Igor Skori¢

Life-Critical Software Development and
Testing in the Automotive Industry

Master’s Thesis

TU

Grazm

Graz University of Technology

Institute for Software Technology
Head: Univ.-Prof. Dipl.-Ing. Dr.techn. Wolfgang Slany

Supervisor
Univ.-Prof. Dipl.-Ing. Dr.techn. Franz Wotawa

External Supervisor
Dr. Mihai Nica (AVL List GmbH)

Graz, September 2014

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly marked
all material which has been quoted either literally or by content from the

used sources.

Graz,

Date Signature

Eidesstattliche Erkliarung!

Ich erkldre an Eides statt, dass ich die vorliegende Arbeit selbststandig
verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und
die den benutzten Quellen wortlich und inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Graz, am

Datum Unterschrift

"Beschluss der Curricula-Kommission fiir Bachelor-, Master- und Diplomstudien vom
10.11.2008; Genehmigung des Senates am 1.12.2008

Acknowledgments

I would like to thank my supervisor Dr. Franz Wotawa for his remarks, his
engagement and guidance throughout the learning process that was the
creation of this thesis. I express my thanks to my external supervisor Dr.
Mihai Nica for interesting me in the topic, giving insight into his domain
and for his invaluable advice.

I do not have the eloquence to sufficiently describe my gratefulness towards
my parents, Jagoda and Sead Skori¢, who have given me everything that a
child could ever wish for and without whose unending love my beautiful
life and my academic journey would not have been possible. I send my
love and thanks to my sister Sanela for always being the crumb to my
cookie and bringing me joy since she was born. Furthermore, I would like
to thank Faruk Bajramovi¢ for being a true friend for longer than I can
remember. Finally, I would like to thank Barbara Reichhardt for being my
loving partner, supporting me in good and bad and putting up with me for
all these years. I love you all.

Abstract

This thesis aims to analyze the available literature about software devel-
opment and reliability in the automotive industry from the last five years
(2008-2013, first half of 2014). The goal is to give insight into the state of
the art, new developments and the general direction in which the industry
might be moving in the future.

The thesis is organized in four parts. Part I gives an insight into the situation
in the industry, the problems and the solutions that are being worked
on. Then, the methods used to gather and analyze the data are presented.
Part II seeks to reconstruct the development process that is being used
at different major automotive companies and to paint a picture of their
development process, future directions and challenges. Part III takes the
separate processes and consolidates them into one generalized process, then
identifies interesting methods that can be isolated from that and explains
them. It also rates the methods on their deployment status, source reliability
and evaluates if they can be classified into the categories of Prevention,
Validation & Verification or Prediction. Part IV finally concludes the thesis
with a recapitulation and personal insights.

The evaluation shows that the automotive industry is very advanced and
state-of-the-art in hyper-validated high quality software and continually
improving. It shows the ways that the companies use their prowess to lift
up supporting fields with transitive reliability benefits for the end product,
like thorough requirements management, traceability of requirements and
changes and efficient and effective testing efforts. It further shows that there
is clear consensus on the right direction for the future.

Zusammenfassung

Das Ziel dieser Arbeit ist die Erforschung und Analyse der verfiigbaren
Literatur der vergangenen fiinf Jahre (2008-2013, erste Hilfte 2014) zum
Thema der Softwareentwicklung und Softwarezuverldssigkeit in der Au-
tomobilindustrie. Der Zweck ist die Vermittlung des Standes der Technik
und neuer Entwicklungen. Es soll weiter eine Prognose iiber die zukiinftige
Entwicklung gestellt werden.

Die Arbeit besteht im Wesentlichen aus vier Teilen. Teil I gibt Einblicke
in die Situation in der Industrie und nennt Probleme und Losungen die
Anwendung finden. In Teil II wird versucht den Entwicklungsprozess in
verschiedenen Unternehmen zu rekonstruieren und darzustellen. Es soll
ein Bild des Entwicklungsprozesses und der damit verbundenen Proble-
me und Losungen entstehen. Aus den gewonnenen Einsichten werden in
Teil IIT Gemeinsamkeiten erarbeitet und zu einem Gesamtbild der Industrie
verschmolzen. Dazu werden interessante Methoden isoliert, erklart und
in einem einheitlichen Schema bewertet. Die Zuverldssigkeit der Quellen
wird genauso beurteilt wie der Grad der Umsetzung im Regelbetrieb. Die
Zugehorigkeit der Methoden zu den Kategorien Privention, Verifikation &
Validierung oder auch Voraussage wird entschieden. Zuletzt wird im Teil IV
die Arbeit zum Abschluss gebracht und personliche Eindriicke vermittelt.

Die Auswertung zeigt, dass die Autoindustrie sehr fortgeschritten ist, vor
allem im Bereich der Entwicklung von hochverifizierter Qualitdtssoftware
fiir Eingebettete Systeme. Ein kontinuierliches Streben nach Verbesserung
ist zu erkennen. Es wird gezeigt, wie die Entwicklung von Fahigkeiten
in diesem Bereich auch gleichzeitig den Ausbau unterstiitzender Felder
wie Anforderungsmanagement, Verfolgbarkeit von Anforderungen und
Anderungen und effektive Testmethoden vorantreibt. Weiter wird gezeigt,
dass es in der Industrie einen eindeutigen Konsensus tiber den besten Weg
in die Zukunft gibt.

Vi

Contents

Abstract

1.
2.

9.

Introduction and Preliminaries

Thesis Introduction

Preliminaries

Literature Review
Part Il Introduction
AUDI
BMW Group
Daimler AG
ZF Friedrichshafen AG
Siemens

Bosch GmbH

10. Volkswagen

11.Ford Motor Company

Vii

15
16
18
29
38
48
55
61
66

71

Contents

12. Toyota Motor Company 78
13. Other Companies 86
I11. Evaluation 88
14.Introduction 89
15. Requirements Management 93
16. Modeling and Simulation 96
17.Test Cases and Prototyping 99
18. Implementation 101
19. Component Testing 104
20.System/Integration Testing 107
21.Software Monitoring 111
22.Software Maintenance 115
23.Tool Overview 118
IV. Ending Remarks 120
24. Conclusion 121
Bibliography 130

viil

List

2.1.
2.2,

4.1.
4.3.
4.4.

5.1.
5.2.

6.4.

7.2.
7:3

9.1.

10.1.
10.2.
10.3.

12.1.
12.4.
12.5.
12.6.

of Figures

Simple V-Model Illustration [109] 8
Semantic Category Example 13
Functional Software Development Model at AUDI [134] . .. 19
Integrated Testing Framework [78] 24
Co-Simulation Platform 25

V-Model according to Bayrische Motorenwerke AG (BMW) [97] 30

Development Workflow at BMW [97] 31
. QTronic TestWeaver and Silver Testing Procedure [54] 43
Virtual Integration and Testing Platform [66] 44
ZF Friedrichshafen SoftCar (SoftCar) Architecture [102]. . . . 51
SoftCar and QTronic TestWeaver (TestWeaver) [102, 133] . .. 52
V-Model at the Robert Bosch GmbH [g6] 62
V-Model at the Volkswagen Group [5] 67
Model hierarchy at Volkswagen (VW) [5] 68
Development Tool Chainat VW [5]. 69
Toyota development process (Camry L4 2005) [11] 79
Toyota new development process [47] 83
Toyota model hierarchy [47], 84
Toyota accumulative coverage [47] 84

Part |I.

Introduction and Preliminaries

1. Thesis Introduction

In a time when the gap in manufacturing quality is closing, software com-
ponents have become an important distinguishing factor between differ-
ent brands and manufacturers and a competitive advantage. Not only
does software improve efficiency and monitoring, but software-supplied
or software-supported functionality is very important in customer-relevant
parts of products. It seems that the average computer user has become
accustomed to buggy software and receiving patches on a daily basis. This
kind of software release policy is absolutely unthinkable in safety-critical,
reliability-dependent applications like the automotive industry, where a
software failure may cost many lives and in one sweep destroy a company’s
reputation and finances. At the same time the industry is pushed towards
more complex software in their products, because software driven functions
are a major way of innovation.

The situation presents itself as a irresolvable dilemma: How to increase
functionality (and with it the complexity) of software while at the same time
keeping software bugs to a minimum? Some studies estimate the amount of
software in a modern car to 100 million lines of code (LOC) with an order of
magnitude growth per decade [27] (also cited by Bosch [1]). If that estimate
is correct, the current size would be about 500 million LOC. If only 1% of
that source code is in safety critical software, that would still leave 5 million
LOC of source code that needs to be as close to perfect as possible. For
comparison, the Linux Kernel - broadly considered to be a finely engineered
well maintained quality source code - has about 8 million LOC and had
3299 new medium and high impact defects identified in the year 2013
alone. Proprietary code seems to perform even worse on average [33]. To
expect a single company to outperform that metric by multiple orders
of magnitude using the same methods seems quite unrealistic. This is
why safety-critical applications have moved towards model-driven software

1. Thesis Introduction

development. It offers a level of abstraction that allows for less error-prone
software components that are easier to test and re-use and in some cases
even make it possible to prove the correctness of software components.

The automotive industry seems to have become a paragon of model-driven
state-of-the-art software development over the last few years, especially
the German premium vehicle manufacturers and their suppliers. Since the
German government made the V-Model mandatory for its IT projects in
2005 [69] it has gained traction in the industry and with it Model Based
Development (MBD). Armed with the necessary resources and stereotypi-
cally German engineering prowess it seems that the companies are making
this new model-driven process work. This begs the question: How do they
make it work? What are the best practices and the future prospects for
MBD? This thesis takes a look at the software development processes of a
handful of companies, including the big three premium consumer vehicle
manufacturers Audi, BMW and Daimler and attempts to provide an answer
to these questions.

1.1. Goals of the Thesis

The goal of this work is to give an overview of the relevant methods for
software reliability in the life cycle of automotive embedded software. This
task can be separated into items as follows:

e Overview and description of methods
e Classification of methods regarding

— State-of-the-Art vs. research
- Positioning within the V-Model
— Relevance for

x Prevention

Verification & validation
Monitoring

Prediction of reliability
Maintenance

S S

e Possibly Overview of relevant tools

1. Thesis Introduction

e Possibly statistics about software-induced failure

The individual points have found different levels of detail and certainty
depending on the degree of information found in the available document
collection.

Part II provides relevant information specific to an individual company.
Classification of State-of-the-Art vs. Research is done by separating methods
into the appropriate section within the company (State-of-the-Art is found
in the Recent History and Current State section, while Research is found in the
Future Directions and Challenges section). The relevant tools that the company
uses are mentioned within the explanation of the process.

Part III provides the positioning of methods into the phases of the V-Model in the
form of chapters. Overview and description of methods is given in a separate
section within the chapter for each method. The relevant tools are mentioned
as a comparison across companies.

Finally, a scoring system is applied that evaluates State-of-the-Art and Source
Reliability on a 5-part scale and the relevance for Prevention, Verification &
Validation and Prediction of Reliability as a binary value. For more on the
Rating system please see sec. 14.2.

Monitoring and Maintenance are given their own chapters in part III rather
than including them in the rating system. These two categories added little
benefit as a rating value for methods of other phases but stood naturally on
their own as a category.

1.2. The Process

As a first step, a literature gathering and data mining process is executed.
The process uses on-line digital libraries like SpringerLink [132] to collect
papers that fit selected criteria. Those papers are downloaded and processed.
This collection process continues on-demand in iterations throughout the
thesis creation whenever additional information is required. An explanation
of the details is found in chapter 2.

1. Thesis Introduction

Next, a review and analysis process is performed which aims to find in-
teresting documents, assign them to companies and identify connections
between them. Companies with insufficient information are pruned. Those
that remain are considered in separate chapters and presented in part II.
The goal is to merge the information from different sources in an effort
to create the best possible overview of the company. Every company is
given a short introduction in the first section of the chapter. Next, (provided
sufficient information) the relevant company structure and the complete
software development process for each company is explained. Each step
of the process (usually phases of the V-Model) is presented in separate
sub-sections. The section after that contains the research, future plans and
challenges of the company. Finally, available details about the authors of the
documents (only employees considered) are listed for reference.

In part III the separate companies are combined and a generalized process
based on the information from part II is created. This common process
again consists of the phases in the V-Model (used as a skeleton), which is
extended with two additional phases called Monitoring and Maintenance
and filled out with information on each phase in its own chapter. General
information on every particular phase is given at the start of its chapter.
After that, interesting methods in that phase are isolated and explained in
distinct sections.

Every Method is selected on the property that it can be reasonably cleanly
separated from other methods and that it represents an interesting aspect
worth exploring. It is then explained in general and sourced to the more
specific company methods from which it is generalized. Finally, it is rated
on different properties which are explained in section 14.2.

2. Preliminaries

This chapter contains an explanation of the process used to select, obtain
and analyze the source material used to create this work. At the beginning
of investigation, it was necessary to have an orientation phase and try
to identify a rough overview of the current situation. Because this is an
unusual domain for the author it was necessary to learn about the basics
first. Interesting points were the identification of major actors in the field,
the kind of information that is available and what the best practices are. This
was achieved by browsing the knowledge base and reading recent papers
while looking up any information that was not familiar.

A number of things seemed to stand out quickly:

e The V-Model XT was declared the official development model and
made mandatory for projects of the German government in 2005 [69].
This seems to be one reason for the broad use of it, especially in
German companies which seek to do business with the government.

e Adoption of Model Based Development (MBD) seems to be promoted
and/or accelerated by the use of the V-Model [68].

e Adoption of extensive multi-level iterative testing seems to be pro-
moted in part by the use of the V-Model

e German manufacturers publish large portions of information exclu-
sively in the German language and exclusively in German magazines,
presumably to slow down digestion from competition in the USA,
Japan and especially China

All of these points made it promising to focus on the German automotive
industry and offer companies from other geographical areas as a contrast.
Because the author is not hindered by the language barrier, the inclusion
of German publications makes for a potentially greater insight while not
exceeding the scope of a master’s thesis. Additionally, the decision made

2. Preliminaries

it easy to provide a guiding structure for the thesis, which the V-Model as
almost universally used process offered.

Following from the focus, the selection of companies was also made easier.
Germany hosts the biggest selection of premium vehicle manufacturers,
including most of the top contenders: BMW, Volkswagen Group (Audi, VW)
and Daimler AG. These are joined by three major automotive part suppliers
with good information availability (ZF Friedrichshafen AG (ZF), Bosch and
Siemens) and select major companies from other areas for a broader base
and contrast (Ford, Toyota). Putting these together results in the complete
list of companies included in this thesis (see chapter 3).

The majority of documents used were retrieved from the digital libraries
SpringerLink [132] and IEEEXplore [44] through the institutional access
provided by the Graz University of Technology to the author. Remaining
documents were gathered from miscellaneous sources like the ACM Digital
Library [31], company websites and conference proceedings.

2.1. The generic V-Model

The closest thing to a generic V-Model might be the V-Model XT that is
used by the German government and is maintained and developed by the
Industrieanlagen-Betriebsgesellschaft mbH (IABG) [69]. The first version
of this model was released in 1992 and it was continually extended and
improved since then.

On one hand, this model has the advantage of being publicly available and
free to use. On the other hand it is far too complex and partly out of scope,
because big parts of the specification deal with the relationship between
and responsibility of software development partners (OEMs and suppliers).
The most prominent part of the model (the name-giving V-shape) is also
the thing that was adapted broadly and is meant when the term V-Model
is used in the rest of this work. A simple version with the most common
features can be seen in fig. 2.1.

2. Preliminaries

Concept of Dperacil:ion

. -1 - an

Operations “er";'ﬁgt'“” Maintenance

] Validation
Project Requirements System
Definition and Verification
Architecture and Validation
Integration,]

Detailed Test, and Project
Design Verification Test and

Integration

Implementation

b
I

Time

Figure 2.1.: Simple V-Model Illustration [109]

In its most basic form the V-Model describes top-down design approach in
the beginning (left side, descending arm of the V) followed by implementa-
tion and then a bottom-up testing approach (right side, rising arm of the V)
with integration at the completion of each step. The current state is always
tested against the same level of definition on the other side of the V and
a failed test means that testing is interrupted, the error is found and fixed
on the left side and the process is repeated starting at the left side position
where changes have been made.

2.2. Keyword Selection

The selection of keywords used for document acquisition grew and changed
over time but can generally be reduced into a few notable categories.

e Catch all: Designed to target a set broad enough to include most of
the relevant documents and used early in the document gathering
to identify interesting features and serve as base for further, more

2. Preliminaries

specific, queries.
Examples: ECU, automotive, in the loop, maintenance, model based testing,
monitoring, prediction, reliability, requirements engineering/management,
(virtual) verification

e Technologies: Designed to target specific technologies that were iden-
tified as relevant or interesting. Most of these were used in manual
search but some have found entry into the main queries.
Examples: AUTOSAR, Virtuelle Absicherungsplattform

e German: Designed to include German versions of common terms used
in the relevant domain. This was necessary to leverage the advantage
from german documents mentioned at the beginning of this chapter.
Examples: wartung, voraussage, zuverlissigkeit, steuergeriite, anforderungs-
management, virtuelle Absicherungsplattform

2.3. SpringerLink

To find interesting documents on SpringerLink it was necessary to craft a
custom search string that was not possible to create with the search interface
exclusively.

First Query

Listing 2.1: First Query
("ZF Friedrichshafen" OR "Audi_ AG" OR "BMW_,Group"
OR "Siemens Automotive" OR "Daimler AG"
OR "Ford_Motor_ ,Company" OR "Robert_ Bosch" 0OR "Volkswagen"
OR "Volvo" OR "Honda" OR "Toyota")

This query aims to return all papers on the basis of the company name.
Ambiguous company names like Continental that could match terms like
“Continental Drift” or companies that have many divisions in different
domains are disambiguated (e.g. Siemens Automotive). To ensure exclusion
of absolutely unrelated papers the category filter was set to include only

2. Preliminaries

Computer Science and Engineering documents. Unavailable papers were ex-
cluded with the showAll parameter and the year range was constrained to
years from 2008 to 2013.

Listing 2.2: First Query Parameters

’showAll’: false

’facet-start-year’: 2008
’facet-end-year’: 2013
’facet-discipline’: ’"Computer+Science"’
’facet-discipline’: ’Engineering’

Second Query

The second query aims to replace the category filter with a keyword filter
to avoid excluding relevant papers that were assigned into another category.
The keywords contain English and German terms, because many relevant
documents are not available in English. Disambiguated company names are
used again. Finally, the term “ove” is excluded because of a large number if
one-page industry news documents from the OVE Nachrichten (OVE News)
organisation polluting the search results.

Listing 2.3: Second Query
("ECU" OR "requirements engineering" OR "in,theloop"
OR "model based testing" OR "requirements management"
OR "virtuelle Absicherungsplattform" OR "steuergerate"
OR "anforderungsmanagement" OR "virtual_ verification"
OR "wartung" OR "voraussage" OR "zuverl&assigkeit"
OR "maintenance" OR "monitoring" OR "reliability"
) AND ("ZF,Friedrichshafen"
OR "Audi_ AG" OR "Robert_ Bosch" OR "Siemens, Automotive"
OR "Daimler AG" OR "Fordg Motor, ,Company" OR "BMW_,Group"
OR "Volkswagen" OR "Volvo" OR "Honda" OR "Toyota")
NOT ove

Because of a large number of results, the year range is contracted to only
include years 2010 to 2013 for the second query.

10

2. Preliminaries

Listing 2.4: Second Query Parameters

’showAll’: false
’facet-start-year’: 2010
’facet-end-year’: 2013

Overlapping search results were overwritten because retrieved files have
unique names. Therefore, duplicates were automatically removed.

2.4. |IEEEXplore

At the beginning of document gathering the search queries used for IEE-
EXplore queries were still very undirected and unrefined. Among the first
queries that were used were many with a single search term and variable
time periods. Example queries from that time can be seen in listing 2.5.
These queries were directed at finding out which tools were used, a direction
that turned out to be less important later on in the thesis work.

Listing 2.5: Queries used at the start of document gathering

"AUTOSAR"

"automotivesoftware safety-critical"
"automotive software testing tool"
"safety-critical software development tool"
"safety-critical software tools"
"automotive software testing"

Directed Query

After a short time it was discovered that it is possible to search for author
affiliations for every document and enter a custom query with predefined
terms. This made it possible to craft very effective queries and avoid unnec-
essary noise.

11

2. Preliminaries

Listing 2.6: Refined query targeting affiliation
("Author Affiliations":ZF Friedrichshafen OR
"Author Affiliations":Audi OR
"Author Affiliations":BMW OR
"Author Affiliations":Siemens OR
"Author Affiliations":Daimler OR
"Author Affiliations":Ford OR
"Author jAffiliations":Bosch OR
"Author Affiliations":Volkswagen OR
"Author Affiliations":Volvo OR
"Author Affiliations":Honda OR
"Author Affiliations":Toyota)
AND software
AND (automotive OR monitoring OR maintenance OR predict OR predicti

This query was limited to the years 2010 to 2013. Documents that were
unavailable with the provided subscription (i.e. that were premium access
only) were ignored.

2.5. Other Sources or Queries

Other queries to either SpringerLink or IEEEXplore were made on demand
when the need arose to look up very specific documents or if it became
clear that certain aspects need further investigation. If other sources like the
ACM Digital Library or assorted websites were used to obtain supplemental
documents not available elsewhere, then a separate storage was used for
those as to keep everything in best possible order and to support refreshing
the collection at a later time if necessary.

2.6. Management of Document Collection

The large number of documents (over 3000) made manual organization
infeasible. A number of prominent software tools for document management

12

2. Preliminaries

2. REAL-TIME a

89% - (2012) Formalization and analysis of real-time requirements: a feasibility study at BOSCH by Post, Amalinda and
76% - (2011) rt-inconsistency: a new property for real-time requirements by Post, Amalinda and Hoenicke, Jochen anc
74% - (2010) Multi process real-time network applications in Distribution Management System by Dzafic, | and Neisiu:
73% - (2010) Hybrid Intelligent System for Driver Workload Estimation for tailored vehicle-driver communication and
73% - (2011) Asynchronous real-time framework for knowledge-based intersection assistance by Hulsen, M and Zollrn
68% - (2012) Using the traction drive as the sensor to evaluate and track deterioration in electrified vehicle gearboxes
64% - (2012) Towards parallel execution of IEC 61131 industrial cyber-physical systems applications by Canedo, Arquil
60% - (2013) Prioritization for real-time embedded systems on dual-core platforms by exploiting the typical-and wors
59% - (2010) Real-time semi-global matching on the cpu by Gehrig, Stefan K and Rabe, Clemens

58% - (2010) Efficient representation of traffic scenes by means of dynamic Stixels by Pfeiffer, David and Franke, Uwe

Figure 2.2.: Semantic Category Example

were evaluated and it was decided to use the tool Qiqqa (pronounced quicker)
by Quantisle Ltd. [83]. The complete document collection was imported
into Qiqqa for processing and evaluation. Qiqqa has multiple functions that
allowed for an efficient work flow.

The tools that were used for this thesis are:

e OCR to make text in pictures and scanned PDF documents searchable

e BibTeX Sniffer to obtain accurate document meta data and create
cross-references (e.g. other documents by this author)

e Duplicate Detection to find duplicates across source boundaries

e Tagging to assign documents to multiple groups

e Annotations like permanently highlighting words in a PDF with a vir-
tual text marker for easier navigation and understanding anddocument
annotations for indicating reading stage or importance of documents

e Semantic Analysis for grouping documents together based on the
themes (word groups) they contain (see fig. 2.2)

e Advanced Search with support for fuzzy matching (run, runs, ran,
running,...), proximity search (allows distance of X words between two
search terms), ...

All of these functions made it easier to work with a large collection.

13

2. Preliminaries

2.6.1. Tagging, Grouping and Cleaning

After all documents were imported, de-duplicated and generally cleaned
up, it was necessary to group related documents together. This was done
through the tagging system in Qiqqa. There were multiple types of groups
used:

Tag Pattern Meaning

C: [CompanyName] Directly connected to [CompanyName]

S: [CompanyName] References the company [CompanyName]
T: [ToolName] References the software [ToolName]

L: [Language] Is written in human language [Language]

Finding the appropriate documents to tag was made easier by search func-
tions like “search only on first page” to find affiliations. After the desired
tags were made the library was purged of untagged documents to mitigate
the impact of undirected search and addition from IEEEXplore mentioned
in section 2.4 and also from SpringerLink’s inability to search by affiliation
(e.g. hundreds of documents from people named after companies).

