.

105

Signal Specification

& Requirements

Signal & Frame

Constraints

initial Frame

Packing

initial Frame

Priority Ordering

Heuristics

Search &

Optimization

optimize Frame

Packing &

Priority Ordering

Frame ID

Assignment

extensible Network

Configuration

Figure 7.1: Methodology for building an extensible bus configuration

• swap the priority of two frames - Randomly choose two frames. Then swap the
priorities of the two frames.

These neighbour moves are applied according to the probabilities listed in table 7.3. All
neighbour moves which change the packing configuration are followed by an update-step
where timing attributes (period, deadline, jitter) of the affected frames are refreshed.

Neighbour Move Probability

move message into another frame 0.60
move message into new/empty frame 0.16
swap two messages between two frames 0.14
swap priority of two frames 0.10

Table 7.3: Proposed probability of neighbour moves for building extensible bus configura-
tions

After the search has converged towards an optimum, the best obtained bus config-
uration is returned by the optimization framework. In a final step, the frames priority
ordering is mapped to actual frame priority-levels (in case of CAN these are determined

106

by the frame ID). In order to maximize the schedules extensibility, the priority ordering is
evenly spread out across the available priority-levels (i.e. the ID range) while maintaining
the ordering. E.g.: 64 ordered frames are evenly spread out across 2048 IDs, thus IDs are
set in steps of 32, leaving 31 free IDs in between the frames for future usage.

7.3.5 Experimental Evaluation – Extensible Bus Configuration

In order to evaluate the proposed methodology, it is applied to an industrial case study:
an automotive in-vehicle network. Based on the communication specification, a bus con-
figuration is built. The results are analyzed and compared to state-of-the-art solving
approaches.

Case Study: Vehicle CAN

The communication specification is taken from a compact executive class (D-segment) car.
The vehicle CAN operates at 500 kb/s and uses CAN version 2a (which uses 11 bit frame
IDs). 25 processors are connected to the CAN. Some of these processors represent smart
sensors/actuators. The processors exchange 251 messages (which engineers would pack
into 46 frames).

The communication specification can be described by the following statistics: Data size
of messages is between 1 and 32 bits. 20% are boolean. 35% represent physical variables,
encoded into 8, 12, 16, 24 or 32 bits. This is typical for embedded systems, where data
encoding is in alignment with the accuracy of sensors and IOs. 55% are state/status
variables, encoded into 2 to 7 bits. Figure 7.2 shows the histogram.

Signals: Size

signal size [bit]

P
ro

ba
bi

lit
y

0 5 10 15 20 25 30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Figure 7.2: Data size of messages for case study

107

Messages are generated at rates between 10 and 400 ms. Table 7.4 shows that periods
are not evenly distributed across this range, but only a set of dedicated periods are used.
Messages’ deadlines are equal to their periods.

Period Probability

10 ms 0.17
20 ms 0.27

100 ms 0.22
200 ms 0.17
400 ms 0.17

Table 7.4: Period of messages for case study

Results of Optimization Methodology

As outlined earlier, an initial bus configuration is built by applying heuristics. This ini-
tial configuration is then refined by applying the optimization strategies. While the ini-
tial configuration is generated within seconds, the optimization takes about 2.0 to 3.3
hours. During the optimization, about 30 000 configurations have been evaluated. About
95% of the time is consumed by the schedulability-tests [21]. A significant number of
schedulability-test runs are needed for determining the schedule growth potential of a bus
configuration.

By comparing the initial configuration (which is tailored towards min. bandwidth
consumption only) to the optimized configuration, it can be determined by how much the
bus configuration can be improved. Table 7.5 summarizes the results.

Metric Difference

min. bandwidth consumption 1.0% deteriation
max. frame growth potential 3.3% improvement
max. schedule growth potential 44.4% improvement
max. robustness against timing-uncertainties 0.7% deteriation

Table 7.5: Improvements achieved by optimization

As expected, the refinement towards extensibility comes at a certain cost in resource
efficiency. The bandwidth consumption increases by 1%. At the same time, robustness
against timing-uncertainties decreases by 0.7%. Balancing this, both frame and schedule
growth potential increase. According to the weights, it was expected to achieve a bigger
increase for frames than for the schedule. However, schedule growth potential increases sig-
nificantly. This means that the schedule can incorporate a significant number of additional
frames, but only few additional messages inside the existing frames.

One reason for the unexpected low increase of the frame growth potential may be
rooted in the ratio between frame overhead and max. frame payload. For CAN both
are 64 bit. Thus, not filling up frames causes a poor payload-to-data ratio, which again
increases bandwidth demand.

108

Metric init. opt. Difference

bandwidth consumption [%] 60.17 61.17 1.0% deter.
frame growth potential 0.703 0.679 3.3% impr.
schedule growth potential 0.552 0.307 44.4% impr.
robustness against timing-uncertainties 0.549 0.553 0.7% impr.

Table 7.6: Initial vs. optimized network configuration

Table 7.6 provides deeper insight into the results. It compares the bus configuration
before and after optimization, broken down to the individual metrics. Note that all metrics
are normalized between 0 and 1, whereas 0 represents the best and 1 represents the worst.
For bandwidth consumption results are scaled to percent of the bus baudrate.

To provide a deeper insight in how frame growth potential is improved, the frames’
payload can be analyzed. Figure 7.3 shows the frame payload histograms: according to
the bandwidth-minimizing heuristic, and after refinement by the optimization strategies.

Frames: Payload

payload [byte]

P
ro

ba
bi

lit
y

1 2 3 4 5 6 7

0.
00

0.
05

0.
10

0.
15

(a) bandwidth-minimizing packing by
heuristic

Frames: Payload

payload [byte]

P
ro

ba
bi

lit
y

2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

(b) optimized packing by search framework

Figure 7.3: Refinement of packing – impact on frame payload

In the initial configuration frames are quite evenly filled. However, only few frames
use 1 byte, and none used 8 bytes. After the optimization the frames fill-level have
significantly changed. More frames only use a few bytes (1 to 3). The probability of using
more bytes (4 to 7) decreases. This way, there is more free space left inside the frames.
Consequently, these frames can incorporate additional messages in the future, thus they
are more extensible. Interestingly – since unexpected – some frames even use 8 bytes.

Impact of Initial Packing Heuristic

It is well known that the performance of SA is dependent on the starting position. This
is why different heuristics for building the initial network configuration are investigated,
and how the initial configuration impacts on the best obtained solution found by SA.

109

Knowing that DMPO is already the optimal solution for scheduling independent frames,
the focus is on variations for frame packing only.

Bandwidth-minimizing Packing [74]

By applying bandwidth-minimizing frame packing according to [74] similar results than
the ones discussed above can be achieved.

Metric init. opt. Difference

bandwidth consumption [%] 66.25 67.21 0.95% deter.
frame growth potential 0.953 0.750 21.3% impr.
schedule growth potential 0.618 0.425 31.3% impr.
robustness against timing-uncertainties 0.627 0.643 2.5% deter.

Table 7.7: Initial vs. optimized network configuration

Table 7.7 shows the comparison between the initial and optimized bus configuration.
Again, slight deterioration in bandwidth efficiency and robustness are traded against sig-
nificant improvements in extensibility. However, if comparing the absolute numbers to the
previous results, it can be see that [60] outperforms [74].

Figure 7.4 shows the frame payload histograms. It reveals that in the initial packing
65% of the frames are densely packed (using 6 to 8 bytes), leaving only few free space for
future growth. After the optimization, this is shifted towards less dense packing, and thus
increased growth potential.

Frames: Payload

payload [byte]

P
ro

ba
bi

lit
y

2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

(a) bandwidth-minimizing packing by
heuristic

Frames: Payload

payload [byte]

P
ro

ba
bi

lit
y

2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

(b) optimized packing by search framework

Figure 7.4: Refinement of packing – impact on frame payload

Simple Packing

Simple frame packing is a widely used approach in the literature. It refers to putting each
message into a separate frame. Clearly, this way the frame growth potential is maximized.

110

However, this approach features a set of problems: The network is highly utilized (in our
case it is even overloaded) and a high number of deadlines are missed.

Metric init. opt. Difference

bandwidth consumption [%] 154.63 60.61 94% impr.
deadlines missed [%] 73.6 3.9 69.7% impr.
frame growth potential 0.141 0.648 361% deter.
schedule growth potential - - -
robustness against timing-uncertainties - - -

Table 7.8: Initial vs. optimized network configuration

Table 7.8 shows the comparison between the initial and the optimized bus configura-
tion. Although SA manages to improve bandwidth consumption, the final bus configura-
tion still misses some deadlines, and thus is infeasible. Since the system is not schedulable,
schedule growth potential and robustness cannot be evaluated. Instead, the worst value
(i.e. 1) is assumed.

