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Abstract

English version

The problem of determining the density (if it exists) of integers of the
form p+ 2n within the positive integers has quite a long history and many
famous mathematicians including Euler, de Polignac and Erdős worked on
it. Romanov proved that the proportion of integers representable as the
sum of a prime and a power of two is positive. In his honour the density
of those integers is called Romanov’s constant. Today there is quite a gap
between explicit upper and lower bounds on the upper and lower density
of those integers respectively. Modern approaches to getting lower bounds
on the lower density of integers of the form p+ 2n use methods from sieve
theory and computational results.

In this thesis we present a generalization of a new method of Elsholtz
and Schlage-Puchta who hold the current record on lower bounds for the
lower density of sums of primes and powers of 2. As Elsholtz and Schlage-
Puchta we get bounds for the lower density of integers of the form p+ gn

for arbitrary g ∈ N by solving the problem in all residue classes modulo
gm − 1 for fixed m separately. Amongst the tools we need to do so are a
variant of the Selberg sieve and computational methods.

keywords: Romanov’s constant, de Polignac’s conjecture, Selberg sieve,
Cauchy-Schwarz inequality, Prime Number Theorem for arithmetic pro-
gressions, Möbius’ µ function
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Deutsche Version

Das Problem die Dichte von Zahlen der Form p+2n innerhalb der natürlichen
Zahlen zu bestimmen (falls sie denn existiert) hat mittlerweile eine recht
lange Geschichte. Zu den berühmtesten Mathematikern die daran gearbei-
tet haben zählen unter anderen Euler, de Polignac und Erdős. Romanov
konnte zwar zeigen, dass sich ein positiver Anteil der natürlichen Zahlen
als Summe einer Primzahl und einer Potenz von 2 darstellen lässt (ihm
zu Ehren wird diese Dichte auch als Romanovs Konstante bezeichnet), die
bekannten oberen und unteren Schranken für die obere bzw. untere Dichte
dieser Zahlen liegen allerdings noch weit auseinander. Moderne Ansätze
zur Lösung dieses Problems beinhalten unter anderem den Einsatz von
Siebmethoden und Computern.

In dieser Arbeit wollen wir eine Verallgemeinerung einer neuen Methode
von Elsholtz und Schlage-Puchta präsentieren, die den aktuellen Rekord
bezüglich unterer Schranken für die untere Dichte von Zahlen der Form
p+ 2n halten. Wie Elsholtz und Schlage-Puchta werden wir Schranken für
die untere Dichte von Zahlen der Form p+gn für beliebiges g ∈ N erhalten,
indem wir das Problem getrennt auf Restklassen modulo gm − 1 für festes
m betrachten. Unter den Werkzeugen die wir dafür brauchen werden sind
eine Variante des Selberg Siebs sowie der Einsatz eines Computeralgebra-
systems.

Schlüsselwörter: Romanovs Konstante, de Polignacs Vermutung, Sel-
berg Sieb, Cauchy-Schwarzsche Ungleichung, Primzahlsatz für arithme-
tische Progressionen, Möbiussche µ Funktion
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1
Notation

Throughout this thesis N denotes the set of integers, p will always denote
a prime number and P denotes the set of primes p ∈ N. For any n ∈ N we
define P+(n) to be the largest prime factor of n. As usual (a, b) stands for
the greatest common divisor of a and b, [a, b] denotes their least common
multiple and by a|b we mean that a divides b i.e.

a|b⇔ ∃d ∈ N : b = d · a.

For n ∈ N pn||a denotes the highest power of p dividing a. Euler’s totient
function and Möbius’ µ function are denoted by ϕ(n) and µ(n) and with
log we always mean the logarithm with base e. With ordn(a) for a, n ∈ N
we mean the order of a mod n defined by

ordn(a) :=

{
min{k ∈ N : ak ≡ 1 mod n}, if the minimum exists

∞, otherwise.

The von Mangoldt function Λ(n) is defined by

Λ(n) :=

{
log p, if n = pk, k ∈ N
0, otherwise

and its summatory function is denoted by

Ψ(x) :=
∑

1≤n≤x

Λ(n).

If we only want to sum over integers n satisfying n ≡ a mod q we write

Ψ(x; q, a) :=
∑

1≤n≤x
n≡a mod q

Λ(n).
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The logarithmic integral li(x) is defined by

li(x) :=

∫ x

2

dt

log t
.

The number of primes below some number x will be denoted by

π(x) := {p ∈ P : p ≤ x}

and for positive integers q, a with (q, a) = 1 we define

π(x; q, a) := {p ∈ P : p ≡ a mod q}.

The number of different representations of n ∈ N as n = p + gk for
g ∈ N is denoted by rg(n), i.e.

rg(n) = |{(p, k) : n = p+ gk, p ∈ P, k ∈ N}|.

For g ∈ N, g ≥ 2, we set

dg := lim inf
x→∞

|{n ≤ x : rg(n) > 0}|
x

and

dg := lim sup
x→∞

|{n ≤ x : rg(n) > 0}|
x

for the upper and lower density of positive integers representable as the
sum of a prime and a power of g. For coprime g, n ∈ N we define

εg(n) := min{k ∈ N : gk ≡ 1 mod n}.

The multiplicative function f(n) is defined by

f(n) :=

{∏
p|n

1
p−2 , if µ2(n) = 1 and n is odd

0, otherwise

and using this we furthermore define

Sg(t,m) :=
∑

(d,2(gm−1))=1
(εg(d),m)|t

f(d)(εg(d),m)

εg(d)
.
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2
Numbertheoretic basics

In this chapter we introduce basic results in number theory. We start by
giving results about Euler’s ϕ function and Möbius µ function and end
by stating important theorems in number theory (like the Prime Number
Theorem for arithmetic progressions) we want to use later.

2.1 Euler’s ϕ function and Möbius’ µ func-

tion

We start this chapter by defining the greatest common divisor and the
least common multiple of two integers.

Definition 2.1.1. Let a, b ∈ N, P = {p ∈ P : p|ab} and a =
∏

p∈P p
kp,

b =
∏

p∈P p
lp where kp, lp ∈ N0. Then we define the greatest common

divisor of a and b as

(a, b) := gcd(a, b) :=
∏
p∈P

pmin(kp,lp)

and the least common multiple of a and b as

[a, b] := lcm(a, b) :=
∏
p∈P

pmax(kp,lp).

We call the integers a, b relatively prime or coprime if (a, b) = 1.

We will give a quick application of the least common multiple in a
Lemma concerning the order of an integer modulo two different moduli we
want to use later.
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Lemma 2.1.1. Let a,m, n ∈ N with (a, n) = (a,m) = (m,n) = 1 and
ordm(a) = k, ordn(a) = l. Then

ordmn(a) = [k, l].

Proof. From the definition of the least common multiple it follows easily
that [k, l] is the least integer divisible by k and l. In particular

k|[k, l], and l|[k, l]

hence [k, l] = u ·k and [k, l] = c · l. Since k and l are the orders of a modulo
m and n respectively we get m|a[k,l] − 1 and n|a[k,l] − 1. With (m,n) = 1
this implies

mn|a[k,l] − 1

and thus
ordmn(a)|[k, l].

Now let ordmn(a) = q. Then mn|aq − 1 hence m|aq − 1 and n|aq − 1.
This implies that k|q and l|q and since [k, l] is the least integer with this
property we get [k, l]|q = ordmn(a).

Before defining Euler’s ϕ and Möbius’ µ function we state the Chinese
remainder theorem. It will be useful in proving properties of the ϕ function
and we will need it later when we deal with sieve theory. The version of
this theorem below is taken from [Dic57, Theorem 15] and given without
proof.

Theorem 2.1.1 (Chinese Remainder Theorem). If m1, . . . ,mt are rela-
tively prime in pairs, there exist integers x for which simultaneously

x ≡ a1 mod m1, . . . , x ≡ at mod mt.

All such integers x are congruent modulo m = m1m2 · · ·mt.

The following is an easy consequence of the Chinese Remainder Theo-
rem.

Corollary 2.1.1. Let (a + kb)k∈N and (c + ld)l∈N, a, b, c, d ∈ N be two
arithmetic progressions where (b, d) = 1. Then these progressions intersect
in a unique arithmetic progression modulo bd.

Proof. Since (b, d) = 1 by Theorem 2.1.1 there exists x with

x ≡ a mod b and x ≡ c mod d

and this x is uniquely determined mod bd. Hence (x+rbd)r∈N is the unique
intersection of the two given progressions modulo bd.
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Definition 2.1.2 (Euler’s ϕ function). Let ϕ : N→ N with

ϕ(n) = |{a ≤ n : (a, n) = 1}|.

Definition 2.1.3 (Möbius’ µ function). Let µ : N→ {0,±1} with

µ(n) =

{
(−1)|{p∈P:p|n}|, if p is squarefree

0, otherwise.

An important class of frequently studied functions in number theory is
the class of multiplicative functions.

Definition 2.1.4. Let f : N→ C be a function. We call f a multiplicative
function if f(1) = 1 and for any a, b ∈ N with (a, b) = 1 we have f(ab) =
f(a)f(b).

Lemma 2.1.2. Euler’s ϕ function and Möbius’ µ function are multiplica-
tive.

Proof. We start with Möbius’ µ function. We have µ(1) = (−1)|{p∈P:p|1}| =
(−1)0 = 1. If either a or b is not square free - say a is not square free -
then ab is not square free and we have 0 = µ(ab) = µ(a)µ(b). So we can
assume that a, b are square free and coprime. In this case we have

µ(ab) = (−1)|{p∈P:p|ab}| = (−1)|{p∈P:p|a}|+|{p∈P:p|b}| =

= (−1)|{p∈P:p|a}|(−1)|{p∈P:p|b}| = µ(a)µ(b).

For Euler’s ϕ function we also have ϕ(1) = 1. Furthermore for any a1 ≤ q,
b1 ≤ b with (a1, a) = 1 and (b1, b) = 1 by Theorem 2.1.1 there is exactly
one x ∈ N, x ≤ ab with

x ≡ a1 mod a and x ≡ b1 mod b. (2.1.1)

Now suppose by contradiction that (x, ab) = g > 1. Then there is some
p ∈ P with p|g hence p|x, p|ab and thus p|a or p|b - w.l.o.g. p|a. Because of
x ≡ a1 mod a we get that a1 = x+la for some l ∈ N and since p|(x+la) we
also have p|a1. Therefore p|(a1, a) which is a contradiction to (a1, a) = 1.

On the other hand, if we have some c1 ∈ N with (c1, ab) = 1 then
also (c1, a) = 1 and (c1, b) = 1 and there are a1 ≤ a and b1 ≤ b with
a1 ≡ c1 mod a and b1 ≡ c1 mod b satisfying (a1, a) = 1 and (b1, b) = 1.

These properties ensure that the map

Ψ : {a1 ≤ a : (a1, a) = 1}×{b1 ≤ b : (b1, b) = 1} → {c1 ≤ ab : (c1, ab) = 1}

with Ψ((a1, b1)) = x where x is the unique solution of equation (2.1.1)
satisfying x ≤ ab is bijective in the case of (a, b) = 1, hence ϕ is multi-
plicative.
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Another useful property of the µ function is given in the following
Lemma.

Lemma 2.1.3. ∑
d|n

µ(d) =

{
1, if n = 1

0, if n > 1.

Proof. We prove the Lemma by induction on the number k of different
prime divisors of n. For k = 0 we have n = 1 hence∑

d|1

µ(d) = µ(1) = 1.

Let n be a number with exactly k > 0 prime divisors and let those prime
divisors be {p1, . . . , pk}. Since for any non-squarefree d we have µ(d) = 0
we may write ∑

d|n

µ(d) =
∑

I⊂{p1,...,pk}

(−1)|I|.

We can separate the squarefree divisors of n into two sets: divisors not
being divisible by pk and those that are divisible by pk. Doing so we write∑

d|n

µ(d) =
∑

I⊂{p1,...,pk−1}

(−1)|I| +
∑

I⊂{p1,...,pk−1}

(−1)|I∪{pk}| =

=
∑

I⊂{p1,...,pk−1}

(−1)|I| +
∑

I⊂{p1,...,pk−1}

(−1)|I|+1 =

=
∑

I⊂{p1,...,pk−1}

(−1)|I| −
∑

I⊂{p1,...,pk−1}

(−1)|I| = 0.

The following theorem is taken from [HW08, Theorem 266] and called
the Möbius inversion formula.