This left an ~650 documents in the library which grew to ~780 after mis-
cellaneous supplemental documents and on-line sources were added on
demand throughout the time of work.

14

Part II.

Literature Review

15

3. Part |l Introduction

Part II of this thesis serves to record the findings specific to each of the
companies that are included in it. The inclusion of a company is decided on
three factors. The first factor is the size of the company’s premium car sales
numbers and the second is sales and revenue in total. The third factor is the
degree of information volume in the available corpus. These criteria lead to
the following selection:

Audi AG (chapter 4)

BMW Group (chapter 5)

Daimler AG (chapter 6)

ZF Friedrichshafen AG (chapter 7)
Siemens AG (chapter 8)

Bosch GmbH (chapter 9)
Volkswagen AG (chapter 10)

Ford Motor Company (chapter 11)
Toyota Motor Company (chapter 12)
Other companies (chapter 13)

OY O T A~ »w NN R

uny

Provided that sufficient information is available the following structure is
followed for each chapter describing a company:

1. Introduction to the company (front matter): General information
about the company that serves to give a reader unfamiliar with it
an idea on factors like the size, location and business specialty.

2. Relevant Company Structure: Information on the organizational as-
pects of the company

3. Recent History and Current State: The development process at the
company is laid out and explained.

16

3. Part |l Introduction

4. Future Directions and Challenges: Methods and technologies that
the company has shown interest in pursuing, has done research on or
has expressed plans of implementing.

5. Sources at Company: A list of authors, their positions/departments
at the company and the references to sources they authored or co-
authored.

Chapter 13 contains methods that could either not be attributed to any
company or to one that has no chapter of its own. For this reason it does not
have any of the structure mentioned but is an exception that only contains
methods.

17

4. AUDI

Audi is the second best selling luxury car maker in the world [64] with 1.57
million cars sold in 2013 alone. The company is based in Ingolstadt and
almost exclusively owned by the Volkswagen Group (99.55%) [8]. It has
employed 71k people on average in the fiscal year 2013 [7].

4.1. Relevant Company Structure

Most of the publications of Audi are made by employees from the main
location of Ingolstadt. Departments seem to generally have their own devel-
opment engineers and teams (e.g. Powertrain [52], Chassis Electronics [125],
Electrical Engineering (EE) [140], Engineering Technology (ET) [134]) but
there is a separate department for shared resources like HiL test beds for
functional testing (e.g. Department EE-65 - Hil. functional testing).

There is also a number of documents originating from Audi Electronics
Venture GmbH (AEV) in Gaimersheim, which is only about five kilometers
away from Ingolstadt. This company is a wholly owned subsidiary of Audi
AG. It seems to have departments with multiple responsibilities like Tools,
Frameworks, Mobile Applications [101] or Modeling, Code Generation, Testing [50]
and work closely with Audi AG on projects [50].

4.2. Recent History and Current State

Audi uses the V-Model [68] that was developed by the German government
and is required for any of its projects [134]. This model is broadly used in
the automotive industry as the de facto standard[97, 3, 12].

18

4. AUDI

System [:
[testing] vihlcli_

Integration]
[testing J HIL

Module and { |
[cumpnnent testing] _———

| Reauroments |

Modeling
MIL and Simulation

Rapid Proto-
H"‘ |4[typing]

cadg-Rmeg [Implementation]’ SIL

PR S sl

Figure 4.1.: Functional Software Development Model at AUDI [134]

According to AUDI the relevant portion of the V-Model consists of 7 steps
which can be seen in figure 4.1 and which for the most part have clearly
associated testing methods of Model-in-the-Loop (MiL), Software-in-the-
Loop (SiL), Hardware-in-the-Loop (HiL), code-review and vehicle testing.

4.2.1. Requirements Management

The first step in the development process is the specification of requirements
for the module or component. For this purpose the software IBM Rational
Dynamic Object Oriented Requirements System (DOORS) is used [78].
Requirements can be entered manually but are also automatically generated
from imported test cases created in subsequent steps of the V-Model [78].

4.2.2. Modeling and Simulation

This step introduces models into the process and is the first defining step
required for Model Based Development (MBD) and Model Based Testing
(MBT). AUDI uses the modeling tool Markov Test Logic (MaTeLo) for behav-
ior models and MatLab/SimuLink (ML/SL) for component models [21].

19

4. AUDI

Behavior Models

Behavior models are used to generate test cases for the Extended Automation
Method (EXAM) framework [21]. Requirements can be imported from
DOORS and linked with the test cases. When test cases are exported to
EXAM this link is preserved and enables traceability throughout the test
cycle [94]. MaTeLo behavior models can be customized with profiles and
are combined with ML /SL models to act as a test oracle [94].

Component Models

AUDI uses ML/SL to create models of components and modules which
are broken down in elementary parts called functions. Those functions are
modeled to conform to the Model-Based Function Specification (MBFS)
standard independent of the used modeling tool. A database is maintained
which holds the MBFS models and the standardized (named) signals be-
tween them. The database facilitates sharing and reuse of functions and
signals [52].

4.2.3. Rapid Prototyping

To allow for frontloading of tests AUDI has commissioned the creation
of INCA SimuLink® Integration Package (INCA-SIP) (fig. 4.2) which is a
ML /SL toolbox that connects ML /SL to ETAS GmbH INCA (INCA) and
enables the validation, calibration and testing of ML/SL models in place of
real Electronic Control Unit (ECU) prototypes (see MiL) [52, 46].

4.2.4. Implementation

The implementation phase has lost on importance with the shift to MBD
because the actual source code is generated “almost automatically” [134].
As a result this step is now focused on techniques like code-review and
back-to-back testing of software components against models [134].

20

Function models
with MBFS blocks

4. AUDI

Audi-specific adaptation based
on modeling guidelines

MATLAB®/Simulink®

Integration of INCA and
MATLAB®/Simulink®.

Automatic generation of standard
ECU description and calibration data

| —|

Parser/Generator

-0

Communication
Process

INCA-SIP

Standard MathWorks API

Communications via XCP
standard protocol

INCA

Figure 4.2.: lllustration of INCA-SIP architecture [52]

21

4. AUDI

4.2.5. Module and Component Testing

Module and component tests are performed with Sil. simulations. First,
EXAM test cases are imported from MaTelo, checked and corrected in the
EXAM Modeler (if necessary) and optionally supplemented with additional
(manual) test case definitions [94]. Next, the test suite is performed, test
reports are generated and any tests that fail are investigated. Continuous
traceability ensures that every failed test can be traced to the original
requirement that it seeks to fulfill and/or model that it was generated from.
After either the component model, the behavior model or the requirement
definition is corrected, the changes are propagated to subsequent steps and
the test suite is executed again. This process is repeated until all tests pass
successfully [94, 140].

4.2.6. Integration Testing

In this step the software is transferred to a prototype ECU and installed into
a HiL test bed. This allows the connection of the ECU to other components
which can be real hardware parts or can be simulated themselves [134].
The system behavior specification and system simulation is performed
with Berner & Mattner Modena (MODENA) [78]. The same testing loop as
explained in 4.2.5 is performed except in this step HiL is used instead of
SiL.

Types and Amount of HiL in Use

AUDI uses three different sizes of HiL test beds. There were approximately
150 Single-Hil, 20 System-Hil. and 15 Network-HiL in use in 2012 [15].

4.2.7. Systems Testing

The final step in the development process is testing of a ECU prototype in
an environment simulator and then in a real prototype vehicle. Audi has an

22

4. AUDI

environment simulation platform called Virtual Test Drive (VID) that can
replay test drives but can also make those configurable through parameters
that change the weather and other environment variables. Additionally, it
was extended to include a traffic and environment simulation [100, 99].

4.2.8. Integrated Testing Framework

The Extended Automation Method (EXAM) used at AUDI is part of the
Integrated Testing Framework (ITF) (tig. 4.3) concept. The ITF is designed
to be modular and all components have to be implemented on the basis
of a rich client platform. AUDI reported in 2009 that the ITF is headed for
deployment to many different companies throughout the Volkswagen (VW)
Group [78].

The actual tools being used for the general areas named in figure 4.3 at
AUDI are:

Modeller: MaTel.o and EXAM Modeler
Generator: MaTelo

Analyser: MaTelLo

Requirements management system: DOORS

4.3. Future Directions and Challenges

Audi has set sights on improved simulation precision and reach, hetero-
geneous simulation on a shared platform, easier deployment and better
traceability of product changes in development and research into formal
methods to support the current development and testing techniques.

4.3.1. Expansion of Simulation Capabilities

The vision of AUDI for the year 2020 is to expand the detail and extent of its
simulation and testing equipment [15]. The dominant themes seem to be:

23

4. AUDI

Integrated Testing Framework (ITF)

Modeler
Strategies U= =l EXAM Modena
Usage models
Overlap F I . -
Statistics N PR s .| System behavior
- > Generator |« 1 Specification [*—| specification
Target Test case generator .
Soiera Automatic test System simulation
Analyzer execution
Test drivers
Test campaign analysis Result reports
-~ -~
.| Requirements |
| Management [
Systermn

Figure 4.3.: Integrated Testing Framework [78]

¢ Intensify front-loading: Move methods to earlier steps wherever pos-
sible. (for example use SiL. where currently HilL is required)

e Increase model complexity: More detailed models offer better repre-
sentation of the real subjects.

e Simulate more entities: Infrastructure, Traffic and others.

4.3.2. Co-Simulation Platform

Wholly owned AUDI subsidiary Audi Electronics Venture GmbH is re-
searching a different approach to entire-system simulation. In this approach,
the integration of models is tool-agnostic. Models simulated in different
tools are encapsulated and managed by the platform (figure 4.4). Vali-
dation was done on real vehicle test drive data. A complete model of a
vehicle was implemented and a entire-system simulation was successfully
performed [101].

24

MATLAB/Simulink

Transnussion || Electromotor HV battery Cooling cycle
I I F 3 ¥ 3
| — e I I L e e
Y Y Y Y
Co-stmulation platform
I 3 I 3 F 3 ¥ 3
1= === -T—-——--- (I R -Fr---—--=-—-=-=--- -] ==- P === 1--
1 Y 11 Y Y ' Y 1
1 _1 _ _ [- R Y L. . (- 1
'| Coolingauw |+ 1| Cabinheater Alr conditioning | 1 ! i
1 [: 1 :
| - . | | 1
i Kuli Lo Dymola Lo |

Figure 4.4.: Co-Simulation Platform

4.3.3. Runtime Configuration of Measurement

AUDI is using Universal Measurement and Calibration Protocol (XCP) in
pre-series development as a means to reduce the complexity of testing by
reducing the required software modification between development and
deployment. By using AUTomotive Open System ARchitecture (AUTOSAR)
an XCP configuration can be automatically generated. Afterwards, the ECU
can be flexibly used without code modifications or dynamic code injection
(memory issues) [26].

This approach can enable on-line monitoring and variable manipulation,
thus allowing for fast test case set-up without overhead. It further decreases
the required bandwidth and buffer space for monitoring by allowing con-
stant data flow between the monitored components and external logging and
debugging applications (transmitting buffer contents and freeing buffer) and
configuring the monitoring at runtime to filter for interesting values [26].

Other possible uses of XCP are Software-implemented Fault Injection
(SWIFI) (by writing faulty values to variables at a certain time) and tracing

25

4. AUDI

of ECU events by attaching data aquisition (DAQ) events to them (task
traces) [26].

4.3.4. Petri Nets and Logic of Action

There have been efforts at AUDI to create a “formal approach to verify
predefined causal dependencies in the test cases” [134] of EXAM that
is based on Logic of Action (LA) and Petri nets. The efforts have been
successful in multiple case studies and show significant improvements in
test case quality and cost of testing. The engineers were able to scale the
method up to 10k steps without problems. There are no known limitations
on the kind of test cases that can be converted in this manner [134].

4.3.5. Business Rule Ontology

For the formalization of expert knowledge Audi has contributed 1.3 mil-
lion € to the ONTORULE project for the development of a Business Rule
Management System (BRMS) based on domain ontologies [121]. This allows
experts to create and maintain references between text documents and busi-
ness rules. It also allows the annotation of documents with references to
the ontology and automatic retrieval of text passages that are relevant to
concepts [108, 123, 121].

4.3.6. Multiple Functions on same ECU

Audi performed a case study in which ways to operate functions of different
Automotive Safety Integrity Level (ASIL) levels on the same ECU were
researched (fig. 4.5). The experts were successful with ensuring 1SO26262
compliance of a mixed-level ECU by using a combination of multiple ap-
proaches [125].

The first piece of the given solution is distributing the execution of tasks with
high ASIL level and long execution time over multiple periods that still finish
within the cycle time deadline but give smaller tasks the potential to "fit

26

4. AUDI

ASIL-A application

QM application

ECU1

|

QM application

ASIL-B
application

ECU2

ASIL-C
application

|

Qam

ECU3

Homogeneous safety requirements

Figure 4.5.: Multiple ASIL levels on one ECU

ASIL-C
application

QM

ECU

Mixed criticality

between” the execution periods. The second one is using AUTOSAR timing
protection with Criticality Aware Priority Assignment (CAPA) scheduling
to alleviate the absolute need to avoid criticality inversions (e.g. lower level
task interrupts higher level task) because that interruption can be managed
by the timing protection mechanism [125].

4.4. Sources at AUDI AG

e DI (FH) Johann Gabler [52, 53] (Ingolstadt)
works in the Development Area for Rapid Prototyping Tools in the
Software and Function Development Section for Powertrain

e DI Daniel Kéhler [52] (Ingolstadt)
is Project Manager and Function Developer in the Software and Func-
tion Development Section for Powertrain

e Gerhard Kiffe [78] (Ingolstadt)
is responsible for testing, test methodology and test automation on
HiL-simulators

e Sebastian Siegl [78] (Gaimersheim)

27

4. AUDI

is PhD student developing model-based methods for functional vali-
dation (2009)

Florian Netter [101] (Gaimersheim)

Tools, Frameworks, Mobile Applications

Sebastian Thiel [134, 140] (Ingolstadt)

Department I/ET-84 (2011)

Department I/EE-65 Hardware-in-the-Loop functional testing (2010)
Frank Derichsweiler [134] (Ingolstadt)

Department I/EE-65 Hardware-in-the-Loop functional testing
Dirk Zitterell [140] (Ingolstadt)

Department I/EE-65 Hardware-in-the-Loop functional testing
Maximilian Miegler [95, 99] (Ingolstadt)

Department I/EE-65 Hardware-in-the-Loop functional testing
Mirko Nentwig [95, 99, 100] (Ingolstadt)

Department I/EE-65 Hardware-in-the-Loop functional testing
Peter Rosina [108, 123, 121] (Ingolstadt)

Department I/ET-81 (2012)

Dr. Karsten Schmidt (Gaimersheim) [125]

Responsible for Autosar and Architecture

Markus Buhlmann (Ingolstadt) [125]

Team Leader Software and Drive Dynamics

Chassis Electronics Development Division

28

5. BMW Group

Bayrische Motorenwerke AG (BMW) is the best selling luxury car maker in
the world [64] with 2 million cars sold in 2013 and a workforce of 110k at
the end of the year [18]. The company and is based in Munich (Germany)
but its production is distributed to more than a dozen of sites [19].

5.1. Relevant Company Structure

Relevant BMW publications almost exclusively originate in Munich, which
is to be expected. The declared association of employees often does not state
their department within the company but rather the project and team they
are assigned to or responsible for. This seems to be a common theme for
BMW and might hint at the way the company works internally as well. An
example of a project centered around a product or functionality is the VAP
project.

One thing that seems to come up often when referring to departments is the
occurrence of the word development (e.g. Development Department of Driver
Assistance and Active Safety [2], Mechatronic Development Department [82],
Department of Interior Development [82], Department of Electronics Develop-
ment [82]). Unfortunately, this does not lead to a clear conclusion about the
structural meaning of this use. One thing that is expressed clearly is that
the field of simulation is contained in the IT department [91].

29

5. BMW Group

v

Analysis \ €
Test

Design

Implementation

Figure 5.1.: V-Model according to BMW [97]

5.2. Recent History and Current State

The development process at BMW is based on the V-Model (see fig. 5.1)
which was modified and extended to conform to the AUTOSAR paradigm
of function-based development. This is in contrast to the classical process of
Electronic Control Unit (ECU)-based development. [97]

This model is split into four phases called Analysis, Design, Implementation
and Test.

5.2.1. Analysis Phase

The analysis (of requirements) is done with a software development pro-
cess in mind. This analysis takes two documents as input. One document
(called Requirement Specification Function) contains the functional require-
ments for the vehicle user (to e.g. accelerate the vehicle). The other document
(called Requirement Specification Control Unit) contains technical requirements
(e.g. sensors and actuators). These inputs are merged to produce a number
of entries in a IBM Rational Dynamic Object Oriented Requirements System
(DOORS) database. These entries (informally, but in great detail) describe
functionality which is independent of the used hardware and can be reused
for other vehicles in the future.

30

5. BMW Group

Doors VSA

Requirement \ [d l = .
Specification 5 = , (=N
Control Unit Analysis — (= — IL — =

Doors Software
é / Requirement Component

Specification Description
Function

Requirement
Specification
Function

k] 5
S~ B — e — B

Software C Code of

Component Software
Description

Test Protocols

Component
(generated)
S TcEd AUTOSAR
ASCET Test

Tool Set Environment

Figure 5.2.: Development Workflow at BMW [97]

The kind of functionality that the typical customer can notice (see, feel,
understand, recognize) is developed in-house at BMW, because that kind
of functionality greatly influences the impression and product experience
of the customer and facilitates the differentiation from other brands. An
example of this would be the cabin controls and displays, scheduling of
convenience tasks (keeping headlights on for seconds after locking, remotely
turning on auxiliary heating in the winter,...) or even the behavior of the
vehicle itself. Counterexamples could be “under the hood” behaviors like
the type of Real-Time Operating System that is being used or the protocol
used for car-to-car communication.

At this point all the interfaces of the functionality are already defined
through the signals used in the requirements specification [97].

31

5. BMW Group

5.2.2. Design Phase

The design phase is centered around Model Based Development (MBD) in
AUTomotive Open System ARchitecture (AUTOSAR). Every body function
that is relevant to the user is modeled in a single atomic AUTOSAR com-
ponent. BMW uses the AUTOSAR enabled tool Vehicle Systems Architect
(VSA) by Mentor Graphics for this task. This tool supports enforcing the
adherence to the fixed syntax of AUTOSAR and offers plausibility checks.
The output file is a standardized AUTOSAR XML (ARXML) file that is to be
used as input for the Advanced Simulation and Control Engineering Tool
(ASCET). The defined artifacts are either interfaces or runnables [97].

Interfaces are groups of signals. They use either asynchronous messaging
similar to events or synchronous client/server communication similar to
Remote Procedure Calls(RPCs). Runnables are internal behaviours (what that
component actually does in the end) of the component that are set up in this
phase (as place-holders) but definitively modeled in the implementation
phase (section 5.2.3) [97].

One essential decision in this phase is the partitioning and correct assign-
ment of behaviours to runnables. This is presumably mostly the weighing
of alternatives and proper componentization [97].

5.2.3. Implementation Phase

The ARXML file generated in the design phase (section 5.2.2) is imported to
the ASCET software produced by the company Engineering Tools, Applica-
tion and Services (ETAS). ASCET extracts the complete AUTOSAR infor-
mation and makes it available in its own model editor. The behavior that
was informaly described in the analysis phase and assigned to runnables in
the design phase is now formally modeled (e.g. data flow diagrams or finite
state machines(FSMs)) using the AUTOSAR information from the ARXML
and grouped together. The result of this are (a-/synchronous) AUTOSAR
interfaces [97].

ASCET generates source code in The C Programming Language (C) out
of the models, which is then compiled and linked with conventional tools

32

5. BMW Group

inside a AUTOSAR test environment like Berner & Mattner MESSINA
(MESSINA) that provides the so called Single Sided Run-Time Environment
(RTE) for AUTOSAR [97].

5.2.4. Test Phase

In this phase tests are performed that seek to verify the software component
(SWC) against the requirement specification. This is done by using the
AUTOSAR interfaces of the SWC. Test cases are created which aim to
simulate inputs to the AUTOSAR interfaces and verify the correctness of
the outputs produced by the SWC. The internal behaviors of the SWC are
not checked directly, only trough the interface responses. This approach
makes the testing process a typical black box test [97].

The tool used for creating test cases is an internal editor of BMW called Test
Case Editor (TcEd). TcEd can also import the ARXML file and provide the
contained information as artifacts, similar to ASCET. This makes it easier to
accurately model the inputs and expected outputs of the SWC [97].

5.2.5. Virtual Validation Platform (VAP)

The Virtuelle Absicherungsplattform (VAP)' is a system consisting of con-
sumer grade PC hardware with x86 architecture, the Linux kernel and
the Xenomai Real-Time Operating System (RTOS). It is used in every
phase of the V-Model except analysis and hardware integration testing
(see fig. 5.3) [87].

Before development the VAP can be used to validate base software (BSW)
stacks by using known ECUs and the VAP making the BSW the only
unknown component. This is done by abstracting away the controller hard-
ware and letting the SWC and BSW (like AUTOSAR or Geneva In-Car
Infortainment (GENIVI)) run on the abstraction layer instead of real hard-

ware (fig. 5.4) [87].

'virtual validation platform

33

5. BMW Group

VAP for qualification of
BSW stacks

(Autosar, Genivi)

Preparation

VAP as reference

platform for reusability
of functional software

Figure 5.3.: VAP in the V-Model [97]

VAP
Functional Software
swc SWC
(Autosar) (Autosar)
C-Code C-Code
RTE

Base-Software
e.g. Autosar, Genivi

VAP Microcontroller Abstraction

Universal VAP-HW
Architecture: x86

OS: Linux/Xenomai (Realtime)
BUS: CAN, LIN, Flexray, Ethernet
1/O: Digital, PWM, Analog

B e

Figure 5.4.: The system under test (SuT) (grey) and the VAP-specific parts (blue) [97]

34

5. BMW Group

During the development the VAP can be used for virtual validation (front-
loading) of the ECU and distributed functions, during implementation it
can be used as a reference platform [87].

Goals of the VAP

One goal of the VAP is to decouple the development and testing of a SWC
from the particular piece of hardware that it is meant to run on. This allows
for frontloading of development and validation with a multitude of positive
effects like cost reduction, faster completion, easier re-usability and more
mature software [87].

Another goal is to validate BSW stacks on a reference platform. For this
process the VAP is loaded with a reference SWC created for compliance
testing together with the BSW under test. In this way the BSW can be
evaluated. One application of this is to provide ways for suppliers to prove
AUTOSAR compliance of their BSW.

The VAP software

The VAP software suite is based in the Provetech Tool Suite by the MBtech
Group, particularly the tool Provetech:RP which was extended to include
an AUTOSAR compatible RTE which in turn enables it to run AUTOSAR
software components. Additionally, a complete AUTOSAR software stack
called Volcano VSTAR by Mentor Graphics was integrated (fig. 5.5). Other
required software like code generators were developed together with both
companies. The configuration of tools and hardware is done in AUTOSAR
compliant configuration files. [87]

The VAP tools

Development on the VAP is done with the Volcano VSX Tool Suite by Mentor
Graphics which includes the AUTOSAR authoring tool Vehicle Systems
Architect (VSA), the ECU configuration tool Vehicle Systems Builder (VSB)
and code generators included in the VSTAR module (see fig. 5.5).

35

5. BMW Group

VSA vsB VSTAR S £
Software and ECU- BSW and Se 3
systemdesign | configuration | generators ‘>”>< z 3

s

Sphinx/Artop-Infrastructure

Eclipse

Figure 5.5.: VAP software and tools [87]

The VAP and Environment Simulation

The VAP can be connected with a complete environment simulation platform
based on CarMaker (CM) which enables the simulation of a test drive
complete with roads, pedestrians, traffic, maps, GPS and so on [88].

5.3. Future Directions and Challenges

BMW sees the future in function-oriented instead of ECU-oriented devel-
opment. One reason for this is the steady increase of different applications
for software in the vehicle, all of which would need their own ECU. The
current situation is that about 200 ECUs would be needed, which is seen as
an unmanageable amount. In the function-oriented perspective, multiple
functions can be combined in the same ECU [97].

5.3.1. Progress of the VAP

It seems like the VAP is here to stay and that it will continue to improve
and gain in features and stability. One thing that is definitely planned is the
consolidation of the VAP and the CM platform. This is seen as logical next

5. BMW Group

step, because both platforms run on the same hardware and software [88,
last paragraph].