Figure 7.5 shows the frame payload histograms. Simple packing results in 80% of
the frames using only 1 byte. After the optimization, this number drops to 40%. The
remaining frames use 2 to 7 bytes.

Frames: Payload

payload [byte]

P
ro

ba
bi

lit
y

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

(a) simple packing by heuristic

Frames: Payload

payload [byte]

P
ro

ba
bi

lit
y

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

(b) optimized packing by search framework

Figure 7.5: Refinement of packing – impact on frame payload

7.3.6 Concluding Remarks

Building a bus configuration which can be utilized for several vehicles (as part of a
platform-based design approach) is a challenging engineering task, where conflicting ob-
jectives have to be addressed. A two-phased methodology for solving this engineering task
was presented in this chapter: An initial bus configuration is build by applying heuristics.
This configuration is then refined by applying optimization strategies (based on SA).

Experimental evaluation on an automotive case study reveals the following lessons
learned: Bandwidth-minimizing frame packing according to [60] combined with DMPO

111

is the best performing heuristic for building the initial bus configuration for a priority-
based bus-system. This configuration represents a reasonably good starting point for
the subsequent optimization-phase. Simple frame packing is a poor choice. It produces
infeasible configurations, which even the optimization-phase cannot fix.

7.4 Extending Bus Configuration under Backward Compat-
ibility Constraints

The previous section 7.3 presented a methodology for building an extensible and robust
bus configuration. This engineering task is a key step in a platform-based design approach
where the platform will be used by several vehicle-projects.

Now, the second aspect of the platform-based design approach is addressed: Finding
a methodology for extending / upgrading the bus configuration in order to meet the ad-
ditional requirements of a specific vehicle-project. Thereby the specific bus configuration
must stay backward-compatible to the platform bus configuration.

The need to stay backward-compatible to the platform bus configuration (as much
as possible) is rooted in the development process between the OEM and its Tiers. For
any change-request both parties need to perform an impact analysis, re-negotiation of
the network interface, and re-verification of the system’s behaviour. Thus, changes are
associated with significant time and cost issues, and shall therefore be avoided. In [30]
the development process for maintaining and extending / upgrading a bus configuration
is presented, as it is performed at BMW.

7.4.1 Scenarios & Definitions

Based on the scenarios from table 7.1 a sub-set of scenarios are derived which have a
direct impact on bus configuration. In alignment with discussion with industrial partners,
table 7.9 shows how these change-scenarios can be addressed. The two main changes
are to add new messages (M-1) and to add new frames (F-1). Thus these scenarios are
the key focus of the proposed methodology.

The following definitions apply when extending / upgrading a bus configuration:

• A frame packing Pn is backward-compatible to a frame packing P o if no message
from Pn is packed into a different frame than it was packed in P o. Thus, existing
messages’ packing must not be modified. Messages which are newly added can either
be packed into new frames or also into existing frames (as long as this does not lead
to problems concerning the backward-compatibility at the schedule-level).

• A frame schedule Sn is backward-compatible to a frame schedule So if no frame from
Sn is assigned a different resource than it was assigned in So. Thus, existing frames
must not be modified, and frames which are newly added can only be assigned to
resources which were not used in So. For a time-triggered schedule the resource is a
time-slot, for a priority-based schedule the resource is a priority-level.

• A frame packing P is extensible if additional messages can be added to the frame, or
if its packed-in messages’ data size can be increased in the future. Extensibility at the
frame-level can be measured by the free payload capacity, according to equation (7.1).

112

Change Approach

P-1 add new processor include processor’s outgoing frames into
the bus schedule (see F-1)

M-1 add new message pack message into a suitable frame
M-2 modify data size of message check if message still fits associated

frame’s max. payload; if not, pack into
another frame

M-3 modify period / deadline of message adjust period / deadline of associated
frame accordingly (see F-2)

M-4 modify receiver-processors of message adjust receiver-processors of associated
frame accordingly (see F-3)

F-1 add new frame include frame into the bus schedule
F-2 modify period / deadline of frame check schedulability of frames and

packed-in messages; for time-triggered
bus-systems, check if frame still fits into
associated time-slots

F-3 modify receiver-processors of frame no impact on bus configuration since
bus-systems are broadcasting frames

Table 7.9: Scenarios for extending bus configuration

• A frame schedule S is extensible if additional frames can be added to the schedule
in the future. Extensibility at the schedule-level can be measured by the number of
frames which can be added, according to equation (7.3) and (7.4).

7.4.2 Problem Statement

Based on the change-scenarios from table 7.9, the engineering challenge at hand is to extend
/ upgrade a bus configuration while maintaining backward-compatibility. More formally, it
is stated as follows:

Given a bus configuration Co consisting of a set of frames Fo = {fo1 , fo2 , . . . , foj }
which are scheduled according to a schedule So. Each frame contains a set of
packed-in messages Mo = {mo

1,m
o
2, . . . ,m

o
k}. Further given a set of messages

Mn = {mn
1 ,m

n
2 , . . . ,m

n
q } which must be added to the given bus configura-

tion Co. Find an extended bus configuration Cn in which the newly added
messages are incorporated (i.e. the new messages are packed into frames).
This bus configuration Cn is subject to the constraints that it (a) must be
feasible / schedulable and (b) must be backward-compatible to the given bus
configuration Co. The optimization goal is that the bus configuration Cn is
(c) optimized towards maximum extensibility.

The problem consists of two sub-problems: packing of messages into frames and
scheduling of frames. Both sub-problems have to be addressed under the stated con-
straints and optimization goals.

113

7.4.3 Literature Review Refinement – Extend Bus Configuration

As already reviewed in section 5.4, 6.2 and 7.3.2, there are only a few works in the litera-
ture which address frame packing. Although they differ in optimization goal and solving
strategy, all of them share one common scenario: build a packing “from scratch”. None
of them focuses on extending / upgrading a packing, where legacy packing decisions need
to be taken into account. Some constraints have been introduced in chapter 6.

The second aspect of bus configuration is frame scheduling. Focusing on CAN (as it is
the most widely used bus protocol in the automotive domain) the task is frame priority
assignment. The literature on priority assignment is extensive. However, in terms of
finding a schedulable priority assignment, the best known approach is Audsley’s optimal
priority ordering algorithm [1,3]. Audsley proved that this algorithm will find a schedulable
priority ordering, if a feasible solution exists. Later work [9] proved that the algorithm
also holds in the presents of blocking. This is essential, as CAN is non-preemptive. In
section 7.3 the aspect of extensibility has been introduced. However, the scenario was still:
build a schedule “from scratch”. No work can be found which focuses on extend / upgrade
a schedule.

7.4.4 Solving Methodology – Extend Frame Packing

Based on the problem statement from above, the following sub-problem can be stated:

Given a set of frames Fo = {fo1 , fo2 , . . . , foj } each containing a set of packed-in
messages. Further given a set of messagesMn = {mn

1 ,m
n
2 , . . . ,m

n
q } which need

to be added to the bus configuration. The new messages need to be packed
in a way that the extended packing Pn is backward-compatible to the given
packing P o.

Strategy

The key to solve this problem is to re-visit section 5.5.1:

There exists a frame that already has some messages packed-in. Another mes-
sage needs to be packed-in and it can fit into the existing frame. The question
is: Should the message be packed into the existing frame (thus extending it),
or should the message be packed into a new frame?

However, this time it has to be addressed under the additional constraint of backward-
compatibility. Clearly, if all new messages are packed into new frames (i.e. no existing
frame is extended) then the extended packing Pn is backward-compatible to the given
packing P o. However, in terms of bandwidth-demand this option may be a poor choice,
as additional overhead is introduced and free frame capacity is not utilized.

Thus, some new messages should be packed into existing frames, in order to increase
bandwidth-efficiency. The question is: into which frames can a new message be packed,
so that the packing Pn is still backward-compatible to P o? Beside the obvious constraints
(i.e. frame must have sufficient free capacity for incorporating the message, and both
originate from the same processor) the key decision-attribute for determining a frame is
the period.

114

T-1: message has same period as frame – If the message has the same period as the frame,
then the frame’s period does not change if the message is added to the frame. This
ensures that the frame can be scheduled the same way it was in the given schedule
So. This is essential for a TDMA schedule.

T-2: message’s period is a multiple of frame’s period – If the message’s period is a multiple
of the frame’s period, then the frame’s period does not change if the message is added
to the frame (as in case T-1). However, the message is sent more frequently as it
would be needed, thus additional bandwidth-demand is caused.

T-3: message’s period is not a multiple of frame’s period – There exist two sub-cases.