Theorem 2.1.2. Lef f : N→ C be a multiplicative function. If

g(n) =
∑
d|n

f(n),

then
f(n) =

∑
d|n

µ
(n
d

)
g(d) =

∑
d|n

µ(d)g
(n
d

)
.
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2.2 The distribution of primes

The following two classical results from analytic number theory about the
distribution of primes together with their proofs can be found in [Brü95].
For the Prime Number Theorem cf. [Brü95, Satz 2.8.2] and for the Prime
Number Theorem for arithmetic progressions cf. [Brü95, Satz 3.3.3]

Theorem 2.2.1 (Prime Number Theorem). There exits a constant c > 0
such that

Ψ(x) = x+O(xe−c
√
log x)

and hence
π(x) = li(x) +O(xe−c

√
log x).

Theorem 2.2.2 (Prime Number Theorem for arithmetic progressions,
Siegel-Walfisz). Fix A > 0. The there exists a constant C = C(A) such
that for q ≤ (log x)A and all a with (a, q) = 1

Ψ(x; q, a) =
x

ϕ(q)
+O(xe−C

√
log x)

and hence

π(x; q, a) =
1

ϕ(q)
li(x) +O(xe−c

√
log x).

From the above two theorems we get in particular that π(x) ∼ x
log x

and

π(x; q, a) ∼ 1
ϕ(a)

x
log x

.
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3
Romanov’s Constant - a historical overview

3.1 De Polignac’s conjecture and Romanov’s

constant

In 1849 Alphonse de Polignac [dP49, p. 400] stated

“Tout nombre impair est égal à une puissance de 2, plus un
nombre premier. (Vérifié jusqu’à 3 millions.)”

claiming that any odd number lower than 3000000 is the sum of a prime and
a power of 2. The conjecture that this holds for any odd number since then
bears his name. Also in [dP49] a rectification of de Polignac concerning
this statement is published. He says that when writing up his article for
submission he was very short of time and couldn’t do all the calculations
himself and it seems that the verification of the above conjecture was not
done with greatest care. De Polignac mentions a letter of Leonhard Euler
to Christian Goldbach in which a counterexample can be found and indeed
in 1752 Euler [Eul, p. 596 f.] wrote the following to Goldbach:

“Es fiel mir dabey ein ziemlich ähnliches theorema ein, nehm-
lich: dass a numero impari non primo 2n− 1 allzeit eine potes-
tas binarii abgezogen werden könne, dass der Rest ein numerus
primus sey. Nach angestellter Probe hat sich dieses auch noch
bis auf sehr grosse Zahlen wahr befunden; als ich aber auf
959 = 7 · 137 kam, so fand sich eine Ausnahme, indem 959− 2a

nullo modo primus werden kann.”

So de Polignac’s conjecture does fail for the composite number 959, hence
not even a restricted version of the conjecture, claiming that de Polignac’s
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conjecture is true for any odd integer that is not a prime number (127 is
an exeption of de Polignac’s conjecture as well, but it is a prime number)
is true.

Knowing that we cannot represent any odd integer as the sum of a
prime and a power of 2 we shift our attention to the following question:
Is the lower density of numbers representable as a sum of a prime and a
power of 2 within the integers positive, i.e. is there some α > 0 with

lim inf
x→∞

{n ≤ x : r2(n) > 0}
x

= α?

Romanov [Rom34] proved that such an α exists not only for sums of primes
and powers of two but for sums of primes and powers of an arbitrary
positive integer g ≥ 2. In the following we give a short overview over the
main ideas of his proof.

We consider two sequences the first of which is the sequence of primes

p1, p2, p3, . . .

i.e. pi denotes the i-th prime number and the second one is the sequence
of consecutive powers of g i.e.

1, g, g2, . . . .

There are π(x) primes less than or equal to x and we know that there are

N(x) := blogg xc powers of g not exceeding x. We now denote by A
(x)
1 (n),

A
(x)
2 (n) and r

(x)
g (n) the number of solutions of the equations

pi − pj = n, gi − gj = n and pi + gj = n

respectively where pi ≤ x,pj ≤ x, gi ≤ x and gj ≤ x. We define ν(2x) to
be the number of integers n ≤ 2x which are of the form p+ gi where p ≤ x
and gi ≤ x.

We now set ηn = 1 if r
(x)
g (n) > 0 and ηn = 0 else. An application of

the Cauchy-Schwarz inequality yields

2x∑
n=0

η2n

2x∑
n=0

r(x)g (n)2 ≥

(
2x∑
n=0

ηnr
(x)
g (n)

)2

=

(
2x∑
n=0

r(x)g (n)

)2

hence we arrive at

ν(2x) =
2x∑
n=1

η2n ≥

(∑2x
n=0 r

(x)
g (n)

)2
∑2x

n=0 r
(x)
g (n)2

.
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By counting the solutions of the equations

gi − gj − pk + pl = 0

where gi, gj, pk, pl ≤ x in two different ways Romanov shows that

x∑
n=0

r(x)g (n)2 = π(x)N(x) + 2
x∑

n=1

A
(x)
1 (n)A

(x)
2 (n).

The first way of counting these solutions is by having a look at the number
of solutions of

gi − gj = n and pk − pl = n

for n ∈ {−x,−(x−1), . . . x−1, x}. In this case we arrive at A
(x)
1 (0)A

(x)
2 (0)+

2
∑x

n=1A
(x)
1 (n)A

(x)
2 (n). A second way of counting solutions is by looking

at the following system of equations

pl + gi = n and pk + gj = n

for n ∈ {0, 1, . . . , 2x} which leads directly to
∑2x

n=0 r
(x)
g (n)2. Because of∑2x

n=0 r
(x)
g (n) = π(x)N(x) it remains to find an upper bound for

x∑
n=1

A
(x)
1 (n)A

(x)
2 (n).

Romanov observes that A
(x)
2 (n) is either 0 or 1 i.e. if an integer can

be written as the difference of two powers of g then this representation is
unique. A

(x)
1 (n) counts pairs of primes lower than or equal to x with fixed

difference n and Romanov uses an upper bound sieve to get the following
estimate

A
(x)
1 (n) < c1

x

log2 x

∏
p|n
p∈P

(
1 +

1

p

)
.

Putting this together and evaluating the sum Romanov shows that

x∑
n=1

A
(x)
1 (n)A

(x)
2 (n) < c2x

∞∑
k=1

(k,a)=1

µ(k)2

kεg(k)

where he proves the sum on the right side to be convergent and therefore

x∑
n=1

A
(x)
1 (n)A

(x)
2 (n) < c3x.
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Now we can put everything together and have

ν(2x) >
(π(x)N(x))2

π(x)N(x) + 2
∑x

n=1A
(x)
1 (n)A

(x)
2 (n)

>

>
c24

x2

log2 x
(b log x

log g
c+ 1)2

c4
x

log x
(b log x

log g
c+ 1) + 2c3x

≥
c24x

2

log2 g
c4x
log g

+ c4x
log x

+ 2c3x

= x

c24
log2 g

c4
log g

+ c4
log x

+ 2c3
> βx.

3.2 Explicit values for Romanov’s constant

Knowing that a positive proportion of the odd positive integers is of the
form p+2n we ask for explicit lower bounds. While Romani [Rom83] gives
heuristic arguments suggesting that the density of positive integers of the
form p+2n is about 0.434..., Chen and Sun [CS04] proved that d2 > 0.0868,
Habsieger and Roblot [HR06] were able to improve on d2 > 0.0933. Pintz
[Pin06] proved that d2 ≥ 0.09368 but according to [HSF10] his calculation
is based on a value of a constant in an upper bound sieve for which Dong
Wu gave an incomplete proof and with a corrected version would arrive at
d2 > 0.093626. Habsieger and Sivak-Fischler [HSF10] themselves improved
on d2 > 0.0936275. The best known result is due to Elsholtz and Schlage
Puchta [ESP12] which is d2 > 0.107648. In the following we want to
have a look at the ideas of Habsieger and Roblot [HR06] and Elsholtz and
Schlage-Puchta [ESP12].

3.2.1 The lower bound by Habsieger and Roblot

Habsieger and Roblot [HR06] use a result of Pintz and Ruzsa to give a
lower bound of 0.0933 for Romanov’s constant. Pintz and Ruzsa [PR03]
proved that

s(x) =
x∑

n=1

r22(n) < 5.3636 · x 2

log2 2
.

Instead of directly using the Cauchy-Schwarz inequality which would imply

(π(x)L)2 ≤ d(x)s(x)

where L =
⌊
log x
log 2

⌋
and d(x) =

∑
n≤x

r2(n)>0
1, Habsieger and Roblot are able

to improve the bound by the following approach.
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First they define

εx =

∑
1≤n≤x r2(n)∑

1≤n≤x
r2(n)>0

1

to be the average number of representations of an integer as the sum of a
prime and a power of two. Furthermore they set

ε = lim inf εx =
1

d2 log 2

so that some subsequence of (εn)n∈N converges to ε. Instead of considering
the sum s(x), Habsieger and Roblot have a look at the sum of squared
deviation of the numbers r2(n) from their average value εx:

∆x =
∑

1≤n≤x
r2(n)>0

(r2(n)− εx)2 =
∑

1≤n≤x
r2(n)>0

r2(n)2 − 2εx
∑

1≤n≤x

r2(n) + ε2x
∑

1≤n≤x
r2(n)>0

1 =

=
∑

1≤n≤x
r2(n)>0

r2(n)2 −
(∑

1≤n≤x r2(n)
)2∑

1≤n≤x
r2(n)>0

1
=
∑

1≤n≤x

r2(n)2 −

(
π(n) log x

log 2

)2∑
1≤n≤x
r2(n)>0

1
.

Using the Prime Number Theorem 2.2.1 and the result of Pintz and Rusza
we arrive at

∆x ≤
2x

log2 2

(
5.3636− 1

2d
+ o(1)

)
.

Next we need a lower bound for ∆x. Habsieger and Roblot get it by just
observing that if ε < 15 would hold, they would, by definition of ε, arrive
at a better result than d = 0.0933 and for ε > 15.5 they would get a wrong
bound for d. So we can choose ε ∈ (15, 15.5) and get

∆x ≥
∑

1≤n≤x
r2(n)>0

(15− εx)2 ≥ x

(
d

(
15− 1

d log 2

)2

+ o(1)

)
.

Putting the two inequalities together we arrive at

d

(
15− 1

d log 2

)2

≤ 2

log2 2

(
5.3636− 1

2d

)
from where we get to

d2225 log2 2− d(30 log 2 + 10.7272) + 2 ≤ 0

and finally to d ≥ 0.0933.

12



3.2.2 A new idea by Elsholtz and Schlage-Puchta

Elsholtz and Schlage-Puchta hold the current record regarding Romanov’s
constant. Since we want to use a similar method as they used in [ESP12]
the basic idea of their approach is pointed out in this section. As many of
the other proofs the proof of Elsholtz and Schlage-Puchta of a lower bound
for Romanov’s constant relies on the use of the Cauchy-Schwarz inequality
and they work with the observation that the inequality in the form

〈v, w〉 ≤ ||v|| · ||w||

is an equality if and only if v and w are linearly dependent. Linear de-
pendency in our case would mean that all integers have the same number
of representations as a sum of a prime and a power of two. Partitioning
the integers in residue classes modulo 224− 1 Elsholtz and Schlage-Puchta
get some improvement by using the inequality on the residue classes sep-
arately making use of the fact that within those classes the distribution
of the number of representations is more homogenous than by considering
the positive integers as a whole.

As an example they give the situation modulo 3. By Theorem 2.2.2
the primes are equally distributed among the residue classes 1 and 2 mod 3
and the same holds for powers of 2. As a consequence a positive integer n
with n ≡ 0 mod 3 is the sum of a prime and a power of 2 with probability
1
2

whereas if n ≡ 1 mod 3 or n ≡ 2 mod 3 this probability is 1
4
. This is true

since 1 + 2 ≡ 0 mod 3 and 2 + 1 ≡ 0 mod 3 but only 2 + 2 ≡ 1 mod 3 and
1 + 1 ≡ 2 mod 3.

This idea together with the use of computers to get explicit numerical
values for constants needed for their lower bound yields the improvement.

3.3 A note on upper bounds

In 1950 Erdős [Erd50] and van der Corput [vdC50] independently proved
that a positive proportion of the odd integers is not of the form p+2n. We
are going to have a look at Erdős’ proof who invented covering congruences
and used them to explicitly construct a subsequence of the odd positive
integers that cannot be represented as a sum of a prime and a power of
two. For his argument Erdős uses the following Lemma (the proof is taken
from [Nat96, Lemma 7.11]).
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Lemma 3.3.1. Every integer satisfies at least one of the congruences

0 mod 2

0 mod 3

1 mod 4

3 mod 8

7 mod 12

23 mod 24.