5.3.2. Diagnosis Function Improvement

BMW is analysing data sent back from incidents that come in for repair to
improve the diagnostic functions used in-field by their cars, which make up
about 40% of total software in the vehicle. This data is about 5 gigabytes per
day and requires techniques commonly used for for big data and statistical
processing to process. The goal for the future is that this diagnosis should
be integrated with development efforts and to create a closed-loop fully
automatic diagnosis feedback process [79].

5.4. Sources at BMW

e Robert Siwy [97] (Munich)
Software Development Engineer (2013)
Responsible for creation of ASCET models of chassis functions and
their integration in ECUs. Responsible for concept and realization of
model library. (2006 [124]).
e Dr. Ing. Marcus Martinus [88, 87] (Munich)
Teamleader Software Integration and Virtual Verification (2013)
Projectleader Virtuelle Absicherungsplattform (VAP) (2012)
e DI Markus Deicke [39] (Munich)
PhD student working on Virtuelle Absicherungsplattform (VAP)
e Jens Kohl [79] (Munich)
Validation & Verification System Functions
e Agnes Kotucz [79] (Munich)
Diagnosis After Sales
e Johann Prenninger [79] (Munich)
Diagnosis After Sales

37

6. Daimler AG

Daimler is the third best selling luxury car maker in the world [64] with
1.56 million units sold in 2013 but also a major truck maker in the global
market with 484k units sold [37].

Daimler has a workforce of 274k employees in total and g7k in the lux-
ury car division. The company headquarters are based in Stuttgart (Ger-

many) [37].

6.1. Relevant Company Structure

Most of Daimler publications seem to originate from Sindelfingen (company
headquarters) and Boblingen, which turns out to be only a few kilometers
away from Sindelfingen and house the main location for body construction.
Both locations seem to house a part of the division Group Research and
Advanced Engineering (GRAE) to which most relevant documents are at-
tributed. GRAE has multiple departments (e.g. E/E-Architectures & Standards),
teams (e.g. E/E-System Design and Applications) and projects (e.g. model-based
AUTOSAR-Toolchain) [93, 92].

6.2. Recent History and Current State

Daimler uses a customized version of the V-Model for Model Based Devel-
opment (MBD) of software for safety-critical functions (fig. 6.1) [92, 93]. For
this purpose, Daimler divides the V-Model into seven phases of 4 phase
types (bold) [92]:

38

6. Daimler AG

System
System <« test cases > System
specification integration
e :
4 Interface Integration test
Mode- QY (ele =] test cases Soft OEM
lin test owaie
OEM . integration SubDli
Module test upplier
Supplier Model g Software
implementation module test

Code generation

Figure 6.1.: The V-Model used at the Daimler AG [92]

System Specification
Modeling and Model Test
Model Implementation

Code Generation

Software Module Test
Software Integration and Test
System Integration Test

RAEESARLIE ol o

6.2.1. System Specification

The specification of the system is done in a textual representation at Daimler.
This textual representation is the only reference artifact for the rest of the de-
velopment life cycle (Single Source Principle). This has the advantage that all
requirements are available before any part of the software component (SWC)
is developed [92]. The tool used to create this textual representation is IBM
Rational Dynamic Object Oriented Requirements System (DOORS) [110].

39

6. Daimler AG

6.2.2. Modelling and Model Test

All models are created with the AUTomotive Open System ARchitecture
(AUTOSAR) standard in mind. Daimler uses MatlLab/SimulLink (ML /SL)
for model development. The created models are tested based on a test plan.
Test cases are created which consist of the input and the expected output of
the system under test (SuT). If the expected output is not produced, the test
case has failed [92]. The software used for test creation and management
includes Berner & Mattner TESTUS (TESTUS) [126] and QTronic TestWeaver
(TestWeaver) [54].

Daimler has developed a number of dynamic test methods for the func-
tional validation of models. These include the Classification Tree Method
(CTM/ES), Time Partition Testing (TPT), Model Based Testing (MBT), struc-
tural coverage criteria and back-to-back testing [92].

6.2.3. Supplier Handover

After testing is completed models are transferred to the supplier together
with the system specification, the test plan and the implemented model
tests. The supplier has the responsibility to perform Model Implementation,
Code Generation, Software Module Tests and Software Integration together with
the base software (BSW). This responsibility ends only after the Electronic
Control Unit (ECU) is finished and Daimler can take over again to perform
component, system and integration tests [92, 93].

6.2.4. Component, System and Integration Tests

After receiving the finished component, the Original Equipment Manufac-
turer (OEM) is in a difficult situation. The ECU is only available in hardware
with pre-compiled software binaries. Software sources or models are not
available and Software-in-the-Loop (SiL) tests can not be performed. The
ECU software can not be tested and validated without hardware depen-
dencies and real-time constraints in this situation. Reverse engineering

40

6. Daimler AG

efforts would need to be employed which are error prone, unreliable and
expensive [90, 54].

TriCore Simulation

Daimler has solved the problem in part by simulating the ECU hardware, in
particular the TriCore processor. The company QTronic has extended their
software QTronic Silver (Silver) to execute binaries that were compiled for
the TriCore processor on a simulated CPU and enable the binaries to be run
without the target hardware being available. An additional advantage of
this approach is the possibility of (much) faster than real-time simulation of
test runs.

Silver not only performs the simulation of the processor but simulates
the communication of the ECU with other components and software as
well (fig. 6.2) [90]. This allows for virtual calibration and measurement of the
simulated ECU with Universal Measurement and Calibration Protocol (XCP)
over Car Area Network (CAN). It does have it’s limitations, however [89]:

e instruction accurate, but not cycle accurate: cannot predict
exact execution times

e based on TriCore and PowerPC specification: “silicon bugs’
are not simulated

e on chip devices not modeled: cannot run basic software,
such as device driver

6.2.5. Software-in-the-Loop Testing

The first cycle of testing is executed on virtual ECUs being simulated in
Silver. The test process is managed by TestWeaver which offers the option to
either replay sequences of input values from pre-recorded vehicle test drives
or generate them on its own given the available input variables. The second
mode also offers state space exploration (e.g. tries to include all possible
gear shifts) and failure state induction (e.g. tries to drive the system into
states that violate system requirements) [54].

41

6. Daimler AG

SIMULINK

Enabled Ascet

Embedded Coder
Simulink/TargetLink
Handcode

MathiWorks Partner

control software tasks
fix-point C code
one function per task

flash || sched-

TriCore and
PowerPC
emulation

Autosar Builder or

Ioérl\zesrlel\'ﬂl enabled measurement and
calibration with

control

software

CANape or INCA

scale
range

uler
to run

configurable GUI

1 TCP/IP

check || tasks
Silver _
) DBC
attach to - d FMI Sfunction or DLL CAN
c1C Dymola, AMESim MATLAB rapid
— ++ SimulationX IATL rototypin
PDB tdEb“g t test t MapleSim, ... t Simulink prototyping
code coverage
£ :- L — -
. — MDF !}
e DAT
csv mdl

Figure 6.2.: QTronic Silver Architecture [75]

The test suite may execute on a single instance or on multiple instances of
virtual ECUs simultaneously (e.g. variants) and several times faster than
in real-time (fig. 6.3). While tests are running, data is being recorded in
the software tool Vector Informatik CANape (CANape). This data allows
for statistical analysis of conditions that are marginally defective and may
signal a future problem [54].

6.2.6. Hardware-in-the-Loop Testing

After the component has passed SiL testing it moves on to Hardware-in-the-
Loop (HiL) testing. Daimler uses HilL test-beds by dSPACE GmbH and the
automation software Provetech-TA by MBTech [126].

42

6. Daimler AG

Test
specification

1

Generation of
driving scenarios

TestWeaver

: Driving scenarios to replay

: Desired test coverage

: Variables to vary (e. g. accel pedal)

: Variables to measure (e. g. shift duration)

including good-bad classification
(e. g. “long shift duration = bad")

)
report

Analysis of
suspicious gear shifts

Replay of Automated construction,
Kiasurernent p measured or efecu;\untand %ood—bad
of driving scenarios FIVing Scenanos classification o
driving scenarios

with speed
and road profile
=P yes3
—
Vehicle :
simulation Silver,
XCP

for 200 variants on PC
Measurement and

calibration on PC

CANape

Analysis of
gear shifts
“data mining”

lCANape
Analysis and optimisation

of suspicious gear shifts Test

— report

~Aw_, - [

—

Real vehicle

Figure 6.3.: QTronic TestWeaver and Silver Testing Procedure [54]

6.3. Future Directions and Challenges

The future for Daimler seems to contain a move to improved virtualization
through their Virtual Integration and Testing (VIT) platform, which is being
developed and improved at the moment. Further improvements in the
analysis and management of requirements are on the way, which primarily
serve the relief of an expert bottleneck and increased efficiency. Finally,
software quality is the continued target of efforts which might be helped
with the use of constraint solving techniques.

6.3.1. Virtual Integration and Testing Platform

Daimler has executed a pilot project together with dSPACE GmbH which
seeks to create virtual ECUs that behave identical to hardware ECUs. They
communicate over the same protocols as hardware ECUs and can be tested
and deployed without any modification [67].

43

6. Daimler AG

Generating V-ECUs Test automation Test system control
with TargetLink
and SystemDesk l

|

Function developer HIL tester

Figure 6.4.: Virtual Integration and Testing Platform [66]

This project is called Virtual Integration and Testing (VIT) and its main
component is the VEOS simulation platform together with TargetLink and
SystemDesk for model generation (fig. 6.4). All of these are produced by
dSPACE GmbH [67] and only support Windows OS [43].

VIT seems to compete with Silver as they have significant functionality
overlap. It is possible that Daimler seeks to replace Silver. Reasons for the
move might be the shortcomings of Silver listed in section 6.2.4 [67].

6.3.2. Review with Categorized Requirements (ReCaRe)

The reviewers at Daimler often have to manage huge document collections
when reviewing specifications. Combined with referenced documents the
specification material can add up to over 3000 pages [110]. This amount of
information is not well suited for manual human processing which is why
it is usually assisted by software. This is however not always trivial. The
mentioned documents are authored in natural language, which computers
are not well suited to process.

The biggest problem this vast document collection poses, is the loss of
overview for the reviewer. This leads to holes in specification and coverage,

44

6. Daimler AG

Requirements Additional
Specification Documents

Constraints /

Requirements Requirements

[ERN
N

Topic Landscape
Cree 1]

| Temperature || | Test | | | Voltage | 3

For Review

Il

Figure 6.5.: Review with Categorized Requirements (ReCaRe) Illustration [110]

overlapping or contradicting specifications and wasted time and resources
both for the reviewer (slow progress) and the developer (additional itera-
tions).

Daimler has conducted an evaluation of Natural Language Processing
(NLP) methods to help ease this problem in the future. They have developed
a method and associated software tool called Review with Categorized
Requirements (ReCaRe) which aids the reviewer by imposing a topic land-
scape on the body of documents. The tool connects to DOORS and retrieves
the natural language requirements. The requirements and specification
documents are analyzed and parts of both belonging to the same topic
(e.g. temperature) are combined into new documents (fig. 6.5). This allows
the reviewer to keep the overview by only looking at one aspect of the
specification at a time [110].

This method has shown to be feasible, mostly being hindered by limited
training data . This work is to continue and one of the main research
directions will be on how to get enough training data automatically with
minimal human intervention and time investment [110].

45

6. Daimler AG

MEMICS

MEMICS-FRONTEND

MEMICS-CORE

MEMICS
Model
Unrolling/
Logic
MEMICS
Proof Engine
Counter Model
Example is Save

Encoding
Figure 6.6.: Memory Interval Constraint Solving (MEMICS) Architecture [104]

C/C++
Source
Code

LLVM
MEMICS
Backend

N

Next
Iteration

LLVM

] IR

'

.

' '
' '
' '
H Program H
-" Slicer - "

6.3.3. Memory Interval Constraint Solving (MEMICS)

In an effort to reduce race conditions and other errors - particularly resulting
from the use of modern multi-core systems - Daimler has developed the
static software checking tool Memory Interval Constraint Solving (MEMICS)
together with the Kiel University. MEMICS uses the Low Level Virtual
Machine (LLVM) to generate a suitable model for its constraint solver
(MEMICS Intermediate Representation (IR)) which can then be unrolled
into Static Single Assignment (SSA) logic formulae which are solved in the
proof engine (fig. 6.6) [105, 104].

The tool has shown promise in evaluations while suffering from the same
problems that similar solutions have. The biggest problem is the high
complexity and the resulting limitation on the size of programs that can be
checked with reasonable computational resources [105, 104].

46

6. Daimler AG

6.4. Sources at Daimler AG

e Artur Honisch (Sindelfingen) [66, 67]
in charge of the VIT Platform Project (2013)

e Matthias Simons (Stuttgart) [90]
Development Engineer, HPC: o50/Gooy (2012)

e Uwe Spieth (Sindelfingen) [92]
Group Research & Advanced Engineering

e Dipl.Inform. Alexander Michailidis (Boblingen) [93, 92]
PhD student in the department E/E-Architectures & Standards in the
division Group Research & Advanced Engineering (2010)

e Dr.Ing. Thomas Ringler (Boblingen) [93, 92]
Project leader for the model-based AUTOSAR-Toolchain in the division
Group Research & Advanced Engineering (2010)

e Dr.Ing. Bernd Hedenetz (Boblingen) [93, 92]
Head of the team E/E-System Design and Applications in the division
Group Research & Advanced Engineering (2010)

e Johannes Traub [105, 104]
E/E-Technologies and Software-Technologies (2013)

e Daniel Ott (Ulm) [110]
Group Research & Advanced Engineering (2013)

e DI Carsten Rustige (Stuttgart-Unterttirkheim) [126, 16]
Sub-Project leader in Software Development (2011)
Responsible for the software development of the Atego Hybrid and the
supervision of TESTUS in the development department of robot-driven
gearboxes in the commercial vehicles sector (until 2011)

e Stefan Gloss (Stuttgart) [54]
Engineer (2013)

47

7. ZF Friedrichshafen AG

ZF Friedrichshafen AG (ZF) is a German supplier of Powertrain, Chassis,
Commercial Vehicle and Industrial technology. They also supply steering
systems in a joint venture with Robert Bosch GmbH. ZF generated 17.4
billion in sales in 2012 with 75k employees in 121 locations [51].

In 2012 ZF was o' in the ranking of automotive part suppliers in the world
and 5™ in Europe [34].

7.1. Recent History and Current State

ZF uses a variation of the widely used V-Model for software development
(fig. 7.1). The model is split horizontally to better visualize the fact that the
top four phases are performed by a different person than the bottom five
phases. This results from recent efforts by ZF to standardize and combine
their testing procedures and tools. The goal is to allow easier cooperation
with changing Original Equipment Manufacturer (OEM) partners and also
enable the externalization of testing into a new location that was opened in
the Czech Republic [12].

7.1.1. Requirements Engineering

This part includes the phases called System Requirements and Software Re-
quirements in the V-Model (fig. 7.1) and is performed by an independent
tester [12]. ZF uses IBM Rational Dynamic Object Oriented Requirements
System (DOORS) for requirements management and ensures traceability of

48

7. ZF Friedrichshafen AG

System . . System
Requirements Requirement Based Testing Test

fSOftware ‘--:l Software Independent
R

equirements Test Tester

Rapid
Prototyping

Architecture Integration Software
Design Test Developer

Detailed Module
Design Test

Dynamic Tests
(Execution)

Static Analysis
(Reviews)

“Model* REETS “Software" “Hardware”
in the Loop in the Loop in the Loop

Figure 7.1.: The V-Model used at ZF [12]

Natural Language Processing (NLP) representations to semi-formal repre-
sentations and source code by using an Unique ID (UID) called Requirement-
ID which is saved in a DOORS text-field [102].

Some requirements have to be checked constantly. To cover these cases a
special configuration file for QTronic TestWeaver (TestWeaver) is created.
This is a file written in The C++ Programming Language (C++) that con-
tains so-called Watcher Instruments, which are similar to invariants and
are checked and logged every millisecond. After requirements have been
completed they are exported as Extensible Markup Language (XML) and
then imported into the Eclipse. The transformation language XPAND of
the Eclipse Modelling Framework (EMF) is used to automatically create
source code comment fields with the DOORS requirement text [102] and
the Requirement-ID.

The actual implementation of the test cases is contained in a protected
region of a special source code file. Changes in requirements propagate to
the comment fields and are reviewed by using the diff tool of the source
control software [102].

49

7. ZF Friedrichshafen AG

Test Scripts

Alternatively, more conventional test scripts can be used in a multitude of
formats and programming languages. Beside the custom script language
provided by the in-house developed tool ZF Friedrichshafen SoftCar (Soft-
Car), there is support in SoftCar for test case libraries in C/C++, Python
or Visual Basic. This allows for direct import of libraries generated with
software that is in use at partners of ZF. One example of this would be the
Extended Automation Method (EXAM) tool used by Audi [102].

7.1.2. Software Design and Static Analysis

This part consists of three phases in the V-Model called Architecture De-
sign, Detailed Design and simply Code. The executing person is the Software
Developer and (presumably) one or more Reviewers. As the names of the
phases suggest, this part is where the actual software component is planned,
designed and programmed. There are no indicators that any kind of source
code generation from models is performed at all. Since debugging is per-
formed with the Visual Studio Debugger it appears likely that Microsoft
Visual Studio is used for coding [102, 12].

Compilation

At the end of this part the completed Electronic Control Unit (ECU) software
is compiled either into a firmware binary (*.hex file) for deployment into a
physical ECU or into a Microsoft Windows binary (*.exe file) for testing as
virtual ECU in the SoftCar co-simulation platform [102].

7.1.3. Module and Integration Testing

The testing phase has received some improvements and refinements with
the inclusion of TestWeaver as a regular part of the testing infrastructure in
cooperation with the very mature SoftCar suite.

50

7. ZF Friedrichshafen AG

| Hybrid software

| Power train softw.

Vehicle model

Simulink / Dymola

- —

Softcar

CAN

_ Functional model

T ——

Cosimulation
Softcar/TargetLink

e

Debugger

for external processes

TCP/IP

£ || A Softcar i . —
-~ = 3 =
e A -
= e EXAM, = = .
E 4 = Ca+ = '--
El @Al ; - - !
Softcar GUI | Scripting Weaver test config | CANape

Figure 7.2.: SoftCar Architecture [102]

SoftCar

After the ECU software code is compiled into a exe file, it can be tested.
ZF has their own simulation platform called SoftCar which they use for
co-simulation of environment and ECU models, for gathering simulation
data, execution of test cases, monitoring and debugging (fig. 7.2) [102].

The simulation with SoftCar can be interrupted at any time and variables
of every model in the simulation can be inspected and modified with the
Visual Studio Debugger. All the simulated ECU and models are connected
over a simulated Car Area Network (CAN) [102].

SoftCar offers its own facilities for simulation control, monitoring and
execution, but has interfaces to delegate that function to other software like
ETAS GmbH INCA (INCA) or Vector Informatik CANape (CANape) using
Universal Measurement and Calibration Protocol (XCP) on TCP/IP over
Ethernet [102].

51

7. ZF Friedrichshafen AG

controllable
input

+ comfpolnent - EEne LECU

> ault model controller

Doors inputs u quality observers outputs y
DB Softcar VSiL

Requirements

« (®) TestWeaver «7
[reached -
state] B te test
[DB report
M alarm] ym::
u

state

Yy

L=

state space

Figure 7.3.: SoftCar and TestWeaver [102, 133]

TestWeaver

One important aspect that is missing in SoftCar is the possibility to define
states and ranges that should be checked continuously, i.e. not only at the
end of test case execution (e.g. “battery should never be empty”). Another is
the lack of automatic state exploration and the function to automatically try
to induce states violating system requirements. This are some of the reasons
that ZF is extending SoftCars functionality by using TestWeaver [102].

TestWeaver not only supplies the missing functions to SoftCar, but also adds
more. It creates a protocol of all used paths and outcomes and allows for a
replay of signal combinations which led to undesirable outcomes [102].

7.2. Future Directions and Challenges

ZF seems to have plans to decouple the testing process from the development
process as much as possible. Presumably this is meant to enable the option

52

7. ZF Friedrichshafen AG

of offering each one up as a service to customers. ZF has made several steps
to prepare this decoupling, starting with the encapsulation of their own
testing infrastructure and connecting it to the outside by strictly defined
interfaces. This makes it possible to operate a testing process independent
from the infrastructure used by customers [12].

7.2.1. Statistical Analysis

ZF reported in 2010 that they are using statistical sampling theory for
evaluation of software reliability based on operational experience (extensive
road testing). When an evaluation is performed possible state transitions are
identified and their occurrence is modeled with probabilities from collected
data. Then, the value of relevant environment parameters at the time of that
state transition (e.g. what was the speed when gear switched from a to b)
is modeled with distributions. At that point, statistically dependent data
needs to be filtered [131].

For this purpose a tool was developed that allows the statistical analysis
of data on several correlation metrics. Additionally, it supports heuristic
analysis to extract data that is negligibly correlated (tolerable bounds set
by user) with a genetic algorithm. The tool is an internal development and
runs on Microsoft Windows OS [131].

ZF uses component reliability estimates to in turn estimate the reliability
of the system as a whole by modeling distinct components as statistically
independent, exponentially distributed random variables and combining
them into a single variable that is hypo-exponentially distributed. From this
a conservative lower bound of reliability can be estimated for any confidence
level [131].

7.3. Sources at ZF Friedrichshafen AG

The documents published by ZFF employees usually do not contain position
or department information. This is only the case to some degree in two of
the documents.

53

7. ZF Friedrichshafen AG

DI Alexander Banerjee [10]

Advanced Development, division Commercial Vehicle Technology
Ing. Dr. Maik Wiirthner [10]

works in System Testing and is responsible for the development of
Prevision GPS, division Commercial Vehicle Technology

DI Cosmin Tudosie [10]

works in Function Development Gearbox for Heavy Vehicles, division
Commercial Vehicle Technology

Frank Bitzer [131]

LPE2-FB/Functions Basic Development

e DI (FH) Lothar Beller [12]

e Ing. Pavel Turjanica, Ph.D. [12]

e Ing. Dr. Martin Neumann [102, 103]

Head of Lean Development ZF Production System [86]

e DI Mario Nass [102, 103]

e DI Carsten Paulus [102, 103]

54

8. Siemens

Siemens is a multinational company with 362k employees, 220k of those
in Europe. It is based in Germany and produces a wide range of products
including those supplying the automotive industry [127].

8.1. Relevant Company Structure

Despite the fractured nature of Siemens with publications originating from
Germany, USA, Turkey, India and more, there is a clear concentration of
relevant documents from Siemens Corporate Research & Technology in
Princeton (New Jersey, USA).

8.2. Recent History and Current State

Because of the wide range of products in different domains Siemens is
extremely difficult to condense into a congruent picture. Assertions that
might hold for one division of Siemens might be the total opposite of what
one would assert about another division.

8.2.1. Organizational Aspects of Software Reliability

The development at Siemens involves organizational factors like code walk-
throughs, inspections and pair programming. It also uses early design
phases called rough upfront design (RUD) and walking skeleton [24, 23].

55

8. Siemens

The RUD is the earliest design phase and involves fundamental decisions
about architecture, modularization and key qualities. It is designed to give a
first impression of the viability and scope of a project and its dependencies.
The walking skeleton is a kind of minimum viable product (MVP). It is design
to be executable, perform base functions and function as a reference for
feasibility analysis [24, 23].

8.2.2. Test Design Studio and Enterprise Architect

Siemens uses the self-developed software Test Design Studio (TeDeSo) for
model-driven development and testing. It is designed to enable and support
a work-flow-driven and service-oriented process. The focus is on extensibil-
ity of modeling and generation through the use of services (fig. 8.1) [128,

129].

TeDeSo uses an extended Unified Modelling Language (UML) notation that
keeps compatibility with baseline UML and offers a wide range of import
and export options with other diagram formats. The built-in model editor
offers many model types and performs syntax and semantic checks. Reports
can be used to evaluate aspects of models for verification and indexing [128,

129].

One main function of TeDeSo is the automatic generation of test cases and
subsequently executable test code. The produced code is annotated and
linked to the original test cases. This allows for regression testing and test
report generation with descriptions of manual steps to perform to reach
critical state [128, 129].

The software that Siemens imports models from is Sparx Systems Enterprise
Architect (EA). They have built an importer for EA models in TeDeSo and
extended EA to include a tool bar for direct creation of TeDeSo annota-
tions [128, 129].

