
 

 

 

Graz, September 2015 

 

 

Nemanja Stamenić, BSc 

 
Efficient Implementation of a DVB-S2X-Compatible 

LDPC Codec Using the AVX Instruction Set 
 

 

MASTER’S THESIS 
to achieve the university degree of  

Diplom-Ingenieur 

Master’s degree programme: Electrical Engineering 

 

 

Submitted to 

Graz University of Technology 
 
 

Supervisor 

 

Assoc. Prof. Dipl.-Ing. Dr. techn. Wilfried Gappmair 

Institute of Communication Networks and Satellite Communications 

Graz University of Technology, Austria 

 

Dipl.-Ing. Dr. techn. Johannes Ebert 

Joanneum Research, Graz, Austria 

  



 

 

 

 

 

 

 

AFFIDAVIT  

 

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all material 

which has been quoted either literally or by content from the sources used. The text 

document uploaded to TUGRAZonline is identical to the present master‘s thesis   

dissertation.  

 

 

 

 

 

 

 

 

                   Date 

 

                   Signature 



 

 
2 

 

Acknowledgment 

I would like to express my gratitude to my supervisor Assoc. Prof. Dipl.-Ing. Dr. techn. 

Wilfried Gappmair for the useful comments, remarks and engagement through the 

learning process of this master thesis. 

 

I am deeply indebted to my second supervisor Dipl.-Ing. Dr. techn. Johannes Ebert 

who had the idea for the topic of this thesis and whose stimulating motivation and 

valuable suggestions were crucial for the completion of this work. 

 

Thanks to my parents Gordana and Milan and brother Stefan for their love and un-

conditional support in hard times. Thanks to my father Milan for inspiring me to pur-

sue a career in engineering.  

 

Special thanks to Ivana, who was always standing by me, for her precious love. 

 

  



 
3 

 

Abstract 

LDPC codes were discovered by Gallager in 1963. They were neglected and forgot-

ten due to the inability of the processing units at that time to satisfactorily perform 

calculations needed for decoding this sort of channel codes. LDPC codes were redis-

covered by MacKay in 1999, who showed that LDPC codes are able to compete with 

turbo codes. In 2001, Richardson and Urbanke demonstrated that LDPC codes per-

form better than turbo codes in the case of long frame lengths. A very significant ad-

vantage of LDPC codes over turbo codes is the fact that they are computationally 

less demanding. 

 

Excellent performance of LDPC codes for long frame lengths makes them suitable for 

television broadcasting. As such they form part of the DVB-S2, DVB-S2X, DVB-T2 

and DVB-C2 standards. Time efficient implementation of DVB-S2 and DVB-S2X 

compatible LDPC codec for PC simulation purposes is the main topic of the current 

thesis. 

 

The data rates of software-based LDPC codecs can be significantly increased 

through the use of single-instruction-multiple-data (SIMD) operations, because they 

enable parallel decoding of multiple frames. Encoder and encoder presented in this 

thesis use the Intel® Advanced Vector Extensions instruction set, a SIMD extension 

to the x86 instruction set. They are able to encode and decode 32 DVB frames in 

parallel. The decoder implementing 20 iterations of the min-sum algorithm achieves 

up to 50 Mbit/s data rate on the fourth generation Intel i-7 processors using single 

CPU core. The encoder uses approximate linear triangulation and achieves approxi-

mately 300 Mbit/s using the same hardware. If the simulation framework is run in 

parallel on all four CPU cores, data rates of up to 150 Mbit/s (decoder) and 900 

Mbit/s (encoder) are achieved. 

 

  



 
4 

 

Zusammenfassung 

LDPC-Codes wurden 1963 von Gallager entdeckt. Aufgrund der Tatsache, dass Pro-

zessoren zu diesem Zeitpunkt die notwendigen Berechnungen nicht effizient genug 

durchführen konnten, gerieten diese Codes wieder in Vergessenheit. Erst 1999 wur-

den sie von MacKay wieder entdeckt, der zeigen konnte, dass sie eine echte Alterna-

tive zu den sogenannten Turbo-Codes darstellen. Im Jahr 2001 gelang Richardson 

und Urbanke dann der Nachweis, dass LDPC-Codes bei großen Blocklängen eindeu-

tig besser sind als die Turbo-Codes. Ein entscheidender Vorteil gegenüber letzteren 

ist, dass sie weniger Rechenleistung benötigen. 

