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Abstract

As high-throughput data measurements in biomedical studies have become routine, the
challenges shifted from data generation to data analysis. In particular, the integration of
multiple omics data sets is an intriguing but ambitious task.

This thesis comprised three specific aims. First, integrative analysis methods shall be
applied to multiple omics data sets. Second, existing integrative analysis methods shall be
investigated. Third, the development of a novel integrative pathway enrichment approach
(IPEA).

For the first aim, (multiple) co-inertia analysis (MCIA) was applied to A. gambiae and to
the cross-species comparison of the expression systems P. pastoris and Chinese hamster
ovary (CHO) cells. In the former case, a high structural concordance between the hemocyte
transcriptome and the granulocytic proteome could be shown. In the latter case, a number
of secretion and ribosome relevant target genes and proteins were identified by a detailed
characterization of four production strains.

For the second aim, three integrative analysis methods (MCIA, generalized singular value
decomposition (GSVD) and integrative biclustering (IBC)) were applied to the transcriptome
and proteome of the parasite P. falciparum. From the intersection of these results, a network
of biological processes was derived which characterizes the parasite’s life cycle stages
and unifies numerous findings from the past 25 years of research in a single analysis.
Additionally, a traditional gene set enrichment analysis (GSEA) was applied to validated
target genes of two sets of human microRNAs. The 36, respectively 35, enriched neuron
related biological processes were almost identical between the two sets, although the overlap
in the corresponding miRNA lists was below 50%.

For the third aim, in order to overcome flat gene list limitations of the traditional GSEA,
we developed a novel integrative pathway enrichment analysis (IPEA). Our IPEA approach
combines scores from a multivariate analysis with pathway specific scores based on network
topology. Enriched pathways computed by IPEA are characterized by biologically relevant
concordance between the measured data and the intrinsic structure of the pathways. IPEA
visualizes the results as a double bipartite graph of activated features and enriched pathways.
Applied to 38 matched tumor and stroma samples from ovarian cancer patients, IPEA reveals
an unprecedented view of the cross-talk between tumor and stroma, suggesting new targets
for the treatment of ovarian cancer, e.g. CTNNB1, ERBB4 and SMAD4 which have already
shown their potential in the therapy of other cancers.

vii





List of Publications

This thesis is based on articles published in peer-reviewed journals, on manuscripts that
are currently under review and on unpublished work. The full text of the articles and
manuscripts is included in this thesis starting with page 134.

Tomescu OA, Mattanovich D and Thallinger GG: Integrative analysis of omics data: A
method comparison. Biomed Tech 2013. 58:Suppl 1.

Patz S, Trattnig C, Grünbacher G, Ebner B, Gülly C, Novak A, Rinner B, Leitinger G,
Absenger M, Tomescu OA, Thallinger GG, Fasching U, Wissa S, Archelos-Garcia J and
Schäfer U: More than cell dust: microparticles isolated from cerebrospinal fluid of brain
injured patients are messengers carrying mRNAs, miRNAs, and proteins. Journal of
Neurotrauma 2013. 30(14):1232–1242

Tomescu OA, Mattanovich D and Thallinger GG: Integrative omics analysis. A study based
on P. falciparum mRNA and protein data. BMC Systems Biology 2014. 8(Suppl 2):S4

Smith RC*, King JG*, Tao D**, Tomescu OA**, Brando C, Thallinger GG and Dinglasan RR:
Proteomic analysis of mosquito macrophage-like blood cells reveals an anticipatory innate
immune response in the absence of malaria parasite challenge. PLoS Pathogens 2015. In
preparation.

Meng C*, Tomescu OA*, Thallinger GG, Gholami AM and Culhane AC: Dimension
reduction techniques for the integrative analysis of multi-omics data. Briefings in
Bioinformatics 2015. Under review.

*,** Authors contributed equally.

ix





Contents

1 Introduction 1
1.1 Omics Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Genomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Transcriptomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Proteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.4 Other Omics Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Integrative Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.1 Study of Three Integrative Analysis Methods . . . . . . . . . . . . . . 18

1.3.2 Application of Multiple Co-Inertia Analysis to Anopheles gambiae . . . 18

1.3.3 Traditional Gene Set Enrichment Analysis for microRNAs . . . . . . . 19

1.3.4 Development of an Integrative Pathway Enrichment Analysis Method 19

1.3.5 Cross-species Comparison of Expression Systems . . . . . . . . . . . . 19

2 Methods 21
2.1 Co-Inertia Analysis and Multiple Co-Inertia Analysis . . . . . . . . . . . . . . 21

2.1.1 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.2 The Duality Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Non-symmetrical Correspondence Analysis . . . . . . . . . . . . . . . 25

2.1.4 Mathematical Description of the (Multiple) Co-Inertia Analysis . . . . 26

2.1.5 Projecting Additional Information into the MCIA Space . . . . . . . . 28

2.2 Generalized Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Mathematical Description of the Generalized Singular Value
Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Integrative Biclustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 Detailed Description of Integrative Biclustering . . . . . . . . . . . . . 32

2.4 Traditional Gene Set Enrichment Analysis for microRNAs . . . . . . . . . . . 34

2.4.1 Short Introduction to microRNAs . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Detailed Description of the Traditional Gene Set Enrichment Analysis 34

2.5 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1 Plasmodium falciparum Lifecycle Stages Analysis . . . . . . . . . . . . . 37

2.5.2 Analysis of Hemocyte and Granulocyte Immune Response of
Anopheles gambiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.3 Gene Set Enrichment Analysis of Human miRNAs Following
Traumatic Brain Injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xi



Contents

2.5.4 Integrative Pathway Enrichment Analysis of Microdissected Tumor
and Stroma from Ovarian Cancer . . . . . . . . . . . . . . . . . . . . . 39

2.5.5 Cross-Species Comparison between Pichia pastoris and Chinese
Hamster Ovary Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Results 43
3.1 Plasmodium falciparum Lifecycle Stages Analysis . . . . . . . . . . . . . . . . . 43

3.1.1 Co-Inertia Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2 Generalized Singular Value Decomposition Results . . . . . . . . . . . 48

3.1.3 Integrative Biclustering Results . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.4 Results Identified by CIA, GSVD and IBC . . . . . . . . . . . . . . . . 52

3.2 Analysis of Hemocyte and Granulocyte Immune Response of Anopheles gambiae 54

3.3 Gene Set Enrichment Analysis of Human miRNAs Following Traumatic Brain
Injury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Development of an Integrative Gene Set Enrichment Analysis Method . . . . 59

3.4.1 Detailed Description of the Integrative Pathway Enrichment Analysis 60

3.5 Integrative Pathway Enrichment Analysis Applied to Ovarian Cancer . . . . 62

3.5.1 Dynamical Importance Ranking in the Pathway TGF-beta receptor
signaling in EMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.2 IPEA of Matched Tumor and Stroma Samples . . . . . . . . . . . . . . 64

3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster
Ovary Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.1 Co-Structure of the Measured Data Sets . . . . . . . . . . . . . . . . . . 67

3.6.2 Vizualization of the Eight Conditions . . . . . . . . . . . . . . . . . . . 68

3.6.3 Detailed Analyses of 3D6 L:WT, 3D6 H:WT, HSA L:WT and HSA H:WT 69

4 Discussion 83
4.1 Plasmodium falciparum Life Cycle Stages Analysis . . . . . . . . . . . . . . . . . 83

4.2 Analysis of Hemocyte and Granulocyte Immune Response of Anopheles gambiae 86

4.2.1 Hemocyte-specific MCIA . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Immune-specific MCIA . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.3 Proliferation-specific MCIA . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Traditional Gene Set Enrichment Analysis of Human miRNAs . . . . . . . . 88

4.4 Integrative Pathway Enrichment Analysis of Tumor and Stroma in Ovarian
Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Cross-Species Comparison of Pichia pastoris and CHO Cells . . . . . . . . . . 92

4.5.1 MCIA Axis 1 Is Driven by the Different Model Proteins While MCIA
Axis 2 Is Driven by their Produced Amount . . . . . . . . . . . . . . . 93

4.5.2 Protein Production Challenges P. pastoris More Than CHO . . . . . . 94

4.5.3 Effect of the Expressed Proteins and their Produced Quantities . . . . 95

4.5.4 Further Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Conclusion 103
5.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 105

xii



Contents

Appendices 121

A Generalized Singular Value Decomposition 121

B Analysis of Hemocyte and Granulocyte Immune Response of Anopheles Gambiae 123

C Traditional Gene Set Enrichment Analysis for microRNAs 125

D Cross-species Comparison of all Eight Conditions 127
D.1 Secretion and Ribosome Relevant Analysis . . . . . . . . . . . . . . . . . . . . 127

D.2 P Values of the MCIA Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.3 GO Slim Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

List of Figures 131

List of Tables 133

Publications 134

xiii





1 Introduction

The ultimate goal of science is the understanding of the world by discovering the underlying
laws that govern it. This represents a complex and challenging endeavor. Human kind has
achieved major breakthroughs but there still remain various unanswered questions. For
example, physicists can explain the world of large objects like planets or the universe with
Einstein’s theory of relativity but if they have to explain the world of atoms and molecules
they need the quantum theory. Is there a theory that is able to unify these two? Light is
another well known example: Sometimes it is considered to be a weave and other times a
particle. Even if these examples point to unanswered questions, they illustrate the need to
observe a system under various conditions in order to completely understand it.

The same effect governs biology. According to the central dogma of molecular biology, in
order to understand an organism as a whole, one has to have knowledge about at least three
levels of abstraction: deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and proteins.
Only by integrating these three data types it is possible to better understand the organism
under study. And these are probably the minimal requirements: detailed questions can only
be addressed by tailored measurements on specific levels of abstraction.

Until not so long ago it was not possible to characterize a biological system on different levels.
The experiments that would have been needed for it were time consuming and expensive.
Due to this, each research group focused on one kind of omics data. This approach was the
best at that time as it was the only one available but it is similar to trying to understand
how a car functions by analyzing only the motor or only the braking system.

Integrative analysis, as it is understood by bioinformaticians today, refers to the process of
combining data which originated from diverse sources, such as different subjects, species,
tissues and cells; various levels of regulation including DNA, RNA, proteins, metabolites
and epigenomic patterns; different experimental platforms, such as Agilent and Affymetrix
or multiple time points. The purpose of integrating multiple data sets is to reveal more
information than the sequential traditional analysis of the same data sets does.

Integrative analysis is a rapidly growing research field today. This is due to the
unprecedented wealth of available data which is a result of technological improvements
and, at the same time, dropping costs of experiments. While at the end of the year 2000,
according to [1], there were only 1760 published articles on integrative analysis, in
September 2014 the number exploded to 18500 publications.

The goal of an integrative analysis is knowledge discovery on one hand and data
exploitation on the other hand. Some of the methods used provide also the opportunity of
data visualization which promotes the overall understanding of the problem.

1



1 Introduction

Integrative Analysis or the Story of the Blind Men and the Elephant

To emphasize the indispensability of integrative analysis I would like to bring to the reader’s
attention The Story of the Blind Men and the Elephant (see Figure 1.1). This story originates
in the Indian culture where different versions are known and was introduced to the western
world by the American poet John Godfrey Saxe I. In this story a king sends a group of blind
men to touch an elephant and to describe what it feels like. Depending on what part of
the elephant was examined, the men arrive to different conclusions: it feels like a wall, a
spear, a snake or a tree. The moral of the story is the need for different observations which
only together are able to correctly describe the whole system. The situation is similar in
molecular biology: the complete understanding of an organism is based on measurements
done on different layers of regulation such as DNA and RNA.

Currently it is possible to observe and measure biological systems on many different levels,
such as DNA, RNA, protein or metabolite level. If only one of these levels is considered,
the researcher’s conclusions are similar to those of the blind men in Saxe’s poem. Only by
integrating more and more levels, the derived knowledge about the system mirrors more
and more the biological truth and will eventually lead to the complete understanding of the
biological system.

In order to have different point of views or various observations of the system under study
one has to have access to the corresponding data sets. These sets can be either publicly
available or they must be generated within the study. As mentioned above, one driving
force of the development of integrative data analysis is the increasing amount of available
data sets. These sets would not be as abundant if the technology needed to generate them
would not have developed so fast and the corresponding costs would not have dropped
as quickly. Section 1.1 introduces the different types of data that are currently used in
integrative analyses while section 1.2 provides an overview of various types of integrative
analysis methods. Section 1.3 summarizes the objectives of this doctoral thesis.

1.1 Omics Data

Omics data refers to data generated by omics technologies such as genomics, transcriptomics,
proteomics and metabolomics. These technologies received their names due to their study
of the geneome, transcriptome, proteome or metabolome. The suffix ome is used in molecular
biology to form nouns having the meaning “all constituents considered collectively” [2].

The different types of omics data are presented in the following subsections. Genomics is
the first data type that is introduced followed by transcriptomics, proteomics and a short
overview of other omics data. The descriptions of the different data types are presented in
the context of molecular biology history, emphasizing the most important events that led to
the research filed as we know it today.

2



1.1 Omics Data

Figure 1.1: The story of the blind men and the elephant. Illustration by D’Aulaire and poem by John Godfrey
Saxe I.

3



1 Introduction

1.1.1 Genomics

According to the World Helth Organisation (WHO) [3]

“Genomics is the study of the structure and action of the genome, i.e. the sum total of genetic material
present in an organism. This includes both the DNA present in the chromosomes and that in subcellular
organelles (e.g. mitochondria or chloroplasts). It also includes the RNA genomes of some viruses”.

The first experiments on what we call today genes were performed by the father of modern
genetics Gregor Mendel. As a monk he used the monastery gardens to conduct experiments
in which he crossed various pea plants with different colors, shapes and heights. He observed
[4] that traits are passed down to the children and children’s children in a predictable way
through, what today are called, genes.

The next important milestone was the discovery of DNA by Friedrich Miescher in 1869

[5]. Unfortunately the did not know that the new molecule he had isolated from white
blood cells, which contained hydrogen, oxygen as well as a stable phosphorus to nitogen
proportion and which he called “nuclein” was actually the DNA.

In 1952 Rosalind Franklin used X-ray crystallography to study DNA structure. She took
pictures of crystallized DNA fibers with phosphates on the outside of what appeared to be
a helical structure. She published her findings [6] together with the famous “photograph 51”
(see Figure 1.2) in the same issue of Nature [7] where Watson and Crick presented their 3D
model of the DNA.

After various hypotheses regarding the structure of the DNA, such as the three chains model
of Pauling and Corby [8], Watson and Crick proposed their 3D model for the DNA [7] as
we know it today: double helix structure with antiparallel strands; sugars and phosphates
on the outside; paired bases on the inside with hydrogen bounds linking adenine (A) to
thymine (T) and cytosine (C) to guanine (G). Additionally, they also noticed that the specific
pairing suggested the existence of a specific copying mechanism for the DNA.

The next step in the development of our knowledge about genes was the understanding of
protein synthesis from RNA. In 1961 Marshall Nirenberg designed an experiment in which
synthetic mRNA containing exclusively uracil (U), a base encountered only in the RNA,
was added to a cell-free Escherichia coli extract including DNA, RNA, ribosomes and other
machinery for protein synthesis. Deoxyribonuclease (DNase) was added to brake down the
DNA and to ensure that only the synthetic poli-U mRNA was used for protein synthesis. By
radioactive labeled amino acids they discovered [9] that the genetic code (see Figure 1.3)
for phenylalanine was UUU (three consecutive uracil bases). This was the starting point for
elucidating the other codes on which protein synthesis is based.

The next mystery waiting to be solved was the base sequence in the DNA. In 1975 Sanger
et al. [10] proposed a method in which the DNA was denaturated through exposure to high
temperatures which leads to the separation of the two strands. His procedure continues with
four parallel and similar steps in which polymerase and dideoxynucleotides triphosphates
(ddNTP) are added to the mixture. In each of the four parallel processes a different chain-
inhibitor of the DNA polymerase is used: ddGTP, ddATP, ddTTP and ddCTP; one for each
base. All ddNTP lack the 3’-OH group leading to the termination of the elongation process.
In this way each of the four parallel processes yields sequences ending in the same base. In

4



1.1 Omics Data

order to read the sequenced DNA piece one has to use electrophoresis. The method was
published [11] in the same year as Sanger et al. sequenced the bacteriophage Φ X174 [10]
followed by the bacteriophage λ [12] in 1982.

Figure 1.2: Photograph 51 by Rosalind Franklin
showing an X-ray image of the DNA.
Figure published in [6]

Figure 1.3: Aminoacids table. The direction of reading
for the genetic code of the proteins starts
at 5’ and goes to 3’. Public domain figure.

Another key tool for molecular biology is the polymerase chain reaction (PCR). Developed
in 1983 by Mullis Kary, the PCR [13] is used to amplify the DNA in vitro. The chain reaction
refers to the cyclic structure of the amplification by using the product of one round as
the starting point for the next amplification cycle. This also implies the exponential nature
of the reaction. Today, PCR is a widely used technique for: diagnosis of genetic diseases;
identification of viruses and bacteria and validation of genetic fingerprints.

Almost 20 years later, Fleischmann et al. sequenced the first free living organism Haemophilus
influenza Rd. [14] which marked the beginning of the omics era. This is also the moment
when molecular biology started to change from a data poor to a data rich research field.

Sanger sequencing, with a series of enhancements, was the method of choice until the mid
2000s. Automation was probably one of the most important developments leading to the
sequencing of the first human genome in 2001 within The Human Genome Project.

The Human Genome Project started in 1990 and was the result of various discussions that
originated in 1984 when the US Department of Energy (DOE), the National Health Institute
(NIH) and a number of international groups started discussions about the study of the
human genome. Two years later a recommendation about the development of a human
genome map was made by the US National Research Council. 15 years were allocated for the
completion of the project and in 1990 the plan for the first years was published. A budget of
3 billion dollars was allocated. The major goals were: development of technologies to study
the DNA, mapping and sequencing of the human genome and the study of the intrinsically
related ethical, legal and social issues. In 2001 The Human Genome Consortium [15] (see

5



1 Introduction

Figure 1.4: Cover image of the Nature and Science issues where the human genome was published. The first
draft of the human genome was published simultaneously by two teams: one in Nature and one in
Science

Figure 1.4) as well as Venter et al. [16] from Celera Genomics Corporation published, at the
same time, the first draft of the human genome.

One year before the human genome was published, the joint efforts of groups at the
University of California, Berkeley, and Lawrence Berkeley National Laboratory as well as
Craig Ventor from Celera Genomics Corporation resulted in the report [17] of the genome
sequence of the model organism fruit fly (Drosophila melanogaster). The fruit fly is very
important as a model organism for the identification of human gene functions.

The genome of yet another important model organism, the mouse, was published [7] in 2002

by the Mouse Genome Sequencing Consortium. The mouse (Mus musculus) plays a very
important role in the study of human disease due to the 90% similarity [7] to the human
genome.

The Human Genome Project was announced to be finished in 2003. This was two and a half
years before the planed end with approximately 10% of the project’s budget not having
been spent.

Our knowledge about the genes almost exploded compared to it’s beginnings in a monastery
garden where a monk crossed peas with different phenotypes. A large amount of the
discovered information was concentrated in Crick’s Central Dogma of Molecular Biology
[18].

In his publication, Crick describes the genetic information flow in a biological system by
stating that genetic information (sequential information) can not be transfered from protein

6



1.1 Omics Data

Figure 1.5: Central dogma of molecular biology. Diagram by Francis Crick as it was published in [18].

to protein or back to DNA. The article also included a diagram (see Figure 1.5) of the
possible and probable direction of genetic information.

According to Crick, there are three types of possible information transfers in a biological
system: general (DNA→ DNA, DNA→ RNA, DNA→ protein), special (RNA→ DNA,
RNA → RNA, DNA → protein) and unknown (protein → DNA, protein → RNA,
protein→ protein) transfers. The general transfers were believed to normally occur in most
of the cells, the special transfers were observed only under special conditions and the
unknown transfers were believed to be impossible. The positive formulation of this theory
is known as: “DNA makes RNA, RNA makes protein” which emphasizes the two processes
that govern the protein production in a biological system: transcription and translation.

Figure 1.6: The two main processes involved in gene regulation: transcription (left) and translation (right). Public
domain graphics from the National Institute of Health (www.genome.gov)

The synthesis of RNA by using DNA as a template is called transcription [19]. Through
this process, in which the DNA bases A,T,C,G are translated to A,U,C and G, four types
of RNA are created: messenger RNA (mRNA), transfer RNA (tRNA) and ribosomal RNA
(rRNA) and non-coding RNA (ncRNA). In case of mRNA, the process of transcription is
divided in two subprocesses: synthesis and processing. A graphical representation is shown
in Figure 1.6.

The synthesis of proteins based on an mRNA template is called translation [19]. A protein is

7



1 Introduction

Figure 1.7: Illustration of the Central dogma of molecular biology (adapted from [20]).

created by the translation of the mRNA bases (A,U,C,G) into the corresponding sequence of
amino acids of a polypeptide. This process is graphically shown in Figure 1.6.

The translation of DNA into RNA and RNA into proteins constitutes the process of gene
regulation. Even if the human genome is completely sequenced, the exact functions of the
genes as well as their interplay are by far not elucidated. The mechanism of gene regulation
is so complex that it has to be studied for each gene or gene family separately. The most
promising way would be to measure the genes of interest on all available levels (DNA, RNA
and protein) and integrate theses data sets into a common analysis.

All these milestones in the history of molecular biology led to the research field as we
know it today and made it possible to access large amounts of information that is needed to
address current research questions.

1.1.2 Transcriptomics

Transcriptomics is the technology used to study the transcriptome which is defined by
Velculescu et al. in [21] as

“the entirety of all expressed genes and their expression level for a defined population of cells.”

They also emphasize that due to the mostly static nature of the genome, as opposed to the
transcriptome which changes depending on cell types, tissues and measurement time points,
the transcriptome is the link between the genome of an organism and its phenotype.

Early technologies used to asses gene expression at mRNA level included: Northern blotting
[22], differential display [23] or dotblot analysis [24]. One drawback shared by all of the
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Figure 1.8: Serial analysis of gene expression: method used for the caracterization of the first mammalian
transcriptome. Figure adapted from [11]

above is their inability to measure large amounts of transcripts simultaneously which is the
key requirement for transcriptome profiling.

The first mammalian transcriptome was profiled in 1991 by Craig Venter’s group at NIH
[25] by using serial analysis of gene expression (SAGE). It represented one of the earliest
application of the Sanger sequencing method [11] and was composed of two steps as
described in Figure 1.8:

“First, a short sequence tag (9–11 bp) is generated that contains sufficient information to identify uniquely
a transcript, provided that it is derived from a defined location within that transcript. Second, many transcript
tags can be concatenated into a single molecule and then sequenced, revealing the identity of multiple tags
simultaneously.”

SAGE was also used to conduct a global analysis of the pancreas transcriptome [26] including
1000 manually sequenced tags.

This is the time when microarrays were born. One of the earliest publications shows the
microarray analysis of Arabidopsis thaliana which included 48 cDNAs (complementary
DNA) with an average length of 1.0 kb. Microarrays, which are based on complementary
probe hybridization, developed into the method of choice for transcriptome analysis and
dominated the next twenty years of molecular biology research.
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According to the Glossary of Genetic Terms [27] provided by the National Human Genome
Research Institute of NIH, microarrays are defined as:

“Microarray technology is a developing technology used to study the expression of many genes at once. It
involves placing thousands of gene sequences in known locations on a glass slide called a gene chip. A sample
containing DNA or RNA is placed in contact with the gene chip. Complementary base pairing between the
sample and the gene sequences on the chip produces light that is measured. Areas on the chip producing light
identify genes that are expressed in the sample.”

In general, microarray technology is based on the following steps: probe purification, reverse
transcription of mRNA to cDNA, labeling, hybridization, washing steps, scanning of the
array, normalization and analysis. Figure 1.9 provides an overview on different microarray
technologies.

Microararys can be divided in spotted and in in situ synthesized arrays. While in spotted
microarrays the probes are oligonucleotides, cDNA or PCR products that correspond to
mRNAs which are synthesized and afterwards spotted onto a glass slide, in the synthesized
version the probes are short sequences designed to match parts of an open reading frames
(ORF) which are directly synthesized on the array surface.

Additional disjoint categories are one-channel and two-channel microarrays. In two-channel
or two-color microarrays, two samples can be compared. For this, the arrays are hybridized
with cDNA from the samples that were previously labeled with two fluorescent dyes.
Afterwards the array is scanned with the dye-corresponding wavelengths and the ratio of
the two intensities can be used to identify differentially expressed genes.

Although the name might suggest it, one-channel or one-color microarrays do not measure
expression levels of a gene but rather two one-colour microarrays are used to measure
ratios between two samples that were processed in the same experiment. This is at the
same time an advantage of this microarray category: easier comparison of samples from
different experiments. Another advantage is that an erroneous sample does not affect raw
data from non-erroneous samples. Nevertheless, this technology has a disadvantage as well:
compared to the two-color microarrays, twice as many arrays are needed to conduct the
same experiment.

Microarrays are widely used and their applications include but are not limited to: gene
expression profiling [29, 30], mutational analysis [31], drug discovery and development [32],
cancer research [33–36], microbial applications [37, 38].

Microarrays dominated the research community because they stand for high throughput
technology at a very reasonable price [39]. However, there are limitations that have to be
taken into account: cross-hybridization can lead to high background levels which will cause
erroneous data [40]; the dynamic detection range is limited by saturated and background
signals; comparison between distinct microarrays requires detailed knowledge and the use
of fancy normalization techniques; the most striking disadvantage being the requirement of
an already existing genome sequence [39].

With the development of second-generation or next-generation sequencing (NGS) [41]
alternatives to microarrays started to appear. As emphasized by Wang and colleagues in [39],
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Figure 1.9: Microarray work flow. Figure adapted from [28].
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NGS based approaches directly determine the cDNA sequence in contrast to microarray
based methods that use already existing genome information.

Sanger sequencing was used for cDNA [42] and expressed sequence tag (EST) sequencing
[43]. The low throughput, high costs and being non-quantitative led to the development
of tag based methods such as SAGE [26], cap analysis of gene expression (CAGE) [44, 45]
and massively parallel signature sequencing (MPSS) [46] which are high throughput and
provide precise gene expression levels. Nevertheless, these technologies also suffer from
limitations such as high costs, use of short read tags that can not be uniquely mapped to
the genome as well as non-isoform specificity[39]. As a response to these demands, next
generation sequencing was developed.

Generally speaking, the process of next generation sequencing can be divided into the
following steps: template preparation, sequencing and imaging, and data analysis. Grada
and Weinbrecht describe these steps in detail and provide additional information on this
technology in [47].

An outstanding review [48] of NGS technology was written by Mardis summarizing the
history of sequencing and providing a detailed list of advantages of NGS over Sanger
sequencing such as: The DNA to be sequenced is used to construct a library of fragments
that have synthetic and platform specific adapters covalently bound through DNA ligase
making cloning unnecessary. The fragment amplification is digital and happens in situ on
a solid surface, a bead or flat glass microfluidic channel rather than in microtiter plate
wells. Sequencing and detection are simultaneous processes in NGS as opposed to Sanger
sequencing. Additionally, the capacity of these steps, of hundreds of thousands of billions of
reactions, enables the generation of huge data sets. Another crucial difference between the
two technologies is the read length which was determined by gel-related factors in Sanger
sequencing while in NGS it is a function of signal-to-noise ratio. This is specific for each
NGS platform [49–51] but in general one can state that NGS produces shorter reads than
Sanger sequencing. Additional information on NGS technology and platforms can be found
in [48, 52–56].

Based on NGS, a new method was developed for the identification and quantification of
transcriptomes: RNA-sequencing (RNA-seq) [57, 58]. Generally speaking, the work flow
of RNA-seq is composed of the following steps [39]: RNA is converted to a cDNA library
containing fragments with adapters attached to one or both ends; each molecule undergoes
a high throughput (single- or paired-end) sequencing step resulting in 30-400bp long
reads; alignment of the reads to a reference transcript or de novo assembly which results
in a genome-scale transcription map including the transcriptional structure and the gene
expression level. During the sequencing step, NGS technologies such as Illumina (formally
known as Solexa) [49], Applied Biosystems SOLiD [50] and Roche 454 Life Sciences [51] are
used, although Illumina seems to be the most used [59] platform.

Some of the most noteworthy advantages [39, 50, 60] of RNA-seq are: single-base level
reconstruction of new and already known transcripts, broad dynamic range and
reproducibility.

The applications of such a powerful technique are wide and include [60]: transcriptome
profiling of non-model organisms [61, 62], model transcripts identification [63], study of
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RNA modification [64, 65] and quantification of allele-specific gene expression [66].

1.1.3 Proteomics

In order to include the next level of regulation into an integrative analysis one has to
interrogate not only genes but also their products: the proteins. In this way, the analysis will
capture the results of transcription and translation.

The term proteomics was defined [67] as the

“large-scale characterization of the entire protein complement of a cell line, tissue, or organism”

and began to be used starting with 1995 [68–70]. Nevertheless, studies that deserved the
name proteomics have been conducted since 1975, when the two dimensional gel, developed
by O’Farrell [71], was used in studies in which mouse [72] and guinea pig [73] protein
mappings were conducted. An example of a two dimensional gel of proteins from Bacillus
subtilis can be seen in Figure 1.1.3.

A huge limitation of the two dimensional gel was that the proteins could not be identified,
just separated and visualized. One of the earliest attempts to overcome this disadvantage
was the Edman degradation [74] used for the sequencing of proteins. Later, the group
around Stephen Kent developed microsequencing techniques [75–77] for electroblotted
proteins which represented a huge step forward.

The next major breakthrough in protein identification was the development of the Mass
Spectrometry (MS) technology [78]. This breakthrough was achieved by the ability to
quantify and identify proteins which was used in the study of protein interaction networks
[79] and to reveal the protein composition of cellular organelles [80, 81]. Figure 1.1.3 shows
a schematic view of a simple mass-spectrometer.

In general, proteomics involves the identification of proteins from a mixture. A detailed
description of possible applications is given in [82]: identification of the coding sequence,
computation of differential expression or further characterization such as detection of
post-translational modifications. Any additional characterization is performed by MS with
study dependent fractionation: electrophoretic in case of intact proteins or chromatographic
for peptides. The major MS platforms currently used are matrix-dependent laser
desorption/ionization (MALDI) and electrospray ionization. Downstream analysis includes
protein identification through search engines like Mascot [83] which generates statistically
significant peptides matches but also peptide quantification through isotope-labeling or
label-free comparisons. As examples we mention here the chemical labeling [84] (iTRAQ)
and stable isotope labeling with amino acids in culture (SILAC) [85].

Similar to the transcriptome and in contrast to the genome which is believed to be more
or less constant, the proteome is highly variable and changes depending on time point
and cell type resulting in a wide dynamic range [86]. This variability is obvious when one
thinks about a caterpillar and a butterfly: they share the same genome but their appearances
are distinct due to differences in the proteome. These differences are not only due to the
translational process but also to post-translational modifications such as: phosphorylation,
ubiquitination, methylation, acetylation, glycosylation, oxidation and nitrosylation.
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Figure 1.10: Example of a two dimensional
gel. Figure released under GNU
Free Documentation License.

Figure 1.11: Principals of a simple mass-
spectrometer. Public domain figure.

Similar to the human genome project there also exists a human proteome project (HPP).
HPP is coordinated by the Human Proteome Organization and it’s goal is to study all of the
proteins produced by the human genome. HPP has been divided into two subprojects: the
chromosome-centric HPP [87] and the biological/disease driven HPP [88].

Applications of proteomics include drug discovery such as crizotinib [89] which is
successfully used in the treatment of lung cancer, biomarkers discovery for various diseases
such as schizophrenia [90] or breast cancer [91] and comparative proteogenomics [92] with
focus on improving gene prediction and identification of rare post-translational
modifications.

Recently, two major studies of the human proteome were published [93, 94]. While Kim et al.
report the identification of 17.294 proteins resulted from high-resolution Fourier-transform
mass-spectrometry profiling of 30 histologically normal samples, Wilhelm et al. present
a mass-spectrometry-based draft of the human proteome through the analysis of human
tissues, cell lines and body fluids.

1.1.4 Other Omics Data Sets

The most well studied omics data types were presented in the previous sections. Other
omics data types include, but are not limited to epigenomics, metabolomics, glycomics,
kinomics, lipidomics and localizomics. An overview is shown in Figure 1.12.

Of particular interest is epigenomics. This omics type refers to the study of the epigenome
which is described in [27] as follows:
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“The term epigenome is derived from the Greek word epi which literally means above the genome. The
epigenome consists of chemical compounds that modify, or mark, the genome in a way that tells it what to do,
where to do it, and when to do it.”

Similar to the other omics types, metabolomics refers to the study of the complete set of
metabolites or the metabolome. This set of metabolites constitutes the response of the cell,
tissue, organ or organism to the transcriptome and proteome [95].

Lipidomics refers to the study of the complete set of lipids present at a certain time point in
a cell, tissue, organ or organism. Additionally, kinomics have to be mentioned which study
the complete kinome (all kinases, enzymes responsible for the catalysis of phosphorylation
reactions, in the genome).

Through technological improvements new technologies will emerge that will enable us
to measure the complete microbiology and biochemistry of an organism. In this way an
unprecedented view of a system under study will be possible.

1.2 Integrative Data Analysis

Data generation and availability is not a problem anymore. The latest technological
improvements put only days between a scientist and the genome sequence, the gene
expression, protein and epigenetic profile of interest. In this way, the scientist can
characterize a system on different regulatory levels, compare biological systems to each
other on multiple levels, investigate a subset of systems sharing a characteristic of interest
on various levels or even use different platforms to measure the same regulatory level.

The challenges are shifted when high-throughput data generation becomes routine. This
huge amount of data has to be managed. First is has to be properly stored - the size alone is
a challenge. But the central aspect that has to be clarified is the question of interpretation.
How can a scientist maximally exploit the huge amount of generated data? Individual tables
and charts are not enough anymore. The current opinion on this matter is the combination
of the data which leads to a detailed and more complete view of the system under study.
This need for the “bigger picture”, which is defined by data integration, appeared together
with the first microarrays [96] more than 20 years ago. This combined analysis of multiple
omics data sets is defined as integrative data analysis.

The integration of multiple omics data sets is a promising but at the same time challenging
task [97]. The new opportunities that were made possible by integrative analysis are
numerous and diverse. There are studies that integrate, for example, gene expression and
methylation data [98], somatic mutations, copy number and gene expression data[99],
chromatin maps and gene expression profiles [100], genotypic variation at DNA level and
gene expression data [101], CHIP-seq and RNA-seq data [102], transcriptomics and
proteomics data [103–105].

In the last few years different efforts were made on an international level to exploit the
benefits of integrative data analysis by providing access to large collections of omics data
sets. One of the first big studies on omics data was the 1000 human genomes project [106]
that aimed to characterize human genetic variation. Ross et al. used cDNA microarrays in
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Figure 1.12: Overview of omics data. Figure adapted from [95].

[107] to measure the systematic variation among the 60 cell lines which are used by the
American National Cancer Institute in anti-cancer drug studies. The next level of regulation,
the human proteome, was recently characterized by two groups. While Kim et al. profiled 30

histologically normal human samples which included 17 adult tissues, 7 fetal tissues and
6 purified primary haematopoietic cells and identified 17.294 proteins [93], Wilhelm et al.
presented in [94] a draft of the human proteome through the analysis of human tissues, cell
lines and body fluids. The most recent large scale omics study was done on the epigenome
and integrated 111 epigenomes with additional data sets [108].

The most common application scenario is the integrative data analysis of transcriptomic and
proteomic data. In this case, most analysis techniques are based on the direct correlation
between transcripts and proteins such as those illustrated in [103, 104, 109–114]. [115, 116]
use integrative analysis techniques that combine statistical methods with the correlation
approach. As highlighted in [105, 117], the assumption of a direct correlation between
transcripts and proteins is not valid in eucaryotic organisms; the reason for this being
post-transcriptional and post-translational regulation. Due to this impairment alternatives
were developed.

A large part of integrative analysis methods is represented by network based techniques.
Piruzian et al. used in [118] over-connection analysis, hidden node analysis and rank
aggregation to identify similarities in regulation at transcriptomic and proteomic levels,
potential key transcription factors and new signaling pathways for psoriasis. Another
example is presented by Tanay et al. in [119] and reveals modularity and organization in the
yeast molecular network by the integrated analysis of highly heterogeneous genome-wide
data. Patil and Nielsen uncovered in [120] the transcriptional regulation of metabolism in S.
cerevisiae by using metabolic network topology. Perco et al. integrated transcriptomics and
proteomics [121] on the level of protein interaction networks and amplified in this way the
joint functional interpretation of the omics data sets. Another network based integrative
analysis method is PANDA [122] in which messages are passed between biological networks
to refine predicted interactions.
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Other approaches are based on clustering. Hahne et al. employed analysis of variation,
k-means clustering and functional annotation to the transcriptome and proteome data
from salt-stressed B. subtilis cells and were able to show a well-coordinated induction of
gene expression and changes of the protein levels as the result of a severe salt shock [123].
Verhoef et al. combined clustering with pathway analysis in order to characterize the changes
associated with ρ-hydroxybenzoate production in the engineered P. putida strain S12 [124].
Biclustering is a specialized form of clustering methods adapted for integrative analysis.
A binary biclustering was implemented by Gusenleitner et al. to identify groups of gene
sets that are coordinately associated with groups of phenotypes across multiple studies
[125]. Another biclustering approach was developed by Kaiser who addressed the need of
an ensemble method due to the variations caused by changes in parameters and data sets of
traditional biclustering methods [126].

Another large subset of the integrative analysis methods are based on singular value
decomposition (SVD) such as the generalized singular value decomposition (GSVD). Alter
et al. implemented in [127] a version of this method which allowed the simultaneous
decomposition of two data sets. A generalized version which can be applied to more that
two data sets is shown in [128]. The GSVD decomposes simultaneously all data sets into a
product of three matrices. The decomposition is subject to the following constraint: one of
the matrices has to be identical for all decompositions. Another method based on SVD is
the non-negative matrix decomposition [129]. This method finds modules in the data sets
that show high coordination.

The co-inertia analysis [130, 131] is also based on SVD but can be formulated in terms of
the duality diagram [132, 133]. The duality diagram is a concept of the French School of
Data Analysis and has rarely been presented in English. It is a very powerful concept which
can be used to formulate a number of methods such as principal component analysis (PCA)
[134], correspondence analysis (CA) [135], canonical correlation analysis (CCA) [136] and
co-inertia analysis (CIA) in the same setup. A generalized version of CIA, which initially
could be applied only two data sets, was shown by Meng et al..

Other integrative analysis approaches are based on regression [138] and [139], on machine
learning approaches [140], Bayesian theory [141] or logical modeling [142].

Most analyses, integrative or not, will end with a gene set enrichment (GSE) analysis that is
based on gene ontology (GO) terms, pathways or functional groups. The question is how
can this approach be improved and tailored for analyses in which more data sets where
measured.

Several techniques were presented as solutions: PARADIGM [143] is based on statistical
inference and was designed to predict the degree to which a pathway is altered in a patient; it
was extended to learn subgroup-specific regulatory interactions and regulator independence
[144]; Sass et al. developed a model-based Bayesian method [141] for inferring interpretable
GO term probabilities in a modular framework; SPIA [145] was developed by Tarca et al.
and combines the evidence obtained from the classical enrichment analysis with a novel
type of evidence, which measures the actual perturbation on a given pathway under a given
condition.

17



1 Introduction

1.3 Objectives

The large number of integrative analysis approaches and their heterogeneity make it difficult
to decide which method is best suited for a certain study. Due to this, the first goal of this
doctoral thesis is a method comparison study. Subsequently, multiple co-inertia analysis was
used to measure the concordance between proteomic and transcriptomic profiles of Anopheles
gambiae. The next part is dedicated to the application of a traditional gene set enrichment
analysis to validated target genes of human microRNAs. Motivated by the drawbacks of the
traditional gene set enrichment approach, a new integrative pathway enrichment analysis
which was developed during this thesis. Finally, an extensive cross-species comparison of
two expression systems was performed.

The specific goals of this doctoral thesis are summarized below:

• Study of three integrative analysis methods: co-inertia analysis, generalized singular
valued decomposition and biclustering,

• Application of multiple co-inertia analysis to proteomic and transcriptomic profiles of
Anopheles gambiae,

• Traditional gene set enrichment analysis for microRNAs,
• Development of an integrative pathway enrichment analysis method,
• Cross-species comparison of expression systems.

1.3.1 Study of Three Integrative Analysis Methods

As described in section 1.2, there are various integrative analysis techniques: some are based
on network models, some on singular value decomposition and others on logical models. In
this work we have decided to apply three different integrative approaches to the same data
set and evaluate the results.

The methods we decided to use are: co-inertia analysis, generalized singular value
decomposition and biclustering. The choice of these methods was based on the following
criteria: (i) they are based on a clear mathematical formulation, (ii) they are based on
different mathematical concepts and, the most important argument, (iii) they allow the
analysis of all measured features (not limited to pairs of genes and proteins).

These integrative techniques were applied to mRNA and protein abundance data from the
six life cycle stages of P. falciparum: merozoite, ring, trophozoite, schizont, gametocyte and
sporozoite.

1.3.2 Application of Multiple Co-Inertia Analysis to Anopheles gambiae

To determine the co-structure between measured proteomic and existing hemocyte
transcriptomic profiles, candidate genes responsive to granulocyte-enrichment during
sugar-feeding (SF), blood-feeding (BF), or P. falciparum-infection (PF) were examined by
multiple co-inertia analyses (MCIA). The goal was to quantify the concordance between
proteomic and transcriptomics profiles.
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Using published hemocyte transcriptome data, MCIA was used to examine the degree of
agreement between transcript and protein abundance in our granulocyte proteomes (SF, BF,
PF). Comparisons were made between transcriptional profiles of non-selected hemocytes
from sugar-fed naïve mosquitoes, 24 hours after feeding with a non-invasive CTRP mutant
Plasmodium berghei (comparable to a non-infectious blood meal), or 24 hours after feeding
with wild-type P. berghei.

1.3.3 Traditional Gene Set Enrichment Analysis for microRNAs

The traditional gene set enrichment analysis of microRNAs represents a part of a study
in which it was shown that microparticles isolated from cerebrospinal fluid of traumatic
brain injured patients are potent, injury-specific messengers carrying mRNAs, miRNAs and
proteins.

The goal of the analyis was to identify neuron related biological process enriched in two
groups of microRNAs. One group was associated with microparticales of the cerebrospinal
fluid of brain injured patients while the second one included the complete set of microRNAs
identified in the cerebrospinal fluid of brain injured patients.

Validated target genes were computed for each microRNA in each group. Subsequently, a
traditional gene set enrichment analysis based on Gene Ontology terms was performed on
each group.

1.3.4 Development of an Integrative Pathway Enrichment Analysis Method

Motivated by the drawbacks of the traditional gene set enrichment analysis of microRNAs,
where only a flat gene list could be analyzed, a new method was designed for this task.
This approach is focused on pathways which are, similar to gene ontology terms, functional
groups. This method can be easily applied to one or more data sets.

The integrative pathway analysis is based on the combination of two gene scores: one score
is determined by a multivariate analysis and the second score quantifies the importance
of a gene in a pathway. The first gene score can be the log fold change of differential
expressed genes but it can also come from any integrative analysis methods such as co-
inertia analysis. The second gene score is computed for each pathway separately and it
is based on the network topology of the pathway. All functional groups that incorporate
network information can be used in this approach.

1.3.5 Cross-species Comparison of Expression Systems

The general concept of this project is based on a comparative genome-wide analysis of
different eukaryotic host species with different capacities for protein expression with a
main focus on functional, structural and regulatory processes involved in the expression of
recombinant proteins.
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Due to its characteristics, such as the ability to integrate more than two data sets,
maximization of common trends, visualization of samples and features as well as projection
of additional information into the computed space, multiple co-inertia analysis was the
method of choice for this study.

In more detail, the expression system of Chinese hamster ovary (CHO) cells and Pichia
pastoris were chosen to be compared. For each one, strains expressing two heterologous
proteins were engineered. For each expressed protein, two different expression clones were
selected, one with a very high expression level, and another with a low expression level.

Transcriptomic and proteomic profiles were measured for each expression system, each
protein and each expression clone. The resulted data sets were analyzed with multiple
co-inertia analysis, generalized singular valued decomposition and biclustering.
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Due to the large number of available integrative analysis methods and their heterogeneity
it is not always obvious which method is best suitable for a certain study. A large part of
this doctoral thesis is dedicated to the comparison of three different integrative analysis
approaches: co-inertia analysis, generalized singular value decomposition and biclustering.
The first three sections of this chapter will cover the detailed presentation of these methods
and are based on the publications that emerged from this comparison [146, 147].

Very often, one of the last steps in an integrative analysis study is to perform some kind of
gene set enrichment analysis. The fourth section is dedicated to the traditional approach
while the fifth section presents an integrative gene set enrichment method focused on
pathway analysis which was developed during this doctoral thesis. Finally, the last section
of this chapter will present all used data sets.

2.1 Co-Inertia Analysis and Multiple Co-Inertia Analysis

Co-Inertia Analysis (CIA) is an integrative analysis method that was introduced by Dolèdec
and Chessel to the ecology research community in 1994 [148]. It took almost 10 years until
its potential for bioinformatic analyses was discovered [130, 131]. CIA was developed for
the analysis of two data sets but was extended to multiple co-inertia analysis (MCIA) for
the analysis of multiple data sets. A detailed mathematical description of MCIA is provided
by Hanafi and Chessel in [149]. For the non-French speaking reader, MCIA was recently
introduced to the bioinformatics community by Meng et al. in [137].

MCIA was implemented in the R package omicade4 [137] and is usually applied to two or
more omics data sets. In order to use the R package, each data set has to be formulated as a
matrix having more rows than columns. In general, the rows hold the features of a data set
while the columns hold the conditions. MCIA can be applied to a list of matrices subject to
having matched conditions. The measured features are not subject to any constraint.

MCIA is performed in two main steps: i) application of a dimension reduction technique on
each data set and ii) computation of the co-inertia axes from all data sets.

2.1.1 Dimension Reduction

Various dimension reduction techniques (DRT) exist. During this thesis a comprehensive
review on dimension reduction techniques in the context of integrative data analysis was
written [150] which represents the basis of this chapter. The main goal of a DRT is the
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graphical display of high dimensional data into a low dimensional space by retaining
as much as possible of the initial data structure. Principal component analysis (PCA) is
probably the most well known and most often applied approach. Alternatives include
correspondence analysis (CA) and non-symmetrical correspondence analysis (NSCA) as
well as multidimensional scaling (MDS). All these methods can be computed by singular
value decomposition (SVD) [151] but they differ in how the data is transformed prior to
SVD. MDS or principal coordinate analysis [152] is a PCA applied to a distance matrix.

While PCA [134, 153, 154] can be applied to continuous data, CA [135, 155] and NSCA [135,
156] were designed for the analysis of categorical data summarized in form of contingency
tables. Nevertheless, CA and NSCA have already been successfully applied to continuous
data such as gene expression and protein profiles [105, 130, 157]. As Fellenberg et al. point out,
gene and protein expression can be seen as an approximation of the number of corresponding
molecules present in the cell during a certain measured condition. Additionally, Greenacre
emphasized in [155, 158] that the descriptive nature of CA and NSCA allows their application
on data tables in general, not only categorical data. These two arguments support the
suitability of CA and NSCA as analysis methods for omics data.

Although CA is based on the pioneer work on categorical data of the brilliant Englishmen
Ronald Fisher, Karl Pearson, Frank Yates and George Yule, the method itself [159] was
developed by the Frenchmen Benzècri and it is recognized to be a French approach.
According to Beh and Lombardo in [135] the name of the method is a direct translation of
the French l’analyse de correspondances which literally means the analysis of correspondences
and relationships/associations in the data. This method was slowly accepted by the
international research community and, when employed, the main goal was data
visualization. Forty years after its development, Fellenberg et al. introduced CA to the
bioinformatics community by applying it to microarray data [157].

The concepts of CA and NSCA are similar to PCA in that they project the data into a
lower dimensional space while trying to maintain as much as possible from the captured
data structure. While PCA uses a covariance matrix to account for data structure, CA and
NSCA use the χ2 statistic to measure the deviation from independence of the considered
variables.

While CA investigates symmetric associations between two variables, NSCA, an alternative
CA, captures asymmetric relations between variables. NSCA [160] was developed
approximately twenty years after CA at the University of Naples in Italy by Lauro and
D’ambra.

2.1.2 The Duality Diagram

A detailed description of the NSCA will be shown in the context of the duality diagram
(DD). The DD approach was developed in the French school of data analysis in the 1970’s
but was rarely published in English [132, 133, 161]. DD is a unique and unifying concept
because most of the multivariate analysis methods such as PCA, CA, NSCA, discriminant
analysis and canonical correlation analysis, which are well known and very often used, can
be formulated as a DD problem.
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Based on [133] and [149], a mathematical description of DD, NSCA and MCIA is summarized
bellow. The DD framework is based on the statistical triplet (X, Q, D) where X is assumed
to be a matrix with n rows (observations) and p columns (variables). D is a diagonal matrix
and its elements are the weights associated with the n observations. Q, a p× p symmetric
and positive definite matrix, defines a neighborhood relation between the observations.
From a geometrical point of view, Q and D define geometries or inner products in Rp

respectively Rn:

xtQy =< x, y >Q x, y ∈ Rp and represent observations (2.1)

xtDy =< x, y >D x, y ∈ Rn and represent variables (2.2)

Additionally, Q and D can be seen as linear functions from Rp to Rp∗ = L(Rp) respectively
from Rn to Rn∗ = L(Rn) with L(Rp) being the space of scalar linear functions on Rp. The
association of an operator from the space of observations Rp to the dual space of variables
Rn∗ was proposed by Escoufier and summarized graphically in Figure 2.1 which is addopted
from [133].

Figure 2.1: Duality Diagram. Figure adapted from [133]

By defining V = XtDX and W = XQXt, the DD is made commutative. The name “Duality
Diagram” comes from the property of the diagram that the decomposition of the operator
VQ = XTDXQ leads to the decomposition of the operator WD = XQXTD which leads
further to an easy transition between principal components and principal axes. Another
important property of the diagram is that the eigenvalues of VQ are equal to those of WD.

From a geometrical point of view, analyzing the statistical triplet (X, Q, D), which is
equivalent to analyzing the DD (X, Q, D), can be formulated as either finding the inertia
axes (principal axes) of a data set containing n points in Rp or as finding the inertia axes
(principal components) of p points in Rn.