56

8. Siemens

-—————— -

\
| 1

_ _generators l_vgrmc_atiorlrglgs_ 1 |-n109e_| gdi_to_rs_,
\ \
i Tedeso Ul
Services _
GEF Model
Model & Editor
Generation Ger;reersattion Model Test Report
AN
e @
=)) Eclipse GEF
Test Model core APl and Service Registry .
-)(Eclipse SWT +
JFace +
[JAXP, Xerces and third party APIs] | Workbench Ul

Java SE

e/

Figure 8.1.: TeDeSo Architecture [129]

8.2.3. Automated Test Infrastructure

Siemens uses a testing framework called Automatic Testing Infrastructure
(ATTI) for automatic test environment set-up, configuration and provision
of software interfaces for hardware devices. Together with TeDeSo this
constitutes a full test case creation, execution and analysis suite called

Integrated Model Based Testing (iMBT) (fig. 8.2) [129, 128].

ATT is not a test engine itself. It is used together with a test engine. One
such test engine that is used at Siemens is National Instruments TestStand

(TestStand) [129, 128].

57

8. Siemens

"""""" 1 models system &
testing environment

Q
o
=]
=h
Q@
[=
=
[
=1
o
=]

& behavior b tedeso
m

Automatically
generates

1
i Test Scripts ¥

Tester

Automatically
generates

7[Test Execution Engine | p====temmms

i System

[—— l execute tests ! Configuration

[System Under Test Abstraction Layer]

contgur ||
System Under Test ator used to
configure

test environment

System

Figure 8.2.: Integrated Model Based Testing (iMBT) [128, 129]

8.3. Future Directions and Challenges

8.3.1. Unified Requirements Modeling Language

The frustration with certain weaknesses of UML and Systems Modelling
Language (SysML) in regard to modeling of requirements (e.g. inability
to connect product lines, features) led to the development of a new visual
modeling language by Siemens and Technische Universitdt Miinchen (TUM)
called Unified Requirements Modeling Language (URML) [14, 13].

8.3.2. SystemC with Hybrid Channels

Employees of Siemens A$ in Istanbul (Turkey) have developed an extension
for The SystemC Event Library (SystemC) that enables integration of virtual
models and physical devices. The proposed solution deals with real-time

58

8. Siemens

constraints and syncronization issues. It is used in industrial automation
systems [48].

8.3.3. Event-B, ProB and Rodin Platform

The Industrial deployment of advanced system engineering methods for
high productivity and dependability (DEPLOY) project has performed case
studies in intensive cooperation with Siemens. This project is evaluating
and developing Event-B, ProB and the Rigorous Open Development Envi-
ronment for Complex Systems (RODIN) Platform, all of which are tools for
formal verification [25].

There has been at least one industrial case study from Siemens in which ProB
was used to validate large datasets in the railway domain.In another case
study ProB was used to check for deadlock situations in a software [25].

8.3.4. Test Cases from Models

Siemens has researched methods to extract test cases from models and per-
formed pilot cases on data similar to production use. They have announced
plans to use the method on a large, mission-critical system in 2011. There
is no indication what happened after that and if the method was deployed
into production or developed further [9].

8.4. Sources at Siemens AG

e Frank Buschmann (Munich) [24, 23]
Senior Principal Engineer / Principal Software Architect, Corp. Tech-
nology, Software & Engineering Division, Architecture Department
e Roberto S. Silva Filho (Princeton, NJ) [128]
Corp. Research & Technology, Software Development Technologies
e Christof J. Budnik (Princeton, NJ) [128]
Corp. Research & Technology, Software Development Technologies

59

8. Siemens

Roberto S. Silva Filho (Princeton, NJ) [129]
Corp. Technology, Software Architecture Design
William M. Hasling (Princeton, NJ) [129]

Corp. Technology, Software Architecture Design
Christof J. Budnik (Princeton, NJ) [129]

Corp. Technology, Software Architecture Design
Monica McKenna (Princeton, NJ) [129]

Corp. Technology, Software Architecture Design
e Abian Blome (Germany) [17]

e Martin Ochoa (Germany) [17]

e Brian Berenbach [14, 13]

Corp. Research & Technology

Alberto Avritzer (Princeton, NJ, USA) [9]
Corp. Research

60

9. Bosch GmbH

Bosch GmbH is a German company with 281k employees and 46 billion
in revenues in 2013. These figures do not include the 50% joint ventures
with Siemens (home appliances) and ZF Friedrichshafen AG (ZF) (auto-
motive parts) [20]. Bosch headquarters are in Gerlingen, near Stuttgart
(Germany). In 2012 Bosch was the biggest supplier of automotive parts in
the world [34].

9.1. Relevant Company Structure

Similar to ZF, usually Bosch does not include employment position in-
formation with their publications. At least, there is department affiliation
available for about half of the authors and locations for most of them. Of
the different locations that can be distinguished, all except one are found
within 15km from the company headquarters in Gerlingen (Gerlingen [122],
Schwieberdingen [57, 59, 58, 49], Stuttgart [58, 59, 57, 117, 115, 116, 114]). The
exception is a contribution from the Corporation Research and Technology
Center in Pittsburgh (PA, USA) [1].

9.2. Recent History and Current State

Bosch uses its own interpretation of the widely accepted and used V-
Model (fig. 9.1). The model is split in seven phases, which is common.
The phases are called as follows:

1. System Requirements

61

9. Bosch GmbH

Realisation

Figure 9.1.: V-Model at the Robert Bosch GmbH [96]

System Design

Component Design

Component Realization
Component Test

Sub- System Integration and Test
7. System Validation

AR L ol

Note: Gray words added for clarification in accordance to graphic (fig. 9.1).

9.3. Future Directions and Challenges

The general future direction of Bosch is characterized by a move to the
most recent version of AUTomotive Open System ARchitecture (AUTOSAR)
(4.0), increased application of formal methods, improvements on static code
analysis and the use of Natural Language Processing (NLP) for automated

62

9. Bosch GmbH

analysis of requirements. The different areas often involve multi-core archi-
tectures and might be considered an indicator that Bosch is considering this
area to be of great importance.

0.3.1. New AUTOSAR 4.0 ECU Platform

Bosch has planned to publish and move to a new generation of its platform
of Electronic Control Units(ECUs) for powertrain control at the end of 2014.
The new platform generation (called MDG1) is based on a fully AUTOSAR
compliant base software (BSW) stack and aims to move the application
software into compliance gradually as well. The decision to use AUTOSAR
4.0 specifically was driven mainly by the desire to utilize multi-core chip
sets. MDG1 succeeds both EDC17 (diesel engines) and ME(D)17 (gasoline
engines) [122].

9.3.2. Event-B and RODIN Toolset

Gmehlich et al. have published multiple papers describing case studies
in cooperation with Bosch with the goal of evaluating formal methods in
practice. The technology used was the RODIN Platform and the Event-B
formal method. The result was that the method is effective, but does not
scale well. One important difficulty was modeling time and as a consequence
real-time applications [57, 59, 58].

9.3.3. Worst Case Execution Times

Worst Case Execution Time (WCET) in multi-core systems with shared
resources was the subject of research performed by Bosch in cooperation
with Karlsruhe Institute of Technology (KIT). The goal is to mitigate the
effect of greatly increased execution time in a small number of cases when
the normal case has very low execution time. The method that was used
utilizes a second core to help process those cases and proposes an improved
heuristic to predict when a second core will be needed [49].

63

9. Bosch GmbH

9.3.4. Formalization of Requirements

There are multiple papers (by the same researchers) reporting on case
studies on the formalization and automatic analysis of natural language re-
quirements in the domain of real-time systems. A tool chain was developed
and tested on multiple automotive projects at Bosch. The results show that
the time investment and computational cost are acceptable and benefit is
significant [114, 115, 116, 117].

9.3.5. Requirements, Models, Test Cases

US based researchers working for Bosch have developed methods for anal-
ysis of test cases in form of vectors representing input and output values
to automatically construct invariants that represent relations between those
vectors. The base data is obtained trough data mining [1].

The approach was tested in a pilot project on production C source code
supplied by Bosch. Experimental data indicates that full-coverage test data
applied iteratively produces the best results [1].

This research uses a tool called Reactis, which is supplied with a model and
generated test cases, which it then refines to extract invariants [1].

9.3.6. Static Analysis of Race Conditions

Bosch supported research into a static analysis tool that improves the off-
the-shelf software The Bauhaus Toolkit (Bauhaus) that is commercially
distributed by Axivion GmbH. The goal was to improve false positives in
the static analysis performed by Bauhaus and additionally produce true
positives by itself. The goal of the research was reached, with significant
improvement in both areas. The method used was Lockset Analysis [77].

64

9. Bosch GmbH

9.4. Sources at Bosch GmbH

e DI (FH) Alexander Moiszi (Tamm, Germany) [96]
Project Manager for Testing Technology, Advanced Development and
Technology Supply
¢ Johannes-Joerg Rueger (Gerlingen) [122]
Diesel Gasoline Systems, Electronic Controls
e Alexander Wernet (Gerlingen) [122]
Diesel Gasoline Systems, Electronic Controls
e Hasan-Ferit Kececi (Gerlingen) [122]
Diesel Gasoline Systems, Electronic Controls
e Thomas Thiel (Gerlingen) [122]
Diesel Gasoline Systems, Electronic Controls
Rainer Gmehlich (Schwieberdingen, Stuttgart) [57, 59, 58]
Felix Loesch (Stuttgart) [59]
Katrin Grau (Stuttgart) [58]
Matthias Freier (Schwieberdingen) [49]
Corporate Sector Research
e Amalinda Post (Stuttgart) [114, 115, 116]
Research and Advance Engineering
e Igor Menzel (Stuttgart) [117]
Corporate Research
e Charles Shelton (Pittsburgh) [1]
Robert Bosch Corporation Research and Technology Center
e Elizabeth Latronico (Pittsburgh) [1]
Robert Bosch Corporation Research and Technology Center

65

10. Volkswagen

Volkswagen (VW) AG is a major car manufacturer and the name giving
brand of the Volkswagen Group. They have sold 2.5 million vehicles in 2013
and employed 107k people while generation 65.5 billion in revenue [63].

10.1. Recent History and Current State

Volkswagen uses its own interpretation of the widely accepted and used
V-Model (fig. 10.1). The model is split in ten phases, which is a remarkably
high number [5]. These phases are called at Volkswagen as follows:

System Requirements

System Architecture

Software Requirements

Software Design

Software Creation / Code Generation
Module Test

Integration Test

Software Test - Functional

System Integration Test

System Test Approval

OY N AW NN R

uny

Additionally, the illustration suggests, that the process is additionally using
the circular or spiral model and produces a new sample every cycle until
series maturity is reached [5].

66

10. Volkswagen

_1/:
\ &

\

costs

systemtest
approval

system
requirements

system
architecture

© software software test
requirements functional
software
design
maximum software creation
. creativity code generation

maximum
automation level

system inte-
gration test

integration test

Figure 10.1.: V-Model at the Volkswagen Group [5]

10.1.1. Functional Software Development

The development of functional software is according to [5] also divided into

four principal components:

QKN R

N

VW develops the functional software in-house but delegates the develop-

. Requirements Analysis

. Modeling

. Tool Chain (= Realization)
. Strategies for Testing

ment of base software (BSW) to suppliers [5].

10.1.2. Modeling

VW uses MatLab/SimuLink (ML/SL) for modeling. Implemented functions
in the model are deployed into a test vehicle as soon as possible in an
combined effort between the software development and test-drive engineers.

67

10. Volkswagen

level 0:
interface to
basic software

interface signals

functional
from basicsw ===| software

interface signals
to basic sw

level 1:
functional
software

signal signal
— input ,—v conlroller'—' output l—b

level 2
controller

vertical
Illl S
longitudinal

dynamics

example module
modal analysis

level 3: modal

example filter displace- analysis
ment

level 4: SubA 5ms

SubA 1ms

SubB 1ms

level 5:
e.g. subsystem
Modal_SubB 1ms

Figure 10.2.: Model hierarchy at VW [5]

VW reports highly positive effects of this approach on time efficiency,
internal expertise transfer and avoidance of interface problems. The model

is hierarchical and supports traceability of changes [5].

10.1.3. Tool Chain

The different parts of the tool chain are abstracted into their functions.
The actual software products are not named (fig. 10.3). The different parts

according to [5] are as follows:

Rule Checker: Verifies adherence to modeling guidelines
Docu-Gen: Generates the Documentation
Code-Gen: Generates source code in .c and .h files

Calibration-Gen: Extracts predefined variables relevant for calibration

and provides them in .c, .h and .a2l files.

Interface-Gen: Generates source files defining the interface between

functional software and BSW.

68

10. Volkswagen

Figure 10.3.: Development Tool Chain at VW [5]

e Object-Gen: Compiles the .obj file from sources.

The .obj file, .a2l file and the original source files for the interface are sent to
the supplier. Similarly, the .a2l and .obj file for the BSW are received from
the supplier in return [5].

10.1.4. Testing

Almost all tests can be done without the supplier-provided base software
stack. Manual checks are still performed for evaluating resource utilization
(memory, runtime) and for errata. The hardware used for testing is of
production grade [5].

Module and integration tests check Electronic Control Unit (ECU) against
model behavior (back-to-back testing). Reviews are used to check the source
(written in The C Programming Language (C)) against the ML /SL model.

69

10. Volkswagen

Functional module tests are automated and take place on the Hardware-in-
the-Loop (HiL) but the majority of system tests are done as vehicle tests in
a test vehicle [5].

10.2. Process Similarity within Volkswagen Group

The amount of papers about VW that are available and deal with the topic
of software development is not very large. Despite the limited direct sources
it seems reasonable to assume that the development process at VW is very
similar to other companies within the VW Group. Engineers of AUDI have
cited the plan to roll out the process used at AUDI to the whole VW Group
as early as 2009 [78] but have also more recently mentioned its active use at
both AUDI and VW in 2010 [140] and in 2011 [134].

One method that was co-developed with Audi was the Integrated Test-
ing Framework (ITF) (sec. 4.2.8), another one was the Virtual Test Drive
(VID) system for test drive replay and simulation of traffic and environ-

ment (sec. 4.2.7) [95].

10.3. Sources at Volkswagen AG

e Ing. Dr. Andrea Arenz (Wolfsburg, Germany) [5]
Team Leader Functional Software Damper Control in the Car Chassis
Development (until May 2008)
Team Leader Quality Assurance Launch Support Electrics

70

11. Ford Motor Company

Ford Motor Company (Ford) is one of the largest automobile manufacturer
in the world with 180,000 Employees worldwide and revenues of almost
150 billion. It is based in Dearborn (Michigan, USA) but has representations
internationally [30].

11.1. Recent History and Current State

Ford seems to have been far ahead of the curve of software development
practices in the automotive field in its infancy. As early as 1998 Ford Research
was already releasing papers on Model Based Development (MBD), model-
based code generation and its validation. It is even explicitly stated that mod-
els are being used in a development model called System V (fig. 11.1) that
seems very similar to the well known V-Model used broadly today [135].

This early research does not seem to have translated into a discernible ad-
vantage compared to other top-tier manufacturers of today. As an example,
it has adopted 24/7 automated testing on Hardware-in-the-Loop (HiL) test-
benches in 2010 (sec. 11.1.3) and test generation from models (sec. 11.1.1) in
2012, which does not put them particularly far ahead of the curve.

11.1.1. Model-Based Design and Code Generation

The team that was responsible for the creation of the battery control system
for the 2010 Ford Fusion Hybrid reports that they were the first at ford to
use MBD in connection with automatic code generation (called autocode
in the report) for a production program. About 80% of the final product

71

11. Ford Motor Company

Sofware Software
Design Unit Testing

Figure 11.1.: Ford System V Development Model (1999) [135]

code was auto-generated (exception: low-level routines). The development
team used dSPACE TargetLink (TargetLink) for the complete process from
function design to software implementation [55]. TargetLink works off of Mat-
Lab/SimuLink (ML/SL) models which is a strong indication for ML /SL as
a modeling tool. Model-in-the-Loop (MiL) and Software-in-the-Loop (SiL)
simulation was used for frontloading of verification using the built in simu-
lation environment of TargetLink which enabled fast switching between the
two modes for comparison [55].

Challenges they faced include the software version control that was not
equipped for models but for text file merging/branching and also the build
automation that had to be created from scratch. They overcame these and
report a complete build cycle time (model to hex binary) of about 30 minutes.
They have had no issues in the field that can be traced to the automatic code
generation at the time of the report [55].

This report gains weight as good representation of the status quo at ford in
2010 because the team responsible was awarded the Henry Ford Excellence
Award for the software [55].

72

11. Ford Motor Company

11.1.2. Model-Based Testing with Messina

A report from Ford Werke in Cologne (Germany) reports the use of Berner
& Mattner MESSINA (MESSINA) software platform for testing of Ford’s
Lane Keeping System (LKS) created with MBD. They use virtual integra-
tion, environment simulation and systematic automated testing, all based
on MESSINA. The functional models were already available. They were
simulated in Dynag4 Suite by Tesis and were integrated into MESSINA in
a Model-in-the-Loop (MiL) set-up. Test scenarios were generated (not con-
structed) by using variation in parameters. Sensible parameters and ranges
for variation were defined using Classification Tree Editor (CTE). Tests were
recorded for re-use in back-to-back testing testing on the Hil simulator in
later stages, but back-to-back testing of software and models was performed
on the spot [65].

11.1.3. Hardware-in-the-Loop Lights Out Testing

Ford has increased the HiL capacity from 5 to 13 simulators in its testing
lab and undisclosed numbers in other locations (Cologne, Dunton). At the
same time they moved to minimal supervision automated testing that can be
performed 24/7 with dSPACE AutomationDesk (AutomationDesk) software.
They also introduced Automotive Simulation Models (ASM) for vehicle and
environment simulation [56].

Ford had been using Hil. for many years before, but did not have the
automation in place on this scale. The set-up also performs an automated
diagnostics process with Electronic Control Unit (ECU) state diagnosis with
trouble codes programmed into the firmware [56].

11.1.4. Standardization of Controller Interfaces

In 2011 Ford reports on efforts of standardizing, consolidating and simpli-
tying the interfaces of on-board controllers. They recognized a need for a
rework of the status quo in 2005 when a international deployment of a battery
pack turned up unexpected difficulties. The resolution of the problem failed

73

11. Ford Motor Company

to be executed in time because of mismatches between controllers and the
whole project was canceled. This led to the establishment of an architectural
framework for control software to alleviate that problem [137].

The effort is ongoing and was in 2011 expected to be used in 2013 when the
tirst production use of largely standardized signals is expected to happen.
The result of this effort is a reduction of variation in interface signals but no
clear indicators on the actual level of benefit were available yet at the time
of the report [137].

11.1.5. Software Life-cycle Management

Siemens Teamcenter (Teamcenter) software had been used at Ford for Prod-
uct Life-cycle Management (PLM) of mechanical products when it was
decided to expand that cooperation to software artifacts in 2010 with the
Teamcenter digital life-cycle solution [71] (Note: Article released in 2014 but
wording suggests 2009/2010 at the latest as likely implementation year).

The goal of this move was to enable repair of ECUs without replacing
the ECU or even dismantling parts of the vehicle to allow physical access.
Hardware replacement is slow, expensive and limited by supply and avail-
ability of replacement parts. Software updates have none of those problems.
Ford equips their ECUs with flash memory to enable deployed hardware
flashing [71].

Teamcenter transfers traditional properties like options and variants to the
software domain properties like configuration and platform. It also tracks
important attributes (memory size, memory address space, programming
protocol,...) and can validate these. It can further employ requirements
validation for issues (format, file part number, test cases,...) [71].

Another important function is monitoring and tracking software dependen-
cies between the ECUs and ensuring these are satisfied. Because of tracking
on the basis of the Vehicle Identification Number (VIN) all of these checks
can be done on the level of each individual vehicle separately. Teamcenter
also manages the global roll-out of patches and updates to service centers
with global distribution broadcasts [71].

74

11. Ford Motor Company
11.2. Future Directions and Challenges

Ford seems to be interested in improving their model based testing and test
case generation methods.

11.2.1. Model-Based Testing with Mogentes

Ford took part in the European Union (EU) funded research project Model-
based generation of tests for embedded systems (Mogentes) that was lead
by the Austrian Institute of Technology (AIT) (ETH Zurich, TU Graz,...) and
sought to automate the discovery of test cases and simultaneously enable
reasoning about the coverage of requirements and the absence of certain
kinds of errors. Ford contributed a theft prevention system and simplified
software in the form of a state machine. The company Prover Technology
AB (based in Stockholm) extended their software with new methods for
that study [139].

Ford was not especially interested in the white-box testing or fault injection
with available source code but concentrated instead on black-box testing
because that is typically the given situation in the automotive industry
according to Ford. The most interesting seems to have been error modeling
on the basis of Unified Modelling Language (UML) requirements models.
The approach is to check which inputs produce different outputs when the
model is changed. Those relations between inputs and outputs constitute
the error models which are the result of this approach [139].

The Mogentes project produced a number of tools that support the genera-
tion of efficient test case collections. Ford plans to move to activity diagrams
in the future because state diagrams are too limited for modeling of complex
systems. Another future goal is to add the use of fault injection [139].

11.2.2. Formal Validation Suite

Ford has developed a suite of tools to perform validation and other tasks.
This suite consists of three tools:

75

1.

In combination these tools can be used to iterate over a model, improve
it in every iteration and ensure its proper functioning without unwanted
properties. Ford has used the suite in pilot projects and plans to improve on

11. Ford Motor Company

Cyclops: A model preprocessor that performs static checking of mod-
els to discover common errors of UML models specified in Extensible

Markup Language (XML) Metadata Interchange (XMI)

. Hydra: A tool for model conversion from UML to Process/Protocol
Meta Language (PROMELA), which is used as input for the Simple

PROMELA Interpreter (SPIN) model checker.

. Marple: A tool for automatically generating properties that may be

latent in the model and should be analysed.

it and add functionality [74].

11.3. Sources at Ford

Florian Frischmuth (Dearborn) [56]

E/E Systems Engineering (EESE) Global Embedded Software Manager

Wajiha Chahine (Dearborn) [56]

E/E Validation Group Supervisor

Jim Swoish (Dearborn) [55]

HEV HV Battery Controls & Software Supervisor
Edward C. Nelson (Dearborn) [74]

Ford Research and Advanced Engineering

DI Dirk Gunia (Cologne) [65]

Group Leader

Responsible for devel. of camera-based driver assistance systems
Dipl.Phys. Ekkehard Pofahl (Cologne) [139]
Electrical Integration

DI Johannes Wiessalla (Aachen) [139]

Vehicle Dynamics

DI Otto Hofmann (Aachen) [139]

Vehicle Dynamics

DI (FH) Thomas Lenzen (Cologne) [139]
Electrical Integration

76

11. Ford Motor Company

Patrick Milligan [71]

Senior Manager for Vehicle Solutions

Martin Baker [71]

Global Manager Software, CAE and Process, Methods and Tools
Chris Davey [71]

Technical Leader, Software and Control Systems Engineering
Anthony Tsakiris, MSc [137]

Technical Expert

77

12. Toyota Motor Company

Toyota Motor Company is an international car manufacturing company
based in Toyota, Japan. For the fiscal year 2013 Toyota reported revenues of
234 billion dollars and 333,000 employees [32]. When comparing revenue
that puts Toyota as the number two worldwide between Volkswagen Group
(€197b, $270b [63]) and Daimler AG (€118b, $161b [37]).

12.1. Recent History and Current State

Toyota has had a rough year in 2013 when courts ruled against it in the
case of Unintended Acceleration (UA) in one of its vehicles that caused the
death of the driver and injury to the passenger in a 2007 crash. The injured
woman and the family of the killed woman were both awarded 1.5 million
in damages by the court [118].

The interesting part of this incident for this thesis is the insight that was pro-
vided by the expert witnesses on the state of Toyota’s software development
practices and the resulting artifacts (source code and binaries). Michael Barr,
a expert witness, gave a testimony in court [138] and has published his
slides that go along with it [11]. In the interest of brevity the findings will
be limited to excerpts and important points. Interested parties are advised
to read Mr. Barr’s testimony [138] and presentation [11].