T-3a: If the message’s period is longer than the frame’s period, then the frame’s
period will stay as it is and thus no changes occur to the schedule (as in case
T-2). Also, the message will be sent more frequently than needed.

T-3b: If the message’s period is shorter than the frame’s period, then the frame’s
period will change if the message is added to the frame. For TDMA this will
cause incompatibility to the given schedule So. For CAN this period change may
be acceptable, as long as frame’s priorities are not changed and schedulability
can still be guaranteed.

By considering these options, there may still be several frames into which a new mes-
sage can be packed. In this case, the secondary decision-criteria should be the resulting
bandwidth-demand (as optimized in section 5.5).

Algorithm

Based on the considerations stated above, a frame packing algorithm can be derived which
ensures backward-compatibility. Algorithm 7.1 solved the stated problem, and is applica-
ble independent of the underlying frame scheduling schema.

The algorithm essentially searches for packing candidates (i.e. frames) which satisfy
all constraints, especially those associated with backward-compatibility. Out of these
candidates, the one is chosen which offers the best performance in terms of bandwidth-
efficiency.

7.4.5 Solving Methodology – Extend Frame Schedule

The second aspect of bus configuration is frame scheduling. Based on the problem
statement from above, and focusing on CAN (as it is the most widely used bus protocol
in the automotive domain) the following sub-problem can be stated:

Given a set of frames Fo = {fo1 , fo2 , . . . , foj } each assigned a priority-level
poj forming a schedule So. Further given a set of additional frame Fn =
{fn1 , fn2 , . . . , fnq } which need to be added to the schedule. Find a schedule
Sn by assigning a priority-level pnq to the new frames so that Sn is (a) feasi-
ble / schedulable and (b) backward-compatible to the given schedule So. The
optimization goal is that the extended schedule Sn is (c) optimized towards
maximum extensibility.

115

Algorithm 7.1: Frame packing under backward-compatibility constraints

Input: frames /* with packed-in messages */
Input: messages /* which need to be packed */

1 begin ExtendFramePacking
2 /* prepare for frame packing */;
3 sort(messages, T, increasing) /* sort messages by T [0..n] */;
4 sort(frames, T, increasing) /* sort frames by T [0..n] */;
5 foreach message do
6 /* basic constraints */;
7 frames = filter by basic constraints;
8 /* backward-compatibility constraints */;
9 frames = filter by Tm = Tf or Tm is multiple of Tf ;

10 /* pack message */;
11 if frames 6= empty then
12 frame = frame with lowest bandwidth-demand increase;
13 else
14 frame = new frame;
15 end
16 pack(message, frame);

17 end

18 end
Output: frames

Problem Complexity

The frame scheduling problem (like any priority-based scheduling problem) contains two
aspects: First, to find a feasible priority-ordering. Second, to map the priority-ordering
to dedicated priority-levels.

Audsley [3] showed that the problem for priority-ordering is NP-hard. There are n!
possible priority-orderings for a set of n tasks. He also showed that there is an optimal
algorithm which finds a feasible priority-ordering (if one exists) within (n2 + n)/2 steps.

Once a feasible priority-ordering is found, it has to be mapped to the available priority-
levels. There are

(
p
n

)
possible mappings of n frames to p priority-levels. However, no work

can be found in the literature which tackles this problem. Instead, a 1:1 mapping is
applied. Clearly, both sub-problems are intractable for realistically sized systems.

These complexities apply to the un-constrained case (i.e. no backward-compatibility
constraints exist). In the constrained case (i.e. new frames need to be added to an existing
schedule) the following complexities apply:

priority-orderings : n! (7.6)

priority-levels :

(
p− o
n

)
(7.7)

where n is the number of new frames, p is the number of available priority-levels, and o is
the number of frames in the given schedule. Again, the sub-problems are intractable for

116

Algorithm 7.2: Priority assignment under backward-compatibility constraints

Input: old frames /* with given priorities */
Input: new frames /* without priorities yet */
Input: threshold for rel.R /* max. for R/D */

1 begin PriorityAssignmentForNewFrames
2 /* prepare for priority assignment */;
3 each new frame gets a temporary priority, higher than any old frame;
4 set U := un-assigned new frames;
5 put all new frames in set U ;
6 /* perform priority assignment */;
7 p = lowest free priority-level;
8 repeat
9 repeat

10 f = pick a new frame from set U ;
11 assign priority p to new frame f ;
12 if feasible(f , p , thresh) then
13 found frame at priority-level = true;
14 mark priority p as used;
15 remove new frame f from set U ;

16 else
17 found frame at priority-level = false;
18 assign prio=highest to frame f again;
19 /* try next frame */;

20 end

21 until found frame at priority-level = true
or all f in U have been evaluated at p;

22 p = next-higher free priority-level;

23 until U is empty or no more free priority-levels;

24 end
Output: all frames /* with priorities */

realistically sized systems.
The state-of-the-art scheduling problem is a special case of this problem, where the

number of pre-existing frames o is zero, and the number of priority-levels p equals the
number of frames n.

Algorithm

To solve this challenging engineering task, a priority assignment policy as outlined in
algorithm 7.2 is proposed. It is based on the key concepts of Audsley’s algorithm for
optimal priority ordering [3]. However, unlike Audsley’s algorithm, it does not deal with
priority-orderings, but with unique priority-levels. Further, it honours the constraints of
backward-compatibility, and therefore will only consider the non-used priority-levels.

The algorithm starts by constructing an initial, temporary priority assignment, where
all old frames keep their priority and all new frames have a priority higher than any old

117

frame. This initial assignment may be infeasible. Then, step by step, the new frames are
assigned to their final priority-levels. For each free priority-level p (starting at the lowest
priority-level) the algorithm searches for a new frame f which is feasible at the dedicated
priority-level. In this context, feasible is defined as: The new frame f is schedulable at
the priority-level p and all lower-priority frames (both old and new) are schedulable1. In
the worst case, all new frames (which have not been assigned a priority-level yet) will be
evaluated at the priority-level p. If no new frame is feasible at the dedicated priority-level,
the algorithm moves up to the next-higher free priority-level. If a new frame is feasible at
a dedicated priority-level, the algorithm fixes its priority-level there, marks the priority-
level as used and marks the frame as assigned. The entire procedure is repeated, until
(a) all new frames are marked as assigned, in which case a feasible priority assignment
has been found, or (b) we run out of free priority-levels, in which case the frame-set is
unschedulable.

Figure 7.6 demonstrates the algorithm, applied to a small example. Each iteration-step
is represented by one column (reading from left to right).

Frame B C D T Priority

o1 1 1 2 10 given
o2 1 1 4 10 given
n1 1 1 5 5 find it
n2 1 1 5 10 find it

Figure 7.6: Extending a CAN schedule by applying algorithm 7.2

The runtime complexity of algorithm 7.2 is O(p · n · S) where p is the number of
available priority-levels, n is the number of newly added frames, and S is the complexity

1The term threshold can be ignored for now. It will be introduced later.

118

of the schedulability-test [21]. In practice, it is observed that most problem-instances are
solved much faster than this worst-case complexity suggests. For typical CAN systems, the
number of priority-levels p which are evaluated by the algorithm before a feasible schedule
is found is approximately the number of newly added frames n. Thus, the average-case
algorithm complexity is O(n2 · S).

Proof of Optimality

In this work, Audsley’s definition of optimality is used [1]: If there is a feasible priority
assignment, the proposed algorithm will find it. In [1] it is proven that a similar algorithm
to the one presented here is optimal. The main differences are that Audsley is dealing
with tasks rather than frames, CAN scheduling policy is non-preemptive, and that the
proposed algorithm must deal with some old frames that are un-moveable in terms of
their priority (or frame ID). The first of these differences is clearly not important as it is
the time the tasks or frames occupy resources that is important. For the second difference,
Bletsas [9] showed that the introduction of blocking does not invalidate the optimality of
the algorithm. The third difference is effectively a fundamental change to the assumptions
under which the algorithm is applied. To determine whether the algorithm and proof
are still valid, the following corollaries underpinning the proof (taken from Audsley [1])
are examined. These corollaries are all dependent on the scheduling approach and the
analysis used. Importantly they are not dependent on how the frame-set has its attributes
assigned. Therefore, the constraints imposed on how priorities are generated should not
have an effect.

• Corollary 1 – The response time of a task is dependent upon the set of higher priority
tasks, but not the relative priority ordering of those tasks

• Corollary 2 – The response time of a task is not dependent upon lower priority tasks

• Corollary 3 – The response time of a task cannot increase when assigned a higher
priority

• Corollary 4 – The response time of a task cannot decrease when assigned a lower
priority

Given the continued validity of the corollaries, the remaining issue is the following Lemma.

Lemma 1. Having un-moveable frames does not affect the optimality of the algorithm.