For this, the inertia operators WD = XQXTD and VQ = XTDXQ have to be diagonalized:

Q = ETE D = BTB Cholesky decomposition (2.3)

Ω = BXT ⇒ ΩTΩ = EXTBTBXET ⇒ ΩTΩ = VΛVT (2.4)

Ω = BXT ⇒ ΩΩT = BXETEXTBT ⇒ ΩΩT = UΛUT. (2.5)
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The next step is the computation of principal axis and principal components:

F = ETV A = E−1V A are the principal axis (2.6)

G = BTU K = B−1U K are principal components. (2.7)

The last step is the projection of the rows of X onto the principal axis:

L = XQA (2.8)

and of the columns of X onto the principal components:

C = XTDK. (2.9)

Comparing Two Duality Diagrams

The comparison of two or multiple DDs is of interest whenever the co-structure captured
by them has to be measured. This comparison can only be done if the data sets have either
common rows or columns. The key element of such a comparison is the vectorized version
of the R squared from Pearson’s correlation, the RV coefficient which was defined by Robert
and Escoufier in [162] as follows.

Given two symmetric matrices A and B with the same size, the RV coefficient is defined
as:

RV(A, B) :=
tr(AB)√

tr(AA)tr(BB)
, (2.10)

where tr(X) is the trace of the matrix X which is defined as the sum of the eigenvalues of
the matrix X.

When comparing two DDs, one has to assume that one dimension is equal, for example
the number of variables p1 and p2. In this case the RV coefficient is computed between the
operators W1D and W2D which are symmetric and of the same size. Due to this, we define
the RV coefficient of two DDs (X1, Q1, D) and (X2, Q2, D) as:

RV((X1, Q1, D), (X2, Q2, D)) := RV(W1D, W2D). (2.11)

The RV coefficient [162] is a generalization of the squared Pearson correlation coefficient
for matrices and has values in the interval [0; 1]. A RV value close to one indicates a high
co-structure between the two data sets.

Despite its wide usage, the traditional RV coefficient defined above suffers from dimension
bias. The smaller the data sets, the higher the RV coefficient. To overcome this problem, a
modified version of the RV coefficient was used, as described by Smilde et al. in [163]. Given
two matrices X and Y, the modified RV coefficient is computed as:

RV(X, Y) =
Vec(X̃X′)Vec(ỸY′)√

Vec(X̃X′)′Vec(X̃X′)×Vec(ỸY′)′Vec(ỸY′)
, (2.12)
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where X̃X′ = XX′ − diag(XX′) with diag(XX′) being the matrix containing only the
diagonal elements of XX′ and Vec(X) symbolizes the vector constructed by concatenating
all rows of X. The modified RV coefficient ranges between -1 and 1. The interpretation of
this value is similar to the interpretation of a correlation coefficient.

2.1.3 Non-symmetrical Correspondence Analysis

The analysis of the statistical triplet (X, Q, D) becomes a NSCA when the following
transformations are performed: Let xij be the value of the matrix X̂ from row i and column
j. Additionally, xi. denotes the sum of row i and x.j the sum of column j. The sum of all
elements of X̂ is denoted by x... The frequency of xij is defined as fij =

xij
x..

. The weight of
row i is defined as ri = xi.

x..
and the weight of column j is defined as cj =

x.j
x..

. The row
weights are gathered in matrix D = diag(ri) and the column weights are gathered in matrix
Q = diag(cj).

The matrix X̂ is standardized by fij
ri
− cj which holds the differences between the conditional

prediction of the j-th column category (row profile) and the unconditional marginal
prediction cj (column marginal proportion). By considering these centered row profiles one
can determine the predictive value of the column (response) values given the row
(predictor) values [135].

In CA, where there are no predictors and no responses, the following standardization is
used: xij =

fij
ri ·cj
− 1.

On of the main advantages of formulating a NSCA as a DD is the ability to plot the rows
and the columns of the initial matrix in the same plot. The interpretation of the resulted
plot is based on the following rules [135]: While one can directly interpret the distance
between two rows as well as the distance between two columns, one can not interpret the
distance between a row and a column. Nevertheless, one can interpret the angle between
a row and a column. The smaller this angle is, i.e. the row and the column are projected
in the same direction from the origin, the higher the predictive value of the row for that
column is. The origin of the plot marks the point where the increase in predictability of the
rows is zero. Due to this, one can say the rows that are projected far away from the origin
have an increase of predictive power for the columns.

Figure 2.2 shows an example of a NSCA performed on data from Skelikoff’s asbestos study
in which duration of exposure to asbestos is associated with the diagnosed grade of Asbestos
[135]. Here one can see there is a small distance between the exposure 20-29 and 30-39 (both
shown in blue) as well as between Grade 2 and Grade 3 (both shown in red). In order to
determine, e.g. if exposure 0-9 (blue) is associated to grade none one has to inspect the angle
between them. In this case the angle is acute which means that there is an association. In
contrast, the angle between none and exposure 40+ is obtuse resulting in no association.
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Figure 2.2: NSCA Analysis of Skelikoff’s asbestos data. Example adapted from [135].

2.1.4 Mathematical Description of the (Multiple) Co-Inertia Analysis

The mathematical description of MCIA is based on the work of Hanafi and Chessel from
[149]. The general concept is graphically summarized in the flowchart from Figure 2.3
which is extracted from [146]. CIA is a special case of MCIA where only two data sets are
analyzed.

According to [132] and [133], the inertia in CIA and MCIA is defined as the trace of the
operator WD which is equal to the trace of the operator VQ. In general the inertia with
regards to a point A of a set of n weighted points is defined as ∑n

i=1 pid2(xi, A) where pi is
the weight of the point xi and d(xi, A) is the distance between the points xi and A. For CA
and NSCA, the inertia is proportional to the χ2 statistic while for ordinary PCA it is equal
to the total variance of all the variables.

MCIA operates on K statistical triplets (Xk, Qk, D) with k = 1, ..., K. Xk are a set of
transformed matrices, Qk are a set of (pk × pk) diagonal matrices containing the row
weights of Xk. D is a n× n identity matrix. Matrix X is created by merging all matrices Xk:
X = [ω1X1|ω2X2|...|ωK, XK], where ωk is the inverse sum of the eigenvalues of Xk. Please
note that the eigenvalues of a matrix can be computed as the square roots of the matrix’s
singular values.

MCIA is defined as the analysis that computes k vectors u1
k normed in Rpk and an auxiliary

variable v1, D-normed in Rn, that maximize:

g(u1, u2, ..., uK, v) =
K

∑
k=1

ωkcov2(XkQkuk, v) =
K

∑
k=1

ωk(XkQkuk|v)2
D (2.13)

In a second step, the vectors u2
k normed in Rpk and the auxiliary variable v2 normed in Rn

that maximize the same function g and are orthogonal to u1
k and v1 are computed.
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Figure 2.3: Flowchart of CIA. The gene expression matrix (blue) contains the genes in the rows and the conditions
in the columns. The protein expression matrix (orange) contains the proteins in the rows and the
conditions in the columns. Genes and proteins annotated to the considered GO Terms are gathered
in a separate matrix (gray). The gene and the protein expression matrices are transformed into a
new hyperspace. Axes maximizing the squared covariance are computed from the axes spanning the
gene and protein hyperspaces. Conditions together with GO Terms and features are projected into
the computed CIA space. Figure adapted from [148].

In the s step, the function g is maximized and:

(vj|vs)D = 0 and (uj
k|u

s
k)Qpk

= 0 (1 ≤ j < s, 1 ≤ k < K) (2.14)

The set of vectors ui
k and vi are calculated iteratively. Each set of k vectors ui

k and the vector
vi are computed during one iteration: the first set of vectors u1

k and the auxiliary variable
v1 are computed with the first order solution. The remaining sets of k vectors ui

k and vi,
i = 2, . . . , S are computed subsequently with the second, third, ..., S order solution, where S
is the number of desired MCIA eigenvectors. The details of the iterative solutions are shown
below.
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First order solution

For a fixed vector v, D-normed in Rn, the use of the Cauchy-Schwartz inequality shows that

(XkQkuk|v)2
D is maximized by ||XT

k Dv||2Qk
for uk =

XT
k Dv

||XT
k Dv||Qk

.

In [149] it was shown that since v maximizes g it also maximizes:

K

∑
k=1

ωk||XkQkv||2Qk
= vTD

(
K

∑
k=1

ωkWkD

)
v (2.15)

v is the first D normed principal component of the matrix X. Additionally, the axes u1
k , Q

normed in Rpk are the normalized vectors XT
k Dv

||XT
k Dv||Qk

.

Second order solution

• Consider P1
k , the Qk orthogonal projections of u1

k into the vector space of Rpk .
• Define a new matrix Z = [Z1, Z2, ..., ZK], where Zk = Xk − XkP1

k
T

• Compute the MCIA first order solution for the matrix Z.

S order solution

• Consider Ps−1
k , the Qk orthogonal projections of us−1

k into the vector space of Rpk .

• Define a new matrix Z = [Z1, Z2, ..., ZK], where Zk = Xk − XkPs−1
k

T

• Compute the MCIA first order solution for the matrix Z.

2.1.5 Projecting Additional Information into the MCIA Space

As already mentioned, the results of integrative analysis methods, but not only these, are
often subject to a gene set enrichment analysis. This is specifically helpful when the result
consists of long lists of genes. This approach is described in detail in Sections 2.4 and 3.4.
Additionally, the annotation of genes to gene sets like gene ontology (GO) terms [164] or
pathways from databases such as Reactome [165], can be used as an additional layer in
MCIA.

Additional information such as GO annotations can be superimposed on the (M)CIA plots.
This overlay was already done for CA [166], and is also possible for CIA [105]. GO Term
projections are obtained by first normalizing the two GO matrices in the same way as
the expression data sets and then multiplying them by the weights of the genes/proteins
resulting from the NSC. The projection scores computed in this way show GO Term
associated with the present features, in relation to the measured conditions.
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2.2 Generalized Singular Value Decomposition

The second method that will be used for comparison is the generalized singular value
decomposition (GSVD). GSVD was developed as an extension of the singular value
decomposition (SVD), one of the most often applied analysis methods. In this section we
start by introducing the SVD and its most well known application: the principal component
analysis. The second part of the section is dedicated to the mathematical description of
GSVD which was extracted from [146].

2.2.1 Singular Value Decomposition

SVD is an analysis method applied on its own [167, 168] and as part of PCA [169, 170].
SVD [171] is a linear algebra method used for matrix factorization. The SVD of a matrix
M ∈ Rmxn is defined as:

M = UΣV∗, (2.16)

where U contains the left singular eigenvectors, Σ contains the singular values and V∗

contains the right singular vectors. Please note that the singular vectors of M are the
eigenvectors of MMt as well as of Mt M and the the singular values of M are the square
roots of the eigenvalues of MMt or Mt M.

The interpretation of SVD is intuitive in the special case when M is a square, invertible
matrix. In that case, the matrices U and V can be seen as rotation matrices while Σ can be
seen as a scaling matrix. In this context, the SVD can be seen as a sequence of geometrical
transformations: rotation, scaling, rotation.

One of the most popular applications of SVD is the principal component analysis (PCA). PCA
was developed by Pearson in 1901 [153] and thirty years later independently rediscovered
and extended by Hotelling in [154, 172].

In general, PCA is applied on a matrix M with p conditions and n variables which has
been mean centered. This data can be seen as n variables in a Rp space. PCA tries to find
orthogonal principal components that provide the best representation of the data in a lower
dimensional space Rq, q < p. In practice, q ∈ {2, 3} to ensure a graphical representation of
the high dimensional data which can be easily perceived by the human eye.

The representation quality in the new low dimensional space is measured by the percentage
of explained variance of the original data. The principal components which build the
orthogonal basis of the new space are computed by SVD and are the left eigenvectors of the
original matrix M or of the covariance matrix Mt M. The percentage of explained variance
by each principal component is given by the eigenvalues of Mt M which correspond to the
squared singular values of M.

SVD is widely used and has shown its potential in numerous applications. Nevertheless,
SVD has a huge disadvantage, especially in the data rich era we are currently experiencing:
because it was designed for one data set it is not suitable for integrative data analysis. Due
to this, an extension of the SVD which can be applied to multiple omics data sets was
developed: the generalized SVD.
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2.2.2 Mathematical Description of the Generalized Singular Value
Decomposition

GSVD was first described by Golub and Van Loan in their book about matrix computation
[171]. In a study by Alter et al., GSVD was used as a comparative analysis method [127] for
two gene expression data sets of cell cycle data from yeast and humans. In this comparison
study, the GSVD was applied to two different data sets, gene and protein abundances.

GSVD is based on the joint decomposition of two matrices:

G = U1Σ1X−1 (2.17)

P = U2Σ2X−1 (2.18)

which is subject to the following constraint: the third decomposition matrix, X−1, is shared
by both decompositions.

Figure 2.4: Flowchart of the GSDV. The gene expression matrix (blue) contains the genes in the rows and the
conditions in the columns. The protein expression matrix (orange) contains the proteins in the rows
and the conditions in the columns. Genes and proteins annotated to the considered GO Terms
are gathered in a separate matrix (gray). The gene and the protein expression matrices are each
decomposed in three matrices. The matrices U and V contain the arraylets, which encode for the
expression of genes and proteins in the corresponding genelets X−1, which represent the cellular
state in the measurement conditions. According to the angular distance θi, which is computed from
the generalized eigenvalues σ1,2 and σ1,2, a restricted GSE analysis is performed on the genes and/or
proteins with the absolute (from a mathematical point of view) highest values in the arraylets in
order to assign GO Terms to the corresponding genelets. Figure adapted from [127].

In general, the matrices G and P contain the data sets to be analyzed, e.g. gene and protein
abundance data. The rows of the common matrix X−1 are named genelets. Alter et al. showed
that these genelets can be seen as biological processes captured by both data sets. The
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genelets are expressed only in the corresponding arraylets (corresponding columns of U1
and U2) with a relative significance measured by the generalized eigenvalues (σ1,m, σ2,m)
from the diagonals of Σ1 and Σ2. The relative significance of a genelet in the gene data set
relative to the protein data set is measured by an antisymmetric angular distance calculated
as:

θm = arctan
(

σ1,m

σ2,m

)
− π

4
. (2.19)

An angular distance between −π/4 and −π/8 represents a high significance of the mth

genelet in the second data set relative to the first data set. If the value of the angular distance
ranges between π/8 and π/4, then the mth genelet has a high significance in the first data
set relative to the second data set. The mth genelet shows equal significance in both data sets
if the angular distance ranges between −π/8 and π/8. In this comparative study, where
the first matrix contains mRNA abundance data and the second matrix protein abundance
data, the relative significances are assigned as follows:

θm ∈


[−π/4,−π/8] protein space
[−π/8, π/8] gene and protein space
[π/8, π/4] gene space.

(2.20)

A summary of the computation flow is shown in a block diagram in Figure 2.4.

Alter et al. [127] used a Mathematica implementation of a numerically robust GSVD
algorithm based on [171, 173], which was reimplemented in R (see Appendix A.1) during
this doctoral thesis.

In order to discover the processes captured by the genelets, a restricted gene set enrichment
(for details see Section 2.4) analysis is performed on 50% of the genes and/or proteins
showing the highest absolute values in the corresponding arraylets. The GSE analysis is
performed with the R package GOstats [174], which computes the statistically significantly
enriched GO Terms based on the hypergeometrical distribution. A detailed description of
this traditional analysis can be found in section 2.4.

2.3 Integrative Biclustering

This section will present the third method used in the comparison study: integrative
biclustering (IB). A short introduction to clustering methods is given in the first part of this
section while a detailed description of IB, extracted from [146], can be found in the second
part.

2.3.1 Clustering

Clustering, similar to PCA, represents one of the most well-known and often applied method
in bioinformatics. Traditional methods include k-means and hierarchical clustering.
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While k-means [175] starts with k randomly chosen means (mean values) and proceeds by
alternating between assigning data points to the cluster yielding the least within-cluster sum
of squares (intuitively the nearest mean) and recomputing the mean of the newly discovered
clusters until convergence, the agglomerative hierarchical clustering approach [176] starts
by assigning each data point to one cluster and proceeds by iteratively merging the clusters
based on a distance metric until all points are assigned to one cluster and presents the
results as a dendrogram. K-means has two disadvantages: the user has to guess the optimal
number of clusters k and the algorithm’s convergence is based on the Euclidean distance as
a measure.

Given a data matrix M which contains n variables measured in p conditions, the results of
the clustering approaches share one key aspect: the matrix is clustered either by variables or
by conditions but not by variables and conditions. This disadvantage led to the development
of biclustering approaches where variables and rows can be clustered simultaneously.

2.3.2 Detailed Description of Integrative Biclustering

The basic idea of biclustering (co-clustering or two-way clustering) was presented in [177],
but it took almost thirty years until the method was applied to gene expression data [178]. In
the last two decades, biclustering has become more and more popular [179–181]. In contrast
to clustering, where either rows or columns are clustered, biclustering performs clustering
of rows and columns simultaneously. The members of the obtained biclusters are as similar
to one another and as different from the other biclusters as possible. Figure 2.5 exemplifies
how mRNA abundances, protein expression and GO Terms are assembled to a complete
data set and what the resulting biclusters could look like.

There are four types of possible biclusters as reviewed in [126, 182, 183]. Biclusters can have
(i) equal values over rows and columns as well as (ii) equal values over rows or columns.
They can also have (iii) coherent values, which means that each column or row can be
computed by adding or multiplying a constant to the previous column or row. The fourth
type has (iv) coherent evolutions, which means that the exact value of a matrix entry is
not important, but whether the values increase or decrease over rows or columns. The
biclustering algorithm used here is implemented in the R package biclust [184].

The types of computed biclusters vary. There are single biclusters where only one bicluster
is found in the whole data set as well as exclusive rows and/or exclusive columns biclusters.
Non-overlapping and non-exclusive biclusters can also be computed. The fifth type is the
arbitrarily positioned overlapping biclusters. Graphical representations of the different
categories of biclusters can be found in [126].

Most of the biclustering algorithms implemented depend on the starting point of the search
and thus may lead to different results in consecutive runs. Additionally, biclustering does
not result in a perfect data separation, as overlapping biclusters are possible. As a remedy,
the biclust package provides a robust method that delivers stable and reliable results. This
function includes the repeated use of one algorithm in combination with several parameter
settings and/or subsamples of the data. A modified version of the Jaccard index [126] is
used for the combination of the resulting biclusters, which in case of two biclusters takes
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into account the fraction of row-columns combinations in both biclusters to all row-column
combinations. For more detailed mathematical definitions, please refer to [126].

Analogous to integrative clustering, we define integrative biclustering as the biclustering of
two or more data sets. Integrative clustering was already applied to copy number and gene
expression data in order to identify novel breast tumours subgroups [185]. Mo et al. describe
in [99] integrative clustering of genomic, epigenomic and transcriptomic profiling.

Figure 2.5: Flowchart of IBC. The gene expression matrix (blue) contains the genes in the rows and the conditions
in the columns. The protein expression matrix (orange) contains the proteins in the rows and the
conditions in the columns. Genes and proteins annotated to the considered GO Terms are gathered
in a separate matrix (gray). The three matrices are combined to a new matrix, which is subjected
to biclustering. The resulting biclusters can include genes, proteins, conditions, GO Terms or any
combination of these.

Integrative biclustering was applied to gene expression, protein interaction, growth
phenotype and transcription factor binding data in [186] in order to reveal modularity and
organization in the yeast molecular network. Here, integrative biclustering was applied to a
matrix consisting of mRNA and protein abundances as well as an additional level of
complexity introduced by the corresponding GO matrices. The genes and the proteins are
represented by rows, whereas the samples and the GO Terms by columns. Before
biclustering can be carried out, discretization is necessary. Here, the built-in function
discretize from the R package biclust [126] was used. This function computes a discrete
matrix with a given number of levels of equally spaced intervals from minimum to
maximum. After appropriate processing, the result of IBC was loaded into Cytoscape [187]
to obtain a network view of the associations.
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2.4 Traditional Gene Set Enrichment Analysis for microRNAs

In this section the gene set enrichment analysis of microRNAs is described. The section
starts with a short introduction to microRNAs and ends with a detailed presentation of the
gene set enrichment (GSE) approach. GSE was used on top of the three integrative analysis
methods CIA (see Section 2.1), GSVD (see Section 2.2) and IB (see Section 2.3) [146] as well
as a stand alone method in the analysis of miRNAs [188].

2.4.1 Short Introduction to microRNAs

MicroRNA (miRNA) are small (micro comes from the Greek word micros which means
small), non-coding RNAs that play a very important role in gene regulation, especially in
gene silencing. It was shown that miRNAs act highly specific on the post-transcriptional
level and that their length is between 21 and 23 base pairs [189].

miRNAs bind to the 3’UTR (untranslated region) of their target mRNA and regulate its
expression in two ways: if the binding sequences are 100% complementary then the target
mRNA will be degraded while partial complementary sequences lead to the inhibition of
mRNA translation [190].

Since miRNAs are non-coding RNAs they will not be translated to proteins and thus are not
coding for genes in the traditional sense. Due to this it is not possible to use miRNAs directly
in a gene set enrichment approach. Nevertheless, there are databases that gather information
about the genes that are regulated by miRNAs. These genes are called target genes and one
of the most widely used databases is miRBase [191] (http://www.mirbase.org/).

2.4.2 Detailed Description of the Traditional Gene Set Enrichment Analysis

The ability to measure large amounts of data led to the development of new methods for the
interpretation of the analysis results which also increased in size. This process is enhanced
by the use of a structured description of the vast, already existing biological knowledge.
There are different resources that provide this kind of information such as Gene Ontology
(GO) [164], Reactome [165] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [192].

Gene Ontology
GO is a open access database which provides information on genes and their products
based on three vocabularies: biological process (BP), molecular function (MF) and cellular
compartment (CC). The analysis described here will focus on biological processes. An
example of a more general biological process would be metabolic process or cellular proccess
and of a more specific would be cellular aldehyde metabolic process.

The structure of each vocabulary is a directed acyclic graph with the more general terms at
the top and the more specialized at the bottom (see Figure 2.6 for an example). The genes

1http://amigo.geneontology.org/amigo/term/GO:0006081
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Figure 2.6: Example of GO Terms in the GO graph from the GO homepage1. Each term is represented by its
name and its ID.

annotated to a node are also attributed to the parent nodes. Within a GO Term, the genes
associated to it are equally important.

Due to the size of the three vocabularies, a reduced representation in form of GO Slim
Terms has been developed. These terms can be created by GO or by researchers. The
GO defined GO Slim Terms, such as the S. cerevisiae slim, represent a subset of the GO
Terms and are particularly useful when a broad characterization of the analysis results is
needed. The second category of GO Slim Terms are organism specific and often created
to answer a particular research question. Our collaborators from the Austrian Centre for
Industrial Biotechnology defined a set of GO Slim Terms for the cross-species comparison
study described in this thesis (see Sections 3.6 and 4.5). This set is of particular interest
for the study, e.g. relevant for protein secretion, and facilitates the comparison between
P. pastoris and CHO on the GO level.

Mathematical Description and a Short Example

The traditional gene set enrichment analysis tells a researcher which GO Terms (or other
gene sets) are enriched in his gene list. Mathematically [193], GSEA answers the following
question: Given K (test set) out of N (reference set) sampled genes, what is the probability
that k or more of these genes (i.e differentially expressed) belong to a functional category C
shared by n of the N genes in the reference set? Figure 2.7 shows a graphical visualization
of this question.

GSEA was initially introduced by Mootha et al. and Subramanian et al. in [194, 195] and the
above question was answered with the Kolmogorov-Smirnov Test. Alternatively, the hyper
geometric distribution or Fisher’s Exact Test can be used.

Different tools were created to answer the question from above. The hyper geometric
distribution is implemented in BINGO [193] which is a Cytoscape [196] plugin. Other
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widely used tools include DAVID [197] which employs Fisher’s Exact Test and the GSEA
approach developed and hosted by the Broad Institute [194, 195] which is based on the
Kolmogorov-Smirnov Test. In this scenario, BINGO was chosen because, in addition to the
enrichment analysis, it also provides a visualization tool.

The probability mass function (the equivalent of the probability distribution function for a
discrete random variable) gives the probability of observing exact k successes and is defined
as:

P(X = k) =

(
K
k

)(
N − K
n− k

)
(

N
n

) , (2.21)

where N is the population size (reference set), K is the number of successes in the population
(test set), n is the number of draws (genes in the gene set to be tested, by definition), k is the
number of observed successes (observed genes in the gene set to be tested) and (a

b) is the
binomial coefficient defined as n!

k!·(n−k)! .

In order to compute the statistical significance (p-value) of the gene set enrichment, the
probability of observing at least k successes, on has to sum up the probability of sampling
each possible success between k and n:

p =
n

∑
κ=k

P(X = κ) (2.22)

Given a list of 25 genes that were selected from a set of 1000 measured genes, a researcher is
interested if a certain GO Term (GO:0070966) is enriched in the mentioned list if the list of
selected genes includes 8 of the 163 genes annotated the GO Term of interest. This scenario
is summarized in Figure 2.7.

Figure 2.7: Gene set enrichment analysis
constellation.

t

Figure 2.8: Probability mass faction of the hyper
geometric distribution.

When using the hyper geometric distribution, the answer to the question is computed
by summing the probability of at least 8 of the 25 genes being annotated to GO:0070966,
given that 163 genes are attributed to the GO Term of interest and that the experiment was
performed by measuring 1000 genes in total. The probability mass function is shown in
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Figure 2.8 and the values which have to be summed in order to compute the statistical
significance of the enrichment are emphasized resulting in a p-value of 0.038.

Due to the large number of GO Terms which are tested for enrichment, multiple testing
correction [198] has to be performed in order to control the type I error (false positive) rate.
BINGO implements the Benjamini and Hochberg [199] correction which controls the false
discovery rate (FDR), i.e. the expected proportion of false positives among the positively
identified tests [193].

2.5 Data Sets

During this doctoral thesis five data sets underwent integrative analysis. This section
describes data generation, structure, availability and any processing steps prior to any
integrative analyses.

2.5.1 Plasmodium falciparum Lifecycle Stages Analysis

The comparison study [146] between CIA, GSVD and IBC was performed on two publicly
available data sets containing matched mRNA and protein abundance data from the six life
cycle stages of P. falciparum. Microarray [200] and proteomic analyses [103] were carried out
on P. falciparum clone 3D7. Gene expression levels were measured with a custom
oligonucleotide array and computed with the match-only integral distribution (MOID)
algorithm [201]. Proteins were detected by multidimensional protein identification
technology (MudPIT), and protein abundance was estimated by the number of MS/MS
spectra identified per protein. In total, 4294 genes and 2903 proteins were measured in all
six life cycle stages. For each data set a matrix was created where the genes and proteins are
represented as rows and the life cycle stages as columns.

Additionally, GO [164] information on biological processes in P. falciparum were employed.
The R [202] packages org.Pf.plasmo.db [203] and GO.db [204], which provide
P. falciparum specific mappings of genes to GO Terms as well as additional information on
GO Terms, were used. Based on these two annotation databases, 3283 of 4294 genes and
2491 of 2903 proteins were associated with 614 GO Terms. For each data set, a GO matrix
with the same number of rows as the corresponding expression data set was created. The
columns of the GO matrix hold data describing the gene/protein affiliation to a certain GO
Term. If a gene/protein is associated with that GO Term, the strength of the affiliation is
computed as the ratio between 1 and the total number of genes/proteins associated with
the GO Term. CIA and IBC use directly the computed GO matrix. GSVD performs a GSE
analysis based on org.Pf.plasmo.db and GO.db. In this way, we make sure that all three
methods are applied to the same data sets.
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2.5.2 Analysis of Hemocyte and Granulocyte Immune Response of Anopheles
gambiae

The A. gambiae data consists of two matched omics data sets: gene expression and protein
abundance data.

The protein abundance data was generated by our collaborators: Ryan C. Smith, Jonas G.
King, Dingyin Tao, Clara Brando and Rhoel R. Dinglasan from Johns Hopkins Bloomberg
School of Public Health in Baltimore, Maryland, USA. Based upon their ability to enrich for
phagocytic granulocyte [205] populations, they performed proteomic analysis on mosquito
hemocyte populations to determine the effects of sugar feeding (SF), blood feeding (BF)
and malaria parasite infection (PF). LC-MS/MS was performed onto an Agilent LC-MS
system consisting of a 1200 LC system coupled to a 6520 Q-TOF via an HPLC Chip Cube
interface. Scaffold (Version 4.3.4, Proteome Software) was used for the curation, label-
free quantification analysis and visualization of all search results. Scaffold’s normalized
spectral counting was employed to compare relative protein abundance between non-
selected hemocytes (sugar-fed) and magnetic-bead enriched granulocytes (sugar-fed, blood-
fed, and Plasmodium-infected). Scaffold calculates the quantitative spectrum count value by
normalizing spectral counts across an experiment.

There are two published anopheline hemocyte transcriptome data sets that are available
[206, 207]. However, the two studies used different microarray platforms. Merging the two
dataset would artificially reduce the transcriptome data that can be used for MCIA to
only the subset of transcripts that was measured in both analyses. This would limit the
utility and primary advantage of a MCIA approach, i.e., avoid the need to subset the data
sets for the analysis. As such, it was decided to focus on the Pinto et al. data set from
[206], which provided all the necessary matching transcript data for the MCIA comparison
to the granulocyte proteome. Experiments were performed on the GPL1321 GeneChip
Plasmodium/Anopheles genome arrays (Affymetrix). Microarray analysis was performed using
GCOS 1.4 (Affymetrix) and GeneSpring GX 7.3 software (Agilent Technologies). Data was
downloaded from the Gene Expression Omnibus [208]: GSE17919 (naïve experiments) and
GSE17866 (infection experiments).

MCIA was used to examine the degree of agreement between transcript and protein
abundance in the granulocyte proteomes (SF, BF, PF). Comparisons were made between
transcriptional profiles of non-selected hemocytes from sugar-fed naïve mosquitoes, 24

hours after feeding with a non-invasive CTRP mutant Plasmodium berghei (comparable to a
non-infectious blood meal), or 24 hours after feeding with wild-type P. berghei. Hemocyte
transcript and protein profiles analyzed by MCIA were based on the log fold change
between two treatments (SF, BF and PF). Additionally, MCIA was performed on subsets
of the proteomics data in order to examine the hemocyte-specific, immune-specific and
proliferation-specific response of the innate immune system.

The transcriptomics data set includes 10469 genes. The hemocyte-specific proteomics data
set contains 1128 proteins, the immune specific data set includes 43 proteins while 7 proteins
are attributed to the proliferation specific data set. All features, i.e. genes and proteins
as well as the mentioned subsets, were measured in three conditions: PFvSF, PFvsBF and
BFvSF.
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2.5.3 Gene Set Enrichment Analysis of Human miRNAs Following Traumatic
Brain Injury

The miRNA data set introduced here represents a subset of the data generated by our
collaborators from the Medical University Graz within a co-authored study [188] in which it
was shown that microparticles isolated from cerebrospinal fluid of traumatic brain injured
patients are potent injury specific messengers carrying mRNAs, miRNAs and proteins.

Briefly, cerebrospinal fluid (CSF) samples of patients with severe traumatic brain injuries
(TBI) were collected when ventricular drainage was implemented as a measure of intensive
care treatment [188].

In this study, a total of 63 human miRNAs were identified. 35 of them were associated
with cerebrospinal fluid microparticles (CSF-MP). The goal of the analysis is to identify
enriched, neuron-related, biological processes in the two lists of identified miRNAs. Owing
to ethical considerations samples were not taken at standardized time points but rather when
ventricular drainage was indicated due to acute increased intracranial pressure. Thereby
a higher risk of ventricular drain infections as a result of additional study dependent
interventions was avoided. 26 samples from 11 patients were collected over a time period
of 2 years. CSF samples from adults who received a lumbar puncture for exclusion of
subarachnoid hemorrhage or inflammatory diseases were collected for control studies
(n=26). Subjects without confirmed central nervous system diseases, i.e. hemorrhage or
inflammation, were considered healthy and included as controls (n=17).

The miRWalk database [209] was used to detect validated target genes of the identified
human miRNAs (has-miR).

2.5.4 Integrative Pathway Enrichment Analysis of Microdissected Tumor and
Stroma from Ovarian Cancer

In order to elucidate the crosstalk of tumor and stroma in ovarian cancer, a novel approach
developed during this doctoral thesis, Integrative Pathway Enrichment Analysis (IPEA) is
used.

We apply IPEA to the gene expression profiles of 38 pairs of microdissected tumor and
stroma from high-grade serous ovarian cancers. The data set GSE40595 was downloaded
from the Gene Expression Omnibus [208]. Data generation and preparation was described
by Mok et al. in [210] and by Leung et al. in [211].

The samples originated from Department of Gynecologic Oncology and Reproductive
Medicine at The University of Texas. Microdissection [212] was performed to separate the
stromal from the tumor components.

GPL570 GeneChip Human Genome U133 Plus 2.0 microarrays (Affymetrix Inc., Santa Clara,
CA, USA) were used for gene expression profiling. The resulted arrays were scanned with
GeneChip Scanner 3000 7G (Affymetrix Inc.) while the normalization was performed with
an invariant set of probe sets to adjust the overall signal level of the arrays to the same level.
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Expression levels were calculated with a model-based PM-only approach from the dChip
software [213].

Both tumor and stroma data sets contain 20184 genes which were measured in 38 matched
samples.

2.5.5 Cross-Species Comparison between Pichia pastoris and Chinese Hamster
Ovary Cells

The cross-species comparison between P. pastoris and CHO is based on two model proteins
with different complexities which challenge the expression systems in various ways: human
serum albumin (HSA), a monomeric and non-glycosylated protein and a more complex
model protein, a single chain Fv-Fc fusion antibody (3D6scFv-Fc) derived from the
monoclonal anti-HIV-1 antibody 3D6 which is homodimeric and contains the Fc-specific
glycosylation.

The first part of the data generation was performed by our collaborators Andreas Maccani
and Nils Landes under the supervision of Prof. Diethard Mattanovich from the Austrian
Centre of Industrial Biotechnology and included model protein construction which resulted
in a high and a low producer strain for each model protein and production system as well as
the subsequent fed batch cultivation which was performed in a comparable regime allowing
a quantitative comparison.

Microarray experiments were performed by our collaborators Niels Landes, Nadine Tatto
and Alexandra Graf from the Austrian Centre of Industrial Biotechnology. A CHO specific
DNA microarray (Agilent 4x44k design) based on the published and fully annotated
genomic sequence of the CHO-K1 cell line [214] was designed. For transcriptome analysis
of P. pastoris samples a custom DNA microarray (Agilent 8x15k design) was used. For both
production systems total RNA samples from five strains (3D6scFv-Fc low and high producer,
HSA low and high producer and non producer) were analyzed in biological triplicates
(samples of three independent fermentations) and technical duplicates (dye-swap). For each
production system, a reference sample was generated by pooling equal amounts of total
RNA from all 15 biological replicates for each production system. Raw data were processed
with the Agilent Feature Extraction software (v11.0). Since a clear intensity dependent dye
bias was seen in the data, it was decided to use Loess normalization after correcting for low
level background noise. Intensity dependent dye bias is commonly seen in 2-color arrays due
to the different properties of Cy3 and Cy5. Loess normalization counteracts this systematic
bias. Differentially expressed genes were determined with the limma Bioconductor package
[215], using a linear model fit and the ebayes function to calculate significance levels. Since
in microarray analysis a large amount of independent tests are made (one for each gene
in the dataset), the significance values need to be corrected for multiple testing. For this
purpose the Benjamini-Yekutieli correction [216] was used to compute adjusted p-values.

Proteomics experiments were performed by Clemens Gruber from the Austrian Centre
of Industrial Biotechnology under the supervision of Prof. Friedrich Altmann. For both
production systems, three biological and three technical replicates of each producing clone
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were compared with an empty vector control using 2D-LC-ESI MS/MS with prior TMT
labelling.

Protein quantification and statistical evaluation was done by Gerda Modarres and Alexandra
Graf from the Austrian Centre of Industrial Biotechnology. The R package isobar [217]
provides methods for preprocessing, normalization and report generation for the analysis of
quantitative mass spectrometry proteomics data tagged with isobaric labels, such as iTRAQ
and TMT. In the first step, sample normalization is performed in order to standardize
median intensities in all reporter channels. Subsequently, differentially expressed proteins
are computed.

Finally, four data sets emerged containing: 5254 P. pastoris genes, 1955 P. pastoris proteins,
20650 CHO genes and 609 CHO proteins. These data sets were measured in all four strains:
3D6 low producer (3D6 L:WT), 3D6 high producer (3D6 H:WT), HSA low producer (HSA
L:WT) and HSA high producer (HSA H:WT).
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The current chapter summarizes the results of this doctoral thesis. The analysis of the life
cycle stages is presented in the first section followed by the results of the cross-species
comparison between P. pastoris and CHO cells. Subsequently, the results of the integrative
analysis of the immune response of A. gambiae are shown. The forth section describes the
results of a traditional gene set enrichment approach applied to miRNAs enriched in patients
with traumatic brain injury. The last part of this chapter is dedicated to the new pathway
enrichment method that was developed and the results obtained through its application to
microdissected tumor and stroma gene expression profiles.

3.1 Plasmodium falciparum Lifecycle Stages Analysis

This section presents the results of the triple integrative analysis of the transcriptome and
proteome of P. falciparum as published in [146]. The results of each analysis method can be
divided into method-specific associations and general associations. The general associations
are used to detect results which are common to all three methods.

3.1.1 Co-Inertia Analysis Results

With CIA the six life cycle stages in the gene and protein space (see Figure 3.1) are visualized.
We observe that the co-inertia x axis separates the intraerythrocytic cycle stages (trophozoite,
ring, schizont, merozoite) from gametocytes and sporozoites. In the erythrocytes, the cycle
begins with the ring stage, followed by the trophozoite stage. Trophozoites mature into
schizonts, which cause the rupture of blood cells resulting in the release of merozoites.
This exact sequence within the intraerythrocytic cycle can be observed in Figure 3.1. The
sporozoites are the sexual stage of the mosquito and will be released in the blood stream of
the infected organism. The ring stage can develop into a gametocyte and can be ingested by
a mosquito. In addition to the life cycle stages, GO terms can also be represented through
projections in the CIA plot (see Figure 3.5).

General associations

General associations resulting from CIA are distributed as follows: In gene space, GO terms
in the first trigonometric quadrant are associated with trophozoites, GO terms in the second
quadrant with gametocytes and GO terms in the third quadrant with sporozoites. GO terms
in the first and forth quadrant, which were not identified as specific for trophozoites are
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Figure 3.1: CIA offers the possibility to visualize the gene and protein space projections of the six life cycle
stages of P. falciparum in one plot. The projection in gene space are represented by circles and in the
protein space by squares. For each life cycle stage, the two corresponding projections are connected
through a line. We observe that the co-inertia x axis separates the intraerythrocytic cycle from the
stages gametocyte and sporozoite.

Figure 3.2: CIA general associations. Overlap between gene and protein space. For each life cycle stage, the left
ellipse shows the number of general GO term associations in gene space whereas the right ellipse
shows the number of general GO term associations in protein space. The amount of identical GO
terms is shown in the overlapping region of the ellipses. In general, more GO term associations
emerge form gene space than from protein space. Two exceptions can be observed: the sporozoite
stage, where more associations are found in protein space and the gametocyte stage, where a similar
number of associations is found in each space. These tendencies can be also observed in Figure 3.5.
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associated with rings, schizonts and merozoites. Due to the proximity of stages in the CIA
gene space, a more specific distribution to each stage is not possible.

Figure 3.3: CIA division limits in gene space. CIA division limits for the general (left) and specific (right)
associations in gene space. The colors of the areas correspond to the colors of the stages they are
associated with.

Figure 3.4: CIA division limits in protein space. CIA division limits for the general (left) and specific (right)
associations in protein space. The colors of the areas correspond to the colors of the stages they are
associated with.

In protein space the associations are produced as follows: For gametocytes and sporozoites,
we follow the same criteria as in gene space. In order to associate GO terms to trophozoites,
rings, schizonts and merozoites, we divide the first and forth quadrant in three sectors. GO
terms that form angles of at least 30 degrees with the positive co-inertia x axis are associated
with trophozoites. GO terms with an angle between -10 and 30 degrees are associated
with rings and schizonts. GO terms with an angle wider than -10 degrees are associated
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Figure 3.5: Co-inertia analysis and GO terms - results. In addition to the life cycle stages, GO terms can also be
projected into the CIA plot. A) projections of the GO terms in gene space and B) projections of the
GO terms in the protein space. Each GO term is represented by a number for readability reasons.
Please note that the life cycle stages and the GO terms are plotted on different scales. The lower
and left axes represent the life cycle stages (co-inertia x and y axis) and the upper and right axes
represent for the GO terms (co-inertia go x and y axis). In gene space we observe a clear projection
of the GO terms in the direction of gametocytes and sporozoites. In protein space, GO terms are
projected clearly in direction of sporozoites and the intraerythrocytic cycle.

with merozoites. As GSVD and IBC discover associations only in common space (gene and
protein space), the CIA associations for each life cycle are computed as the set union of the
associations in gene and the associations in protein space. These general associations are
shown in Additional files 2 and 3 of [146]. Detailed representations of the division limits for
the specific and general associations are shown in Figures 3.3 and 3.4. The overlap between
the general association in gene and protein space are shown in Figure 3.2.

Method-specific associations

In addition to the general results, method-specific associations of GO terms with life cycle
stages are observed. For these associations, the direction of the projected GO terms is
considered. From the general associations, those GO terms are taken that have a distance of
at least 0.1 to the origin of the coordinate systems. An exception is made for gametocytes in
protein space. A threshold of 0.05 is more appropriate here due to the spacial distribution
of GO terms relative to the origin. These thresholds result in GO term associations with
gametocyte, trophozoite and sporozoite stages in gene space. Details are presented in
Table 3.1 and Additional file 5 of [146]. In the protein space, clear GO term associations
with gametocyte, sporozoite, trophozoite and merozoite stages are found (Table 3.2 and
Additional file 6 of [146]). This file also includes associations with the stages ring and
schizont.

Based on Figure 3.5 some of the most remarkable associations in gene space are: GO:0006071

glycerol metabolic process (559) and GO:0002720 positive regulation of cytokine production (363)
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Table 3.1: CIA specific GO term association to the life cycle stage gametocyte in gene space. The index
corresponds to numbers in Figure 3.5A.

Index GO Term ID and Description

61 GO:0006334 nucleosome assembly

145 GO:0006072 glycerol-3-phosphate metabolic process

171 GO:0006465 signal peptide processing

362 GO:0007131 reciprocal meiotic recombination

363 GO:0002720 regulation of cytokine production involved in immune response

364 GO:0006359 regulation of transcription from RNA polymerase III promoter

467 GO:0051604 protein maturation

480 GO:0001819 positive regulation of cytokine production

559 GO:0006071 glycerol metabolic process

Table 3.2: CIA specific GO term associations to the life cycle stage gametocyte in protein space. The index
corresponds to the numbers in 3.5B.

Index GO Term ID and Description

1 GO:0009405 pathogenesis

39 GO:0007165 signal transduction

64 GO:0007155 cell adhesion

139 GO:0045454 cell redox homeostasis

276 GO:0044262 cellular carbohydrate metabolic process

366 GO:0006103 2-oxoglutarate metabolic process

for gametocytes; GO:0006101 citrate metabolic process (425) and GO:0016255 attachment of
GPI anchor to protein (89) for sporozoites; GO:0006591 ornithine metabolic process (274) and
GO:0006094 gluconeogenesis (418) for trophozoites. In protein space we observe: GO:0045454

cell redox homeostasis (139) and GO:0044262 cellular carbohydrate metabolic process (276) for
gametocytes; GO:0006928 cellular component movement (515) and GO:0015991 ATP hydrolysis
coupled proton transport (29) for sporozoites; GO:0006412 translation (11) and GO:0019538:
protein metabolic process (361) for trophozoites; GO:0006334 nucleosome assembly (61) and
GO:0050776 regulation of immune response (8) for ring and schizonts; GO:0042594 response to
starvation (592), GO:0000045 autophagic vacuole assembly (416) and GO:0002253 activation of
immune response (418) for merozoites.

While the overlap of general CIA GO term associations between gene and protein space is
moderate (Figure 3.2), the overlap of specific CIA GO term associations between gene and
protein space is modest: Three GO terms were projected in the direction of trophozoites in
gene and in protein space: GO:0006412 translation (11), GO:0006414 translational elongation
(44) and GO:0044257 cellular protein metabolic process (114).
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Figure 3.6: Angular distances of generalized singular value decomposition. In general, the angular distances
map to the common space.

3.1.2 Generalized Singular Value Decomposition Results

As the final step of the GSVD, a restrictive gene set enrichment analysis (GSE) is performed.
The type of performed GSE analysis is based on the angular distance that encodes for each
life cycle stage the significance of the gene set relative to the protein set. If the angular
distances are between−π

8 and π
8 , then the gene and protein data sets are of equal significance,

and the GSE is conducted in the common space. The common space is defined by both the
gene and the protein data set. In the current analysis all life cycle stages (Figure 3.6) are
assigned to the common space.

Based on the angular distance, a separation of the intraerythrocytic cycle (angular distances
greater than zero) from other stages (angular distances less than zero) is possible. Following
the workflow introduced by Alter et al. in [127], the restricted GSE performs a GSE for each
life cycle stage on 50% of the genes and proteins that present the highest absolute values in
the corresponding arraylets.

General associations

All resulting GO terms having a p-value smaller than 0.05 are considered to be general
associations. These GO terms are shown in Additional file 7 of [146].

Method-specific associations

The method-specific GO terms are a subset of the general associations consisting of the top
15 GO terms, with the smallest p-values. The top 15 GO terms were chosen because this
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Table 3.3: GSVD specific associations to gametocyte stage in the common space.

GO Term ID GO Term Description

GO:0044238 primary metabolic process

GO:0008152 metabolic process

GO:0044237 cellular metabolic process

GO:0045017 glycerolipid biosynthetic process

GO:0043170 macromolecule metabolic process

GO:0034645 cellular macromolecule biosynthetic process

GO:0046474 glycerophospholipid biosynthetic process

GO:0009059 macromolecule biosynthetic process

GO:0022613 ribonucleoprotein complex biogenesis

GO:0044260 cellular macromolecule metabolic process

GO:0019538 protein metabolic process

GO:0046486 glycerolipid metabolic process

GO:0042254 ribosome biogenesis

GO:0006839 mitochondrial transport

GO:0009987 cellular process

number mirrors approximately the number of CIA specific associations. In this way a fair
comparison can be performed.

The method-specific associations are presented in Tables 3.3 and 3.4 and in Additional File 8

of [146]. Biologically relevant associations include: GO:0051805/ GO:0051807 evasion or
tolerance of immune/defense response of other organism involved in symbiotic interaction,
GO:0051832 avoidance or defenses of other organism involved in symbiotic interaction, and
GO:0052173 response to defenses (immune response) of other organism involved in symbiotic
interaction for trophozoites and schizonts. The other stages are associated with more general
GO terms such as GO:0044237 cellular metabolic process, GO:0019538 protein metabolic process
and GO:0046474 glycerophospholipid biosynthetic process.

3.1.3 Integrative Biclustering Results

The IBC results include two types of biclusters: (i) biclusters containing genes, proteins, GO
terms and life cycle conditions and (ii) biclusters containing genes, proteins and GO terms.
Since we are interested in GO terms associations with life cycle stages, only the first type
of biclusters will be used for further analysis. If a GO term is in the same bicluster as a
life cycle stage, this GO term is associated with that life cycle stage. If there are more life
cycle stages in a bicluster, the GO terms are associated with all these life cycle stages. If
a life cycle stage is included in more than one bicluster, GO terms from all biclusters are
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Table 3.4: GSVD specific associations to trophozoite stage in the common space.

GO Term ID GO Term Description

GO:0044403 symbiosis, encompassing mutualism through parasitism

GO:0044419 interspecies interaction between organisms

GO:0051704 multi-organism process

GO:0009607 response to biotic stimulus

GO:0006952 defense response

GO:0051707 response to other organism

GO:0051805
evasion or tolerance of immune response of other organism
involved in symbiotic interaction

GO:0051807
evasion or tolerance of defense response of other organism
involved in symbiotic interaction

GO:0051832
avoidance of defenses of other organism involved in symbiotic
interaction

GO:0051834
evasion or tolerance of defenses of other organism involved in
symbiotic interaction

GO:0052173
response to defenses of other organism involved in symbiotic
interaction

GO:0052564
response to immune response of other organism involved in
symbiotic interaction

GO:0020033 antigenic variation

GO:0051809
passive evasion of immune response of other organism involved in
symbiotic interaction

GO:0006091 generation of precursor metabolites and energy
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Figure 3.7: Integrative biclustering - network view of the results. The results of IBC were inspected and only
biclusters including life cycle stages were considered for further analysis. IBC discovered 20 clusters
of which 9 contained life cycle stages and GO terms. These 9 biclusters were processed and fed
into Cytoscape. An association between a life cycle stage and a GO term is represented by an edge.
Different biclusters are represented by different edge colours. The life cycle stages are shown in the
same colours as those used for CIA and GSVD. Genes are coloured in orange, proteins in light blue
and GO terms in yellow.
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associated with that life cycle stage. IBC discovered 20 biclusters and 9 of them contained
life cycle stages and GO terms. A network view of the results is shown in Figure 3.7.

General and method-specific associations

Since a life cycle stage is either included in a bicluster or not and as a consequence is
either associated to a GO term or not, it is not possible to distinguish between general
and method-specific associations. Figure 3.7 shows a vast amount of genes (in orange),
proteins (in light blue), GO terms (in yellow) and the six life cycle stages: gametocyte (in
green), sporozoite (in pink), trophozoite (in brown), ring (in red), schizont (in dark blue)
and merozoite (in light blue). The 9 different biclusters which included life cycle stages can
be identified through the colour of their edges (Figure 3.7). The exact associations with the
life cycle stages are shown in Additional file 9 of [146].

3.1.4 Results Identified by CIA, GSVD and IBC

In this section we present the GO associations which were obtained by intersecting the results
computed by CIA, GSVD and IBC. These associations are termed common associations and
are shown in Figure 3.8. They are based on gene as well as protein information and are
therefore considered to be in the common space.

The GO associations tables computed in R were converted into a csv-format and loaded
into Cytoscape. We observe here that the gametocytes are linked to the rest of the network
through only one general GO term, GO:0009987 cellular process. The sporozoite stage is also
loosely connected to the network through two GO terms, GO:0009056 catabolic process and
GO:0009116 nucleoside metabolic process.

The intraerythrocytic cycle, composed of trophozite, ring, schizont and merozoite are highly
interconnected. The merozoite stage presents a high number of associations with specific GO
terms such as GO:0030260 entry into host cell and GO:0044409 entry into host. Trophozoites
are associated with a small number of GO terms, including GO:0050896 response to stimulus,
GO:0006096 glycolysis, GO:0006006 glucose metabolic process and GO:0006091 generation of
precursor metabolites and energy. The stages schizont and ring are connected through the GO
terms GO:0006955 immune response, GO:0050776 regulation of immune response, GO:0006325

chromatin organization and GO:0006091 generation of precursor metabolites and energy. It is also
interesting to see that merozoites and schizonts are linked only by the GO term GO:0009116

nucleoside metabolic process.