Proof. It is easy to check that the integers 0, . . . , 23 satisfy at least one of
the congruences. Since any integer k is congruent to one of the numbers
r between 0 and 23 modulo 24 and r satisfies one of the congruences we
arrive at

k ≡ r mod 24

r ≡ ai mod mi

for one of the congruences ai mod mi in the Lemma. Now all the moduli
of the system of congruences in the lemma are divisors of 24 hence

k ≡ r ≡ ai mod mi.

This Lemma can be used to prove the following Theorem (the proof is
again taken from [Nat96, Theorem 7.12]).

Theorem 3.3.1. A positive proportion of the odd integers is not of the
form p+ 2n.

Proof. For each of the moduli mi of the congruences in Lemma 3.3.1 we
choose a prime pi such that the order of 2 mod pi divides mi.

22 ≡ 1 mod 3

23 ≡ 1 mod 7

24 ≡ 1 mod 5

28 ≡ 1 mod 17

212 ≡ 1 mod 13

224 ≡ 1 mod 241.

14



With l = 241 and m = 2l · 3 · 7 · 5 · 17 · 13 · 241 by Theorem 2.1.1 there is a
unique congruence class r mod m with

r ≡ 1 mod 2l

r ≡ 20 mod 3

r ≡ 20 mod 7

r ≡ 21 mod 5

r ≡ 23 mod 17

r ≡ 27 mod 13

r ≡ 223 mod 241.

Since any integer in the residue class r mod m is of the form r + a · m,
a ∈ Z, and m is even and r is odd, all those integers are odd. Now let
N ≡ r mod m with N > 2l + l and choose n ∈ N with 2n < N . Using the
notation of the proof of Lemma 3.3.1 there is some ai with

n ≡ ai mod mi

hence
2n = 2ai+miui ≡ 2ai mod pi

for some integer ui (note that the exponents of 2 in the defining congruences
of r correspond to the moduli mi of Lemma 3.3.1). We arrive at

N ≡ 2n mod pi

and therefore N = 2n + vpi. If n ≤ l we get

vpi = N − 2n ≥ N − 2l > l ≥ pi

by the choice of N > 2l + l and l as max{pi} hence v > 1. If n > l we have
N − 2n ≡ N ≡ 1 mod 2l and for some positive integer w

vpi = N − 2n = 1 + w2l > 2l > l ≥ pi

and again v > 1. So in any case N−2n is composite. Therefore no positive
integer in the congruence class r mod m can be represented as the sum of
a prime and a power of 2 and the density of positive odd integers with this
property is at least 1

m
> 0.
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4
Counting primes in residue classes

4.1 The basic idea of sieve methods

One of the central ingredients of the proof of a new lower bound for Ro-
manov’s constant by Elsholtz and Schlage-Puchta was the use of a sieve
giving, for fixed k, d ∈ N, an upper bound for the number of pairs of primes
(p1, p2) where p1 is in a fixed residue class modulo k satisfying p1 + b = p2.
Since the proof of a lower bound for integers of the form p+gn for arbitrary
g ∈ N will be based on the same sieve, this chapter is devoted to introduce
it after giving the basic idea behind sieve methods in general. The rest
of this chapter chapter is based on the treatise of Halberstam and Richert
[HR11] on sieves.

4.1.1 The sifting function S
Given some finite set A ⊂ N and some set P ⊂ P of primes the goal of a
sieve method is to give an upper or lower bound for the number of elements
in A that are not divisible by any prime in P . For this purpose we define
P (z) to be

P (z) :=
∏
p<z
p∈P

p

and the sifting function S

S(A,P , z) := |{a ∈ A : (a, P (z)) = 1}|.

As an example suppose that P = P and we have a list Pz = {p ∈ P : p < z}
of primes smaller than z ∈ N. We can extend the list Pz to a list Pz2 of
primes not exceeding z2 by additionally including those integers of the
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interval [z, z2) that are not divisible by any of the primes in Pz. This
process is referred to as Eratosthenes’ Sieve and can be used to construct
lists of primes. Consider for example the list P10 of primes less than 10

P10 = {2, 3, 5, 7}.

By crossing out all multiples of any of those numbers we can construct a
list of primes between 10 and 100:

10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
50 51 52 53 54 55 56 57 58 59
60 61 62 63 64 65 66 67 68 69
70 71 72 73 74 75 76 77 78 79
80 81 82 83 84 85 86 87 88 89
90 91 92 93 94 95 96 97 98 99

If we choose A to be

A = {n ∈ N : z ≤ n < z2}

and we have a list of all primes smaller than z at hand, the Prime Number
Theorem 2.2.1 states, that the number S(A,P , z) of integers surviving the
sifting process satisfies S(A,P , z) ∼ z2

2 log z
.

While Eratosthenes’ Sieve provides a means of constructing lists of
primes what we are looking for is a more theoretical approach. We want
to get an upper bound for the set of primes described above by generalizing
the sifting process and we are going to get it, by using a method called
Selberg’s upper bound sieve. Before we introduce it we will need to make
some more definitions and get a formal sieve theoretic description of our
problem.

4.1.2 The functions ω and g

Given a set A as above. Later we want to deal with subsets of A consisting
of all a ∈ A being divisible by some fixed d ∈ N hence we define

Ad := {a ∈ A : a ≡ 0 mod d}.

Furthermore suppose that we have an approximation X for |A| with

r1 := |A| −X.
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We then choose the function ω0 in a way such that ω0(p)
p
X is an approxi-

mation for |Ap| and define the corresponding remainder term as

rp := |Ap| −
ω0(p)

p
X.

If we require ω0(1) = 1 and ω0(d) =
∏

p|d
p∈P

ω0(p) for squarefree d, ω0 is

always a multiplicative function on the positive squarefree integers. We
additionally define

rd := |Ad| −
ω0(d)

d
X.

Note that we can always expect ω0 to be non-negative, since if ω0(p) is
negative for some p ∈ P, 0 is certainly a better approximation to |Ap| than
ω0(p)
p
X < 0 and we could in this case set ω0(p) := 0.

Definition 4.1.1. Given a set A to be sifted by a set of primes P and
a function ω0 satisfying the requirements above. For p ∈ P define the
function ω as follows:

ω(p) :=

{
ω0(p), if p ∈ P
0, if p 6∈ P .

The function ω is again extended to the set of positive squarefree integers
by setting ω(1) = 1 and

ω(d) =
∏
p|d
p∈P

ω(p).

We furthermore define

Rd := |Ad| −
ω(d)

d
X.

For the rest of this chapter we want the following condition to be sat-
isfied for ω: for any prime p and some fixed constant C ≥ 1

1 ≤ 1

1− ω(p)
p

≤ C.

If ω satisfies this condition the function

g(d) :=
ω(d)

d
∏

p|d
p∈P

(
1− ω(p)

p

)
is well defined for any squarefree d ∈ N.
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4.2 The setting in our case

Using the notation of sifting functions introduced in the previous section,
we are now ready to apply it to our problem of counting pairs of primes
with fixed distance p1 +b = p2 where p1 is in a given residue class l modulo
some number k. We will do this by considering the set

A : {p+ b : p ∈ P, p ≤ x, p ≡ l mod k}

where b, k, l ∈ N and x ∈ R such that (l, k) = 1, k < x and b is even.
For squarefree d ∈ N the set Ad consists of all the elements p + b in
A additionally satisfying p + b ≡ 0 mod d. To get an estimate for the
cardinality of those sets we consider the general congruence n+ b ≡ 0 mod
d. Here we will restrict ourselves to choices of b,k and d satisfying (d, kb) =
1.

We can choose n ≡ −b mod d and since (d, k) = 1 by Corollary 2.1.1
the arithmetic progressions −b mod d and l mod k intersect in a unique
progression l′ mod dk. Now by the Prime Number Theorem for arithmetic
progressions 2.2.2 we get

|Ad| = |{p ∈ P : p ≡ l′ mod kd}| = π(x; dk, l′) ∼ lix

ϕ(dk)
=

1

d

d

ϕ(d)

lix

ϕ(k)

where we note that since (b, d) = 1 and (l, k) = 1 and l′ mod dk is the
intersection of the progressions −b mod d and l mod k we have (l′, dk) = 1.
This suggests the definition of X and ω0 in the following way:

X :=
liX

ϕ(k)

and

ω0(d) :=
d

ϕ(d)
.

Note that the identity function j : N → N as well as Euler’s ϕ function
(see Lemma 2.1.2) are multiplicative. A Lemma below will state that with
this choices the remainder term

rd = π(x; dk, l′)− lix

ϕ(dk)

is small enough for our purpose.

4.3 The Selberg upper bound method

In this section the basic idea of the Selberg upper bound sieve shall be
explained and applied to the setting described in the previous section.
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4.3.1 The basic idea

For a given set A and a subset P of the primes we start out with a sum of
the form

∑
a∈A

∑
d|a

d|P (z)

λd


2

where (λd)d∈N is any sequence of real numbers satisfying λ1 = 1. If a ∈ A
is not divisible by any prime in P the only divisor occurring in the inner
sum is d = 1 and because of the condition λ1 = 1 those elements contribute
1 to the sum. For all the other elements of the set A we add something
non-negative hence the following inequality is true

S(A,P , z) ≤
∑
a∈A

∑
d|a

d|P (z)

λd


2

.

To get an upper bound for S(A,P , z) we have a look at the right hand
side of this inequality. By multiplying out and interchanging summation
we get

∑
a∈A

∑
d|a

d|P (z)

λd


2

=
∑
d1|P (z)
d2|P (z)

λd1λd2
∑
a∈A

[d1,d2]|a

1 =
∑
d1|P (z)
d2|P (z)

λd1λd2|A[d1,d2]|.

If we define D := [d1, d2] and use the notation we introduced for sieves
earlier we get

RD = |AD| −
ω(D)

D
X

thus

∑
a∈A

∑
d|a

d|P (z)

λd


2

≤ X
∑
d1|P (z)
d2|P (z)

λd1λd2
ω(D)

D
+
∑
d1|P (z)
d2|P (z)

|λd1λd2RD| = XΣ1 + Σ2.

The quality of the upper bound depends essentially on the choice of the
sequence (λd)d∈N. To choose these values in an optimal way is a hard
problem and we impose a further constraint on the λd in order to make it
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easier: we require λd = 0 for d > z. The main idea behind this condition
is, that by imposing it we can expect Σ2 to be reasonably small because it
consists of just O(z2) non zero terms and we can concentrate on finding a
minimum for Σ1.

Since the proof for the optimal choice of the sequence (λd)d∈N is not
given in [HR11] the proof of the following Lemma is based on the proof of
Satz 3.1 in [Pra57].

Lemma 4.3.1. Let

G(z) = G1(z) :=
∑
d<z

µ2(d)g(d)

Gk(z) :=
∑
d<z

(d,k)=1

µ2(d)g(d), for k > 1

where z ∈ R+. Then the choice of the sequence (λd)d∈N with

λd :=
µ(d)∏

p|d

(
1− ω(p)

p

)Gd(
z
d
)

G(z)

satisfies the conditions λ1 = 1 and λd = 0 for d > z and minimizes Σ1

under this conditions if a minimum exists.

Proof. We want to minimize

Σ1 =
∑
d1|P (z)
d2|P (z)
D=[p1,p2]

λd1λd2
ω(D)

D
=
∑
D≤z2

 ∑
d1,d1≤z
[d1,d2]=D

λd1λd2

 ω(D)

D
.

Next we note that for any multiplicative function f and a, b ∈ N it is true
that

f([a, b])f((a, b)) = f(a)f(b).

This holds since if we set q1, . . . , q2 to be all the different prime numbers
occurring in a and b, i.e.

a =
s∏
i=1

qaii and b =
s∏
j=1

qbii
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where ai, bi ≥ 0 for i ∈ {1, . . . , s}. By definition of the greatest common
divisor and the least common multiple we then want to show that

s∏
i=1

f(q
max(ai,bi)
i )

s∏
j=1

f(q
min(aj ,bj)
i ) =

s∏
i=1

f(qaii )
s∏
j=1

f(q
bj
i )

but this is obviously true since for any pair (ai, bi) exactly the factors
f(qaii ) and f(qbii ) occur on the right hand side and also on the left hand
side because the tuple (min(ai, bi),max(ai, bi)) is either (ai, bi) or (bi, ai).

Using this and the fact that ω(D)
D

is a multiplicative function we may
write

Σ1 =
∑

d1,d2≤z

λd1ω(d1)

d1

λd2ω(d2)

d2

(d1, d2)

ω((d1, d2))
.