Proof. The basis of Bletsas’s proof was that swapping priority orders means the task (or
frame) that has its priority increased can only have its response time remain the same
or be reduced. The algorithm still performs swapping of priorities in the same fashion
as the original Audsley’s algorithm used by Bletsas, however the main difference is the
priorities are not swapped between the frames. Instead the frame that is unschedulable
has its priority raised above the frame that cannot be changed. This difference does not
invalidate the original proof.

If the proposed algorithm fails then there is no feasible schedule. In that case the
only option is to allow violating the backward-compatibility constraints (i.e. to allow

119

changing the priority of some old frames). However, since backward-compatibility is no
longer achieved then, this is a delicate decision for industrialists to make. The algorithm
will still be optimal if the industrial designers remove some of the constraints, concerning
un-moveable frame priorities, until the network becomes schedulable.

Optimization towards Extensibility

By applying algorithm 7.2 a given schedule can be extended by a set of additional frames
while staying backward-compatible to the given schedule. However, analysis of the frame-
set reveals that in terms of extensibility it does not perform too well. Since the new
frames are assigned the lowest priority-level at which they are schedulable, their response
times may be quite close to their deadline. As a consequence, if this schedule needs to be
extended in the future, these frames are likely to miss their deadline then.

In order to overcome this issue and to build an extensible schedule the key is to ensure
that the schedule contains extensibility margins. For a TDMA schedule these are empty
time-slots. For a priority-based schedule (such as CAN) this means that the response time
of each frame is significantly smaller than its deadline. For example, if the response time
of a frame is 70% of its deadline then the remaining 30% act as extensibility margins for
future extensions. The smaller the response time, the higher the extensibility margins.
Thus, extensibility of a CAN schedule can be estimated by the relative response time rel.R
of the frames.

rel.R =
R

D
(7.8)

extf =
1

rel.Rf
=
Df

Rf
(7.9)

extCAN =
Df

Rf
∀f∈F (7.10)

In order to maximize the extensibility of the CAN schedule, the relative response
time of the frames must be minimized. Thereby the frame which has the largest relative
response time determines the extensibility of the schedule.

Based on these considerations and the metric for extensibility, as given by equa-
tion (7.10), a revised methodology can be derived. It incorporates the following concepts:

• re-definition of feasible – A priority assignment is feasible if the frame’s relative
response time (at a certain priority-level) is smaller than a defined threshold, and
all lower-priority frames’ relative responses are smaller than that same threshold.
Thus, instead of checking R ≤ D we check R/D ≤ thresh. Obviously the threshold
must not exceed 1.0 in order to have a schedulable system.

• By setting a threshold (e.g. thresh = 0.7) algorithm 7.2 builds a backward-compatible
schedule, in which no frame’s relative response time exceeds the defined threshold.
Thus, this backward-compatible schedule has a guaranteed degree of extensibility.

• By lowering the threshold the degree of extensibility is increased. Based on this
relation, the schedule’s extensibility can be optimized (i.e. maximized).

120

Algorithm 7.3: Extensibility-optimized priority assignment under backward-
compatibility constraints

Input: old frames /* with given priorities */
Input: new frames /* without priorities yet */

1 begin ExtensiblePriorityAssignmentForNewFrames
2 /* extensibility → max. */;
3 /* binary search for min. R/D */;
4 rel.R bounds = 0.0 and 1.0;
5 repeat
6 rel.R = (rel.R upper + rel.R lower) / 2;
7 PriorityAssignmentForNewFrames(old frames, new frames, rel.R) /* see

algo. 7.2 */;
8 if priority assignment = feasible then
9 rel.R upper = rel.R /* lower upper */;

10 else
11 rel.R lower = rel.R /* raise lower */;
12 end

13 until feasible and ∆ rel.R < x% ;

14 end
Output: all frames /* with priorities */

Algorithm 7.3 incorporates these concepts, thus it can extend / upgrade a given schedule
so that the schedule (a) is feasible / schedulable, (b) is backward-compatible to the given
schedule, and (c) is maximized towards extensibility. The algorithm uses a binary-search
for finding the lowest possible threshold for relative response times, whereas the priority
assignment is performed by algorithm 7.2 accordingly.

By introducing extensibility the overall nature of algorithm 7.2 does not change other
than to effectively reduce the deadline of frames (instead of demanding R ≤ D we demand
R/D ≤ thresh). Thus, the proof of optimality still holds. However, it leads to a
different definition of optimality: If there is a priority assignment that satisfies R/D ≤
thresh for all frames, then the proposed algorithm will find it.

By introducing extensibility the runtime complexity of algorithm 7.2 does not
change. The complexity of algorithm 7.3 (i.e. the binary-search for the max. extensi-
bility) is O(A · log2

100
x) where A is the complexity of the priority assignment algorithm 7.2

and the jitter of the min. threshold is ±x%. The term log2 k stems from the floating-
point binary-search. The term 100

x represents that the algorithm ends the search if the
threshold-variation is less than ±x%.

7.4.6 Experimental Evaluation – Extend Bus Configuration

In order to evaluate the proposed methodology, it is applied to an automotive use case.
The bus-system is installed in a compact executive class car. The system consists of a
CAN network operated at 500 kb/s. The CAN network is connecting 20 processing-units.
These processing-units exchange 34 frames, which causes a network utilization of 40%.
The schedule of the network (i.e. the priorities of the frames) is given by engineers. This

121

schedule shall be extended by additional 31 frames, which cause additional 33% network
utilization. For these frames a priority assignment was found, which (a) is feasible, (b) is
backward-compatible to the given schedule, and (c) is extensible.

Approach Schedulable
max. avg. Backward-
R/D R/D Compatible

Algorithm 7.2 yes 0.98 0.32 yes
Algorithm 7.3 yes 0.60 0.24 yes
DMPO yes 0.60 0.23 no
Audsley’s Algorithm yes 0.60 0.23 no

Table 7.10: Extend CAN schedule under backward-compatibility constraints

Table 7.10 shows the results by applying different algorithms. The results clearly
demonstrate the effectiveness and efficiency of the proposed methodology (especially algo-
rithm 7.3). In terms of extensibility (indicated by the relative response times) algorithm 7.3
performs almost identical to state-of-the-art approaches (such as DMPO or Audsley’s al-
gorithm). However, state-of-the-art approaches cannot guarantee backward-compatibility,
and thus cannot satisfy the needs to the problem at hand. Algorithm 7.2 and 7.3 guarantee
backward-compatibility, whereas algorithm 7.3 is the overall best performing one.

7.5 Concluding Remarks

Designing and maintaining the in-vehicle communication (i.e. the configuration of bus-
systems) is a key challenge for the OEM, especially when using a platform-based approach.
In this chapter, both aspects of this challenging engineering task have been addressed:
Section 7.3 shows how an extensible configuration can be built, which can be used as the
platform configuration. Section 7.4 shows how the platform configuration can be upgraded
in order to meet new requirements, while staying backward-compatible.

Experimental evaluation on an automotive case study shows that both methodologies
can solve the associated problem effectively and efficiently. In addition, algorithm 7.2 is
proven to be optimal according to Audsley’s definition.

7.6 Outlook

For the sub-problem frame packing both aspects have been addressed: designing and
maintaining the configuration. For the sub-problem frame scheduling also both aspects
have been addressed for CAN. Future work should tackle TDMA-based schema as well.

122

Chapter 8

Conclusion

Designing distributed embedded real-time systems is a challenging engineering task. A set
of decisions have to be made in order to find an optimal system configuration. The goal of
this thesis is to provide novel solutions for some of these decision-making steps: allocating
software components to processors, configuring the communication between processors via
bus-systems, scheduling of tasks and bus frames.

8.1 Achievements

Within this thesis, the following improvements beyond the state-of-the-art have been
achieved:

• communication configuration – In this thesis an enhanced model for the communi-
cation between processors via shared bus systems is applied. In this model, several
messages can be packed into a single bus frame in order to increase bandwidth effi-
ciency. This model is commonly used in automotive systems.
As a consequence the question arises: how shall messages be packed into frames in
an optimal way? First, metrics for optimality are provided. Then, a bandwidth-
minimizing frame packing heuristic is developed. Evaluation reveals improved band-
width efficiency of up to 18.9%, as shown in chapter 5. In addition, the heuristic
improves the search-performance of the TAP significantly.

• constraint handling – In chapter 6 a detailed constraint-model is introduced. It
is aligned to the AUTOSAR standard (namely the system template). The model
enhances the state-of-the-art with respect to constraints for communication.
The question is: how can the set of heterogeneous design-constraints be satisfied
efficiently? Analysis of the constraint-model leads to a methodology how a sub-set
of the constraints can be resolved, thus excluding infeasible regions of the design-
space and hence boosting design-space exploration. The methodology allows tackling
TAP with legacy-constraints, which is widespread for industrial systems.