In his testimony Mr. Barr characterizes Toyota’s safety critical software
as a "house of cards” safety architecture that was compiled from spaghetti
code. He reports the excessive use of global variables (over 11000) and 67
functions scoring over 50 (untestable) on cyclomatic complexity with the
throttle angle function scoring 100 (unmaintainable). He further found that

78

12. Toyota Motor Company

System demanded specs O

System required analysis X | /
& requirement definition X .|~
<Separation of hardware and
software> O
Hardware specs, certificate of
inspection

I W

X: no knowledge at

- Function
Toyota evaluation O

)

ECU evaluation X

Software / hardware
*/ | binding
Soft\vare ssembly|
evaluation X
.
Application / PF
binding
W i |
Software binding
inspection X
=

Software
binding

<Application / PF
separation>

Software structure design X
& inspection spec. creation

structure design X

& inspection specs X

Module design O
&& inspection specs X

coding O ingle unit
buggin;

TOY-MDL04983233

Figure 12.1.: Toyota development process (Camry L4 2005) [11]

Toyota’s coding standard only contains 11 MISRA-C rules out of over 100
and 5 of those 11 were violated in the actual source code [11].

Mr. Barr criticizes Toyota’s software process and presents an illustration that
shows it’s inadequacy (fig. 12.1). He also cites internal e-mails from 2007 that
show that key Toyota employees were aware of the fact that, though it was
recognized as one of the major strengths of Toyota, the fail-safe technology
was in bad shape. The e-mail describes the cultural problem that failsafe
is not part of the Toyota Engineering Division DNA [11]. The suggestion of
internal experts towards superiors was to benchmark Bosch to gauge strengths
and weaknesses [11].

In conclusion, the state of Toyota software development was very bad up
until only a few years ago, which also partly explains the lack of documents
that could be found for this thesis that were authored before 2009 and could
be sourced to Toyota.

79

12. Toyota Motor Company

Concept of MBD
| Functiollllal Spec.
[ptant behavior model 77~~~ 3| controller behavior model]

Rapid Prototyping ECU _ TS~ LFHILS

e

plant hardware ’_ _ " controller

[software | [hardware |

*SILS

Virtual World

Functional Spec.

[vehicle |[actuators |[sensors
combining
Valldatlon *SILS: Software In the Loop Simulation

*HILS: Hardware In the Loop Simulation

Real World

Figure 12.2.: Model Based Development, Ohata [107]

12.1.1. Signs of Recovery

A joint committee of the Society of Automotive Engineers of Japan (JSAE)
and Society of Instrument and Control Engineers (SICE) was founded in
2010 to facilitate the cooperation between the automotive industry and
the academia of Japan. The committee is called Joint Research Committee -
Automotive Control And Modelling (JRC-ACM) and Mr. Ohata, an employee
of Toyota who has published about Model Based Development (MBD) since
2009 seems to be a member of it [106]. The publications typically revolve
around plant models and overall modeling process (e.g. fig. 12.2). The effect
of this involvement on Toyota’s MBD efforts could not be judged from the
documents available.

12.2. Future Directions and Challenges

Toyota seems to have recognized the failings of its software development
process and has began the move towards a modern, model-based safety-
critical software development. They have token steps to reinforce current
systems with model-based checks and use them as Software-in-the-Loop

80

12. Toyota Motor Company

main
[p = 5ms]

[f=1ms]

inc [f=1ms]

exitMain(s1)
[f=1ms]

freeze
[p = 1000ms]

- /

Figure 12.3.: Timing Model Visual Representation [120]

(S5iL) components while they build the next generation of software that is
entirely state-of-the-art and verifiable from requirement to binary.

12.2.1. Timing Models and Legacy Software Migration

An effort that seems promising comes from US based researchers of Toyota
working with the University of Salzburg. In 2011 they published a paper
titled Migration of Legacy Software Towards Correct-by-Construction Timing
Behavior [120]. Besides the very telling name the paper has the description of
a migration towards explicit specification in the form of Timing Definition
Language (TDL) models (fig. 12.3). The created models were used to validate
the timing behavior of a small part of the legacy software component (SWC)
at a time and decide it’s schedulability. If the part did not satisfy the model
constraints then it could be modified to correct that. After satisfying com-
pliance is achieved another part can be added. This allows for incremental
verification of complex legacy software [120].

81

12. Toyota Motor Company

12.2.2. Hierarchical Accumulative Validation (HAV)

In 2013 Toyota published the details of its new model-based software-
development process in the SAE International Journal of Passenger Cars [47].
The new process is called Hierarchical Accumulative Validation (HAV) and
derives its name from the multi-tiered model composition (hierarchical,
tig. 12.5) and its layered, incremental application of Modified Condition/De-
cision Coverage (MC/DC) validation (accumulative, fig. 12.6). However, the
authors of the publication do seem to be very careful not to confirm that
the presented model is actually in use already or that it definitely will be
in use in this form by using wording like “Toyota confirmed that HAV can
be implemented to successfully validate executable control specifications
for production control system development.” [47] (Note: emphasis added)
consistently throughout the text. This is also one of the reasons that the
model is ruled to be a future direction rather than current state, the others
being the short time period available for the transition and the large amount
of legacy code that needs to be transitioned.

The HAV has many similarities to the commonly used V-Model and the
modeling practices at other manufacturers. The basic shape of the V and the
tiered iteration cycles can be seen the illustration (fig. 12.4). Still, the overall
impression is that Toyota has not copied any outside system but has in fact
created every aspect to fit its requirements (e.g. rejection of mainstream
tools, sec. 12.2.2).

Development Process Overview

The basic process starts with the graphical design of executable models
(called control specifications) by control designers. These are validated against
requirement specifications during the design process. Once all models
required are created, the source code is automatically generated. The model
architecture is hierarchical [47]. There are three tiers of models:

1. Modules (lowest): These do not have functionality of their own but
serve as components for higher levels

82

12. Toyota Motor Company

Requirement J

Auto-Generated
C-code

Simulink
Model

Figure 12.4.: Toyota new development process [47]

2. Sub-Functions: Groups of modules with functionality that can be tied
to requirements

3. Features: A directed (execution flow) combination of sub-functions
(called functional hierarchy) that performs a high-level functionality.

After all necessary models are available, it is attempted to achieve MC/DC
coverage by incrementaly validating bottom-up and back-to-front. This
means that modules are validated before sub-functions and subfunctions
are validated in reverse direction of execution flow. This continues until
complexity is too high for successful MC/DC coverage. After that the
validation switches to Model Based Testing (MBT) [47].

Testing utilizes a combined Model-in-the-Loop (MiL) and SilL set-up in
which legacy software components can be used in a SiLL simulation to com-
plete the system for integration testing of models and generated code [47].
The software for this simulation seems to be provided by MathWorks in the
form of MatLab/SimuLink (ML/SL), Stateflow and MathWorks Simscape
(Simscape) (engine model). Source Code is generated with Simulink Coder
(formerly called Real-Time Workshop). Debugging is done is Microsoft
Visual Studio (VS) which is connected to ML /SL, which enables source-
level debugging of control code. Breakpoints in VS pause the execution of
the model in ML /SL to allow examination of the state of variables before
resuming code execution [72].

83

12. Toyota Motor Company

Feature
[] Functional Hierarchy

*One of layers within Module

Execution Flow Direction

[Module]

Figure 12.5.: Toyota model hierarchy [47]

<ValidationModel> <TestCase> <FR>

=

]]

R I |
ER T +[2 |+ 12
iy sy

T
e
S
[
R
7

i

il

T
o
.:
|

L = 21331452
o)
KR— 1] |
or—) } + [5+ ! 3 u‘
F -
\ =R

h

* FRAcross multiple FH
** Functional Time Series Test Case

Figure 12.6.: Toyota accumulative coverage [47]

84

12. Toyota Motor Company

Problems and Temporary Solutions

There have been some problems with Toyota’s new process as well. One
major problem that slows the adoption of the process is the apparent lack
of commercially available tools that satisfy Toyota’s requirements. As an
example, Toyota requires the connection of models into tiers for retrievals
with queries like “at model level or higher” [47] or “with these desired
outputs” [47]. There were also problems with test case generation tools that
required constant manual adjustment or did not support generation of code
for groups of models (sub-functions, features). Rather than compromise on
their development process, Toyota has decided to work with temporary so-
lutions like simple (but strictly adhered to) folder structure until commercial
tools adapt to their needs or in-house tools are completed [47].

12.3. Sources at Toyota

e Akira Ohata (Susono, Shizuoka, Japan) [107, 106]

Senior General Manager, Engine Control System Development
Dr. Hisahiro Ito [72] Assistant Manager

Jared Farnsworth (Erlanger, Kentucky, USA) [47]

Koichi Ueda (Erlanger, Kentucky, USA) [47]

Hideaki Mizuno [47]

Michio Yoshida [47]

Kenneth Butts (Ann Arbor, Michigan, USA) [120]

85

13. Other Companies

There are a number of techniques and methods that are often mentioned
but either can not be easily attributed to one company or there was not
enough information on the company to fill its own chapter.

13.1. MARTE, SysML and EAST-ADL/2

MARTE is a Unified Modelling Language (UML) profile for Modeling and
Analysis of Real-Time and Embedded Systems [61] which is interesting
for its ability to model timing constraints and is seen by some companies
(e.g. Continental [4]) as possible competitor of AUTomotive Open System
ARchitecture (AUTOSAR) in that respect (AUTOSAR does not have that
ability).

Systems Modelling Language (SysML) is a UML2 profile that defines a
”general-purpose graphical modeling language for specifying, analyzing,
designing, and verifying complex systems that may include hardware,
software, information, personnel, procedures, and facilities” [62].

EAST-ADL is a Architecture Description Language (ADL) that is aligned
with AUTOSAR and meant for describing the architecture of embedded
systems on multiple abstraction levels which map to 15026262 [6]. All three
languages mentioned above are mainly found in publications by Volvo,
Continental and AVL List [28, 113, 36, 29]. Between the three languages,
SysML is the only one that has documents from outside the mentioned
companies (Bosch [85], Siemens [141], Ford [98]), albeit only a few.

Besides the mentioned extensions there is definitely a trend towards pro-
prietary company-specific UML profiles and extensions (Audi [140], Ford

86

13. Other Companies

[139], Siemens [129], Daimler [112]). UML alternatives are in use in at least
one major company, with BMW using Advanced Simulation and Control
Engineering Tool (ASCET) models [97] that can be converted to and from
UML on demand [124].

13.2. EAST-ADL, UPPAAL-PORT and Volvo

Volvo engineers have consistently published about Electronics Architecture
and Software Technology - Architecture Description Language (EAST-ADL)
since its inception in 2006 and most recently in 2013. In 2011 there were
reports about efforts to combine EAST-ADL with UPPAAL Partial Order
Reduction Techniques (UPPAAL-PORT) and create a tool chain for “Ver-
ifying Functional Behaviors of Automotive Products” [76]. These efforts
presumably contributed to the creation of Verification Tool for EAST-ADL
Models using UPPAAL-PORT (ViTAL), that bridges the gap between those

two [45].

87

Part Ill.

Evaluation

88

14. Introduction

The goal of this part is to evaluate the information gathered in part II and
coalesce it into an overall picture. This should serve to allow the reader an
insight into a certain phase or the overall process of the V-Model across the
industry as a whole, instead of focusing on the process at any particular
company.

In this part the author also aims to offer a rating system that enables
the reader to judge characteristics of a particular method at a glance. A
method is a process, technique or technology of interest that is being used
or developed and can be identified as separate entity.

14.1. Structure

Part III is organized along the structure of the V-Model and every phase of
the V-Model corresponds to a chapter in this part. To enable this structure
and relationship, it was necessary to generalize the V-Model implementa-
tions that are being used by different companies. The resulting consolidated
V-Model structure can be seen in figure 14.1. The phases and chapters are
named as follows:

Requirements Management (chapter 15)
Modeling and Simulation (chapter 16)

Test Cases and Prototyping (chapter 17)
Implementation (chapter 18)

Component Testing (chapter 19)

System and Integration Testing (chapter 20)
Software Monitoring (chapter 21)

Software Maintenance (chapter 22)

89

14. Introduction

Requirements System Testing Maintenance
k >
, S
Modelling & Integration 5
Simulation Testing S
S
Test Cases & Component
Prototyping Testing
Implementation

Figure 14.1.: V-Model for part III structure

Software Monitoring and Software Maintenance are two additional chapters
to help complete the software life-cycle beyond development. To find out
more about a particular phase, please refer to the appropriate chapter.

14.2. Rating System

Every method is evaluated on four different criteria (besides the assignment
into one of the phases of the V-Model). Two of the criteria, Prevention and
Verification & Validation (V&V), are simple binary (yes/no) values denoted
by either a green check mark (., yes) or a red cross (X, no). The other two
criteria are rated on a scale of o..5 denoted by the appropriate number of
yellow stars.

Prevention

The evaluation of prevention is based on its dictionary definition from
Merriam-Webster that defines it as being the act or practice of stopping some-
thing bad from happening [42]. Setting this definition in the context of Model
Based Development (MBD) leads to the definition used which is prevents
fault or failure of the software component or system as a whole.

90

14. Introduction

Verification & Validation

For the evaluation of V&V the definition endorsed by the IEEE is used [70].
That definition reads as follows (emphasis added by author):

Validation. The assurance that a product, service, or system
meets the needs of the customer and other identified stakehold-
ers. It often involves acceptance and suitability with external
customers. Contrast with verification.

Verification. The evaluation of whether or not a product, service,
or system complies with a regulation, requirement, specification,
or imposed condition. It is often an internal process. Contrast
with validation.

Combining the two and setting the definition in context if MBD results in
the short definition used for this evaluation which is ensures compliance
with requirements or specifications. This definition is deliberately chosen
to exclude transitive relationships like helps create requirements, therefore helps
ensure compliance because the inclusion of those would potentially evaluate
to yes on every method and therefore be useless.

Prediction

The evaluation of prediction is based on its dictionary definition from
Merriam-Webster that defines its verb as being to declare or indicate in advance;
especially: foretell on the basis of observation, experience, or scientific reason [41].
Setting this definition in the context of MBD leads to the definition used
which is helps foretell reliability of a software or system on the basis
observation, experience, or scientific reason.

Deployment
Deployment is used to express the degree to which a method is matured

and moved on from research and has been deployed into regular production
use. The possible values are used to mean the following:

91

180700 ¢
150" 07070 ¢
iaia o 8 ¢
1AQAGAS 8 ¢
JAQAQAQAS ¢
PAQAGAGAQAS

14. Introduction

Not used, no interest in using (excluded from thesis)
Only used in research

Pilot projects interest in using

Plans for deployment by at least one major company
Already deployed by at least one major company
Industry standard, deployed by most companies

Source Reliability

Source Reliability is used to express the degree to which the documents used
to explain a method and judge its Deployment rating are from reliable and
knowledgeable sources. To classify any particular source on its reliability it
is evaluated on:

1. the affiliation of the authors with the relevant companies

2. their position within that companies hierarchy

3. the relevance of their department and/or their job description to the
methods domain of use

This evaluation leads to assignment into one of the following rating cate-

gories:

180700 ¢
1507070 " 0 ¢
1A0%e 8 8 ¢
PAQAGAS 8 ¢
PAQAGAGAS ¢
AQLQASAAS

External people, unaffiliated (excluded from thesis)
Researcher/s working with one company

Researcher/s working at one of the companies
Engineer/s employed at one of the companies

Engineer/s in relevant department at one company
Engineers in relevant departments at multiple companies

In general, multiple people, multiple companies and relevant positions are
viewed as indicators of reliability.

92

15. Requirements Management

The first phase in the typical V-Model is about the analysis and formalization
of requirements (see sections 4.2.1, 5.2.1, 6.2, 7.1.1, 9.2, 10.1).

Correct execution in this phase is very important. The part of the V-Model
that is relevant for software development could easily be compared to the
Waterfall Model but with additional iterative characteristics. In both models
there is Big Design Up-Front. Although the V-Model iteratively re-visits
the requirement analysis phase it is still costly to correct mistakes later on.
Errors propagate through all other phases and corrections also have to do
so which is time and resource intensive.

Project relevant documents usually exist before the project itself is even
started. These pre-existing documents contain but are not limited to func-
tional and technical specifications, relevant standards and regulatory require-
ments. Domain experts are employed to condense all of that information
into a single collection of architectural, system and component constraints
(requirements) [110, 97].

15.1. Method: Natural Language Processing

The body of relevant information can be very large, in some cases over
3000 pages. This puts a large burden on a small number of experts, limiting
throughput, quality and efficiency. There is a large overhead because experts
have to search through multiple documents and keep track of conflicting
information [110]. Audi and Daimler have developed methods to ease the
burden and improve the situation for the expert and the business process.

93

15. Requirements Management

The approach of Daimler involves the semantic analysis of documents to
automatically classify text passages and group them together according to
their content [110].

Audi reports the same efforts but additionally the goal of storing business
rules and building an ontology. The semantics of text documents then get
linked to the ontology concepts for a multitude of benefits [121, 108, 123].

Rating

Deployment Yrir¥r%% 2+ companies, millions invested
Reliability Yirvekk Researcher (Daimler), Engineer (Audi)

Prevention v Helps with prevention
V&V v Requirements are base for V&V
Prediction X No relation

15.1.1. Method: Extraction from Test Cases

US based researchers working for Bosch have developed methods for anal-
ysis of test cases in form of vectors representing input and output values
to automatically construct invariants that represent relations between those
vectors. The base data is obtained trough data mining. The approach was
tested in a pilot project on production C source code supplied by Bosch.
Experimental data indicates that full-coverage test data applied iteratively
produces the best results [1]

Rating

Deployment % %% Pilot project
Reliability Yevr#k %% Researchers(?) at Bosch

Prevention v Helps with prevention
V&V v Requirements are base for V&V
Prediction X No relation

94

15. Requirements Management

15.1.2. Method: Formalization of Restricted Grammars

The companies in the scope of research typically use off-the-shelf software
for the storage and management of individual requirements in the form
of natural language (potentially in simplified /restricted form). BMW [97],
AUDI [78], Daimler [110, 111, 22, 81] and ZF Friedrichshafen AG (ZF) [102,
12] use IBM Rational Dynamic Object Oriented Requirements System
(DOORS) while Siemens [129, 14, 35] uses Sparx Systems Enterprise Archi-
tect (EA) for this purpose. There is no clear information of the practice in
the remaining companies (VW, Bosch).

The stored artifacts have a Unique ID (UID) to enable tracking the connection
of requirements to parts of models and source code functions (BMW [97],
ZF [102]).

There are multiple papers (by the same researchers) reporting on case
studies on the formalization and automatic analysis of natural language re-
quirements in the domain of real-time systems. A tool chain was developed
and tested on multiple automotive projects at Bosch. The results show that
the time investment and computational cost are acceptable and benefit is
significant [114, 115, 116, 117]

Rating

Deployment %% %% Multiple pilot projects
Reliability Yryrk %% Researchers at Bosch

Prevention v Helps with prevention
V&V v Requirements are base for V&V
Prediction X No relation

95

16. Modeling and Simulation

The available materials indicate that Model Based Development (MBD) with
Big Design Up-Front is the unanimous consensus for best practices in the
automotive industry (see chapter II).

16.1. Big Design Up-Front

The typical design strategy is top-down design which follows from the
structure given by the V-Model which many automotive companies are
obliged to follow. This process usually follows steps identical or similar to
the following:

. System / Architecture Design

. System / Architecture Modeling
. Software Design & Modeling

. Component Design & Modeling

A WD N R

16.2. Method: Collaborative Design

One very important step in the early phases of a project is the collaborative
development of the overall architecture, system layout, technology choices
and design decisions that greatly affect the end result. Even though this
process is not limited to the early stages it is very dominant at the start of a
project.

Despite this importance there is not a large amount of sources dealing with
it originating in the automotive industry. Presumably this is because of the

96

16. Modeling and Simulation

impression that this topic is not interesting enough for scientific papers. It
was necessary to research the personal reports of everyday work by software
architects to secure sources that confirm the facts in this matter. Only
Siemens [24, 23] and AVL List [80] are explicit in their papers about reviews,
walkthroughs and inspections taking place and having an important role in
the development of the design and later artifacts.

Rating

Deployment Yriv¥r¥¢r% Already used at Siemens
Reliability Yievekk Senior Engineer (Siemens)

Prevention v Helps with prevention
V&V X No relation
Prediction X No relation

16.3. Modeling

Models are the natural first development target as they are the basis for
MBD. The design language is usually UML with varying profiles but can be
EAST-ADL when modeling architectures.

There are different kinds of models:

1. Architecture Models: Model the hierarchy, dependency and composi-
tion of the system and parts of it.

2. Component Models: Model a single part or function (e.g. MBFS [52]).

3. Behavior Models: Explicitly model and specify the behavior of a part.

For implementing those, some of the following diagram types can be used:

Class Diagrams

State Diagrams

Activity /Sequence Diagrams
Control/Data Flow Graphs
Circuit Diagrams

etc.

97

16. Modeling and Simulation
16.4. Method: Invariant Specification

There are some aspects of the system under test (SuT) that are either difficult
to model because of their continuous temporal nature, or difficult to assign
to a specific model in the system. One example could be the charge level
of the battery or the overall system temperature. These can be modeled by
using invariants, sometimes called watchers or watcher instruments [102].

These invariants are not models in the conventional sense, but grouped
together may be seen as an extra model parallel to the overall system
model.

While the explanation of the Watcher Instruments comes from ZF [102] the
same software is used at Daimler [54], which makes it probable that Daimler
is also taking advantage of them.

Rating

Deployment Yrirvr¥rk Already used at ZF
Reliability Y¥rvekk Head of Engineering Dept. (ZF)

Prevention v’ Helps with prevention
V&V v’ Serves V&V
Prediction v Prediction trough V&V

16.5. Simulation

Models are often built to be executable (simulation) and able to be integrated
into a testing process. This can be done both for checking the model but
also to validate later stages of production. More on simulation can be
found in the appropriate chapters dealing with prototyping and testing (e.g.
chapter 17, 19, 20).

98

17. Test Cases and Prototyping

Test cases are at the center of many of the efforts that seek to further
software reliability. General correctness can not yet be proven automatically
and maybe never will. Even manual proving is only possible for small, select
parts of source code.

Using test cases to “reasonably ensure” the correctness of a software compo-
nent seems to be the most viable option at the moment, though it has pitfalls
as well. The coverage of all possible inputs and outcomes is non-trivial and
adequate coverage can not be proven easily either.

17.1. Method: Test Cases from Models

The current approach of the automotive industry is tool-assisted test case
generation from models combined with extensive simulation early in the
development process and rigorous iteration.

Audi (sec 4.2.2), Siemens [9], Bosch [1], Ford [65] and GM [119] are some
of the companies that have stated that automatic generation of test cases is
being researched and developed. Audi are the only company that indicates
that usage is more than research efforts.

99

17. Test Cases and Prototyping

Rating

Deployment Yrir¥r¥r% Deployed (Audi), Research, Pilots
Reliability Yeyrvevew Mixture of Engineers and Researchers

Prevention v Testing is prevention
V&V v Testing is V&V
Prediction v Prediction trough V&V

17.2. Method: Rapid Prototyping / Front-loading

The specification of the V-Model strictly follows the modeling (descent),
implementation (bottom) and testing (ascent) of the v-shape the model
is named after. Artifacts have to be completed before they can be tested.
This delays the evaluation of models until after implementation, which
makes changes based on that evaluation costly. That high cost compelled
companies to find ways of validating models and testing integration before
the appropriate software and hardware are available.

This can be done in different ways. One possible approach is using walking
skeletons (Siemens, sec. 8.2.1) for prototyping architecture. Another is using
executable models for validating their behavior in a Model-in-the-Loop
(MiL) set-up, which most companies included in the research are using.

Rating

Deployment st vex Deployed by multiple companies
Reliability Yoyeveveye Engineers of multiple companies

Prevention v’ Testing is prevention
V&V v Testing is V&V
Prediction v Prediction trough V&V

100

18. Implementation

The source code is written and compiled to a binary in the implementation
phase. All checks and tests that rely on the source code are also performed
here. Although the name of this phase comes from the act of manually
writing source code, this process is often automatically performed by code
generators when using MBD.

18.1. Method: Code Generation

This method describes the generation of software component (SWC) code,
not code generation for the execution of test cases. There are three basic
approaches to implementation in Model Based Development (MBD), two of
which are being actively used.

1. Generation of stubs, manual implementation (e.g. ZF)
2. Automatic generation, additional manual editing
3. Automatic generation, no editing (e.g. AUDI, BMW, VW)

Option 2 does not seem to be used. This could be because the large effort of
creating detailed models for the generators is inefficient if code can not be
re-generated without losing some or all of the work done in editing.