 

Die Leistungsfähigkeit von LDPC-Codes bei großen Blocklängen macht sie beson-

ders geeignet für alle Anwendungen, wo digitales Fernsehen eine Rolle spielt. Mitt-

lerweile sind sie Bestandteil verschiedener Standards, so etwa bei DVB-S2, DVB-

S2X, DVB-T2 oder DVB-C2. Dementsprechend ist das Hauptthema der vorliegenden 

Masterarbeit die effiziente Implementation von LDPC-Codecs, welche im DVB-S2- 

bzw. DVB-S2X-Standard empfohlen werden. 

 

Die Datenrate von Software-basierenden LDPC-Codes kann erheblich gesteigert 

werden, wenn man auf Single-Instruction-Multiple-Data (SIMD) Operationen zurück-

greifen kann, weil damit eine parallele Verarbeitung von Daten möglich ist. Zu diesem 

Zweck wird der Intel® Advanced Vector Extensions Befehlssatz verwendet, der eine 

SIMD-Erweiterung des x86 Befehlssatzes darstellt. Damit ist die parallele Verarbei-

tung von 32 DVB-Rahmen möglich. Wird zur Decodierung der Min-Sum-Algorithmus 

mit 20 Iterationen verwendet, dann erreicht man auf dieses Weise einen Durchsatz 

von bis zu 50 Mbit/s, wenn die Software auf einem Intel i-7 Prozessor der 4. Genera-

tion mit Single-CPU-Core läuft. Der Encoder mit näherungsweise linearer Triangula-

tion schafft einen Durchsatz von etwa 300 Mbit/s auf derselben Hardware. Falls die 

Simulation parallel auf allen vier CPU-Cores gestartet wird, dann ist eine Rate von 

150 Mbit/s (Decoder) bzw. 900 Mbit/s (Encoder) denkbar. 

 

  



 
5 

 

Table of Contents 
1. Introduction ................................................................................. 11 

1.1. Digital Communication ................................................................................... 11 

1.2. Physical Channel ........................................................................................... 12 

1.2.1. Free Space Loss ..................................................................................... 12 

1.2.2. Thermal Noise ......................................................................................... 13 

1.2.3. Multipath Propagation and Fading ........................................................... 14 

1.3. Modulation ..................................................................................................... 16 

1.4. Channel Model ............................................................................................... 17 

1.5. Source Coding ............................................................................................... 17 

1.6. Encryption ...................................................................................................... 18 

1.7. Shannon Limit ................................................................................................ 18 

1.7.1. Channel Coding ....................................................................................... 20 

2. LDPC Codes ................................................................................ 28 

2.1. Brief History ................................................................................................... 28 

2.2. Representation of LDPC Codes ..................................................................... 29 

2.3. Construction of LDPC codes .......................................................................... 31 

2.3.1. Construction of Regular LDPC Codes ..................................................... 32 

2.3.2. Construction of Irregular LDPC codes ..................................................... 35 

2.4. Encoding ........................................................................................................ 38 

2.4.1. Conventional Encoders ........................................................................... 38 

2.4.2. Message-Passing Encoders .................................................................... 38 

2.4.3. Encoding by Approximate Linear Triangulation ....................................... 39 

2.5. Decoding ........................................................................................................ 41 

2.5.1. Belief Propagation ................................................................................... 42 

2.5.2. Belief Propagation in the Logarithmic Domain ......................................... 43 

2.5.3. Min-Sum Algorithm .................................................................................. 45 

2.5.4. Normalized Min-Sum Algorithm ............................................................... 45 

2.5.5. Offset Min-Sum Algorithm........................................................................ 45 

3. DVB-S2 and DVB-S2X Standards ............................................... 46 

3.1. System Architecture ....................................................................................... 46 

3.1.1. Mode Adaptation ..................................................................................... 47 



 
6 

 

3.1.2. Stream Adaptation ................................................................................... 47 

3.1.3. FEC Codec .............................................................................................. 47 

3.1.4. Bit Mapping into Constellations ............................................................... 48 

3.1.5. Physical Layer Framing ........................................................................... 50 

3.1.6. Baseband Filtering and Quadrature Modulation ...................................... 50 

4. Implementation ............................................................................ 51 

4.1. Intel® AVX ..................................................................................................... 51 

4.2. AVX Implementation Problems ...................................................................... 52 

4.3. Intel® AVX2 ................................................................................................... 54 

4.4. Min-Sum Algorithm Family ............................................................................. 56 

4.4.1. Check Node Update ................................................................................ 57 

4.4.2. Variable Node Update ............................................................................. 67 

4.4.3. Parity Check ............................................................................................ 68 

4.4.4. Memory Access ....................................................................................... 69 

4.4.5. Decoder Data Rate .................................................................................. 69 

4.5. Encoder Implementation ................................................................................ 70 

5. Simulation Results ...................................................................... 71 

5.1. Comparison of Decoding Algorithms .............................................................. 71 

5.2. Number of Iterations ....................................................................................... 72 

5.3. Code Rate ...................................................................................................... 73 

5.4. Short Frame vs. Long Frame ......................................................................... 74 

6. Conclusion ................................................................................... 75 

 
  