• extensible configuration – When designing a system, it shall be robust and extensible
towards future changes, i.e. it shall be possible to add elements later on without
needing to re-design the entire configuration. This is especially true for the bus

123

configuration.
The question is: how to balance robustness and extensibility against the need for ef-
ficient resource-usage? Section 7.3 first provides enhanced metrics for extensibility.
Then, a methodology is developed which finds a bus configuration that (a) minimizes
the bandwidth demand, and (b) maximizes the robustness and extensibility. By ap-
plying this methodology, additional messages can be added to the bus configuration
in the future, while keeping the change-impact at a minimum.

• upgrade configuration – When maintaining and upgrading a system (e.g. by adding
messages), a key requirement is to maintain backward-compatibility. Thus, the
question arises: how can the messages be merged into the bus configuration, so that
the new configuration stays backward-compatible to the initial one?
Section 7.4 first establishes criteria for backward-compatibility for frame packing
and scheduling. Then, two algorithms are provided: upgrading frame packing, and
upgrading a CAN schedule. Finally, proof of optimality is given. The algorithms
allows for an evolutionary system design, where a “new” configuration is based on
an older configuration.

8.2 Open Issues

Although most aspects of this thesis are inspired by problems originating from the au-
tomotive domain, it was a goal to provide methodologies which are generally applicable.
Therefore, not all details from automotive systems have been considered.

• An AUTOSAR software component can contain 1 or more runnables (where the
runnables represent the executable code). Thus, in order to schedule the runnables,
they have to be assigned to OS tasks, and the OS task needs to be assigned a priority.
In the thesis it is assumed that a software component only contains 1 runnable (which
often is the case). Thus a 1:1:1 relationship between software component, runnable
and task is used.

• In AUTOSAR, data (also called signals) which is exchanged between software com-
ponents can be nested into other artefacts. First, the signal can be put into an
I-PDU. Then, the I-PDU is put into a N-PDU, and finally the N-PDU is packed
into a bus frame. In this thesis, a simpler model is used: a message is packed into a
frame.

• AUTOSAR allows different kind of communication schema between software compo-
nents: sender/receiver, client/server, calibration, AUTOSAR-service. In this thesis,
only the sender/receiver communication semantic is used.

By taking into account these domain-specific issues, the applicability of the provided
methodologies in an automotive scenario would be improved.

8.3 Future Research Directions

In recent years, multiprocessing has gained significant interest due to the availability of
affordable multi-core processors. These are already wide-spread for general-purpose com-

124

puting, and are currently becoming available for embedded computing. Within that con-
text, the question of how to allocate tasks to processors needs to be refined to: How to
allocate tasks to processor-cores?

In 2012, a new safety-standard [35] was introduced into the automotive domain. In
this context, each component of the system has to be assigned a safety integrity level (A
to D). In most systems, different components will have different levels. Such systems are
called mixed-criticality systems. Within this context, the system-configuration decisions
need to be re-visited: How can task-allocation, network-configuration and scheduling be
designed while considering the mixed-criticality nature of the system?

As the number of functionality within a car is ever increasing, the communication
demand between processors also increases. In order to meet future demands, new high-
bandwidth bus-systems need to be used. One potential candidate is automotive Ethernet
[31]. Hence, the proposed methodology for bus-configuration needs to be adapted to
protocol-specifics of these new bus-systems.

In this thesis a normalized weighted sum is used to balance the multiple optimization
objectives. It might be interesting to extend the framework so that it not only returns
a single “best” solution, but a set of pareto-optimal solutions. This would give the user
more flexibility, and remove the need to set weights.

125

List of Algorithms

4.1 System configuration optimization algorithm (based on simulated annealing) 24
4.2 Accept move to neighbour . 26
4.3 Re-allocate task . 27
4.4 Swap allocation of tasks . 27

5.1 System-level frame packing . 38
5.2 Heuristic for bandwidth-optimal frame packing 47
5.3 GenFPP – Test case generation tool for frame packing problems 49

6.1 Re-allocate task-cluster . 89
6.2 Swap allocation of task-clusters . 89
6.3 Heuristic for frame packing with packing constraints 90

7.1 Frame packing under backward-compatibility constraints 116
7.2 Priority assignment under backward-compatibility constraints 117
7.3 Extensibility-optimized priority assignment under backward-compatibility

constraints . 121

127

List of Figures

2.1 State diagram of preemptive real-time task with blocking [52] 4

2.2 Gantt-chart of real-time tasks . 5

2.3 FlexRay communication scheduling schema 13

2.4 Basic AUTOSAR approach [5] . 14

2.5 Methodology for designing AUTOSAR-compliant system [5] 15

4.1 Model of multi-bus system . 20

4.2 Transformation between application view and implementation view of multi-
bus system . 21

4.3 Hierarchical cost-function . 28

5.1 Bus-topology of a medium-class car, featuring different bus-system inter-
connected via gateways . 35

5.2 Bandwidth demand of frame-sets for different nominal bus utilization . . . 54

5.3 Notched box-plot confirming statistical significance 54

5.4 Bandwidth demand of frame-sets for different nr. of sending processors . . . 56

5.5 Notched box-plot confirming statistical significance of improvements 56

5.6 Payload utilization for different frame packing strategies 58

5.7 Un-schedulability of frame-set for different nominal bus utilizations 59

5.8 Notched box-plot confirming statistical significance of improvements 60

5.9 Un-schedulability of frame-set for different nr. of sending processors 60

5.10 Notched box-plot confirming statistical significance of improvements 61

5.11 Impact of transmission time on schedulability 62

5.12 Notched box-plot confirming statistical significance of improvements 63

5.13 Impact of transmission time on schedulability 63

5.14 Notched box-plot confirming statistical significance of improvements 64

5.15 Search performance for example 1 [85] . 69

5.16 Reduction of cross-processor communication, example 1 [85] 70

5.17 Search performance for example 2 [87] . 71

5.18 Adapting importance of frame packing performance evaluation during task
allocation design space exploration . 73

5.19 Gateway topologies . 74

6.1 Extending cost-function with term for constraint violations 86

6.2 Constraint violations – dedicated processors 93

6.3 Constraint violations – excluded processors 93

129

6.4 Constraint violations – task grouping . 94
6.5 Constraint violations – task separation . 94
6.6 Constraint violations – processor-internal communication 95
6.7 Constraint violations – separated frames . 95

7.1 Methodology for building an extensible bus configuration 106
7.2 Data size of messages for case study . 107
7.3 Refinement of packing – impact on frame payload 109
7.4 Refinement of packing – impact on frame payload 110
7.5 Refinement of packing – impact on frame payload 111
7.6 Extending a CAN schedule by applying algorithm 7.2 118

130

List of Tables

2.1 Comparison: RM vs. EDF . 9

4.1 Impact of task allocation on subsequent design decisions 21

4.2 Equivalences between system model and AUTOSAR model 22

4.3 Probability of neighbour moves . 27

4.4 Terms of cost-function . 30

5.1 Equivalence between bin packing and frame packing 39

5.2 Optimization objectives of state-of-the-art frame packing approaches 42

5.3 Optimal packing decision based on threshold-period of message 46

5.4 Test case parameters for frame packing evaluation 50

5.5 Improvement in bandwidth demand of optimized frame packing over state-
of-the-art frame packing . 53

5.6 Possible parameters for sensitivity analysis of frame scheduling 61

5.7 Specification of example 1 [85] . 68

5.8 Best obtained solution for example 1 [85] 68

5.9 Specification of example 2 [87] . 70

5.10 Results for example 2 [87] . 71

5.11 Connecting automotive bus systems at different layers 75

6.1 Overview of design-constraint types . 80

6.2 Constraint satisfaction time: “before” or “during” design space exploration 85

6.3 Test case parameters for constraint handling evaluation 92

6.4 Constraints added to basic model . 92

7.1 Scenarios for future changes . 98

7.2 Proposed balancing of objectives when building extensible bus configurations105

7.3 Proposed probability of neighbour moves for building extensible bus con-
figurations . 106

7.4 Period of messages for case study . 108

7.5 Improvements achieved by optimization . 108

7.6 Initial vs. optimized network configuration 109

7.7 Initial vs. optimized network configuration 110

7.8 Initial vs. optimized network configuration 111

7.9 Scenarios for extending bus configuration 113

7.10 Extend CAN schedule under backward-compatibility constraints 122

131

A.1 AUTOSAR system template requirements 143

132

References

[1] N. Audsley. On priority assignment in fixed priority scheduling. Information Pro-
cessing Letters, 79(1):39–44, 2001.