Naturally, more automation is always preferable, but is not trivial to achieve.
A high automation level at the code generation step has to come at the cost
of more effort that has to be put into the detail level of models used for
generation.

Still, automatic generation offers large advantages over manual coding,
especially since models are created anyway for the generation of test cases
and validation of different artifacts.

101

18. Implementation

Rating

Deployment Yrir¥r¥rr Deployed (Audi, BMW, VW)
Reliability Y¥rveveye Engineers (Audi, BMW, ...)

Prevention v’ Prevents coding errors
V&V v Ensures valid code
Prediction X No relation

18.2. Method: Static Code Checking

Whenever source code is generated it has the potential of containing errors.
Even automatically generated code can be imperfect at times, even if code
generators have shown to produce very good quality code in practice [5].

There are multiple kinds of static code checking that offer different benefits.
Any modern Integrated Development Environment (IDE) offers built-in
checking for syntax errors and other criteria that can be performed in near-
real-time. Additionally, off-the-shelf software (MathWorks Polyspace (PS),
Bauhaus, Astrée) potentially offers more advanced techniques that may not
work in real time but need time to compute.

Rating

Deployment %¥rvrvrvr In use: Eclipse, Visual Studio
Reliability wirveeww Engineers

Prevention v’ Prevents faults
V&V v Ensures correct function
Prediction X No relation

102

18. Implementation
18.3. Method: Formal Verification & Validation

Formally verifying source code is a special type of static checking. One
approach to this kind of checking is the Memory Interval Constraint Solving
(MEMICS) project (Daimler, sec. 6.3.3) which compiles the source code to
an alternative target which can be checked by constrained solvers. This
allows for a range of checks to be performed. One rather interesting one is
the option to check for deadlocks and race conditions - two categories that
are very hard to automatically check for with conventional tools like static
checkers.

An industrial case study was performed at Siemens by the DEPLOY project [60]
which used the RODIN platform [136] for formal validation in the railway
domain (sec.8.3.3). The same tool set was also used at Bosch with similar
results (9.3.2). There is also research at Audi that uses an approach based on
Petri nets to formally verify the causal ordering of test steps (sec. 4.3.4).

The engineers at Ford use a combination of three in-house tools for formal
validation (sec. 11.2.2).

Plans for deployment of these formal methods into production is hindered
by the same problem independent of company or field. None of the formal
verification approaches scales very well with complexity, which can hardly
be avoided.

Rating

Deployment Y% %% Problems stop deployment plans
Reliability Yeyrveveye Multitude of sources boosts score

Prevention v Prevents faults
V&V v Ensures correct function
Prediction v’ Proves reliability

103

19. Component Testing

As soon as a software component can be compiled, it can also be verified by
checking it against its specification, models and test cases. This phase in the
classical V-Model is the first one that is meant to trigger an iteration if the
testing reveals any flaws or shortcomings. If an iteration is triggered this
means tracing the part responsible to the artifact that induced its creation
and adjusting that artifact. Then the implementation is adjusted accordingly
and component testing is re-started.

19.1. Method: Back-to-back Testing

Back-to-back testing is - simply stated - the comparison of the behavior of
an artifact with the behavior of its derivative or counterpart. In the case
of Electronic Control Unit (ECU) development that is commonly used to
indicate the comparison of models to binaries created according to those
models.

An example of back-to-back testing is the co-simulation of software and
executable models. Every company that is included in this thesis either does
go the extra step to make their models able to be executed and simulated or
has no information on it available at all.

104

19. Component Testing

Rating

Deployment %Y ¥r¥c Part of every known development process
Reliability Yyrveveye May be best documented method

Prevention v’ Prevents faults
V&V v Ensures correct function
Prediction v Prediction through V&V

19.2. Method: Virtual Integration

Virtual integration is a frontloading technique that aims to perform integra-
tion testing before the target hardware is available. To make this possible,
that hardware is simulated for the tests. For software component testing
this might take the form of actual binary execution on a simulated micro
controller (e.g. sec. 6.3.1 (Daimler), 5.2.5 (BMW).

Rating
Deployment ¥3rieiv% Deployed by at least 2 major companies
Reliability Y¥eeveve Engineering sources in very relevant position
Prevention v Prevents faults
V&V v’ Ensures correct function
Prediction v Prediction through V&V

19.3. Method: State Space Exploration

State Space Exploration is a testing method that does not rely on test cases
or pre-defined procedures. It relies on interface definitions in the form of
input (possible) and output (acceptable) signals. The signals are defined
with the possible values or ranges and a off-the-shelf software explores
combinations and sequences of signals. This method does not only try to

105

19. Component Testing

produce error states but also valid states that are close to being critical. This
is an advantage and unique value because it allows to detect possible future
problems that do not produce failures at the moment of testing.

This method is explicitly used by ZF (sec. 7.1.3) and probably used by
Daimler (use same software as ZF, sec. 6.2.5).

Rating

Deployment Y ¥¥r& Deployed by at least 1 major company

Reliability Y¥rveveve Engineering sources in very relevant position
Prevention v Prevents faults

V&V v Helps validate the state space

Prediction v Prediction through V&V

106

20. System/Integration Testing

20.1. Method: Multiple Functions on Same ECU

In the future, multiple functions will have to be put on the same ECU out
of necessity to control the excessive growth in number of ECUs, their power
use and the complexity of the resulting system. The problem with this is
that each of those functions could potentially interfere with the execution of
the others. Scheduling is already delicate when all functions are of the same
Automotive Safety Integrity Level (ASIL) level, but when mixed levels are
introduced, it becomes even harder. Functions of different ASIL levels have
different priorities [125].

While an entertainment function might want to always use all available
resources (best frame rate) possible, a safety-critical function might want to
keep a unused resource buffer to protect from delays in execution if resource
usage spikes. This is an extreme example (entertainment + safety critical on
same ECU) but it serves to illustrate the point.

Engineers from Audi report on a combination of measures to ensure sat-
isfactory execution of all functions hosted on the same ECU even if (and
especially when) they have different ASIL levels. They use AUTomotive
Open System ARchitecture (AUTOSAR) timing protection with Criticality
Aware Priority Assignment (CAPA) scheduling (sec. 4.3.6).

107

20. System/Integration Testing

Rating

Deployment *¥r#%%% Case studies, deployment plans assumed
Reliability Yirveved Engineers in one company

Prevention v’ Part of testing
V&V v Part of testing
Prediction v Prediction through V&V

20.2. Method: Networked Hardware-in-the-Loop

After the software component (SWC) was tested sufficiently with Software-
in-the-Loop (SiL) techniques, it is flashed onto an actual hardware controller
and connected to a test bed in a Hardware-in-the-Loop (HiL) set-up. This
allows for testing in an environment very close to the target environment
in terms of analog disruption factors and interferences like heat, electrical
instability, signal interference and others that might affect the hardware
directly.

The biggest downside of Hardware-in-the-Loop (HiL) is the inefficiency of
testing in real-time. Even if the system is just idling between events it can
not be sped up and has to execute in constant time frames.

As far as deployment goes, Hil. seems to be the industry baseline and is
used in every company. Because of this ubiquity the method was moved
up to Networked Hil. as even that definition still receives the highest score.
Networked means that the controller is not simulated by itself but is con-
nected to other components of the vehicle which are either simulated or
also connected as a Hil.

108

20. System/Integration Testing

Rating

Deployment %Y Used by every major company

Reliability Y¥rveveyr Engineers in very relevant positions
Prevention v Prevents faults from occurring
V&V v Ensures correct function

Prediction v Prediction through V&V

20.3. Method: Environment Simulation

When a component is connected in a Networked HiL that complete system
needs to be stimulated with inputs. Those can be pre-crafted sequences or
pre-recorded sequences from test drives of a vehicle, but both of these are
very inflexible. There are many parameters that might influence the outcome
like vehicle weight and size, outside temperature and many others.

Although recorded sequences are helpful as a reference and are in fact
being used, it is unrealistic to have every possible driving sequence pre-
recorded on file. This is probably the reason that many major companies
have developed some kind of environment and vehicle simulator platform.
It allows for configurable drive scenarios which automatically generate the
appropriate signals so stimulate the HiL, Sil,, MiL. and any combination of
those.

BMW uses their platform CarMaker for this purpose (sec. 5.2.5), Audi and
Volkswagen (VW) use their Virtual Test Drive system (sec. 4.2.7, sec. 10.2),
ZF uses ZF Friedrichshafen SoftCar (SoftCar) (sec) 7.1.3).

Rating

Deployment ¥¥rieiv% Used by at least four major companies

Reliability Yieeveye Engineers in very relevant positions
Prevention v Helps with prevention

V&V v Helps execute validation

Prediction v Prediction through V&V

109

20. System/Integration Testing

20.4. Method: Portable Emulation

At the end of the V-Model it is assumed that the component and its hardware
were already tested exhaustively and that there is an actual controller
that can be built into a test vehicle to be tested in integration tests. This
assumption is not necessarily correct, because at least two major companies
(BMW, Daimler) have found ways to build portable emulators for virtual
integration, which enable partial frontloading of integration tests into earlier
development phases.

BMW uses the Virtuelle Absicherungsplattform (VAP) (virtual validation
platform) which is a real-time Linux system running on IA-32 (x86) architec-
ture (sec. 5.2.5) and Daimler uses the Virtual Integration and Testing (VIT)
platform (sec. 6.3.1) simulation software.

Both of these can be loaded on a mobile PC system and connected to the
vehicle network to simulate the component during a physical test drive.

Rating

Deployment %Yt Used by at least two major companies
Reliability Yrirveveve Engineers in relevant positions

Prevention v Helps with prevention
V&V v Helps execute validation
Prediction v Prediction through V&V

110

21. Software Monitoring

Merriam-Webster describes monitoring as “to watch, observe, listen to, or
check (something) for a special purpose over a period of time” [40]. In the
context of software development this means to observe or check the state
of the software or parts of it over a period of time. In this chapter it is also
extended to include the recording of the results of monitoring - information
(or even knowledge).

Monitoring approaches start when there is something to monitor. To avoid
having separate chapters for methods in the descending part of the V-Model
that are produced by frontloading approaches, the notes about front-loaded
methods are included in the appropriate phases in the ascending (right-
hand) side of the V-Model.

Useful domain-specific terms are “measurement, which is acquiring data
from inside an ECU and calibration, which is writing data to the ECU” [26]
(Note: Emphasis added. In German documents the word applizieren rather
than the direct equivalent kalibrieren is used to mean calibration).

21.1. Method: Component Test Monitoring

In the component testing phase (chap. 19) monitoring is done either on the
executable component behavior model (frontloading, MiL) or the generated
binaries (SiL). Often both ways are treated as interchangeable. Because the
SWC is not yet deployed into a hardware device it is possible to step through
the execution or set breakpoints in a debugger, which offers a very powerful
way to check the execution state. Still, even in this state, treating the artifact
as a stand-in for a real hardware device is still important. Not only is it
easier to gain overview through a constant stream of information provided

111

21. Software Monitoring

by monitoring, it is also important to evaluate and debug the component’s
ability to be monitored and react to monitoring requests and techniques
appropriately.

ZF reports that their tool SoftCar offers monitoring for models (MilL) and
binaries (SiL) on its own but external tools (like TestWeaver) can also be
used through an Universal Measurement and Calibration Protocol (XCP)
interface (sec. 7.1.3). Audi has commissioned the creation of a connector
called INCA SimuLink® Integration Package (INCA-SIP) that allows ETAS
GmbH INCA (INCA) to directly integrate with MatLab/SimuLink (ML/SL)
and provide the same calibration experience in every phase (sec. 4.2.3).
Daimler reports that calibration of a simulated ECU over XCP is imple-
mented (sec. 6.2.4). Without listing all companies it seems very clear that
this is a broadly used practice. One thing to note is that all of these are
frontloading techniques.

Rating

Deployment ¥ ¥ Deployed (Audi, ZF, Daimler and others)
Reliability Yrieveveve Multitude of engineers in different companies

Prevention v Part of testing
V&V v Part of testing
Prediction v Prediction through V&V

21.2. Method: Integration Test Monitoring

Monitoring in the integration-, system- or vehicle test is an established tech-
nique for a long time. Recent developments of virtual integration platforms
like BMW'’s Virtuelle Absicherungsplattform (VAP) (sec. 5.2.5) or Daimler’s
Virtual Integration and Testing (VIT) (sec. 6.3.1) extend the possibilities of
component test monitoring (sec. 21.1) to later test phases as well.

112

21. Software Monitoring

Rating

Deployment Y ¥¥r% Standard technology
Reliability Yyrveveye Multitude of engineers in different companies

Prevention v’ Part of testing
V&V v Part of testing
Prediction v Prediction through V&V

21.3. Method: Flexible Monitoring with XCP

The Universal Measurement and Calibration Protocol (XCP) protocol offers
the ability to inspect values inside the ECU over the Car Area Network
(CAN) and can be configured on-the-fly during runtime. Audi has success-
fully used AUTOSAR with XCP to generate A2L files automatically by using
AUTOSAR definitions as inputs for the generator. This allows to select the
measured data for each test case dynamically from a list and greatly reduces
the required bandwidth.

They have used XCP in other unusual use cases as well. Firstly, they have
shown that data can be traced on-the-fly (without interrupting the execution,
without significant delay). This allows e.g. for plotting continuous values
at interfaces and visually analyzing results. Secondly, they have generated
task traces of the ECU'’s task system without overhead with pre-/post-task
handlers. XCP data aquisition (DAQ) events attached to buffers were used
to empty and reuse them when they became full, which ran in the idle time
of the CPU.

Rating

Deployment itk % Case studies, deployment plans assumed
Reliability Yoir¥eiek Engineers in one company

Prevention v Part of testing
V&V v Part of testing
Prediction v Prediction through V&V

113

21. Software Monitoring
21.4. Method: Synchronized Data Logging

When monitoring events in a vehicle, which has over 50 ECUs scattered
throughout its body, it is non-trivial to synchronize the time across the
whole system and supply all log entries with accurate time. One framework
that is used for this task is EB Assist Automotive Data and Time-Triggered
Framework (ADTF) by Elektrobit Automotive GmbH, at least according to
the producer of the software [84].

One company that has confirmed that in their own publications is Audi,
who have written about it since 2009 [95] and most recently in 2011 [99].
Audi also reports using the record and replay feature of the software.

Rating

Deployment Yri¥¥r% Deployed at multiple companies
Reliability Yr¥rievek Engineers in one company + Producer

Prevention v Part of testing
V&V v Part of testing
Prediction v Prediction through V&V

114

22. Software Maintenance

After a ECU software was released and mass-produced there is still potential
to repair that product trough post-release updates or improve components
and functions used in it for future vehicles.

22.1. Method: Field Data Analysis

There is a constant flow of data from service partners back to the Original
Equipment Manufacturers(OEMs) that can be used to improve future ver-
sions and generations of the ECU software. Whenever a vehicle is brought in
for a repair the collected data of the diagnostic functions read out and sent
back for analysis. This results in a data flow of approximately 5 gigabyte
per day according to BMW (sec. 5.3.2).

BMW uses that data to improve their software, but also to improve their
diagnostic functions, which can be almost half (40%) of the complete soft-
ware amount in a vehicle. ZF reports the use of operational statistics to
assign a reliability value to different components of a system so that fu-
ture systems built from these parts can be accurately estimated on their
reliability (sec. 7.2.1).

Rating

Deployment %Y Used by at least two major companies
Reliability Yr¥rveveye Engineers in relevant departments

Prevention v Helps with prevention
V&V v Helps improve validation
Prediction v Prediction through V&V

115

22. Software Maintenance

22.2. Method: Software Life-cycle Management

After software is released into series production and shipped with the
vehicle, any defects become extremely expensive to fix. The traditional way
to fix a defective ECU is to physically replace it with a new one. If this is a
general defect in all ECUs of that series, you have to bring in all vehicles
and change all of them. This is a very expensive way to do things.

Ford estimates that they have avoided expenses of an approximately $100
million by using Product Life-cycle Management (PLM) software Siemens
Teamcenter (Teamcenter) that was reinvented /extended for the management
of software. Teamcenter manages software dependency tracking, broadcast
deployment to service centers over the Internet and many other functions.
It has in most cases removed the need for replacement of ECU, because
modern ECUs have built-in flash memory and can be flashed over the
vehicle network (sec. 11.1.5).

While only Ford has documents available that lay out their process in
general, third parties [73] report on over-the-air (OTA) updates at other
manufacturers like Audi (Audi connect solution), GM (OnStar embedded
connectivity platform), Tesla, Chrysler (firmware over-the-air (FOTA), em-
bedded 3G data connection in the car or a Wi-Fi router), Toyota, Daimler
(MBRACEZ2 [38]) and BMW.

Long time industry software supplier Vector Informatik GmbH (CANape) is
joining in and partnering with Red Bend Software to provide OTA updates
to ECU firmware. Vector supplies the boot-loader and flashing technology
while Red Bend supplies the OTA technology [130].

116

Rating

Deployment
Reliability
Prevention
V&V
Prediction

22. Software Maintenance

PARAGAGAS ¢
PAGAGAGAS ¢
v’
v’
v’

Used by at least one company
Engineer at one company, suppliers
Helps with prevention

Helps improve validation
Prediction through V&V

117

23. Tool Overview

Audi BMW Bosch Daimler Ford Siemens | Toyota VW ZF

Requirements | DOORS DOORS - DOORS - EA own - DOORS
Environment | MODENA | CarMaker - Silver - Simscape - SoftCar
Simulation VTD VEOS
Component ML/SL ASCET - ML/SL ML/SL - ML/SL | ML/SL ML/SL
Modeling Stateflow
Behavior EXAM TcEd - - - EA -
Modeling MaTeLo TeDeSo
Test EXAM | MESSINA - TestWeaver - TestStand - - TestWeaver
Management TESTUS ATI
Formal LA - Event-B - Cyclops | Event-B | MC/DC
Verification PetriNets Hydra

Marple
Virtual - VAP - VIT -
Integration

Table 23.1.: Tool Overview

Table 23.1 shows the use of different software products at each company.
Sources for the indication are found below:

Audi

— [78]: IBM Rational Dynamic Object Oriented Requirements Sys-
tem (DOORS), Extended Automation Method (EXAM) execution,
Berner & Mattner Modena (MODENA); ML/SL [52]

- [94]: Markov Test Logic (MaTeLo), EXAM modeling

— [134]: Logic of Action (LA), Petri Nets

- [21, 94, 52]: MatLab/SimuLink (ML/SL)

BMW

- [97]: DOORS, Advanced Simulation and Control Engineering
Tool (ASCET), Test Case Editor (TcEd), Berner & Mattner MESSINA

- [88]: CarMaker (CM)

— [87]: Virtuelle Absicherungsplattform (VAP)

Bosch

118

23. Tool Overview

- [57, 59, 58]: Event-B, ProB
Daimler

[110]: DOORS

[54]: QTronic Silver (Silver), QTronic TestWeaver (TestWeaver)
[67, 66]: Virtual Integration and Testing, dSPACE VEOS, ML/SL
[126]: Berner & Mattner TESTUS

- [92]: ML/SL

Ford
- [55]: dSPACE TargetLink (— ML/SL)

Siemens:

- [128, 129]: Sparx Systems Enterprise Architect (EA), Test Design
Studio (TeDeSo), Automatic Testing Infrastructure (ATI), National
Instruments TestStand (TestStand)

Toyota:

- [47]: self-developed
— [72]: MatLab/SimuLink (ML/SL)

VW:

- [5]: MatLab/SimuLink (ML /SL)
ZF:

— [102]: DOORS, SoftCar, TestWeaver

119

Part 1V.

Ending Remarks

120

24. Conclusion

This thesis sought to explore the development of life-critical software in
the automotive domain which is not easily accessible due to the sensitive
nature of the information for the competitive advantage. It has laid out the
overall process that is being used in a series of top companies in the industry
together with many of the software tools that help perform that process. It
has further identified future directions and challenges for each company
and analyzed the reliability of it’s sources through the people that they
originate from and their affiliations. It has identified common technologies,
methods and tools used across different companies and consolidated that
information into a generalized structure that allows an insight into software
development in the industry as a whole. The abstracted methods were
analysed and rated to allow the reader their own evaluation and conclusion
but also to ease the digestion of the information and the option to serve as
a reference guide.

The main empirical findings are discussed in detail in part III and this
section will try to condense the strongest points in short.

1. Development Model - The V-Model: This is unanimously the only
model that is used, and even Toyota (who only recently re-evaluated
their practices) have found it to be the best model to use. There is not
even an alternative in any company included that could be mentioned
as an alternative (except maybe variations on the V-Model itself).

2. Requirements Management with DOORS: Every company seems to
agree that the importance of requirements management can not be
overstated. The most used tool for this is overwhelmingly DOORS
with notable exceptions of Siemens (uses EA) and Toyota (own tool, in
development).

121

24. Conclusion

3. Frontloading: The clear step for the future is the integration of testing
efforts directly into the development of models at every step starting
at the earliest possible point. Executable models in multiple abstrac-
tion levels, visualization and abstraction of hardware and seamless
transition between models and code are only some of the tools that
support this development.

4. Automatic Generation of Everything: Pure C source code is being
reduced to a kind of transfer medium between models and binaries.
Most companies are either already (completely) automatically generat-
ing the source code or are on their way. Executable tests (test cases)
are seemingly moving in the same direction.

5. Automatic Execution of Tests: With formal definition of everything
it is a logical step to seek the automation of testing at every step.
With availability of models for every step of the way this becomes a
reasonable goal to pursue.

Taking all of the findings into account, it seems that the automotive industry
(and presumably other life-critical domains) are actually moving away from
traditional software development altogether and into something more of a
software modeling way of doing things. This different approach might not
seem very familiar to the average software developer of today and may
very well be looked at separately from the rest of software development
efforts. Traditional software development can not reasonably be divorced
from source code altogether, but the automotive industry is trying to do
exactly that. The traditional effort is just not reliable enough.

Future work in this area might focus on furthering the insight into the
actual practice in everyday development, assessing the objective degree
of success that the described methods can offer and evaluate quantifiable
improvements that MBD can offer above traditional methods and its pitfalls.
There is also a potential to compare the different software tools used on
a detailed scale and give recommendations on methods and tooling for
companies that aspire to replicate or even top the success of the biggest
companies in the field.

The findings in this work should still be taken with a grain of salt, for
all of its findings (despite the high level of consistency across companies)
are based on approved publications of the companies themselves, with

122

24. Conclusion

supplemental information of third parties. Unfortunately, it is not possible
to assert with conviction and accuracy, what the actual situation and practice
is in the daily development work at the companies mentioned.

Model Based Development has its drawbacks like high initial costs, slow
development speed and additional expenses for re-training of expert per-
sonnel. The high complexity, high bug count and bad manageability of a
100 million LOC code-base seems to tip the scale in favor of MBD anyway.

Overall the Model Based Development approach presents itself as a viable,
even preferable method to ensure safety and reliability of life-critical systems
in the automotive domain and similar fields.