 
7 

 

References 

[RD1] B. Sklar, “Digital Communications – Fundamentals and Applications”, 

Prentice Hall, 2nd Edition, 2001 

[RD2] R. H. Morelos-Zaragoza, “The Art of Error Correcting Coding”, Wiley, 2nd 

Edition, 2006 

[RD3] C. Marchand, “Implementation of an LDPC decoder for the DVB-S2, -T2 

and -C2 standards”, Master Thesis, Université de Bretagne Sud, France, 

2010 

[RD4] L. Hanzo, T. H. Liew, and B. L. Yeap, “Turbo Coding, Turbo Equalisation 

and Space-Time Coding for Transmission over Fading Channels”, Wiley, 

2002 

[RD5] N. Stamenic, “Efficient Turbo Code Implementation and Simulation for an 

AWGN Channel”, Bachelor Thesis, Graz University of Technology, Austria, 

2014 

[RD6] E. Voges, “Hochfrequenztechnik: Bauelemente, Schaltungen, Anwendun-

gen”, 3. Auflage, Hüthig, 2004 

[RD7] G. L. Stüber, “Principles of Mobile Communication”, Kluwer Academic 

Publishers, 2002 

[RD8] A. F. Molisch, “Wireless Communications”, Wiley, 2nd Edition, 2011 

[RD9] B. Friedrichs, “Kanalcodierung: Grundlagen und Anwendungen in moder-

nen Kommunikationssystemen”, Springer, 1995 

[RD10] C. E. Shannon, “Mathematical Theory of Communication”, BJST, 1948 

[RD11] W. Riedler, G. Petter, and W. Weselak, “Informationstheorie und Codie-

rung”, Vorlesungsskriptum, Graz University of Technology, Austria, 2000 

[RD12] M. C. Valenti, “Iterative detection and decoding for wireless communica-

tions,” Ph.D. Thesis, Bradley Dept. Elect. & Comp. Eng., Virginia Tech, 

1999 

[RD13] R. Gallager, “Low Density Parity Check Codes”, Cambridge, 1963 

[RD14] D. MacKay, ‘’Good Error-Correcting Codes Based on Very Sparse Matri-

ces”, IEEE Transactions on Information Theory, vol. 45, no. 2, 1999 

[RD15] T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity-

Check Codes Under Message-Passing Decoding”, IEEE Transactions on 



 
8 

 

Information Theory, vol. 47, no. 2, 2001 

[RD16] H. Qi and N. Goertz, “Low-Complexity Encoding of LDPC Codes: A New 

Algorithm and its Performance”, The University of Edinburgh, available at: 

http://publik.tuwien.ac.at/files/PubDat_166941.pdf  

[RD17] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, 

“Practical erasure resilient codes”, in Proc. 29th Annu. ACM Symp. Theory 

of Computing (STOC, pp. 150-159), 1997 

[RD18] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, 

“LDPC block and convolutional codes based on circulant matrices”, IEEE 

Transactions on Information Theory, vol. 50, no. 12, pp. 2966-2984, Dec. 

2004. 

[RD19] P. H. Siegel, “An Introduction to Low-Density Parity-Check Codes”, 

University of California, San Diego, available at: 

cmrrstar.ucsd.edu/psiegel/pubs/07/ldpc_tutorial.ppt 

[RD20] R. Shedsale, “A Review of Construction Methods for Regular LDPC 

Codes”, Indian Journal of Computer Science and Engineering, vol. 3, 2012 

[RD21] ETSI EN 302 307, European Standard (Telecommunications Series) 