[2] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings. Applying new
scheduling theory to static priority pre-emptive scheduling. Software Engineering
Journal, 8(5):284–292, 1993.

[3] N. Audsley, K. Tindell, and A. Burns. The end of the line for static cyclic scheduling?
In Euromicro Workshop on Real-Time Systems (ECRTS), pages 36–41, 1993.

[4] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings. Hard real-time
scheduling: The deadline-monotonic approach. In IEEE Workshop on Real-Time
Operating Systems and Software, pages 133–137, 1991.

[5] AUTOSAR (automotive open system architecture). http://www.autosar.org.

[6] J. Axelsson. Three search strategies for architecture synthesis and partitioning of
real-time systems. Technical report number R-96-32, Department of Computer and
Information Science, Linköping University, Sweden, 1996.

[7] I. Bate and N. C. Audsley. Flexible design of complex high-integrity systems using
trade offs. In IEEE International Symposium on High-Assurance Systems Engineering
(HASE), pages 22–31, 2004.

[8] I. Bate and P. Emberson. Incorporating scenarios and heuristics to improve flexibility
in real-time embedded systems. In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 221–230, 2006.

[9] K. Bletsas and N. Audsley. Optimal priority assignment in the presence of blocking.
Information Processing Letters, 99(3):83–86, 2006.

[10] S. Brummund, N. Kehl, P. Nenninger, and U. Kiencke. ISODATA clustering for
optimized software allocation in distributed automotive electronic systems. In SAE
2006 Transactions Journal of Passenger Cars: Electronic and Electrical Systems,
2006.

[11] S. Brummund, C. Steup, and U. Kiencke. Real multi-partitioning for optimized
distributing and allocating software in vehicle networks. In SAE 2007 Transactions
Journal of Passenger Cars: Electronic and Electrical Systems, 2007.

133

http://www.autosar.org

[12] G. C. Buttazzo. Rate monotonic vs. EDF: Judgment day. Real-Time Systems,
29(1):5–26, 2005.

[13] D. Buttle. Real-time in the prime-time. In Euromicro Conference on Real-Time
Systems (ECRTS), 2012. Keynote.

[14] ISO 11898-1: Road vehicles – Controller area network (CAN) – Part 1: Data link
layer and physical signalling.

[15] S. T. Cheng and A. K. Agrawala. Allocation and scheduling of real-time periodic tasks
with relative timing constraints. Technical report number CS-TR-3402, Department
of Computer Science, University of Maryland, 1995.

[16] W. W. Chu and M.-T. Lan. Task allocation and precedence relations for distributed
real-time systems. IEEE Transactions on Computers, 36(6):667–679, 1987.

[17] E. G. Coffman, J. Csirik, and G. J. Woeginger. Approximate solutions to bin packing
problems. Technical report, Graz University of Technology, Institute for Mathematics
B, 1999.

[18] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for bin
packing: A survey. In Approximation algorithms for NP-hard problems, chapter 2,
pages 46–93. PWS Publishing Co., Boston, MA, USA, 1996.

[19] R. Davis and A. Burns. Response time upper bounds for fixed priority real-time
systems. In IEEE Real-Time Systems Symposium (RTSS), pages 407–418, 2008.

[20] R. Davis and A. Burns. Robust priority assignment for messages on controller area
network (CAN). Real-Time Systems, 41(2):152–180, 2009.

[21] R. Davis, A. Burns, R. Bril, and J. Lukkien. Controller area network (CAN) schedu-
lability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3):239–272,
2007.

[22] R. Davis, A. Zabos, and A. Burns. Efficient exact schedulability tests for fixed priority
real-time systems. IEEE Transactions on Computers, 57(9):1261–1276, 2008.

[23] R. Dick, D. Rhodes, and W. Wolf. TGFF: task graphs for free. In Hardware/Software
Codesign (CODES/CASHE), pages 97–101, 1998.

[24] M. Driussi and F. Pölzlbauer. Towards an AUTOSAR system configuration frame-
work. ATZextra worldwide, 18(9):26–28, 2013.

[25] C. Ekelin and J. Jonsson. Solving embedded system scheduling problems using con-
straint programming. Technical report, Chalmers University of Technology, Depart-
ment of Computer Engineering, 2000.

[26] P. Emberson. Searching For Flexible Solutions To Task Allocation Problems. PhD
thesis, University of York, Department of Computer Science, Nov. 2009.

134

[27] P. Emberson and I. Bate. Stressing search with scenarios for flexible solutions to
real-time task allocation problems. IEEE Transactions on Software Engineering,
36(5):704–718, 2010.

[28] FlexRay. http://www.flexray.com.

[29] D. Gu, F. Drews, and L. Welch. Robust task allocation for dynamic distributed real-
time systems subject to multiple environmental parameters. In IEEE International
Conference on Distributed Computing Systems (ICDCS), pages 675–684, 2005.

[30] D. Gunnarsson and M. Traub. Approach for a seamless timing evaluation process for
E/E-architectures. In 6th Symtavision News Conference, 2012.

[31] P. Hank, S. Müller, O. Vermesan, and J. Van den Keybus. Automotive ethernet:
In-vehicle networking and smart mobility. In Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 1735–1739, 2013.

[32] P.-E. Hladik, A. Déplanche, S. Faucou, and Y. Trinquet. Adequacy between AU-
TOSAR OS specification and real-time scheduling theory. In IEEE International
Symposium on Industrial Embedded Systems (SIES), pages 225–233, 2007.

[33] P.-E. Hladik, A. Déplanche, S. Faucou, and Y. Trinquet. Schedulability analysis of
OSEK/VDX applications. In International Conference on Real-Time and Network
Systems (RTNS), pages 131–139, 2007.

[34] M. Holenderski, M. M. van den Heuvel, R. J. Bril, and J. J. Lukkien. Grasp: Trac-
ing, visualizing and measuring the behavior of real-time systems. In International
Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems
(WATERS), 2010.

[35] ISO 26262: Road vehicles – Functional safety.

[36] M. Kang, K. Park, and M. Jeong. Frame packing for minimizing the bandwidth
consumption of the FlexRay static segment. IEEE Transactions on Industrial Elec-
tronics, 60(9):4001–4008, 2013.

[37] O. Kelly, H. Aydin, and B. Zhao. On partitioned scheduling of fixed-priority mixed-
criticality task sets. In International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), pages 1051–1059, 2011.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[39] B. Knauder, F. Pölzlbauer, and J. Zehetner. Modellierung von Informationskanälen
für den Einsatz in Simulationsumgebungen. In SIMVEC – Berechnung, Simulation
und Erprobung im Fahrzeugbau, number VDI-Berichte 2169, pages 377–388, 2012.

[40] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations. Kluwer Academic Publishers, 1997.

135

http://www.flexray.com

[41] H. Kopetz and R. Nossal. The cluster compiler – a tool for the design of time-triggered
real-time systems. In ACM SIGPLAN 1995 workshop on languages, compilers & tools
for real-time systems, pages 108–116, 1995.

[42] M. Lewis, B. Alidaee, and G. Kochenberger. Using xQx to model and solve the
uncapacitated task allocation problem. Operations Research Letters, 33(2):176–182,
2005.

[43] LIN (local interconnect network). http://www.lin-subbus.org.

[44] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the Association for Computer Machinery, 20(1):46–61,
1973.

[45] H. Lonn and J. Axelsson. A comparison of fixed-priority and static cyclic scheduling
for distributed automotive control applications. In Euromicro Conference on Real-
Time Systems (ECRTS), pages 142–149, 1999.

[46] S. Lui, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols: an approach to
real-time synchronization. IEEE Transactions on Computers, 39(9):1175–1185, 1990.

[47] D. L. Massart, J. Smeyers-Verbeke, X. Caprona, and K. Schlesierb. Visual presenta-
tion of data by means of box plots. Europe, 18(4):215–218, 2005.

[48] MOST (media oriented systems transport). http://www.mostnet.de.

[49] P. Narasimhan, L. Moser, and P. Melliar-Smith. Message packing as a performance
enhancement strategy with application to the totem protocols. In Global Telecommu-
nications Conference (GLOBECOM), Communications: The Key to Global Prosper-
ity, pages 649–653, 1996.

[50] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert. Trends in automotive commu-
nication systems. Proceedings of the IEEE, 93(26):1204–1223, 2005.

[51] M. C. Necker, M. Köhn, A. Reifert, J. Scharf, and J. Sommer. Optimized frame
packing for OFDMA systems. In IEEE Vehicular Technology Conference (VTC),
pages 1483–1488, 2008.

[52] OSEK/VDX. http://www.osek-vdx.org.