123

List of Terms

ACM Association for Computer Machinery. 12

ADL Architecture Description Language. 86, 87, 125

ADTF Automotive Data and Time-Triggered Framework. 114

AEV Audi Electronics Venture GmbH. 18

AIT Austrian Institute of Technology. 75

ARXML AUTOSAR XML. 32, 33

ASCET Advanced Simulation and Control Engineering Tool. 32, 33, 37, 87,
118

ASIL Automotive Safety Integrity Level. 26, 27, 107

ASM Automotive Simulation Models. 73

ATl Automatic Testing Infrastructure. 57, 118, 119

AutomationDesk dSPACE AutomationDesk. 73

AUTOSAR AUTomotive Open System ARchitecture. 9, 25, 27, 32, 33, 35,
38, 40, 47, 62, 63, 86, 107, 113

AVL List Anstalt fiir Verbrennungskraftmaschinen List GmbH. 86, 97

back-to-back testing Comparison of the behavior of an artifact with the
behavior of its derivative or counterpart. 73, 104

Bauhaus The Bauhaus Toolkit. 64

Big Design Up-Front A process in which the majority of planning and
design effort happens in the first phase of the process. 93, 96

BMW Bayrische Motorenwerke AG. viii, 29-33, 36, 37

bottom-up testing A design approach in which small parts (bottom of
hierarchy) is tested first, then tested together after each of the parts
has passed.. 8

BRMS Business Rule Management System. 26

BSW base software. 33, 35, 40, 63, 67-69

C The C Programming Language. 32, 69, 94, 122

124

Terms and abbreviations

C++4 The C++ Programming Language. 49
calibration writing data to an ECU. 111

CAN Car Area Network. 41, 51, 113

CANape Vector Informatik CANape. 42, 51

CAPA Criticality Aware Priority Assignment. 277, 107
CM CarMaker. 36, 109, 118

CTE C(lassification Tree Editor. 73

CTM/ES Classification Tree Method. 40

DAQ data aquisition. 26, 113

DEPLOY Industrial deployment of advanced system engineering methods
for high productivity and dependability. 59, 103

DOORS IBM Rational Dynamic Object Oriented Requirements System. 19,

20, 23, 30, 39, 45, 48, 49, 95, 118, 119, 121

EA Sparx Systems Enterprise Architect. 56, 95, 118, 119, 121

EAST Electronics Architecture and Software Technology. 87, 125

EAST-ADL Electronics Architecture and Software Technology - Architec-
ture Description Language. 86, 87, 97

ECU Electronic Control Unit. 20, 22, 25-27, 30, 33, 35-37, 40—43, 50, 51, 63,
69, 73, 74, 104, 107, 112—-116, 125, 126

EE Electrical Engineering. 18

EMF Eclipse Modelling Framework. 49

ET Engineering Technology. 18

ETAS Engineering Tools, Application and Services. 32

EU European Union. 75

Event-B Formal Method. An evolution of the B-method (also known as
classical B). Supported by the Rodin Tool Suite. 118, 119

EXAM Extended Automation Method. 20, 22, 23, 50, 118

Ford Ford Motor Company. 7176

FOTA firmware over-the-air. 116

frontloading Shifting the application of methods to an earlier stage in a
development process. 20, 35, 72, 105, 110-112

FSM finite state machine. 32

GENIVI Geneva In-Car Infortainment. 33
GM General Motors. 99

125

Terms and abbreviations

GRAE Group Research and Advanced Engineering. 38

HAV Hierarchical Accumulative Validation. 82
HiL Hardware-in-the-Loop. 18, 19, 22, 24, 42, 70, 71, 73, 108, 109

IABG Industrieanlagen-Betriebsgesellschaft mbH. 7

IDE Integrated Development Environment. 102

IEEE Institute of Electrical and Electronics Engineers. 91

iMBT Integrated Model Based Testing. 57, 58

INCA ETAS GmbH INCA. 20, 51, 112

INCA-SIP INCA SimuLink® Integration Package. 20, 21, 112

interface A group of signals with the description of acceptable types, ranges
and effects that can be used to communicate in a predictable way. 32

IR Intermediate Representation. 46

IT Information Technology. 29

ITF Integrated Testing Framework. 23, 70

JRC-ACM Joint Research Committee - Automotive Control And Modelling.
8o
JSAE Society of Automotive Engineers of Japan. 8o

KIT Karlsruhe Institute of Technology. 63

LA Logic of Action. 26, 118

LKS Lane Keeping System. 73

LLVM Low Level Virtual Machine. 46
LOC lines of code. 2, 123

MARTE Modeling and Analysis of Real-Time and Embedded Systems. 86

MaTeLo Markov Test Logic. 19, 20, 22, 23, 118

MBD Model Based Development. 3, 6, 19, 20, 32, 38, 71, 73, 80, 90, 91, 96,
97, 101, 122, 123

MBFS Model-Based Function Specification. 20, 97

MBT Model Based Testing. 19, 40, 83

MC/DC Modified Condition/Decision Coverage. 82, 83, 118

measurement reading data from the an ECU. 111

MEMICS Memory Interval Constraint Solving. 46, 103

MESSINA Berner & Mattner MESSINA. 33, 73, 118

MiL Model-in-the-Loop. 19, 20, 72, 73, 83, 100, 109, 111, 112

126

Terms and abbreviations

MISRA-C Motor Industry Software Reliability Association - Guidelines for
the use of the C language in critical systems. 79

ML/SL MatLab/SimuLink. 19, 20, 40, 67, 69, 72, 83, 112, 118, 119

MODENA Berner & Mattner Modena. 22, 118

Mogentes Model-based generation of tests for embedded systems. 75

MVP minimum viable product. 56

NLP Natural Language Processing. 45, 49, 62

OCR Optical character recognition. 13
OEM Original Equipment Manufacturer. 7, 40, 48, 115
OTA over-the-air. 116

PDF Portable Document Format. 13

Petri net A kind of bipartite directed graph. 26

PLM Product Life-cycle Management. 74, 116

ProB A model checker and constraint solver. 59, 118, 119
PROMELA Process/Protocol Meta Language. 76, 128
PS MathWorks Polyspace. 102

ReCaRe Review with Categorized Requirements. 45

rich client An application which includes all execution logic in its own files
and because of that can operate off-line. 23

RODIN Rigorous Open Development Environment for Complex Systems.
59, 103

RPC Remote Procedure Call. 32

RTE Run-Time Environment. 33, 35

RTOS Real-Time Operating System. 31, 33

RUD rough upfront design. 55, 56

runnable interface to internal behavior of a component. 32

SAE Society of Automotive Engineers. 82

SICE Society of Instrument and Control Engineers. 8o

SiL Software-in-the-Loop. 19, 22, 24, 40, 42, 72, 80, 83, 108, 109, 111, 112

Silver QTronic Silver. viii, 4144, 118, 119

Simscape MathWorks Simscape. 83, 118

SoftCar ZF Friedrichshafen SoftCar. viii, 50-52, 109, 112, 118, 119

spaghetti code Incomprehensible source code that is hard to read and/or
has a high degree of unnecessary dependencies. 78

127

Terms and abbreviations

SPIN Simple Process/Protocol Meta Language (PROMELA) Interpreter. 76

SSA Static Single Assignment. 46

Stateflow MathWorks Stateflow. 83, 118

State-of-the-Art The highest level of general development achieved at a
particular time. 4

SuT system under test. 34, 40, 98

SWC software component. 33, 35, 39, 81, 101, 108, 111

SWIFI Software-implemented Fault Injection. 25

SysML Systems Modelling Language. 58, 86

SystemC The SystemC Event Library. 58

SystemDesk dSPACE SystemDesk. 44

TargetLink dSPACE TargetLink. 44, 72, 119

TcEd Test Case Editor. 33, 118

TCP/IP Transport Control Protocol / Internet Protocol. 51

TDL Timing Definition Language. 81

Teamcenter Siemens Teamcenter. 74, 116

TeDeSo Test Design Studio. 56, 57, 118, 119

test bed An installation connecting multiple hardware parts that is used
for testing a prototype. 22

test oracle A means of automatically deciding if a test has succeeded or
failed. 20

TestStand National Instruments TestStand. 57, 118, 119

TESTUS Berner & Mattner TESTUS. 40, 118, 119

TestWeaver QTronic TestWeaver. viii, 40, 41, 43, 49, 50, 52, 118, 119

top-down design A design approach in which big structures (top of hierar-
chy) is designed first, then split up into components to add detail.. 8,
96

TPT Time Partition Testing. 40

TUM Technische Universitdt Miinchen. 58

UA Unintended Acceleration. 78

UID Unique ID. 49, 95

UML Unified Modelling Language. 56, 58, 75, 76, 86, 87, 97
UPPAAL-PORT UPPAAL Partial Order Reduction Techniques. 87
URML Unified Requirements Modeling Language. 58

VAP Virtuelle Absicherungsplattform. 9, 29, 33-37, 110, 112, 118

128

Terms and abbreviations

VEOS dSPACE VEOS. 44, 118, 119

VIN Vehicle Identification Number. 74

VIT Virtual Integration and Testing. viii, 43, 44, 110, 112, 118, 119

ViTAL Verification Tool for EAST-ADL Models using UPPAAL-PORT. 87

V-Model A software development model used by many car manufacturers,
especially in Europe. viii, 3-8, 18, 19, 30, 33, 34, 38, 39, 48-50, 61, 62,
66, 67, 71, 82, 89, 90, 93, 96, 100, 104, 110, 111, 121

VS Microsoft Visual Studio. 83

VSA Vehicle Systems Architect. 32, 35

VSB Vehicle Systems Builder. 35

VTD Virtual Test Drive. 23, 70, 109, 118

VW Volkswagen. viii, 23, 66—70, 109

Waterfall Model A software development model that prescribes one-directional
progress through its phases. 93
WCET Worst Case Execution Time. 63

x86 IA-32. 110

XCP Universal Measurement and Calibration Protocol. 25, 41, 51, 112, 113
XMI Extensible Markup Language (XML) Metadata Interchange. 76

XML Extensible Markup Language. 49, 76, 129

ZF ZF Friedrichshafen AG. 7, 48, 50-53, 61, 95, 98, 101, 106, 109, 112, 115

129

Bibliography

[1]

[2]

Chris Ackermann et al. “Automatic requirement extraction from test
cases.” In: Runtime Verification. Springer. 2010, pp. 1-15 (cit. on pp. 2,

61, 64, 65, 94, 99)-

Dirk Ahrens et al. “Objective evaluation of software architectures in
driver assistance systems.” In: Computer Science-Research and Develop-
ment 28.1 (2013), pp. 23—43 (cit. on p. 29).

Hanna Amlinger. “Application of a new software tool for the au-
tomated test of automotive electronic control unit software.” PhD
thesis. Stockholm, 2009 (cit. on p. 18).

Saoussen Anssi et al. “/AUTOSAR vs. MARTE for enabling timing
analysis of automotive applications.” In: SDL 2011: Integrating System
and Software Modeling. Springer, 2012, pp. 262—275 (cit. on p. 86).

Ing Andrea Arenz and Dipl-Ing FH Sven Potrykus. “Model-based
algorithm development.” In: ATZ worldwide 112.1 (2010), pp. 18—22
(cit. on pp. 66—70, 102, 119).

EAST-ADL Association. EAST-ADL Website. 2014. URL: http://www.
east-adl.info/ (cit. on p. 86).
AUDI AG. Annual Report for 2013 (cit. on p. 18).

AUDI AG. AUDI Website - Audi at a glance. 2014. URL: http://www.
audi.com/content/audi_com/corporate/en/company/audi-at-a-
glance.html (cit. on p. 18).

Alberto Avritzer et al. “Automated generation of test cases using
a performability model.” In: Software, IET 5.2 (2011), pp. 113-119

(cit. on pp. 59, 60, 99).

130

http://www.east-adl.info/
http://www.east-adl.info/
http://www.audi.com/content/audi_com/corporate/en/company/audi-at-a-glance.html
http://www.audi.com/content/audi_com/corporate/en/company/audi-at-a-glance.html
http://www.audi.com/content/audi_com/corporate/en/company/audi-at-a-glance.html

[10]

[20]

Bibliography

Dipl-Ing Alexander Banerjee, Ing Maik Wiirthner, and Dipl-Ing Cos-
min Tudosie. “Prevision GPS—Die Schaltstrategie fiir das Getriebesys-
tem Traxon.” In: ATZ-Automobiltechnische Zeitschrift 115.6 (2013),
PP- 490—493 (cit. on p. 54).

Michael Barr. BOOKOUT V. TOYOTA - 2005 Camry Lg Software Anal-
ysis. Expert wittness presentation in Toyota case. 2013 (cit. on pp. 78,
79)-

Lothar Beller and Pavel Turjanica. Standardization and Tool Chains for

an Independent Test Center with Different Customer Requirements. 2010

(cit. on pp. 18, 48-50, 53, 54, 95).

Brian Berenbach. “A 25 year retrospective on model-driven require-
ments engineering.” In: MoDRE. 2012, pp. 87-91 (cit. on pp. 58, 60).

Brian Berenbach, Florian Schneider, and Helmut Naughton. “The use
of a requirements modeling language for industrial applications.” In:
Requirements Engineering Conference (RE), 2012 20th IEEE International.
IEEE. 2012, pp. 285-290 (cit. on pp. 58, 60, 95).

R Bergmann and R Walesch. HIL-Strategie Audi. Jan. 2012 (cit. on
pp- 22, 23).

Berner & Mattner Systemtechnik GmbH. Safe with TESTUS. 2011
(cit. on p. 47).

Abian Blome et al. “VERA: A flexible model-based vulnerability
testing tool.” In: Software Testing, Verification and Validation (ICST),
2013 IEEE Sixth International Conference on. IEEE. 2013, pp. 471478
(cit. on p. 60).

BMW AG. Annual Report for 2013. Mar. 2014 (cit. on p. 29).

BMW AG. BMW Website - Locations. 2014. URL: http: //www.bmwgroup.

com / bmwgroup _prod/e/0_0 _www_bmwgroup _ com/unternehmen /
unternehmensprofil / standorte/standorte/index . html (cit. on
p- 29).

Bosch GmbH. Bosch Website - Bosch in figures. 2014. URL: http://

www . bosch . com/en/ com/bosch_group/bosch_figures/bosch-
figures.php (cit. on p. 61).

131

http://www.bmwgroup.com/bmwgroup_prod/e/0_0_www_bmwgroup_com/unternehmen/unternehmensprofil/standorte/standorte/index.html
http://www.bmwgroup.com/bmwgroup_prod/e/0_0_www_bmwgroup_com/unternehmen/unternehmensprofil/standorte/standorte/index.html
http://www.bmwgroup.com/bmwgroup_prod/e/0_0_www_bmwgroup_com/unternehmen/unternehmensprofil/standorte/standorte/index.html
http://www.bosch.com/en/com/bosch_group/bosch_figures/bosch-figures.php
http://www.bosch.com/en/com/bosch_group/bosch_figures/bosch-figures.php
http://www.bosch.com/en/com/bosch_group/bosch_figures/bosch-figures.php

Bibliography

Valerie Bouquet. Application of the Model-Based Testing approach with

MaTeLo in test industrialization at AUDI. http:/ /www.allgtec.net/index.php/en/news/18
use-case-audi-uses-matelo-for-test-industrialization. June 2013 (cit.

on pp. 19, 20, 118).

Ekaterina Boutkova. “Experience with variability management in re-
quirement specifications.” In: Software Product Line Conference (SPLC),
2011 15th International. IEEE. 2011, pp. 303—312 (cit. on p. 95).

Frank Buschmann. “A Week in the Life of an Architect.” In: Software,
IEEE 29.3 (2012), pp. 94—96 (cit. on pp. 55, 56, 59, 97).

Frank Buschmann. “Tests: The Architect’s Best Friend.” In: Software,
IEEE 28.3 (2011), pp. 7—9 (cit. on pp. 55, 56, 59, 97).

Michael Butler, Laurent Voisin, and Thomas Muller. “Tooling.” In:
Industrial Deployment of System Engineering Methods. Springer, 2013,
pp- 157-185 (cit. on p. 59).

Philipp Caliebe, Christoph Lauer, and Reinhard German. “Flexible
integration testing of automotive ECUs by combining AUTOSAR and

XCP.” In: Computer Applications and Industrial Electronics (ICCAIE),
2011 IEEE International Conference on. IEEE. 2011, pp. 67-72 (cit. on

pp- 25, 26, 111).

Robert N. Charette. This Car Runs on Code. 2009. URL: http : //
spectrum . ieee . org/transportation/systems/this-car-runs-
on-code (cit. on p. 2).

DeJiu Chen et al. “An architectural approach to the analysis, verifi-
cation and validation of software intensive embedded systems.” In:
Computing (2013), pp. 1—40 (cit. on p. 86).

D Chen et al. “Integrated safety and architecture modeling for auto-

motive embedded systems*.” In: e & i Elektrotechnik und Information-
stechnik 128.6 (2011), pp. 196—202 (cit. on p. 86).

Ford Motor Company. Delivering Profitable Growth for All - 2013
Annual Report. 2014 (cit. on p. 71).

Association for Computing Machinery. The ACM Digital Library. 2014.
URL: http://dl.acm.org/ (cit. on p. 7).

132

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://dl.acm.org/

[32]

[33]

[34]

[35]

Bibliography

Toyota Motor Corporation. Annual Report 2013 - True Competitiveness
for Sustainable Growth. 2013 (cit. on p. 78).

Inc. Coverity. Coverity Scan: 2013 Open Source Report. 2013. URL: http:
//softwareintegrity.coverity.com/rs/coverity/images/2013-
Coverity-Scan-Report.pdf (cit. on p. 2).

Cran Communications Inc. “Supplement: Top Suppliers.” In: Auto-
motive News (June 2013) (cit. on pp. 48, 61).

Othon Crelier, William M Hasling, Christof] Budnik, et al. “Design
principles for integration of model-driven quality assurance tools.”
In: Software Components, Architectures and Reuse (SBCARS), 2011 Fifth
Brazilian Symposium on. IEEE. 2011, pp. 100-109 (cit. on p. 95).

Philippe Cuenot et al. “11 The EAST-ADL Architecture Description
Language for Automotive Embedded Software.” In: Model-Based
Engineering of Embedded Real-Time Systems. Springer, 2011, pp. 297—
307 (cit. on p. 86).

Daimler AG. Daimler at a glance - financial year 2013. 2014 (cit. on
pp- 38, 78)-

Daimler AG. Mercedes MBRACE 2 FAQ. 2012 (cit. on p. 116).

Dipl-Ing Markus Deicke, Wolfram Hardt, and Ing Marcus Martinus.
“Simulation Hardwarespezifischer Komponenten von ECU-Software
in der Virtuellen Absicherung.” In: ATZelektronik 7.3 (2012), pp. 226~
231 (cit. on p. 37).

Merriam-Webster Dictionary. Monitoring - Definition and More. 2014.
URL: http://www.merriam-webster.com/dictionary/monitoring
(cit. on p. 111).

Merriam-Webster Dictionary. Predict - Definition and More. 2013. URL:
http://www.merriam-webster .com/dictionary/predict (cit. on
p- 91).

Merriam-Webster Dictionary. Prevention - Definition and More. 2014.
URL: http://www.merriam-webster.com/dictionary/prevention
(cit. on p. 90).

133

http://softwareintegrity.coverity.com/rs/coverity/images/2013-Coverity-Scan-Report.pdf
http://softwareintegrity.coverity.com/rs/coverity/images/2013-Coverity-Scan-Report.pdf
http://softwareintegrity.coverity.com/rs/coverity/images/2013-Coverity-Scan-Report.pdf
http://www.merriam-webster.com/dictionary/monitoring
http://www.merriam-webster.com/dictionary/predict
http://www.merriam-webster.com/dictionary/prevention

(48]

[49]

Bibliography

dSPACE GmbH. dSPACE Website - Software Operating System Com-
patibility. URL: https://www.dspace . com/en/pub/home/support/
supvers/supverscompm/release_roadmap.cfm (cit. on p. 44).

Institute of Electrical and Electronics Engineers. IEEE Xplore Digital
Library. 2014. URL: http://ieeexplore.ieee.org (cit. on p. 7).

Eduard Paul Enoiu et al. “Vital: A verification tool for east-adl models
using uppaal port.” In: Engineering of Complex Computer Systems
(ICECCS), 2012 17th International Conference on. IEEE. 2012, pp. 328-
337 (cit. on p. 87).

ETAS GmbH. ETAS GmbH INCA-SIP. URL: http://www.etas.com/
en/products/inca_sip.php (cit. on p. 20).

Jared Farnsworth et al. “Hierarchical Accumulative Validation of
Executable Control Specifications.” In: SAE International Journal of
Passenger Cars-Electronic and Electrical Systems 6.1 (2013), pp. 186-193
(cit. on pp. 82-85, 119).

Dogan Fennibay, Arda Yurdakul, and Alper Sen. “A Heterogeneous
Simulation and Modeling Framework for Automation Systems.”
In: Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 31.11 (2012), pp. 1642—-1655 (cit. on p. 59).

Matthias Freier and Jian-Jia Chen. “Prioritization for real-time em-
bedded systems on dual-core platforms by exploiting the typical-and
worst-case execution times.” In: Industrial Embedded Systems (SIES),
2018 8th IEEE International Symposium on. IEEE. 2013, pp. 21-29 (cit.

on pp. 61, 63, 65).

Ing Jorn Freyer et al. “Eine Spur Aufmerksamer der Audi Active
Lane Assist.” In: ATZ-Automobiltechnische Zeitschrift 112.12 (2010),
pp- 926—930 (cit. on p. 18).

ZF Friedrichshafen. ZF at a Glance. 2013 (cit. on p. 48).

Dipl-Ing FH Johann Gabler et al. “ECU function development.” In:
ATZelektronik worldwide 5.5 (2010), pp. 36—39 (cit. on pp. 18, 20, 21,
27,97, 118).

Johann Gabler et al. Function Development Without a Vehicle. http:
//www.etas.com/data/RealTimes_2010/rt_2010_2_6_en.pdf, 2010
(cit. on p. 27).

134

https://www.dspace.com/en/pub/home/support/supvers/supverscompm/release_roadmap.cfm
https://www.dspace.com/en/pub/home/support/supvers/supverscompm/release_roadmap.cfm
http://ieeexplore.ieee.org
http://www.etas.com/en/products/inca_sip.php
http://www.etas.com/en/products/inca_sip.php
http://www.etas.com/data/RealTimes_2010/rt_2010_2_6_en.pdf
http://www.etas.com/data/RealTimes_2010/rt_2010_2_6_en.pdf

[54]

[55]
[56]

(571

[65]

Bibliography

Stefan Gloss, Milan Slezdk, and Andreas Patzer. “Virtualisation - Val-
idation of Over 200 Transmission Variants on PC.” In: AT Zelektronik

8.4 (2013), pp. 290—294 (cit. on pp. 40—43, 47, 98, 119).

dSPACE GmbH. “Fusion Hybrid Energized.” In: dSPACE Magazine 3
(Mar. 2010) (cit. on pp. 72, 76, 119).

dSPACE GmbH. “Go for Quality.” In: dASPACE Magazine 3 (Mar. 2010)
(cit. on pp. 73, 76).

Rainer Gmehlich and Cliff Jones. “Experience of Deployment in the

Automotive Industry.” In: Industrial Deployment of System Engineering
Methods. Springer, 2013, pp. 13—26 (cit. on pp. 61, 63, 65, 119).

Rainer Gmehlich et al. “On fitting a formal method into practice.” In:
Formal Methods and Software Engineering. Springer, 2011, pp. 195-210
(cit. on pp. 61, 63, 65, 119).

Rainer Gmehlich et al. Towards a Formalism-Based Toolkit for Automotive
Applications. Tech. rep. Computing Science, Newcastle University,
2012 (cit. on pp. 61, 63, 65, 119).

Grant agreement for Industrial deployment of advanced system engineering
methods for high productivity and dependability (DEPLOY) - Annex 1
(cit. on p. 103).

Object Management Group. MARTE Website. 2014. URL: http://www.
omgmarte.org/ (cit. on p. 86).

Object Modelling Group. SysML Website. 2014. URL: http: //www .
omgsysml.org/ (cit. on p. 86).

VolksWagen Group. Annual Report for 2013. 2014 (cit. on pp. 66, 78).
The Guardian. Carmaker BMW keeps luxury top spot with record 2013

sales. Jan. 2014. URL: http://www.theguardian.com/business/2014/
jan/13/bmw- luxury-top-spot-record-2013-car-sales (cit. on
pp- 18, 29, 38).

Dipl-Ing Dirk Gunia and Dipl-Ing FH Jiirgen Schiiling. “Model-based
testing of Ford’s lane keeping system.” In: Auto Tech Review 1.6 (2012),
pp- 48-51 (cit. on pp. 73, 76, 99).

135

http://www.omgmarte.org/
http://www.omgmarte.org/
http://www.omgsysml.org/
http://www.omgsysml.org/
http://www.theguardian.com/business/2014/jan/13/bmw-luxury-top-spot-record-2013-car-sales
http://www.theguardian.com/business/2014/jan/13/bmw-luxury-top-spot-record-2013-car-sales

[66]

[73]

[74]

[75]

Bibliography

Artur Honisch et al. “Virtual Integration and Testing of Vehicle E/E
Systems.” In: ATZelektronik worldwide 8.5 (2013), pp. 22—25 (cit. on

PP- 44, 47, 119).

Artur Honisch and Karsten Kriigel. “Virtuelle Integration und Test
von E/E-Fahrzeugsystemen.” In: ATZelektronik 8.5 (2013), pp. 350
355 (cit. on pp. 43, 44, 47, 119).

IABG. V-Modell XT. 1.4. Industrieanlagen-Betriebsgesellschaft GmbH.
May 2012 (cit. on pp. 6, 18).