Relative proportions of common and methods-specific results

In the case of CIA, one can observe a high overlap between the common results and
the CIA specific GO terms associations: 8 GO terms (GO:0005975 carbohydrate metabolic
process, GO:0006644 phospholipid metabolic process, GO:0008654 phospholipid biosynthetic process,
GO:0045017 glycerolipid biosynthetic process, GO:0006661 phosphatidylinositol biosynthetic process,
GO:0046488 phosphatidylinositol metabolic process, GO:0006506 GPI anchor biosynthetic process,

52



3.1 Plasmodium falciparum Lifecycle Stages Analysis

Figure 3.8: GO terms to life cycle associations discovered by all three methods. Network view of the GO term to
life cycle stage associations discovered by all three integrative analysis methods: CIA, GSVD and
IBC. We observe that gametocytes and sporozoites are loosely connected to the rest of the network,
underlining the separation of these stages from the intraerythrocytic cycle. Merozoites possess the
largest amount of GO term associations, while trophozoites show the lowest amount of associations.
Further details concerning individual stage-to-GO-term mappings are addressed in the discussion.

GO:0016255 attachment of GPI anchor to protein) associated by CIA with merozoites in protein
space, 8 GO terms (GO:0009058 biosynthetic process, GO:0051276 chromosome organization,
GO:0006325 chromatin organization, GO:0050776 regulation of immune response, GO:0006955

immune response, GO:0006096 glycolysis, GO:0006334 nucleosome assembly, GO:0044237 cellular
metabolic process) associated by CIA with rings and schizonts in protein space and 3 GO
terms (GO:0009117 nucleotide metabolic process, GO:0006163 purine nucleotide metabolic process,
GO:0009116 nucleoside metabolic process) associated by CIA with sporozoites in protein space.
Only two GO terms (GO:0006096 glycolysis and GO:0006006 glucose metabolic process associated
with trophozoites) from gene space, coincide with GO terms from the common results. Protein
activity characteristics derived from CIA show considerable similarities to the other two
methods.

Six specific results of GSVD for the life cycle stage ring coincide with the common GO
term associations to this stage (GO:0009058 biosynthetic process, GO:0019538 protein metabolic
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process, GO:0044237 cellular metabolic process, GO:0008152 metabolic process, GO:0055114

oxidation-reduction process, GO:0006091 generation of precursor metabolites and energy). There
are three identical associations for the stage merozoite (GO:0019538 protein metabolic process,
GO:0016311 dephosphorylation and GO:0006470 protein dephosphorylation). For each of the
other stages, only one GO term from the common associations coincides with the method-
specific associations (GO:0009987 cellular process for gametocytes, GO:0006091 generation of
precursor metabolites and energy for trophozoites, GO:0020033 antigenic variation for schizonts
and GO:0009056 catabolic process for sporozoites). In conclusion, the ring stage is very well
characterized by the GSVD, which is almost in complete agreement with the other methods.
The properties of the other stages do not coincide with the common results but should
definitely be considered for further analysis as they are highly significant.

3.2 Analysis of Hemocyte and Granulocyte Immune Response of
Anopheles gambiae

In this section the structural concordance between the proteomic profiles of the granulocyte
cell subset and the transcriptomic profile of the general hemocyte population is measured
and the results are shown as described in the co-authored publication [205].

To determine the co-structure between the proteomic and existing hemocyte transcriptomic
profiles, candidate genes responsive to granulocyte-enrichment during sugar-feeding (SF),
blood-feeding (BF), or P. falciparum infection (PF) were further examined by multiple co-
inertia analyses (MCIA) (Figure 3.9 - 3.11). Using published hemocyte transcriptome data
[206], MCIA was used to examine the degree of agreement between transcript and protein
abundance in the granulocyte proteomes (SF, BF, PF). Comparisons were made between
transcriptional profiles of non-selected hemocytes from sugar-fed naive mosquitoes, 24

hours after feeding with a non-invasive CTRP mutant Plasmodium berghei (comparable to a
non-infectious blood meal), or 24 hours after feeding with wild-type P. berghei.

Hemocyte transcript and protein profiles analyzed by MCIA were based on the log fold
change between two treatments (SF, BF and PF) and are displayed as the end points of a
segment. The more similar the two profiles are, the shorter the segment; since the length is
proportional to the divergence between the two datasets. If the two profiles were identical,
the length of the segment would be zero. Individual transcripts or proteins that define the
comparison are highlighted for each MCIA plot (Figures 3.9, 3.10 and 3.11).

The MCIA plots are based on the first two MCIA axes (Sample Axis 1 and Sample Axis 2).
MCIA Sample Axis 1 accounted for 84% to 91% of the explained covariance. Therefore, the
shown plots represent a good approximation of two data sets. Additionally, transcripts and
proteins (features of these data sets) were projected into the same plane (Feature Axis 1 and
Feature Axis 2). The scaling of the Sample Axes is different from the scaling of the Feature
Axes. This was done in order to obtain an easier to read plot and to better illustrate the
associations of features to samples.

Despite differences in sample collection, sampling time points, and the species of malaria
parasite used, our MCIA analysis revealed a high level of concordance between the
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3.2 Analysis of Hemocyte and Granulocyte Immune Response of Anopheles gambiae

Figure 3.9: Hemocyte-specific MCIA. The hemocyte transcriptome is compared to the granulocyte proteome
(Table S3, tab A). RV-coefficient = 0.97. Transcriptome (green circle) and proteome (red triangle)
profiles are displayed for each sample comparison (P. falciparum infection (PF), blood-feeding (BF),
and sugar-feeding (SF)). The samples in this analysis were computed as log fold changes between
two treatments: P. falciparum infection referenced to blood-feeding (PFvBF), P. falciparum infection
referenced to sugar-feeding (PFvSF) and blood-feeding referenced to sugar-feeding (BFvSF).
Additionally, the most highly expressed features (genes and proteins with the greatest distance from
the origin) are projected in the MCIA result plots. Due to differences between the coordinates of the
comparisons and of the most expressed features plots, different axes scaling was used.

previously published hemocyte transcriptomes and the enriched granulocyte protein
profiles. Comparisons were performed to identify global similarities between hemocyte
transcript and protein abundance profiles (Figure 3.9), and to examine sub-populations of
immune-specific (Figure 3.10) or proliferation-specific (Figure 3.11) protein profiles. An
overview with the highlighted genes and proteins is provided in Table 3.5 and 3.6 for the
hemocyte specific analysis while the immune-specific and proliferation-specific associations
are shown in the Appendix in Tables B.1 - B.4.
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Figure 3.10: Immune-specific MCIA. The hemocyte transcriptome is compared to the immune-specific
granulocyte proteome (Table S3, tab B). RV-coefficient = 0.96. For additional details please consult
Figure 3.9.

Figure 3.11: Proliferation-specific MCIA. The hemocyte transcriptome is compared to the proliferation-specific
granulocyte proteome. RV-coefficient = 0.99. For additional details please consult Figure 3.9.
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Table 3.5: Hemocyte-specific gene associations

Genes Annotation Feature Axis 1

[AU]
Feature Axis 2

[AU]

AGAP005890 no metadata -7,27 -0,16

AGAP002134 no metadata 7,47 -1,29

AGAP012278 no metadata -7,47 -1,90

AGAP008282 no metadata 8,46 -1,55

AGAP008696 no metadata 9,92 -1,99

AGAP000278 OBP9 odorant binding protein -6,41 -1,07

AGAP006448 cAMP-dependent protein kinase regulator -0,94 2,60

AGAP003249 CLIP3 Clip-domain serine protease -3,10 -2,11

AGAP002082 no metadata 0,21 1,79

AGAP003241 no metadata 1,22 1,92

AGAP010904 CPFL3 cuticular protein 3 from CPFL family -5,35 -2,24

AGAP008843 aquaporin 1 5,84 -2,42

Figure 3.12: Overrepresented biological processes in the set of validated target genes of CSF-MP associated
miRNAs
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Table 3.6: Hemocyte-specific protein associations

Proteins Annotation Feature Axis 1

[AU]
Feature Axis 2

[AU]

AGAP000545 no metadata 3,32 -0,13

AGAP007212 ATP-dependent RNA helicase DHX8/PRP22 -4,61 -1,94

AGAP005467 vigilin 2,78 0,03

AGAP007505 vitellogenic carboxypeptidase-like protein -6,04 1,09

AGAP003610 no metadata -4,89 -2,80

AGAP008193 nidogen (entactin) 2,79 -0,95

AGAP009218 no metadata -0,71 -3,41

AGAP002038 no metadata 2,55 -2,54

AGAP000622 no metadata 0,31 1,49

AGAP012281
Eukaryotic translation initiation factor 3

subunit M 0,42 2,18

AGAP009099 transglutaminase -1,71 1,45

3.3 Gene Set Enrichment Analysis of Human miRNAs Following
Traumatic Brain Injury

In this section the results of the GSEA applied to two sets of human miRNAs are presented.
As described in [188], the 35 overrepresented biological processes in the set of validated
target genes of cerebrospinal fluid microparticles (CSF-MP) associated miRNAs are shown.
Additionally, enriched biological processes were assessed for all 63 identified miRNAs.

For the 35 CSF-MPs associated miRNAs, the validated target genes were identified with
miRWalk. A total of 1363 experimentally validated target genes were found (see Supplement
4 of [188] for a complete list).

The analysis of the target gene associated GO terms yielded a hierarchical network consisting
of 1761 nodes and 3131 edges. The nodes represent biological processes that are connected
through directed edges. The 35 overrepresented neuron related biological processes and
their computed p-values are presented in Table 4. The subset of the processes with a p-value
smaller than 0.001 are shown in Figure 3.12.

For all 63 miRNAs (Supplement 3 of [188]), identified by Bioanalyser profiling, a total
of 1659 validated target genes were identified (Supplement 5 of [188]). Validated target
genes were not found for the following miRNAs: hsa-miR-1180, hsa-miR-1300, hsa-miR-923,
hsa-miR-1182, hsa-miR-374a* and hsa-miR-431. The GO analysis predicted 1997 significantly
enriched GO Terms, 36 of them being neuron related. Identified overrepresented neuron
related biological processes, in CFSF-MP associated miRNAs as well as in all identified
miRNAs, together with the corresponding p-values, can be found in Table C.1.
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3.4 Development of an Integrative Gene Set Enrichment Analysis Method

3.4 Development of an Integrative Gene Set Enrichment Analysis
Method

This section describes the novel pathway centric gene set enrichment approach, suitable
for integrative data analysis that was developed in the course of this thesis. The first
part motivates the need for such an approach while the second part provides a detailed
mathematical description.

While multiple approaches which test for pathway enrichment in a given list of genes (or
gene products) have been described, the simplest being a one tailed Fisher’s Exact Test or a
test based on the hyper geometric distribution, others account for the rank of genes [195].
Traditional methods for determining functional pathway enrichment treat pathways as a
list of elements, while ignoring their inherent connectivity (see 2.4 for details). Integrative
approaches include: FunNet [218] which computes similarity between gene sets based on the
co-expression networks of the measured data, clusters relevant sets and displays the results
in a network overlaid with gene co-expression information; SPIA [145] which combines
the enrichment of a pathway with its perturbation which is computed by propagating
expression changes throughout the pathway; PARADIGM [143, 144] uses a factor graph
with a set of interconnected variables encoding expression and activity of genes as well as
other known gene products to predict patient centric pathway alterations and MONA [141] a
multi-level ontology analysis based on a Bayesian network with two layers: an ontology term
layer connected to a layer of hidden gene products as defined by the ontology used. These
methods provide an approach to integrate multiple data types in the context of pathway
enrichment but are computationally intensive and do not take into account the topology of
a pathway. This information can be used to compute the information flow based importance
of a gene in a pathway and, later in the analysis, account for it.

In this doctoral thesis an integrative, network based and pathway centric gene set enrichment
approach is developed. This method is termed Integrative Pathway Enrichment Analysis
(IPEA). IPEA integrates multiple data sets and/or data types via MCIA, collects and
combines the most variant set of features from each set and correlates them with their
biological pathway importance.

Figure 3.13: Effect of network topology on the activation of a network.

Using the pathways curated by the Reactome project [165], scores will be assigned to
pathway elements based on their contribution to the information flow in the network. A
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toy network shown in Figure 3.13 emphasizes the fact that the topology of a network is
very important when one wishes to compute its activation. All information flows through
the nodes C and D in this toy network. Activation of C and D has a higher impact on the
overall activation of the pathway than the activation of F and G which are end nodes and
have no effect on other network nodes. This flow based approach [219] rewards both highly
linked hubs and bottleneck nodes which may have few connections but bridge different
clusters within a network. The enrichment score of a given pathway will then be quantified
by correlating the scores from the network analysis with the MCIA scores.

3.4.1 Detailed Description of the Integrative Pathway Enrichment Analysis

IPEA is a network based approach for the enrichment of pathways which can be applied
to the results of an integrative analysis method. In the scenario presented here, MCIA
is employed as an integrative approach due to its ability to capture the most covariant
features in the analyzed data sets. In practice, MCIA can be substituted by other integrative
analysis methods appropriate for a specific study aim. Additionally, IPEA can be applied to
individual analysis results such as the list of differentially expressed genes between two
conditions. In general, IPEA can be applied to any gene list that has gene scores associated
to it.

IPEA can be divided into the following steps (see Figure 3.14):

• computation of Reactome gene scores,
• computation of MCIA gene scores and
• computation of pathway enrichment scores from the Reactome and MCIA gene scores.

Computation of Reactome Gene Scores

Reactome [165] is an open source, manually curated and peer-reviewed database that
summarizes the rich and already existent information on biological pathways in a
computationally accessible format. The core entity of the database is the Reactome reaction.
Distinct biological entities such as nucleic acids, proteins, complexes, vaccines, anti-cancer
therapeutics and small molecules can participate in a reaction. One noteworthy advantage
of Reactome is that each pathway can be represented as a network which allows the use of
the corresponding network topology.

Access to the Reactome pathways is facilitated by the Bioconductor package graphite [220]
which organizes the pathways in a list [221]. Each element of the list represents one pathway
and includes its nodes (genes) and edges (connections between genes). From this, the
adjacency matrix of the pathway is computed.

The information flow based scores of the genes in a pathway are defined by their dynamical
importance (DI) which was shown to best characterize the importance of nodes in a network
[219]. Ik, the dynamical importance I of node k is defined as the change (∆) in the largest
eigenvalue λ of the corresponding adjacency matrix upon removal of node k:

Ik ≡
∆k

λ
. (3.1)
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Figure 3.14: IPEA Workflow

Additionally, [219] provides an approximation for Ik, Îk, that decreases the computation
time for large networks:

Îk =
vkuk

vTu
, (3.2)

where vk and uk are the kth components of the left and right eigenvectors v and u
corresponding to the largest eigenvalue λ.

Computation of MCIA Gene Scores

MCIA is implemented in the Bioconductor package omicade4 [137]. The MCIA gene scores
are defined as the coordinates of genes projected on the first MCIA axis which is associated
to the highest eigenvalue and captures the most covariant features. Genes projected far away
from the origin have a higher importance. Due to this, genes projected at the ends of the axis
are of interest and, thus higher (absolute) MCIA scores are equivalent to more important
genes.

In addition to the first MCIA axis, subsequent axes can be taken into account. Since each
axis can capture different aspects of the data under study, conducting IPEA on these axes
can reveal pathways associated with these aspects.

The genes of each data set analyzed by MCIA are characterized by their own MCIA gene
scores. The corresponding Reactome scores, on the other hand, are equal for the studied
data sets. These scores mirror the biological network topologies of the pathways which are
independent of the measured data sets.
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Computation of the Pathway Enrichment Score

The enrichment scores of each pathway in Reactome are calculated from the Reactome gene
scores and the MCIA gene scores. These enrichment scores mirror whether the genes which
are biologically driving a pathway (high DI) were also found to be most covariant in the
data sets under study (high MCIA scores) and thus account for the captured co-structure.

The most suitable way to compute this agreement is Spearman’s correlation. In contrast to
Pearson’s correlation, Spearman’s correlation, which uses the ranks of the scores instead of
the scores directly, is not effected by outliers known to artificially inflate the correlation.

By looking at the negative and the positive side of the MCIA axes separately, up and down
regulated pathways can be computed. If the pathway was enriched on the negative side of
the axis, the pathway is believed to be down regulated whereas a pathway which is enriched
on the positive side of the axis is up regulated.

Statistical Significance of the Pathway Enrichment Score

In order to exclude high enrichment scores due to chance, the significance of the enrichment
score is computed with a permutation test. This approach is motivated by the fact that the
distribution of the enrichment scores under the null hypothesis (pathway is not enriched) is
unknown.

The test constructs the null distribution by the permutation of the MCIA gene scores. From
this distribution the p-value (probability of an equal or higher enrichment score) of the
enrichment score can be computed as the number of permuted scores which are higher
than the pathway score computed from the real data, divided by the total number of
permutations.

3.5 Integrative Pathway Enrichment Analysis Applied to Ovarian
Cancer

In this subsection the results of IPEA applied to microdissected tumor and stroma from
ovarian cancer are presented. The section begins by exemplifying the ranking by DI in the
Reactome pathway TGF-beta receptor signaling in EMT. The second part of the section is
dedicated to the enriched pathways and corresponding genes in the microdissected tumor
and stroma ovarian cancer samples.

3.5.1 Dynamical Importance Ranking in the Pathway TGF-beta receptor
signaling in EMT

In order to examine in more detail the effects of the ranking imposed by the DI, the Reactome
pathway TGF-beta receptor signaling in EMT is used as a example. The structure of the network
can be seen Figure 3.15. It can be noticed that this is a strongly connected network with 15
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Figure 3.15: The TGF-beta receptor signaling in EMT pathway

nodes and 313 edges. The pathway was chosen because it is a strongly connected, cancer
related pathway with a small enough number of nodes that can be visualized easily. A short
description of the pathway is available in Reactome:

“In normal cells and in the early stages of cancer development, signaling by TGF-beta plays a tumor
suppressive role, as SMAD2/3:SMAD4-mediated transcription inhibits cell division by downregulating MYC
oncogene transcription and stimulating transcription of CDKN2B tumor suppressor gene. In advanced cancers
however, TGF-beta signaling promotes metastasis by stimulating epithelial to mesenchymal transition (EMT).
TGFBR1 is recruited to tight junctions by binding PARD6A, a component of tight junctions. After TGF-beta
stimulation, activated TGFBR2 binds TGFBR1 at tight junctions, and phosphorylates both TGFBR1 and
PARD6A. Phosphorylated PARD6A recruits SMURF1 to tight junctions. SMURF1 is able to ubiquitinate
RHOA, a component of tight junctions needed for tight junction maintenance, leading to disassembly of tight
junctions, an important step in EMT.”

Table 3.7 summarizes the results of the ranking based on DI. We notice that the highest
ranked gene is TGFBR1. 7 genes are ranked as second most important: RHOA, PRKCZ,
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ARHGEF18, PARD3, PARD6A, CGN and F11R. The next ranked genes are TGFBR2, TGFB1,
SMURF1 and RPS27A. UBB and UBA52 are ranked 7th followed by FKBP1A.

In order to have a better understanding of how the DI works, a plot of the dependence of
the DI rank of a node on the corresponding geometric mean between in and out degree
is shown in Figure 3.16. Here it can be noticed that the DI captures information about the
centrality of a node in a network empathizing its suitability for our purposes, i.e., to account
for hubs and bottlenecks in biological pathways.

Rank Gene DI

1 TGFBR1 0.07227

2 RHOA 0.07206

2 PRKCZ 0.07206

2 ARHGEF18 0.07206

2 PARD3 0.07206

2 PARD6A 0.07206

2 CGN 0.07206

2 F11R 0.07206

3 TGFBR2 0.07084

4 TGFB1 0.07077

5 SMURF1 0.06521

6 RPS27A 0.06038

7 UBB 0.05966

7 UBA52 0.05966

8 FKBP1A 0.03679

Table 3.7: Ranking of the nodes in the
TGF-beta receptor signaling in EMT
based on the dynamical importance.

Figure 3.16: Dependence of the dynamical
importance on the geometric mean
of the in and out degree of the nodes
exemplified in the TGF-beta receptor
signaling in EMT.

3.5.2 IPEA of Matched Tumor and Stroma Samples

Here, IPEA is applied to microdissected tumor and stroma samples in order to better
elucidate tumor and stroma cross-talk and to eventually discover new target genes for
ovarian cancer therapy.

The results of IPEA applied to 38 matched microdissected tumor and stroma samples from
patients with high grade serous ovarian cancer are shown. The first step of IPEA is the
MCIA analysis of the tumor and stroma data set. In Figure 3.17 it can be observed that the
matched tumor and stroma samples are very different. While some show similar tumor
and stroma profiles, such as sample 13 and 34, other tumor and stroma profiles are very
different, e.g. sample 26 and 21. This emphasizes the fact that stroma reacts differently to
tumor cells and could be a new target in ovarian cancer therapy.

The enriched pathways in tumor and stroma are computed based on the scores of the tumor
and stroma genes on the first MCIA axis. These scores are correlated with the DI scores of
each pathway in Reactome. The value of the Spearman correlation is used as an enrichment
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Figure 3.17: MCIA of microdissected and matched tumor and stroma samples

score. Additionally, the enrichment scores are calculated separately for the negative side
and for the positive side of the MCIA axis resulting in down and up regulated pathways.

The enriched pathways are displayed in Figure 3.18. In order to obtain an easy to interpret
result, only pathways that include genes with MCIA scores higher than the 75% quantile
are shown, i.e, projected as far as possible from the origin on the first MCIA axis. The
computed network contains genes as well as the pathways they belong to. Genes/pathways
that are active in tumor are displayed as blue ellipses while genes/pathways that are active
in stroma are displayed as red ellipses. Gray ellipses represent genes/pathways that are
active in tumor and stroma. Genes belonging to the same biological pathways are linked.
Each enriched pathway is represented by an ellipse which is linked to the genes belonging to
it by dashed lines. Figure 3.18 shows a double bipartite graph: one can distinguish between
tumor and stroma but also between up and down regulated pathways/genes. In addition to
the active genes and enriched pathways, actionable gene targets [222] are mapped on the
resulted network and are displayed as triangles. These target genes were downloaded from
the homepage of the Broad Institute, Boston, MA, USA.
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3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster Ovary Cells

Table 3.8: The co-structure between the four data sets is measured with the modified RV coefficient
Pichia
Transcriptome

Pichia
Proteome

CHO
Transcriptome

CHO
Proteome

Pichia
Transcriptome 1.000 0.755 0.939 0.826

Pichia
Proteome 0.755 1.000 0.607 0.811

CHO
Transcriptome 0.939 0.607 1.000 0.806

CHO
Proteome 0.826 0.811 0.806 1.000

3.6 Cross-Species Comparison Between Pichia pastoris and Chinese
Hamster Ovary Cells

In order to better characterize the two production systems P. pastoris and CHO, MCIA was
applied to the four data sets: P. pastoris transcriptomics, P. pastoris proteomics, CHO
transcriptomics and CHO proteomics. The data was measured in four conditions: 3D6

L:WT, 3D6 H:WT, HSA L:WT, HSA H:WT, resulting in 5254 P. pastoris genes, 1955

P. pastoris proteins, 20650 CHO genes and 609 CHO proteins. Additionally, four
comparisons of the initial conditions were computed: 3D6 H:3D6 L, HSA H:HSA L, 3D6

L:HSA L, 3D6 H:HSA H.

In addition to the overall analysis, secretion and ribosome specific analyses are of particular
interest as these feature subsets play key roles in the recombinant protein production (see
Appendix D).

3.6.1 Co-Structure of the Measured Data Sets

The pairwise co-structure of the four data sets has been computed with the traditional RV
coefficient. Additionally, a permutation test was performed (n = 1000 repetitions) in order
to compute the significance of the computed RV values. The values for the traditional RV
coefficient were very high (≥ 0.84) while the computed p-values were equal to 1, i.e. the
RV coefficient was statistically not significant. The traditional RV coefficient suffers from
dimension bias. The smaller the data sets, the higher the RV coefficient. To overcome this
problem, the modified version of the RV coefficient (see Equation 2.12) was used.

Table 3.8 summarizes the pairwise co-structure between the four data sets measured with
the modified RV coefficient. In order to asses the significance of the displayed values a
permutation test was performed (n = 1000 repetitions). This test resulted in highly significant
p-values for all pairwise RV coefficients. Compared to the traditional RV coefficients the
modified RV coefficient is lower but statistically significant.

One can notice that the largest co-structure is shared by the two transcriptome data sets
followed by CHO proteome and P. pastoris transcriptome which is similar to the
co-structure between the two proteomes. The lowest co-structure was measured between
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MCIA Axis 1 (49% of explained co-structure)
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Figure 3.19: MCIA result of the cross-species comparison between P. pastoris and CHO cells.

P. pastoris proteome and CHO transcriptome followed by P. pastoris transcriptome and
P. pastoris proteome as well as CHO transcriptome and CHO proteome.

3.6.2 Vizualization of the Eight Conditions

One advantage of MCIA is the ability to visualize all measured conditions and all data sets
in one plot. The resulted graphic is shown in Figure 3.19. The MCIA axes 1 and 2 cover
together 75 % of the captured co-structure (49 % and 26 %).

Each condition is displayed as four segments sharing one end point. The shared point was
computed as the coordinate-wise mean value of the other four points. Each of the four
points represents one data set: filled square represents the P. pastoris transcriptome, filled
circle represents the P. pastoris proteome, empty square represents the CHO transcriptome
and the empty circle represents the CHO proteome.

In Figure 3.19 it can be noticed that the first MCIA axis separates the comparisons to wild
type (WT) from the other four conditions, excepting the CHO data from HSA H:HSA L
which is on the same side with the WT comparisons. Additionally, the second and the
first axes separate HSA H:WT from the other comparisons to WT. Based on the length of
the segments, it can be observed that 3D6 H:3D6 L feature the lowest agreement between
transcriptomes and proteomes.

Since we are interested in the characterization of the four engineered strains, the subsequent
analyses will be limited to the following comparisons: 3D6 L:WT, 3D6 H:WT, HSA L:WT,
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3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster Ovary Cells

HSA H:WT. As the other four conditions are computed as linear combinations of the
four engineered strains, taking them into account does not add any new information.
Furthermore, the interpretation of the results is easier as one can compare one strain to
another. The comparison of 3D6 H:HSA H to 3D6 H:3D6 L is much more difficult to interpret.
Nevertheless, secretion and ribosome relevant analyses were performed also on all eight
conditions. The data is presented in the Appendix D showing an overall agreement between
the MCIA results of all eight conditions and MCIA results of the four engineered strains.
This emphasizes the legitimacy of conducting all further analyses on 3D6 L:WT, 3D6 H:WT,
HSA L:WT and HSA H:WT.

3.6.3 Detailed Analyses of 3D6 L:WT, 3D6 H:WT, HSA L:WT and HSA H:WT

In order to characterize the four engineered strains: 3D6 L:WT, 3D6 H:WT, HSA L:WT and
HSA H:WT, MCIA was applied and the results are shown in Figure 3.20A. In addition to
the overall analysis, secretion and ribosome specific analyses are of particular interest as
these sets of features play key roles in the recombinant protein production.

The complete data sets containing 5354 P. pastoris genes, 1961 P. pastoris proteins, 20650 CHO
genes and 735 CHO proteins were subset to:

• secretion relevant data sets (see Figure 3.20B) with 405 P. pastoris genes, 236

P. pastoris proteins, 534 CHO genes and 45 CHO proteins;
• non ribosome data sets (see Figure 3.20C) containing 4860 P. pastoris genes, 1673

P. pastoris proteins, 20353 CHO genes and 675 CHO proteins and
• ribosome relevant data sets (see Figure 3.20D ) which included 495 P. pastoris genes,

288 P. pastoris proteins, 297 CHO genes and 60 CHO proteins.

In general the four strains are separated by the first two MCIA axes which cover 51%-56%,
respectively 25%-30% of the captured variance. In all analyses, the strains are projected in
the same quadrants: HSA H:WT in the first quadrant, 3D6 H:WT in the second quadrant,
3D6 L:WT in the third quadrant and HSH L:WT in the forth quadrant (Figure 3.20).

All four MCIA analyses were further investigated. First the modified RV coefficient was
computed for all pairwise comparisons and is displayed in Tables 3.9, 3.10, 3.11 and 3.12.
Additionally, the p-values of the RV coefficients were computed by a permutation test with
n = 1000 repetitions. All p-values were significant with only one exception (p-value of
RV coefficient between P. pastoris proteome and CHO transcriptome from MCIA of non
ribosome relevant data sets) which featured a p-value of 0.105.
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(A)

MCIA Axis 1 (51% of explained co-structure)
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(B)

MCIA Axis 1 (53% of explained co-structure)
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MCIA Axis 1 (51% of explained co-structure)

(D)

MCIA Axis 1 (56% of explained co-structure)
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Figure 3.20: MCIA of the four engineered strains computed from (A) All Features, (B) Secretion Relevant
Features, (C) All Features Except Ribosome Relevant Features and (D) Ribosome Relevant Features.

Table 3.9: RV coefficient of all features1

text
Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

Pichia
T’ome 1.000 0.612 0.935 0.802

Pichia
P’ome 0.612 1.000 0.588 0.896

CHO
T’ome 0.935 0.588 1.000 0.795

CHO
P’ome 0.802 0.896 0.795 1.000

Table 3.10: RV coefficient of secretion relevant
Features1

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

Pichia
T’ome 1.000 0.601 0.991 0.755

Pichia
P’ome 0.601 1.000 0.659 0.786

CHO
T’ome 0.991 0.659 1.000 0.826

CHO
P’ome 0.755 0.786 0.826 1.000
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3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster Ovary Cells

Table 3.11: RV coefficient of all features except
ribosome specific features1

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

Pichia
T’ome 1.000 0.597 0.922 0.819

Pichia
P’ome 0.597 1.000 0.577 0.886

CHO
T’ome 0.922 0.577 1.000 0.809

CHO
P’ome 0.819 0.886 0.809 1.000

Table 3.12: RV coefficient of ribosome specific
features1

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

Pichia
T’ome 1.000 0.523 0.965 0.724

Pichia
P’ome 0.523 1.000 0.572 0.826

CHO
T’ome 0.965 0.572 1.000 0.795

CHO
P’ome 0.724 0.826 0.795 1.000

Next, the distance to origin of all four strains was computed. More precise, a data set specific
as well as a mean distance (of data set specific distances) were calculated. The results are
summarized in Tables 3.13, 3.14, 3.15 and 3.16.

Additionally, the distances between all possible combinations of two out of the four strains
of interest were computed. The calculations are based on the first three MCIA axes. These
distances are displayed in Tables 3.17, 3.18, 3.19 and 3.20. The distances were computed
between corresponding data sets, e.g. distance between 3D6 L:WT and 3D6 H:WT based on
the P. pastoris proteome, as well as a mean distance computed as the mean value between
the data set specific distances between two strains.

In addition to the strains, one can also investigate corresponding MCIA plots of the measured
features, e.g. P. pastoris genes, P. pastoris proteins, CHO genes and CHO proteins (Figure 3.21

and 3.22). Tables which contain data set specific associated features were derived from the
MCIA applied to all features (see Figure 3.21A) and can be seen in Tables 3.21 - 3.24.

Furthermore, a set of 67 GO (Slim) Terms (Table D.4) relevant for the comparison of
P. pastoris and CHO expression systems were chosen and projected as additional information
into the resulted MCIA space (Figure 3.24 and 3.24). Tables which contain data set specific
associated GO Terms were derived from the MCIA applied to all features (see Figure 3.23A).
These associations can be seen in Tables 3.25 - 3.28.

1Due to space reasons the types of data sets were abbreviated as T’ome for transcriptome and P’ome for
proteome.
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3 Results

Table 3.13: Distances to origin computed from all features2

text
Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT 2.202 2.143 2.167 2.358 2.140

3D6 H:WT 2.822 2.776 2.888 2.704 2.919

HSA L:WT 2.006 1.810 2.186 2.120 1.909

HSA H:WT 2.689 2.925 2.513 2.601 2.718

Table 3.14: Distances to origin computed from secretion relevant
features2

Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT 2.521 2.558 2.744 2.559 2.222

3D6 H:WT 2.624 2.618 2.533 2.640 2.706

HSA L:WT 2.097 2.294 2.361 2.064 1.670

HSA H:WT 2.665 2.507 2.330 2.678 3.146

Table 3.15: Distances to origin computed from all features except
ribosome relevant features2

Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT 2.179 2.086 2.139 2.358 2.134

3D6 H:WT 2.816 2.788 2.864 2.705 2.908

HSA L:WT 1.995 1.782 2.198 2.115 1.886

HSA H:WT 2.714 2.966 2.548 2.597 2.744

Table 3.16: Distances to origin computed from ribosome relevant
features2

Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT 2.307 2.716 2.164 2.366 1.980

3D6 H:WT 2.860 2.499 3.098 2.744 3.101

HSA L:WT 2.212 2.447 2.317 2.116 1.967

HSA H:WT 2.692 2.499 2.490 2.871 2.906

2Due to space reasons the types of data sets were abbreviated as T’ome for transcriptome and P’ome for proteome.
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3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster Ovary Cells

Table 3.17: Distances between two strains computed from all
features 3

Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT
3D6 H:WT

3.210 3.141 3.229 3.123 3.349

HSA L:WT
HSA H:WT

2.690 2.990 2.556 2.555 2.660

3D6 L:WT
HSA L:WT

3.638 3.305 3.780 3.965 3.503

3D6 H:WT
HSA H:WT

5.091 5.264 4.965 4.875 5.258

Table 3.18: Distances between two strains computed from
secretion relevant features 3

Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT
3D6 H:WT

3.116 3.066 3.236 3.147 3.017

HSA L:WT
HSA H:WT

2.520 2.386 2.142 2.394 3.156

3D6 L:WT
HSA L:WT

3.997 4.271 4.606 4.037 3.075

3D6 H:WT
HSA H:WT

4.756 4.572 4.324 4.793 5.334

Table 3.19: Distances between two strains computed from all
features except ribosome relevant 3

Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT
3D6 H:WT

3.181 3.128 3.143 3.124 3.330

HSA L:WT
HSA H:WT

2.736 3.081 2.640 2.536 2.690

3D6 L:WT
HSA L:WT

3.591 3.193 3.740 3.969 3.464

3D6 H:WT
HSA H:WT

5.105 5.319 4.956 4.879 5.268

Table 3.20: Distances between two strains computed from
ribosome relevant features3

Mean
Dist

Pichia
T’ome

Pichia
P’ome

CHO
T’ome

CHO
P’ome

3D6 L:WT
3D6 H:WT

2.884 2.750 3.110 2.669 3.006

HSA L:WT
HSA H:WT

2.332 2.187 2.061 2.511 2.569

3D6 L:WT
HSA L:WT

4.070 4.796 4.065 4.013 3.407

3D6 H:WT
HSA H:WT

5.204 4.608 5.294 5.244 5.669

3Due to space reasons the types of data sets were abbreviated as T’ome for transcriptome and P’ome for proteome.
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(A

)

C
H

O
 p

ro
te

o
m

e

P
. 
p

a
s

to
ri

s
 t

ra
n

sc
ri

p
to

m
e

P
. 
p

a
s

to
ri

s
 p

ro
te

o
m

e

C
H

O
 t

ra
n

sc
ri

p
to

m
e

(B
)

C
H

O
 p

ro
te

o
m

e

P
. 
p

a
s

to
ri

s
 t

ra
n

sc
ri

p
to

m
e

P
. 
p

a
s

to
ri

s
 p

ro
te

o
m

e

C
H

O
 t

ra
n

sc
ri

p
to

m
e

Fi
gu

re
3

.2
2
:M

C
IA

as
so

ci
at

ed
fe

at
ur

es
.F

ea
tu

re
as

so
ci

at
io

ns
ba

se
d

on
M

C
IA

of
(A

)
al

lf
ea

tu
re

s
w

ith
ou

tt
he

ri
bo

so
m

e
re

le
va

nt
an

d
(B

)
ri

bo
so

m
e

re
le

va
nt

fe
at

ur
es

.

75



3 Results

Table 3.21: P. pastoris genes associated to the four production strains derived from the MCIA of all features

ID Symbol Description

HSA H:WT

Pipas_c034_0002 FLO100 contains GLEYA adhesin domain

Pipas_chr4_0002 PAS_chr4_0002 Hypothetical protein_not annotated in NCBI

Pipas_chr3_0002 FLO101 Lectin-like protein

Pipas_chr4_0003 PAS_chr4_0003 hypothetical protein

Pipas_chr2-2_0006 PAS_chr2-2_0006 hypothetical protein

3D6 H:WT

Pipas_chr1-4_0681 PAS_chr1-4_0681 Luciferase-like monooxygenase

Pipas_chr4_0851 PAS_chr4_0851 hypothetical protein

Pipas_chr4_0627 HSP12
Plasma membrane protein involved in maintaining membrane
organization in stress conditions

Pipas_chr2-2_0208 PAS_chr2-2_0208 hypothetical protein

Pipas_chr4_0576 ADH6 NADPH-dependent medium chain alcohol dehydrogenase

3D6 L:WT

Pipas_chr2-2_0482 FLO11 GPI-anchored cell surface glycoprotein (flocculin)

Pipas_FragB_0070 PAS_FragB_0070 in frame stop codons

Pipas_chr2-1_0300 PAS_chr2-1_0300 Hypothetical protein not annotated in NCBI

Pipas_chr2-1_0550 PAS_chr2-1_0550 similarity to cell wall endo-beta-1,3-glucanase

Pipas_chr1-1_0332 PRM1
Pheromone-regulated multispanning membrane protein involved
in membrane fusion during mating

HSA L:WT

Pipas_chr3_0008 PAS_chr3_0008
Ion channel regulatory protein UNC-93; MFS general substrate
transporter

Pipas_chr3_1144 PAS_chr3_1144 (not correctly annotated sequence)

Pipas_chr3_0017 PAS_chr3_0017 similarity to bacterial 3-hydroxyisobutyrate dehydrogenase

Pipas_chr3_1145 FLO5-2 Lectin-like cell wall protein (flocculin) involved in flocculation

Pipas_chr3_0012 PAS_chr3_0012 Fungal Zn(2)-Cys(6) binuclear cluster domain
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3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster Ovary Cells

Table 3.22: P. pastoris proteins associated to the four production strains derived from the MCIA of all features

ID Symbol Description

HSA H:WT

Pipas_chr3_0170 HCH1
Heat shock protein regulator; binds to Hsp90p and may stimulate
ATPase activity

Pipas_chr2-1_0581 MCP2-1 Putative protein of unknown function

Pipas_chr1-1_0435 UBP13 Putative ubiquitin-specific protease that cleaves Ub-protein fusions

Pipas_chr2-1_0127 PAS_chr2-1_0127 TB2/DP1, HVA22 family

Pipas_chr4_0864 NUC1
Major mitochondrial nuclease, has RNAse and DNA endo- and
exonucleolytic activities

3D6 H:WT

Pipas_chr4_0076 PSK2 PAS-domain containing serine/threonine protein kinase

PDKT_016 Zeo Antibiotic resistance Zeo

Pipas_c121_0002 ALG2
Mannosyltransferase that catalyzes two consecutive steps in the
N-linked glycosylation pathway

Pipas_chr2-1_0780 ADA2
Transcription coactivator, component of the ADA and SAGA
transcriptional adaptor

Pipas_chr3_0113 KEI1 Component of inositol phosphorylceramide (IPC) synthase

3D6 L:WT

Pipas_chr1-1_0190 PAS_chr1-1_0190 Non-catalytic subunit of N-terminal acetyltransferase

Pipas_chr1-1_0271 GOT1
Homodimeric protein that is packaged into COPII vesicles and
cycles between the ER and Golgi

Pipas_chr2-1_0027 YPL191C Putative protein of unknown function; diploid deletion strain
exhibits high budding index

Pipas_chr4_0728 MAK5 Essential nucleolar protein, putative DEAD-box RNA helicase

Pipas_chr1-4_0133 PEX6 AAA-peroxin that heterodimerizes with AAA-peroxin Pex1p

HSA L:WT

Pipas_chr4_0896 ZRC1
Vacuolar membrane zinc transporter; transports zinc from cytosol
to vacuole for storage

Pipas_chr4_0546 YOL098C Putative metalloprotease

Pipas_chr3_0901 PAS_chr3_0901 Arrestin (or S-antigen), N-terminal domain

Pipas_chr4_0842 GLO1
Monomeric glyoxalase I, catalyzes the detoxification of
methylglyoxal

Pipas_chr1-3_0080 BET3 Hydrophilic protein that acts in conjunction with SNARE proteins
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3 Results

Table 3.23: CHO genes associated to the four production strains derived from the MCIA of all features

ID Symbol Description

HSA H:WT

BGI_CHO_12388 Il13ra2
interleukin-13 receptor subunit alpha-2-like (LOC100754617),
mRNA

BGI_CHO_15425 Fgf18 fibroblast growth factor 18-like (LOC100761504), mRNA

BGI_CHO_14472 Ces1f liver carboxylesterase 4-like (LOC100769145), mRNA

BGI_CHO_18492 Uts2 urotensin-2-like (LOC100768033), mRNA

BGI_CHO_18500
UDP-glucuronosyltransferase 1-8-like (LOC100750842), partial
mRNA

3D6 H:WT

BGI_CHO_13520 Fabp4 fatty acid-binding protein, adipocyte-like (LOC100760812), mRNA

BGI_CHO_2136 LOC100773771 hypothetical protein LOC100773771 (LOC100773771), mRNA

BGI_CHO_17350 Sprr1a cornifin-A-like (LOC100760951), mRNA

BGI_CHO_00805 Ccl2 c-C motif chemokine 2-like (LOC100763833), mRNA

BGI_CHO_5046 Col6a1 collagen, type VI, alpha 1 (Col6a1), mRNA

3D6 L:WT

BGI_CHO_18336 Kbtbd7
kelch repeat and BTB domain-containing protein 7-like
(LOC100764033), partial mRNA

BGI_CHO_17111 Nppb natriuretic peptides B-like (LOC100773766), mRNA

BGI_CHO_12844 Ldhc L-lactate dehydrogenase C chain-like (LOC100751672), mRNA

BGI_CHO_13652 Il33 interleukin-33-like (LOC100761971), mRNA

BGI_CHO_12771 Fn1 fibronectin 1, transcript variant 1 (Fn1), mRNA

HSA L:WT

BGI_CHO_16355 Ugt1a1
UDP glucuronosyltransferase 1 family, polypeptide A1 (Ugt1a1),
mRNA

BGI_CHO_2716 Sirt5 NAD-dependent deacetylase sirtuin-5-like (LOC100767069),
mRNA

BGI_CHO_15306 Tcf7l2 transcription factor 7-like 2-like, transcript variant 2

(LOC100758400), mRNA

BGI_CHO_17354 Olfr1350 olfactory receptor 1038-like (LOC100762985), mRNA

BGI_CHO_2274 Lmo2 rhombotin-2-like (LOC100773201), mRNA
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3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster Ovary Cells

Table 3.24: CHO proteins associated to the four production strains derived from the MCIA of all features

ID Symbol Description

HSA H:WT

CHO_pq_1206
EGV96396.1,
XP_007624367.1 Oxysterol-binding protein-related protein 11

CHO_pq_1172 XP_007626395.1 2-hydroxyacyl-CoA lyase 1 isoform X1

CHO_pq_1158
ERE49129.1,
XP_007607559.1 protein ETHE1, partial

CHO_pq_821 ERE91297.1 platelet glycoprotein 4

CHO_pq_691
ERE82903.1,
XP_007634912.1 protein ERGIC-53-like protein

3D6 H:WT

CHO_pq_8
EGW01221.1,
XP_007649516.1 Fermitin family-like 2

CHO_pq_74 EGV93171.1 UPF0480 protein C15orf24-like

CHO_pq_1072 XP_007629953.1 transcriptional activator protein Pur-alpha

CHO_pq_29
ERE87936.1,
XP_007636792.1 peroxisomal carnitine O-octanoyltransferase isoform 2

CHO_pq_4 EGV95701.1 Lanosterol 14-alpha demethylase

3D6 L:WT

CHO_pq_102
EGV95081.1,
ERE80723.1 Splicing factor 45

CHO_pq_28 ERE87480.1 ADP-ribosylation factor 4-like protein

CHO_pq_929 XP_007607708.1 suppressor of G2 allele of SKP1 homolog isoform X3

CHO_pq_517
ERE69844.1,
XP_007616531.1 zinc finger CCCH domain-containing protein 6

CHO_pq_262 EGW04688.1 Phosphoribosyl pyrophosphate synthetase-associated protein 1

HSA L:WT

CHO_pq_833
ERE92264.1,
XP_007612600.1 metaxin-1-like protein

CHO_pq_1219

EGW00497.1,
ERE74919.1,
ERE74920.1

U2-associated protein SR140

CHO_pq_1021 XP_007621498.1 cytochrome c oxidase subunit 6C-2 isoform X2

CHO_pq_573
ERE74027.1,
XP_007625813.1 NADH dehydrogenase [ubiquinone] iron-sulfur protein 2

CHO_pq_585
ERE74789.1,
XP_007643559.1 DNA/RNA helicase, DEAD/DEAH box type containing protein
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3.6 Cross-Species Comparison Between Pichia pastoris and Chinese Hamster Ovary Cells
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3 Results

Table 3.25: Associated GO Terms derived from
P. pastoris transcriptome and the MCIA
of all features

GO ID GO Name
HSA H:WT

GO:0006520 cellular amino acid metabolic process
GO:0006457 protein folding
GO:0044262 cellular carbohydrate metabolic process
GO:0007031 peroxisome organization
GO:0006810 transport
3D6 H:WT

GO:0051186 cofactor metabolic process
GO:0007005 mitochondrion organization
GO:0044257 cellular protein catabolic process
GO:0019725 cellular homeostasis
GO:0006412 translation
3D6 L:WT

GO:0051704 multi organism process
GO:0032989 cellular component morphogenesis
GO:0007165 signal transduction
GO:0045333 cellular respiration
GO:0007049 cell cycle
HSA L:WT

GO:0030154 cell differentiation
GO:0000910 cytokinesis
GO:0006997 nucleus organization
GO:0006811 ion transport
GO:0016072 rRNA metabolic process

Table 3.26: Associated GO Terms derived from
P. pastoris proteome and the MCIA
of all features

GO ID GO Name
HSA H:WT

GO:0006520 cellular amino acid metabolic process
GO:0006457 protein folding
GO:0006839 mitochondrial transport
GO:0006351 transcription
GO:0006486 protein glycosylation
3D6 H:WT

GO:0006464 cellular protein modification process
GO:0006468 protein phosphorylation
GO:0006970 response to osmotic stress
GO:0006259 DNA metabolic process
GO:0007049 cell cycle
3D6 L:WT

GO:0016071 mRNA metabolic process
GO:0009408 response to heat
GO:0006979 response to oxidative stress
GO:0016192 vesicle mediated transport
GO:0000910 cytokinesis
HSA L:WT

GO:0006412 translation
GO:0044257 cellular protein catabolic process
GO:0016072 rRNA metabolic process
GO:0006399 tRNA metabolic process
GO:0007005 mitochondrion organization

Table 3.27: Associated GO Terms derived from
CHO transcriptome and the MCIA
of all features

GO ID GO Name
HSA H:WT

GO:0042221 response to chemical stimulus
GO:0019725 cellular homeostasis
GO:0009408 response to heat
GO:0006970 response to osmotic stress

GO:0032989

cellular component
morphogenesis

3D6 H:WT

GO:0044255 cellular lipid metabolic process
GO:0006810 transport
GO:0016192 vesicle mediated transport
GO:0006979 response to oxidative stress
GO:0006897 endocytosis
3D6 L:WT

GO:0006412 translation
GO:0006457 protein folding
GO:0030154 cell differentiation
GO:0051186 cofactor metabolic process
GO:0045333 cellular respiration
HSA L:WT

GO:0006351 transcription
GO:0016070 RNA metabolic process
GO:0016071 mRNA metabolic process
GO:0016567 protein ubiquitination
GO:0006464 cellular protein modification process

Table 3.28: Associated GO Terms derived from
CHO proteome and the MCIA
of all features

GO ID GO Name
HSA H:WT

GO:0006979 response to oxidative stress
GO:0044255 cellular lipid metabolic process
GO:0030154 cell differentiation

GO:0006091
generation of precursor metabolites and
energy

GO:0006412 translation
3D6 H:WT

GO:0042221 response to chemical stimulus
GO:0006897 endocytosis
GO:0006766 vitamin metabolic process
GO:0015031 protein transport
GO:0007059 chromosome segregation
3D6 L:WT

GO:0007165 signal transduction
GO:0007010 cytoskeleton organization
GO:0006811 ion transport
GO:0006950 response to stress
GO:0016071 mRNA metabolic process
HSA L:WT

GO:0006839 mitochondrial transport
GO:0016070 RNA metabolic process
GO:0051186 cofactor metabolic process
GO:0007005 mitochondrion organization
GO:0043543 protein acylation
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4 Discussion

The results of this doctoral thesis are discussed in this chapter. The first and second section
review the results of the P. falciparum and A. gambiae analyses. Subsequently, the results of
the traditional GSEA applied to human miRNAs are discussed. Next, the development
of the novel pathway enrichment approach which was applied to microdissected tumor
and stroma gene expression profiles is reviewed. Finally, the results of the cross-species
comparison between P. pastoris and CHO cells are discussed.

4.1 Plasmodium falciparum Life Cycle Stages Analysis

In this section results of the analysis of the life cycle stages of P. falciparum, as described
in [146], are discussed. In this study, we have applied three integrative analysis methods
to a data set containing mRNA and protein abundances from the six life cycle stages of
P. falciparum. The use of integrative analysis methods allows considering all annotated and
measured genes (3283) and proteins (2491) and is not limited to the 2230 pairs of genes and
proteins as when it was first published in [103]. The integration of knowledge on different
levels allows linking of the data sets based on samples and not on variables.

Three different integrative analysis methods were introduced, each with its own justification:
CIA discovers biological processes on the basis of maximal covariance. GSVD decomposes
the data sets into genelets and arraylets and conducts a modified GSEA analysis on them.
IBC computes biclusters according to the distance between genes, proteins and GO terms.

Method-specific results as well as results common to all three analysis methods were shown.
In the case of CIA, associations in protein space presented a high overlap with the common
results. This was not the case for associations in gene space. In case of the sporozoite stage,
GSVD associations are very similar to the common results. For the other stages, GSVD
yielded different mappings compared to the common results. As a GO term is associated or
not with a life cycle stage, only general but no method-specific results were computed for
IBC.