[53] J. Palencia and M. Gonzalez Harbour. Schedulability analysis for tasks with static
and dynamic offsets. In IEEE Real-Time Systems Symposium (RTSS), pages 26–37,
1998.

[54] D.-T. Peng, K. Shin, and T. Abdelzaher. Assignment and scheduling communicat-
ing periodic tasks in distributed real-time systems. IEEE Transactions on Software
Engineering, 23(12):745–758, 1997.

[55] F. Pölzlbauer. Building realistic software models for the task allocation problem.
Seminarprojekt, Graz University of Technology, Institute for Technical Informatics,
2011.

136

http://www.lin-subbus.org
http://www.mostnet.de
http://www.osek-vdx.org

[56] F. Pölzlbauer. Building robust and extensible real-time system configurations – can
science meet industry’s demands? In 6th Symtavision News Conference, 2012.

[57] F. Pölzlbauer and I. Bate. Configuring real-time systems. Virtual Vehicle Magazine,
11:26–27, 2012.

[58] F. Pölzlbauer and I. Bate. Methodology for priority assignment under backward-
compatibility constraints, 2013. Patent Application (Ref.ID GB1317489.1).

[59] F. Pölzlbauer, I. Bate, and E. Brenner. Efficient constraint handling during design-
ing reliable automotive real-time systems. In International Conference on Reliable
Software Technologies (Ada-Europe), pages 207–220, 2012.

[60] F. Pölzlbauer, I. Bate, and E. Brenner. Optimised frame packing for embedded
systems. IEEE Embedded Systems Letters, 4(3):65–68, 2012.

[61] F. Pölzlbauer, I. Bate, and E. Brenner. On extensible networks for embedded systems.
In IEEE International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS), pages 69–77, 2013.

[62] F. Pölzlbauer, I. Bate, and E. Brenner. Software deployment for distributed em-
bedded real-time systems of automotive applications. In Embedded and Real Time
System Development: A Software Engineering Perspective: Concepts, Methods and
Principles, volume 520 of Studies in Computational Intelligence, chapter 12, pages
305–328. 2014.

[63] F. Pölzlbauer, E. Brenner, and C. Magele. A transparent target function and evalua-
tion strategy for complex multi-objective optimization problems. In IEEE Real-Time
Systems Symposium (RTSS) – Work-in-Progress, pages 77–80, 2009.

[64] F. Pölzlbauer, D. Watzenig, and J. Kaiser. Fault tracking and failure effect analysis in
complex automotive control systems based on a generic modeling approach. In SAE
2007 Transactions Journal of Passenger Cars: Electronic and Electrical Systems,
2007.

[65] P. Pop, P. Eles, and Z. Peng. Schedulability analysis and optimization for the synthesis
of multi-cluster distributed embedded systems. In Design, Automation and Test in
Europe Conference and Exhibition (DATE), pages 184–189, 2003.

[66] P. Pop, P. Eles, and Z. Peng. Schedulability-driven frame packing for multicluster
distributed embedded systems. ACM Transactions in Embedded Computing Systems,
4(1):112–140, 2005.

[67] P. Pop, P. Eles, Z. Peng, V. Izosimov, M. Hellring, and O. Bridal. Design optimization
of multi-cluster embedded systems for real-time applications. In Design, Automation
and Test in Europe Conference and Exhibition (DATE), pages 1028–1033, 2004.

[68] P. Pop, P. Eles, Z. Peng, and T. Pop. Analysis and optimization of distributed
real-time embedded systems. ACM Transaction on Design Automation of Electronic
Systems (TODAES), 11(3):593–625, 2006.

137

[69] S. Poulding, P. Emberson, I. Bate, and J. Clark. An efficient experimental methodol-
ogy for configuring search-based design algorithms. In IEEE High Assurance Systems
Engineering Symposium (HASE), pages 53–62, 2007.

[70] S. Punnekkat, R. Davis, and A. Burns. Sensitivity analysis of real-time task sets.
In Advances in Computing Science – ASIAN’97, volume 1345 of Lecture Notes in
Computer Science, pages 72–82. 1997.

[71] K. Ramamritham. Allocation and scheduling of complex periodic tasks. In Interna-
tional Conference on Distributed Computing Systems, pages 108–115, 1990.

[72] K. Ramamritham. Allocation and scheduling of precedence-related periodic tasks.
IEEE Transactions on Parallel Distributed Systems, 6(4):412–420, 1995.

[73] R. Saket and N. Navet. Frame packing algorithms for automotive applications. Jour-
nal of Embedded Computing, 2(1):93–102, 2006.

[74] K. Sandström, C. Norström, and M. Ahlmark. Frame packing in real-time commu-
nication. In IEEE International Conference on Real-Time Computing Systems and
Applications (RTCSA), pages 399–403, 2000.

[75] M. Schmid. A Rapid Prototyping System for Embedded Multi Digital Signal Processor
Systems Based on Accurate Performance Prediction. PhD thesis, Graz University of
Technology, Institute for Technical Informatics, 2002.

[76] R. Schneider, D. Goswami, S. Chakraborty, U. Bordoloi, P. Eles, and Z. Peng. On
the quantification of sustainability and extensibility of FlexRay schedules. In Design
Automation Conference (DAC), pages 375–380, 2011.

[77] H. S. Stone. Multiprocessor scheduling with the aid of network flow algorithms. IEEE
Transactions on Software Engineering, SE-3(1):85–93, 1977.

[78] B. Tanasa, U. Bordoloi, P. Eles, and Z. Peng. Reliability-aware frame packing for
the static segment of FlexRay. In International Conference on Embedded Software
(EMSOFT), pages 175–184, 2011.

[79] A. Tengg, A. Klausner, and B. Rinner. An improved genetic algorithm for task allo-
cation in distributed embedded systems. In Genetic and Evolutionary Computation
Conference (GECCO), pages 1534–1534, 2007.

[80] K. Tindell. Adding time-offsets to schedulability analysis. Technical report number
YCS-94-221, Department of Computer Science, University of York, 1994.

[81] K. Tindell, A. Burns, and A. Wellings. Allocating hard real time tasks: An NP-hard
problem made easy. Real-Time Systems, 4(2):145–165, 1992.

[82] ISO 11898-4: Road vehicles – Controller area network (CAN) – Part 4: Time-triggered
communication.

138

[83] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Müller, I. Puaut, P. Puschner, J. Staschulat,
and P. Stenström. The worst-case execution time problem – overview of methods and
survey of tools. ACM Transactions in Embedded Computing Systems, 7(36):1–53,
2008.

[84] W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli. Extensi-
ble and scalable time triggered scheduling. In International Conference on Application
of Concurrency to System Design (ACSD), pages 132–141, 2005.

[85] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-Vincentelli. Definition of task
allocation and priority assignment in hard real-time distributed systems. In IEEE
Real-Time Systems Symposium (RTSS), pages 161–170, 2007.

[86] Q. Zhu, Y. Yang, M. Natale, E. Scholte, and A. Sangiovanni-Vincentelli. Optimizing
the software architecture for extensibility in hard real-time distributed systems. IEEE
Transactions on Industrial Informatics, 6(4):621–636, 2010.

[87] Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, and A. Sangiovanni-Vincentelli. Opti-
mizing extensibility in hard real-time distributed systems. In IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 275–284, 2009.

139

Own Publications

During working on this Ph.D. thesis, the following papers have been published. These are
directly associated to the focus of the thesis.

• F. Pölzlbauer, E. Brenner, and C. Magele. A transparent target function and evalua-
tion strategy for complex multi-objective optimization problems. In IEEE Real-Time
Systems Symposium (RTSS) – Work-in-Progress, pages 77–80, 2009

• F. Pölzlbauer, I. Bate, and E. Brenner. Efficient constraint handling during design-
ing reliable automotive real-time systems. In International Conference on Reliable
Software Technologies (Ada-Europe), pages 207–220, 2012

• F. Pölzlbauer, I. Bate, and E. Brenner. Software deployment for distributed em-
bedded real-time systems of automotive applications. In Embedded and Real Time
System Development: A Software Engineering Perspective: Concepts, Methods and
Principles, volume 520 of Studies in Computational Intelligence, chapter 12, pages
305–328. 2014

• F. Pölzlbauer, I. Bate, and E. Brenner. Optimised frame packing for embedded
systems. IEEE Embedded Systems Letters, 4(3):65–68, 2012

• F. Pölzlbauer, I. Bate, and E. Brenner. On extensible networks for embedded sys-
tems. In IEEE International Conference and Workshops on the Engineering of Com-
puter Based Systems (ECBS), pages 69–77, 2013

• F. Pölzlbauer and I. Bate. Methodology for priority assignment under backward-
compatibility constraints, 2013. Patent Application (Ref.ID GB1317489.1)

• F. Pölzlbauer. Building robust and extensible real-time system configurations – can
science meet industry’s demands? In 6th Symtavision News Conference, 2012

• F. Pölzlbauer and I. Bate. Configuring real-time systems. Virtual Vehicle Magazine,
11:26–27, 2012

• M. Driussi and F. Pölzlbauer. Towards an AUTOSAR system configuration frame-
work. ATZextra worldwide, 18(9):26–28, 2013

141

Appendix A

AUTOSAR

A.1 System Template

Table A.1: AUTOSAR system template requirements

Requirement Description

SYSCT 0002:
Basic Software Re-
sources and RTE Re-
sources

The System Template has to cover resource requests of the
basic SW and the RTE.
Resources of an ECU are, by their own definition, limited
(RAM, ROM, CPU time, etc.). Such limitations act as con-
straints during the mapping process.