[RD22] ETSI EN 302 307-2, Draft Version 

[RD23] J. Fan, Y. Xiao, and K. Kim, “Design of LDPC Codes without Cycles of 

Length 4 and 6“, Journal of Electrical and Computer Engineering - 

Research Letters in Communications, Article ID 354137, 2008 

[RD24] A. Balatsoukas-Stimming, ”Construction of LDPC codes“, 

Telecommunications Laboratory, Technical University of Crete, Greece, 

2009 

[RD25] T. J. Richardson and R. L. Urbanke, “Efficient Encoding of Low-Density 

Parity-Check Codes”, Transactions on Information Theory, vol. 47, no. 2, 

February 2001 

[RD26] F. A. Newagy, Y. A. Fahmy, and M. M. S. El-Soudani, “Novel construction 

of short length LDPC codes for simple decoding”, Journal of Theoretical 

and Applied Information Technology, 2007 

[RD27] Introduction to Intel Advanced Vector Extensions, available at: 

https://software.intel.com/en-us/articles/introduction-to-intel-advanced-

vector-extensions 



 
9 

 

[RD28] X. Wu, “Adaptive-Normalized/Offset Min-Sum Algorithm”, IEEE 

Communications Letters, vol. 14, no. 7, 2010 

[RD29] Y. Jung, Y. Jung, S. Lee and J. Kim, “New Min-Sum LDPC Decoding 

Algorithm Using SNR-Considered Adaptive Scaling Factors“, ETRI 

Journal, 2014 

[RD30] D. J. C. MacKay, ”Information Theory, Inference and Learning Algorithms”, 

Cambridge University Press, 2003 

[RD31] G. Falcao, M. Gomes, V. Silva, L. Sousa, and J. Cacheira, “Configurable 

M-factor VLSI DVB-S2 LDPC decoder architecture with optimized memory 

tiling design”, EURASIP Journal on Wireless Communications and 

Networking, pp. 1-16, 2012 

[RD32] X. Zhang and P. H. Siegel, “Quantized Min-Sun Decoders with Low Error 

floor for LDPC Codes”, In Proc. IEEE International Symposium on 

Information Theory , 2012 

 

  



 
10 

 

Acronyms 

ACM Adaptive coding and modulation 

AGC Automatic gain control 

ALT Approximate lower triangular form 

ARQ Automatic repeat request 

AVX Advanced Vector Extensions 

BPSK Binary phase shift keying 

CCM Constant coding and modulation 

CENELEC European Committee for Electrotechnical Standardization 

CN Check node 

DVB-C Digital Video Broadcasting – Cable  

DVB-S Digital Video Broadcasting – Satellite  

DVB-T Digital Video Broadcasting – Terrestrial  

EBU European Broadcasting Union 

ETSI European Telecommunications Standards Institute 

FEC Forward error correction 

FER Frame error rate 

FSM Finite-state machine 

FSPL Free space loss 

LDPC Low density parity check 

LLR  Log-likelihood ratio 

LR Likelihood ratio 

MAP Maximum a posteriori  

ML  Maximum likelihood 

QEF Quasi error free 

RF Radio frequency 

RSC code Recursive systematic convolutional code 

SALT Systematic approximately triangular form  

SIMD Single Instruction Multiple Data 

SISO  Soft-input soft-output 

SNR Signal-to-noise-ratio 

VA Viterbi algorithm 

VCM Variable coding and modulation 

VN Variable node 

  



 
 

 
11 

 

1. Introduction 

1.1. Digital Communication 

Fast and reliable communication systems have become indispensable in today’s 

world. The demand for mobile wireless and/or satellite communication links, which 

use free space as a propagation medium, is steadily increasing. Most of the systems 

providing such services are digital. In [RD1] a brief comparison of digital and analog 

systems is presented. The most important advantage of digital systems is that signals 

are much easier regenerated. On its path from the transmitter to the receiver the sig-

nal is affected by a series of impairments, which can and typically do change its 

waveform. The ability to restore the original signal is crucial for a successful commu-

nication. Digital signals are two-state signals, unlike analog signals which can take an 

infinite number of states. As a consequence, digital circuits are less sensitive to dis-

tortion and interference and can prevent the accumulation of disturbances. Another 

important advantage of digital systems is the possibility to significantly reduce error 

rates by use of forward error detection and correction techniques (FEC). In terms of 

transmission, different types of digital signals can be treated identically as they are all 

represented by bits, which is not the case with analog signals. A large number of 

terminals nowadays are digital (computers, mobile phones, measurement devices 

etc.) and digital communication links are best suited for the communication between 

them. 

 

But there are also some disadvantages of digital systems. From the computational 

point of view, they can be very demanding. The synchronization is more complex and 

requires much more resources than it is the case with analog systems. Non-graceful 

degradation [RD1] is another drawback of digital systems compared to analog ones. 