For CIA, it is important to consider that GO term associations are done through projection,
whereas GSVD maps GO terms to individual stages through restricted GSE analysis and
IBC assigns GO terms to life cycle stages through the distance to the corresponding life
cycle stage. Another important aspect is that with CIA it is not possible to associate one GO
term to more than one life cycle stage, while this is possible with GSVD and IBC. Due to
the heterogeneity of the computational methods, we proposed taking the intersection of the
three obtained results.
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4 Discussion

In the three-fold validated network view of the biological processes (Figure 3.8), the
separation of the intraerytrocytic cycle (merozite, ring, trophozoite and schizont) from
sporozoites and gametocytes can be seen. While the stages of the intraerytrocytic cycle are
tightly connected to one another, sporozoites share two biological processes and
gametocytes share only one biological process with the rest. Gametocyte and sporozoite
stages do not possess any common processes, reflecting the profound differences between
these stages. Gametocytes are released into the blood stream, from where they travel to the
liver, while sporozoites represent the sexual stage and lie dormant in cell cycle arrest until
ingestion by a mosquito.

The data used here was initially gathered in order to investigate the role of
post-transcriptional regulation in P. falciparum [103]. For this, only pairs of mRNA and
corresponding proteins were considered, resulting in the exploitation of 89% of the proteins
and 60% of the genes that were experimentally measured. By employing integrative
analysis methods, we were able to take all measured data into account.

Le Roch et al. [103] mention that there is a

“bias in proteomic analysis of whole-cell lysates, in that such methods may fail to detect secreted
or membrane proteins present in low abundance, such as GPI anchors.”

Due to the integrative approach, our analysis associates several GO terms related to GPI
anchors proteins (GO:0006506 GPI anchor biosynthetic process, GO:0016255 attachment of GPI
anchor to protein, GO:0006661 phosphatidylinositol biosynthetic process, GO:0046488

phosphatidylinositol metabolic process) with the merozoite stage, prevailing over this
shortcoming. These associations are in agreement with [223], where distinct protein classes,
with a focus on merozoite surface antigens, are discussed. The importance of GPI anchor
proteins in the merozoite stage is well known and very important in immune evasion
[224, 225].

Other biological processes mentioned in [103] such as glycolysis and cell invasion without
any life cycle mapping were also found in the resulting network such as GO:0044409 entry
into host and GO:0030260 entry into host cell, both associated with the merozoite stage. This
network assigns GO:0006096 glycolysis to the stage trophozoite, in concordance to [226]
where the transcriptome of P. falciparum was characterized.

Simmilar to the current findings, cell invasion was associated with merozoites in [224], where
a proteomic view of the P. falciparum life cycle was presented. Other concordances with [224]
include the assignment of GO:0006508 proteolysis to the merozoite stage. During trophozoite
stage, digestion of haemoglobin takes place. The computed network maps GO:0006091

generation of precursor metabolites and energy to trophozoites, confirming the importance
of energy production during this stage. As mentioned by Florens et al. [224], sporozoites
are injected into the blood stream where they have to survive in a hostile environment.
Based on the here combined results, sporozoites are associated with GO:0020013 modulation
by symbiont of host erythrocyte aggregation and GO:0020035 cytoadherence to microvasculature,
mediated by symbiont protein, which reflects the process of survival. Additionally, sporozoites
are associated with metabolism and transcription, as was shown in Figure 5 of [224]. The
current results reflect these findings by mapping GO:0006163 purine nucleotide metabolic
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4.1 Plasmodium falciparum Life Cycle Stages Analysis

process, GO:0009117 nucleotide metabolic process, GO:0006351 transcription, DNA dependent and
GO:0006355 regulation of transcription, DNA dependent to the sporozoite stage.

During gametocyte stage, DNA processing and energy production is highly regulated, as
mentioned in [224]. In agreement, the here discussed results assign GO:0006323 DNA
packaging, GO:0006839 mitochondrial transport and GO:0006626 protein targeting to
mitochondrion to the gametocytes.

The analysis of the P. falciparum proteome by LaCount et al. in [227] associated the
intraerythrocytic cycle with chromatin modification, transcriptional regulation, mRNA
stability/processing, ubiquitination, nucleic acid metabolism and invasion of host cells.
Since the here performed analysis corresponds to individual life cycle stages, it is possible
to associate biological processes to a certain stage of the intraerythrocytic cycle, providing a
more detailed description of P. falciparum. According to our findings, chromatin
modification takes place during schizont stage (GO:0006325 chromatin organization,
GO:0051276 chromosome organization); merozoites are associated with GO:0006357 regulation
of transcription from RNA polymerase II promotor and schizonts with GO:0042795 transcription
from RNA polymerase II promotor; merozoites are associated with GO:0009116 nucleoside
metabolic process; invasion of host cells can be observed during merozoite stage (GO:0044409

entry into host and GO:0030260 entry into host cell). Ubiquitination was only detected through
its parent term GO:0044267 cellular protein metabolic process, which was associated with
merozoites.

Fagan et al. in [105] conducted CIA on a slightly different data set taking P. berghei
orthologues into account and showed that GO:0006412 biosynthesis is associated to the
intraerythrocytic cycle. In the here computed network, several more specialized biosynthetic
processes are associated with the merozoite stage: GO:0009059 macromolecule biosynthetic
process, GO:0008654 phospholipid biosynthetic process, GO:0045017 glycerolipid biosynthetic
process, GO:0006661 phosphatidylinositol biosynthetic process, GO:0006506 GPI anchor
biosynthetic process, as well as the GO term GO:0006412 biosynthetic process itself.

The importance of immune evasion through antigenic variation was highlighted by Winzeler
in [228]. The results discussed here show that this process is related to the schizont stage, as
the current analysis associates GO:0020033 antigenic variation, GO:0006955 immune response,
GO:0050776 regulation of immune response, GO:0002377 immunoglobulin production, GO:0006950

response to stress and GO:0009607 response to biotic stimulus with this stage.

The role of lipids during merozoite stage was already shown in 1988 by Mikkelsen et al. [229].
The here computed network associates merozoites with GO:0006644 phospholipid metabolic
process, GO:0008654 phospholipid biosynthetic process, GO:0046486 glycerolipid metabolic process
and GO:0006629 lipid metabolic process, reflecting this early finding.

Phosphorilation and dephosphoryliation processes play an important role in the
internalization step of meroziotes [230], a fact that is also reflected our results, as
merozoites are associated with GO:0016311 dephosphorylation and GO:0006470 protein
dephosphorylation.

The role of the pentose phosphate pathway in P. falciparum was disscused in [231], without
a clear life cycle stage assignment. The computed network view maps GO:0006098 pentose-
phosphate shunt to merozoites.
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4 Discussion

As shown in [232], REDOX complexes play an important role during ring stage, which
is in agreement with the association of GO:0045454 cell redox homeostasis and GO:0055114

oxidation-reduction process to the ring stage.

Roth showed in [233] that carbohydrate metabolism is a key metabolic process connecting the
host cells with P. falciparum. The findings discussed here also assign GO:0005975 carbohydrate
metabolic process to merozoite and ring stages.

Most of the network associations are in concordance with several publications dealing with
the characterization of P. falciparum, based on transcriptome [225, 226] and proteome [224,
227] data. A considerable amount of the findings in the above publications are reflected in the
results of the used integrative analysis methods. These findings are more detailed through
the association with a specific life cycle stage rather than, e.g. the whole intraerythrocytic
cycle as well as through the association of a child GO term instead of a parent GO term to the
corresponding stage. This study unifies individual findings from several publications of the
past 25 years of research. Not all results from the publications mentioned above are present
in the resulting network. This could be due to the fact that none of the cited publications,
except [103], used the same data sets as in this integrative scenario. Llinás et al. in [225]
compared the three P. falciparum strains 3D7, Dd2 and HB3 through the measurement of the
gene expression profiles of 6287, 5294 and 6415 genes during the intraerythrocytic cycle.
Bozdech et al. in [226] considered in their analysis of the intraerythrocytic cycle transcriptome
the expression of 5508 genes. LaCount et al. analysed in [227] 1267 proteins for their protein
interaction network of P. falciparum. In [224], Florens et al. use approximately 2400 proteins
in order to create a proteomic view of the P. falciparum life cycle. The other studies are based
on lab experiments on smaller groups of genes or proteins [223, 228–230, 232].

All in all, the combined network view of life cycle stage dependent GO term association
provides a new overview for vaccine research and offers novel insight in the
interdependencies between life cycle stages. Key biological processes were identified which
may be potential targets in further P. falciparum vaccine researcher.

4.2 Analysis of Hemocyte and Granulocyte Immune Response of
Anopheles gambiae

This section is dedicated to the discussion of the structural concordance between the
hemocyte and granulocyte immune response and is based on the co-authored publication
[205].

The MCIA results across all three comparisons suggest that the greatest degree of post-
transcriptional regulation occurs after an infectious blood meal (PFvSF), followed by the
effects of blood-feeding (BFvSF). The segment corresponding to PFvSF is the longest in this
comparison showing the lowest degree of co-structure between transcript and corresponding
protein profile. This could be the result of an intense post-transcriptional regulation program
induced by the infectious blood meal. In contrast, the effects of parasite infection when
compared to blood-feeding alone (PFvBF) show the highest concordance (Figure 3.9). Based
on the pair-wise RV-coefficient, the highest post-transcriptional regulation can be observed
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for the immune-specific proteome (Figure 3.10), implying that components of the mosquito
immune response are more likely to undergo translational regulation. Similar analyses of
the proliferation-specific proteome suggest that transcript and protein expression are tightly
linked (Figure 3.11).

4.2.1 Hemocyte-specific MCIA

In our global analysis of mosquito hemocyte transcripts/proteins, we identified a very high
co-structure between the two data sets (RV-coefficient of 0.97). Notably, several unique
proteins featured prominently in our MCIA comparisons (Figure 3.9) that were also
independently identified in the enrichment analysis. A Vitellogenic Carboxypeptidase
(VCP)-like protein (AGAP007505) in response to P. falciparum infection (PFvBF) was
identified that was also significantly enriched in the PF sample. The mammalian ortholog of
VCP-like has been implicated in the maturation of monocytes into macrophages [234], and
may have similar roles in mosquito hemocyte activation. Additional proteins, Vigilin
(AGAP005467) and a von Willebrand factor A-domain containing protein (AGAP000545),
were also identified in enriched BF samples. The remainder of proteins highlighted in the
global hemocyte MCIA analysis did not show a significant enrichment across the sample
treatments.

4.2.2 Immune-specific MCIA

Similar to Figure 3.9, the MCIA analysis of immune-specific transcripts/proteins indicate a
very high agreement between the two data sets with a RV-coefficient of 0.96 (Figure 3.10).
The proteins that are specifically associated with the PFvBF comparison include LRIM16A
(AGAP028028), CLIPB5 (AGAP004148), CLIPA2 (AGAP011790), and LRIM15

(AGAP007045), with LRIM16A and LRIM15 showing significant enrichment in PF samples.
Both are members of a leucine-rich repeat family of proteins implicated in mosquito
immunity [234] and contain predicted transmembrane domains, suggesting that these
LRIM proteins could be candidate surface markers of activated granulocytes following
P. falciparum infection. Previously implicated in the melanization response [235], recent
reports have identified that CLIPA2 serves as a negative regulator of TEP1 function to avoid
hyper-immune activation in response to pathogen challenge [236]. In addition, CLIPA5

(AGAP011787), LRIM17 (AGAP005693), and LRIM8B (AGAP0007456) define the PFvSF
comparison, while CLIPA1 (AGAP011791) and CLIPB9 (AGAP0013442) highlight the
response to blood-feeding (BFvSF).

4.2.3 Proliferation-specific MCIA

Although the proteins cluster far from the genes, the proliferation-specific (Figure 3.11) RV-
coefficient is 0.99, which is the highest agreement found in our MCIA analyses (Figure 3.11)
and is likely due to the relatively few genes/proteins used in the analysis. The three proteins
that cluster with the PFvBF comparison are Ras-related Rab7A (AGAP001617), Ras homology
gene family member A (AGAP005160), and Ras-related Rab5C (AGAP007901). Of these
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three, only the latter two are enriched in the PF and only Rab5C falls below the p < 0.01

stringency cutoff. However, the MCIA Features Axis 1 value of -2.07 for Rab7A (Figure 3.11,
Table B.4) is high and projected in the direction of the PFvBF comparison. This suggests
that it may be a potential marker for a nuanced granulocyte proliferation response to
parasite infection and thus deserves future examination. This data is in agreement with the
observation that Ras superfamily GTPases were down-regulated at the protein level among
granulocytes in general, but increased in protein abundance in response to blood–feeding
and P. falciparum infection.

4.3 Traditional Gene Set Enrichment Analysis of Human miRNAs

Examination of the results of the traditional GSEA shows that the two sets of enriched
neuron related biological processes are very similar. The GO analysis of the CSF-MPs
associated miRNAs detected 35 neuron related biological processes. These are similar to the
36 computed for all miRNAs identified by Bioanalyzer profiling. The GO analysis of the
CSF-MPs associated miRNAs revealed two additional neuron related biological processes
as statistically highly significant: regulation of neurological system process and neuron fate
specification. In the group of all identified miRNAs three processes were detected that are not
present in the GO analysis of the CSF-MPs associated miRNAs: neuron projection regeneration,
cell morphogenesis involved in neuron differentiation and axongenesis. These differences result
from the additional 296 validated targets of all miRNAs compared to the validated target
genes of the CSF-MPs associated miRNAs.

Although the two sets of miRNAs differed by approximately 50%, the enriched neuron
related biological processes were almost identical. The reasons why this might be the case
include unvalidated or still undiscovered miRNA target genes. Another reason may be the
fact that the traditional gene set enrichment analysis works on flat lists of genes, not taking
into account any additional information like network topology.

4.4 Integrative Pathway Enrichment Analysis of Tumor and
Stroma in Ovarian Cancer

Ovarian cancer is the fifth leading cause of cancer death in women world wide. Most women
are diagnosed with advanced stage disease and consequently have a poor probability of
survival after five years. Tumor-debulking surgery followed by platinum-taxane combination
chemotherapy has remained first-line standard of care for decades, and although the initial
response rate is good (70-80%) most will recur and succumb to chemoresistant disease.

Studies which have sought to define the molecular subtypes of high grade serous ovarian
cancer [237–241] report that ovarian cancers often exhibit multiple subtype gene expression
signatures, are often assigned to more than one subtype [137, 237, 242] and that these
subtypes are not reproducibly associated with outcome [240, 242, 243]. Molecular subtypes
defined from gene or protein expression data from the same tumor samples (TCGA study)
share weak overlap [237, 240, 242]. While the lack of robust molecular subtype classifiers
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may be due to weaknesses in study design [244–246], our collaborator Aedin Culhane from
Dana-Farber Cancer Institute and Harvard School of Public Health has found that variability
in the proportion of tumor stroma in molecular profiling studies biases gene signature
and subtype discovery [manuscript in preparation]. Only a few gene expression studies
microdissect tumor tissue and the proportion of tumor stroma varies considerably both
within and between studies.

Casey et al. emphasize the role of the tumor microenvironment by its double role as a cause
of tumorigenesis and as a tumor interaction partner during subsequent development. As
pointed out in [247], indirect and direct cellular interplay leads to a dynamical symbiotic
development based on the manipulation of the cellular proliferation, growth, and
metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity.

After realizing the shortcomings of the traditional gene set enrichment approach and their
effects, a novel integrative pathway analysis is proposed and applied on 38 matched and
microdissected tumor and stroma samples from ovarian cancer patients. The results of the
traditional GSEA are presented in Section 3.3.

The most remarkable advantage of IPEA over traditional GSEA is its ability to account for
the network topology of a biological pathway. At the same time, this means that IPEA can
only be applied to gene sets with a known network topology. Here, Reactome database
is used. Alternatively, the KEGG database could be employed. However, accessing KEGG
information is tedious as each pathway has to be downloaded separately.

The use of MCIA as a first step of IPEA is optional. Any other integrative analysis method
can be used instead. MCIA was chosen due to its ability to capture common trends between
the data sets. As a matter of fact, IPEA can be applied to any list of features that are ranked,
e.g. differentially expressed genes or proteins. This makes IPEA versatile and suitable for a
wide range of applications.

The result of IPEA is a network of enriched pathways and activated genes, displayed as a
double bipartite graph. Actionable target genes (validated set of genes involved in other
cancers and linked to drugs which are already used in cancer therapy) are superimposed
on the resulting network. One can notice that these actionable target genes are not only
active in tumor but also in stroma, emphasizing the role played by stroma in ovarian cancer.
Four actionable target genes were present in the resulting network: CTNNB1 active in
up-regulated tumor pathways, ERBB4 active in up-regulated tumor and stroma pathways,
SMAD4 active in up-regulated stroma pathways and PIK3CB active in down-regulated
stroma pathways. In the resulting network only one target gene was attributed to tumor
while all others are linked to the stroma, underlining the key role played by stroma in
ovarian caner.

Actionable Target Genes

CTNNB1 was shown to have prognostic effects in colorectal [248] and gastric [249] cancer.
According to the TARGET database [222], its activation may mediate resistance to EGFR
TKIs, PI3K inhibitors and AKT inhibitors. Additionally, the activation of CTNNB1 may
predict sensitivity to inhibitors of WNT signaling. Please note that according to MCIA,
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CTNNB1 is highly activated (high score on the positive side of the first MCIA axis) in tumor
and thus, is a promising target gene.

ERBB4 mutations predict sensitivity to Lapatinib [222] and were identified by IPEA as highly
active in tumor and stroma. This drug is already successfully used in the treatment of breast
cancer [250]. Signaling by ERBB4 (enriched in tumor and stroma) triggers a rich network
of pathways, culminating in responses ranging from cell division to cell death and from
motility to adhesion [251]. Due to this, diverse other targets from these pathways could also
be interesting for further investigation.

SMAD4 was shown to play an important role in the development of some gastrointestinal
tumors [252]. It was also shown that PIK3CB inhibition produces synthetic lethality when
combined with estrogen deprivation in estrogen receptor positive breast cancer [253] which
is in concordance with IPEA findings where PIK3CB is highly repressed in stroma.
Additionally, the role of the PI3K pathway as a drug target in human cancer was
emphasized in [254]. I.e., SMAD4 and PIK3CB both exhibit potential as actionable target
genes in ovarian cancer therapy.

The advantage of inspecting known actionable target genes lies in the fact that there already
exists detailed knowledge such as matching drugs, which can be repurposed.

IPEA also identified other potential target genes. E.g. NRCAM which is activated in tumor
and stroma, was linked to different cancers [255, 256] and, of particular interest, has a
crucial role in tumor progression, especially during cell invasion and metastasis [257]. These
functions are in complete agreement with the finding shown here where NRCAM links
tumor to stroma suggesting a key role in stroma cell invasion by tumor cells.

Enriched Pathways

A detailed inspection of the enriched pathways emphasizes that the first MCIA axis is
partly driven by DNA repair, which is known (respectively its down regulation) to be one
of the key risk factors in ovarian cancer. Pathways involved in DNA repair are: Regulation
of the Fanconi Anemia Pathway (tumor down) which is also known as the BRCA pathway
(gene FANCD1 is BRCA2) [258], Formation of transcription coupled nucleotide excision repair
(TC-NER) and Dual incision reaction in TC-NER (tumor up) [259]. As pointed out by Helleday
et al. in [260], DNA repair pathways can enable tumor cells to survive chemotherapeutic
induced DNA damage while alterations in DNA repair pathways that arise during tumor
development can make some cancer cells reliant on a reduced set of DNA repair pathways
for survival.

As described by Wang et al. in [261], the interaction between immune system and tumor
is complex and dynamic. Major components of anti-tumor immunity are T and T effector
cells together with B cells and macrophages, natural killer (NK) cells and NK-T cells.
These cells recognize and kill tumor cells inducing a complex adaptive and innate immune
response. In order to overcome the immune response of the cell, tumor cells manipulate
their microenvironment and induce the development of immunosuppressive cells. IPEA
identified several immune system pathways: T cell receptor (TCR) signaling and Downstream
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TCR signaling (both in stroma down) as well as Inflammasomes, ZBP1(DAI) mediated induction
of type I IFNs (tumor up) and Interleukin-1 signaling (stroma up).

Wang et al. describe another intracellular metabolic interaction which is based on the
metabolic derangement of the tumor environment where tumor-surrounding cells may
either compromise or support highly metabolic demanding tumor cells by competing
nutrients or by forming a metabolic symbiosis [261]. While a high BMI is a risk factor [262]
for cancer, in [263] was shown that ovarian cancer prefers to metastasize to the omentum,
an organ primarily composed of adipocytes. According to Nieman et al. adipocytes act as an
energy source for the cancer cells and their role is mediated by fatty acid-binding protein
4 (FABP4, also known as aP2) [263]. A number of relevant pathways were found to be
enriched in this analysis: activation of Hormone-sensitive lipase (HSL)-mediated triacylglycerol
hydrolysis and FABP4 in stroma, activation of Beta oxidation of palmitoyl-CoA to myristoyl-CoA
and Beta oxidation of myristoyl-CoA to lauroyl-CoA in tumor (both participate in fatty acid
metabolism).

In her doctoral thesis, Walpole investigated the role of the hormones ghrelin and obestatin
in ovarian cancer and could show that ghrelin and obestatin (two isoforms of preproghrelin)
lead to an increase in cell migration and may play a role in cancer progression [264]. Synthesis,
secretion, and deacylation of Ghrelin is activated in tumor according to IPEA. Additionally,
Granata et al. showed that obestatin enhanced the Translocation of GLUT4 to the plasma
membrane [265], a pathway repressed in tumor and stroma in the resulting network.

Justus et al. summarize the molecular connections between cancer cell metabolism and the
tumor microenvironment [266]. One key aspect is the Warburg effect which is described as
the preference of cancer cells to utilize glycolysis instead of oxidative phosphorylation for
metabolism, even in the presence of oxygen. Dang showed that hypoxia, mainly mediated
through the hypoxia-inducible factors (HIFs), enhances the Warburg effect by up regulation
of glycolytic genes such as hexokinases, LDH-A, and GLUT [267]. Additional regulators
include genetic factors such as oncogenes and tumor suppressors and microenvironmental
factors such as acidosis, beside spatial hypoxia. Interestingly, in [266] it was pointed out
that altered cancer cell metabolism can modulate the tumor microenvironment which plays
important roles in cancer cell somatic evolution, metastasis, and therapeutic response.

One mechanism to repress hypoxia is the Detoxification of Reactive Oxygen Species [268] which
is down-regulated in the microdissected tumor. Another regulator of hypoxia is Reversible
hydration of carbon dioxide which according to IPEA is enriched in tumor and stroma and
is mediated by carbonic anhydrases [269]. Kang et al. showed that hypoxia activated heat
shock factor-1 (HSF1) [270] which was found enriched in tumor down. Additionally, recent
studies [271] link HSF1 to overexpression of the human epidermal growth factor receptor-2
(HER2) which strongly correlates with tumor aggressiveness and poor prognosis in breast
cancer.

Another pathway which is repressed in tumor in the resulting network is Signaling by Hippo.
The importance of the Hippo pathway in human cancer was reviewed in [272] by Harvey
et al.. They emphasized the function of the Hippo pathway in the control of organ size as
well as the key role played by its deregulation in inducing tumors in model organisms.
Additionally, it was pointed out that changes of this pathway were observed in a broad
range of human carcinomas, including lung, colorectal, ovarian and liver cancer. Zhang et al.
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showed that YAP (Yes-associated protein in the Hippo pathway) can enhance the transformed
phenotype of ovarian cancer cell lines and can induce resistance to chemotherapeutic agents
[273]. Additionally, it was shown that high nuclear YAP expression correlated with poor
patient survival.

In their review, Branzei and Foiani describe regulative mechanisms of DNA repair within
the cell cycle [274]. Numerous pathways involved in the cell cycle are enriched in the current
analysis: Activation of the pre-replicative complex (tumor up), Packaging of telomere ends (tumor
up) which is discussed in the context of cancer also in [275], CDC6 association with the ORC:
origin recognition complex (tumor down), Nuclear envelop breakdown (tumor up), Cyclin A/B1
associated events during G2/M transition (stroma up), Initiation of Nuclear Envelope Reformation
(stroma up) and Nuclear envelope reassembly (stroma up).

Collagen degradation is a key pathway, up-regulated in tumor and stroma, which participates
in the degradation of the extracellular matrix. The role of the extracellular matrix degradation
in cancer metastasis and cell invasion is emphasized in [276] while its importance in ovarian
cancer is shown in [277, 278]. Four genes involved in collagen degradation are active in
tumor COL9A2, COL9A1 and COL12A1 and stroma COL93A, representing possible entry
points for the deactivation of this pathway.

De Alvaro et al. showed in [279] that tyrosine mediated impariment of tumor necrosis
factor α (TNF-α) phosphorylation leads to insulin resistance on glucose uptake and to
GLUT4 translocation to the plasma membrane. Repression of GLUT4 translocation to plasma
membrane in tumor and stroma suggests that TNF-α, which is already used as a target
in chemotherapy of melanoma [280], could also be a potential target in ovarian cancer
treatment.

One biological pathway is enriched due to the combined effect of stroma up and stroma
down: GABA A receptor activation. The GABA A receptor was shown to be highly
differentially expressed in breast cancer tumor epithelium [281]. More recently it was
discovered that over-expression of GABA stimulates pancreatic cancer growth [282]. This
suggests that GABA A could be a potential target for the treatment of ovarian cancer.

In summary, IPEA identifies enriched up- and down-regulated pathways as well as highly
activated or repressed genes. The double bipartite network provides an unprecedented view
on the cross-talk between tumor and stroma in ovarian cancer. Already studied actionable
target genes were superimposed on the resulting network. Additionally, other genes and
pathways were identified which were already linked to other cancers and due to this could
be potential targets in ovarian cancer therapy.

4.5 Cross-Species Comparison of Pichia pastoris and CHO Cells

Biopharmaceutical human protein therapeutics have become increasingly important in
the treatment of various diseases since the first recombinant protein (human insulin) was
engineered over thirty years ago. Established production systems [283] include Escherichia
coli, Saccharomyces cerevisiae and Chinese hamster ovary (CHO) cells. The complexity of the
desired product in combination with the required post-translational modifications (PTM)
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are key factors in the selection of the appropriate expression system. Human-like PTMs can
be achieved by mammalian cell lines which, although they have been used for a few decades,
suffer from disadvantages such as: low growth rate, low biomass density, high media costs
and time-consuming cell line development, as it has been pointed out by Maccani et al. in
[284]. Another expression system capable of protein folding and proper PTMs (especially
glycosylation) is the yeast Pichia pastoris. In general, the use of yeast as an expression system
has numerous advantages [285], such as protein secretion into the culture stock, absence of
endotoxins and viral DNA.

In order to further investigate similarities and differences between P. pastoris and CHO cells,
a cross-species comparison study was performed on gene expression and protein abundance
data sets measured in CHO cells, the established expression system for human heterologous
protein production, and P. pastoris which features diverse advantages over CHO cells. The
comparison is based on two model proteins with different complexities which challenge
the expression systems in various ways: i) human serum albumin (HSA), a monomeric and
ii) non-glycosylated protein and a more complex model protein, a single chain Fv-Fc fusion
antibody derived from the monoclonal anti-HIV-1 antibody 3D6 which is homodimeric and
contains the Fc-specific glycosylation.

Using MCIA, a detailed analysis of the four strains was performed (see Figure 3.20A). To
our knowledge, such a comparison was not done before. The integrative analysis was
performed on the complete data sets, but also on subsets. To better understand the
processes induced by the four strains, ribosome, ribosome deficient and secretion relevant
subsets were investigated. These subsets are believed to be of particular use in elucidating
the effects of the two model proteins and of the different protein production regimes.
Comparison between all strains, between high and low producers and between 3D6 and
HSA producers are performed. Additionally, the comparisons are performed on a data set
basis: P. pastoris transcriptome and proteome, CHO transcriptome and proteome. In this
way, a detailed strain, data set and feature subset specific results are discussed.

4.5.1 MCIA Axis 1 Is Driven by the Different Model Proteins While MCIA Axis
2 Is Driven by their Produced Amount

In all analyses, MCIA Axis 1 comprising the largest variance (51%-56%), separates the four
strains by the protein they are producing: 3D6 H:WT and 3D6 L:WT on the negative side
and HSA H:WT together with HSA L:WT on the positive side of MCIA Axis 1, suggesting
that the most prominent differences in the measured data sets are induced by the different
proteins.

MCIA Axis 2 (25%-30% of the variance) separates the strains by the amount of produced
protein: the high producers are located on the positive side, while the low producers are
on the negative side of MCIA Axis 2. This observation suggests that that this is the second
most prominent reason leading to differences between the strains.

These observations emphasize the suitability of MCIA for the characterization of the four
engineered strains. 71%-91% of the variance captured by the analysis is caused by the
produced proteins and their amount. This is not surprising, given the way the study was
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designed, nevertheless, it is reassuring that the performed analyses captures exactly the
required information.

4.5.2 Protein Production Challenges P. pastoris More Than CHO

In all four analyses, the co-structure between the measured data sets
(P. pastoris transcriptome, P. pastoris proteome, CHO transcriptome and CHO proteome)
was calculated with the RV coefficient. The resulted values are summarized in Table 4.1. For
all computed RV values, correponding p-values were calculated with a permutation test
(n = 1000 repetitions). All RV coefficients proved to be significant.

Table 4.1: Summary of all RV coefficients.

Sample Set All features Secretion Without
Ribosomes Ribosomes

Transcriptomes 0.935 0.991 0.922 0.965

Proteomes 0.896 0.786 0.886 0.826

CHO 0.795 0.826 0.809 0.795

P. pastoris 0.612 0.601 0.597 0.523

Notably, the highest co-structure was found between the two transcriptomes followed by
the two proteomes, regardless whether complete data sets were inspected or only subsets.
Additionally, in all performed analyses can be observed that the co-structure between
CHO transcriptome and CHO proteome is higher that between P. pastoris transcriptome and
proteome.

In the analysis of the complete data sets a high co-structure can be observed between the
two transcriptomes and the two proteomes, as well as within CHO. The lowest agreement
was computed between P. pastoris transciptome and proteome. The situation is similar to the
data sets without the ribosome relevant features. It is worth to mention that in this scenario
the lowest agreement was measured between the two transcriptomes.

The CHO transriptome and proteome share the highest co-structure in the secretion relevant
analysis. In this case only the agreement between the transcriptomes of P. pastoris and CHO
show a higher RV. Furthermore, this is the highest level of agreement measured in all
performed analyses. Interestingly, in the secretion relevant analysis, the agreement within
CHO omics is higher than within P. pastoris omics. This may suggest that protein secretion
challenges P. pastoris more than CHO cells.

In the ribosome relevant analysis, it can be noticed that the co-structure within P. pastoris is
much lower than within CHO, representing the lowest RV value computed in this study.
While the agreement between the two transcriptomes is lower, the co-structure between the
proteomes is higher than in the secretion relevant analysis. Exactly the opposite (higher RV
for the transcriptomes and lower RV for the proteomes) happens when compared to the
analysis of the complete data sets. These results suggest again that complex processes have
to be induced in P. pastoris for the model protein expression.
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In summary, all analyses seem to suggest that protein production challenges P. pastoris more
than CHO cells and that their ribosomes seem to play a key role in this complex process.

4.5.3 Effect of the Expressed Proteins and their Produced Quantities

In order to characterize the effect of the different proteins and their produced quantity,
the distances between the four strains and the origin of the MCIA coordinate system were
calculated. This is done on a per data set basis and as a mean value of the different data
sets. The calculation is based on the first three MCIA axes and was performed in all four
analyses (see Tables 3.13-3.16).

Descending order of the mean distances results in an consistent ranking across all analyses:
3D6 H:WT followed by HSA H:WT and 3D6 L:WT followed by HSA L:WT, suggesting
that the high producers induce more changes in the data sets than the low producers,
and if compared within the high or the low regime, 3D6 induces more changes than HSA.
Inspection of the data set specific distances reveals more details.

P. pastoris Transcriptome

Table 4.2 summarizes the distances from the four strains to the origin of the plot measured
for P. pastoris transcriptome. When all features are considered, HSA H:WT induces the
highest changes, followed by 3D6 H:WT, 3D6 L:WT and finally HSA L:WT. The secretion
relevant transcriptome is almost equally challenged by all four strains. The 3D6 strains
induce slightly (first decimal place) more changes but the differences between high and
low producers of the same protein are almost negligible (second decimal place). When all
features without the ribosome relevant one are considered, the effects are similar to the
complete data set analysis: HSA H:WT induces most of the changes, followed by 3D6 H:WT,
3D6 L:WT and finally HSA L:WT. In the ribosome relevant analysis, it can be seen that 3D6

L:WT causes the most predominant changes while 3D6 H:WT is equally challenging as
HSA H:WT, followed by HSA L:WT which induces only slightly (second decimal place) less
predominant changes.

Table 4.2: P. pastoris Transcriptome - Distances to Origin

Comparison All features Secretion Without
Ribosomes Ribosomes

3D6 L:WT 2.143 2.558 2.086 2.716

3D6 H:WT 2.776 2.533 2.788 2.499

HSA L:WT 1.810 2.361 1.782 2.447

HSA H:WT 2.925 2.330 2.966 2.499

The findings can be summarized as follows: For the P. pastoris transcriptome, when all
features or all features without the ribosome associated ones are considered, the largest
difference can be observed between the high and the low producers. These differences are
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not so pronounced in the secretion and ribosome relevant analyses. These results can also
be seen in the P. pastoris transcriptome relevant region of Figures 3.21A–3.22B.

The P. pastoris transcriptome relevant region of Figures 3.21A and 3.22A show that the genes
are mostly projected along the first MCIA axis and therefore can be associated to high
(PAS_chr1-4_0681, PAS_chr4_0002, MNN4, TOS8, ADH6, SGN1-1, CNE1, SIT1-1, SEC61,
ArbD ) and to low producers (FLO5-2, PAS_chr3_0008, PAS_chr3_1144, PAS_chr3_0012,
PAS_chr2_-1_0550, FIG1, PRM1, KAR4, STE3).

Notably, MNN4 mutations are linked to human-like N-glycosylation of proteins in
P. pastoris [286].

In the secretion relevant analysis (upper right of Figure 3.21B), where it was observed that
all strains challenge the P. pastoris transcriptome similarly, it can be seen that
P. pastoris genes are projected in the direction of 3D6 H:WT: Pipas_chr1-4_0405,
Pipas_chr2-1_0835, Pipas_chr3-0401, Pipas_chr2-1_0291, Pipas_chr2-2_0210, ERV29; HSA
H:WT: Pipas_chr3-4_0230; 3D6 L:WT: Pipas_chr2-2_0346, Pipas_chr1-4_0225,
Pipas_chr1-1_0023, ARF3, CHS7; HSA L:WT: Pipas_chr4-0452, Pipas_chr2-1_0726,
Pipas_chr1-4_0519, PpBMT1; high producers: CNE1, SEC61, OST3, KAR2, PDI1; low
producers: HRI1.

Gasser et al. report a strong enhancement in the transcription of CNE1 (calnexin) and SEC53

(phosphomannomutase), genes involved in ER quality control and glycosylation, in response
to Hac1 overexpression in P. pastoris [287].

The feature plot of the P. pastoris transcriptome in the ribosome related analysis is
dominated by the gene RPS22A and PAS_chr1-3_0305 which are projected in the direction
of 3D6 L:WT and HSA L:WT, respectively. Additionally, YAK1-2, SED1 and HCA4 can be
associated to low producers while PPE1, TVP18 and ENP1 are associated to high producers.
Pipas_chr1-1_0414, Pipas_chr3_0573 and Pipas_chr3_0893 are associated to HSA producing
strains while Pipas_chr1-3_0256, Pipas_chr4_0407, Pipas_chr3_0183 and Pipas_chr3-1_0518

are associated to 3D6 producer. YMR295C is associated to 3D6 H:WT and MDM38 to HSA
H:WT.

Additionally, Figure 3.24 shows the corresponding projections of the investigated GO Terms
for each data set and for each analysis. Associations of GO terms to the four strains resulting
from Figure 3.23A are summarized in Table 3.27.

P. pastoris Proteome

Table 4.2 summarizes the distances from the four strains to the origin. When all features
are considered, 3D6 H:WT induces the most prominent changes, followed by HSA H:WT,
3D6 L:WT and finally, HSA L:WT. Looking at the P. pastoris proteome relevant part of
Figures 3.21A and 3.22A, one can observe that most proteins are associated to the high
(MCP2-1, HCH1, PAS_chr2-1_0127, NUC1, Zeo) and to the low producers (GOT1, ZRC1,
PAS_chr2-1_0883, YNL181W, MRPL31, YOL09810, GLO1, PEX6, CDC50).

Nathan et al. identified HCH1 as a multicopy suppressors of a Saccharomyces cerevisiae Hsp90

loss-of-function mutation in [288]. Hsp90 participates in a multicomponent chaperone
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system which is in charge of a set of target proteins that play key roles in the regulation of
cell growth and development.

Similar to the P. pastoris transcriptome, the secretion relevant analysis shows that the strains
induce high changes relative to the subset analyses: 3D6 strains slightly larger than HSA
strains. Interestingly, 3D6 L:WT seems to challenge the P. pastoris proteome more than
3D6 H:WT. Considering the P. pastoris proteome relevant part of Figure 3.21B, one can
observe that two proteins dominate the plot: GOT1 and YNL181W which can be associated to
low producers and HCH1 which is projected in the direction of HSA H:WT. No other proteins
were projected in the directions of HSH H:WT and 3D6 L:WT. Additional associations to
HSA L:WT may be: MNN11 and Pipas_chr1-4_0105 while GLO3, GRX6 and Pipas_chr4_0675

are projected in the direction of 3D6 H:WT.

Table 4.3: P. pastoris Proteome - Distances to Origin

Comparison All features Secretion Without
Ribosomes Ribosomes

3D6 L:WT 2.167 2.744 2.139 2.164

3D6 H:WT 2.888 2.533 2.864 3.098

HSA L:WT 2.186 2.361 2.198 2.317

HSA H:WT 2.513 2.330 2.548 2.490

The ribosome relevant analysis shows that 3D6 H:WT induces the highest changes in the
P. pastoris proteome, followed by HSA H:WT similar to HSA L:WT and 3D6 L:WT. Examining
the P. pastoris proteome relevant part of Figure 3.22B, one first notices GIS2 associated to
3D6 H:WT followed by KRI1 and Pipas_chr4_0269. Furthermore, RRP3, MRPL1 and ESF1

can be associated with high producers in general. Pipas_chr1-1_0236 is projected in the
direction of HSA H:WT while Pipas_chr1-1_0187, RRP17, RIX7, SR09 and KRR1 are projected
in the direction of HSA L:WT. MRPL31 is highly associated with low producers.

In summary, the P. pastoris proteome is almost equally challenged by all four strains.
Interestingly, 3D6 H:WT induces the largest overall changes in the ribosome relevant
proteome.

Additionally, Figure 3.24 shows the corresponding projections of the investigated GO Terms
for each data set and for each analysis. Associations of GO Terms to the four strains resulting
from Figure 3.23A are summarized in Table 3.28.

CHO Transcriptome

Table 4.4 summarizes the distances from the four strains to the origin. When all features
are considered, the high producers induce more changes than the low producers, and 3D6

more than HSA, similar to the results from the analysis done without the ribosome relevant
features.

Inspection of the CHO transcriptome relevant region of Figures 3.21A and 3.22A shows
CHO gene associations to: 3D6 H:WT (Col6a1, Fabp4, Pstpip1, BGI_CHO_2136,
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BGI_CHO_17350), 3D6 L:WT (Nppb, Il33, Dsp), HSA L:WT (Sirt5, BGI_CHO_16355,
BGI_CHO_17354, Tcf712), HSA H:WT (Ill13ra2, Akr1b7, BGI_CHO_14472), 3D6 strains in
general (BGI_CHO_12844, BGI_CHO_12771, BGI_CHO_12772) and HSA strains in general
(BGI_CHO_18500, BGI_CHO_18492, BGI_CHO_15425, BGI_CHO_2274).

Fabp4 was linked to the regulation of phosphofructokinase in a multi omics comparison
study between protein producing Hek293 cells and the parental cell line. Hek293 cells
are employed for stable expression of proteins where PTMs performed by CHO cells are
inadequate [289].

Table 4.4: CHO Transcriptome - Distances to Origin

Comparison All features Secretion Without
Ribosomes Ribosomes

3D6 L:WT 2.358 2.559 2.358 2.366

3D6 H:WT 2.704 2.640 2.705 2.744

HSA L:WT 2.120 2.064 2.115 2.116

HSA H:WT 2.601 2.678 2.597 2.871

Inspection of the secretion related CHO transcriptome distances to origin reveals similar
challenges induced by (in descending order) HSA H:WT, 3D6 H:WT, 3D6 L:WT and less
prominent changes caused by HSA L:WT. The CHO transcriptome relevant region of
Figure 3.21B reveals numerous CHO gene associations tp: HSA H:WT (BGI_CHO_3432),
high producers in general (Myh3, Ube2d3, Sec24d, Slc35a3, Rhoc, Ssrc), 3D6 H:WT (Hspd1,
Bcap31, Gbf1, BGI_CHO_3428), 3D6 L:WT (Myh7, Fkbp10, Dnajc3, Golt1b,
BGI_CHO_14096, BGI_CHO_1085, BGI_CHO_9990) and HSA L:WT (Ube2j2,
BGI_CHO_4267, BGI_CHO_9130).

The ranking of the strains in the ribosome relevant analysis is equal to the ranking in
the secretion relevant analysis (in descending order): HSA H:WT, 3D6 H:WT, 3D6 L:WT
and HSA L:WT. The CHO transcriptome relevant region of Figure 3.22B reveals numerous
CHO gene associations to: HSA H:WT (BGI_CHO_2959, BGI_CHO_19020, BGI_CHO_6771,
BGI_CHO_19386), 3D6 H:WT (Gm15421, Rpl7), 3D6 L:WT (BGI_CHO_5780, BGI_CHO_4926,
BGI_CHO_4152, BGI_CHO_4158) and HSA L:WT (Mrpl13, Mrpl20, Mrpl23, Rps9).

Additionally, Figure 3.24 shows the corresponding projections of the investigated GO Terms
for each data set and for each analysis. Associations of GO Terms to the four strains resulting
from Figure 3.23A are summarized in Table 3.28.

CHO Proteome

Table 4.5 summarizes the distances from the four strains to the origin. If all features are
considered, the high producers induce more prominent changes than the low producers
and 3D6 more than HSA. These results correspond to the analysis done without ribosome
relevant features.
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The CHO proteome relevant region of Figures 3.21A and 3.22A exhibit CHO proteins
associated to: HSA H:WT (EGV96396.1, ERE91297.1, ERE70326.1, CHO_pq_1172,
CHO_pq_80), HSA L:WT (ERE92264.1, EGW00497.1, EGW06084.1, ERE74789.1,
CHO_pq_573, CHO_pq_1021), 3D6 H:WT (EGV93171.1, EGW08318.1, ERE78825.1,
CHO_pq_29, CHO_pq_4, CHO_pq_1072) and 3D6 L:WT (EGV95081.1, EGW04688.1,
ERE69844.1, XP_007607708.1, EGW02679.1, ERE67838.1, CHO_pq_122, CHO_pq_1053).

EGV96396.1 is described as a oxysterol-binding protein-related protein (see Table 3.24). Fang
et al. showed that Kes1p (a oxysterol-binding protein in yeast) participates in a regulatory
pathway for yeast Golgi-derived transport vesicle biogenesis [290].

The secretion related CHO proteome distances to origin reveal major changes induced by
HSA H:WT and 3D6 H:WT and minor changes induced by 3D6 L:WT and HSA L:WT. The
CHO proteome relevant region of Figure 3.21B reveals numerous CHO protein associations
to: 3D6 L:WT (EGV95081.1, XP_007633208.1, XP_007627449.1), 3D6 H:WT (XP_007637129.1,
XP_007622928.1, CHO_pq_1037), HSA H:WT (XP_007621275.1, CHO_pq_1017) and
HSA L:WT (XP_007621498.1, EGV95752.1).

According to the ribosome relevant analysis, 3D6 production induces more changes than
HSA production, and high producers challenge the strains more than low producers. The
CHO proteome relevant region of Figure 3.22B reveals numerous CHO protein associations
to: high producers (XP_007634407.1, ERE79461.1), HSA H:WT (XP_007626395.1,
CHO_pq_132), to 3D6 H:WT (XP_007637129.1), 3D6 L:WT (XP_007633757.1, CHO_pq_122)
and HSA H:WT (EGW00497.1, ERE92059.1, CHO_pq_1163, CHO_pq_1151).

Table 4.5: CHO Proteome - Distances to Origin

Comparison All features Secretion Without
Ribosomes Ribosomes

3D6 L:WT 2.140 2.222 2.134 1.980

3D6 H:WT 2.919 2.706 2.908 3.101

HSA L:WT 1.909 1.670 1.886 1.967

HSA H:WT 2.718 3.146 2.744 2.906

Additionally, Figure 3.24 shows the corresponding projections of the investigated GO Terms
for each data set and for each analysis. Associations of GO Terms to the four strains resulting
from Figure 3.23A are summarized in Table 3.28.

4.5.4 Further Characterization

To further characterize the four engineered strains, distances between any two of them were
computed in the MCIA space. Data set specific and mean distances were calculated. The
results are summarized in Tables 3.17–3.20.

Inspection of the four tables results in the following observations:
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• The distance between 3D6 producers is always larger than the distance between the
HSA producers.

• The distance between the high producers is always larger than the distance between
the low producers.

Shifting 3D6 Expression from Low to High Is More Challenging than the Corresponding
HSA Shift, Except in the CHO Secretion Relevant Proteome

In order to assess the impact of changing from a low to a high producer, the difference
between the distance 3D6 L:WT to 3D6 H:WT and the distance HSA L:WT to HSA H:WT
was calculated based on the Tables 3.17–3.20 and summarized in Table 4.6.

In all analyses the distance between 3D6 producers is larger than the distance between the
HSA producers. The largest differences can be observed between the pichia proteomes, in
the secretion and ribosome relevant analysis.

In all analyses and for all data sets, increasing the produced amount of 3D6 is more
challenging than expressing more HSA product. One exception was found: in the secretion
relevant analysis, when the distance between the CHO proteomes is considered, the distance
between HSA L:WT and HSA H:WT is higher than the distance between 3D6 L:WT and
3D6 H:WT. This may suggest that, in the CHO proteome, increasing the amount of HSA
results in more prominent changes than increasing the amount of 3D6.

Table 4.6: Difference between the distance {3D6 L:WT to 3D6 H:WT} and the distance
{HSA L:WT to HSA H:WT}

Data set All features Secretion Without
Ribosomes Ribosomes

Mean 0.526 0.596 0.445 0.552

Pichia Transcriptomes 0.151 0.680 0.047 0.563

Pichia Proteomes 0.673 1.094 0.503 1.049

CHO Transcriptomes 0.568 0.753 0.585 0.158

CHO Proteomes 0.689 -0.139 0.640 0.437

P. pastoris Secretion Relevant Proteome and Ribosome Relevant Transcriptome Are
More Sensitive to Changes Between the Low Producers than to Changes Between the
High Producers

In order to assess the amount of changes resulting from producing different proteins in the
same amount, the difference between the distance 3D6 H:WT to HSA H:WT and the distance
3D6 L:WT to HSA L:WT was computed for all analyses based on the Tables 3.17–3.20 and
summarized in Table 4.7.

It can be observed that the difference between the two calculated distances is always positive
indicating that the changes resulted from producing different proteins in a high amount
induces a larger spectra of biological processes than producing different proteins in a low
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amount. The largest differences were found in the CHO secretion and ribosome relevant
proteomes. Nevertheless, two exceptions were found.

The first case occurs when one inspects the distances between the P. pastoris proteoms in the
secretion relevant analysis. There, the studied difference is negative. This could indicate that
changing from producing 3D6 in a low amount to HSA in the same regime induces more
changes in the P. pastoris secretion relevant proteome than when moving from producing
3D6 in a high amount to producing HSA in the same regime.

The second case occurs when one inspects the distances between the
P. pastoris transcriptomes in the ribosome relevant analysis.There, the studied difference is
negative. This could indicate that changing from producing 3D6 in a low amount to HSA in
the same regime induces more changes in the P. pastoris ribosome relevant transcriptome
than when moving from producing 3D6 in a high amount to producing HSA in the same
regime.

Table 4.7: Difference between the distance {3D6 H:WT to HSA H:WT} and the distance
{3D6 L:WT to HSA L:WT}

Data set All features Secretion Without
Ribosomes Ribosomes

Mean 1.453 0.759 1.514 1.137

Pichia Transcriptomes 1.959 0.301 2.126 -0.188

Pichia Proteomes 1.185 -0.283 1.216 1.229

CHO Transcriptomes 0.910 0.756 0.910 1.231

CHO Proteomes 1.755 2.259 1.804 2.262

In summary: the distance between the high producers is always larger than the distance
between the low producers except in the P. pastoris secretion relevant proteome and in the
ribosome relevant transcriptome.

Comparison of Table 4.6 to Table 4.7 suggests that switching from 3D6 to HSA when the
amount of product does not vary induces larger changes than shifting from low to high
producers.
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As high-throughput data measurements in biomedical studies have become routine, the
challenges shifted from data generation to data analysis. In particular, the integration of
multiple omics data sets is a promising but at the same time difficult to accomplish task.

In this thesis, three integrative analysis methods were studied and applied to several omics
data sets: (multiple) co-inertia analysis (MCIA), generalized singular value decomposition
(GSVD) and integrative biclustering (IBC). Additionally, a traditional gene set enrichment
analysis (GSEA) was applied to human microRNAs. Finally, a novel integrative pathway
enrichment approach (IPEA) was developed and employed to characterize tumor-stroma
cross-talk in ovarian cancer omics data.

Three integrative analysis methods (MCIA, GSVD and IBC) were applied to the
transcriptome and proteome of P. falciparum, the parasite causing malaria in humans. From
the intersection of their results, a network of biological processes was derived which
characterizes the parasite’s life cycle stages and unifies numerous findings from the past 25

years of research in a single analysis.

The innate immune response of A. gambiae, the primary malaria mosquito vector in Sub-
Saharan Africa, to sugar, blood and to P. falciparum infected blood feeding was analyzed.
With MCIA a high structural concordance between the hemocyte transcriptome and the
granulocytic hemocyte-specific, immune-specific and proliferation-specific proteome could
be shown. The results across all three comparisons suggest that the highest degree of
post-transcriptional regulation occurs after an infectious blood meal, followed by the effects
of blood-feeding.

MCIA was employed for the cross-species comparison of the expression systems
P. pastoris and Chinese hamster ovary (CHO) cells, challenged by the production of the two
model proteins, HSA and 3D6. Detailed characterization of the strains results in three
hypotheses: i) protein production challenges P. pastoris more than CHO, ii) production of
3D6 induces more changes than production of HSA and iii) producing a model protein in a
high regime is more challenging than producing the same protein in a low regime. A
number of secretion and ribosome relevant target genes and proteins were identified.

Traditional GSEA was applied to validated target genes of all microRNAs identified in
samples from patients following traumatic brain injury as well as to the miRNAs associated
with cerebrospinal fluid microparticles. The 36, respectively 35, enriched neuron related
biological processes were almost identical between the two sets, although the overlap in the
corresponding miRNA lists was below 50%.