IABG. V-Modell-Seiten der IABG. Industrieanlagen-Betriebsgesellschaft
GmbH. 2014. URL: http://www.v-modell.iabg.de/ (cit. on pp. 3, 6,
7)-

“IEEE Guide-Adoption of the Project Management Institute (PMI(R))
Standard A Guide to the Project Management Body of Knowledge

(PMBOK(R) Guide)-Fourth Edition.” In: IEEE Std 1490-2011 (Nov.
2011), pp. 1-508. DOI: 10.1109/IEEESTD.2011.6086685 (cit. on p. 91).

Siemens Product Lifecycle Management Software Inc. Ford Motor
Company £100+ million in warranty cost savings. URL: http://www.plm.
automation.siemens.com/en_us/about_us/success/case_study.
cfm?Component=63184&ComponentTemplate=1481 (cit. on pp. 74, 77).

The Mathworks Inc. Toyota Front-Loads Development of Engine Control
Systems Using Comprehensive Engine Models and SIL+M. 2014 (cit. on

pp- 83, 85, 119).
Krishna Jayaraman. Over-the-Air Updates to Slash Automobiles” Recall

Rates. 2013. URL: http://www.frost.com/prod/servlet/press-
release.pag?docid=284456381 (cit. on p. 116).

Adam C Jensen et al. “A toolchain for the detection of structural and
behavioral latent system properties.” In: Model Driven Engineering
Languages and Systems. Springer, 2011, pp. 683-698 (cit. on p. 76).
Andreas Junghanns, Jakob Mauss, and Michael Seibt. “Faster De-
velopment of AUTOSAR compliant ECUs through simulation.” In:
ERTS-2014, Toulouse () (cit. on p. 42).

136

http://www.v-modell.iabg.de/
http://dx.doi.org/10.1109/IEEESTD.2011.6086685
http://www.plm.automation.siemens.com/en_us/about_us/success/case_study.cfm?Component=63184&ComponentTemplate=1481
http://www.plm.automation.siemens.com/en_us/about_us/success/case_study.cfm?Component=63184&ComponentTemplate=1481
http://www.plm.automation.siemens.com/en_us/about_us/success/case_study.cfm?Component=63184&ComponentTemplate=1481
http://www.frost.com/prod/servlet/press-release.pag?docid=284456381
http://www.frost.com/prod/servlet/press-release.pag?docid=284456381

Bibliography

[76] Eun-Young Kang, Pierre-Yves Schobbens, and Paul Pettersson. “Veri-
tying functional behaviors of automotive products in EAST-ADL2
using UPPAAL-PORT.” In: Computer Safety, Reliability, and Security.
Springer, 2011, pp. 243—256 (cit. on p. 87).

[77] Stetfen Keul. “Tuning Static Data Race Analysis for Automotive
Control Software.” In: Source Code Analysis and Manipulation (SCAM),
2011 11th IEEE International Working Conference on. IEEE. 2011, pp. 45—

54 (cit. on p. 64).

[78] Gerhard Kiffe et al. “Benutzungsorientiertes und modellzentriertes
Testen im Hil-Testing.” In: AT Zelektronik 4.5 (2009), pp. 56—60 (cit. on
Pp. 19, 22—24, 27, 70, 95, 118).

[79] Jens Kohl et al. “Using multivariate split analysis for an improved
maintenance of automotive diagnosis functions.” In: Software Main-
tenance and Reengineering (CSMR), 2011 15th European Conference on.
IEEE. 2011, pp. 305—308 (cit. on p. 37).

[8o] Martin Krammer, Eric Armengaud, and Quentin Bourrouilh. “Method
library framework for safety standard compliant process tailoring.”
In: Software Engineering and Advanced Applications (SEAA), 2011 37th
EUROMICRO Conference on. IEEE. 2011, pp. 302—305 (cit. on p. 97).

[81] Jorg Leuser. “Challenges for semi-automatic trace recovery in the
automotive domain.” In: Proceedings of the 2009 ICSE Workshop on
Traceability in Emerging Forms of Software Engineering. IEEE Computer

Society. 2009, pp. 31-35 (cit. on p. 95).

[82] Matthias Lindner and Thomas Tille. “Design of highly integrated
mechatronic gear selector levers for automotive shift-by-wire sys-
tems.” In: Mechatronics, IEEE/ASME Transactions on 15.6 (2010), pp. 961—
968 (cit. on p. 29).

[83] Quantisle Ltd. Qigga Website. 2014. URL: http://www .qgiqga . com
(cit. on p. 13).

[84] Jirgen Ludwig. “Elektronischer Horizont Vorausschauende systeme
und deren Anbindung an NavigatioNseinheiten.” In: AT Zelektronik
7.6 (2012), Pp. 434—439 (cit. on p. 114).

137

http://www.qiqqa.com

[85]

[86]

[88]

[93]

Bibliography

CR Maga and N Jazdi. “Interdisciplinary modularization in product
line engineering: A case study.” In: Automation Quality and Testing
Robotics (AQTR), 2012 IEEE International Conference on. IEEE. 2012,
pp- 179-184 (cit. on p. 86).

Managemant Circle AG. Lean Product Development 2013 Interaktive
Konferenz. http: //www . leanmagazin . de/medien/publikationen/
doc_download/476-1lean-product-development-2013.html. Found
through a search engine. 2013 (cit. on p. 54).

Ing Marcus Martinus, Zoran Cutura, and Dipl Ing FH Thomas Wiirz.
“Virtuelle Absicherungs-Plattform Integration und Wiederverwen-
dung von Software.” In: ATZelektronik 7.1 (2012), pp. 56—61 (cit. on
Pp- 33, 35-37, 118).

Ing Marcus Martinus, Dipl-Ing Markus Deicke, and Dipl-Ing Michael

Folie. “Virtueller Fahrversuch Hardwareunabhingige Integration
von Seriensoftware.” In: ATZelektronik 8.5 (2013), pp. 344—349 (cit. on

pp- 36, 37, 118).
Jakob Mauss. “Chip simulation used to run automotive software on
PC.” In: ERTS-2014, Toulouse (2014), pp. 05-07 (cit. on p. 41).

Jakob Mauss and Matthias Simons. “Steuergerdte-Simulation auf PC
mittels TriCore-Emulation.” In: ATZelektronik 7.6 (2012), pp. 460-465
(cit. on pp. 41, 47).

Torben Meyer, Carsten Poge, and Gottfried Mayer. “Integration of
emulation functionality into an established simulation object library.”
In: Proceedings of the Winter Simulation Conference. Winter Simulation
Conference. 2012, p. 253 (cit. on p. 29).

Alexander Michailidis et al. “Test front loading in early stages of
automotive software development based on AUTOSAR.” In: Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010.
IEEE. 2010, pp. 435—440 (cit. on pp. 38—40, 47, 119).

Dipl-Inform Alexander Michailidis, Ing Thomas Ringler, and Ing
Stefan Kowalewski. “Virtuelle Integration Modellbasierter Fahrzeug-
funktionen unter Autosar.” In: ATZelektronik 5.1 (2010), pp. 32-37

(cit. on pp. 38, 40, 47).

138

http://www.leanmagazin.de/medien/publikationen/doc_download/476-lean-product-development-2013.html
http://www.leanmagazin.de/medien/publikationen/doc_download/476-lean-product-development-2013.html

Bibliography

[904] MicroNova AG. Exam und MaTeLo: von den Requirements zum Testfall.
2012. URL: http://www.exam-ta.de/images/stories/exam/Flyer_
EXAM_MaTeLo_1v0_digital.pdf (cit. on pp. 20, 22, 118).

[95] Ing Maximilian Miegler et al. “Hardware-in-the-Loop-Test von vo-
rausschauenden Fahrerassistenzsystemen.” In: AT Zelektronik 4.5 (2009),

pp- 14-19 (cit. on pp. 28, 70, 114).
[06] Dipl-Ing FH Alexander Moiszi and M Sc Michael Tybel. “Gap in

the V-model of E-drives Closed by Parameter Identification.” In:
ATZelektronik worldwide 8.5 (2013), pp. 36—39 (cit. on pp. 62, 65).

[o7] Dieter Nazareth and Robert Siwy. “Development of an AUTOSAR
Software Component Based on the V-Model.” In: Proceedings of the
FISITA 2012 World Automotive Congress. Springer. Beijing, China:
Springer Berlin Heidelberg, 2013, pp. 407416 (cit. on pp. 18, 30—
34, 36, 37, 87, 93, 95, 118).

[98] Edward Nelson and Henry Huang. “A Software and System Model-
ing Facility for Vehicle Environment Interactions.” In: Model-Driven
Development of Reliable Automotive Services. Springer, 2008, pp. 34—47
(cit. on p. 86).

[99] Dipl-Ing FH Mirko Nentwig, Dipl-Ing Reinhard Schieber, and Ing
Maximilian Miegler. “Hardware-in-the-Loop-Test fiir Vernetzte Fahreras-
sistenz Systeme.” In: AT Zelektronik 6.4 (2011), pp. 20—25 (cit. on pp. 23,
28, 114).

[100] Mirko Nentwig and Marc Stamminger. “Hardware-in-the-loop test-
ing of computer vision based driver assistance systems.” In: Intel-
ligent Vehicles Symposium (1V), 2011 IEEE. IEEE. 2011, pp. 339344
(cit. on pp. 23, 28).

[101] Florian Netter, Frank Gauterin, and Bjorn Butterer. “Real-Data Valida-
tion of Simulation Models in a Function-Based Modular Framework.”
In: Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on. IEEE. 2013, pp. 41—47 (cit. on pp. 18, 24,
28).

[102] Martin Neumann et al. Absicherung von Steuerungssoftware fiir Hy-
bridsysteme. 2011 (cit. on pp. 49-52, 54, 95, 98, 119).

139

http://www.exam-ta.de/images/stories/exam/Flyer_EXAM_MaTeLo_1v0_digital.pdf
http://www.exam-ta.de/images/stories/exam/Flyer_EXAM_MaTeLo_1v0_digital.pdf

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Bibliography

Martin Neumann et al. Absicherung von Steuerungssoftware fiir Hy-
bridsysteme (Slides) (cit. on p. 54).

Dirk Nowotka and Johannes Traub. “Formal Verification of Concur-
rent Embedded Software.” In: Embedded Systems: Design, Analysis and
Verification. Springer, 2013, pp. 218-227 (cit. on pp. 46, 47).

Dirk Nowotka and Johannes Traub. “MEMICS - Memory Interval
Constraint Solving of (concurrent) Machine Code.” In: (2012) (cit. on

ppP- 46, 47).
Akira Ohata. “Benchmark problem for nonlinear identification of

automotive engine.” In: Intelligent Control and Automation (WCICA),
2012 10th World Congress on. IEEE. 2012, pp. 3305-3310 (cit. on pp. 8o,

85).

Akira Ohata. Systems Assurance and Behavior Modeling: Requirements
for OMG. URL: http://sysa.omg.org/docs/Sepl0/0MG_Sys _
assurancel100922.pdf (cit. on pp. 8o, 85).

Nouha Omrane et al. “Lexicalized ontology for a business rules man-
agement platform: An automotive use case.” In: Rule-Based Modeling
and Computing on the Semantic Web. Springer, 2011, pp. 179—-192 (cit.
on pp. 26, 28, 94).

Leon Osborne et al. V-Model. Licensed under Public domain via
Wikimedia Commons. 2005. URL: http://commons.wikimedia.org/
wiki/File:Systems_Engineering_Process_II.svg#mediaviewer/
File:Systems_Engineering Process_II.svg (cit. on p. 8).

Daniel Ott. “Automatic requirement categorization of large natu-
ral language specifications at mercedes-benz for review improve-
ments.” In: Requirements Engineering: Foundation for Software Quality.
Springer, 2013, pp. 50-64 (cit. on pp. 39, 44, 45, 47, 93-95, 119).

Daniel Ott and Alexander Raschke. “Review improvement by require-
ments classification at Mercedes-Benz: Limits of empirical studies
in educational environments.” In: Empirical Requirements Engineer-
ing (EmpiRE), 2012 IEEE Second International Workshop on. IEEE. 2012,

pp- 1-8 (cit. on p. 95).

140

http://sysa.omg.org/docs/Sep10/OMG_Sys_assurance100922.pdf
http://sysa.omg.org/docs/Sep10/OMG_Sys_assurance100922.pdf
http://commons.wikimedia.org/wiki/File:Systems_Engineering_Process_II.svg#mediaviewer/File:Systems_Engineering_Process_II.svg
http://commons.wikimedia.org/wiki/File:Systems_Engineering_Process_II.svg#mediaviewer/File:Systems_Engineering_Process_II.svg
http://commons.wikimedia.org/wiki/File:Systems_Engineering_Process_II.svg#mediaviewer/File:Systems_Engineering_Process_II.svg

Bibliography

[112] Jan Peleska et al. “A real-world benchmark model for testing con-
current real-time systems in the automotive domain.” In: Testing
Software and Systems. Springer, 2011, pp. 146-161 (cit. on p. 87).

[113] Marie-Agnes Peraldi-Frati et al. “Timing Modeling with AUTOSAR.”
In: () (cit. on p. 86).

[114] Amalinda Post and Jochen Hoenicke. “Formalization and analysis
of real-time requirements: a feasibility study at BOSCH.” In: Verified
Software: Theories, Tools, Experiments. Springer, 2012, pp. 225—240 (cit.
on pp. 61, 64, 65, 95).

[115] Amalinda Post, Jochen Hoenicke, and Andreas Podelski. “rt-inconsistency:
a new property for real-time requirements.” In: Fundamental Ap-
proaches to Software Engineering. Springer, 2011, pp. 34—49 (cit. on
pp- 61, 64, 65, 95).

[116] Amalinda Post, Jochen Hoenicke, and Andreas Podelski. “Vacuous
real-time requirements.” In: Requirements Engineering Conference (RE),
2011 19th IEEE International. IEEE. 2011, pp. 153-162 (cit. on pp. 61,
64, 65, 95)-

[117] Amalinda Post, Igor Menzel, and Andreas Podelski. “Applying re-
stricted english grammar on automotive requirements—does it work?
a case study.” In: Requirements Engineering: Foundation for Software
Quality. Springer, 2011, pp. 166—180 (cit. on pp. 61, 64, 65, 95).

[118] The Associated Press. Jury Finds Toyota Liable in Fatal Wreck in Okla-
homa. 2013. URL: http://www.nytimes.com/2013/10/25/business/
jury-finds-toyota-liable-in-fatal-wreck-in-oklahoma.html?
_r=0 (cit. on p. 78).

[119] S Ramesh and A Gadkari. “Rigorous model-based design & verifica-
tion flow for in-vehicle software.” In: Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE. IEEE. 2011, pp. 13-16 (cit. on
pP- 99)-

[120] Stefan Resmerita et al. “Migration of legacy software towards correct-
by-construction timing behavior.” In: Foundations of Computer Soft-
ware. Modeling, Development, and Verification of Adaptive Systems. Springer,

2011, pp. 55-76 (cit. on pp. 81, 85).

141

http://www.nytimes.com/2013/10/25/business/jury-finds-toyota-liable-in-fatal-wreck-in-oklahoma.html?_r=0
http://www.nytimes.com/2013/10/25/business/jury-finds-toyota-liable-in-fatal-wreck-in-oklahoma.html?_r=0
http://www.nytimes.com/2013/10/25/business/jury-finds-toyota-liable-in-fatal-wreck-in-oklahoma.html?_r=0

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Bibliography

Peter Rosina. Kooperationsprojekt ONTORULE (Slides). http: //wuw .
bicc-net . de/workspace /uploads /subfeatures/downloads /7 -
peter-rosina-1330035757.pdf. Feb. 2012 (cit. on pp. 26, 28, 94).

Johannes-Joerg Rueger et al. “MDG1: The New, Scalable, and Pow-
erful ECU Platform from Bosch.” In: Proceedings of the FISITA 2012
World Automotive Congress. Springer. 2013, pp. 417425 (cit. on pp. 61,
63, 65).

Christian de Sainte Marie, Miguel Iglesias Escudero, and Peter
Rosina. “The ONTORULE project: Where ontology meets business
rules.” In: Web Reasoning and Rule Systems. Springer, 2011, pp. 24—29
(cit. on pp. 26, 28, 94).

Holger Schmid and Robert Siwy. “Management verteilter Entwick-
lungen - reduzierte Entwicklungskosten und hoher Qualitdtsstan-
dard durch Einsatz einer Modellbibliothek.” In: Elektronik Automotive

9 (2006), pp. 5659 (cit. on pp. 37, 87).

Karsten Schmidt et al. “Design patterns for highly integrated ECUs
with various ASIL levels.” In: ATZelektronik worldwide 7.1 (2012),
pp- 22—27 (cit. on pp. 18, 2628, 107).

Dipl-Ing Oliver Schiitze and Dipl-Ing Carsten Rustige. “Testmanage-
ment fiir Antriebe im Nutzfahrzeug.” In: ATZelektronik 6.1 (2011),
pPp- 40—43 (cit. on pp. 40, 42, 47, 119).

Siemens AG. Thinking for the long term Providing answers - Siemens

Annual Report 2013. http://wuw.siemens.com/investor/pool/en/
investor_relations/siemens_ar_2013.pdf. 2013 (cit. on p. 55).

Roberto S Silva Filho and Christof] Budnik. “An Integrated Model-
Driven Approach for Mechatronic Systems Testing.” In: Proceedings
of the 2012 IEEE Fifth International Conference on Software Testing, Ver-
ification and Validation. IEEE Computer Society. 2012, pp. 447-456
(cit. on pp. 5659, 1109).

Roberto Silveira Silva Filho et al. “Experiences using Tedeso: an
extensible and interoperable model-based testing platform.” In: Au-
tomated Software Engineering (2013), pp. 1—39 (cit. on pp. 56—58, 60,
87,95, 119).

142

http://www.bicc-net.de/workspace/uploads/subfeatures/downloads/7-peter-rosina-1330035757.pdf
http://www.bicc-net.de/workspace/uploads/subfeatures/downloads/7-peter-rosina-1330035757.pdf
http://www.bicc-net.de/workspace/uploads/subfeatures/downloads/7-peter-rosina-1330035757.pdf
http://www.siemens.com/investor/pool/en/investor_relations/siemens_ar_2013.pdf
http://www.siemens.com/investor/pool/en/investor_relations/siemens_ar_2013.pdf

Bibliography

[130] Red Bend Software. Update ECUs using Delta- and Over-the-Air-Technology.
Jan. 2014. URL: http://www . vector . com/portal /medien/cmc/
events/Webinars/2014/Vector_RedBend_Webinar_Flashing_over_
the_air_and_delta_technology_20140121_EN.pdf (cit. on p. 116).

[131] Sven Sohnlein et al. “Software reliability assessment based on the
evaluation of operational experience.” In: Measurement, Modelling,
and Evaluation of Computing Systems and Dependability and Fault Tol-
erance. Springer, 2010, pp. 24—38 (cit. on pp. 53, 54).

[132] Springer International Publishing AG. SpringerLink. 2014. URL: http:
//1link.springer.com/ (cit. on pp. 4, 7).

[133] Mugur Tatar, Jakob Mauss, and Andreas Junghanns. Systematic Test
and Validation of Automotive Systems. http://www.qtronic.com/doc/
TestWeaverIntro.pdf. 2012 (cit. on p. 52).

[134] Sebastian Thiel and Frank Derichsweiler. “Petri net based verifica-
tion of causal dependencies in electronic control unit test cases.”
In: Computer Software and Applications Conference Workshops (COMP-
SACW), 2011 IEEE 35th Annual. IEEE. Munich, Germany: IEEE, 2011,
PP- 143—148 (cit. on pp. 18-20, 22, 26, 28, 70, 118).

[135] Steve Toeppe et al. “Practical validation of model based code genera-
tion for automotive applications.” In: Digital Avionics Systems Confer-
ence, 1999. Proceedings. 18th. Vol. 2. IEEE. 1999, 10-A (cit. on pp. 71,
72)-

[136] E Troubitsyna. “Rodin Deliverable D18: Intermediate Report on
Case Study Development.” In: Project IST-511599, School of Computing
Science, University of Newcastle (2006) (cit. on p. 103).

[137] Anthony Tsakiris. “Managing Software Interfaces of On-Board Au-
tomotive Controllers.” In: IEEE software 28.1 (2011) (cit. on pp. 74,
77)-

[138] Karen Twyford. Transcript of morning trial proceedings had on the 14th
day of october, 2013. 2013 (cit. on p. 78).

[139] Dipl-Ing Johannes Wiessalla et al. “Modellbasierte Erzeugung von
Testfallen mit integrierter Fehleranalyse.” In: ATZelektronik 7.1 (2012),
pp- 62-67 (cit. on pp. 75, 76, 87).

143

http://www.vector.com/portal/medien/cmc/events/Webinars/2014/Vector_RedBend_Webinar_Flashing_over_the_air_and_delta_technology_20140121_EN.pdf
http://www.vector.com/portal/medien/cmc/events/Webinars/2014/Vector_RedBend_Webinar_Flashing_over_the_air_and_delta_technology_20140121_EN.pdf
http://www.vector.com/portal/medien/cmc/events/Webinars/2014/Vector_RedBend_Webinar_Flashing_over_the_air_and_delta_technology_20140121_EN.pdf
http://link.springer.com/
http://link.springer.com/
http://www.qtronic.com/doc/TestWeaverIntro.pdf
http://www.qtronic.com/doc/TestWeaverIntro.pdf

[140]

[141]

Bibliography

Dirk Zitterell and Sebastian Thiel. “Automatisierter funktionaler
Steuergerdtetest mit der EXtended Automation Method (EXAM).” In:
GI Jahrestagung (2). 2010, pp. 351-356 (cit. on pp. 18, 22, 28, 70, 86).

Albert Ztindorf et al. “Using Graph Grammars for Modeling Wiring
Harnesses—An Experience Report.” In: Graph transformations and
model-driven engineering. Springer, 2010, pp. 512-532 (cit. on p. 86).

144

	Abstract
	Introduction and Preliminaries
	Thesis Introduction
	Goals of the Thesis
	The Process

	Preliminaries
	The generic V-Model
	Keyword Selection
	SpringerLink
	IEEEXplore
	Other Sources or Queries
	Management of Document Collection

	Literature Review
	Part II Introduction
	AUDI
	Relevant Company Structure
	Recent History and Current State
	Future Directions and Challenges
	Sources at AUDI AG

	BMW Group
	Relevant Company Structure
	Recent History and Current State
	Future Directions and Challenges
	Sources at bmw

	Daimler AG
	Relevant Company Structure
	Recent History and Current State
	Future Directions and Challenges
	Sources at Daimler AG

	ZF Friedrichshafen AG
	Recent History and Current State
	Future Directions and Challenges
	Sources at ZF Friedrichshafen AG

	Siemens
	Relevant Company Structure
	Recent History and Current State
	Future Directions and Challenges
	Sources at Siemens AG

	Bosch GmbH
	Relevant Company Structure
	Recent History and Current State
	Future Directions and Challenges
	Sources at Bosch GmbH

	Volkswagen
	Recent History and Current State
	Process Similarity within Volkswagen Group
	Sources at Volkswagen AG

	Ford Motor Company
	Recent History and Current State
	Future Directions and Challenges
	Sources at Ford

	Toyota Motor Company
	Recent History and Current State
	Future Directions and Challenges
	Sources at Toyota

	Other Companies
	MARTE, SysML and EAST-ADL/2
	EAST-ADL, UPPAAL-PORT and Volvo

	Evaluation
	Introduction
	Structure
	Rating System

	Requirements Management
	Method: Natural Language Processing

	Modeling and Simulation
	Big Design Up-Front
	Method: Collaborative Design
	Modeling
	Method: Invariant Specification
	Simulation

	Test Cases and Prototyping
	Method: Test Cases from Models
	Method: Rapid Prototyping / Front-loading

	Implementation
	Method: Code Generation
	Method: Static Code Checking
	Method: Formal Verification & Validation

	Component Testing
	Method: Back-to-back Testing
	Method: Virtual Integration
	Method: State Space Exploration

	System/Integration Testing
	Method: Multiple Functions on Same ECU
	Method: Networked Hardware-in-the-Loop
	Method: Environment Simulation
	Method: Portable Emulation

	Software Monitoring
	Method: Component Test Monitoring
	Method: Integration Test Monitoring
	Method: Flexible Monitoring with XCP
	Method: Synchronized Data Logging

	Software Maintenance
	Method: Field Data Analysis
	Method: Software Life-cycle Management

	Tool Overview

	Ending Remarks
	Conclusion
	Bibliography