Now we have a look at∑
d|r

1

g(d)
=
∑
d|r

d

ω(d)

∏
p|d

(
1− ω(p)

p

)
=
∑
d|r

d

ω(d)

∑
k|d

µ(k)
ω(k)

k
=

=
∑
d|r

∑
k|d

µ(k)
d
k

ω( d
k
)

=
∑
s|r

s

ω(s)

∑
t| r
s

µ(t) =
r

ω(r)

where for the last equality we used Lemma 2.1.3. Putting things together
we arrive at

Σ1 =
∑

d1,d2≤z

λd1ω(d1)

d1

λd2ω(d2)

d2

∑
r|d1
r|d2

1

g(r)
=
∑
r≤z

1

g(r)

∑
d≤z
r|d

λdω(d)

d


2

=

=
∑
r≤z

1

g(r)
y2r

where yr =
∑

d≤z
r|d

λdω(d)
d

=
∑

m≤ z
r

λrmω(rm)
rm

.

What we want to do now is minimizing Σ1 with respect to the yr
because given the optimal values for the yr using

λdω(d)

d
=
∑
r≤ z

d

µ(r)yrd

we get the optimal values for the λd. The last equation holds because∑
m≤ z

r

λrmω(rm)

rm
=
∑
m≤ z

r

∑
k≤ z

rm

µ(k)ykrm =
∑
ν≤ z

r

yrν
∑
k|ν

µ(k) = yr.
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The constraint λ1 = 1 now is of the form

F =
∑
r≤z

µ(r)yr = 1.

To find a minimum using a Lagrange multiplier we have to solve the fol-
lowing system of equations

∂Σ1

∂yr
+ η

∂F

∂yr
= 0, r ∈ {1, 2, . . . , bzc}

and substitute the solutions y1(η), y2(η), . . . , yr(η) in F to find η. Com-
puting the partial derivatives yields

2yr
g(r)

+ ηµ(r) = 0

hence

yr(η) = −ηµ(r)g(r)

2
.

Substituting these values for yr in F we get

−η
2

∑
r≤z

µ2(r)g(r) = 1

hence

η = −2

(∑
r≤z

µ2(r)g(r)

)−1
and

yr = µ(r)g(r)

(∑
r≤z

µ2(r)g(r)

)−1
=
µ(r)g(r)

G(z)
.

If Σ1 has a minimum under constraint F those are the values for yr realizing
it. Now given the yr we can compute the λd as

λdω(d)

d
=
∑
r≤ z

d

µ(r)µ(rd)g(rd)

G(z)
=
µ(d)g(d)

G(z)

∑
r≤ z

d
(r,d)=1

µ2(r)g(r) =

=
µ(d)ω(d)

G(z)d
∏

p|d

(
1− ω(p)

p

)Gd(
z

d
).
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We divide both sides of the last equation by ω(d)
d

and get

λd =
µ(d)∏

p|d

(
1− ω(p)

p

)Gd(
z
d
)

G(z)

hence the Lemma.

Using the optimal choice for the λd from the Lemma above evaluating
Σ1 now yields

Σ1 =
1

G(z)
.

It remains to get a bound for Σ2. With

G(z) =
∑
l|d

∑
m<z

(m,d)=l

µ2(m)g(m) =
∑
l|d

∑
h< z

l

(h, d
l
)=1

(h,l)=1

µ2(lh)g(lh) =

=
∑
l|d

µ2(l)g(l)Gd

(z
l

)
≥ Gd

(z
d

)∑
l|d

µ2(l)g(l)

and the equality ∑
l|d

µ2(l)g(l) =
1∏

p|d

(
1− ω(p)

p

)
we get that

Gd

(z
d

)
≤ G(z)

∏
p|d

(
1− ω(p)

p

)
hence for any squarefree d ∈ N

|λd| ≤ 1

and
Σ2 ≤

∑
d1<z, d2<z
d1|P (z)
d2|P (z)

|R[d1,d2]|.

The numbers [d1, d2] occurring on the right hand side of the last inequality
are squarefree, they divide P (z) and they are less than z2. Since they are
squarefree the number of pairs (d1, d2) with [d1, d2] = D for fixed D is
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exactly 3ν(D), where ν(D) counts the number of different prime factors in
D. We therefore get

Σ2 ≤
∑

d1<z, d2<z
d1|P (z)
d2|P (z)

|R[d1,d2]| ≤
∑
D<z2

D|P (z)

3ν(D)|RD| ≤
∑
D<z2

∀p∈P\P:(p,D)=1

µ2(D)3ν(D)|RD|.

Putting all this together we have (cf. [HR11, Theorem 3.2.]):

Theorem 4.3.1. The following inequality holds:

S(A,P , z) ≤ X

G(z)
+

∑
D<z2

∀p∈P\P:(p,D)=1

µ2(D)3ν(D)|RD|.

4.3.2 Intermediate results

From now on we are going to restrict ourselves to the case ω(p) = p
p−1 . For

any integer K we furthermore define

PK := {p ∈ P : p - K}.

In order to prove Theorem 4.3.2 we are going to need the following Lemma
whose proof we omit here (it can be found in [HR11, Lemma 3.1] while for
Theorem 4.3.2 and its proof we refer to [HR11, Theorem 3.10]).

Lemma 4.3.2. Let K be an integer. With

HK(x) :=
∑
d<x

(d,K)=1

µ2(d)

ϕ(d)

the following estimate

HK(x) ≥ log x
∏
p|K

(
1− 1

p

)

holds.

Theorem 4.3.2. Let K 6= 0 be an even integer and let

ω(p) =
p

p− 1
, for p ∈ PK .
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Then

S(A,PK , z) ≤ 2
∏
p>2

(
1− 1

(p− 1)2

) ∏
2<p|K

p− 1

p− 2

X

log z

{
1 +O

(
1

log z

)}
+

+
∑
d<z2

(d,K)=1

µ2(d)3ν(d)|Rd|.

Proof. First we note that the function g is well defined with our choice of
ω since K is even. We now use Theorem 4.3.1 and see that it is sufficient
to prove that

1

G(z)
≤ 2

∏
p>2

(
1− 1

(p− 1)2

) ∏
2<p|K

p− 1

p− 2

1

log z

{
1 +O

(
1

log z

)}
.

We start out by having a closer look at g(p) for p ∈ PK :

g(p) =
ω(p)

p
(

1− ω(p)
p

) =
p

p(p− 1)
(
p−2
p−1

) =
1

p− 2
=

1

p− 1

(
1 +

1

p− 2

)
=

=
1

ϕ(p)
(1 + g(p))

hence for d with (d,K) = 1 we get

g(d) =
1

ϕ(d)

∑
l|d

µ2(l)g(l).

By definition of G(z) we have

G(z) =
∑
d<z

(d,K)=1

µ2(d)

ϕ(d)

∑
l|d

µ2(l)g(l) =
∑
l<z

(l,K)=1

µ2(l)g(l)
∑
m< z

l
(m,K)=1
(m,l)=1

µ2(lm)

ϕ(lm)
=

=
∑
l<z

(l,K)=1

µ2(l)g(l)

ϕ(l)

∑
m< z

l
(m,K)=1
(m,l)=1

µ2(m)

ϕ(m)
=
∑
l<z

(l,K)=1

µ2(l)g(l)

ϕ(l)
HKl

(z
l

)
.

Applying Lemma 4.3.2 we arrive at

G(z) ≥
∏
p|K

(
1− 1

p

) ∑
l<z

(l,K)=1

µ2(l)g(l)

ϕ(l)
log

z

l
≥

≥
∏
p|K

(
1− 1

p

) ∞∑
l=1

(l,K)=1

µ2(l)g(l)

l
log

z

l
.
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With g(p) = 1
p−2 we additionally get

∞∑
l=1

(l,K)=1

µ2(l)g(l)

l
=
∏
p-K

(
1 +

1

p(p− 2)

)

hence

∞∑
l=1

(l,K)=1

µ2(l)g(l)

l
log l =

∞∑
l=1

(l,K)=1

µ2(l)g(l)

l

∑
p|l

log p =

=
∑
p-K

log p

p(p− 2)

∞∑
m=1

(m,K)=1
(m,p)=1

µ2(m)g(m)

m
=

=
∑
p1-K

log p1
p1(p1 − 2)

1

1 + 1
p1(p1−2)

∏
p2-K

(
1 +

1

p2(p2 − 2)

)
.

Putting everything together yields

G(z) ≥
∏
p|K

(
1− 1

p

)∏
p-K

(
1 +

1

p(p− 2)

)(
log z −

∑
p∈P

log p

(p− 1)2

)
.

Dividing the last inequality by both its sides and simplifying the expres-
sions proves the theorem.

A proof of the following Lemma can again be found in [HR11, Lemma
3.5]. It will be useful to get an estimate for the remainder term in Theorem
4.3.1 for our setting.

Lemma 4.3.3 (Bombieri). Let

E(x, d) := max
2≤y≤x

max
(l,d)=1

∣∣∣∣π(y; d, l)− li y

ϕ(d)

∣∣∣∣
and h, k be positive integers. If k ≤ logA x given any constant U there
exists a positive constant C depending on U , h and A such that∑

d<
√
x

k logC x

µ2(d)hν(d)E(x, dk) = OU,h,A
(

x

ϕ(k) logU x

)
.
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4.4 An upper-bound sieve

With the intermediate results in the previous section we are now ready
to prove the upper bound for the set A we introduced in Section 4.2 (for
Theorem 4.4.1 and its proof we refer to [HR11, Theorem 3.12]).

Theorem 4.4.1. Let b, k and l be integers where b is non-zero and even.
Let furthermore k and l be coprime with

1 ≤ k ≤ logA x.

For x→∞ we have, uniformly in b, k and l

|{p ∈ P : p ≤ x, p ≡ l mod k, p+ b = p′ ∈ P}| ≤

≤ 8
∏
p>2

(
1− 1

(p− 1)2

) ∏
2<p|kb

p− 1

p− 2

x

ϕ(k) log2 x

(
1 +OA

(
log log x

log x

))
.

Proof. As in Section 4.2 we choose

A := {p+ b : p ∈ P, p ≤ x, p ≡ l mod k}

and we choose

X :=
lix

ϕ(k)
, ω(p) :=

p

p− 1
for p with (p, kb) = 1.

We have seen that with this choice we get

|Rd| ≤ E(x, dk).

Now

|{p ∈ P : p ≤ x, p ≡ l mod k, p+ b = p′ ∈ P}| ≤ S(A,Pkb, z) + z

because S(A,Pkb, z) counts at least all primes larger than z occurring in
the sequence A. Since 2|kb we may apply Theorem 4.3.2 and get

|{p ∈ P : p ≤ x, p ≡ l mod k, p+ b = p′ ∈ P}| ≤

2
∏
p>2

(
1− 1

(p− 1)2

) ∏
2<p|kb

p− 1

p− 2

lix

ϕ(k) log z

(
1 +OA

(
1

log z

))
+

+
∑
d<z2

µ2(d)3ν(d)E(x, dk) + z.
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For sufficiently large x we may use Lemma 4.3.3 with U = h = 3 and get
the existence of a constant C depending on A such that with

z2 =

√
x

k logC x

we have ∑
d<z2

µ2(d)3ν(d)E(x, dk) = OA
(

x

ϕ(k) log3 x

)
.

With

log z =
1

4
log x

(
1 +OA

(
log log x

log x

))
we finally get

lix

log z
=

4x

log2 x

(
1 +OA

(
log log x

log x

))
hence the Theorem.
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5
The general situation - numbers of the form

p + gn

5.1 Application of the sieve

For g ∈ N, g ≥ 2 we recall that

dg := lim inf
x→∞

|{n ≤ x : rg(n) > 0}|
x

and

dg := lim sup
x→∞

|{n ≤ x : rg(n) > 0}|
x

.

Our goal is to get a lower bound for dg by applying the idea of Elsholtz and
Schlage-Puchta to the general case. We are basically going to work through
their proof of a lower bound for Romanov’s constant given in [ESP12].