As traditional GSEA is limited to flat gene lists, a novel integrative pathway enrichment
approach (IPEA) was developed. IPEA combines scores from a multivariate analysis with
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pathway specific scores based on network topology. Enriched pathways computed by IPEA
are characterized by a biologically relevant agreement between the measured data and the
intrinsic structure of the pathways. IPEA visualizes the results as a double bipartite graph
of activated features and enriched pathways. Applied to 38 matched tumor and stroma
samples from ovarian cancer patients, IPEA reveals an unprecedented view of the cross-talk
between tumor and stroma suggesting new targets, e.g. CTNNB1, ERBB4 and SMAD4 which
have already shown their potential in the therapy of other cancers, for the treatment of
ovarian cancer.

5.1 Challenges

Integrative data analysis is still in its infancy. Although a relatively large number of
approaches are available, various aspects of integrative data analysis still have to be
addressed. The co-authored review [150] summarized these challenges. While
biostatisticians and computational biologists are extending and developing integrative
analysis methods, few gold standard or canonical test data sets exist and therefore it is
often difficult to compare the performance of different methods. The community needs to
define a set of test datasets for this purpose.

Although several integrative analysis approaches have been applied to molecular data, little
consideration is often given to the underlying data structure. For example PCA is frequently
applied to count data with many zeros, when CA is more appropriate.

Most visualization approaches were designed for datasets with fewer features, and
visualization and interpretation of plots with thousands of features can be complex.

Finally, interpretation of long lists of biological features (genes, proteins, miRNAs) remains
a challenge and often one needs to search dispersed data sources to annotate these features.
Within R, the Bioconductor annotation project greatly facilitates quick and easy access to
them.

An attractive feature of decomposition-based integrative analysis methods is that feature
annotation can be projected into the same space to determine a score for Gene Ontology
terms such as biological processes but also for pathways from databases like Reactome.

Simultaneous analysis of omics data sets will produce ranked lists of features that are
the most co-variant, features that are highly associated with a sample or condition, and
features that are grouped together. These are on the same scale and can be concatenated to
increase the power of gene set or pathway analysis. A challenge addressed in this thesis is
the shortcoming of traditional GSEA to operate on flat lists of genes without taking into
account other available information.

After performing an integrative GSEA such as IPEA, it would be informative to visualize, for
example, the enriched pathway as a network by emphasizing the variables that contributed
to its enrichment and the omics levels on which these were measured.
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Appendix A

Generalized Singular Value Decomposition

R-File containing the function used for the computation of the generalized singular
value decomposition.

1 my_gsvd = function(yeast ,human){

2 matrix = rbind(yeast ,human)

3

4 # QR decomposition

5 qrv = qr(matrix)

6 Q = qr.Q(qrv)

7 R = qr.R(qrv)

8

9

10 genes1 = dim(yeast)[1]

11 arrays1 = dim(yeast)[2]

12

13 q1 = Q[1:genes1 ,]

14

15 # computation of the genelets with singular value

decomposition

16 svdv = svd(q1)

17 genelets = t(svdv$v)%*%R

18

19 # normalization of the genelets

20 for(i in 1:dim(genelets)[1])

21 genelets[i,] = genelets[i,]/sqrt(genelets[i,]%*%genelets[i

,])

22

23

24 # computation of the arraylets

25 arraylets1 = yeast%*%solve(genelets)

26 arraylets2 = human%*%solve(genelets)

27

28 # arraylets normalization

29 for(i in 1:dim(arraylets1)[1])

30 arraylets1[i,] = arraylets1[i,]/sqrt(arraylets1[i,]%*%

arraylets1[i,])

31

32

33 for(i in 1:dim(arraylets2)[1])
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34 arraylets2[i,] = arraylets2[i,]/sqrt(arraylets2[i,]%*%

arraylets2[i,])

35

36 # computation of the generalized eigenvalues

37 library("corpcor")

38 d1 = diag(pseudoinverse(arraylets1)%*%yeast%*%solve(

genelets))

39 d2 = diag(pseudoinverse(arraylets2)%*%human%*%solve(

genelets))

40

41 # setup of the result

42 res = list(arraylets1 = arraylets1 ,

43 arraylets2 = arraylets2 ,

44 d1 = d1,

45 d2 = d2,

46 genelets = genelets)

47

48 return(res)

49 }

Listing A.1: R script to compute the generalized singular value decomposition for two data sets
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Appendix B

Analysis of Hemocyte and Granulocyte
Immune Response of Anopheles Gambiae

Table B.1: Immnue-specific gene associations.

Genes Annotation Feature Axis 1

[AU]
Feature Axis 2

[AU]

AGAP005890 no metadata -7,28 0,02

AGAP002134 no metadata 7,69 -1,48

AGAP012278 no metadata -7,55 -1,5

AGAP008282 no metadata 8,36 -2,19

AGAP008696 no metadata 9,81 -2,51

AGAP000278 OBP9 odorant binding protein -6,45 -0,73

AGAP006448 cAMP-dependent protein kinase regulator -0,81 2,64

AGAP002082 no metadata 0,31 1,78

AGAP008843 aquaporin 1 5,71 -2,72

AGAP007771 no metadata -0,74 1,74

Table B.2: Immnue-specific protein associations.

Proteins Annotation Feature Axis 1

[AU]
Feature Axis 2

[AU]

AGAP028028 leucine-rich immune protein -2,38 0,51

AGAP007456 leucine-rich immune protein (Short) 1,23 0,46

AGAP011791 Clip-Domain Serine Protease 1,18 0,15

AGAP004148 CLIPB5, easter-like -3,69 -0,22

AGAP007045

leucine-rich immune protein - LRIM15,
insulin-like growth factor binding protein
complex

-2,61 -0,74

AGAP013442 Clip-Domain Serine Protease 1,06 -1,07

AGAP005693 leucine-rich immune protein (Coil-less) 0,76 0,38

AGAP011787 CLIPA5 -1,47 0,51

AGAP011790 Clip-Domain Serine Protease, CLIPA2 -2,11 -0,61
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Table B.3: Proliferation-specific gene associations.

Genes Annotation Feature Axis 1

[AU]
Feature Axis 2

[AU]

AGAP005890 no metadata -7,15 -1,35

AGAP002134 no metadata 7,58 -0,25

AGAP012278 no metadata -7,14 -2,9

AGAP008282 no metadata 8,42 -0,58

AGAP008696 no metadata 10,1 -0,61

AGAP000278 OBP9 odorant binding protein -6,2 -1,93

AGAP006448 cAMP-dependent protein kinase regulator -1,29 2,44

AGAP003249 CLIP3 Clip-domain serine protease -2,78 -2,52

AGAP002082 no metadata -0,03 1,8

AGAP003241 no metadata 0,98 1,88

AGAP010904 CPFL3 cuticular protein 3 from CPFL family -5 -2,95

Table B.4: Proliferation-specific protein associations.

Proteins Annotation Feature Axis 1

[AU]
Feature Axis 2

[AU]

AGAP005160 Ras homolog gene family, member A 0,38 -0,16

AGAP004146 Ras-related protein Rab-1A 1,1 0,37

AGAP005393 Ras-related protein Rab-2A -0,08 0,2

AGAP007901 Ras-related protein Rab-5C -0,4 -0,45

AGAP001617 Ras-related protein Rab-7A -2,07 0,38

AGAP001874 Ras-related protein Rap-1A 0,83 0,06

AGAP004559 Ras-related protein -0,04 -0,37
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Appendix C

Traditional Gene Set Enrichment Analysis
for microRNAs
Table C.1: Overrepresented biological processes in the set of validated target genes of CSF-MP associated

miRNAs and all miRNAs. Non-significance is marked by n.s.
p values

Overrepresented neuron related biological processes CSF-MP miRNAs all miRNAs

neurogenesis 1,3803E-16 1,3881E-16

generation of neurons 1,1113E-14 3,5503E-15

regulation of neuron apoptosis 3,1342E-11 9,0896E-10

regulation of neurogenesis 3,4301E-11 1,3565E-10

regulation of neuron differentiation 5,5376E-10 2,0373E-09

neuron differentiation 4,5311E-08 1,0827E-08

negative regulation of neuron apoptosis 9,2085E-07 3,2024E-06

neuron fate commitment 0,000010986 0,000092647

positive regulation of neurogenesis 0,000014836 0,000018025

positive regulation of neuron apoptosis 0,000015613 0,000078275

regulation of neurological system process 0,000018074 n.s.
positive regulation of neuron differentiation 0,000040784 0,000038682

neuron development 0,000056759 6,8055E-06

regulation of long-term neuronal synaptic plasticity 0,00013011 0,000078275

positive regulation of neurological system process 0,00015663 0,00079919

neuron projection development 0,00037089 0,000019934

negative regulation of neurogenesis 0,00037164 0,0024235

negative regulation of neuron projection development 0,00037367 0,0011074

neuron death 0,00042698 0,000027475

negative regulation of axonogenesis 0,0010188 0,000018025

response to axon injury 0,0013414 0,000038682

regulation of neuron projection development 0,0013688 0,0026152

central nervous system neuron differentiation 0,0013739 0,009209

neuron apoptosis 0,0013963 0,000078444

regulation of neuron projection regeneration 0,0014606 0,0031111

regulation of axon regeneration 0,0014606 0,0031111

negative regulation of neuron projection regeneration 0,0022784 0,0041026

positive regulation of neuroblast proliferation 0,0027254 0,0057133

neuron projection morphogenesis 0,0027974 0,00030567

negative regulation of neuron differentiation 0,0028146 0,0025622

negative regulation of neuroblast proliferation 0,0053363 0,0094649

negative regulation of neurotransmitter transport 0,0071839 0,010739

regulation of neuronal synaptic plasticity 0,0077517 0,0022518

neuron fate specification 0,0085902 n.s.
neuron projection regeneration n.s. 0,0017688

cell morphogenesis involved in neuron differentiation n.s. 0,0042632

axonogenesis n.s. 0,0046638
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Appendix D

Cross-species Comparison of all Eight
Conditions

D.1 Secretion and Ribosome Relevant Analysis

In this section, the results of MCIA performed on the secretion and ribosomes related
features are shown. The ribosome relevant feature subsets include 495

P. pastoris genes, 288 P. pastoris proteins, 297 CHO genes and 53 CHO proteins while
the secretion relevant subset included 405 P. pastoris genes, 236 P. pastoris proteins, 534

CHO genes and 40 CHO proteins. The results are displayed in Figure D.1. The
computed RV coefficients are summarized in Tables D.1 and D.2. Due to display
reasons transcriptome and proteome are abbreviated as T’ome, respectavly P’ome in
the tables.

A permutation test was used to asses the significance of the eigenvalues of MCIA. The
test revealed that the first three eigenvalues are statistically significant. Due to this,
the first three MCIA axis were used to compute distances between different measured
conditions. The distances were computed between each data set separately and a
mean value of these distances is shown additionally. For comparison reasons the same
distances were computed in the MCIA of ribosome relevant and secretion relevant
features and displayed Table D.3.

(A)Ribosomes-Specific (B)Secretion-Specific

Figure D.1: MCIA analysis of ribosome (A) and secretion (B) specific data sets.
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Appendix D Cross-species Comparison of all Eight Conditions

Table D.1: Ribosome-specific RV coefficient.
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Pichia
T’ome 1.000 0.566 0.915 0.631

Pichia
P’ome 0.566 1.000 0.581 0.815

CHO
T’ome 0.915 0.581 1.000 0.726

CHO
P’ome 0.631 0.815 0.726 1.000

Table D.2: Secretion-specific RV coefficient.
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T’ome 1.000 0.506 0.966 0.633

Pichia
P’ome 0.506 1.000 0.601 0.774

CHO
T’ome 0.966 0.601 1.000 0.760

CHO
P’ome 0.633 0.774 0.760 1.000

D.2 P Values of the MCIA Eigenvalues
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Figure D.2: P values for eigenvalues of MCIA including all conditions and all measured features.
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D.2 P Values of the MCIA Eigenvalues

Table D.3: Distances between different conditions computed from the MCIA of all features, ribosome
relevant as well as secretion relevant features.

Mean
Distance

Pichia
Transcriptome

Pichia
Proteome

CHO
Transcriptome

CHO
Proteome

Overall Distances

3D6 L:WT to
3D6 H:WT 1.603 1.437 1.617 1.576 1.780

HSA L:WT to
HSA H:WT 1.549 1.402 1.802 1.311 1.682

3D6 L:WT to
HSA L:WT 2.142 1.997 2.326 2.343 1.903

3D6 H:WT to
HSA H:WT 2.886 2.954 2.425 3.263 2.902

3D6 H:3D6 L to
HSA H:HSA L 2.527 2.206 2.325 2.444 3.135

3D6 L:HSA L to
3D6 H:HSA H 2.456 2.205 2.581 2.444 2.593

Ribosome Relevant Distances

3D6 L:WT to
3D6 H:WT 1.288 1.143 1.537 1.217 1.255

HSA L:WT to
HSA H:WT 1.280 1.002 1.260 1.375 1.483

3D6 L:WT to
HSA L:WT 2.425 2.776 2.575 2.797 1.552

3D6 H:WT to
HSA H:WT 2.913 2.597 2.736 3.438 2.880

3D6 H:3D6 L to
HSA H:HSA L 2.691 1.706 2.900 1.983 4.174

3D6 L:HSA L to
3D6 H:HSA H 1.965 1.707 2.066 1.983 2.104

Secretion Relevant Distances

3D6 L:WT to
3D6 H:WT 1.722 1.663 1.792 1.592 1.842

HSA L:WT to
HSA H:WT 1.590 1.243 1.712 1.447 1.957

3D6 L:WT to
HSA L:WT 2.364 2.555 2.759 2.386 1.756

3D6 H:WT to
HSA H:WT 2.721 2.751 2.397 2.904 2.832

3D6 H:3D6 L to
HSA H:HSA L 2.206 1.915 2.006 1.865 3.039

3D6 L:HSA L to
3D6 H:HSA H 2.154 1.915 2.300 1.865 2.535

Mean
Distance

Pichia
Transcriptome

Pichia
Proteome

CHO
Transcriptome

CHO
Proteome
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Appendix D Cross-species Comparison of all Eight Conditions

D.3 GO Slim Terms

Table D.4: GO Slim Terms
GO Slim Term ID GO Slim Term Description

GO:0000910 cytokinesis
GO:0006091 generation of precursor metabolites and energy
GO:0006259 DNA metabolic process
GO:0006351 transcription, DNA-dependent
GO:0006399 tRNA metabolic process
GO:0006412 translation
GO:0006457 protein folding
GO:0006464 cellular protein modification process
GO:0006468 protein phosphorylation
GO:0006486 protein glycosylation
GO:0006520 cellular amino acid metabolic process
GO:0006725 cellular aromatic compound metabolic process
GO:0006766 vitamin metabolic process
GO:0006810 transport
GO:0006811 ion transport
GO:0006839 mitochondrial transport
GO:0006897 endocytosis
GO:0006950 response to stress
GO:0006970 response to osmotic stress
GO:0006974 response to DNA damage stimulus
GO:0006979 response to oxidative stress
GO:0006986 response to unfolded protein
GO:0006997 nucleus organization
GO:0007005 mitochondrion organization
GO:0007010 cytoskeleton organization
GO:0007029 endoplasmic reticulum organization
GO:0007031 peroxisome organization
GO:0007033 vacuole organization
GO:0007034 vacuolar transport
GO:0007049 cell cycle
GO:0007059 chromosome segregation
GO:0007126 meiosis
GO:0007165 signal transduction
GO:0009408 response to heat
GO:0009409 response to cold
GO:0015031 protein transport
GO:0016044 cellular membrane organization
GO:0016049 cell growth
GO:0016050 vesicle organization
GO:0016070 RNA metabolic process
GO:0016071 mRNA metabolic process
GO:0016072 rRNA metabolic process
GO:0016192 vesicle-mediated transport
GO:0016567 protein ubiquitination
GO:0016568 chromatin modification
GO:0016570 histone modification
GO:0019725 cellular homeostasis
GO:0030154 cell differentiation
GO:0032196 transposition
GO:0032989 cellular component morphogenesis
GO:0042221 response to chemical stimulus
GO:0042254 ribosome biogenesis
GO:0042594 response to starvation
GO:0043543 protein acylation
GO:0044255 cellular lipid metabolic process
GO:0044257 cellular protein catabolic process
GO:0044262 cellular carbohydrate metabolic process
GO:0045333 cellular respiration
GO:0046483 heterocycle metabolic process
GO:0048193 Golgi vesicle transport
GO:0051169 nuclear transport
GO:0051186 cofactor metabolic process
GO:0051276 chromosome organization
GO:0051301 cell division
GO:0051704 multi-organism process
GO:0070271 protein complex biogenesis
GO:0071554 cell wall organization or biogenesis
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Abstract: Technological improvements have shifted the fo-
cus from data generation to data analysis. The availabil-
ity of huge amounts of data like transcriptomics, protemics
and metabolomics raise new questions concerning suitable
integrative analysis methods. We compare three integrative
analysis techniques (co-inertia analysis, generalized singu-
lar value decomposition and integrative biclustering) by ap-
plying them to gene and protein abundance data from six
life cycle stages of Plasmodium falciparum. We create a
network view of the GO terms associated to cell cycle stages
by all three methods.

Keywords: Integrative analysis, comparison, genes, pro-
teins.

Introduction

Continuous technological improvements facilitate the avail-
ability of huge amounts of data resulting from the simul-
taneous characterization of the same organism or experi-
mental condition. It is possible to measure the activity of
thousands of genes, hundreds of proteins and hundreds of
metabolites. Only the integrative analysis of all data types
yields a deeper understanding of the system under study.

Methods

In this work we concentrate on gene and protein data. Most
of the current analysis techniques are based on the assump-
tion of a direct correlation between genes and proteins. This
assumption does not hold due to post-transcriptional and
post-translational expression regulation processes.
Here we compare three alternatives to conservative analy-
sis techniques. Co-inertia analysis (CIA) is an integrative
analysis method used to visualize and explore gene and pro-
tein data [1]. The generalised singular value decomposition
(GSVD) [2] has shown its potential in the analysis of two
transcriptome data sets. Integrative Biclustering (IBC) ap-
plies Biclustering [3] to gene and protein data.
We compare CIA, GSVD and IBC by applying them to gene
and protein abundance data of Plasmodium falciparum [4].
The data was gathered from samples in six life cycle stages
of the parasite: merozoite, ring, trophozoite, schizont, ga-
metocyte and sporozoite. For the comparison we add addi-
tional information in from of gene ontology terms related to
biological processes.

Results
Using CIA we visualize in Figure 1 the six life cycle stages
and GO terms in a 2D plane. Each cell cycle stage is rep-
resented by it’s projection in gene (circles) and in protein
(squares) space connected through a line. The smaller the
line between the two projections, the higher the concor-
dance between the gene and protein data sets. Here we
observe a very good agreement between the two data sets
for all cell cycle stages. We notice the strict separation of
the intraerythrocytic life cycle (ring, trophozoite, schizont
and merozoite) from sporozoite and gametocyte stages.
Additionally, CIA offers the possibility of projecting GO

Figure 1: Co-inertia analysis and GO terms association.

terms (represented by numbers) onto the CIA plot and to as-
sociate them to a certain cell cycle stage (see Figure 1). The
association of GO terms to the life cycle stages was done as
follows. GO terms with positive x coordinates were asso-
ciated to the stages of the intraerythrocytic life cycle. Due
to the very close spatial position of these four stages no fur-
ther discrimination between GO terms was possible. GO
terms with negative x coordinates are associated to the ga-
metocyte stage if they have positive y coordinates and to the
sporozoite stage if they have negative y coordinates.
With GSVD we decompose the data sets in matrices with
biologically meaningful interpretations (arraylets, general-
ized eigenvalues and genelets) and explore the processes
captured by them. The genelets represent biological pro-
cesses captured by the data sets and expressed in the cor-
responding arraylets with a relative significance measured
by the generalized eigenvalues. GO terms are associated to
cell cycle stages through gene/protein set enrichment analy-
sis based on the cell cycle stage depended angular distances
(see Figure 2). All cell cycle stages are associated with
both gene and protein space resulting in a gene and pro-
tein set enrichment analysis of genes and proteins showing
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the highest absolute values in the corresponding arraylets.
Biclustering was applied to the gene, protein, life cycle
stages and GO terms. The six life cycle stages are repre-
sented in Figure 3 by the left set containing the green (ga-
metocyte), brown (trophozoite), red (ring), dark blue (sch-
izont), light blue (merozoite) and pink (sporozoite) squares.
Different biclusters are represented by distinct edge colors.
The genes are colored in orange, the proteins in light blue
and the GO terms in yellow. One can see that there are gene
and proteins that strictly belong to one cluster (all edges of
these nodes have the same color) as well as others that are
associated to more than one bicluster (edges of these nodes
have more than one color). GO terms are related to genes,
proteins and cell cycle stages and they are connecting dif-
ferent biclusters.

We compare the results of the three integrative analy-

Figure 2: Generalized singular value decomposition - cell
cycle depended angular distances.

sis methods showing in Figure 4 GO terms association to
cell cycle stages common to all methods. Cell cycle stages
not belonging to the intraerythrocytic cycle are either com-
pletely disconnected from the other stages (sporozoite) or
connected by only one node (gametocyte linked through
glycolysis) to the rest. The cell cycle stages of the intraery-
throcytic cycle are densely interconnected.

Discussion

We have started this analysis with 4294 genes, 2903 pro-
teins and 248 GO terms measured and annotated during six
cell cycle stages of P. falciparum. The results of all methods
were examined and GO terms associated to cell cycle stages

Figure 3: Biclustering of
genes, proteins, life cycle
stages and GO terms. The
colors of the edges rep-
resent the different clus-
ters. The genes are col-
ored in orange, the pro-
teins in light blue and the
GO terms in yellow.

by all methods were summarized in a GO term/cell cycle as-
sociation network with 34 nodes (cell cycle stages and GO
terms) and 42 edges. In concordance with the literature we
observe a strong connectivity between the intraerythrocytic
cell cycles and a low or non connectivity to the other stages.
Each method produces a vast amount of results which are
tedious to interpret. Inspection of the common associations
is not only faster but it is more reliable and relevant because
the results undergo a triple validation.

Figure 4: GO terms association to cell cycle stages common
to all methods.
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More than Cell Dust:
Microparticles Isolated from Cerebrospinal Fluid

of Brain Injured Patients Are Messengers
Carrying mRNAs, miRNAs, and Proteins
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Abstract

Microparticles are cell-derived, membrane-sheathed structures that are believed to shuttle proteins, mRNA, and miRNA to

specific local or remote target cells. To date best described in blood, we now show that cerebrospinal fluid (CSF) contains

similar structures that can deliver RNAs and proteins to target cells. These are, in particular, molecules associated with

neuronal RNA granules and miRNAs known to regulate neuronal processes. Small RNA molecules constituted 50% of the

shuttled ribonucleic acid. Using microarray analysis, we identified 81 mature miRNA molecules in CSF microparticles.

Microparticles from brain injured patients were more abundant than in non-injured subjects and contained distinct genetic

information suggesting that they play a role in the adaptive response to injury. Notably, miR-9 and miR-451 were

differentially packed into CSF microparticles derived from patients versus non-injured subjects. We confirmed the transfer

of genetic material from CSF microparticles to adult neuronal stem cells in vitro and a subsequent microRNA-specific

repression of distinct genes. This first indication of a regulated transport of functional genetic material in human CSF may

facilitate the diagnosis and analysis of cerebral modulation in an otherwise inaccessible organ.

Key words: cerebrospinal fluid; microparticles; microRNA; traumatic brain injury

Introduction

Microparticles (MPs) are cell-derived, membrane-sheathed

structures that harbor a concentrated set of proteins, mRNA,

and microRNA1–5 and appear to transfer these components to adja-

cent and remote cells. MPs primarily termed ‘‘platelet dust’’ were

first detected in blood in the late 1960s.6 MPs have since been shown

to be released by both vascular and non-vascular cells under a variety

of physiological and pathophysiological conditions.7–10 MP size and

the molecules they carry vary greatly, often according to the specific

shedding process and the cellular and subcellular shedding locali-

zations.9,11,12 This is reflected in the nomenclature. Membrane en-

closed particles have been termed microvesicles, membrane

particles, ectosomes, argosomes, exosomes, or nanospheres. Here,

MP is used as a hypernym for these terms.

MP-mediated transcellular delivery is hypothesized to be of

special importance in the blood by enabling the specific targeting of

distal cells8 and by preventing dilution of information in this ex-

pansive circulating system. Reports of MPs in cerebrospinal fluid

(CSF), which is pumped around an analogous circulatory system

comprising the ventricles, the subarachnoid space, and spinal cord,

are in contrast limited.10,13–16 The rationale for MP-based com-

munication is nonetheless equally strong.

The morphological and proteomic analysis performed by Har-

rington and coworkers17 that demonstrated the presence in CSF of

discrete spheres associated with biochemically distinct compo-

nents, such as prostaglandin H synthase, acetylcholine, or adeno-

sine diphosphate-ribosylation factor protein, presently provides the

best evidence that CSF contains MPs. In parallel intercellular RNA

transfer by exosomal microvesicles was considered to be a possible

mode of signaling within the nervous system.18,19 This assumption

was, however, focused mainly on intersynaptic communications.

This study is based on the hypothesis that CSF harbors a com-

munication network comparable to the system described in blood.
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It was our aim to establish the presence of MPs in the CSF

(CSF-MPs) derived from non-injured subjects (NIS) and traumatic

brain-injured patients (TBIP) and to analyze their potential as ve-

hicles that shuttle distinct biological and genetic information.

Methods

Ethics statement

The ethics committee of the Medical University of Graz spe-
cifically approved this study on February 10, 2009. The study and
the potential to participate were explained to patients before they
were discharged from the clinic. At 4 to 6 months later, letters were
sent to the patients with the same information and the option to call
for more information. Only patients who consented to the study by
returning a signed form by mail at this time point were included.
Six of the trauma patients called back for more information before
sending a signed form. In two cases, guardians consented on behalf
of participants.

Clinical parameters of TBIPs and healthy controls
included in the study

CSF samples were collected from patients with severe TBI
traumatic brain injuries (Glasgow Coma Scale [GCS] £ 8) when
ventricular drainage was implemented as a measure of intensive
care treatment. Because of ethical considerations, samples were not
taken at standardized time points but rather when ventricular
drainage was indicated from acute increased intracranial pressure.
A higher risk of ventricular drain infections resulting from addi-
tional study dependent interventions was thereby avoided.

There were 26 samples collected from 11 patients over 2 years.
The number of samples per patient and the time points of sample
collection relative to the time point of primary injury varied con-
siderably (time of sampling corresponding to the time of injury is
indicated in the respective figures). Further, differences in the lo-
cation and type of brain injury as well as additional injuries to
different body parts and organ systems render the group of brain-
injured patients a rather heterogeneous study population (Table 1).
Hence, statistical analysis of results is a mere attempt to draw some
general conclusions, but must be interpreted with caution. The
analyzed parameters are additionally presented for each subject,
thereby allowing for a more personalized interpretation of data.

CSF samples from adults who received a lumbar puncture for
diagnostic purposes were collected for control studies (n = 26).
Only subjects without a confirmed subarachnoid hemorrhage or
infection (confirmed central nervous system [CNS] diseases
[CCD]) were included as non-injured controls (NIS, n = 17; Table
1; see online supplementary Fig. S1,S2 at ftp.liebertpub.com)

Preparation of CSF

CSF was obtained from patients with TBI by ventricular drainage
and from NIS by lumbar puncture. Samples were taken directly from
the external ventricular drain tube. Sample volumes varied between 3–
7 mL (TBIP) and 0.2–1 mL (NIS). Samples were stored no longer than
30 min at 4�C before further processing. CSF samples were centri-
fuged at 400 g for 5 min and filtered through a 0.45 lm syringe filter;
1 lL of Protease Inhibitor Cocktail (Sigma)/mL of CSF was added.
The CSF was then stored at - 80�C until further analysis. MPs were
isolated by thawing CSF on ice, followed by ultracentrifugation
(Optima L-90k; Beckman Coulter) for 40 min at 170,000 g at 4�C.
Supernatant was carefully discarded, and the resulting MP pellets
were processed according to the intended experiment.

Flow cytometric detection of MPs

There were 100 lL MP suspensions transferred into Tru-
countTMTubes (BD Bioscience) containing a known number of

fluorescent beads (diameter: 1 lm) to enumerate MPs. Flow cyto-
metry were performed using the LSR II BD Bioscience and the BD
FACSDivaTM 6.0 software. Forward and side scatter were set in
logarithmic scale. MPs were differentiated from signal noise by
threshold settings of 200 forward scatter and 200 side scatter. The
acquisition was terminated after 2000 bead counts. The number of
MPs were calculated by the following formula described by Shet
and associates20: MP [counts/mL] = [(total beads per tube/beads
counted) · events counted] · dilution factor.

microRNA (miRNA) preparation, miRNA array,
and bioinformatic analysis

For miRNA isolation, at least 50 mL of CSF pooled from 10
patients with TBI was centrifuged as described above. The MP
pellet was prepared according to the protocol of the Qiagen miR-
Neasy Kit. Rat brain RNA and miRNA were isolated for use as
internal controls. RNA and miRNA quality and concentrations
were determined using a Bioanalyzer 2100 (Agilent).

MP samples and two miRNA rat brain samples were analyzed
using the Affymetrix GCS300 (Affymetrix) with FlashTag Biotin
HSR (Gensiphere).

The miRWalk (http://www.ma.uni-heidelberg.de/apps/zmf/
mirwalk/; effective 3/30/2011) database was used to detect vali-
dated target genes of the identified CSF-MP-associated human
miRNAs (hsa-miR). A gene ontology (GO) analysis was conducted
to determine the neuron-related biological processes overrepre-
sented in the computed set of genes. To this end, the validated target
genes were imported to Cytoscape.21 The GO analysis itself was
performed with the BiNGO22 plug-in. The hypergeometric test was
used with the Benjamini & Hochberg False Discovery Rate cor-
rection and a significance level of 0.05.

Overrepresented neuron-related biological processes with a p
value less than 0.001 were used for visualization. These processes
were searched for in the initial GO network and rearranged without
altering their connections to the other processes.

PCR-mRNA

For the polymerase chain reaction (PCR), the RNA concentra-
tion in the CSF was determined using the Ribogreen assay kit
(Invitrogen) in accordance with the manufacturer’s protocol; RNA
content was measured using a POLARstar optima fluorometer. To
detect mRNAs for activity-regulated cytoskeleton-associated pro-
tein (ARC), ß-ACTIN, microtubule-associated protein 2 (MAP2),
and LIM domain kinase 1 mRNA (LIMK1), Dicer, fibroblast
growth factor receptor 1 (FGFR1), and CD133 cDNA was syn-
thesized with the First Strand cDNA Synthesis Kit (Fermentas)
according to the manufacturer’s protocol using 0.5 ng of total RNA.
Real-time PCR (RT-PCR) was performed using the FastStart PCR
Master Mix (Roche) and specific primers (Eurogentec) (ARC
[412 bp]; ß-ACTIN [327 bp]; MAP2 [319 bp], LIMKI [264 bp]).
PCR conditions were kept within the linear range determined for
every product. Expression levels were normalized to the corre-
sponding PCR product from NT2 cell cDNA. For primer se-
quences, see online supplementary Table S1 at ftp.liebertpub.com.

PCR miRNA

For miRNA analysis, NCode� miRNA qRT-PCR Kits (In-
vitrogen) were used according to the manufacturer’s protocol.
cDNA was synthesized using 0.5 ng of total RNA. Universal Primer
was provided in the reaction kit, specific miRNA primers were
designed using the NCode� miRNA Database (Invitrogen), and
RT-PCR was performed using a Roche LightCycler� 480 accord-
ing to the manufacturer’s instructions. PCR for mRNA and miRNA
was performed three times per cDNA sample; cDNA was prepared
three times from each CSF sample.
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PCR reaction products were separated on a 2–4% agarose gel,
scanned, and band intensities quantified by densitometry using
Photoshop CS5 software. For primer sequences see online sup-
plementary Table S1 at ftp.liebertpub.com.

Electron microscopy

MP pellets were resuspended in 100 lL phosphate buffered so-
lution (PBS) for electron microscopy. Then 10 lL of the sample
were transferred to pioloform-and-carbon-coated grids, blot dried,
and rinsed with water. Negative staining was performed by ap-
plying 2% uranyl acetate for 1 min. Samples were then air-dried
and viewed with a Zeiss EM 901 transmission electron microscope.

Western blot

CSF pellets derived from CSF samples pooled from five patients
were homogenized in 100 lL radioimmunoprecipitation assay
buffer containing 5% sodium dodecyl sulfate (SDS), phe-

nylmethanesulfonylfluoride (PMSF), iodoacetamide, and aproti-
nine (each 1 mM). Protein content was determined using a BCA
Protein Assay Kit (Novagen�). Ten lg of protein was loaded on a
10% SDS-PAGE gel followed by transfer to nitrocellulose
(Schleicher & Schuell; BA85) in a Tank Blotter (Biorad). Blots
were blocked with 1% non-fat milk (Sigma) in Tris-buffered saline
(TBS) for 3 h. Filters with specific antibodies were incubated
overnight in blocking solution (rb a eIF2C 1:100 [argonaute2
(AGO2); Santa Cruz]; gt a Staufen (STAU2) 1:50 [Santa Cruz];
mou a GFI-1 1:500 [Sigma]), followed by 2 · TBST and 3 · TBS
washing steps and incubation with biotinylated antibodies for 1 h.
For visualization, blots were washed again and developed by the
ABC-horseradish peroxidase (Vectashield) method using diami-
nobenzidine as chromogen.

Cytochemistry

Ten mL of CSF was incubated with 2 mg EZ-Link� Sulfo-NHS-
Biotin (Thermo Scientific) for 30 min at room temperature (RT),

Table 1. Clinical Parameters of Traumatic Brain Injured Patients and Non-Injured Subjects

Traumatic brain injury patients (TBIP) Non-injured subjects (NIS)

Number of patients
(female; male)
Number of samples

n = 11 (f: n = 5; m: n = 6) n = 26 n = 17 (f: n = 8; m: n = 9) n = 17

Age (years)
(female; male)

47.85 – 16.88
(f: 55.76 – 11.37; m: 41.26 – 18.77)

44.54 – 12.21
(f: 41.64 – 12.46; m: 45.80 – 12.10)

Body height (cm)
(female; male)

174.88 – 14.90
(f: 167.33 – 7.37; m: 179.40 – 17.13)

175.56 – 8.53
(f: 171.33 – 7.02; m: 177.67 – 8.98)

Body weight (kg)
(female; male)

78.38 – 20.27
(f: 73.33 – 17.95; m: 81.40 – 22.96)

74.67 – 14.11
(f: 68.33 – 8.51; m: 77.83 – 15.92)

Body mass I
index (kg/m2)

(female; male)

25.26 – 3.43
(f: 25.93 – 4.62; m: 24.85 – 3.06)

24.11 – 3.28
(f: 23.31 – 2.93; m: 24.51 – 3.64)

Glasgow Coma Scale (GSC) GSC 3: n = 5
GSC 4: n = 2
GSC 5: n = 1
GSC 7: n = 1
GSC 11*: n = 2

Outcome 9 survived, 2 died
Ø Duration of stay (days) 22

Additional diagnoses Exogenous noxa n = 5 Headache n = 6
(Hemato)pneumotheorax n = 5 Vertigo n = 4
Rib fractures n = 3 Tinnitus n = 3
Dysphagia n = 3 Spinal Pain n = 2
Face/skull fractures n = 2 Arthrosis n = 2
Multiple injuries n = 1 Brain tumor n = 2
Internal injuries n = 1 Optic nerve damage n = 2
Lung contusion n = 1 Vascular obliteration n = 2
Polytrauma n = 1 Concussion n = 1
Hand injury n = 1 Myopia n = 1
Hip injury n = 1 Preeclampsia n = 1
Spine injury n = 1 Pregnancy n = 1
Pelvic fracture n = 1 Facial nerve paresis n = 1
Clavicle fracture n = 1 Abdominal pain n = 1

Vomitus n = 1
Common cold n = 1
Stent control n = 1
Cerebral infarction n = 1
Epistaxis n = 1
Circulatory collapse n = 1
Proliferative retinopathy n = 1
Macula degeneration n = 1

*The GCS initially diagnosed is provided.
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followed by ultracentrifugation as described above. Pellets were
resuspended in 400 lL PBS and streptavidin Cy5-conjugated
(1:200; Invitrogen), and RiboGreen (1:100) was added and incu-
bated for 30 min at RT. The fraction was then washed with 10 mL
PBS and again ultracentrifuged as described above. Ten lL of the
MP suspension was transferred to an object slide and air-dried at
37�C. The MPs were finally washed (3 · PBS) and mounted with
Aquatex (Merck) and examined under the microscope (amplifica-
tion 40 · ; images were also digitally enlarged).

For antibody staining, MPs were treated with 1% bovine serum
albumin (BSA)-PBS blocking solution for 1h. Antibody gt a hnRNP
A2/B1 1:100 (Santa Cruz) was then incubated overnight followed by
3 · PBS washing and incubation with biotinylated antibodies for 1 h.
For visualization, slides were again washed and developed using the
ABC-horseradish peroxidase method using diaminobenzidine as
chromogen. Slides were mounted with Eukitt� (Kindler).

Incubation of NT-2 cells with MPs

NTERA2 clone D1 (NT2.cl.D1) embryonal carcinoma stem cells
were grown and maintained in Dulbecco’s Modified Eagle’s Med-
ium, supplemented with 10% fetal calf serum and 2 mM l-glutamine
at 37�C in 5% CO2. NT2 cells were seeded on a glass object slide for
further investigation. Ten mL CSF was incubated with 2 mg EZ-Link
Sulfo-NHS-Biotin for 30 min at RT, followed by ultracentrifugation
as described above. Pellets were resuspended in 400ll PBS and Cy5
conjugated streptavidin (1:200), and RiboGreen (1:100) was added
and incubated for 30 min at RT. The fraction was then washed with
10 mL PBS and again ultracentrifuged as described above. The pellet
was resuspended in 100 lL PBS and 50 lL applied to the NT2 cells
in a six-well dish and incubated for 30 min. Glass slides were then
removed from the wells subsequent to a wash step with 10 mL PBS,
mounted with Aquatex (Merck), and examined with a TCS SP2
(Leica) confocal microscope.

For PCR analysis, cells were incubated with MPs containing
5 ng or 10 ng RNA. The RNA amount was measured using the
RiboGreen assay. After 1 h and 3 h incubation time, cells were
washed twice with 10 mL PBS harvested and RNA was isolated
using the RNeasy micro Kit. RNA amount was measured using
Nanodrop,� and cDNA libraries were prepared as previously de-
scribed, followed by PCR for Dicer1, CD133, FGFR1, miR-451,
and U6 as housekeeping gene as already described above.

Silencing of miR-451

NTERA2 cells were cultured as described above to a confluence
about 30–50%. Cells were transfected using X-tremeGENE siRNA
transfection reagent (Roche) combined with a final concentration of
50 nM of either hsa-miR-451 inhibitor (miRCURY LNA micro-
RNA inhibitor) or scrambled (Negative Control A) (Exiqon) fol-
lowing the manufacturer’s protocol and preincubated for 2 h. MPs
were prepared as described above, and RNA content was measured
using the RiboGreen assay. MPs with a content of 10 ng RNA were
then supplied to the cells for 1 h. Cells were washed, harvested, and
analyzed as described above.

Statistical analyses

Comparison of CSF-MPs (n/100 lL) and RNA content (ng/lL)
in TBIPs and NIS as well as comparison of content of ARC,
LIMKI, MAP2, and b-ACTIN in TBIPs and NIS were performed
with the non-parametrical Mann-Whitney U test for indepen-
dent samples. Statistical significance was set at the level of
a = 0.05.

Frequency of occurrence of miRNA species in CSF samples of
TBIPs and NIS was evaluated statistically with the logistic re-
gression analysis. NIS were defined as 0, TBI patients as 1; miRNA
not present was defined as 0, miRNA present as 1. The Nagelk-
erke’s R2 and the omnibus-test for statistical significance were

performed in SPSS 18 (PASW). Statistical significance was set
again at the level of a = 0.05.

Comparison of CSF-MPs (n/100 lL) and RNA content (ng/lL)
in NIS and CCD patients (see online supplementary Fig. S1,S2 at
ftp.liebertpub.com) was again performed with the non-parametrical
Mann-Whitney U test for independent samples.

Results

Quantification of MPs in CSF from patients
with TBI and healthy subjects

CSF was collected from TBIP by ventricular drainage when in-

dicated as a measure of intensive care treatment. Control CSF from

NIS was obtained after lumbar puncture implemented for diagnostic

purposes. CSF samples of subjects without subarachnoid hemor-

rhage or CSF infections were included as non-injured controls (NIS,

Table 1). Patients diagnosed for subarachnoid hemorrhage or CNS

infection (CCD) were not included in the comparative analysis of

CSF-MPs. CCD patient diagnosis as well as the number of MPs and

RNA content of respective samples are presented in Figure S1 (see

online supplementary Fig. S1 at ftp.liebertpub.com.

CSF was collected and stored by a standardized protocol (see

Methods). Putative MP-containing fractions were derived from

CSF samples by serial centrifugation and filtration ( < 400 nm).

High magnification transmission electron microscopy showed the

samples to contain a heterogeneous population of intact particles

ranging in size from 50 to 400 nm (Fig. 1A). An increasing number

of reports suggest MPs to be membrane sheathed shuttles for a

variety of RNA molecules and proteins.11 Staining of the CSF-MPs

with RiboGreen (RNAs) and membrane-specific Sulfo-NHS-biotin

confirmed the presence of membrane covered particles that carry

RNA molecules (Fig. 1B–D). Furthermore, mRNA in CSF was

protected from RNaseI digestion underlining the finding that RNA

is shuttled by membranous particles (see online supplementary Fig.

S3 at ftp.liebertpub.com).

The particles were quantified by flow cytometry and shown to be

significantly more abundant in TBIPs than in NIS (Fig. 1E,F). They

were also more abundant in CCDs, suggesting an association be-

tween CNS damage or disease and elevated numbers of CSF-MPs

(see online supplementary Fig. S1 at ftp.liebertpub.com). The RNA

levels in CSF-MPs did not differ significantly in TBIPs or NIS

(Fig. 1G). It has to be taken into account, however, that the relative

numbers of CSF-MPs and the relative RNA levels varied consid-

erably between individual patients or NIS samples (see online

supplementary Fig. S1,S2 at ftp.liebertpub.com).

CSF-MPs are enriched in mature mRNAs and proteins
that are associated with neuronal RNA-granules

There is evidence that MPs carry ribonucleoproteins, which are

associated with the transport of RNA to distal cellular sites, such as

dendrites, to enable localized translation.23 In accordance with this

observation, we detected typical neuronal granule proteins such as

MAP2, ARC, and LIMK1 mRNA, as well as ß-ACTIN in CSF-MPs

from both patients and controls (Fig. 2). A semi-quantitative

comparison of the relative levels of distinct mRNAs in single

samples that would allow a correlation of RNA levels with disease

progression was disregarded, because validated normalization

candidates were not available for CSF-MPs derived mRNA. An

attempt to evaluate the average level of these mRNAs in CSF-MPs

derived from patient or NIS samples was implemented by using

external signals derived from NT-2 cell cDNA amplification

for normalization (see online supplementary Fig. S4A–D at ftp
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.liebertpub.com). This approach has to be considered a com-

promise and has thereby to be interpreted with caution.

We also verified the presence of RNA granule-associated proteins

in CSF-MPs derived from TBIP. AGO2 and STAU2 were detected

by Western blotting of CSF-MPs proteins isolated from pooled CSF

(Fig. 2B). This pool was also used to visualize hnRNP in CSF-MPs

by immunocytochemistry.

The very small volumes of CSF available precluded a direct

comparison of the protein levels in CSF-MPs from NIS by Western

blotting.

Profiling of CSF-MP microRNAs

A bioanalyzer profile of CSF-MP RNA revealed the presence of

a broad range of RNA sizes including a prominent peak of small

RNA species (51% of total RNA) (Fig. 3A) consistent with an

enrichment in miRNAs. Based on this result, we hybridized RNA

from pooled CSF-MPs from 10 brain-injured patients with Affy-

metrix GeneChip miRNA arrays. Eighty-one distinct miRNAs

were identified (see online supplementary Table S2 at ftp.lie-

bertpub.com). Twenty-three of the identified miRNAs have been

previously indicated to be differentially regulated in rat brains after

TBI24,25 Furthermore, eight of the identified miRNA species have

been demonstrated to play a role in the regulation of neurological

function. Five miRNA species share a role in neurological function

and experimental injury induced regulation (Fig. 3B).

A total of 1659 target genes were linked to the identified

miRNAs using miRWalk database (see online supplementary Table

S3 at ftp.liebertpub.com). Biological processes overrepresented

by the identified target genes were examined by GO analysis.

FIG. 1. Detection and quantification of microparticles derived from cerebrospinal fluid (CSF-MPs). (A) Electron microscopy of MP
pellet derived from CSF of brain injured patients; (B) fluorescent microscopy of MP pellet after biotinylation of membrane proteins and
subsequent visualization with anti-biotin antibodies; (C) fluorescent microscopy of MP pellet after incubation with RiboGreen; (D)
overlay of images B and C; (E) Representative FACS image; 1 lm beads; MPs analyzed in CSF sample (F) number of microparticles in
cerebrospinal fluid * p £ 0.04; (G) concentration of RNA in CSF-MPs; traumatic brain injured patients (TBIP) (samples: n = 26); non-
injured subjects (NIS) (samples: n = 17); box blots: 50% of ratings have values within the box. Twenty-five percent are more and 25%
are less than the values within the box. Horizontal line inside the box: median. Upper boundary of whisker: largest observed value that is
not an outlier. Lower boundary of whisker: smallest observed value that is not an outlier.
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Thirty-seven overrepresented biological processes seem to be

neuron related (see online supplementary Table S4 at ftp.liebertpub

.com). Thirty-four of the neuron related processes are associated

with genes targeted by the subset of miRNA summarized in

Fig. 3B. A subset of these processes with a p value smaller than

0.001 is represented in Fig. 3C.

CSF derived MPs from TBIP and healthy subjects
contain a distinct pattern of microRNAs

The presence of 14 distinct miRNA species in CSF-MPs derived

from individual TBIPs and NIS was verified by qRT-PCR (Fig. 3B,

underlined). A miRNA was deemed to be present in the CSF-MPs

of a given patient or NIS when the intensity of the respective

miRNA RT-PCR signal was reproducibly 20% higher than the

background signal. The frequency of occurrence of distinct

miRNAs was determined by logistic regression analysis (Fig. 3D-

E). Using this approach, we verified the presence of miR-124 in all

samples (R2: 0.00). miR-451 in contrast was only detected in CSF-

MPs from TBIPs (R2: 1, p = 0.00) and could therefore play a reg-

ulatory role associated with TBI. The presence of miR-9 on the

other hand was shown to be more prevalent in CSF-MPs derived

from NIS (R2: 0.172, p £ 0.025). A statistically significant or pre-

dictive frequency of occurrence was not observed for any of the

other miRNA species analyzed.

Functional transfer of CSF-MP components
to undifferentiated NTERAs

The ability of CSF-MPs to deliver their constituents to target

cells was investigated by incubating membrane-specific biotiny-

lated, RiboGreen-stained MPs with undifferentiated NTERAs

(NT-2), a neuronally committed human teratocarcinoma cell line.26

Undifferentiated NTERAs express nestin and vimentin, interme-

diate filament (IF) proteins expressed in neuroepithelial precursor

cells, as well as MAP1b, expressed in human neuroepithelium.27

Uptake of RiboGreen stained RNA was shown by fluorescence

microscopy (Fig. 4A–E). The non-superposition of green

FIG. 3. Profiling of microRNAs derived from cerebrospinal fluid microparticles (CSF-MPs). (A) Range of miRNA sizes in CSF-MPs
as determined by Bioanalyser 2100. (B) Identified miRNAs that have been demonstrated to regulate neuronal function or to be regulated
during experimental traumatic brain injury demonstrated in two different studies24,25; underlined: miRNA presence in CSF-MPs verified
by real-time polymerase chain reaction. (C) Hierarchical view of overrepresented neuron related biological processes presenting a p
value < 0.001. The size of the nodes is proportional to the number of genes that were annotated to the biological process. (D) Frequency
of occurrence of specific miRNAs in CSF-MPs; n = 26: traumatic brain injured patients (TBIP) (white bars); n = 17: non-injured subjects
(NIS): grey bars. Frequency of occurrence: R2 values are indicated in the upper row, *p £ 0.03; **p £ 0.001. (E) Representative agarose
gel images of the occurrence of miRNA-451 (R2 = 1.0) and miR-124 (R2 = 0) in CSF-MP samples; experiments were replicated three
times.

‰

FIG. 2. Detection of mRNAs shuttled by cereb rospinal fluid microparticles (CSF-MPs). (A) Representative agarose gel images of
ARC, LIMK1, MAP2, and ß-ACTIN; traumatic brain injured patients (TBIP) (samples: n = 26); non-injured subjects (NIS) (samples:
n = 17); experiments were replicated three times. (B) Western blots of Argonaute 2, Staufen 2, and immunostaining of hnRNP protein in
CSF-MPs from TBIP (n = 5, pooled)
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fluorescent RNA and red fluorescent membranes might indicate

that RNA is released from MPs during uptake (Fig. 4E).

On addition of CSF-MPs derived from TBIPs to NTERAs, a

rapid (1 h) concentration and time-dependent miR-451 mediated

decrease of Dicer, FGFR1, and CD133 mRNA expression was

observed (Fig. 4F–H). These genes are listed as putative miR-451

target genes in the miRWalk database. The decrease in putative

target gene expression was accompanied by an increase in miR-451

in these cells (see online supplementary Fig. S1B at ftp.liebertpub

.com). These results are in accordance with the detection of miR-

451 in patient CSF-MPs. Down-regulation of putative miR-451

target genes was not observed when CSF-MPs from NIS were

added to the culture. Three hours after incubation, gene expression

of Dicer, FGFR1, and CD133 was comparable to untreated cells.

A significant increase in ß-ACTIN mRNA was mediated by CSF-

MPs derived from patients or NIS (Fig. 4I). The increase in cellular

ß-ACTIN mRNA levels is probably due to the transfer of ß-ACTIN

mRNA from MPs to cells.

miR-451 was inhibited by a LNA miR-451 inhibitor but not by

LNA scrambled when added to the cells before incubation of

NTERAs with CSF-MPs derived from TBIPs (Fig. 4J). These re-

sults demonstrate the down-regulation of Dicer, FGFR1, and

CD133 mRNA to be specifically mediated by miR-451.