Quality of service in digital systems tends to drastically change when the signal-to-

noise-ratio (SNR) falls under a certain threshold, whereas analog systems have more 

graceful degradation. 

 



 
 

 
12 

 

Major goal of a digital communication system is to transfer data from source to desti-

nation by minimizing bit error rate and transmitting power, whereas the useful infor-

mation throughput is maximized. The following figure shows the simplified functional 

diagram of a digital communication system. 

 

 

Figure 1: Basic blocks of a digital communication system 

1.2. Physical Channel  

In wireless communication systems, the signal is determined by a variety of impair-

ments. Weather conditions, obstacles on the communication path, relative motion 

between the receiver and the transmitter are some of the reasons for such impair-

ments [RD4]. 

1.2.1. Free Space Loss 

Even in case of no atmospheric losses, the signal degrades. This phenomenon is 

called free-space path loss (FSPL) [RD1]. The degree of the signal degradation de-

pends on the carrier frequency and the distance between the transmitter and the re-

ceiver [RD1]. In the equation bellow f, d and c stand for carrier frequency, distance 

and the speed of light, respectively: 

 
24FSPL 





=

c
fdπ  (1) 

  



 
 

 
13 

 

1.2.2. Thermal Noise 

Random impairments, which can be described only statistically, are called noise. 

There are many different sources of noise. Some of them are natural and some of 

them are manmade. Much of the noise effects can be eliminated by good system de-

sign. However, the noise generated by random thermal motion of the charge carriers 

cannot be eliminated [RD1]. It is white, meaning that is has approximately constant 

power spectral density, and the amplitude is normally distributed with zero mean. The 

common model for this kind of impairment is additive white Gaussian noise (AWGN) 

and it is the only source of noise that will be considered for the channel model in this 

thesis. Equation (2) shows the probability density function (PDF) for AWGN: 

 

















−=

2

2
1exp

2
1)(

σπσ
nnp  (2) 

  

Figure 2: PDF for Gaussian noise with variance 12 =σ  

The two following figures depict an AWGN signal in time and frequency domain, re-

spectively. 



 
 

 
14 

 

 

Figure 3: Gaussian noise with variance 12 =σ  

 

Figure 4: One-sided power spectral density of AWGN 

1.2.3. Multipath Propagation and Fading 

On their way from the transmitter to the receiver, electromagnetic waves can get re-

flected, diffracted and scattered [RD4]. 

 

Reflection occurs at the boundary between two dielectric media, i.e. when the waves 

hit the obstacle with smooth surface and dimensions much larger than their wave-

length. One part of the wave is transmitted and the other one is reflected, except in 

the case of total reflection in which no transmission occurs [RD1]. 

 

0 100 200 300 400 500 600 700 800 900 1000
-5

-4

-3

-2

-1

0

1

2

3

4

S
ig

na
l

Time

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

P
ow

er
 S

pe
ct

ra
l D

en
si

ty

Normalized Frequency



 
 

 
15 

 

Diffraction occurs when the line of sight (LOS) between transmitter and receiver is 

obstructed by an impenetrable object larger than the wavelength. Secondary waves 

are created behind the object and they can still reach the receiver even though it is 

shadowed by an obstacle, which is why this phenomenon is also called shadowing 

[RD1]. 

 

The causes of scattering are non-uniformities in propagation medium much smaller 

than the wavelength. Large objects with rough surfaces or small objects relative to 

the wavelength are typical examples. When an electromagnetic wave gets scattered, 

it means that it is reflected in all directions. 

 

Reflection, diffraction and scattering are the reasons why electromagnetic waves typ-

ically do not travel from the transmitter to the receiver over a single path, but via mul-

tiple paths. This phenomenon is called multipath propagation. 

 

 

Figure 5: Multipath propagation 

The decrease of the received signal power that is not caused by the increase of the 

transmission distance is called fading. There are two types of fading: large-scale fad-

ing and small-scale fading [RD1]. Large-scale fading is the average signal power at-

tenuation due to the motion over large areas [RD1]. It is affected by the weather and 

by the terrain contours between the transmitter and the receiver, e.g. the receiver is 



 
 

 
16 

 

shadowed by a building or a hill. The effects of the large-scale-fading can be com-

pensated with the use of automatic gain control (AGC) [RD6]. 