Romanov [Rom34] proved that the lower density of integers repre-
sentable as the sum of a prime and a power of g is positive but few is
known on explicit values in the case of g 6= 2. In an unpublished manuscript
[GL03] Gugg and Ledoan compute values for g = 2 and g = 3. They come
up with d2 ≥ 0.002815971796 and d3 ≥ 0.001259610985. The main result
of this chapter will be the following theorem giving lower bounds for dg for

g ∈ {3, . . . , 18}.
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Theorem 5.1.1. The following lower bounds for dg hold:

g 3 4 5 6

dg ≥ 0.073588 0.069875 0.081702 0.057118

g 7 8 9 10
dg ≥ 0.060297 0.081948 0.067671 0.056825

g 11 12 13 14
dg ≥ 0.074303 0.060415 0.059801 0.066363

g 15 16 17 18
dg ≥ 0.048125 0.052867 0.110158 0.063678

Table 5.1: Lower bounds for dg.

Even though the lower bounds for the lower densities seems to be some-
how decreasing there are g with relatively high lower bounds. Especially
the good lower bound for integers representable as the sum of a prime and
a power of 17 was quite surprising. First empirical tests suggest that the
Elsholtz and Schlage-Puchta method works very well for g for which rg(n)
is typically low (remember that rg(n) counts the number of possibilities to
write n as the sum of a prime and a power of g).

The proof of Theorem 5.1.1 is the concern of this chapter. For the rest
of this chapter let g ∈ N, g ≥ 2 be fixed. We start out by considering the
sums

S(1)
g (x, k, l) :=

∑
n≤x

n≡k mod l

rg(n)

and
S(2)
g (x, k, l) :=

∑
n≤x

n≡k mod l

r2g(n)

The integer l shall be chosen in the form l = gm− 1 for some m ∈ N and k
and l shall be coprime. This ensures that l and g are coprime and we can
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split S
(2)
g (x, k, l) as follows:

S(2)
g (x, k, l) = |{p1 + ga1 =p2 + ga2 ≡ k mod l, p1 + ga1 ≤ x}| =

=
∑
κ≤l

α≤εg(l)
κ+gα≡k mod l

|{p+ ga ≡ k mod l, p ≡ κ mod l,

a ≡ α mod εg(l), p+ ga ≤ x}|+

+
∑

κ1,κ2≤l
α1,α2≤εg(l)

κi+g
αi≡k mod l

|{p1 + ga1 = p2 + ga2 , p1 6= p2, pi ≡ κi mod l,

ai ≡ αi mod εg(l), p1 + ga1 ≤ x}|.

For the second sum on the righthand side of the last equation we fix
κ1, κ2, a1 and a2 such that κ1 + ga1 ≡ κ2 + ga2 mod l. By Theorem 4.4.1
the number of primes pi ≡ κi mod l with p1 − p2 = ga1 − ga2 is bounded
from above by

C1

∏
p>2

(
1− 1

(p− 1)2

) ∏
2<p|l(ga1−ga2 )

p− 1

p− 2

x

ϕ(l) log2 x

where C1 is a constant tending to 8 as x tends towards infinity. For∏
p>2

(
1− 1

(p− 1)2

)
an upper bound is known (as in [ESP12] we will take the upper bound
0.6601) hence it remains to find an estimate for∏

2<p|l(ga1−ga2 )

p− 1

p− 2
.

To get this estimate it suffices to consider a1, a2 ≤ Lg := log x
log g

and we have

∑
a1,a2≤Lg

ai≡αi mod m

∏
2<p|l(ga2−ga2 )

p− 1

p− 2
=
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=
∏
2<p|l

p− 1

p− 2

∏
2<p|g

p− 1

p− 2

∑
a1<a2≤Lg
ai≡αi mod m

∑
(d,2lg)=1

d|(ga1−a2−1)

f(d) ∼

∼ C2(l, g)
L2
g

2

1

m2

∑
(d,2lg)=1

(εg(d),m)|(α1−α2,m)

f(d)(εg(d),m)

εg(d)

= C2(l, g)
L2
g

2

1

m2
Sg((α1 − α2,m),m)

where C2(l, g) =
∏

2<p|l
p−1
p−2
∏

2<p|g
p−1
p−2 ,

f(n) :=

{∏
p|n

1
p−2 , if µ2(n) = 1 and n is odd

0, otherwise

and Sg(t,m) :=
∑

(d,2(gm−1))=1
(εg(d),m)|t

f(d)(εg(d),m)

εg(d)
.

Now as in [ESP12] we sum over all possible choices of κ1, κ2, α1 and
α2 and obtain the analogous results

S(1)
g (x, k, l) ∼ x

ϕ(l)m log g
|{κ, α|(κ, l) = 1, κ+ gα ≡ k mod l}|

S(2)
g (x, k, l) ≤ x

ϕ(l)m log g
|{κ, α|(κ, l) = 1, κ+ gα ≡ k mod l}|+

+ C1C2(l, g)
∏
p>2

(
1− 1

(p− 1)2

)
x

ϕ(l)m2 log2 g
·

·
∑

κ1+gα1≡k mod l
κ2+gα2≡k mod l

Sg((α1 − α2,m),m)

and again finding an upper bound for S
(2)
g (x, k, l) amounts to finding upper

bounds for Sg(t,m).

5.2 Bounding the sum Sg(t,m)

The quality of our lower bound for the density of integers of the form p+gn

depends essentially on the quality of the upper bound we can give for the
sums Sg(t,m), with t|m. Now the idea of Elsholtz and Schlage-Puchta in
the case of g = 2 was splitting these sums in four parts, computing two of
them explicitly and giving upper bounds for the other two and again we
will follow their steps. For fixed t|m we split Sg(t,m) as follows:
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Sg(t,m) =
∑

(d,m)|t

(d,m)

d

∑
εg(n)=d

(n,2(gm−1))=1

f(n) =
∑
d<D1
(d,m)|t

(d,m)

d

∑
εg(n)=d

(n,2(gm−1))=1

f(n)+

+
∑

D1≤d≤D2
(d,m)|t

(d,m)

d

∑
εg(n)=d

(n,2(gm−1))=1
P+(n)≤P

f(n) +
∑

D1≤d≤D2
(d,m)|t

(d,m)

d

∑
εg(n)=d

(n,2(gm−1))=1
P+(n)>P

f(n)+

+
∑
d>D2
(d,m)|t

(d,m)

d

∑
εg(n)=d

(n,2(gm−1))=1

f(n).

Using a computer algebra system the first two of the last sums can be
computed explicitly for appropriate values of D1, D2 and P depending on
g and m and for the last two sums we will give two theoretical results.

5.2.1 Theoretical results

To get an upper bound for the last of the previous four sums, Elsholtz and
Schlage-Puchta used Lemma 4 in [CS04]. We want to use a similar result
and therefore work through Chen and Sun’s proof of this Lemmma with
general g.

Lemma 5.2.1. For any integer g and positive real D let

Vg(D) =
∏

D
2
<k≤D

(gk − 1).

Let n be a lower bound for the number of prime factors of Vg(D) and p̂n
the n− th prime. Then we have for any D ≥ 75∑

εg(n)>D

f(n)

εg(n)
≤ 0.922913686

0.66016

(
2

(
1

D
+

logD

D

)
+
C1

D

)

where C1 = log
(

log(g) log p̂n
log p̂n−C2

77
200

)
and C2 is a constant depending on the

number of prime factors of Vg(D)1.

1We leave the fraction 0.922913686
0.66016 since

∏
p>2

(
1− 1

(p−1)2

)
= 0.66016 . . . is a well

known constant in prime number theory arising from the study of twin primes.
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Proof. To begin with we introduce the sums

wg(r) =
∑

εg(d)=r

f(d)

and
Wg(r) =

∑
s≤r

wg(s).

Using this notation we are obviously looking for an upper bound of the
sum ∑

r>D

wg(r)

r
.

To get this bound we have a closer look at Vg(x) =
∏

x
2
<k≤x (gk − 1) and

observe, that any m ∈ N with εg(m) ≤ x is a divisor of Vg(x). Now let
q1, . . . , qn be the different prime divisors of Vg(x) and p1, . . . , pn be the first
n prime numbers and we get

p1 · . . . · pn ≤ q1 · . . . · qn ≤ Vg(x) <
∏

x
2
<k≤x

gk.

Taking the logarithm on both sides of the above inequality we obtain

n∑
i=1

log pi < log g
∑
x
2
<k≤x

k.

We now use a lower bound from Corollary 2 in [Sch76] which states

n∑
i=1

log pi > pn

(
1− C2

log pn

)
where explicit values for C2 depending on n can be found in a table in
[Sch76]. With this we obtain(

1− C2

log p̂n

)
pn ≤

(
1− C2

log pn

)
pn < log g

∑
x
2
<k≤x

k ≤

≤ log(g)

(
3x2

8
+

3x

4

)
≤ log(g)

(
3x2

8
+

x2

100

)
where in the last inequality we needed that x ≥ 75. For pn we therefore
get

pn <

(
log p̂n

log p̂n − C2

)
log(g)

(
3x2

8
+

x2

100

)
.
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Analogous as in the proof of Lemma 4 in [CS04] for x ≥ 74 we have as well

Wg(x) ≤ 0.922913686

0.66016
log pn.

With our bound for pn from above we altogether get

Wg(x) ≤ 0.922913686

0.66016
(C1 + 2 log x).

In a next step we use partial summation (see for example [Brü95] Lemma

1.1.3) and the fact that Wg(n)

n
tends to zero for n tending to infinity (note

that 0 ≤ Wg(n)

n
≤

0.922913686
0.66016

(C1+2 logn)

n
). We arrive at

∑
D≤n

wg(n)

n
=

∫ ∞
D

Wg(u)

u2
du ≤

∫ ∞
D

0.922913686
0.66016

(C1 + 2 log u)

u2
du =

=
0.922913686

0.66016

(
2

(
1

D
+

logD

D

)
+
C1

D

)
as desired.

Values for p̂n and a lower bound for the number of prime divisors of
Vg(D) as needed in the previous Lemma can easily be found using computer
algebra systems.

To deal with the third sum we use the following Lemma which is an
analogue to [ESP12, Lemma 2] and again the proof is done by working
through the original proof by Elsholtz and Schlage-Puchta for general g.

Lemma 5.2.2. Let t, D1, D2 and P be integers where D1 ≥ 4 and D1 <
D2. Then we have∑
D1≤εg(n)≤D2
P+(n)>P

(n,2(gm−1))=1
(εg(n),24)|t

f(n)(εg(n),m)

εg(n)
≤ D1 log g

2(P − 2) logP
Σ

(g)
1 +

1

(P − 2) logP
Σ

(g)
2 +

+ t
0.922913686

0.66016
(logD1 + 1 +

C1

2
)

D1 log g

(P − 2) logP
+

+
0.922913686

0.66016

2t(D2 logD2 + 2D2 + C1D2

2
)

(P − 2) logP
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where
Σ

(g)
1 =

∑
(n,2(gm−1))=1

(εg(n),m)|t
εg(n)≤D1

f(n)(εg(n),m)

and

Σ
(g)
2 =

∑
D1≤d≤D2

ϕ(d)

d

∑
(n,2(gm−1))=1

(εg(n),m)|t
εg(n)≤d

f(n)([εg(n), d],m)

.

Proof. To begin with we fix p ∈ P and define

gg(n) := ([εg(n), εg(p)],m)

hg(n) := [εg(n), εg(p)]

µg := max(D1, εg(p))

then ∑
D1≤εg(n)≤D2

p|n
(n,2(gm−1))=1

(εg(n),m)|t

f(n)(εg(n),m)

εg(n)
=

1

p− 2

∑
D1≤hg(n)≤D2

p-n
(n,2(gm−1))=1

gg(n)|t

f(n)gg(n)

hg(n)
≤

≤ 1

p− 2

∑
D1≤hg(n)≤D2

p-n
(n,2(gm−1))=1

gg(n)|t

f(n)gg(n)

max(µg, εg(n))
≤

≤ 1

p− 2
(

1

µg

∑
D1≤hg(n)≤D2

p-n
(n,2(gm−1))=1

gg(n)|t
εg(n)≤µg

f(n)gg(n) + tC(µg))

where the first inequality holds because of Lemma 2.1.1 and C(µg) is a
constant depending on µg we get from Lemma 5.2.1. Since

P n ≤ gd − 1⇔ n ≤ log(gd − 1)

logP

37



we have at most d log g
logP

primes p > P with p|gd − 1. In the case εg(p) < D1

we get µg = D1. The number of those primes is at most

∑
d<D1

d log g

logP
≤ log g

logP

D1(D1 − 1)

2
<

log g

logP

D2
1

2

so those primes contribute at most

D2
1 log g

2(P − 2) logP
(

1

D1

∑
(n,2(gm−1))=1

(εg(n),m)|t
εg(n)≤D1

f(n)(εg(n),m) + tC(D1))

to the sum. It remains to deal with the primes p with εg(p) = d and

D1 ≤ d ≤ D2. Since there are at most ϕ(d) log g
logP

such primes we get a
contribution of at most

ϕ(d) log g

(P − 2) logP
(
1

d

∑
(n,2(gm−1))=1

gg(n)|t
εg(n)≤d

f(n)gg(n) + tC(d))

and we need to sum over all d with D1 ≤ d ≤ D2. Using ϕ(d)
d
≤ 1 and

∑
D1≤d≤D2

log d ≤
∫ D2

D1−1
log tdt =

= D2 logD2 −D2 − (D1 − 1) log(D1 − 1) +D1 − 1 ≤

≤ D2 logD2

for D1 ≥ e+ 1 we get an upper bound of

log g

(P − 2) logP

∑
D1≤d≤D2

ϕ(d)

d

∑
(n,2(gm−1))=1

gg(n)|t
εg(n)≤d

f(n)([εg(n), d],m)+

+
0.922913686

0.66016

2t log g(D2 logD2 + 2D2 + C1D2
2

)

(P − 2) logP
.
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5.3 Computational results

This section describes the main ideas behind the computation of the upper
bound for Sg(t,m) and hence a lower bound for dg.