Discussion

In this study, we show for the first time that human CSF contains

membrane-sheathed MPs that carry genetic information and pro-

teins. We demonstrate that the genetic information comprises

mRNAs associated with RNA granules and miRNAs implicated in

the regulation of neuronal processes. CSF-MPs are more abundant in

subjects with brain injury and shuttle a distinct set of miRNAs,

including miR-9 and miR-451, both of which have previously been

shown to be regulated in cerebral tissue after experimental traumatic

brain injury.24,25 We confirm a transfer of genetic material from

CSF-MPs to cultured NTERAs and a subsequent decrease in putative

miR-451 target gene expression, suggesting CSF to harbor a trans-

cellular delivery system that contributes to the signaling between cells.

Experimental design

Analyzing CSF samples derived from TBIP is to some extent

restricted by a limiting study design. A primary impediment is the

absence of true controls; i.e., CSF of healthy subjects. Observed

differences between CSF samples derived from TBIP and NIS

should therefore be interpreted with care. Further, samples are ta-

ken from different locations (ventricle/subarachnoid space lumbar

region). To exclude a potential rostro-caudal gradient of CSF-MPs

and the associated content, a study analyzing MPs and RNA content

in lumbar versus ventricular CSF samples in the same patient

population is necessary.28–33

MPs in CSF

We confirmed the presence of CSF- MPs in human CSF samples

by electron and fluorescent microscopy. Consistent with descrip-

tions in body fluids and in cell cultures, CSF-MPs were highly

heterogeneous with sizes ranging from 50–400 nm, which suggests

that they are generated by a combination of membrane budding and

exocytosis (MPs in the lower size range).13,14,17,34,35

Whereas the range of CSF-MP sizes was comparable in patients

and NIS, the abundance of CSF-MPs was clearly elevated in the

former group (see above), consistent with reports in other non-CNS

disease states,7,8 albeit the numbers detected were considerably

below those reported in a previous CNS study. The discrepancy,

however, most likely reflects the use of different isolation proto-

cols; i.e., sample filtration through a 0.45 micron mesh after high

speed centrifugation might result in significantly reduced numbers

of particles.17,36

RNA carried by MPs derived from CSF

The amount of RNA per MP sample varied considerably be-

tween samples. The composition and function of MPs are depen-

dent on their cellular origin, the agonist responsible for MP

formation, and the microenvironment of the parental cell.37,38 The

heterogeneity of the MP population in CSF samples might be the

reason why a correlation between RNA levels and the health status

of the donor was not detected.

The variable total RNA content of CSF-MPs comprises ß-AC-

TIN, MAP2, LIMK1, and ARC mRNA as well as Staufen-2 and

Argonaute-2 protein, molecules that have been associated with the

regulated intercellular transport of RNA.39,40 Our findings thereby

confirm the results of a previous study that showed circulating MPs

and MPs derived from cultured stem cells to carry RNA granule

associated ribonucleoproteins.23,41 Collino and associates23 have

suggested a role of ribonucleoproteins in RNA transport and

stability in MPs derived from cultured mesenchymal stem cells. A

similar role of ribonucleoproteins and respective mRNAs has still

to be established in CSF-MPs.

microRNAs shuttled by MPs

microRNAs constitute a high percentage of ribonucleic acids

shuttled by CSF-MPs. We determined a predictive value for the

presence of miR-451 in CSF-MPs of brain injured patients. miR-9

was detected with a higher frequency of occurrence in CSF-MP

samples derived from NIS than from TBIPs. Intriguingly, miR-9

and miR-451 were the only two miRNA species independently

identified in rat brains after TBI.24,25 Also, other disease-dependent

released MPs differ significantly in their miRNA content profile, as

shown by Diehl and colleagues.42

miR-9 is specifically expressed in the mammalian nervous sys-

tem and has been implicated in the regulation of a variety of

FIG. 4. Transfer of CSF-MP content to undifferentiated NTERAs. (A–D) Cedrebrospinal fluid microparticles (CSF-MPs) were stained
with Sulfo-NHS-Biotin (660 nm) and RiboGreen (485 nm) and subsequently incubated with undifferentiated NTERAs. (A) Light
microscopy of undifferentiated NTERas; (B) visualization of RiboGreen labeled CSF-MP derived RNA in NTERAs; (C) visualization
of Cy5 positive CSF-MPs membranes in NTERAs (D) overlay of images A,B, and C; (E) LSM image of RiboGreen particles inside
cells; amplification 40 · . (F–J) Dicer, FGFR1, CD133, ß-ACTIN mRNA expression, respectively, in cultured NTERAs after incubation
with CSF-MPs; inlays: representative agarose gel images; (I) Silencing of CSF-MP TBIP mediated regulation of Dicer, fibroblast
growth factor receptor 1 (FGFR1), and CD133 mRNA expression in undifferentiated NTERAs by LNA miR-451 inhibitor (50 nM) or
LNA scrambled (50 nM); inlays: representative agarose gel images; CSF-MP traumatic brain injured patients (TBIP) derived CSF-MPs
(pooled: n = 5), white bars; CSF-MP non-injured subjects (NIS) derived CSF-MP (pooled: n = 5), grey bars; untreated cells, black bars;
10 ng: amount of CSF-MPs carrying an equivalent of 10 ng total RNA. Experiments were repeated three times with different patient or
NIS pools and replicated twice per experiment; *p £ 0.05; **p £ 0.001.

‰
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neuronal processes such as neuron development43 or axis forma-

tion.44 The prevalence of miR-9 in CSF-MPs from NIS might in-

dicate a role in the homeostasis of neuronal regulation.

miR-451 was detected in patient CSF-MPs only. A potential role

of miR-451 as a damage associated regulator of gene expression was

also verified by in vitro studies. In undifferentiated adult neuronal

stem cells, expression of putative miR-451 target genes Dicer,

FGFR1, and CD133 was silenced within 30 min of scratch induced

cell damage (see online supplementary Fig. S5 at ftp.liebertpub.com).

Down-regulation of these genes was prevented by addition of LNA

miR-451 inhibitor, but not by addition of LNA scrambled.

Taking into consideration the role of miR-451 in erythropoiesis,

however, it should be noted that the prevalence of miR-451 in CSF-

MPs of brain injured patients might indicate the presence of vascular

MPs in the CSF. As previously discussed, transfer of MPs from the

nervous to the cardiovascular system and in this case vice versa might

constitute an additional novel transborder communication channel.18

The emerging role of the identified miRNAs in cerebral function

was further affirmed by GO analysis. The result suggests 34 of 37

neuron related cellular processes to be overrepresented in target

genes regulated by the distinct set of miRNAs (see online supple-

mentary Table S4 at ftp.liebertpub.com).

Transfer of miRNA from MPs to cultured cells

We confirmed the ability of CSF-MPs to transfer their ‘‘RNA

cargo’’ to target cells in vitro. Attachment of plasma derived MPs,

and the transfer of their miRNA to human umbilical vein endothelial

cells in vitro has been previously demonstrated.42 Our observations

are also consistent with results showing miRNA transfer from stem

cell MPs to fibroblasts,34 from mesenchymal stem cells to tubular

epithelial cells or tumor cell lines,23,45 and from embryonic stem cell

microvesicles to mouse embryonic fibroblasts.46

The uptake of CSF-MP content by cultured NTERAs was par-

alleled by the regulation of gene expression. The decrease of pu-

tative miR-451 target genes in NTERAs incubated with CSF-MPs

from brain injured patients demonstrates a functional transfer of

messages and a role of this miRNA in damage induced cerebral

regulation. A MP mediated reprogramming of target cells has been

shown for cell culture derived MPs.5,47–50

Conclusion

The results of the present study provide strong evidence for the

shuttling and cell-to-cell transfer of brain injury associated miRNA

and mRNA by CSF-MPs. The transport of genetic information in

CSF and subsequent reprograming of target cells signifies a com-

munication network that promotes signal transduction between

adjacent and distal cells in the ventricular system. The uncovering

of the extracellular transport of signals in the CSF will facilitate a

more detailed analysis of the regulation of cerebral function and

might thereby support the identification of novel diagnostic

markers or even therapeutic strategies for damage associated or

neurodegenerative cerebral modulations.
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Abstract

Background: Technological improvements have shifted the focus from data generation to data analysis. The
availability of large amounts of data from transcriptomics, protemics and metabolomics experiments raise new
questions concerning suitable integrative analysis methods. We compare three integrative analysis techniques
(co-inertia analysis, generalized singular value decomposition and integrative biclustering) by applying them to
gene and protein abundance data from the six life cycle stages of Plasmodium falciparum. Co-inertia analysis is an
analysis method used to visualize and explore gene and protein data. The generalized singular value
decomposition has shown its potential in the analysis of two transcriptome data sets. Integrative Biclustering
applies biclustering to gene and protein data.

Results: Using CIA, we visualize the six life cycle stages of Plasmodium falciparum, as well as GO terms in a 2D
plane and interpret the spatial configuration. With GSVD, we decompose the transcriptomic and proteomic data
sets into matrices with biologically meaningful interpretations and explore the processes captured by the data sets.
IBC identifies groups of genes, proteins, GO Terms and life cycle stages of Plasmodium falciparum. We show
method-specific results as well as a network view of the life cycle stages based on the results common to all three
methods. Additionally, by combining the results of the three methods, we create a three-fold validated network of
life cycle stage specific GO terms: Sporozoites are associated with transcription and transport; merozoites with
entry into host cell as well as biosynthetic and metabolic processes; rings with oxidation-reduction processes;
trophozoites with glycolysis and energy production; schizonts with antigenic variation and immune response;
gametocyctes with DNA packaging and mitochondrial transport. Furthermore, the network connectivity underlines
the separation of the intraerythrocytic cycle from the gametocyte and sporozoite stages.

Conclusion: Using integrative analysis techniques, we can integrate knowledge from different levels and obtain a wider
view of the system under study. The overlap between method-specific and common results is considerable, even if the
basic mathematical assumptions are very different. The three-fold validated network of life cycle stage characteristics of
Plasmodium falciparum could identify a large amount of the known associations from literature in only one study.

Background
Continuous technological improvements facilitate the
availability of large amounts of omics data, resulting from
the simultaneous characterization on different levels
(genome, transcriptome, proteome and metabolome) of
an organism or an experimental condition. Regulatory

mechanisms captured in this way provide a complex
multi-level view of the system under study. In order to
exploit the measured data to the maximum, one has to
integrate all available data sets into a single analysis
framework. Methods that apply analysis techniques
simultaneously to more than one data set are called inte-
grative analysis methods. The data sets can characterize
one organism on different levels [1], or they can be mea-
sured on the same omics level but on different organ-
isms/platforms [2,3]. Here we focus on the first scenario.
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Integrative analysis methods provide a deeper under-
standing of the system under study through the meaning-
ful combination of multi-level omics data. The integrated
omics data differ from study to study. There are studies
that integrate, for example, gene expression and methyla-
tion data [4], somatic mutations, copy number and gene
expression data [5], chromatin maps and gene expression
profiles [6], genotypic variation at DNA level and gene
expression data [7], CHIP-seq and RNA-seq data [8],
transcriptomics and proteomics data [1,9,10]. In this
study we apply integrative analysis to transcriptomics
and proteomics data.
With transcriptomic and proteomic data, most analysis

techniques are based on the direct correlation between
transcripts and proteins. Cox and colleagues [10] present
different approaches based on correlation and clustering.
Other correlation-based studies have also been performed
in [9,11-16]. Statistical methods based on correlations are
presented in [17,18]. The premise of a direct correlation
between transcripts and proteins is not valid in eucaryotic
organisms, due to post-transcriptional and post-transla-
tional regulation [1,19]. Other approaches are based on
network analysis [20,21] and statistical methods such as
analysis of variation, clustering and gene set enrichment
[22-24]. Piruzian et al. [25] revealed similarities in regula-
tion at transcriptomic and proteomic levels and identified
potential key transcription factors and new signaling path-
ways for psoriasis using a network based approach, which
employed overconnection analysis, hidden node analysis
and rank aggregation. Perco et al. [26] integrated tran-
scriptomics and proteomics on the level of protein interac-
tion networks. They started with the modest overlap
between the data sets, which increased substantially on the
level of protein interaction networks and in this way,
amplified the joint functional interpretation of the omics
data sets. In a study by Hahne and colleagues [22] analysis
of variation, k-means clustering and functional annotation
were applied to transcriptome and proteome data from
salt-stressed B. subtilis cells. They showed a well-coordi-
nated induction of gene expression and changes of the
protein levels as the result of a severe salt shock. Verhoef
et al. characterized the changes associated with r-hydroxy-
benzoate production in the engineered P. putida strain
S12, integrating genes and proteins as well as cluster and
pathway analysis [23]. In [24], Takemasa et al. applied
gene ontology analysis (GO) to transcriptome and pro-
teome data from human colorectal cancer samples, which
led to a better understanding of functional inference at the
physiological level and to potential drug targets. Other
integrative approaches can be found in [27-29] for omics
data in general and in [19] for transcriptome and pro-
teome data in particular.
In this article, we focus on the comparison of three

integrative analysis techniques of mRNA and protein

abundance data. We selected methods meeting the fol-
lowing criteria: (i) they are based on a clear mathematical
formulation, (ii) they are as different as possible from one
another and, the most important argument, (iii) they
allow the analysis of all measured data (not limited to
pairs of genes and proteins). Based on these criteria we
have chosen: Co-inertia analysis (CIA), which is an inte-
grative analysis method used to visualize and explore
gene and protein data [1,30], Generalized singular value
decomposition (GSVD), which has shown its potential in
the analysis of two transcriptome data sets [3] and Inte-
grative biclustering (IBC), which applies biclustering to
gene and protein data [31].
We compare CIA, GSVD and IBC by applying them to

mRNA and protein abundance data from a study of
Plasmodium falciparum, [9], the parasite causing malaria
in humans. The data in this study was gathered from sam-
ples for the six life cycle stages: merozoite, ring, tropho-
zoite, schizont, gametocyte and sporozoite. For the
comparison, we add additional information in the form of
GO [32] terms for biological processes.
Using CIA, we visualize the six life cycle stages and GO

terms in a 2D plane and interpret the spatial configuration.
With GSVD, we decompose the data sets into matrices
with biologically meaningful interpretations and explore
the processes captured by the data sets. IBC identifies
groups of genes, proteins, GO terms and life cycle stages
revealing functional modules of P. falciparum.
We compare the results of the three integrative analysis

methods based on the association of GO terms to the six
life cycle stages and show common as well as method-
specific results. The common results are presented in
form of a three-fold validated network view of the biolo-
gical processes activated in each life cycle stage. To the
best of our knowledge such a complete, GO terms based,
characterization of P. falciparum was not published
before.

Methods
Data set
We analyse a publicly available data set containing
mRNA and protein abundance data from the six life
cycle stages of P. falciparum [9,33]. Microarray [33] and
proteomic analyses [9] were carried out on P. falciparum
clone 3D7. Gene expression levels were measured with a
custom oligonucleotide array and computed with the
match-only integral algorithm (MOID). Proteins were
detected by multidimensional protein identification tech-
nology (MudPIT), and protein abundance was estimated
by the number of MS/MS spectra identified per protein.
In total, 4294 genes and 2903 proteins were measured in
all six life cycle stages. For the analysis, we created a
matrix for each data set where the genes and proteins are
represented as rows and the life cycle stages as columns.
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Additionally, GO [32] information on biological pro-
cesses in P. falciparum were employed. We used the R
[34] packages org.Pf.plasmo.db [35] and GO.db [36],
which provide P. falciparum specific mappings of genes
to GO terms as well as additional information on GO
terms. Based on these two annotation databases, 3283 of
4294 genes and 2491 of 2903 proteins were associated
with 614 GO terms. For each data set, a GO matrix
with the same number of rows as the corresponding
expression data set was created. The columns of the GO
matrix hold data describing the gene/protein affiliation
to a certain GO term. If a gene/protein is associated
with that GO term, the strength of the affiliation is
computed as the ratio between 1 and the total number
of genes/proteins associated with the GO term. CIA and
IBC use directly the computed GO matrix. GSVD per-
forms a GSE analysis based on org.Pf.plasmo.db and GO.
db. In this way, we make sure that all three methods are
applied to the same data sets. Additional file 1 contains
the GO terms with their GO names used in this study.
Our study comprises the analysis of four data sets:

mRNA abundance data, protein abundance data, a GO
matrix of mRNAs and a GO matrix of proteins. mRNA
and protein abundances were computed with different
algorithms, requiring a columnar z-score normalization
of each data set. The GO matrices were computed based
on the number of genes/proteins belonging to a particu-
lar GO term, which resulted in equal ranges of the entries
in the matrices. Afterwards, they were joined and z-trans-
formed. Columns (GO terms) that included only entries
equal to zero (none of the associated genes or proteins
was measured in the data set) were deleted before the
normalization. After deletion, 614 GO terms were avail-
able for further analysis.

CIA
CIA was introduced by Dolèdec and Chessel [30] as an
extension of Tucker’s inter-battery method [37] for the
study of species-environment relationships of ecology
data. CIA was applied to genome and agr groups data of
S. aureus [38] and to physico-chemical properties of
amino-acids and the amino-acid composition of E.coli
proteins [39]. Culhane et al. [40] applied this method to
two gene expression data sets, and Fagan et al. [1] used
it as an integrative analysis method for gene and protein
data.
CIA is a multivariate analysis method that identifies

relationships between two data sets by maximizing the
covariance between them. CIA starts by performing a
multivariate analysis like principal component analysis
(PCA) [41], non-symmetrical correspondence analysis
(NSC) [42] or correspondence analysis (CA) [43] on
each individual data set. The produced results are a set
of principal axes that maximize the projected variability

(inertia) of each data set independently. Each set of axes
spans a new multidimensional gene and protein space.
Based on the computed axes, CIA identifies one axis in
each new multidimensional space on which the projected
data sets present maximal covariance and simultaneously
maximal standard deviations. Thereby, CIA maximizes the
covariance between the two data sets. Global correlation
or co-structure between the data sets is measured by the
RV coefficient [44]. For mathematical details on CIA,
please refer to [30]. CIA computation steps are summar-
ized in a concise flowchart in Figure 1. CIA is available in
the R packages made4 [45] and ade4 [46].
CIA has two major advantages: It can be applied to

data sets with considerable more variables (genes and
proteins) than samples (life cycle stages), and the vari-
ables in the two data sets do not have to match one
another.
Additional information such as GO annotations can

be superimposed on the CIA plots. This overlay was
already done for CA [47], and is also possible for CIA
[1]. GO term projections are obtained by first normaliz-
ing the two GO matrices in the same way as the expres-
sion data sets and then multiplying them by the weights
of the genes/proteins resulting from the NSC, followed
by CIA analyses. The projection scores computed in this
way show GO term associated with the measured genes/
proteins in relation to the life cycle stages.

GSVD
The GSVD was developed as an extension of the singu-
lar value decomposition (SVD) that was already used
directly as an analysis method [48,49] and indirectly as
part of a PCA [50,51]. In a study by Golub et al. [52],
GSVD was used as a comparative analysis method [3]
for two gene expression data sets of cell cycle data from
yeast and humans.
GSVD is based on the joint decomposition of both

data sets as shown in equations (1) and (2):

G = U1�1X−1 (1)

P = U2�2X−1. (2)

Matrices G and P contain the gene and protein abun-
dance data. The rows of the common matrix X-1 are
named genelets. In [3] it was shown that these genelets
can be regarded as processes captured by both data sets.
The genelets are expressed only in the corresponding
arraylets (columns of U1 and U2) with a relative signifi-
cance measured by the generalized eigenvalues (s1,i , s2,i)
from the diagonals of Σ1 and Σ2. The relative significance
of a genelet in the gene data set relative to the protein
data set is measured by an antisymmetric angular dis-
tance calculated as shown in equation (3):
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θ = arctan
(

σ1,i

σ2,i

)
− π

4
.i (3)

An angular distance between -π/4 and -π/8 represents
a high significance of the ith genelet in the second data
set relative to the first data set. If the value of the angular
distance ranges between π/8 and π/4, then the ith genelet
has a high significance in the first data set relative to the
second data set. The ith genelet shows equal significance
in both data sets if the angular distance ranges between
-π/8 and π/8 (see equation (4)). In our study, the first
matrix contains mRNA abundance data, the second
matrix protein abundance data and significances are
assigned as follows:

θi ∈

⎧⎪⎨
⎪⎩

[−π/4, −π/8
]

protein space[−π/8, π/8
]

gene and protein space[
π/8, −π/4

]
gene space.

(4)

A summary of the computation flow is shown in a
block diagram in Figure 2.
Alter et al. [3] used a Mathematica implementation of

a numerically robust GSVD algorithm based on [52,53],
which we reimplemented in R.
In order to discover the processes captured by the

genelets, a restrictive gene set enrichment (GSE) analysis
is performed on 50% of the genes and/or proteins show-
ing the highest absolute values in the corresponding
arraylets. The GSE analysis is performed with the R pack-
age GOstats [54], which computes the statistically signifi-
cantly enriched GO terms based on the hypergeometrical
distribution.

IBC
The basic idea of biclustering (co-clustering or two-way
clustering) was presented in [55], but it took almost thirty
years until the method was applied to gene expression
data [56]. In the last two decades, biclustering has

Figure 1 Flowchart of CIA. The gene expression matrix (blue) contains the genes in the rows and the conditions in the columns. The protein
expression matrix (orange) contains the proteins in the rows and the conditions in the columns. The conditions in our study correspond to the life
cycle stages of P. falciparum. Genes and proteins annotated to the considered GO terms are gathered in a separate matrix (gray). The gene and the
protein expression matrices are transformed into a new hyperspace. The pair maximizing the covariance is computed from the axes spanning the two
hyperspaces. These two axes (gene and proteins co-inertia axes) span a new space where the conditions (life cycle stages) can be plotted. Additionally,
GO terms can be projected into the CIA space and visualized together with the life cycle stages. Figure adapted from [30].
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become more and more popular [57-59]. In contrast to
clustering, where either rows or columns are clustered,
biclustering performs clustering of rows and columns
simultaneously. The members of the obtained biclusters
are as similar to one another and as different from the
other biclusters as possible. Figure 3 presents how
mRNA abundances, protein expression and GO terms
are assembled to a complete data set and how the result-
ing biclusters could look like.
There are four types of possible biclusters as reviewed

in [31,60,61]. Biclusters can have (i) equal values over
rows and columns as well as (ii) equal values over rows
or columns. They can also have (iii) coherent values,
which means that each column or row can be computed
by adding or multiplying a constant to the previous col-
umn or row. The forth type of bicluster has (iv) coherent
evolutions, which means that the exact value of a matrix
entry is not important, but whether the values increase
or decrease over rows or columns. The biclustering algo-
rithm used here is included in the R package biclust [62].
The types of computed biclusters vary. There are sin-

gle biclusters where only one bicluster is found in the
whole data set as well as exclusive rows and/or exclusive

columns biclusters. Non-overlapping and non-exclusive
biclusters can also be computed. The fifth type is the
arbitrarily positioned overlapping biclusters. Graphical
representations of the different categories of biclusters
can be found in [31].
Most of the biclustering algorithms implemented

depend on the starting point of the search and thus may
lead to different results in consecutive runs. Addition-
ally, biclustering does not result in a perfect data separa-
tion, as overlapping biclusters are possible. As a remedy,
the biclust package provides a robust method that deli-
vers stable and reliable results. This function includes
the repeated use of one algorithm in combination with
several parameter settings and/or subsamples of the
data. A modified version of the Jaccard index is used for
the combination of the resulting biclusters, which in
case of two biclusters takes into account the fraction of
row-columns combinations in both biclusters to all row-
column combinations. For detailed mathematical defini-
tions, please refer to [31].
Analogous to integrative clustering, we define integra-

tive biclustering as the biclustering of two or more data
sets. Integrative clustering was already applied to copy

Figure 2 Flowchart of GSVD. The gene expression matrix (blue) contains the genes in the rows and the conditions in the columns. The
protein expression matrix (orange) contains the proteins in the rows and the conditions in the columns. The conditions in our study correspond
to the life cycle stages of P. falciparum. Genes and proteins annotated to the considered GO terms are gathered in a separate matrix (gray). The
gene and the protein expression matrices are each decomposed in three matrices according to equations (1) and (2). The matrices U and V
contain the arraylets, which encode for the expression of genes and proteins in the corresponding genelets X-1, which represent the cellular
state in the measurement conditions. According to the angular distance θi, which is computed from the generalized eigenvalues s1,i and s2,i , a
restricted GSE analysis is performed on the genes and/or proteins with the absolute (from a mathematical point of view) highest values in the
arraylets in order to assign GO terms to the corresponding genelets. Figure adapted from [3].
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number and gene expression data in order to identify
novel breast tumours subgroups [63]. Mo and colleagues
[5] describe integrative clustering of genomic, epige-
nomic and transcriptomic profiling.
Integrative biclustering was applied to gene expression,

protein interaction, growth phenotype and transcription
factor binding data in [64] in order to reveal modularity
and organization in the yeast molecular network. We apply
integrative biclustering to a matrix consisting of the mRNA
and protein abundance data and of the corresponding GO
matrices. The genes and the proteins are represented by
rows, whereas the samples and the GO terms by columns.
Before biclustering can be carried out, discretization is
necessary. Here the built-in function discretize of the R
package biclust [31] was used. After appropriate processing,
the result of IBC was loaded into Cytoscape [65] to obtain
a network view of the associations.

Results and discussion
Results of each analysis method can be divided into
method-specific associations and general associations. The
general associations are used to compute results common
to all three methods.

CIA
With CIA we visualize the six life cycle stages in the gene
and protein space (Figure 4). We observe that the co-
inertia × axis separates the intraerythrocytic cycle stages
(trophozoite, ring, schizont, merozoite) from gametocytes
and sporozoites. In the erythrocytes, the cycle begins
with the ring stage, followed by the trophozoite stage.
Trophozoites mature into schizonts, which cause the

rupture of blood cells resulting in the release of mero-
zoites. In Figure 1, this exact sequence within the intraer-
ythrocytic cycle can be observed. The sporozoites are the
sexual stage of the mosquito and will be released in the
blood stream of the infected organism. The ring stage
can develop into a gametocyte and can be ingested by a
mosquito. In addition to the life cycle stages, GO terms
can also be represented through projections in the CIA
plot (Figure 5).
A mapping between numbers and GO terms can be

found in Additional file 1. Detailed representations of
the division limits for the specific and general associa-
tions are shown in Additional file 4.
General associations
General associations resulting from CIA are distributed
as follows: In gene space, GO terms in the first trigono-
metric quadrant are associated with trophozoites, GO
terms in the second quadrant with gametocytes and GO
terms in the third quadrant with sporozoites. GO terms
in the first and forth quadrant, which were not identified
as specific for trophozoits are associated with rings, schi-
zonts and merozoits. Due to the proximity of stages in
the CIA gene space, a more specific distribution to each
stage is not possible. In protein space the associations are
produced as follows: For gametocytes and sporozoites,
we follow the same criteria as in gene space. For the dis-
tribution of GO terms to trophozoits, rings, schizonts
and merozoits, we divide the first and forth quadrant in
three sectors. GO terms that form angles of at least 30
degrees with the positive co-inertia × axis are associated
with trophzoits. GO terms with an angle between -10
and 30 degrees are associated with rings and schizonts.

Figure 3 Block diagram of IBC. The gene expression matrix (blue) contains the genes in the rows and the conditions in the columns. The
protein expression matrix (orange) contains the proteins in the rows and the conditions in the columns. The conditions in our study correspond
to the life cycle stages of P. falciparum. Genes and proteins annotated to the considered GO terms are gathered in a separate matrix (gray). The
three matrices are combined to a new matrix, which is subjected to biclustering. The resulting biclusters can include genes, proteins, conditions,
GO terms or any combination of these.
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GO terms with an angle wider than -10 degrees are asso-
ciated with merozoits. Since GSVD and IBC discover
associations only in common space (gene and protein
space), the CIA associations for each life cycle are com-
puted as the set union of the associations in gene and the
associations in protein space. These general associations
are shown in Additional files 2 and 3. The overlap
between the general association in gene and protein
space are shown in Figure 6.

Method-specific associations
In addition to the general results, method-specific associa-
tions of GO terms with life cycle stages are observed. For
these associations, the direction of the projected GO
terms is considered. From the general associations, we
take those GO terms that have a distance of at least 0.1 to
the origin of the coordinate systems. An exception is
made for gametocytes in protein space. A threshold of
0.05 is more appropriate here due to the spacial

Figure 4 Co-inertia analysis - results. CIA offers the possibility to visualize the gene and protein space projections of the six life cycle stages of
P. falciparum in one plot. The projection in gene space are represented by circles and in the protein space by squares. For each life cycle stage,
the two corresponding projections are connected through a line. We observe that the y axis separates the intraerythrocytic cycle from the
stages gametocyte and sporozoite.

Figure 5 Co-inertia analysis and GO terms - results. In addition to the life cycle stages, GO terms can also be projected into the CIA plot. A)
projections of the GO terms in gene space and B) projections of the GO terms in the protein space. Each GO term is represented by a number.
Please note that the life cycle stages and the GO terms are plotted on different scales. The lower and left axes represent the life cycle stages
and the upper and right axes represent for the GO terms. In gene space we observe a clear projection of the GO terms in the direction of
gametocytes and sporozoites. In protein space, GO terms are projected clearly in direction of sporozoites and the intraerythrocytic cycle.

Tomescu et al. BMC Systems Biology 2014, 8(Suppl 2):S4
http://www.biomedcentral.com/1752-0509/8/S2/S4

Page 7 of 16



distribution of GO terms relative to the origin. These con-
siderations result in GO term associations with gameto-
cyte, trophozoite and sporozoite in gene space. Details are
presented in Table 1 and Additional file 5. In the protein
space, clear GO term associations with gametocyte, sporo-
zoite, trophozoite and merozoite stages are found (Table 2
and Additional file 6). Additional file 6 also includes asso-
ciations with the stages ring and schizont.
According to Figure 5, where for readability reasons GO
terms are represented by numbers from 1 to 614, some of
the most remarkable associations in gene space are:
GO:0006071 glycerol metabolic process (559) and
GO:0002720 positive regulation of cytokine production (363)
for gametocytes; GO:0006101 citrate metabolic process
(425) and GO:0016255 attachment of GPI anchor to protein
(89) for sporozoites; GO:0006591 ornithine metabolic pro-
cess (274) and GO:0006094 gluconeogenesis (418) for tro-
phozoites. In protein space we observe: GO:0045454 cell
redox homeostasis (139) and GO:0044262 cellular carbohy-
drate metabolic process (276) for gametocytes; GO:0006928
cellular component movement (551) and GO:0015991 ATP
hydrolysis coupled proton transport (29) for sporozoites;
GO:0006412 translation (11) and GO:0019538: protein
metabolic process (361) for trophozoites; GO:0006334
nucleosome assembly (61) and GO:0050776 regulation of
immune response (8) for ring and schizonts; GO:0042594

response to starvation (592), GO:0000045 autophagic
vacuole assembly (416) and GO:0002253 activation of
immune response (417) for merozoites.
The overlap between the projections in gene and protein

space is modest. Three GO terms were projected in the
direction of trophozoites in gene and in protein space:
GO:0006412 translation (11), GO:0006414 translational
elongation (44) and GO:0044257 cellular protein metabolic
process (114).

GSVD
As the final step of the GSVD, a restrictive gene set
enrichment analysis (GSE) is performed. The type of per-
formed GSE analysis is based on the angular distance
that encodes for each life cycle stage the significance of
the gene set relative to the protein set. If the angular dis-

tances are between −π

8
and

π

8
, then the gene and protein

data sets are of equal significance, and the GSE is con-
ducted in the common space. The common space is
defined by the gene and the protein data set. This is the
case for all life cycle stages (Figure 7). If we compare the
angular distance with zero, we obtain a separation of the
intraerythrocytic cycle (angular distances bigger than
zero) from other stages (angular distances smaller than
zero). The restrictive GSE performs a GSE for each life
cycle stage on 50% of the genes and proteins that present
the highest absolute values in the corresponding
arraylets.
General associations
All resulting GO terms having a p value smaller than
0.05 are considered to be general associations. These
GO terms are shown in Additional file 7.
Method-specific associations
The method-specific GO terms are a subset of the gen-
eral associations consisting of the top 15 GO terms,
with the smallest p values. The method-specific associa-
tions are presented in Tables 3 and 4 and in Additional
file 8. Biologically relevant associations include:
GO:0051805/GO:0051807 evasion or tolerance if
immune/defense response of other organism involved in
symbiotic interaction, GO:0051832 avoidance or defenses
of other organism involved in symbiotic interaction, and
GO:0052173 response to defenses (immune response) of
other organism involved in symbiotic interaction for tro-
phozoites and schizonts. The other stages are associated
with more general GO terms such as GO:0044237 cellu-
lar metabolic process, GO:0019538 protein metabolic
process and GO:0046474 glycerophospholipid biosynthetic
process.

IBC
The IBC results include two types of biclusters: (i)
biclusters containing genes, proteins, GO terms and life

Figure 6 CIA general associations - overlap between gene and
protein space. For each life cycle stage, the left ellipse shows the
number of general GO term associations in gene space whereas the
right ellipse shows the number of general GO term associations in
protein space. The amount of identical GO terms is shown in the
overlapping region of the ellipses. In general, more GO term
associations emerge form gene space than from protein space. Two
exceptions can be observed: the sporozoite stage, where more
associations are found in protein space and the gametocyte stage,
where a similar number of associations is found in each space.
These tendencies can be also observed in Figure 7.
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cycle conditions and (ii) biclusters containing genes,
proteins and GO terms. Since we are interested in GO
terms associations with life cycle stages, we will use only
the first type of biclusters for further analysis. If a GO
term is in the same bicluster as a life cycle stage, this
GO term is associated with that life cycle stage. If there
are more life cycle stages in a bicluster, the GO terms
are associated with all these life cycle stages. If a life
cycle stage is included in more that one bicluster, GO
terms from all biclusters are associated with that life
cycle stage. IBC discovered 20 biclusters and 9 of them
contained life cycle stages and GO terms. A network
view of the results is shown in Figure 8.
General and method-specific associations
Since a life cycle stage is either included in a bicluster or
not and as a consequence is either associated to a GO
term or not, it is not possible to distinguish between gen-
eral and method-specific associations. Figure 8 shows a
vast amount of genes (in orange), proteins (in light blue),
GO terms (in yellow) and the six life cycle stages: gameto-
cyte (in green), sporozoite (in pink), trophozoite (in
brown), ring (in red), schizont (in dark blue) and mero-
zoite (in light blue). The different biclusters resulting from
the analysis can be identified through the colour of their

edges. The exact associations with the life cycle stages are
shown in Additional file 9.

Common results
In this section, we present GO associations observed in all
three methods. The common associations are shown in
Figure 9. These associations are based on gene as well as
protein information and are therefore considered to be in
the common space. The GO associations computed with
R were converted into a compatible format and loaded
into Cytoscape. We observe here that the gametocytes are
linked to the rest of the network through only one general
GO term, GO:0009987 cellular process. The sporozoite
stage is also loosely connected to the network through two
GO terms, GO:0009056 catabolic process and GO:0009116
nucleoside metabolic process. The intraerythrocytic cycle,
composed of trophozite, ring, schizont and merozoite are
highly interconnected. The merozoite stage presents a
high number of associations with specific GO terms such
as GO:0030260 entry into host cell and GO:0044409 entry
into host. Trophozoites are associated with a small number
of GO terms, including GO:0050896 response to stimulus,
GO:0006096 glycolysis, GO:0006006 glucose metabolic pro-
cess and GO:0006091 generation of precursor metabolites
and energy. The stages schizont and ring are connected
through the GO terms GO:0006955 immune response,
GO:0050776 regulation of immune response, GO:0006325
chromatin organization and GO:0006091 generation of
precursor metabolites and energy. It is also interesting to
see that merozoits and schizonts are linked only through
the GO term GO:0009116 nucleoside metabolic process.
Relative proportions of common and methods-specific
results
In the case of CIA, one can observe a high overlap
between the common results and the CIA specific GO
terms associations: 8 GO terms (GO:0005975 carbohy-
drate metabolic process, GO:0006644 phospholipid meta-
bolic process, GO:0008654 phospholipid biosynthetic
process, GO:0045017 glycerolipid biosynthetic process,

Table 1 CIA specific GO term association in gene space to the gametocyte stage.

CIA: Gametocyte in gene space

61 GO:0006334: nucleosome assembly

145 GO:0006072: glycerol-3-phosphate metabolic process

171 GO:0006465: signal peptide processing

362 GO:0007131: reciprocal meiotic recombination

363 GO:0002720: positive regulation of cytokine production involved in immune response

364 GO:0006359: regulation of transcription from RNA polymerase III promoter

467 GO:0051604: protein maturation

480 GO:0001819: positive regulation of cytokine production

559 GO:0006071: glycerol metabolic process

In this table GO term association in gene space to the life cycle stage gametocyte are presented. The numbers in the left column correspond to the numbers in
graphic A of Figure 5

Table 2 CIA specific GO term association in protein space
to the gametocyte stage.

CIA: Gametocyte in protein space

1 GO:0009405: pathogenesis

39 GO:0007165: signal transduction

64 GO:0007155: cell adhesion

139 GO:0045454: cell redox homeostasis

276 GO:0044262: cellular carbohydrate metabolic process

366 GO:0006103: 2-oxoglutarate metabolic process

In this table GO term association in protein space to the life cycle stage
gametocyte are presented. The numbers in the left column correspond to the
numbers in graphic B of Figure 5
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GO:0006661 phosphatidylinositol biosynthetic process,
GO:0046488 phosphatidylinositol metabolic process,
GO:0006506 GPI anchor biosynthetic process, GO:001
6255 attachment of GPI anchor to protein) associated by
CIA with merozoites in protein space, 8 GO terms (GO:0
009058 biosynthetic process, GO:0051276 chromosome

organization, GO:0006325 chromatin organization,
GO:0050776 regulation of immune response, GO:0006955
immune response, GO:0006096 glycolysis, GO:0006334
nucleosome assembly, GO:0044237 cellular metabolic
process) associated by CIA with rings and schizonts in
protein space and 3 GO terms (GO:0009117 nucleotide
metabolic process, GO:0006163 purine nucleotide meta-
bolic process, GO:0009116 nucleoside metabolic process)
associated by CIA with sporozoites in protein space.
Only two GO terms (GO:0006096 glycolysis and GO:000
6006 glucose metabolic process associated with tropho-
zoites) from gene space, coincide with GO terms from
the common results. Protein activity characteristics
derived from CIA show considerable similarities to the
other two methods.
Six specific results of GSVD for the life cycle stage ring

coincide with the common GO terms associations with this
stage (GO:0009058 biosynthetic process, GO:0019538 protein
metabolic process, GO:0044237 cellular metabolic process,
GO:0008152 metabolic process, GO:0055114 oxidation-
reduction process, GO:0006091 generation of precursor meta-
bolites and energy). There are three identical associations for
the stage merozoite (GO:0019538 protein metabolic process,
GO:0016311 dephosphorylation and GO:0006470 protein
dephosphorylation). For each of the other stages, only one
GO term from the common associations coincides with the
method-specific associations (GO:0009987 cellular process
for gametocytes, GO:0006091 generation of precursor meta-
bolites and energy for trophozoites, GO:0020033 antigenic

Figure 7 Generalized singular value decomposition - angular distances. GSVD computes angular distances between gene and protein
space. In general, the angular distances map to the common space, for which restricted GSE analysis is performed on the gene and on the
proteins arraylets. Nevertheless, while angular distances belonging to the intraerythrocytic cycle stages have positive values and show a
tendency to the gene space, the angular distances of gametocytes and sporozoites have negative values and thus a tendency towards protein
space. These preferences are also reflected by the amount of GO term associations emerging from the gene and from the protein space (see
also Figure 6).

Table 3 GSVD specific GO term association to
gametocyte stage in common space.

GSVD: Gametocyte in common space

GO:0044238 primary metabolic process

GO:0008152 metabolic process

GO:0044237 cellular metabolic process

GO:0045017 glycerolipid biosynthetic process

GO:0043170 macromolecule metabolic process

GO:0034645 cellular macromolecule biosynthetic process

GO:0046474 glycerophospholipid biosynthetic process

GO:0009059 macromolecule biosynthetic process

GO:0022613 ribonucleoprotein complex biogenesis

GO:0044260 cellular macromolecule metabolic process

GO:0019538 protein metabolic process

GO:0046486 glycerolipid metabolic process

GO:0042254 ribosome biogenesis

GO:0006839 mitochondrial transport

GO:0009987 cellular process

In this table GSVD based GO term association in common space to the life
cycle stage gametocyte are presented.
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variation for schizonts and GO:0009056 catabolic process
for sporozoites). In conclusion, the ring stage is very well
characterized by the GSVD, which is almost in complete
agreement with the other methods. The properties of the
other stages do not coincide with the common results but

should definitely be considered for further analysis as they
are highly significant.
In this study, we have applied three integrative analysis

methods to a data set containing mRNA and protein
abundances from the six life cycle stages of P. falciparum.
The use of integrative analysis methods allows to consider
all annotated and measured genes (3283) and proteins
(2491), not limited by the 2230 pairs of genes and proteins
as when it was first published in [9]. The integration of
knowledge on different levels allows the linking of the data
sets based on samples and not on variables (genes,
protein).
We presented three different integrative analysis meth-

ods, each with its own justification: CIA discovers biologi-
cal processes on the basis of maximal covariance. GSVD
decomposes the data sets into genelets and arraylets and
conducts a modified GSE analysis on them. IBC computes
biclusters according to the distance between genes, pro-
teins and GO terms.
We have shown method-specific results as well as results

common to all three analysis methods. In the case of CIA,
the associations in protein space presented a high overlap
with the common results. This was not the case for the
associations in gene space. In case of the sporozoite stage,
GSVD associations are very simmilar to the common
results. For the other stages, GSVD yielded different map-
pings compared to the common results. As a GO term is
associated or not with a life cycle stage, only general but
no method-specific results were computed for IBC.
For CIA, it is important to consider that GO term asso-

ciations are done through projection, whereas GSVD
maps GO terms to individual stages through restricted
GSE analysis and IBC assigns GO terms to life cycle stages

Table 4 GSVD specific GO term association to trophozoite stage in common space.

GSVD: Trophozoite in common space

GO:0044403 symbiosis, encompassing mutualism through parasitism

GO:0044419 interspecies interaction between organisms

GO:0051704 multi-organism process

GO:0009607 response to biotic stimulus

GO:0006952 defense response

GO:0051707 response to other organism

GO:0051805 evasion or tolerance of immune response of other organism involved in symbiotic interaction

GO:0051807 evasion or tolerance of defense response of other organism involved in symbiotic interaction

GO:0051832 avoidance of defenses of other organism involved in symbiotic interaction

GO:0051834 evasion or tolerance of defenses of other organism involved in symbiotic interaction

GO:0052173 response to defenses of other organism involved in symbiotic interaction

GO:0052564 response to immune response of other organism involved in symbiotic interaction

GO:0020033 antigenic variation

GO:0051809 passive evasion of immune response of other organism involved in symbiotic interaction

GO:0006091 generation of precursor metabolites and energy

In this table GSVD based GO term association in common space to the life cycle stage trophozoite are presented.

Figure 8 Integrative biclustering - network view of the results.
The results of IBC were inspected and only biclusters including life
cycle stages were considered for further analysis. IBC discovered 20
clusters where 9 of them contained life cycle stages and GO terms.
These 9 biclusters were processed and fed into Cytoscape. An
association between a life cycle stage and a GO term is represented
by an edge. Different biclusters are represented by different edge
colours. The life cycle stages are shown in the same colours as
those used for CIA. The genes are coloured in orange, the proteins
in light blue and the GO terms in yellow.
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through the distance to the corresponding life cycle stage.
Another important aspect is that with CIA it is not possi-
ble to associate one GO term to more than one life cycle
stage, while this is possible with GSVD and IBC. Due to
the heterogeneous computational methods, we proposed
taking the intersect of the three obtained results.
In the three-fold validated network view of the biolo-

gical processes (Figure 9), we observe the separation of
the intraerytrocytic cycle (merozite, ring, trophozoite
and schizont) from sporozoites and gametocytes. While
the stages of the intraerytrocytic cycle are tightly con-
nected to one another, sporozoites share two biological
processes and gametocytes share only one biological
process with the rest. Gametocytes and sporozoites do

not possess any common processes, reflecting the differ-
ences between these stages. Gametocytes are released
into the blood stream, from where they travel to the
liver, while sporozoites represent the sexual stage and
lie dormant in cell cycle arrest until ingestion by a
mosquito.
The data used here was gathered in order to investigate

the role of post-transcriptional regulation in P. falciparum
[9]. For this, only pairs of mRNA and the corresponding
protein were considered, resulting in the exploitation of
89% of the proteins and 60% of the genes that were experi-
mentally measured. By employing integrative analysis
methods we were able to take all measured data into
account.

Figure 9 GO terms to life cycle associations discovered by all three methods. Network view of the GO term to life cycle stage associations
discovered by all three integrative analysis methods: CIA, GSVD and IBC. We observe that gametocytes and sporozoites are loosely connected to
the rest of the network underlining the separation of these stages from the intraerythrocytic cycle. Merozoites possess the largest amount of GO
term associations, while trophozoites show the lowest amount of associations. Further details concerning individual stage-to-GO-term mappings
are addressed in the discussion.
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LeRoch and coworkers [9] mention that there is a “bias
in proteomic analysis of whole-cell lysates, in that such
methods may fail to detect secreted or membrane proteins
present in low abundance” such as GPI anchors. Due to
the integrative approach, our analysis associates several
GO terms related to GPI anchors proteins (GO:0006506
GPI anchor biosynthetic process, GO:0016255 attachment
of GPI anchor to protein, GO:0006661 phosphatidylinositol
biosynthetic process, GO:0046488 phosphatidylinositol
metabolic process) with the merozoite stage, prevailing
over this shortcoming. These associations are in agree-
ment with [66], where distinct protein classes, with a focus
on merozoite surface antigens, are discussed. The impor-
tance of GPI anchor proteins in the merozoite stage is
well known and very important in immune evasion
[67,68].
Other biological processes mentioned in [9] such as gly-

colysis and cell invasion, without any life cycle mapping,
were also found in our network: GO:0044409 entry into
host and GO:0030260 entry into host cell, both associated
with the merozoite stage. Our network assigns
GO:0006096 glycolysis to the stage trophozoite, in concor-
dance to [69] where the transcriptome of P. falciparum
was characterized.
Simmilar to our findings, cell invasion was associated

with merozoites in [67], where a proteomic view of the
P. falciparum life cycle was presented. Other concor-
dances with [67] include the assignment of GO:0006508
proteolysis to the merozoite stage. During trophozoite
stage, digestion of haemoglobin takes place. Our network
maps GO:0006091 generation of precursor metabolites and
energy to trophozoites, confirming the importance of
energy production during this stage. As mentioned by Flo-
rens et al. [67], sporozoites are injected into the blood
stream where they have to survive in a hostile environ-
ment. Based on our combined results, sporozoites are
associated with GO:0020013 modulation by symbiont of
host erythrocyte aggregation and GO:0020035 cytoadher-
ence to microvasculature, mediated by symbiont protein,
which reflects the process of survival. Additionally, sporo-
zoites are associated with metabolism and transcription, as
was shown in Figure 5 of [67]. Our results reflect these
findings by mapping GO:0006163 purine nucleotide meta-
bolic process, GO:0009117 nucleotide metabolic process,
GO:0006351 transcription, DNA dependent and
GO:0006355 regulation of transcription, DNA dependent
to the sporozoite stage.
During gametocyte stage, DNA processing and energy

production is highly regulated, as mentioned in [67]. In
agreement, our results assign GO:0006323 DNA packaging,
GO:0006839 mitochondrial transport and GO:0006626 pro-
tein targeting to mitochondrion to the gametocytes.
The analysis of the P. falciparum proteome by LaCount

and colleagues [70] associated the intraerythrocytic cycle

with chromatin modification, transcriptional regulation,
mRNA stability/processing, ubiquitination, nucleic acid
metabolism and invasion of host cells. Since our analysis
corresponds to individual life cycle stages, we can associate
biological processes to a certain stage of the intraerythro-
cytic cycle, providing a more detailed description of
P. falciparum. According to our findings, chromatin modi-
fication takes place during schizont stage (GO:0006325
chromatin organization, GO:0051276 chromosome organi-
zation); merozoites are associated with GO:0006357 regu-
lation of transcription from RNA polymerase II promotor
and schizonts with GO:0042795 transcription from RNA
polymerase II promotor ; merozoites are associated with
GO:0009116 nucleoside metabolic process; invasion of host
cells can be observed during merozoite stage (GO:0044409
entry into host and GO:0030260 entry into host cell). Ubi-
quitination was only detected through its parent term
GO:0044267 cellular protein metabolic process, which was
associated with merozoites.
Fagan et al. [1] conducted CIA on a slightly different

data set which took P. berghei orthologues into account
and showed that GO:0006412 biosynthesis is associated to
the intraerythrocytic cycle. In our network, several more
specialized biosynthetic processes are associated with the
merozoite stage: GO:0009059 macromolecule biosynthetic
process, GO:0008654 phospholipid biosynthetic process,
GO:0045017 glycerolipid biosynthetic process, GO:0006661
phosphatidylinositol biosynthetic process, GO:0006506 GPI
anchor biosynthetic process, as well as the GO term
GO:0006412 biosynthetic process itself.
The importance of immune evasion through antigenic

variation was highlighted by Winzeler [71]. Our results
show that this process is related to the schizont stage, as
our analysis associates GO:0020033 antigenic variation,
GO:0006955 immune response, GO:0050776 regulation of
immune response, GO:0002377 immunoglobulin produc-
tion, GO:0006950 response to stress and GO:0009607
response to biotic stimulus with this stage.
The role of lipids during merozoite stage was already

shown in 1988 by Mikkelsen et al. [72]. Our computed
network associates merozoites with GO:0006644 phospho-
lipid metabolic process, GO:0008654 phospholipid biosyn-
thetic process, GO:0046486 glycerolipid metabolic process
and GO:0006629 lipid metabolic process, reflecting this
early finding.
Phosphorilation and dephosphoryliation processes play

an important role in the internalization step of mero-
ziotes [73], a fact that is also reflected by our results.
Merozoites are associated with GO:0016311 dephosphor-
ylation and GO:0006470 protein dephosphorylation.
The role of the pentose phosphate pathway in

P. falciparum was disscused in [74], without a clear life cycle
stage assignment. Our computed network view maps
GO:0006098 pentose-phosphate shunt to merozoites.
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As shown in [75], REDOX complexes play an impor-
tant role during ring stage, which is in agreement with
our results that associate ring stage with GO:0045454
cell redox homeostasis and GO:0055114 oxidation-reduc-
tion process.
Roth [76] showed that carbohydrate metabolism is a

key metabolic process connecting the host cells with
P. falciparum. Our findings assign GO:0005975 carbohy-
drate metabolic process to merozoite and ring stages.
Most of our network associations are in concordance

with several publications dealing with the characterization
of P. falciparum, based on transcriptome [68,69] and pro-
teome [67,70] characterization data. A considerable
amount of the findings in the above publications are con-
centrated in our results of the used integrative analysis
methods. Our findings are more detailed through the asso-
ciation with a specific life cycle stage rather than, e.g. the
whole intraerythrocytic cycle as well as through the asso-
ciation of a child GO term instead of a parent GO term to
the corresponding stage. Our study unifies individual find-
ings from several publications of the past 25 years of
research. Not all results from the publications mentioned
above are present in our network. This could be due to
the fact that none of the cited publications, except [9],
used the same data sets as we did. Llinas et al. [68] com-
pared the three P. falciparum strains 3D7, Dd2 and HB3
through the measurement of the gene expression profiles
of 6287, 5294 and 6415 genes during the intraerythrocytic
cycle. Bozdech et al. [69] considered in their analysis
of the intraerythrocytic cycle transcriptome the expression
of 5508 genes. LaCount and colleagues [70] analysed
1267 proteins for their protein interaction network of
P. falciparum. In [67], Florens et al. use approximately
2400 proteins in order to create a proteomic view of the
P. falciparum life cycle. The other studies are based on lab
experiments on smaller groups of genes or proteins
[66,71-73,75].
Additionally, our combined network view of life cycle

stage dependent GO term association provides a new
overview for the vaccine research and offers new insight
in the interdependencies between life cycle stages. Possi-
bly it could even identify key biological processes on
which vaccine researchers could concentrate their work.