SYSCT 0003:
The System Tem-
plate has to support
an iterative system
development

During the development of an AUTOSAR system, solutions
found in former steps of the system design process are them-
selves system constraints for the next system generation steps.
If new functionalities are added to a vehicle project in a late
development phase, the current mapping become itself a con-
straint for the mapping of the new SW components associated
with such new functionalities.

SYSCT 0007:
Mapping of Software
Components to ECUs

The System Template has to describe the mapping of software
components to ECUs. An optional mapping of software com-
ponents to individual processing units residing in one ECU
shall also be possible.
For safety reasons (or simply due to the experience) some
specific Software Components can run only on some specific
ECUs. Such ’pre-mapping’ is a constraint for the real mapping
process.

continued on next page

143

Table A.1: AUTOSAR system template requirements (continued)

Requirement Description

SYSCT 0008:
SWC Cluster

The System Constraint Description has to cover the clustering
of SW Components. SW Component Clustering means that
two SW Components cannot be divided and must be mapped
to the same ECU.
Due to performance requirements, to safe communication
requirements or simply to experience, some communication
paths must be prevented to be mapped onto an external bus.
Involved SW Components shall then be mapped together onto
the same ECU.

SYSCT 0009:
SWC Separation

The System Constraint Description has to cover the separa-
tion of SW Components. SW Component Separation means
that two SW Components cannot be on the same ECU.
Two redundant Software Components, implementing safety
critical functions, will not be mapped together on the same
ECU because of safety requirements (of course, redundancy
does not always imply SWC separation).

SYSCT 0010:
Exclusive Mapping of
SWC

The System Constraint Description has to cover the exclusion
of SWCs from one or more ECUs. ’Exclusion’ means that the
SWC cannot be mapped to the ECUs it is excluded from.
During the mapping process it can be useful to express that a
specific SWC cannot be mapped to one or more ECUs, based
on ECU properties.

SYSCT 0011:
Dedicated Mapping
of SWC

The System Constraint Description has to describe dedicated
mapping of SWCs to one or more ECUs. ’Dedicated mapping’
means that the SWC can only be mapped to the ECUs it is
dedicated to.

SYSCT 0013:
Topology

The System Template has to describe the topology of an EE
System.
Mapping of SW Components being tightly linked from a func-
tional point of view: the topology must then be known in order
to avoid too long data paths.

continued on next page

144

Table A.1: AUTOSAR system template requirements (continued)

Requirement Description

SYSCT 0015:
Bus bandwidth

The System Template shall support bandwidth calculation as
a constraint for the definition of the Communication Matrix.
Bandwidth is a limited resource, acting as a constraint during
the definition of the Communication Matrix. When defining
the Communication Matrix for mixed systems (AUTOSAR
and non-AUTOSAR ECUs), only one part of the Communi-
cation Matrix is freely configurable using the AUTOSAR pro-
cess. That means that the available bandwidth for the AU-
TOSAR system generator is limited by the non-AUTOSAR
part of the Communication Matrix.

SYSCT 0017:
Mapping of signals to
the same physical line

The System Constraint Description shall be able to describe
that a group of signals has to be sent via the same physical
line.

SYSCT 0018:
Mapping of signals
to different physical
lines

The System Constraint Description shall be able to describe,
if needed, that signals between ECUs are sent via different
physical lines.
To support hardware and information redundancy (as a mean
to support fault detection and fault handling). A mean to
guarantee the transmission of very safety critical data, is to
force the sending of redundant copies onto different physical
lines.

SYSCT 0019:
Mapping of signals
to a specific physical
line

The System Constraint Description shall be able to describe
that signals have to be mapped to a specific physical line.
Some signals have to be mapped to specific physical lines due
to e.g. special performance and/or safety needs.

SYSCT 0020:
Exclusion of signals
from a specific phys-
ical line

The System Constraint Description shall be able to describe
that signals have not to be mapped to a specific physical line.
Some physical lines can result unsuitable (too slow, unsafe
communication protocol, etc.) for the transmission of some
specific signals.

SYSCT 0037:
Timing properties

The System Template shall provide the means to describe the
timing properties of a systems dynamics, which are deter-
mined by the consumption of computation, communication,
and other hardware resources.
The description of timing properties in the System Template
is an essential prerequisite for the analysis and validation of a
systems timing behavior or its prediction early in the process.

continued on next page

145

Table A.1: AUTOSAR system template requirements (continued)

Requirement Description

SYSCT 0040:
Timing constraints

The System Template shall provide the means to describe the
timing constraints of a systems dynamics, which are deter-
mined by the consumption of computation, communication,
and other hardware resources.
The description of timing constraints in the System Template
is an essential prerequisite for the analysis and validation of a
systems timing behavior or its prediction early in the process.

146

	Abstract
	Glossary (Abbreviations, Symbols, Terms, and Definitions)
	Introduction
	Related Work & State of the Art
	Real-Time System Model
	Real-Time Task Model

	Real-Time Analysis
	Execution Time Analysis
	Response Time Analysis / Schedulability-Test

	Real-Time Scheduling
	Time-Triggered
	Event-Driven

	Priority Assignment
	Task Allocation
	Graph Theory
	Heuristics
	Meta-Heuristic Search and Optimization
	Alternative Formulation

	Automotive Standards
	CAN
	LIN
	FlexRay
	OSEK/VDX
	AUTOSAR

	Research Question
	Conclusion and Open Issues of State of the Art
	Hypothesis
	Research Questions

	Search Framework for Finding Optimal System Configurations
	System Model
	Limitations
	Extensions to Overcome Limitations

	Basic Search Framework – Simulated Annealing
	Accept Move
	Cooling
	Neighbour
	Cost
	Tabu Search
	Parameter Identification

	Extensions

	Configuration of Communication Infrastructure
	Introduction, Assumptions, and Definitions
	Frame Packing – Why?
	The Frame Packing Problem
	The Bin Packing Problem

	Literature Review Refinement – Frame Packing
	Summary
	Open Issues

	Optimized Frame Packing
	Trade-Off Optimality Criteria
	Heuristic for Optimized Frame Packing

	Experimental Evaluation – Frame Packing
	Test Case Generation Tool – GenFPP
	Test Cases & Evaluation Metrics
	Results
	Conclusions

	Including Frame Packing into System Configuration
	Complexity of Frame Packing Solving
	Cost-Function for Frame Packing Performance
	Experimental Evaluation
	Conclusion & Future Work

	Gateway Configuration
	Literature Review Refinement – Configuration for Multi-Bus Systems
	Including Gateway Configuration into System Configuration

	Conclusions

	Satisfying Design Constraints
	Design Constraints
	Literature Review Refinement – Constraints
	Approach to Satisfy Constraints
	Extending the Search Framework
	Cost Function
	Task Allocation & Message Routing
	Frame Packing
	Gateway Configuration

	Experimental Evaluation – Constraint Handling
	Test Cases & Evaluation Metrics
	Results

	Concluding Remarks
	Additional Applicability of Methodology

	Evolving System Configurations
	Automotive Product Development Process
	Scope & Outline
	Extensible Bus Configuration
	Problem Statement & Definition
	Literature Review Refinement – Extensibility and Robustness
	Strategy & Metric
	Solving Methodology
	Experimental Evaluation – Extensible Bus Configuration
	Concluding Remarks

	Extending Bus Configuration under Backward Compatibility Constraints
	Scenarios & Definitions
	Problem Statement
	Literature Review Refinement – Extend Bus Configuration
	Solving Methodology – Extend Frame Packing
	Solving Methodology – Extend Frame Schedule
	Experimental Evaluation – Extend Bus Configuration

	Concluding Remarks
	Outlook

	Conclusion
	Achievements
	Open Issues
	Future Research Directions

	List of Algorithms
	List of Figures
	List of Tables
	References
	Own Publications
	AUTOSAR
	System Template