5.3.1 Theoretical results used to improve computa-
tional efficiency

The first detail we need to have a closer look at is the computation of sums
of the form

∑
εg(d)=e

f(d). Computing these sums directly is practically
impossible because it involves computing the primitive squarefree divisors
of integers of the form gn − 1, i.e. all divisors d|gn − 1 with d - gm − 1
for every positive integer m < n. To do this we would need to store,
search and update a large set of previous divisors which is inefficient for
reasonable values of D1 and D2. Prof. Schlage-Puchta suggested a more
elegant and efficient way of computing these sums. The following idea is
also explained in the latest version of their paper. They used the following
Möbius inversion like identity (cf. Theorem 2.1.2):

Lemma 5.3.1. The following equation holds true for any positive integer
e: ∑

εg(d)=e

f(d) =
∑
t|e

µ
(e
t

) ∑
εg(d)|e

f(d).

Proof. This holds true since∑
εg(d)=e

f(d) =
∑
εg(d)|e

f(d)
∑
t| e
εg(d)

µ

(
e

tεg(d)

)
=
∑
t|e

µ
(e
t

) ∑
εg(d)|t

f(d)

where the first equation holds because of Lemma 2.1.3 and the second
results from just exchanging the order of summation.

The above Lemma allows to compute the sums
∑

εg(d)=e
f(d) using the

values of the sums
∑

εg(d)|e f(d) which can be computed efficiently from the
divisors of the numbers ge − 1.

We will use the multiplicativity of f to compute the values of its sum-
matory function as a product instead a sum, i.e.∑

εg(d)=e

f(n) =
∏

pν ||ge−1
p6=2

(
1 +

1

p− 2

)
.
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As Elsholtz and Schlage-Puchta we use the following Lemma of Pintz
to improve the use of the Cauchy-Schwarz inequality, which is more a
numerical improvement then an improvement of computational efficiency
(cf. [Pin06, Lemma 4’]):

Lemma 5.3.2. Suppose b(n) ∈ N0 for n ∈ N and

N∑
n=1

b(n) = M ,
N∑
n=1

b(n)2 ≤ DM.

Then we have
#{n ∈ N : b(n) > 0} ≤ δ(D)M

with

δ(D) =
bDc+ dDe −D
bDcdDe

.

Besides of these theoretical results large parts of the implementation
are suited for parallel computation. Examples would be the computation
of the integer factorizations, computing sums from precomputed values and
the application of Lemma 5.3.1. In sage we can use the @parallel decorator
to use parallel computation for the functions implementing these tasks.

5.3.2 Tables for different choices of g

All computations were done in Sage 6.3 on a machine running Ubuntu
14.04 using an Intel Core i7-4700MQ CPU and 16 GB RAM. The Sage
code can be found in the appendix. The tables have a similar structure as
the one given in [ESP12]: The first line gives the lower bound of Sg(t,m)
by summing over all integers n with εg(n) ≤ D1. The second row shows
the improved lower bound which is derived by additionally including those
n with D1 < εg(n) ≤ D2 and P+(n) ≤ Pmax. The third and fourth

rows show upper bounds for Σ
(g)
1 and Σ

(g)
2 from Lemma 5.2.2 and the last

row shows the upper bound we get by additionally using the bound from
Lemma 5.2.1. The parameters m, D1, D2 and Pmax were chosen in a way
to guarantee a reasonable computation time. To get the bound in the last
row we need to combine Σ

(g)
1 and Σ

(g)
2 according to Lemma 5.2.2, add this

value to the lower bound given in the second row and finally add the bound
from Lemma 5.2.1.
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t 1 2 3 4 6 12

S3(t, 12) ≥ 1.030197 1.037333 1.033488 1.079253 1.087416 1.135565
S3(t, 12) ≥ 1.030432 1.037742 1.033876 1.081058 1.090051 1.141829

Σ
(3)
1 1.317828 1.477935 1.455201 2.487499 3.101464 4.596925

Σ
(3)
2 4322.36 7442.61 9554.89 20487.87 29770.15 73652.41

S3(t, 12) ≤ 1.033424 1.04092 1.03724 1.084614 1.093982 1.146896

Table 5.2: Computational results for g = 3 for the following choice of
parameters: m = 12, Pmax = 108,D1 = 200 and D2 = 104. This leads to
a lower bound of 0.073588 for the lower density of integers representable
as the sum of a prime and a power of 3. The time needed to compute this
bound was 4h 54m 38s.

t 1 2 3 4 6 12

S4(t, 12) ≥ 1.044461 1.061943 1.077189 1.064669 1.114484 1.126143
S4(t, 12) ≥ 1.045144 1.063684 1.079379 1.066886 1.120083 1.133619

Σ
(4)
1 1.409361 1.753333 1.940290 1.808988 2.815383 3.161645

Σ
(4)
2 4961.75 10158.26 14340.09 17101.24 34780.76 61386.97

S4(t, 12) ≤ 1.048215 1.066994 1.082927 1.07067 1.12435 1.139315

Table 5.3: Computational results for g = 4 for the following choice of
parameters: m = 12, Pmax = 108,D1 = 100 and D2 = 104. This leads to
a lower bound of 0.069875 for the lower density of integers representable
as the sum of a prime and a power of 4. The time needed to compute this
bound was 3h 43m 43s.

t 1 2 3 6

S5(t, 6) ≥ 1.028001 1.104068 1.054138 1.150444
S5(t, 6) ≥ 1.028343 1.106953 1.055179 1.159859

Σ
(5)
1 1.211916 2.075240 1.595227 3.315778

Σ
(5)
2 3999.11 15664.63 10613.66 55509.93

S5(t, 6) ≤ 1.031479 1.110373 1.05887 1.164413

Table 5.4: Computational results for g = 5 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 100 and D2 = 104. This leads to
a lower bound of 0.081702 for the lower density of integers representable
as the sum of a prime and a power of 5. The time needed to compute this
bound was 3h 6m 37s.
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t 1 2 3 6

S6(t, 6) ≥ 1.007996 1.068560 1.030853 1.156635
S6(t, 6) ≥ 1.008325 1.071183 1.031781 1.167115

Σ
(6)
1 1.138097 1.963645 1.426712 3.576626

Σ
(6)
2 3779.54 14683.40 9571.61 56735.60

S6(t, 6) ≤ 1.011509 1.074685 1.035585 1.171887

Table 5.5: Computational results for g = 6 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 100 and D2 = 104. This leads to
a lower bound of 0.057118 for the lower density of integers representable
as the sum of a prime and a power of 6. The time needed to compute this
bound was 4h 26m 52s.

t 1 2 3 6

S7(t, 6) ≥ 1.008074 1.229033 1.027334 1.336181
S7(t, 6) ≥ 1.008391 1.232697 1.028409 1.348882

Σ
(7)
1 1.126026 2.864722 1.430407 5.042929

Σ
(7)
2 3705.64 20065.62 9675.87 75545.99

S7(t, 6) ≤ 1.011614 1.236272 1.032309 1.353856

Table 5.6: Computational results for g = 7 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 100 and D2 = 104. This leads to
a lower bound of 0.060297 for the lower density of integers representable
as the sum of a prime and a power of 7. The time needed to compute this
bound was 3h 10m 41s.

t 1 2 4 8

S8(t, 8) ≥ 1.024447 1.077194 1.114253 1.126134
S8(t, 8) ≥ 1.024932 1.079382 1.120642 1.134060

Σ
(8)
1 1.250673 1.899520 2.861352 3.166677

Σ
(8)
2 5681.73 14603.33 32106.20 48443.71

S8(t, 8) ≤ 1.028186 1.083005 1.125001 1.139872

Table 5.7: Computational results for g = 8 for the following choice of
parameters: m = 8, Pmax = 108,D1 = 100 and D2 = 104. This leads to
a lower bound of 0.081948 for the lower density of integers representable
as the sum of a prime and a power of 8. The time needed to compute this
bound was 3h 31m 19s.
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t 1 2 3 6

S9(t, 6) ≥ 1.037051 1.078971 1.086906 1.135054
S9(t, 6) ≥ 1.037743 1.081073 1.090071 1.141894

Σ
(9)
1 1.359175 1.863957 2.208383 2.956114

Σ
(9)
2 4779.35 14174.54 16475.80 49129.83

S9(t, 6) ≤ 1.041026 1.084747 1.094128 1.14713

Table 5.8: Computational results for g = 9 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 100 and D2 = 104. This leads to
a lower bound of 0.067671 for the lower density of integers representable
as the sum of a prime and a power of 9. The time needed to compute this
bound was 3h 18m 11s.

t 1 2 3 6

S10(t, 6) ≥ 1.010255 1.040919 1.023283 1.080011
S10(t, 6) ≥ 1.010669 1.043448 1.024521 1.088573

Σ
(10)
1 1.118329 1.687450 1.408524 2.653526

Σ
(10)
2 3727.45 13108.33 9625.91 45702.21

S10(t, 6) ≤ 1.013981 1.047171 1.028638 1.093934

Table 5.9: Computational results for g = 10 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 90 and D2 = 104. This leads to a
lower bound of 0.056825 for the lower density of integers representable as
the sum of a prime and a power of 10. The time needed to compute this
bound was 4h 51m 28s.

t 1 2 3 6

S11(t, 6) ≥ 1.004681 1.037197 1.007626 1.101581
S11(t, 6) ≥ 1.005020 1.039454 1.008714 1.110337

Σ
(11)
1 1.076364 1.763010 1.216868 3.155543

Σ
(11)
2 3567.49 13302.01 8593.33 48872.69

S11(t, 6) ≤ 1.008355 1.043218 1.012888 1.115813

Table 5.10: Computational results for g = 11 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 90 and D2 = 104. This leads to a
lower bound of 0.074303 for the lower density of integers representable as
the sum of a prime and a power of 11. The time needed to compute this
bound was 3h 28m 5s.
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t 1 2 3 6

S12(t, 6) ≥ 1.007583 1.224606 1.021063 1.264296
S12(t, 6) ≥ 1.008071 1.228118 1.021957 1.277184

Σ
(12)
1 1.157413 2.435262 1.316613 3.706043

Σ
(12)
2 3956.46 17799.38 9048.31 61499.79

S12(t, 6) ≤ 1.011427 1.231925 1.026184 1.282779

Table 5.11: Computational results for g = 12 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 90 and D2 = 104. This leads to a
lower bound of 0.060415 for the lower density of integers representable as
the sum of a prime and a power of 12. The time needed to compute this
bound was 3h 21m 59s.

t 1 2 3 6

S13(t, 6) ≥ 1.007744 1.261664 1.014210 1.317593
S13(t, 6) ≥ 1.008136 1.265514 1.015356 1.330976

Σ
(13)
1 1.122570 2.864503 1.320680 4.693841

Σ
(13)
2 3722.69 20369.99 9214.76 72251.80

S13(t, 6) ≤ 1.011511 1.269359 1.019632 1.33668

Table 5.12: Computational results for g = 13 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 90 and D2 = 104. This leads to a
lower bound of 0.059801 for the lower density of integers representable as
the sum of a prime and a power of 13. The time needed to compute this
bound was 4h 17m 18s.

t 1 2 3 6

S14(t, 6) ≥ 1.026546 1.062292 1.039852 1.113770
S14(t, 6) ≥ 1.027021 1.065715 1.041523 1.125508