Conclusion
In this study we have shown the power of integrative
analysis methods. We presented three very different
approaches that showed significant overlap of results.
We compared our findings against the past 25 years of
P. falciparum research and showed that the obtained
network unifies, on the life cycle level, results from ana-
lyses done separately on transcriptome and proteome
data, as well as results from the lab, which were per-
formed on small groups of genes or proteins. Further

investigations are needed to obtain a complete map of
the biological processes activated during the life cycle of
P. falciparum. Measurement of the transcriptome and
proteome of P. falciparum, exploiting the advantages of
current high throughput technologies, would comple-
ment the spectrum of biological process presented here.
An increase of our understanding of P. falciparum
could be achieved by performing the integrative analysis
methods on the molecular function and/or cellular com-
partment level of gene ontology. Further work could
also cover the identfication of genes and proteins that
play key roles during the life cycle of P. falciparum
through integrative analysis on gene and protein level,
not only on GO term level.
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Abstract 25 

The innate immune response to a broad class of pathogens is highly conserved 26 

across all eukaryotes and has been studied in great detail at the cellular and 27 

transcriptomic level in several insect species. However, the commensurate cellular 28 

proteomic response, especially of hemocytes, the primary immune cell population in 29 

insects, has remained poorly understood. We report on the comprehensive 30 

proteogenomic analysis of a phagocyte subpopulation from Anopheles gambiae, the 31 

primary malaria mosquito vector in Sub-Saharan Africa. We leveraged the innate 32 

phagocytic response of mosquito granulocytes to achieve targeted enrichment for these 33 

cells to facilitate the examination of their proteomic response profiles following sugar 34 

feeding, a non-infectious blood meal, and Plasmodium falciparum infection. A 35 

comparative integrative-OMICs analysis of existing transcriptomic profiles combined 36 

with these proteomic data permitted the delineation of the functional genome of 37 

anopheline granulocytes.  This rich data resource provides the first comprehensive 38 

reference for protein profiles for mosquito granulocytes during homeostasis and 39 

pathogen challenge. We observed that phagocytosis, blood feeding, and P. falciparum 40 

infection induced dramatic shifts in granulocyte protein expression indicative of broad 41 

changes in cellular proliferation and innate immune response priming. Importantly, we 42 

identified a large number of hemocyte immune proteins that respond to blood feeding 43 

alone, suggesting that granulocytes may play an integral role in an anticipatory immune 44 

response prior to pathogen challenge. This integrated-OMICs dataset for anopheline 45 

granulocytes can support future quantitative immunology studies to acquire novel 46 

insights into mosquito hemocyte regulation. 47 

To facilitate the review of the mass spectral data, we have uploaded the files to 
PRoteomics IDEntifications database (PRIDE).  The data can be accessed through the 
following reviewer account details:   

    Username: reviewer62532@ebi.ac.uk 

    Password: IcSSRtVQ                                              

    Data link: http://www.ebi.ac.uk/pride/archive/projects/PXD001507 



Introduction 48 

Insects live in a microbe-rich microenvironment that has driven the evolution of 49 

an effective innate immune response and insect host defense system. For instance, 50 

mosquitoes encounter dramatically different environments during their life cycle– 51 

aquatic in their juvenile stages and terrestrial as adults. During these stages, 52 

mosquitoes encounter and must survive immune challenge from a variety of bacterial, 53 

viral, fungal, and parasitic pathogens. Mechanistically, the mosquito innate immune 54 

system can be divided into evolutionary conserved cellular and humoral responses. 55 

Mosquito ‘blood cells’, or hemocytes, are thought to be integral to both responses. 56 

Cellular responses include the engulfment of bacteria via phagocytosis, while humoral 57 

components produced by hemocytes and the fat body act through hemolymph-derived 58 

factors to sequester and/or kill invading pathogens.  59 

Compared to vertebrate cell-mediated immunity, our current understanding of 60 

mosquito hemocyte function is still in its infancy. Extensive conservation in the 61 

mechanisms of hematopoiesis exist between insects and mammals (Wang et al. 2014), 62 

yet only three distinct classes of hemocytes have been distinguished by morphology 63 

and limited biochemical characterization (Castillo et al. 2006). Granulocytes are the 64 

professional phagocytes of the insect, sharing similar roles with vertebrate 65 

macrophages. Believed to share a common ancestry with vertebrate macrophages, 66 

insect granulocytes mediate immune activation and the production of humoral defense 67 

factors. Oenocytoids appear to have a primary role in the production of melanin and 68 

have been implicated in wound healing and pathogen killing in other insect systems 69 

(Wang et al. 2014). Finally, prohemocytes are thought to serve as hematopoietic 70 

progenitor cells that differentiate to produce other hemocyte cell populations (Rodrigues 71 

et al. 2010), or as recently proposed, may simply represent a smaller class of 72 

granulocytes (King and Hillyer 2013).  73 

Although hemocytes have been implicated in several aspects of insect 74 

physiology in other systems (Fauvarque and Williams 2011; Wang et al. 2014), these 75 

have yet to be fully explored in mosquitoes. Much of our current knowledge on mosquito 76 

hemocytes is limited to observations and morphological classifications of the hemocyte 77 

sub-types, thereby leaving much of the fundamental aspects of their biology unknown 78 



(Hillyer and Strand 2014). In recent years, new information regarding hemocyte 79 

circulation dynamics (King and Hillyer 2013), aggregation (King and Hillyer 2012), and 80 

proliferation following blood feeding (Castillo et al. 2011; Bryant and Michel 2014) have 81 

been described in mosquitoes. However, these studies remain focused on presumed 82 

and likely contributions of hemocytes, as a whole, to the innate immune response 83 

(Lavine and Strand 2002; Pinto et al. 2009; Rodrigues et al. 2010; King and Hillyer 84 

2012; Ramirez et al. 2014). Transcriptional analysis has been performed on a 85 

heterogeneous population of mosquito hemocytes to measure the response and infer 86 

the role of these cells in the context of either bacterial or Plasmodium parasite challenge 87 

(Baton et al. 2009; Pinto et al. 2009). These studies revealed a partitioning of hemocyte 88 

transcriptomic profiles according to pathogen challenge and temporal pattern following 89 

infection (Baton et al. 2009; Pinto et al. 2009). Pinto et al. (2009) also identified several 90 

hemocyte factors that modulate parasite developmental success. However, these 91 

studies were limited by the generalization of the overall hemocyte response and the lack 92 

of targeted, comprehensive analyses of a specific subset of the hemocyte population in 93 

the context of homeostasis and pathogen challenge. 94 

Here, we report on the comprehensive proteogenomic analysis of the 95 

granulocyte response to blood feeding and infection in the major African malaria vector, 96 

Anopheles gambiae. We developed a novel purification technique that isolates the 97 

phagocytic (granulocyte) population of mosquito blood cells (granulocytes) to permit 98 

enrichment and subsequent mass spectrometry-based proteomics analyses. By 99 

comparing the proteome profiles to existing transcriptome data, we have improved the 100 

functional annotation of this hemocyte subset. In addition, our integrative-OMICs 101 

strategy dissected the effects of phagocytosis, blood-feeding, and Plasmodium 102 

infection, which provides a rich resource of fundamental information on mosquito 103 

hemocyte biology. These data shed light on putative of candidate granulocyte cell 104 

surface markers that can spur additional studies to support the community’s effort to 105 

uncover novel aspects of granulocyte involvement in the mosquito immune response 106 

throughout the organism’s life cycle. 107 



Results 108 

Magnetic bead-based isolation of the phagocytic hemocyte population 109 

Several methodologies and perfusion techniques have been used to isolate 110 

mosquito hemocytes (Abraham et al. 2005; Castillo et al. 2006; Rodrigues et al. 2010; 111 

King and Hillyer 2012). In addition to variability in hemocyte numbers (Hillyer and Strand 112 

2014), perfusion techniques are often contaminated by mosquito fat body cells, 113 

extraneous cellular debris, or bacteria as a result of this invasive technique (Castillo et 114 

al. 2006). Leveraging the ability of granulocytes to phagocytose particulates (Hillyer et 115 

al. 2003a); we hypothesized that a highly enriched population of granulocytes could be 116 

isolated following the phagocytosis of carboxylate-coated magnetic beads. Magnetic 117 

isolation would enable granulocyte purification and enrichment and thus facilitate mass 118 

spectrometry-based proteomics analysis (Figure 1A). This methodology would produce 119 

few of the contaminants of perfusion, albeit at the expense of proteomic information for 120 

the non-phagocytic populations of mosquito blood cells (prohemocytes and 121 

oenocytoids). Based on morphological classification, microscopy analyses confirmed 122 

that mosquito granulocytes heavily phagocytosed magnetic beads (Figure 1B). In 123 

contrast, perfused fat body cells did not appear to have phagocytosed magnetic beads 124 

and were only occasionally seen to have any superficial association with the beads 125 

(Figure 1B). These visible differences in morphology and phagocytic ability were further 126 

validated by immunostaining to confirm the identity of the heavily phagocytic population 127 

as granulocytes. The previously described hemocyte markers, tubulin and the 128 

fluorescent cell tracker dye, CM-DiI (King and Hillyer 2012, 2013), identify specific 129 

differences between the staining pattern of phagocytic granulocytes and those of fat 130 

body cells (Figure 1B). Additional experiments using a Notch antibody demonstrate 131 

distinct differences between cell types, with Notch expression detected in fat body 132 

nuclei but absent from perfused granulocytes (Figure 1B). These data suggest that our 133 

method of enrichment specifically targets the granulocyte population of mosquito blood 134 

cells.  135 



The mosquito granulocyte proteomic profile in the context of homeostasis and 136 

pathogen challenge 137 

Based upon our ability to enrich for phagocytic granulocyte populations, we 138 

performed proteomic analysis on mosquito hemocytes populations to determine the 139 

effects of granulocyte enrichment (phagocytosis), blood feeding and malaria parasite 140 

infection. Initial comparisons were made between non-selected naïve hemocytes (all 141 

cell types) and magnetic bead (mag-bead) enriched sugar-fed granulocytes (Figure 2A). 142 

Further experiments compared mag-bead enriched cell populations 48 hours after blood 143 

feeding or P. falciparum infection (Figure 2B). Across all samples, a total of 1128 144 

proteins were identified, 748 of which were identified in all mag-bead purified samples 145 

(Figure 2B). Using normalized spectral counts to conduct label-free quantification, we 146 

obtained average R2 values from pair-wise spectral counts of 0.71 for non-selected 147 

naïve hemocytes, 0.88 between sugar-fed bead selected replicates, 0.83 between 148 

blood-fed bead selected replicates, and 0.85 between Plasmodium-infected selected 149 

samples (Supplemental Figure S1).  150 

Individual proteome comparisons illustrate the effects of granulocyte enrichment 151 

(Figure 2C), blood feeding (Figure 2D), and P. falciparum infection (Figure 2E). Of 152 

interest, widespread changes in protein abundance (both positive and negative) are 153 

observed following granulocyte enrichment, yet the effects of blood feeding and parasite 154 

infection are largely positive (Figures 2C-E). The dynamics of proteins annotated with a 155 

transmembrane domain (Figure 2F) or predicted secreted proteins (Figure 2G) mirror 156 

these observations. To further extend this analysis to components of the innate immune 157 

response, immune components belonging to serine protease inhibitor (SRPNs), clip-158 

domain serine protease (CLIPs), thioester protein (TEPs), or leucine rich-repeat 159 

immune protein (LRIMs) gene families identified in our proteomic analysis were also 160 

followed across each of the experimental conditions (Figure 2H). Members of these 161 

gene families were influenced by phagocytosis (granulocyte enrichment) and blood 162 

feeding as expected, but showed little response to malaria parasite infection (Figure 163 

2H). Additional analyses of the Ras superfamily of small GTPases implicated in cell 164 

proliferation and hemocyte activation (Bryant and Michel, 2014) were down-regulated in 165 



enriched sugar-fed granulocyte populations, while blood-feeding and Plasmodium 166 

infection produced positive changes in protein abundance (Supplemental Figure S2).  167 

 168 

Purified granulocyte samples have a distinct and significantly enriched protein 169 

profile as compared to unselected hemocytes following phagocytosis, blood-170 

feeding, and parasite challenge  171 

To identify those proteins with significant changes in abundance, strict filtering 172 

criteria were applied to each comparative data set. For brevity, only statistically 173 

significant (P<0.01) proteins with normalized spectral counts showing greater than two 174 

fold enrichment were considered. Functional classifications were used to further define 175 

the 57 proteins identified according to these requirements (Table 1). A complete list of 176 

all statistically significant (P<0.05) proteins is listed in Supplemental Table S2 for each 177 

experimental treatment.  178 

Six proteins were significantly enriched following granulocyte mag-bead 179 

purification (sugar-fed (SF) magnetic bead samples vs. non-selected (NS) hemocytes; 180 

Table 1). With widespread predicted functions, the small sample size precludes any 181 

further conclusions regarding the concerted function of these proteins (Table 1). As a 182 

result, it is unclear if the proteins identified are indicative of proteins expressed 183 

specifically in granulocyte populations or in response to phagocytosis. However, this list 184 

of granulocyte-enriched proteins following mag bead phagocytosis may represent 185 

potential cell subtype protein markers (Supplemental Table S2).  Included in this list are 186 

LRIM1, AGAP011503, AGAP002593, AGAP000806 and AGAP011765, which have 187 

been proposed as hemocyte-subtype specific protein markers (Pinto et al. 2009).  Our 188 

study suggests that these proteins, when used in combination will be useful in selecting 189 

and profiling mosquito phagocytic hemocyte populations. For example, RNA-FISH co-190 

staining of AGAP000806 and AGAP012386 transcripts were able to discriminate a 191 

specific subset of hemocyte cells (Pinto et al. 2009) and in our study we observed that 192 

these two genes were both expressed as proteins in granulocytes.  Moreover, it was 193 

also observed that transcript expression of AGAP011765 is not coincident with 194 

expression of AGAP012337, as RNA-FISH labeled independent cell populations.  In the 195 



same manner, we identified by MS/MS only AGAP011765 in mag bead purified 196 

granulocytes and not AGAP012337 (Supplemental Table S2). 197 

Of interest, we identified a snake-like serine protease (AGAP003691), a putative 198 

ortholog of the Drosophila snake protein involved in the proteolytic cascade leading to 199 

Toll activation. In addition to the role of snake in dorsal-ventral patterning, snake-like 200 

proteins have been implicated in Toll immune signaling (Irving et al. 2001), suggesting 201 

that Toll-mediated immune responses are initiated in these phagocytic cell populations. 202 

A secreted ferritin G subunit (AGAP002464) was also identified in our analysis. With 203 

presumed roles in iron transport, ferritin expression may be increased in response to the 204 

uptake of the magnetic beads, or may have anti-microbial properties as previously 205 

implicated in mosquitoes (Paskewitz et al. 2005). In addition, we detected a dramatic 206 

increase in the levels of adenylate kinase (AGAP009317) following granulocyte 207 

enrichment. Not detected in non-selected hemocytes, this change in adenylate kinase 208 

expression may reflect changes in cellular energy metabolism following bead uptake or 209 

cell proliferation as previously described in other insect systems (Chen et al. 2012).  210 

The response to blood-feeding (blood-fed (BF) mag-bead samples vs. sugar-fed 211 

(SF) mag-bead samples) produced the largest group of proteins identified in our 212 

analysis (Table 1). Approximately one-third of these proteins (10 of 38) are components 213 

of the mosquito innate immune response (Table 1), despite the absence of parasite 214 

challenge in the non-infected blood samples. To our surprise, several well described 215 

genes influencing Plasmodium development were enriched, including C-type lectin 4, 216 

CTL4 (Osta et al. 2004), lysozyme c-1, LYSC1 (Kajla et al. 2011), defensin 1, DEF1 217 

(Dimopoulos et al. 1997; Luna et al. 2006), heme peroxidase 2, HPX2 (Oliveira et al. 218 

2012), and thioester protein 1, TEP1 (Blandin et al. 2004; Fraiture et al. 2009; 219 

Povelones et al. 2009). In addition, several proteins have presumed functions in cell 220 

signaling and metabolism, suggesting that blood-feeding triggers extensive changes in 221 

granulocyte populations. This is supported by evidence that blood feeding promotes 222 

pervasive changes to mosquito hemocyte populations (Baton et al. 2009; Castillo et al. 223 

2011; Bryant and Michel 2014). The remaining proteins were distributed across several 224 



presumed biological roles including proteolysis, ubiquitination, metabolic enzymes, cell 225 

signaling molecules, and those of unknown function (Table 1). 226 

In contrast with the large number of immune components enriched with a non-227 

infectious blood meal, only two of the 13 proteins following Plasmodium infection were 228 

classified as having presumed roles in the immune response (Table 1). Among these 229 

two proteins, SCRBQ2 has been previously implicated as an agonist of Plasmodium 230 

development (González-Lázaro et al. 2009), while LRIM16A is a yet undescribed 231 

member of a family of leucine-rich repeat proteins that are closely connected to the 232 

mosquito immune system (Waterhouse et al. 2010). Two 60s ribosomal subunits (L14 233 

and L36a) were enriched following Plasmodium infection, implying that pathogen 234 

challenge initiates the assembly of specific ribosomal components required for a subset 235 

of transcripts or a generalized increased in protein translation. Additional proteins with 236 

presumed roles in protein folding and vesicular transport, including the small GTPase 237 

Rab5C, may represent a dramatic cellular reorganization or intracellular communication 238 

in response to parasite infection (Table 1).  239 

 240 

Measuring concordance between the proteomic profiles of the granulocyte cell 241 

subset and the transcriptomic profile of the general hemocyte population 242 

 To determine the correlation of our proteomic and existing hemocyte 243 

transcriptomic profiles, candidate genes responsive to granulocyte-enrichment during 244 

sugar-feeding (SF), blood-feeding (BF), or P. falciparum-infection (PF) (Table 1) were 245 

further examined by multiple co-inertia analyses (MCIA) (Figure 3). Using published 246 

hemocyte transcriptome data (Pinto et al, 2009), MCIA was used to examine the degree 247 

of agreement between transcript and protein abundance in our granulocyte proteomes 248 

(SF, BF, PF). Comparisons were made between transcriptional profiles of non-selected 249 

hemocytes from sugar-fed naïve mosquitoes, 24 hours after feeding with a non-invasive 250 

CTRP mutant Plasmodium berghei (comparable to a non-infectious blood meal), or 24 251 

hours after feeding with wild-type P. berghei (Pinto et al, 2009).  252 

Hemocyte transcript and protein profiles analyzed by MCIA were based on the 253 

log fold change between two treatments (SF, BF and PF) and is displayed as the end 254 

points of a segment, where the more similar the two profiles are, the shorter the 255 



segment; since the length is proportional to the divergence between the two datasets. If 256 

the two profiles would be identical, the length of the segment would be zero. Individual 257 

transcripts or proteins that define the comparison are highlighted for each MCIA plot 258 

(Figure 3). Despite differences in sample collection, sample time points, and the species 259 

of malaria parasite used, our MCIA analysis revealed a high level of concordance 260 

between the previously published hemocyte transcriptomes (Pinto et al, 2009) and in 261 

our own enriched granulocyte protein profiles (Figure 3). Comparisons were performed 262 

to identify global differences between hemocyte transcript and protein profiles (Figure 263 

3A), or to examine sub-populations of immune-specific (Figure 3B) or proliferation-264 

specific (Figure 3C) protein profiles. A table with the highlighted genes and proteins is 265 

provided in Supplemental Table S3. 266 

The MCIA results across all three comparisons suggest that the greatest degree 267 

of post-transcriptional regulation occurs after an infectious blood meal (PFvSF), 268 

followed by the effects of blood-feeding (BFvSF). In contrast, the effects of parasite 269 

infection when compared to blood-feeding alone (PFvBF) show the highest 270 

concordance (Figure 3). Based on the pair-wise RV-coefficient, the highest post-271 

transcriptional regulation can be observed for the immune-specific proteome (Figure 272 

3B), implying that components of the mosquito immune response are more likely to 273 

undergo translational regulation. Similar analyses of the proliferation-specific proteome 274 

suggest that transcript and protein expression are tightly linked (Figure 3C).  275 

In our global analysis of mosquito hemocyte transcripts/proteins, we identified a 276 

very high co-structure between the two data sets (RV-coefficient of 0.97). Of note, 277 

several unique proteins featured prominently in our MCIA comparisons (Figure 3A) that 278 

were also independently identified in our enrichment analysis (Table 1, Supplemental 279 

Table S2). We identified a Vitellogenic Carboxypeptidase (VCP)-like protein 280 

(AGAP007505) in response to Plasmodium infection (PFvBF) that was also significantly 281 

enriched in our PF mag-bead sample (Table S2C). The mammalian ortholog of VCP-282 

like has been implicated in the maturation of monocytes into macrophages (Mahoney et 283 

al, 2001), and may have similar roles in mosquito hemocyte activation. Additional 284 

proteins, Vigilin (AGAP005467) and a von Willebrand factor A – domain containing 285 

protein (AGAP000545), were also identified in enriched BF-mag bead samples (Table 286 



1). The remainder of proteins highlighted in the global hemocyte MCIA analysis did not 287 

show a significant enrichment across the sample treatments. In addition, an ATP-288 

dependent RNA helicase (AGAP007212), a transglutaminase (AGAP009099), a 289 

eukaryotic translational initiation factor (AGAP012281), and nidogen (AGAP008193) 290 

also define the sample comparisons (Table S3). Other proteins without preliminary 291 

annotations were also identified (AGAP003610, AGAP009218, AGAP000622, 292 

AGAP002038). AGAP003610 and AGAP009218 have no known function or description 293 

and were not enriched in any of our three samples. AGAP003610 was previously found 294 

to be 3.1-fold down-regulated at 3 h and 24 h post-blood feeding (Marinotti, et al., 295 

2006), which suggests protein translation occurring immediately following a bloodmeal 296 

in granulocytes.  To date, AGAP009218 has not been detected in any transcriptomic 297 

studies analyzing mosquito or hemocyte responses to blood feeding or pathogen 298 

challenge.  299 

Similar to Figure 3A, the MCIA analysis of immune-specific transcripts/proteins 300 

indicate a very high agreement between the two data sets with a RV-coefficient of 0.96 301 

(Figure 3B). However, this correlation of data is lower than that observed in our global 302 

hemocyte analysis (Figure 3A). As in Figures 3A and 3B, the highest agreement 303 

between the hemocyte transcriptome and immune specific proteome was observed for 304 

PFvBF, followed by BFvSF, while the lowest agreement was observed for PFvSF. The 305 

association of the most expressed The proteins that are specifically associated with the 306 

PFvBF comparison include LRIM16A (AGAP028028), CLIPB5 (AGAP004148), CLIPA2 307 

(AGAP011790), and LRIM15 (AGAP007045), with LRIM16A and LRIM15 showing 308 

significant enrichment in PF mag-bead samples (Table 1, Supplemental Table S2). Both 309 

are members of a leucine-rich repeat family of proteins implicated in mosquito immunity 310 

(Waterhouse et al. 2010) and contain predicted transmembrane domains, suggesting 311 

that these LRIM proteins could be candidate surface markers of activated granulocytes 312 

following Plasmodium infection. Previous reports have identified that CLIPA2 transcript 313 

is induced 2.1-fold in hemocytes at 24 h following P. berghei infection (Pinto et al 2009), 314 

providing further evidence that CLIPA2 may also be a candidate marker for granulocyte 315 

activation. Previously implicated in the melanization response (Volz et al, 2006), recent 316 

reports have identified that CLIPA2 serves as a negative regulator of TEP1 function to 317 



avoid hyper-immune activation in response to pathogen challenge (Yassine et al, 2014). 318 

In addition, CLIPA5 (AGAP011787), LRIM17 (AGAP005693), and LRIM8B 319 

(AGAP0007456) define the PFvSF comparison, while CLIPA1 (AGAP011791) and 320 

CLIPB9 (AGAP0013442) highlight the response to blood-feeding (BFvSF).   321 

Although the proteins cluster far from the genes, the Proliferation-Specific (Figure 322 

3C) RV-coefficient is 0.99, which is the highest agreement found in our MCIA analyses 323 

(Figure 3) and is likely due to the relatively few genes/proteins used in the analysis. As 324 

we had observed for Figures 3A-C, the highest agreement between the hemocyte 325 

transcriptome and proliferation specific proteome is observed for PFvBF, followed by 326 

BFvSF, while the lowest agreement is observed for PFvSF. The three proteins that 327 

cluster with the PFvBF comparison are Ras-related Rab7A (AGAP001617), Ras 328 

homology gene family member A (AGAP005160), and Ras-related Rab5C 329 

(AGAP007901). Of these three, only the latter two are enriched in the PF mag-bead 330 

sample (Supplemental Table S2C), and only Rab5C falls below the P < 0.01 stringency 331 

cutoff (Table 1). However, the MCIA features axis 1 value of -2.07 for Rab7A 332 

(Supplemental Table S3C, Figure 3D) is high and projected in the direction of the 333 

PFvBF comparison. On the MCIA plot (Figure 3D) Rab7a also sits along the border 334 

between the PFvBF and PFvSF.  These observations suggest that although Rab7a was 335 

not enriched in the PF mag bead sample, it may be a potential marker for a nuanced 336 

granulocyte proliferation response to PF, and deserves future examination. We 337 

observed that Ras superfamily GTPases were down-regulated at the protein level 338 

among granulocytes in general but increased in protein abundance in response to 339 

blood–feeding and Plasmodium infection (Supplemental Figure S2). In fact, both Rab5C 340 

and Ras homology gene family member A protein levels in granulocytes increased 3.7-341 

fold and 1.6-fold, respectively, at 48 h following ingestion of an infectious as opposed to 342 

a non-infectious blood meal  (Supplemental Table S2C).   343 

 344 

Orthogonal validation of transcript-protein concordance for proteins enriched in 345 

SF, BF and PF mag-beads 346 

To determine the concordance between transcript and protein levels, we 347 

subsequently validated a subset of proteins identified in our enrichment (Table 1, Table 348 



S2) and MCIA analyses (Figure 3, Supplemental Table S3) across all sample 349 

treatments by qRT-PCR (Figure 4). In proteins identified in SF granulocytes (Figure 4A), 350 

transcript levels of ferritin heavy chain (AGAP002465) and snake-like (AGAP003691) 351 

closely correlate with protein levels, while adenylate kinase (AGAP009317) mRNA 352 

levels are inversely related to protein abundance. Following blood-feeding, TEP1 353 

(AGAP010815), CTL4 (AGAP005335), and DEF1 (AGAP011294) transcript levels 354 

mirror patterns of protein expression, yet small differences in transcript levels result in 355 

large changes of protein abundance (Figure 4B).  356 

In contrast to those proteins enriched following blood-feeding, the list of enriched 357 

proteins in granulocytes following Plasmodium infection was surprising in that very few 358 

immune-related proteins were identified (Table 1, Supplemental Table S2C). Of these, 359 

we profiled LRIM16A (AGAP028028) and SCRBQ2 (AGAP010133) transcripts, as well 360 

Rab5C (AGAP007901) thought to be involved in proliferation and cell signaling (Figure 361 

4C). We also examined the expression of a thioredoxin-like gene (AGAP000044) and 362 

two genes that featured prominently in our MCIA analyses, LRIM15 (AGAP007045) and 363 

VCP-like (AGAP007505), that were enriched using the less stringent (P <0.05) cutoff 364 

(Supplemental Table S2C). (AGAP000044) transcripts were previously shown to be 365 

highly expressed in the hemolymph (Pinto et al. 2009) and 1.2-fold upregulated in 366 

mosquitoes with low and high P. falciparum infections (Mendes et al. 2011). Similar to 367 

adenylate kinase expression (Figure 4A), we observed that thioredoxin-like and 368 

SCRBQ2 transcript expression was inversely related to protein abundance (Figure 4C). 369 

LRIM15 and Rab5C, both with strong contributions to our MCIA analyses (Figure 3B 370 

and 3C), displayed little variance in transcript levels among samples suggesting that 371 

both proteins may be post-transcriptionally regulated (Figure 4C). LRIM15 had been 372 

previously shown to have the greatest transcript expression in the hemolymph and was 373 

1.3-fold upregulated in P. berghei infected samples (Pinto et al. 2009). Our Immune-374 

specific MCIA analysis identified it as a top protein in the PFvBF comparison (Figure 375 

3C). LRIM15 transcript profiles across the four groups suggest post-transcriptional 376 

regulation (Figure 4C, middle panel) with a pronounced upregulation of protein 377 

abundance in the infected PF-mag-bead sample (Supplemental Table S2C).  VCP-like 378 

protein (AGAP007505) had one of the highest weights, i.e. greatest distance from the 379 



origin and projected in the same direction as the PFvBF comparison in the MCIA plot 380 

(Figure 3B). These data suggest that the proteomic data picked up this informative 381 

feature or that the microarray platform failed to detect the transcript. VCP-like transcripts 382 

have also been found to be upregulated 2-fold in high intensity P. berghei infections and 383 

was upregulated 1.8-fold coincident with midgut invasion between 18-24 hrs (Mendes et 384 

al. 2011). We observed that transcript and protein profiles matched closely for the 385 

unselected and SF mag-bead selected groups, yet protein levels dropped dramatically 386 

in the BF mag-bead samples before recovery in terms of concordance with transcript 387 

levels in the PF mag-bead samples (Figure 4C). Interestingly, LRIM16A transcript 388 

slightly increased across all sample treatments, while protein levels dropped in the SF 389 

and BF mag-bead samples before increasing after Plasmodium infection (Figure 4C). 390 

Among these comparisons in our study, we noted that the PF mag-bead group showed 391 

the greatest discordance (opposite trends) between transcript and protein expression.  392 

 393 

Cluster analyses revealed acute and conserved proteomic changes upon blood 394 

feeding and P. falciparum infection 395 

 Cluster analysis was performed on the proteomic data to better understand the 396 

association of proteins with our enriched granulocyte populations across the sample 397 

treatments. Undifferentiated data showing little change across unselected and selected 398 

granulocyte proteomes was removed from analysis, resulting in six protein clusters 399 

indicative of selection and feeding status (Figure 5). Clusters 1 to 3 comprise proteins 400 

with highest levels in naïve, sugar-fed hemocytes, while clusters 4 to 6 display 401 

responses to blood-feeding and infection (Figure 5). Proteins in cluster 1 group 402 

specifically to non-selected naïve hemocyte populations, distinct from the proteins of the 403 

granulocyte-specific populations in cluster 2. Clustering also revealed that blood-feeding 404 

produced specific responses in the absence of infection (Cluster 4), or independent of 405 

infection status (Cluster 5). Responses representative of phagocytosis of magnetic 406 

beads and Plasmodium infection are represented by Cluster 3 and 6 respectively 407 

(Figure 5).  408 

 Proteins in each cluster (Supplemental Table S4) were further classified based 409 

on predictive gene function for comparative analysis (Figure 5). Comparisons between 410 



non-selected and mag-bead purified hemocyte samples identified several distinct 411 

groups of proteins associated with other hemocyte sub-types, the uptake of magnetic 412 

beads (phagocytosis), blood-feeding, and Plasmodium infection (Figure 5). While it is 413 

difficult to interpret the non-selected cell population due to the presence of at least two 414 

hemocyte-subtypes (Cluster 1), clear differences are observed between Cluster 1 and 415 

Cluster 2 suggesting that these cell populations have distinct molecular profiles. 416 

Representing the remaining cell types found in the non-selected hemocyte population, 417 

Cluster 1 had the highest abundance of proteins involved in cell metabolism and energy 418 

transport (Figure 5), suggesting that granulocytes have a much different molecular 419 

profile than other hemocyte subtypes. With shared characteristics between the non-420 

selected and enriched granulocyte population, the data presented in Cluster 2 likely 421 

profile of naïve, sugar-fed granulocytes independent of phagocytic function. 422 

 423 

The components of Cluster 3 likely denote the cellular profile in response to the 424 

phagocytic uptake of the magnetic beads in naïve mosquitoes. Supporting these claims, 425 

we see the highest percentage of cytoskeletal components (Figure 5) that likely reflect 426 

changes related to an increase in cellular volume or structural rearrangements 427 

associated with phagosome maturation and lysosome fusion events that accompany 428 

pathogen destruction (Lemaitre and Hoffmann 2007). Additional proteins identified 429 

linked to immune activation and the phenoloxidase cascade also clustered with the 430 

phagocytic response, including two prophenoloxidase proteins (PPO2 and PPO4) 431 

identified within this cluster (Supplemental Table S4). This is in agreement with previous 432 

reports that suggest that melanin deposition is a critical step in phagocytosis (Hillyer et 433 

al. 2003a, 2003b). However, due to the brown color of the magnetic beads in cells 434 

undergoing phagocytosis (Figure 1), the deposition of melanin on the bead surface is 435 

not easily distinguished. 436 

In agreement with our enrichment analysis (Table 1), large numbers of immune 437 

components were regulated by blood-feeding alone (Clusters 4 and 5), independent of 438 

infection status (Figure 5, Supplemental Table S4). These immune proteins include 439 

many well-characterized proteins with integral roles in Plasmodium survival and 440 

clearance, including TEP1, LRIM1, and APL1, which are core components of a 441 



complement-like immune response (Fraiture et al. 2009; Povelones et al. 2009; Smith et 442 

al. 2014). We also identified an agonist of Plasmodium development, LRIM9 (Cluster 5), 443 

which is strongly induced by the ecdysteroid, 20-hydroxyecdysone (Upton et al. 2014). 444 

This evidence suggests that hormonal changes associated with blood-feeding may 445 

strongly influence mosquito immunity and other proteins in these clusters (Cluster 4 and 446 

5) in the absence of infection.  447 

Plasmodium infection also initiated dramatic changes to the hemocyte proteome 448 

(Cluster 6), yet cluster analysis revealed very few proteins associated with immune 449 

function. Instead, we identified marked increases in the translation machinery, most 450 

notably in 40S and 60S ribosomal protein subunits and translation initiation factors 451 

(Supplemental Table S4). Although unexpected, the large number of translation 452 

components implies that Plasmodium infection stimuli may broadly increase the 453 

translation of mRNA and the synthesis of proteins in granulocytes. These global 454 

increases in protein synthesis may be accompanied by changes in metabolic activity 455 

that promotes granulocyte activation.  456 

 457 

Discussion 458 

Much of our current knowledge of hemocyte biology stems from experiments 459 

performed in other insect species, leaving several important aspects of mosquito 460 

hemocyte biology unexplored. Unlike commonly studied Drosophila or lepidopteran 461 

insects, mosquitoes require the need for a blood meal to complete their life cycle. 462 

Through this requirement, mosquitoes are inherently poised to encounter pathogens 463 

that influence their physiology. As a result, this makes mosquito hemocyte biology 464 

unique, serving as a model for other blood-feeding insects and for comparative biology 465 

of innate immune function and the evolution of immune cells. For these reasons, we 466 

conducted a comprehensive proteogenomic analysis of a subpopulation of mosquito 467 

hemocytes before and after a blood meal in the presence or absence of Plasmodium 468 

infection. Without the use of genetic tools or cellular markers to distinguish hemocyte 469 

sub-populations and the effects of their individual contributions, we employed a “low-470 

tech” strategy to enrich for phagocytic granulocyte cell populations. The efficacy of 471 



magnetic beads to purify the phagocytic populations of hemocytes was supported by 472 

microscopic data, enabling the characterization of highly-purified granulocyte sample 473 

populations by proteomic analysis. As a result, our approach removes possible 474 

contaminants associated with perfusion, as well as simplifying the interpretation of our 475 

results to a single hemocyte sub-type after enrichment and to determine the effects of 476 

infection status. Our quantitative analysis of transcript and commensurate protein 477 

profiles provide a strong foundation for the advanced study of mosquito hemocyte 478 

biology, and shed insight into their important role in cellular and humoral immunity. In 479 

addition, we observed several instances where changes in transcript abundance did not 480 

accurately reflect the protein expression profiles revealed in our study. This highlights 481 

the importance of differences between transcript and protein profiles, especially when 482 

previous descriptions of mosquito hemocyte gene function have been solely focused on 483 

transcript abundance.   484 

In addition to their role in pathogen clearance by phagocytosis (Hillyer et al. 485 

2003a, 2003b; King and Hillyer 2012), mosquito hemocytes are presumed to have a 486 

major role in the secretion of proteins into the hemolymph (Blandin et al. 2004; Frolet et 487 

al. 2006; Fraiture et al. 2009; Povelones et al. 2009). An initial characterization of 488 

mosquito hemolymph components identified 26 proteins (Paskewitz and Shi 2005), of 489 

which approximately two-thirds (17/26) were identified in our proteomic data. In addition, 490 

several well-described humoral immune components such as TEP1, leucine-rich repeat 491 

immune protein 1 (LRIM1), and Anopheles Plasmodium- responsive leucine-rich repeat 492 

1, APL1 (Fraiture et al. 2009; Povelones et al. 2009) were also identified in our 493 

proteomic analysis, providing confirmation that the origins of several key modulators of 494 

the immune response are produced at least in part by mosquito granulocytes. Our data 495 

also posit that many modulators of the immune response or immune-related genes 496 

measured in studies focused on midgut immunity may actually be derived from 497 

hemocytes, or in this case, granulocytes attached to the midgut basal lamina. Thought 498 

to be loosely bound to the midgut basal lamina, hemocyte attachment has been 499 

previously suggested to account for midgut TEP1 expression (Blandin et al. 2004, 500 

Vlachou et al. 2005) and likely accounts for the detection of several more hemocyte 501 



genes of interest. Thus, our data should be helpful in delineating whether mosquito 502 

innate immune responses are granulocyte or midgut-derived. 503 

Blood-feeding has a pleiotropic impact on mosquito physiology, requiring a 504 

concerted effort to convert the blood meal into a nutrient source for egg production 505 

(Kokoza et al. 2001). These physiological changes also undoubtedly influence mosquito 506 

hemocyte populations, as blood-feeding stimulates cell proliferation and an increase in 507 

hemocyte numbers (Baton et al. 2009; Castillo et al. 2011; Bryant and Michel 2014), 508 

while Plasmodium infection promotes hemocyte differentiation (Rodrigues et al. 2009, 509 

Ramirez et al. 2014). To support these observations, we noted increases in the Ras 510 

family of small GTPases in response to blood-feeding and infection, not seen in naïve 511 

phagocytes. Although speculative, we believe that these Ras-like signaling components 512 

contribute to the respective hemocyte proliferation and differentiation responses 513 

described for blood-feeding and infection. Members of the Ras superfamily regulate cell 514 

growth and proliferation in all metazoans, and over-expression of Ras85D promotes 515 

over-proliferation resulting in dramatic increases of hemocyte cell numbers in 516 

Drosophila (Asha et al. 2003, Zetervall et al. 2004). Furthermore, Bryant et al. (2014) 517 

imply that Ras-MAPK signaling may contribute to blood-meal induced hemocyte 518 

activation, similar to the signaling pathways that define macrophage (Cook et al. 2004) 519 

and Drosophila hemocyte activation (Zetervall et al. 2004, Sinenko et al. 2012). Taken 520 

together, our proteomic analysis suggests the involvement of Ras-family GTPases as 521 

mediators that lead to hemocyte proliferation, activation, and differentiation.  522 

We used MCIA analysis to integrate our proteomic data with previously published 523 

hemocyte transcriptome data (Pinto et al. 2009), to determine the levels of concordance 524 

between transcript and proteins abundance in our granulocyte proteomes. Comparisons 525 

across datasets and feeding status revealed a high level of agreement between 526 

transcript and protein levels, yet infer some level of post-transcriptional regulation in 527 

hemocytes, most pronounced following Plasmodium infection. Of interest, we observed 528 

that components of the mosquito innate immune system displayed the highest levels of 529 

post-transcriptional regulation in this initial analysis. Together, these results suggest that 530 

granulocytes may store select transcripts to facilitate quick responses to stimuli such as 531 

pathogen infection. As a result, future studies to explore granulocyte-specific post-532 



transcriptional regulation are now possible, due in part to the identification and 533 

corroboration of predicted, cell population-specific proteins, which can be used to profile 534 

mosquito immune cell populations at homeostasis, blood feeding, and following 535 

pathogen challenge. 536 

Our analyses also provide new perspectives into the regulation of the mosquito 537 

innate immune response. To our surprise, large numbers of immune components were 538 

regulated by blood-feeding alone, independent of Plasmodium infection. It has recently 539 

been proposed that such a response to an uninfected blood meal comprises a 540 

preemptive or anticipatory response, to combat infection of blood-borne pathogens 541 

(Upton et al. 2014). This is in agreement with previous work demonstrating that 542 

prophenoloxidase expression is influenced by 20-hydroxyecdysone in mosquito cell 543 

lines (Müller et al. 1999), suggesting that hormonal changes associated with blood-544 

feeding may strongly influence mosquito immunity in the absence of infection. These 545 

results challenge existing paradigms that suggest that Plasmodium infection triggers the 546 

mosquito immune response that partly resulted in an underestimation of the 547 

contributions of hemocytes to mosquito immunity.  548 

In summary, we provide the first proteogenomic analysis of mosquito 549 

granulocytes and demonstrate specific changes in protein abundance that corresponds 550 

with granulocyte enrichment, blood-feeding, and Plasmodium infection. Moreover, using 551 

MCIA analysis and qRT-PCR analysis, we illustrate that protein levels may not 552 

necessarily be in concordance with transcript expression. Our analyses also provide 553 

significant insight into the mosquito immune system, providing strong evidence that 554 

hemocytes are integral components of an anticipatory immune response as a result of 555 

blood-feeding. These data implicate hemocytes as the primary producers of hemolymph 556 

components, and granulocyte-derived proteins account for the majority of what is 557 

secreted into the hemolymph under the various conditions. The data also highlights new 558 

perspectives for the role of granulocytes following immune challenge and taken 559 

together, provide the foundation for future avenues of study in mosquito hemocyte 560 

biology. 561 

 562 



Materials and Methods 563 

Mosquito Rearing  564 

The Keele strain of Anopheles gambiae (Hurd et al. 2005) were maintained at 27 °C 565 

and 80% relative humidity with a 14/10 h light/dark cycle. Larvae were reared in distilled 566 

water on a diet of fish food and cat food pellets, while adults were maintained on a 10% 567 

sucrose solution and housed in 8” x 8” steel cages.  568 

 569 

Blood Feeding and Plasmodium Infection 570 

Approximate five to seven day-old An. gambiae mosquitoes were starved overnight 571 

prior to blood feeding. For P. falciparum infections, NF54 isolates of P. falciparum 572 

gametocyte cultures were obtained from the Johns Hopkins Malaria Research Institute 573 

Parasite Core facility and the gametocytemia was determined by microscopy analysis of 574 

Giemsa stained thin blood smears. Before feeding, gametocyte samples were diluted to 575 

0.3% gametocytemia with human RBCs. For all blood feedings (non-infected and P. 576 

falciparum-infected), serum was exchanged in all blood samples with heat inactivated 577 

human serum to a 45% hematocrit. Using artificial membrane feeders maintained by a 578 

circulating water bath, mosquitoes were fed on either non-infected human blood or P. 579 

falciparum-infected blood and maintained at 25 °C and 80% relative humidity under 580 

standard insectary conditions until hemocyte collection approximately 48 h after feeding.  581 

 582 

Magnetic Bead Injection and Hemocyte Collection 583 

To collect phagocytes, mosquitoes were cold anaesthetized and individual mosquitoes 584 

were injected with 0.2 µL (2mg/ml) of a suspension of 1-2 µm diameter MagnaBind 585 

Carboxyl Derivatized Beads (Thermo Scientific). Following injection, mosquitoes were 586 

returned to insectary conditions for 2 hours. Hemocytes from both non-injected and 587 

magnetic bead-injected mosquitoes were collected using a perfusion method similar to 588 

those previously described (King and Hillyer 2012; Rodrigues et al. 2010). Briefly, a 589 

small perforation was made in the abdomen of a cold anaesthetized mosquito and 590 

approximately 5 µL of anticoagulant buffer (70% Schneider's Insect medium, and 30% 591 

citrate buffer [98 mM NaOH, 186 mM NaCl, 1.7 mM EDTA, 41 mM citric acid; pH 4.5]) 592 

containing a protease inhibitor cocktail (Sigma; P8340) was injected into the thorax, 593 



causing perfusion of the circulating hemolymph through the abdominal perforation. 594 

Perfusate was collected in a siliconized tube and kept on ice for the remainder of the 595 

collection process. Samples from mosquitoes not injected with mag-bead were then 596 

centrifuged at 2,000 rcf for five minutes to pellet the cells. Perfusate from mag-bead 597 

injected mosquitoes was placed on a collection device made from a 1/4 x 1/2 inch 598 

cylindrical Neodymium alloy magnet with a pull force of approximately 8.64 pounds for 599 

10 minutes at 4°C.  To wash the cell pellets, samples were resuspended in fresh 1xPBS 600 

with protease inhibitor cocktail on ice and repeated twice prior to the collection of the 601 

final cell fractions.  602 

 603 

Microscopy 604 

To verify that specific hemocyte populations were responsible for magnetic bead 605 

uptake, hemocytes were examined by bright-field, phase-contrast, or fluorescence 606 

microscopy as previously described (King and Hillyer 2012, 2013). Hemocytes and fat 607 

body cells were visualized with tubulin or CM-DiI as previously described (King and 608 

Hillyer 2012, King and Hillyer 2013), or using a Drosophila Notch intracellular domain 609 

antibody (Developmental Studies Hybridoma Bank, C17.9C6) at a 5 µg/ml dilution.  610 

 611 

Protein extraction  612 

To extract total protein, the pellet was dissolved in 30 µL SDT-lysis buffer composed of 613 

4% (w/v) SDS, 100 mM Tris/HCl, 0.1 M DTT, pH 7.6, and then boiled at 95 °C for 5 min.  614 

 615 

Multi-Lane Combined In-gel Digestion (MLCID) 616 

For PAGE, each lane was loaded with 30 µL of sample. After resolving on a 4-20% 617 

precast gradient gel (BioRad, Hercules, CA), the proteins were stained with Coomassie 618 

(Gel-Code Blue). Clean and sterile razors were then used to separate individual sample 619 

lanes and cut them into 8 identical slices. These slices were further cut into 1×1 mm 620 

pieces prior to de-staining, reduction and alkylation, tryptic digestion and peptide 621 

extraction (Tao et al. 2014). The extracted peptides were lyophilized by speed-vac and 622 

re-suspended in 2% acetonitrile, 97.9% water and 0.1% formic acid buffer for LC-623 

MS/MS analysis. 624 



 625 

LC-MS/MS  626 

Following in-gel digestion, tryptic peptides from each biological replicate were 627 

individually analyzed. Half of each sample was injected onto an Agilent LC-MS system 628 

consisting of a 1200 LC system coupled to a 6520 Q-TOF via an HPLC Chip Cube 629 

interface. The samples were trapped and analyzed using an Agilent Polaris-HR-Chip-630 

3C18 chip (360 nL, 180 Å C18 trap with a 75 µm i.d., 150 mm length, 180 Å C18 631 

analytical column).  Peptides were loaded onto the enrichment column by autosampler 632 

using 97% solvent A (0.1% formic acid in water) and 3% solvent B (0.1% formic acid in 633 

90% acetonitrile) at a flow rate of 2 μL/min. Elution of peptides from the analytical 634 

column was performed using a gradient starting at 97% A at 300 nL/min.  The mobile 635 

phase was 3-10% B for 4 min, 10-35% B for 56 min, 35-99% for 2 min, and maintained 636 

at 99% B for 6 min, followed by re-equilibration of the column with 3% B for 10 min. 637 

Data dependent (autoMS2) mode was used for MS acquisition by Agilent 6520 Q-TOF 638 

at 2 GHz.  Precursor MS spectra were acquired from m/z 315 to 1700 and the top 4 639 

peaks were selected for MS/MS analysis.  Product scans were acquired from m/z 50 to 640 

1700 at a scan rate of 1.5/second.  A medium isolation width (∼4 amu) was used, and a 641 

collision energy of slope 3.9 V/100 Da with a 2.9 V offset was applied for fragmentation. 642 

A dynamic exclusion list was applied, with precursors excluded of 0.50 min after two 643 

MS/MS spectrum was acquired. 644 

 645 

Mass spectrometry data search and analysis 646 

All the LC-MS/MS raw data were converted to Mascot generic Format (.mgf) by Agilent 647 

MassHunter Qualitative Analysis B.04.00. Mascot version 2.4.1, OMSSA version 2.1.9 648 

and X!Tandem version CYCLONE 2010.12.01.1 were used to search the Anopheles 649 

gambiae 3.7 (14,667 sequences)  protein FASTA sequence database for peptide 650 

sequence assignments using the following parameters: precursor ion mass tolerance of 651 

50 ppm and a fragment ion mass tolerance of 0.2 daltons. Peptides were searched 652 

using fully tryptic cleavage constraints and up to two internal cleavages sites were 653 

allowed for tryptic digestion. Fixed modifications consisted of carbamidomethylation of 654 

cysteine. Variable modifications considered were oxidation of methionine residues. All 655 



the searched results were exported and then imported into the Scaffold software 656 

(Version 4.3.4, Proteome Software) for curation, label-free quantification analysis, and 657 

visualization. Scaffold’s normalized spectral counting was employed to compare relative 658 

protein abundance between non-selected hemocytes (sugar-fed) and magnetic-bead 659 

enriched granulocytes (sugar-fed, blood-fed, and Plasmodium-infected) cell samples in 660 

each experiment as the basis for normalization of the spectral counts for all other LC-661 

MS/MS data in that experiment. Scaffold calculates the spectrum count quantitative 662 

value by normalizing spectral counts across an experiment. The process of calculating 663 

normalized spectral counts is as follows: (a) Scaffold takes the sum of all the Total 664 

Spectrum Counts for each MS sample; (b)The sums are then scaled to the same level; 665 

and (c) Scaffold then applies the scaling factor for each sample to each protein group to 666 

produce an output with a normalized quantitative value. Overall, protein false discovery 667 

rates of less than 1% and peptide false discovery rates of less than 0.1% were obtained 668 

with Scaffold filters, and each protein has ≥ 2 unique peptides.  669 

 670 

Data access 671 

Our data meets all the standards regarding the Minimum Information About a 672 

Proteomics Experiment (MIAPE), and data have been deposited to the 673 

ProteomeXchange Consortium http://www.proteomexchange.org) via the PRIDE partner 674 

repository (Vizcaíno et al. 2014) with the dataset identifier PXD001507. 675 

 676 

Gene-expression analyses 677 

Approximately 50 naïve, sugar-fed mosquitoes were perfused with anti-coagulant buffer 678 

directly into TRIzol reagent (Invitrogen-Life Technologies) to obtain unselected 679 

hemocyte samples for RNA isolation. For mag-bead enriched samples, mosquitoes 680 

were first injected with magnetic beads and allowed to recover under insectary 681 

conditions as described above. After perfusion, magnetic enrichment, and washing, 682 

TRIzol reagent was added for RNA isolation. Total RNA was obtained using the Direct-683 

zol RNA Mini kit (Zymo Research) according to the manufacturer’s protocol. cDNA was 684 

prepared using the RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific) 685 

according to the manufacturer’s protocol and used for quantitative real-time PCR as 686 



previously described (Smith et al. 2012). Hemocyte gene expression was determined 687 

using gene-specific primers and normalized to levels of ribosomal protein S7 (rpS7). All 688 

qRT-PCR primers are listed in Table S5. 689 

 690 

Multiple Co-Inertia Analysis (MCIA) 691 

MCIA (Meng et al. 2014) is an integrative analysis method that can be applied to 692 

multiple (omics) data sets simultaneously. The data sets are matrices in which the 693 

number of features, typically stored in the rows, is much larger than the number of 694 

samples, typically stored in the columns. MCIA can be applied to multiple data sets that 695 

have matched features or matched samples. In our case, MCIA was applied to 696 

transcriptome and proteome data sets with the most optimally matched samples 697 

acquired from independent studies. In this analysis, the features refer to genes and 698 

proteins and a sample is computed as the log fold change between two treatments in a 699 

comparison between SF, BF and PF. This log fold change is computed for both genes 700 

and proteins.in both data sets. 701 

 702 

MCIA finds maximally co-variant axes which allow the simultaneous projection of all 703 

features and samples in the same hyperspace. MCIA is a dimension reduction 704 

technique that maximizes the covariance between the data sets and the reference 705 

space. The MCIA axis selection starts with a one table ordination method such as 706 

principal component analysis, correspondence analysis or, as in this case, non-707 

symmetrical correspondence analysis. Afterwards, the MCIA axes that maximize the 708 

squared covariance between scores of each data set on the synthetic axes are 709 

computed. The samples that share similar trends will group together in the MCIA space. 710 

Additionally, features can be projected into the MCIA space. Features highly expressed 711 

in a sample will be projected in the direction of that sample. The strength of association 712 

of a feature to a sample is directly proportional to the distance of the feature from the 713 

origin of the plot. The overall correlation between the two data sets is measured with the 714 

RV-coefficient which is a generalization of the squared Pearson correlation coefficient 715 

(Robert et al. 1976). The RV-coefficient ranges between zero and one. A RV-coefficient 716 



of zero means there is no co-structure between the two data sets. The higher the co-717 

structure between the data sets is, the higher the RV-coefficient.  718 

Although there are two published anopheline hemocyte transcriptome datasets that are 719 

available (Baton et al., 2009 and Pinto et al. 2009); unfortunately, the two studies used 720 

different microarray platforms. Merging the two dataset would artificially reduce the 721 

transcriptome data that can be used for MCIA to only the subset of transcripts that was 722 

measured in both analyses. This would limit the utility and primary advantage of a MCIA 723 

approach, i.e., avoid the need to subset the data sets for the analysis. As such, we 724 

decided to focus on the Pinto et al. (2009) data set, which provided all the necessary 725 

matching transcript data for the MCIA comparison to the granulocyte proteome. 726 

 727 

Cluster and functional analyses of protein datasets  728 

Averaged normalized spectral counts from each group were imported into Cluster 3.0 729 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) for analysis. An arbitrary 730 

cutoff of at least one sample mean of greater than 2.0 normalized spectra was used to 731 

filter the data. This led to the inclusion of 878 of 1140 total proteins, eliminating 732 

undifferentiated data from downstream analyses. Data were centered by median and 733 

normalized on a gene-wise basis. Hierarchical clustering was performed on both genes 734 

and dataset using standard centered correlation analyses and average-linkage 735 

clustering.  Following the identification of major clusters, gene IDs within each cluster 736 

were classified based on gene ontology to identify the functional categories of proteins 737 

for comparisons between clusters as previously described (Mendes et al. 2011).  738 

 739 
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Table 1. Protein enrichment in mag-bead-enriched hemocytes. 