Σ
(14)
1 1.202567 1.834646 1.453945 2.815730

Σ
(14)
2 4024.82 14532.42 10171.73 51443.13

S14(t, 6) ≤ 1.030414 1.069583 1.045845 1.131269

Table 5.13: Computational results for g = 14 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 75 and D2 = 104. This leads to a
lower bound of 0.066363 for the lower density of integers representable as
the sum of a prime and a power of 14. The time needed to compute this
bound was 5h 7m 27s.
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t 1 2 4

S15(t, 4) ≥ 1.032118 1.055917 1.138769
S15(t, 4) ≥ 1.033028 1.059468 1.149475

Σ
(15)
1 1.301988 1.723907 3.066767

Σ
(15)
2 6160.21 14896.15 44572.85

S15(t, 4) ≤ 1.03644 1.063366 1.154362

Table 5.14: Computational results for g = 15 for the following choice of
parameters: m = 4, Pmax = 108,D1 = 75 and D2 = 104. This leads to a
lower bound of 0.048125 for the lower density of integers representable as
the sum of a prime and a power of 15. The time needed to compute this
bound was 3h 23m 4s.

t 1 2 3 6

S16(t, 6) ≥ 1.061956 1.064789 1.114447 1.126650
S16(t, 6) ≥ 1.063689 1.066772 1.120169 1.133596

Σ
(16)
1 1.574904 1.608730 2.349005 2.556255

Σ
(16)
2 6160.10 12833.23 20340.40 44661.61

S16(t, 6) ≤ 1.067109 1.070685 1.124577 1.139491

Table 5.15: Computational results for g = 16 for the following choice of
parameters: m = 6, Pmax = 108,D1 = 75 and D2 = 104. This leads to a
lower bound of 0.052867 for the lower density of integers representable as
the sum of a prime and a power of 16. The time needed to compute this
bound was 3h 36m 7s.

t 1 2 4

S17(t, 4) ≥ 1.012715 1.161305 1.178614
S17(t, 4) ≥ 1.013558 1.165581 1.188386

Σ
(17)
1 1.220064 2.626354 3.296018

Σ
(17)
2 5759 20950.17 46669.28

S17(t, 4) ≤ 1.016999 1.169541 1.193377

Table 5.16: Computational results for g = 17 for the following choice of
parameters: m = 4, Pmax = 108,D1 = 75 and D2 = 104. This leads to a
lower bound of 0.110158 for the lower density of integers representable as
the sum of a prime and a power of 17. The time needed to compute this
bound was 3h 28m 9s.
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t 1 2 4

S18(t, 4) ≥ 1.084399 1.116401 1.141535
S18(t, 4) ≥ 1.085361 1.119558 1.152048

Σ
(18)
1 1.450821 1.965536 2.6474

Σ
(18)
2 6724.59 15970.63 42386.97

S18(t, 4) ≤ 1.088816 1.123534 1.157077

Table 5.17: Computational results for g = 18 for the following choice of
parameters: m = 4, Pmax = 108,D1 = 75 and D2 = 104. This leads to a
lower bound of 0.063678 for the lower density of integers representable as
the sum of a prime and a power of 18. The time needed to compute this
bound was 4h 3m 8s.
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6
Appendix - Sage code

1 de f g e t F a c t o r i z a t i o n I n p u t F u l l ( g , l ) :
2 r e s u l t =[ ]
3 f o r i in l :
4 r e s u l t . append ( ( g , i ) )
5 r e turn r e s u l t
6

7 @ p a r a l l e l
8 de f Fu l lFactor ( g , n ) :
9 f a c t o r s = f a c t o r ( gˆn−1);

10 r e s u l t =[ ]
11 f o r i in f a c t o r s :
12 r e s u l t . append ( i [ 0 ] )
13 r e turn r e s u l t
14

15 de f computePrimeProduct (Pmax ) :
16 r e s u l t=1
17 f o r p in primes (Pmax+1):
18 r e s u l t=r e s u l t ∗p
19 r e turn r e s u l t
20

21 de f g e t F a c t o r i z a t i o n I n p u t P a r t i a l ( primeProduct , g , l ) :
22 r e s u l t =[ ]
23 f o r i in l :
24 r e s u l t . append ( ( primeProduct , g , i ) )
25 r e turn r e s u l t
26
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27 @ p a r a l l e l
28 de f Pa r t i a lFac to r ( primeProduct , g , n ) :
29 f a c t o r s = f a c t o r ( gcd ( primeProduct , gˆn−1))
30 r e s u l t =[ ]
31 f o r i in f a c t o r s :
32 r e s u l t . append ( i [ 0 ] )
33 r e turn r e s u l t
34

35 de f getNotAllowedPrimeFactors (m, g ) :
36 f a c t o r s=f a c t o r ( gˆm−1)
37 r e s u l t =[2 ]
38 f o r i in f a c t o r s :
39 r e s u l t . append ( i [ 0 ] )
40 r e turn r e s u l t
41

42 de f getSumUpFValuesInput ( l ,m, g , f a c t o r s ) :
43 r e s u l t =[ ]
44 counter=0
45 f o r i in range ( l en ( l ) ) :
46 r e s u l t . append ( ( counter , l [ i ] ,m, g , f a c t o r s ) )
47 counter=counter+1
48 r e turn r e s u l t
49

50 @ p a r a l l e l
51 de f sumUpFValues ( dummyParallel , l ,m, g , f a c t o r L i s t ) :
52 d i v i s o r L i s t=l . d i f f e r e n c e ( f a c t o r L i s t )
53 r e s u l t=RIF (1)
54 f o r i in d i v i s o r L i s t :
55 r e s u l t=r e s u l t ∗RIF(1+1/( i −2))
56 r e turn r e s u l t
57

58 de f getApplyMoebiusInvers ionInput ( l ,m) :
59 r e s u l t =[ ]
60 f o r i in range ( l en ( l ) ) :
61 r e s u l t . append ( ( i +1, l ,m) )
62 r e turn r e s u l t
63

64 @ p a r a l l e l
65 de f applyMoebiusInvers ion (d , l ,m) :
66 r e s u l t=0
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67 f o r i in d i v i s o r s (d ) :
68 r e s u l t=r e s u l t+moebius (d/ i )∗ l [ i −1]
69 r e turn r e s u l t
70

71 de f getSumUpAfterMoebiusInput ( l ,m, g ) :
72 r e s u l t =[ ]
73 f o r i in d i v i s o r s (m) :
74 r e s u l t . append ( ( i , l ,m, g ) )
75 r e turn r e s u l t
76

77 @ p a r a l l e l
78 de f sumUpAfterMoebius ( t , l ,m, g ) :
79 r e s u l t 1=0
80 r e s u l t 2=0
81 f o r i in range ( l en ( l ) ) :
82 i f gcd ( i +1,m) . d i v i d e s ( t ) :
83 r e s u l t 1=r e s u l t 1+l [ i ]∗ gcd ( i +1, t )/ ( i +1)
84 r e s u l t 2=r e s u l t 2+l [ i ]∗ gcd ( i +1, t )
85 r e turn [ r e su l t 1 , r e s u l t 2 ]
86

87 de f getSumUpAfterMoebiusPartialInput ( l ,m, g , D1 ) :
88 r e s u l t =[ ]
89 f o r i in d i v i s o r s (m) :
90 r e s u l t . append ( ( i , l ,m, g , D1) )
91 r e s u l t . r e v e r s e ( )
92 r e turn r e s u l t
93

94 @ p a r a l l e l
95 de f sumUpAfterMoebiusPartial ( t , l ,m, g , D1 ) :
96 r e s u l t 1=RIF (0)
97 r e s u l t 2=RIF (0)
98 f o r i in range (D1−1, l en ( l ) ) :
99 i f gcd ( i +1,m) . d i v i d e s ( t ) :

100 r e s u l t 1=r e s u l t 1+l [ i ]∗\\
101 RIF( gcd ( i +1, t )/ ( i +1))
102 intersum=0
103 f o r j in range ( i +1):
104 i f ( gcd ( j +1,m) ) . d i v i d e s ( t ) :
105 intersum = intersum+\\
106 l [ j ]∗ gcd ( lcm ( i +1, j +1) ,m)
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107 r e s u l t 2=r e s u l t 2+intersum ∗\\
108 RIF( e u l e r p h i ( i +1)/( i +1))
109 r e turn [ r e su l t 1 , r e s u l t 2 ]
110

111 de f removeLargePr imeFactorsFul lFactor i zat ion (Pmax ) :
112 f u l l F a c t o r i z a t i o n s=load (DATA+\\
113 ’ f u l l F a c t o r i z a t i o n s ’ )
114 r e s u l t =[ ]
115 f o r i in f u l l F a c t o r i z a t i o n s :
116 tempSet=s e t ( [ ] )
117 f o r j in i :
118 i f j <= Pmax :
119 tempSet . add ( j )
120 r e s u l t . append ( tempSet )
121 r e turn r e s u l t
122

123 de f g e t R e s u l t L i s t ( l ) :
124 r e s u l t =[ ]
125 f o r i in range ( l en ( l ) ) :
126 r e s u l t . append ( s e t ( l [ i ] [ 1 ] ) )
127 r e turn r e s u l t
128

129 de f g e tResu l tL i s t I t ems ( l ) :
130 r e s u l t =[ ]
131 f o r i in range ( l en ( l ) ) :
132 r e s u l t . append ( l [ i ] [ 1 ] )
133 r e turn r e s u l t
134

135 de f getChenSunPrimeBound (L1 , L2 ) :
136 f a c t o r s = [ ]
137 f o r l in L1 :
138 f a c t o r s . extend ( l )
139 f a c t o r s = uniq ( f a c t o r s )
140 f o r l in L2 :
141 f a c t o r s . extend ( l )
142 f a c t o r s = uniq ( f a c t o r s )
143 n = len ( f a c t o r s )
144 nthPrime = l i s t ( primes (1 , n+1))[−1]
145 r e turn nthPrime
146
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147 de f precomputation (g , D1 , D2 ,Pmax ) :
148 f u l l F a c t o r i z a t i o n s P a r a l l e l=so r t ed \\
149 ( l i s t ( Fu l lFactor ( g e t F a c t o r i z a t i o n I n p u t F u l l \\
150 ( g , range (1 ,D1+1))) ) )
151 f u l l F a c t o r i z a t i o n s=g e t R e s u l t L i s t \\
152 ( f u l l F a c t o r i z a t i o n s P a r a l l e l )
153 primeProduct=computePrimeProduct (Pmax)
154 p a r t i a l F a c t o r i z a t i o n s P a r a l l e l=so r t ed ( l i s t \\
155 ( Par t i a lFac to r ( g e t F a c t o r i z a t i o n I n p u t P a r t i a l \\
156 ( primeProduct , g , range (D1+1,D2+1))) ) )
157 p a r t i a l F a c t o r i z a t i o n s=g e t R e s u l t L i s t \\
158 ( p a r t i a l F a c t o r i z a t i o n s P a r a l l e l )
159 pBound = getChenSunPrimeBound\\
160 ( f u l l F a c t o r i z a t i o n s , p a r t i a l F a c t o r i z a t i o n s )\\
161 r e turn [ f u l l F a c t o r i z a t i o n s ,\\
162 p a r t i a l F a c t o r i z a t i o n s , pBound ]
163

164 de f computeSumsFul lFactor izat ion (m, g ,\\
165 f u l l F a c t o r i z a t i o n s ) :
166 notAllowedPrimeFactors=\\
167 getNotAllowedPrimeFactors (m, g )
168 f u l l S u m L i s t P a r a l l e l=so r t ed ( sumUpFValues\\
169 ( getSumUpFValuesInput ( f u l l F a c t o r i z a t i o n s ,m,\\
170 g , notAllowedPrimeFactors ) ) )
171 f u l lSumLi s t=ge tResu l tL i s t I t ems \\
172 ( f u l l S u m L i s t P a r a l l e l )
173 r e s u l t M o e b i u s I n v e r s i o n P a r a l l e l=so r t ed \\
174 ( applyMoebiusInvers ion \\
175 ( getApplyMoebiusInvers ionInput \\
176 ( fu l lSumList ,m) ) )
177 r e su l tMoeb iu s Inve r s i on=ge tResu l tL i s t I t ems \\
178 ( r e s u l t M o e b i u s I n v e r s i o n P a r a l l e l )
179 sumsPara l l e l=so r t ed ( sumUpAfterMoebius\\
180 ( getSumUpAfterMoebiusInput\\
181 ( r e su l tMoeb ius Inver s i on ,m, g ) ) )
182 sums=getResu l tL i s t I t ems ( sumsPara l l e l )
183 r e turn sums
184

185 de f computeSumsPart ia lFactor izat ion (m, g ,Pmax, D1,\\
186 \\ f u l l F a c t o r i z a t i o n s , p a r t i a l F a c t o r i z a t i o n s ) :
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187 a l l F a c t o r i z a t i o n s = f u l l F a c t o r i z a t i o n s
188 a l l F a c t o r i z a t i o n s . extend ( p a r t i a l F a c t o r i z a t i o n s )
189 notAllowedPrimeFactors=\\
190 getNotAllowedPrimeFactors (m, g )
191 p a r t i a l S u m L i s t P a r a l l e l=so r t ed ( sumUpFValues\\
192 ( getSumUpFValuesInput ( a l l F a c t o r i z a t i o n s ,m, g ,\\
193 notAllowedPrimeFactors ) ) )
194 part ia lSumLis t=ge tResu l tL i s t I t ems \\
195 ( p a r t i a l S u m L i s t P a r a l l e l )
196 r e s u l t M o e b i u s I n v e r s i o n P a r a l l e l=so r t ed \\
197 ( applyMoebiusInvers ion \\
198 ( getApplyMoebiusInvers ionInput \\
199 ( part ia lSumList ,m) ) )
200 r e su l tMoeb iu s Inve r s i on=ge tResu l tL i s t I t ems \\
201 ( r e s u l t M o e b i u s I n v e r s i o n P a r a l l e l )
202 sumsPara l l e l=so r t ed ( sumUpAfterMoebiusPartial \\
203 ( getSumUpAfterMoebiusPartialInput \\
204 ( r e su l tMoeb ius Inver s i on ,m, g , D1) ) )
205 sums=getResu l tL i s t I t ems ( sumsPara l l e l )
206 r e turn sums
207

208 de f getCoprimePairs ( g , l ) :
209 o = m u l t i p l i c a t i v e o r d e r (mod(g , l ) )
210 ks = [ ]
211 r e s u l t = [ [ ] ]
212 f o r i in range ( l ) :
213 r e s u l t . append ( [ ] )
214 i f gcd ( i , l )==1:
215 ks . append ( i )
216 f o r k in ks :
217 f o r i in range ( o ) :
218 m=mod( k+gˆ i , l )
219 r e s u l t [m] . append ( [ k , i ] )
220 r e turn r e s u l t
221

222 de f computeC3 ( l , g ) :
223 r e s u l t = 1
224 pDiv i so r s=p r i m e d i v i s o r s ( l )
225 f o r p in pDiv i so r s :
226 i f p != 2 :
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227 r e s u l t = r e s u l t ∗RIF(1+1/(p−2))
228 pDiv i so r s=p r i m e d i v i s o r s ( g )
229 f o r p in pDiv i so r s :
230 i f p != 2 :
231 r e s u l t = r e s u l t ∗RIF(1+1/(p−2))
232 r e turn r e s u l t
233

234 de f getSumPairs (m, l , t L i s t ) :
235 r e s u l t=RIF (0)
236 f o r i in range ( l en ( l )−1):
237 r e s u l t = r e s u l t+RIF ((1/2)∗ t L i s t [m] )
238 f o r j in range ( i +1, l en ( l ) ) :
239 pos = gcd ( abs ( l [ j ] [ 1 ] − l [ i ] [ 1 ] ) ,m)
240 r e s u l t = r e s u l t+RIF( t L i s t [ pos ] )
241 r e s u l t=r e s u l t+RIF ((1/2)∗ t L i s t [m] )
242 r e turn 2∗ r e s u l t
243

244 de f applyPintzLemma ( S1 , S2 ) :
245 D=S2/S1
246 M=S1
247 r e s u l t =(( c e i l (D)+ f l o o r (D)−D)/( c e i l (D)∗\\
248 f l o o r (D) ) )∗M
249 r e turn r e s u l t
250

251 de f ge tDe l ta s ( g ,m, l , C1 , C2 , upperBounds ) :
252 copr imePairs=getCoprimePairs ( g , l )
253 C3 = computeC3 ( l , g )
254 phiL=e u l e r p h i ( l )
255 f a c t o r 1 = RIF(1/( phiL∗m∗ l og ( g ) ) )
256 f a c t o r 2 = RIF(C1∗C2∗C3/( phiL ∗(mˆ2)∗ ( l og ( g ) ) ˆ 2 ) )
257 deltaSum=RIF (0)
258 deltaCount=0
259 maxt=upperBounds [ −1 ] [ 0 ]
260 t L i s t =[0 ]
261 f o r i in range (maxt ) :
262 t L i s t . append (0 )
263 f o r p in upperBounds :
264 t L i s t [ p [ 0 ] ] = p [ 1 ]
265 f o r i in range ( l en ( copr imePairs ) ) :
266 p=copr imePairs . pop ( )
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267 i f p != [ ] :
268 i f l en (p) == 1 :
269 deltaSum=deltaSum+RIF\\
270 ( l ∗ f a c t o r 1 ∗ l en (p ) )
271 deltaCount=deltaCount+1
272 e l s e :
273 S1 = RIF( f a c t o r 1 ∗ l en (p ) )
274 S2Sum=getSumPairs (m, p , t L i s t )
275 S2=S1+RIF( f a c t o r 2 ∗S2Sum)
276 p lResu l t=applyPintzLemma ( S1 , S2 )
277 deltaSum=deltaSum+l ∗ p lResu l t
278 deltaCount=deltaCount+1
279 r e turn [ deltaSum , deltaCount ]
280

281 de f getSchoenfe ldConstant (pBound ) :
282 i f pBound>=2657:
283 r e turn RIF(7/2)
284 i f pBound>=1973:
285 r e turn RIF(10/3)
286 i f pBound>=1429:
287 r e turn RIF (3)
288 i f pBound>=809:
289 r e turn RIF(5/2)
290 i f pBound>=599:
291 r e turn RIF(7/3)
292 i f pBound>=563:
293 r e turn RIF (2)
294 i f pBound>=347:
295 r e turn RIF(9/5)
296 i f pBound>=227:
297 r e turn RIF(5/3)
298 i f pBound>=149:
299 r e turn RIF(7/5)
300 i f pBound>=101:
301 r e turn RIF(9/7)
302 i f pBound>=67:
303 r e turn RIF(7/6)
304 i f pBound>=59:
305 r e turn RIF(8/7)
306 i f pBound>=41:
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307 r e turn RIF (1)
308 r e turn RIF(4/5)
309

310 de f getSumRemainderBound (g ,D, pBound ) :
311 CSchoenfeld = getSchoenfe ldConstant (pBound)
312 C = RIF( log ( l og ( g )∗(77/200)∗\\
313 \\( l og (pBound )/( l og (pBound)−CSchoenfeld ) ) ) )
314 r e s u l t = RIF((0 .922913686/0 .66016)∗\\
315 (2∗(1/D+log (D)/D)+C/D) )
316 r e turn r e s u l t
317

318 de f combineSigma1Sigma2 ( Sigma1 , Sigma2 , g ,Pmax, D1,\\
319 D2, t ,C) :
320 r e s u l t=RIF ( (D1∗ l og ( g ) ) / ( 2∗ (Pmax−2)∗ l og (Pmax)) )∗\\
321 Sigma1+RIF( log ( g ) / ( (Pmax−2)∗ l og (Pmax) ) )∗ Sigma2+\\
322 RIF ( ( t ∗0 .922913686)/0 .66016)∗RIF\\
323 ( ( l og (D1)+1+C/2)∗ (D1∗ l og ( g ))/\\
324 ( (Pmax−2)∗ l og (Pmax)))+\\
325 RIF((2∗ t∗ l og ( g )∗0 .922913686)/0 .66016)∗\\
326 RIF ( (D2∗ l og (D2)+2∗D2+(C∗D2)/2)/\\
327 ( (Pmax−2)∗ l og (Pmax) ) )
328 r e turn r e s u l t
329

330 de f getSUpperBounds ( ful lSums , part ia lSums ,\\
331 sumRemainderBound , g ,Pmax, D1 , D2 ,m, pBound ) :
332 r e s u l t = [ ]
333 CSchoenfeld = getSchoenfe ldConstant (pBound)
334 C = RIF( log ( l og ( g )∗(77/200)∗\\
335 ( l og (pBound )/( l og (pBound)−CSchoenfeld ) ) ) )
336 mDivisors = d i v i s o r s (m)
337 f o r i in range ( l en ( fu l lSums ) ) :
338 s = ful lSums [ i ] [ 0 ] + part ia lSums [ i ] [ 0 ]+\\
339 combineSigma1Sigma2 ( fu l lSums [ i ] [ 1 ] , \ \
340 part ia lSums [ i ] [ 1 ] , g ,Pmax, D1 , D2 , mDivisors [ i ] ,
341 \\C)+sumRemainderBound
342 r e s u l t . append ( [ mDivisors [ i ] , s ] )
343 r e turn r e s u l t
344

345 de f printSumTable ( ful lSums , part ia lSums ,\\
346 sumRemainderBound , SUpperBounds ,m) :
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347 d i v L i s t = d i v i s o r s (m)
348 header=” ”
349 f i r s t L i n e=”<= D1 ”
350 secondLine=”p<=P+ ”
351 th i rdL ine=”Sigma1 ”
352 f our thL ine=”Sigma2 ”
353 f i f t h L i n e =”S <= ”
354 f o r i in range ( l en ( d i v L i s t ) ) :
355 header = header + ” ” +\\
356 s t r ( d i v L i s t [ i ])+” ”
357 f i r s t L i n e = f i r s t L i n e + \\
358 s t r ( fu l lSums [ i ] [ 0 ] ) + ” ”
359 secondLine = secondLine + \\
360 s t r ( part ia lSums [ i ] [ 0 ]+\\
361 fu l lSums [ i ] [ 0 ] ) + ” ”
362 th i rdL ine = th i rdL ine + \\
363 s t r ( fu l lSums [ i ] [ 1 ] ) + ” ”
364 f our thL ine = four thL ine + \\
365 s t r ( part ia lSums [ i ] [ 1 ] ) + ” ”
366 f i f t h L i n e = f i f t h L i n e + \\
367 s t r ( SUpperBounds [ i ] [ 1 ] ) + ” ”
368 pr in t ( header )
369 pr in t ( f i r s t L i n e )
370 pr in t ( secondLine )
371 pr in t ( th i rdL ine )
372 pr in t ( four thL ine )
373 pr in t ( f i f t h L i n e )
374

375 de f computeLowerDensityBound (m, g , D1 , D2 ,Pmax ) :
376 pr in t (” Computing a lower bound f o r the \\
377 lower dens i ty o f i n t e g e r s r e p r e s e n t a b l e \\
378 as the sum of a prime and a power\\
379 o f ”+s t r ( g )+”.”)
380 pr in t (” Computing i n t e g e r f a c t o r i z a t i o n s . ” )
381 f a c t o r i z a t i o n s = precomputation (g , D1 , D2 ,Pmax)
382 pr in t (” Computing sums i n v o l v i n g f u l l \\
383 f a c t o r i z a t i o n s . ” )
384 fu l lSums = computeSumsFul lFactor izat ion (m, g ,\\
385 f a c t o r i z a t i o n s [ 0 ] )
386 pr in t (” Computing sums i n v o l v i n g p a r t i a l \\
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387 f a c t o r i z a t i o n s . ” )
388 part ia lSums = computeSumsPart ia lFactor izat ion \\
389 (m, g ,Pmax, D1 , f a c t o r i z a t i o n s [ 0 ] , f a c t o r i z a t i o n s [ 1 ] )
390 sumRemainderBound = getSumRemainderBound (g , D2,\\
391 f a c t o r i z a t i o n s [ 2 ] )
392 pr in t (” Computing upper bounds f o r Sg . ” )
393 SUpperBounds = getSUpperBounds ( ful lSums ,\\
394 partialSums , sumRemainderBound , g ,Pmax, D1 , D2,\\
395 m, f a c t o r i z a t i o n s [ 2 ] )
396 printSumTable ( ful lSums , part ia lSums ,\\
397 sumRemainderBound , SUpperBounds ,m)
398 d e l t a s = getDe l ta s ( g ,m, gˆm−1 ,8 ,0 .6601 ,\\
399 SUpperBounds )
400 pr in t (”The lower dens i ty o f i n t e g e r s \\
401 r e p r e s e n t a b l e as the sum of a prime\\
402 and a power o f ”+s t r ( g)+” i s bounded\\
403 from below by ” + s t r (RIF( d e l t a s [ 0 ] /\\
404 ( gˆm−1)))+”.”)
405 r e turn RIF( d e l t a s [ 0 ] / ( gˆm−1))
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