Protein Identity Annotation Mr 
SF vs 

NS 
BF vs 

SF 
PF vs 

BF 
Fold 

Enrichment 
Innate immunity and melanization 

     
AGAP003691-PA serine protease, snake-like 94 ● 

  
16.7 

AGAP005625-PA SCRASP1 147 
 

● 
 

53.2 
AGAP005335-PA CTL4 20 

 
● 

 
42.1 

AGAP007347-PA C-Type Lysozyme, LYSC1 15 
 ●  

41.5 
AGAP010730-PA Prophenoloxidase activating factor 28 

 
● 

 
34.4 

AGAP011294-PA defensin anti-microbial peptide, DEF1 11 
 ●  

18.4 
AGAP006327-PA LRIM6 40 

 
● 

 
18.2 

AGAP003251-PA CLIPB1 41 
 ●  

12.7 
AGAP009033-PA heme peroxidase HPX2 74 

 
● 

 
8.1 

AGAP006910-PA SRPN3 47 
 ●  

6.7 
AGAP011780-PA CLIPA4 46 

 
● 

 
4.9 

AGAP010815-PA TEP1 152 
 ●  

4.5 
AGAP000573-PA Clip-Domain Serine Protease 41 

 
● 

 
3.9 

AGAP004855-PA CLIPB13 45 
 ●  

3.7 
AGAP028028-PA LRIM16A 81 

  
● 4.2 

AGAP010133-PA SCRBQ2 56 
  ● 3.9 

Transcription and translation 
     

AGAP009737-PA Elongation factor G 83 ●   
15.7 

AGAP004725-PA Eukaryotic translation initiation factor 3 subunit C 112 
 

● 
 

23.3 
AGAP005991-PA 60S ribosomal protein L14 22 

  
● 3.0 

AGAP003538-PA 60S ribosomal protein L36a 13 
  

● 2.6 
Protease function 

     
AGAP004534-PA Cathepsin B precursor 37 

 
● 

 
51.2 

AGAP004394-PA dipeptidyl-peptidase III 81 
 

● 
 

20.9 
Ubiquitination 

      
AGAP009970-PA Cullin-associated NEDD8-dissociated protein 1 139 

 
● 

 
18.2 

AGAP002061-PA 26S proteasome regulatory subunit N7 45 
 ●  

7.8 
Protein folding and transport 

     
AGAP012014-PA ADP-ribosylation factor 21 

 ●  
36.8 

AGAP010251-PA coatomer protein complex, subunit alpha, xenin 140 
  

● 50.4 
AGAP009255-PA Sorting nexin-2 51 

  ● 8.6 
AGAP005856-PA nodal modulator 2 131 

  
● 5.6 

Metabolic enzymes 
     

AGAP009317-PB Adenylate kinase 27 ● 
  

377.1 
AGAP009278-PA phosphorylase kinase alpha/beta subunit 122 

 
● 

 
29.2 

AGAP009173-PC fructose-1,6-bisphosphatase I 38 
 

● 
 

10.3 
AGAP004802-PA 4-hydroxyphenylpyruvate dioxygenase 44 

 
● 

 
9.3 

AGAP010174-PA oligosaccharyltransferase complex subunit alpha 52 
  

● 19.4 
Cell signaling 

      
AGAP009105-PA Serine/threonine-protein phosphatase 2A 66 

 ●  
26.2 

AGAP004038-PA Fsh-Tsh-like, G-protein coupled receptor 86 
 

● 
 

20.5 
AGAP011765-PA Spondin-1 87 

 ●  
13.3 

AGAP001600-PA Ser/Thr protein phosphatase/nucleotidase 63 
 

● 
 

13.0 



760 

AGAP007699-PA GTP-binding nuclear protein Ran 24 
 

● 
 

12.9 
AGAP004212-PA Calreticulin 46 

 
● 

 
2.3 

AGAP007901-PA Ras-related protein Rab-5C 24 
  

● 3.7 
Miscellaneous function 

     
AGAP001053-PD Wings up A, troponin 25 ● 

  
57.2 

AGAP004161-PA myofilin variant C 11 ● 
  

7.3 
AGAP002464-PA secreted ferritin G subunit 26 ● 

  
4.3 

AGAP010658-PA hexamerin-like 26 
 

● 
 

28.3 
AGAP005467-PA vigilin 145 

 
● 

 
16.8 

AGAP000545-PA von Willebrand factor A - domain containing 157 
 

● 
 

14.2 
AGAP001127-PA leucine-rich repeat protein, P37NB 53 

 
● 

 
11.8 

AGAP001919-PA protein disulfide-isomerase A6 49.0 
  

● 3.9 
AGAP011244-PA rRNA 2'-O-methyltransferase fibrillarin 33.0 

  
● 2.9 

AGAP011334-PA Failed axon connections protein 47.0 
  

● 2.8 
AGAP001827-PA hypoxia up-regulated 1 108 

  
● 2.0 

Unknown function 
     

AGAP001718-PA 
 

22 
 ●  

65.1 
AGAP009859-PA 

 
15 

 
● 

 
36.4 

AGAP000604-PA 
 

12 
 ●  

21.1 
AGAP005962-PA 

 
91 

 
● 

 
18.0 

AGAP008439-PA 
 

58 
 ●  

10.5 
AGAP007665-PA 

 
35 

 
● 

 
5.4 



Figure legends 761 

Figure 1. Purification of granulocytes using magnetic microbeads. (A) Graphical 762 

overview of granulocyte separation by phagocytosis of magnetic beads. Other 763 

hemocyte cell types and common contaminants in hemocoel perfusate are not involved 764 

in phagocytosis, enabling purification of a highly-enriched granulocyte population. (B) 765 

Light, Phase-contrast and Fluorescent microscopy were used to verify the uptake of 766 

magnetic beads by granulocytes, but not fat body, the main contaminant present in such 767 

samples. Cell stains and conserved Drosophila antibodies were used to further 768 

morphologically differentiate the two cell types.  769 

 770 

Figure 2. Proteomic analyses of phagocytic hemocyte populations. Venn diagram 771 

comparisons of protein identities from three biological replicates of each mosquito 772 

hemocyte proteomes following selection of phagocytic cell populations (A) or according 773 

to feeding status (naïve sugar-fed, blood-feeding, or Plasmodium infection) (B) are 774 

shown. Volcano plots of label-free quantitative analyses of protein abundance by 775 

average normalized spectral counts from three biological replicates (C-E). The three 776 

graphs depict total proteins from each sample versus the appropriate reference sample 777 

according to feeding status. Levels of predicted transmembrane proteins (F), secreted 778 

proteins (G), and a combination of immune gene families (SRPNs, CLIPs, TEPs and 779 

LRIMs; F) were measured across each of the respective treatments (phagocytosis, 780 

blood-feeding, and infection). All values are depicted as the Log2 average of normalized 781 

spectra, while significance (P value) is measured as the –Log10. Dotted lines depict 782 

significance with a P value cutoff of 0.05.  783 

 784 

Figure 3.  Multiple Co-Inertia Analyses (MCIA) of comparisons of hemocyte 785 

transcriptome and proteomes. Using MCIA analysis, samples corresponding to our 786 

granulocyte proteomes and previously reported hemocyte transcriptomes (Pinto et al. 787 

2009) are displayed as the global analysis of all hemocyte proteome data (A), immune-788 

(B) or proliferation specific (C) subsets. Transcriptome (green circle) or proteome (red 789 

triangle) profiles are displayed for each sample comparison (P. falciparum-infection 790 

(PF), blood-feeding (BF), and sugar-feeding (SF)).The samples in this analysis were 791 



computed as log fold changes between two treatments: P. falciparum infection 792 

referenced to blood-feeding (PFvBF), P. falciparum infection referenced to sugar-793 

feeding (PFvSF) and blood-feeding referenced to sugar-feeding (BFvSF). Additionally, 794 

the most highly expressed features (genes and proteins with the greatest distance from 795 

the origin) are projected in the MCIA result plots. Due to differences between the 796 

coordinates of the comparisons and of the most expressed features plots, different axes 797 

were generated. (A) Hemocyte-specific MCIA. MCIA is performed between hemocyte 798 

transcriptomes and granulocyte proteomes. RV-coefficient = 0.97. (B) Immune-specific 799 

MCIA. The hemocyte transcriptome is compared to the immune-specific granulocyte 800 

proteome (Supplemental Table S1D). RV-coefficient = 0.96. (C) Proliferation specific 801 

MCIA. The hemocyte transcriptome is compared to the proliferation-specific proteome 802 

(Supplemental Table S1E). RV-coefficient = 0.99.   803 

 804 

Figure 4. qRT-PCR validation of enriched proteins. Protein candidates with 805 

significantly increased spectral counts relative to their reference sample treatment 806 

(Table 1) were evaluated by qRT-PCR to measure correlations between transcript 807 

levels and protein abundance (A-C). Candidate genes with significant enrichment in 808 

phagocytic cells (A), following blood-feeding (B), or after P. falciparum infection (C) are 809 

displayed with the fold change in RNA (grey) or protein (colored) across each sample 810 

treatment. Each data point is the mean (+/- SEM) of three independent biological 811 

replicates. Genes examined are shown above each graph. 812 

 813 

Figure 5. Clustering analyses reveals expression patterns indicative of feeding 814 

status and infection. Proteomic data from each sample treatment was clustered into 815 

six distinct co-expression clusters based on protein abundance (left). The analysis 816 

clearly defined feeding status (sugar- or blood-fed) into two distinct clades. Proteins 817 

within each cluster reveal distinct distributions of different molecular function groups 818 

(right).  819 



Supplemental Figure legends 820 

Figure S1. Correlation of biological replicates between hemocyte samples. Venn 821 

diagrams of protein identities from independent biological replicates of mag-bead 822 

enriched hemocytes from sugar-fed, blood-fed, or Plasmodium infected mosquitoes. 823 

Pearson-correlation identified strong reproducibility between experiments. 824 

 825 

Figure S2. Ras family protein expression in hemocyte populations. Average 826 

normalized spectral counts of Ras superfamily GTPases across each of the respective 827 

treatments (phagocytosis, blood-feeding, and infection). All values are depicted as the 828 

Log2 average of normalized spectra, while significance (P value) is measured as the –829 

Log10. Dotted lines depict significance with a P value cutoff of 0.05. 830 
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Abstract 

State-of-the-art next-generation sequencing, transcriptomics, proteomics, and other high-

throughput "omics" technologies enable the efficient generation of very large experimental 

datasets. These data yield unprecedented views of molecular building blocks and the machinery of 

cells. Exploratory data analysis; such as clustering or dimension reduction, are an essential step in 

multivariate data analysis. There have been many recent developments in dimension reduction 

techniques; extensions of principal component analysis, that enable the simultaneous exploratory 

data analysis and integration of multiple high dimensional datasets. Such integrated data analysis 

provides an insight into the correlated structure across datasets, and may discover issues such as 

batch effects or outliers, and in addition to revealing known and potentially new biological 

knowledge. In this review, we explore dimension reduction techniques as one of the emerging 

approaches for data integration including meta-dimensional analyses, and how these can be applied 

to increase our understanding of the organization and dynamics of biological systems, in normal 

physiological function and disease.  

Keywords 

Multivariate analysis, Multi-omics data integration, Dimension reduction, integrative genomics, 
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Introduction 

Genome scale molecular techniques including next generation sequencing and mass spectrometry, 

measure tens of thousands of mRNAs or proteins respectively, and are frequently applied to 

hundreds of biological samples. Exploratory data analysis (EDA) enables one to identify the major 

patterns in the data, including potential issues such as batch effects [1] and outliers and is one of 

the first steps in analysis of high-throughput molecular data [2]. Whilst EDA using hierarchical cluster 

analysis was widely applied to transcriptomics data [2], it has several limitations when studies have 

many samples with complex or diverse phenotypes. First it forces a hierarchical data structure on 

data. Second it assumes variables behave similarly over all samples and each object (variable or 

sample) is assigned to only one cluster. Cluster analysis, using cluster-of-cluster assignments applied 

to Cancer Genome Atlas Pan-cancer data of 3,527 specimens from 12 cancer type sources [3]  was 

dominated by anatomical origin and failed to identify clusters of known biological pathways that are 

regulated in many cancers. While cluster analysis generally investigates pairwise distances or 

similarities between objects looking for fine relationships, dimension reduction or latent variable 

methods considers the global variance of the dataset and will thus highlight general gradients or 

patterns in the date [4]. Multi-table dimension reduction approaches provide a powerful and flexible 

approach for exploratory analysis of the correlated structure between multiple molecular data 

types. In this article, we will review multivariate extensions of principal component analysis (PCA) 

as they can be applied to the integration of multiple high dimensional datasets and EDA of the main 

characteristics, inter and intra-dataset correlations.  

Introduction to Dimension Reduction Analysis 

Dimension reduction techniques reduce data dimensionality. For example, given a dataset, X, one 

can represent each gene as a numerical vector, with n elements, where n is the number of samples. 

These vectors could be plotted as points in sample dimensional space (ℝ n), if the number of 

dimensions is small (typically <3). The goal of dimension reduction techniques is to identify new 

vectors in this space that capture most of the variance or information in the dataset. These new 



vectors are plotted to provide a graphical representation of the variance of a dataset. Figure 1A 

shows an example of the above mentioned genes as vectors in sample space. Vice versa, the 

columns or samples of the matrix can be represented in gene space (ℝ p). EDA using PCA plots 

provides a visual plot of the underlying structure of a dataset and allows visual judgment of the 

number of clusters.  

Dimension reduction methods arose in the early part of the 20th century [5,6] and have continued 

to evolve, often independently in multiple fields, giving rise to myriad of associated terminology 

which may be confusing to beginners. PCA can be computed using different methods including 

eigen-analysis, latent variable analysis, factor analysis, singular value decomposition (SVD) [7] or 

linear regression [4]. These generate a set of vectors called principal components (PC), but 

depending on the scientific field and method used to compute PCA, the vectors could also be called 

principal axes, eigenvectors, latent variables or latent factors. The most widely used approach is 

SVD.  SVD decomposes a matrix with n columns and p rows to three new matrices (Figure 1B); a 

matrix of n×q (PCs of samples), p×q (PCs of variables) and q×q diagonal matrix of singular values 

(square root of eigenvalues). The number of PCs is q, where the maximum q is either n or p 

whichever is lower. Each PC is uncorrelated (orthogonal), and has an associated eigenvalue, which 

indicates the amount of variance captured by each PC.  The PCs from most dimension reduction 

approaches are ranked such that their associated eigenvalues are monotonically decreasing. Most 

analyses will plot and examine only the first few PCs since these explain the most variant trends in 

the dataset. In an experiment with little complexity, (e.g. replicates of the same cell line treated with 

one condition) the first component might explain most of the variance in the variables and the 

remaining axes may simply be attributed to noise from technical or biological sources.  However a 

complex dataset (a set of heterogonous tumors) may require multiple principal components to 

capture most of the variance.  When two PCs are visualized on a plot, variables and samples with 

higher variance will have higher weights or loadings on that component, so they will be further 

plotted from the origin.  Objects projected in the same direction from the origin are associated.  

There are many dimension reduction approaches related to PCA (Table 1) such as, correspondence 

analysis (COA, CA), non-symmetrical correspondence analysis (NSC), multidimensional scaling 



(MDS) and principal co-ordinate analysis(PCoA). These may be computed by SVD, but differ in how 

the data is transformed prior to SVD [7–9]. Classical MDS is a SVD of a distance matrix similar to 

PCoA. Although designed for contingency tables of non-negative count data, CA and NSC, 

decompose a chi-squared matrix [10,11], but have been successfully applied to continuous data 

including gene expression and protein profiles [12,13]. As described by Fellenberg et al. gene and 

protein expression can be seen as an approximation of the number of corresponding molecules 

present in the cell during a certain measured condition [13]. Additionally, Greenacre [9] emphasized 

that the descriptive nature of CA and NSCA allows their application on data tables in general, not 

only count data. These two arguments support the suitability of CA and NSCA as analysis methods 

for ‘omics data. While CA investigates symmetric associations between two variables, NSCA 

captures asymmetric relations between variables. 

Non negative matrix factorization (NMF) is an approach adopted from signal processing where it 

was used to solve the blind source deconvolution problem and has been widely applied in clustering 

analysis, face recognition and text mining [14]. Similar to PCA and other decomposition approaches, 

NMF seeks to explain the principal sources of variance in the data using a small number of vectors, 

however unlike PCA, it forces positive or non-negative constraint on the resulting data matrices and 

secondly (similar to Independent Component Analysis [15]) does not require orthogonality or 

independence in the components. This allows NMF to identify overlapping patterns in components. 

NMF is available in the R package NMF [16].  NMF is also called self modeling curve resolution or 

positive matrix factorization. 

Since each method performs a different data transformation before decomposition, each is 

optimized for specific data properties. PCA is popular but is designed for analysis of multi-normal 

distributed data. If data is strongly skewed or extreme outliers presented, the first few axes will only 

separate a few objects with extreme values instead of displaying main axes of variation.  If data is 

unimodal or non-linear trends, one may see distortion or artifact in plots, in which the second axis 

is an arched function of the first axis. This is called horseshoe effect in PCA and is well described 

with illustration [4].  Both non-metric MDS and CA perform better than PCA in these cases [8,17]. 

Unlike PCA, CA can be applied to sparse count data with many zeros.  Independent Component 



Analysis (ICA) is a generalization of PCA that does not constrain the axes to be orthogonal and is 

available in the R package FastICA [18]. Spectral map analysis is related to CA, and performed 

comparable to CA , each outperforming PCA in identification of clusters of leukemia gene expression 

profiles [8].  Principal co-ordinate analysis is an SVD of a distance matrix, and thus is versatile to 

different data structures, for example it can be applied to a matrix of distances between binary data, 

and is frequently applied in the analysis of microbiome data [19].  

Dimension reduction techniques could also be applied in combination with variable selection, which 

is attractive in analysis of omics data as it reduces the complexity when interpreting high 

dimensional data. Several recent extensions of PCA include variable selection, often via a 

regularization step or L-1 penalization (e.g. LASSO) (Shen and Huang 2008). Variables with negligible 

loadings are excluded, producing a sparse matrix with fewer variables. Sparse, regularized or 

penalized versions of PCA and related methods, have all been described [20–24].  

 

Integrative Analysis of two datasets 

A number of extensions to PCA have been described that enable simultaneous decomposition and 

integrative analysis of paired data matrices into the same space [20,25–28] (Table 2). These include 

generalized SVD (gSVD) [25], coinertia analysis [CIA 29,30]and sparse or penalized extensions to 

partial least square (PLS) and canonical correlation analysis (CCA) [20,26,31,32].  It is useful to 

categorize these methods broadly as either descriptive or predictive [28].  

Predictive two-table methods define the variables of dependent datasets in terms of the 

explanatory or independent ones is the other dataset, and methods include CCA and constrained 

forms of PCA or CA such as redundancy analysis or constrained correspondence analysis [4], 

respectively. CCA searches for linear combinations of variables (eigenvectors) from a pair of 

matrices that are maximally correlated. In the case of CCA, the eigenvectors are called canonical 

variates and the correlations between these are the canonical correlations. Each of these predictive 



methods requires an inversion or correlation or covariance matrix [20,28,33], which cannot be 

applied when the number of variables does not exceed the sample size [31].  

Given the high dimensionality of ‘omics data where p>n, application of these methods requires a 

regularization step, which may be accomplished by adding a ridge penalty, that is, adding a multiple 

of the identity matrix to the correlation matrix [20,26,34]. Penalized CCA  [35], sparse CCA [36], CCA-

l1, CCA-EN [26] and CCA-group sparse [37] have applied it to integrative analysis of two omics 

datasets. Witten et al., [20] provide an elegant comparison of various CCA extensions accompanied 

by a unified approach to compute both penalized CCA and sparse PCA. They use a fast and efficient 

implementation of regularized singular value decomposition and have implemented this in the R 

package penalized multivariate analysis PMA [20]. In addition, Witten and Tibshirani [38] extended 

the sparse CCA into a supervised framework. Supervised CCA selects variables from the two data 

that are not only highly correlated but also associated with a dependent variable. This method could 

be used to integrating two datasets and a quantitative phenotype, for example, selecting variables 

from both genomics and transcriptomics data and link them to drug sensitivity data. This may 

provide a similar solution to between group coinertia analysis [28] or spare PLS discriminant analysis 

[39] described below. 

PLS, similar to principal component regression, is a dimension reduction coupled with a regression 

model, such that the eigenvectors have high covariance with a response variable [40]. Response 

variables can be univariate or multivariate but the latter is more challenging as it has to find the PCs 

that explains all of the response variables simultaneously [40]. To analyze the omics data where 

p>>n, similar to CCA, sparse PLS (sPLS) extensions have been described. PLS components can be 

calculated via kernel-PLS, iterative local regression algorithm such as nonlinear iterative PLS 

(NIPALS) or statistically inspired modification of PLS (SIMPLS) [40]. In a recent comparison, sPLS 

performed comparably to spare CCA [26]. Similar to supervised CCA, sPLS approach has also been 

extended to classification, sPLS discriminant analysis (sPLS-DA) is achieved by coding the response 

matrix Y with dummy variables and has been applied to classification and variable selection of the 

microarray and SNP data [39]. 



By contrast to predictive approaches, co-inertia analysis (CIA) is a descriptive non-constrained 

approach for coupling pairs of data matrices [27–29,41]. CIA can be seen as the PCA of the table of 

cross covariances between the variables of the two tables. CIA is performed in two steps: i) 

application of a dimension reduction technique such as PCA, CA or NSC to the initial datasets and ii) 

identification of orthogonal axes on which the projection of the datasets computed in i) are 

maximally covariant [30,41].  CIA does not require an inversion step, and can be applied to datasets 

to genomics data without regularization or penalization.  Since CIA can be coupled with several 

dimension reduction approaches, including PCA, CA or even PCoA [28], it is flexible and can be 

applied to binary, categorical, discrete counts or continuous data. Co-inertia analysis is closely 

related to CCA [28].While CCA maximizes the correlation between eigenvectors which is known to 

be sensitive to detection of outliers, co-inertia maximizes the squared co-variance between 

eigenvectors. The relationship between CIA and Procrustes analysis [27] and CCA [28] have been 

well described,  and a comparison of sCCA (with elastic net normalization), sPLS and coinertia is 

provided by Le Cao [26]. CIA and sPLS both maximize the covariance between eigenvectors and 

efficiently identify joint and individual variance in paired data. By contrast CCA-EN maximizes the 

correlation between eigenvectors and will discover effects present in both datasets, but may omit 

to discover strong individual effects [26]. Both sCCA and sPLS are sparse methods and variables 

selected by these methods are similar, whereas, CIA does not require penalization, and variables 

have a marginally different rank and some redundancy compared to the sparse methods [26].  

Three-way and N-way PCA 

Possibly the simplest multiple table or multi-block analysis is when k number of tables has the 

same rows and the same columns.  These could be a longitudinal analysis of the same samples and 

same variables over time or a study of the same variables and samples in different locations, or 

samples from different sources.  Analysis of such variables x samples x time data are called a 3-

mode decomposition, triadic, cube or three-way table analysis, tensor decomposition, three-way 

PCA, three mode PCA, three-mode Factor Analysis (3MFA), Tucker-3 model, Tucker3, TUCKALS3 

among others.  There is a history of such analysis in ecology where counts of species and 



environment variables are measurements over different seasons [28,42–44], and also in 

psychology where different standardized tests are measured on study populations multiple times 

[45–48].  French statisticians developed STATIS “Structuration des TAbleaux a Trois Indices de la 

Statistique” (organization of three way tables in Statistics) of which X-STATIS or Partial Triadic 

Analysis, an analysis of K tables with the same samples and variables [49], is the simplest 

implementation.  STATIS also includes COVSTATIS, which handles multiple covariance matrices 

collected on the same samples, DISTATIS, which handles multiple distance matrices collected on 

the same samples and generalizes metric multidimensional scaling to three way distance matrices, 

and Canonical-STATIS, which generalizes discriminant analysis and combines it with DISTATIS to 

analyze multi-table discriminant analysis problems among others [reviewed by 42], and these are 

available in the R package ade4. In psychometrics, Carroll and Chang’s canonical decomposition 

(CANDECOMP) and Harshman’s parallel factor analysis (PARAFAC) are the same model, proposed 

independently, collectively called the CP model, which is very similar to Tucker-3. Both methods 

are available in the R packages ThreeWay [50] and Principal Tensor Analysis on k modes , PTaK 

[51].  Tucker3 which can be considered a “complete” version of Partial Triadic Analysis [52]. Whist 

three-way PCA methods have a rich and lengthy history in other fields. CANDECOMP/PARAFAC 

(CP) and Tucker3 can be consider higher order generalizations of SVD and PCA [52,53]. The 

relationship between CP, Tucker3 and other tensor or higher decompositions are reviewed by 

Kolda and Bader [53]. Multi-linear subspace learning, multi-linear PCA or higher order PCA, tensor 

subspace analysis, tensor PCA or higher order (HO) SVD are extensions of SVD or PCA applied to 

multi-table, N-way, tensors or arrays of data [46,51,53–56] and have been applied in analysis of 

multi-omics data analysis to find the most variant variables or samples among  multidimensional 

arrays or tensors [55,57,58].  However these tensors or N-way data decomposition may not find 

an optimal low rank approximation, or be orthogonally decomposable.  Other tensor 

decompositions include INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as 

nonnegative variants of all of the above, many of these are available in the N-way Toolbox or R 

package threeWay [50,51,53]. 



Correlated Structure in multi-tables  

In ‘omics studies we frequently need to study the relationships between multiple datasets or 

datasets with different variables (and matched samples) or datasets with different samples (and 

matched variables) at the same time. The cancer genome atlas generated miRNA and mRNA 

transcriptome (RNAseq, microarray), DNA copy number, DNA mutation, DNA methylation and 

proteomics molecular profiles on each tumor. The NCI60, CCLE projects have pharmacological 

compound profiles in addition to exome sequencing and transcriptomic profiles. Generalizations of 

these decomposition EDA methods to three or more data types are required, and a few have been  

applied to ‘omics data and the need for application of such methods is attracting more attention of 

the community [55,59,60]. These methods transform multiple omics data onto the same scale and 

project all data onto the same lower dimensional space, which facilitates the visualization, 

comparison and integration of data across studies (Table 3). 

Simultaneous decomposition and integration of multiple matrices is more complex that an analysis 

of paired data. In addition to matrix preprocessing as previously described, each dataset may have 

different number of variables, different scale or different internal structure and thus have different 

variance. This might produce global scores that are dominated by one or a few datasets. Therefore, 

it is crucial to transform the datasets before decomposition. In the simplest k-table analysis, all 

matrices could be weighted to have equal weight. However it is more common to give greater 

weight to smaller or less redundant matrices (MFA), matrices that have more stable predictive 

information (PCovR) or those that share more information with other matrices (STATIS). This class 

of methods could be generally expressed as the following model: 
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The (X1, …, Xk, …, XK) represent K omics datasets. For the convenience in expression, we specify rows 

as the same set of samples and columns are different variables. F is the “global score” matrix that is 

common for all datasets. The columns in F correspond to the principal component in the analysis of 

single dataset by PCA and are also called axis, dimensions or latent variables. However, because the 

global score matrix integrate the information from multiple datasets, it is not optimized to model 

the structure in any single dataset, it seeks to the joint pattern defined by multiple datasets. Q1, …, 

Qk, …, QK are the loadings or coefficient matrices. A high positive value indicates a strong positive 

contribution of the corresponding variable to the “global score”.  

Multiple co-inertia analysis (MCIA) is an extension of co-inertia analysis (CIA) to three or more 

datasets [59,61]. MCIA is based on a "covariance optimization criterion" that simultaneously 

projects several datasets such as gene expression and proteomics data into the same dimensional 

space, then transforms the diverse sets of variables in the data onto the same scale. Apart from 

the global score matrix, MCIA also derive a set of "block scores" using linear combination of 

original variables in each matrix, and the global score are then further defined as the linear 

combination of "block scores". Instead of maximizing the covariance between scores from two 

datasets as in CIA, MCIA maximize the following criterion with the constraints that 

||qk|| = ||t|| = 1. Therefore, the global score f represent the most concordant structure of 

multiple datasets. The calculation of MCIA could use an ad hoc extension of the NIPALS PCA 

algorithm to the multi-table scenario [62]. It is an iterative algorithm - after calculating the global 

scores and block loading for the first dimension, the residual matrices are calculated by removing 

the variance account for by the variables loading. This process is called “deflation”. For the higher 

order solution, the same process is applied to the residual matrices and re-iterated until the 

desired number of dimensions is derived. Therefore, the computational time of the algorithm 

relies on the number of dimensions. MCIA is implemented in R package omicade4 and has been 

applied to integrative analysis transcriptomic and proteomic datasets of the NCI-60 cell lines [59].  

Generalized canonical correlation analysis (GCCA) [45] is closely related to MCIA, and is a 

generalization of CCA to multi-dataset analysis [63–65] which has also been applied to the omics 
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data analysis [34,38]. Typically, MCIA and GCCA will produce similar results [for a more detailed 

comparison see 59]. GCCA maximizes the same criterion as MCIA but only constrains the unit the 

variance of loading vectors [62]. GCCA employs a different deflation strategy than MCIA, it calculates 

the residual matrices by removing the variance with respect to the block scores. Since block scores, 

in comparison with the global score, are better representation for each single dataset, GCCA is more 

likely to find common variables across datasets regardless of the different structures across 

datasets. Witten et al. applied sparse multiple CCA to analyze gene expression and CNV data from 

diffuse large B-cell lymphoma patients and successfully identified "cis interactions" that are both 

up-regulated in CNV and mRNA data [38]. When applied to ‘omics data where n<p, a variable 

selection step is often integrated with the GCCA approach. Tenenhaus et al., applied sparse GCCA 

to combine gene expression, comparative genomic hybridization, and a qualitative phenotype 

measured on a set of 53 children with glioma [34]. Sparse multiple CCA  [38] and SGCCA [34] are 

available in the R packages the  PMA and RGCCA respectively.  Similarly a higher order 

implementation of spare PLS is described  [56] [56] 

Consensus PCA is closely related to GCCA and MCIA, but has had less exposure to the omics data 

community. Consensus PCA optimizes the same criterion with the other two and subject to the same 

constraints as MCIA [62]. The deflation step of CPCA relies on the global score. As a result, it only 

guarantees the orthogonal of global scores and tends to finds common patterns in the various 

datasets. This property makes it is more suitable for discovery of the joint pattern of multiple 

datasets, such as the joint clustering problem. 

NMF has also been extended jointly factorize multiple matrices. This method is based on a 

different concept than the methods reviewed until now. In the joint NMF, the values in global 

score F and coefficient matrices (Q1, …, QK)  are non-negative and there is no explicit definition of 

block loading. An optimization algorithm is applied to minimize an objective function, typically the 

sum of square of errors, i.e. .  It can be considered a non-negative implementation of 

PARAFAC, although it has also been implemented using the Tucker model [14,66–68]. Zhang et al., 
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2012 apply joint NMF to a three-way analysis of DNA methylation, gene expression and miRNA 

expression data to identify modules in each of these regulatory layers that are associated with 

each other [69].  

A unifying framework using the duality diagram 

In the 1970s, French statisticians Cazes [70], Cailliez and Pages [71] developed a unifying framework, 

called the duality diagram, which provides elegant approach to formulate all dimension reduction 

methods in a similar way and is implemented in the R package ade4 [74].  Publications from Jean 

Thioulouse [28], Stephane Dray [30] De la Cruz and Holmes [72] and Escofier [73] present excellent 

and detailed mathematical review of the duality diagram framework. This framework is based on 

the statistical triplet (X,Dp,Dn) where X is a matrix with n rows (observations or samples) and p 

columns (variables or genes) (Figure 1C). The space (ℝ p) contains n elements (samples), the space 

ℝ n contains p variables.  Dn and Dp are diagonal matrices of nxn and pxp. The matrix Dn defines 

the columns weights and is used as an inner product of ℝ n to compute the relationships between 

variables. The matrix Dp is a pxp symmetric matrix, and is used as an inner product in ℝ p to quantify 

the distance between n samples. From a geometrical point of view, analyzing the statistical triplet 

(X,Q,D) can be formulated as either finding principal axes of a dataset containing n points in ℝ p or 

as finding the principal components of p points in ℝ n.  PCA in the original scale corresponds to Dp 

= Ip (identity. Euclidean metric) and Dn is a matrix of uniform row weights (1/n).  CA can be 

formulated as a duality diagram by defining Dn and Dp as the marginal frequencies of the original 

matrix and by standardizing X so that it captures the departure from independence of the original 

data.  Coinertia or decomposition of multiple matrices is a simple extension of this (Figure 1D). 

Further examples and mathematical details are available in [27,72,73] 

Example Case Study 

To demonstrate integration of multi-datasets using dimensions reduction, we applied MCIA to 

analyze mRNA, miRNA and proteomics data of a subset of cells lines in the NCI60 panel, including 



cell lines from melanoma (ME), leukemia (LE) and central nervous system (CNS) tumors. The 

graphical output from this analysis includes a plot of the sample space, variable space and data 

weighting space (Figures 2A-B and E). 

The scree plots (Figure 2D) shows the eigenvalue of each global scores. The eigenvalues can be 

interpreted similarly to PCA, a higher eigenvalue equates to greater importance of a global score. 

Since the first two eigenvalues were significantly greater, we only visualized the cell lines and 

variables on the first two dimensions. The goal in EDA to visualize and explore data, rather than that 

prove a hypothesis, so a researcher may be subjective in their selection of the number of 

components. For example, one can select the “elbow points” in the plot where the slope of 

eigenvalues’ decreasing goes from “steep” to “flat”. Or simply, select eigenvector with eigenvalues 

larger than the average [75].  

In the sample space (Figure 2A), samples from different datasets are distinguished by different 

shapes. The coordinates in data space for each cell line (Fk in Figure 2A) are connected by lines to 

the global scores (F). In this space, the distance between two points indicates the concordance 

between to samples. Short lines reflect higher concordance. Most cell lines have concordance 

information in each datasets (mRNA, miRNA, protein) as indicated by relatively short lines. In 

addition, the amount of correlated structure between the two transformed datasets can be 

measured with the RV coefficient  [76,77]; a generalized Pearson correlation coefficient for matrices. 

It has values between 0 and 1, where a higher value indicates higher co-structure. Here, we observed 

a relative high RV coefficients across the three datasets, ranging from 0.78 to 0.84. Smilde et al. [77] 

recently proposed a modified RV coefficient to fix a bias of the RV coefficient towards small datasets 

[77].   

This analysis (Figure 2) shows that cell lines originating from the same anatomical source of tissue 

are projected close to each other and converged into clusters. Specifically, leukemia cell lines are 

positively weighted on the right side of first PC, whereas the other two cell lines are on the negative 

end of PC1. PC2 separates the melanoma cell line and CNS cell lines. The melanoma cell line LOX-

IMVI, which lacks the melanogenesis, is projected close to the origin further away from the 



melanoma cluster. We also observed that the proteomics profiles of leukemia cell lines SR are 

projected close to the melanoma cell lines. We examined within tumor type correlations to the SR 

cell line (Figure 2C) and observed that the SR proteomics data had higher correlation with melanoma 

cell lines compared to leukemia cell lines. Given that the mRNA and miRNA are closer to the other 

leukemia cell lines, it suggests that there was a technical error perhaps mislabeling of the proteomics 

data for this cell line (Figures 2A and C).  

MCIA projects all variables into the same space. The variable spaces visualized the (Q1, …, QK) in 

Figure 2B. Variables and samples projected in the same direction are associated. This allows one to 

select the variables most strongly associated with specific samples from each dataset for 

subsequent analysis. In our previous study [59], we already shown that the genes and proteins highly 

weighted on the melanoma side (positive end of second dimension) are enriched with 

melanogenesis functions; and genes/proteins highly weighted on the protein side is highly enriched 

in T-cell or immune related function. Therefore, in this example, we examined miRNA data, and 

selected the miRNAs with most extreme weights on the first two dimensions. Two miRNAs, miR142 

and miR223 with highly weighted on the positive end of first dimension (leukemia) are commonly 

expressed in leukemia [78–82]. The miR142 plays an essential role in T-lymphocyte development. 

The miR-223 is regulated by the Notch and NF-kB signaling pathways in T-cell acute lymphoblastic 

leukemia [83]. 

The microRNA with most association to CNS cell lines was miR-409. It has been reported that this 

miRNA promotes the epithelial-to-mesenchymal transition (EMT) in prostate cancer [84]. 

Correspondingly, CNS cell lines show relative stronger mesenchymal phenotypes in NCI-60 which 

could relate to the high expression of this miRNA. On the positive end of the second dimension, we 

found miR-509, miR513 and miR506 strongly associated with melanoma cell lines, which are 

reported to initiate melanocyte transformation and promoting melanoma growth [85] 

Challenges in integrative data analysis 

Whilst biostatisticians and computational biologists are developing new extensions of dimension 

reduction analysis (described above) and other methods that can be used for exploratory data 



analysis and integration of molecular data, few gold standard or canonical test datasets exist and 

therefore it is often difficult to compare the performance of different methods. The community 

needs to define a set of test datasets for this purpose.  

Whilst several dimension reduction approaches have been applied to molecular data, little 

consideration is often given to the underlying data structure. For example PCA is frequently applied 

to count data with many zeros, when CA is more appropriate. Equally there have been no systematic 

studies of the impact of the effects or potential loss of information when penalized methods, such 

as sparse CCA are used for data integration. These methods have the potential to reduce available 

data for downstream gene set analysis and integrative clustering analysis.  

Most visualization approaches were designed for datasets with fewer variables, and visualization 

and interpretation of plots with thousands of variables can be complex. Within R, new packages 

such as ggord provide tools to plot higher quality ordination plots using ggplot. The R packages 

Plotly and ggplot2 let you create and share beautiful, interactive plots online. Both ggord and 

plotly are available on github.   

Finally interpretation of long lists of biological variables (genes, proteins, miRNAs) remains a 

challenge and often one needs to search dispersed data sources to annotate these variables.  The 

Bioconductor annotation project greatly facilitates quick and easy access to these within R [86,87]. 

One way to gain more insight into this list is to perform a gene set enrichment or pathway analysis 

(GSEA). An attractive feature of decomposition methods is that variable annotation can be projected 

into the same space to determine a score for Gene Ontology like biological processes, molecular 

functions and cellular compartments but also on pathways from databases like Reactome 

[12,13,59]. In multi-table decomposition, simultaneous analysis of multi-omics datasets will produce 

ranked lists of variables that are the most co-variant, variables that are highly associated with a 

sample or condition, and variables that are grouped together. These are on the same scale and can 

be concatenated to increase the power of gene set or pathway analysis [59]. After performing such 

an integrative GSEA it would also be informative to visualize, for example, the enriched pathway as 



a network by emphasizing the variables that contributed to its enrichment and the omics levels on 

which these were measured. An example is shown in [59 See Figure 3].     

Conclusion 

A rich resource of methods exist for dimension reduction and many methods have been developed 

in parallel by multiple fields. In this review we provide an overview of dimension reduction 

techniques that are both well-known (PCA) and also those which may not be widely used for the 

analysis of multi-omics data (CA, NSCA).  We review methods for single table, two-table, 3-way and 

multi table analysis.  Whilst numerous approaches for generalized decomposition of multi-table 

data or tensors have been described in other fields, few have been applied to the study of multi-

omics data and few comparisons of these methods exist. There still is a significant challenge in 

extracting biologically and clinically actionable results from multi-omics data, however the field can 

leverage the rich resource of methods that other disciplines have developed. 

 Key Points 

 There are many dimension reduction methods; extensions of principal component analysis, 

that can be applied to exploratory data analysis of a single data set, or integrated analysis of a 

pair or multiple datasets. In addition to exploratory analysis, these can be extended to cluster, 

supervised and discriminant analysis. 

 The goal of dimension reduction is to map data onto a new set of vectors so that the variance 

(or information) in the data is explained by fewer vectors 

 Multi-dataset methods multiple co-inertia (MCIA), multi-factor (MFA) or canonical correlations 

analysis (CCA) identify correlated structure between datasets with matched observations 

(samples). Each dataset may have different variables (genes, proteins, miRNA, mutations, drug 

response, etc).  

 MCIA, CCA and related methods provide a visualization of consensus and incongruence in and 

between datasets, enabling discovery of potential outliers, batch effects or technical errors.  



 Multi-dataset methods transform diverse variables from each dataset onto the same space 

and scale, facilitating integrative variable selection, gene set analysis, pathway and network 

analyses.  
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Figure Legends 

Figure 1:  The goal of dimension reduction techniques is to A) identify new vectors in this space that 
capture most of the variance or information in the dataset; for example genes as vectors in sample 

space (ℝ n). These new vectors can be found using B) SVD which decomposes a matrix with n 
columns and p rows to three new matrices of n×q (PCs of samples), p×q (PCs of variables) and a q×q 
(eigenvalues). C) The Duality Diagram framework is based on the statistical triplet (X,Dp,Dn) where 
X is a matrix with n rows (observations) and p columns (variables). Dn and Dp are diagonal matrices 
of nxn and pxp. The matrix Dn defines the columns weights and is used as an inner product of n to 
compute the relationships between variables. It is called a “duality diagram” the dual operators 
XTDNDP and XDPXTDn share the same spectrum [28,30]. A generalized PCA (gPCA) is a decomposition 
(SVD) of XTDnDp. A simple PCA is performed when Dn the matrix of uniform row weights and Dp is 

the identity (Euclidean metric). The this framework easily extends to multi-table analysis; D) a CIA 
[27] can be performed on two matrices, with X and Y which share common observations (n). Dp and 

Dm are metrics on ℝ p, ℝ m respectively. A gPCA of these triplets would be decomposition of  

XTDnXDp and YTDnYDm.  When ℝ n and ℝ n* define the same space (ie the observations in X,Y are 
matched), these two diagrams can be merged. CIA is the eigenanalysis of the crossed diagram. If the 
columns of both tables are centered, then the total inertia of each table is simply a sum of variances 
and CIA of X and Y is in this case a sum of squared covariances trace(XDpXTDnYDmYTDn). Further 
details are given in Thioulouse [28], De la Cruz and Holmes [72] and Dray [30] 
 
 
Figure 2 Results of analysis of a MCIA of mRNA, miRNA and proteomics molecular profiles melanoma 
(ME), Leukaemia (LE) and central nervous system (CNS) NCI60 cell lines, showing plot of the first two 
components in sample space (A), variable space (B), a scree plot of the eigenvalues (D) and a plot of 
data weighting space (E). There appears to be a technical issue with the LE.SR proteomics data and 
C)  shows the correlation coefficients of SR with other cell lines.  



 

 

Figure1: Dimension reduction techniques 



 

 

 

 

 

       

 

Figure 2: MCIA of mRNA, miRNA and proteomics molecular profiles of 

melanoma (ME), leukaemia (LE) and central nervous system (CNS) NCI60 

cell lines 



Table 1:  Dimension reduction method for 1 dataset   

Method Description Name of function {R package} 

PCA Principal component analysis Prcomp {stats}, princomp {stats}, dudi.pca 
{ade4}, pca {vegan}, PCA {FactoMineR}, 
principal {psych} 

CA, COA Correspondence analysis ca{ca}, CA{FactoMineR}, dudi.coa{ade4} 

NSC Non symmetric correspondence 
Analysis  

dudi.nsc{ade4} 

PCoA , MDS Principal Co-ordinate 
Analysis/Multiple dimensional 
scaling 

cmdscale{stats} 
dudi.pco{ade4} 
pcoa {ape} 

NMF Non-negative matrix factorization nmf {nmf} 

nmMDS nonmetric multidimensional scaling metaMDS {vegan} 

sPCA, nsPCA, 
pPCA 

Sparse PCA, non-negative sparse 
PCA, penalized PCA. 
   
(PCA with feature selection) 

SPC {PMA}, spca {mixOmics}, nsprcomp 
{nsprcomp},  PMD {PMA} 

NIPALS PCA 
 

Non linear iterative partial least 
squares analysis  
 
(PCA on data with missing values) 

nipals {ade4} 
pca {pcaMethods}1 

nipals {mixOmics} 

pPCA, bPCA Probabilistic PCA, Bayesian PCA,  pca {pcaMethods}1 

MCA Multiple correspondence analysis dudi.acm {ade4}, mca {MASS} 

ICA,  Independent component analysis  fastICA {FastICA} 
 

sIPCA Sparse independent PCA (combines 
sPCA and ICA). 

Ipca {mixOmics} 

plots Graphical resources R packages including scatterplot3d, ggord2, 
ggbiplot3 , plotly4 

1   available in Bioconductor 
2  on github:  devtools::install_github('fawda123/ggord') 
3  on github:  devtools::install_github("ggbiplot", "vqv") 
4  on github:  devtools::install_github("ropensci/plotly") 

 
  



Table 2:  Dimension reduction method for pairs of datasets 

Method Description Feature Selection R Function {package} 

CCA Canonical Correlation Analysis. 
Limited to n>p 

No cc(cca) 

rCCA regularized Canonical 
Correlation  

Yes rcc(cca) 

sCCA sparse CCA Yes cca(pma) 

pCCA Penalized CCA Yes spCCA(spCCA) 
supervised version 

sPLS 
pPLS 

sparse PLS 
penalized PLS 

Yes spls(spls) 
spls(mixOmics) 
ppls(ppls) 

sPLS-DA sparse PLS-Discriminant 
Analysis 

Yes splsda(mixOmics) 

cPCA consensus PCA No cpca(mogsa) 

CIA coinertia analysis No coinertia (ade4) 
cia (made4) 

 

  



Table 3:  Dimension reduction method for multiple (>2) datasets 

Method Description Feature 
Selection 

R Function {package} 

MCIA Multiple coinertia analysis No mcia(omicade4) 

gCCA Generalized CCA No regCCA(dmt) 

rGCCA 
 

regularized Generalized  
CCA.   

Yes regCCA(dmt)+param 

sGCCA 
 

sparse generalized canonical 
correlation analysis. 
 

Yes sgcca(rgcca) 
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