 

Small-scale fading refers to the significant changes of the signal power, phase or the 

angle of arrival caused by small changes (order of the wavelength) in spatial position-

ing between the transmitter and the receiver [RD1]. Multipath propagation is one of 

the causes of the small-scale fading, because of the interference between the signal 

components which reached the receiver through different propagation paths. This 

interference can be constructive and results in the amplification of the signal or de-

structive, which causes signal attenuation. Another cause of the small scale fading is 

the relative motion between the transmitter and the receiver resulting in Doppler ef-

fects [RD7]. 

 

We can also classify fading depending on how fast the impulse response of the 

channel changes. If it significantly changes during one symbol period, we have fast 

fading. If the changes don’t occur that fast, we speak of slow fading. In some cases 

there are identical fading effects over the whole bandwidth (flat fading), otherwise we 

talk about frequency selective fading [RD8].  

 

Fading channels are typically modeled by using a Rice distribution in the case where 

there is a LOS component or by using a Rayleigh distribution, if there is no LOS 

[RD8]. 

1.3. Modulation 

Time-discrete signals cannot be transmitted over the channel described in the previ-

ous chapter, because the channel itself is analog. Instead, the modulator in Figure 1 

converts digital data x[n] to analog waveforms s(t). This process is called baseband 

or digital modulation. The simplest digital modulation is binary modulation in which 

binary values are mapped onto two different waveforms, e.g. binary phase shift key-

ing (BPSK). BPSK changes the phase of a sinusoidal signal depending on the bit 

value (π for binary ‘0’ and 0 for binary ‘1‘, or vice versa). More advanced modulation 

schemes map more than one bit to a single analog waveform. A group of K bits can 



 
 

 
17 

 

be grouped into a symbol, which is mapped to one out of M = 2K waveforms. This 

technique is called M-ary modulation [RD8]. 

 

Additionally, baseband signal undergoes carrier modulation, which places the signal 

in the optimal frequency range for transmission via radio frequency (RF). Demodula-

tor does the opposite by converting the analog signal r(t) into digital data y[n]. 

1.4. Channel Model 

In this thesis, modulator and demodulator will be considered to be part of the chan-

nel. Multipath propagation, Doppler shift as well as all other fading effects are con-

sidered to be totally compensated by suitably selected synchronization and estima-

tion techniques, which are also considered to be the part of the channel. These very 

significant simplifications leave us with the channel (discrete channel from Figure 1) 

whose input x[n] and output y[n] are both digital. The only impairment that will be 

considered is AWGN. BPSK modulation scheme is assumed. If a binary sequence x 
is transmitted, the signal at the receiver’s end is given by 

 iii nsy +=  (3) 

where 12 −= ii xs . The Gaussian noise is denoted by ni, with two-sided power spec-

tral density N0/2 equal to its variance σ2. 

1.5. Source Coding 

The goal of source coding is to compress the data provided by the source to the 

smallest number of bits possible, without any loss of information. Statistical redun-

dancy is identified and eliminated [RD9]. The point is to transmit the same infor-

mation with fewer bits thus increasing the throughput.  



 
 

 
18 

 

1.6. Encryption  

Encryption is coding data in a way so that only authorized parties can access them. It 

is also used to prevent counterfeiting and forgery of messages. Encrypted messages 

can be read only, if the matching key is available [RD4]. 

1.7. Shannon Limit  

In [RD10] Shannon showed that there is a theoretical upper limit for the information 

rate of any communication channel, called Shannon capacity or channel capacity, 

below which an arbitrarily small error probability is achieved. Using the Shannon-

Hartley theorem, the channel capacity C can be computed as 

 𝐶 =  𝑊 log2(1 + 𝑆
𝑁

 ) (4) 

where S and N denote the average signal and noise power. The latter is proportional 

to bandwidth W: 

 𝑁 =  𝑁0𝑊 (5) 

Combining Equations (4) and (5) yields: 

 𝐶 =  𝑊 log2(1 + 𝑆
𝑁0𝑊

 ) (6) 

If we assume that the transmission occurs at a rate equal to the channel capacity, we 

have that [RD1] 

 
00 N

E
CN

S b=  (7) 

After a couple of straightforward steps, we obtain 

 
𝐶
𝑊

=  log2 �1 + 𝐸𝑏
𝑁0
∙ 𝐶
𝑊

 � (8) 

which is equivalent to 



 
 

 
19 

 

 2𝐶/𝑊 = 1 + 𝐸𝑏
𝑁0
∙ 𝐶
𝑊

   (9) 

and 

 )12( /

0

−= WCb

C
W

N
E  (10) 

The following figure shows the normalized bandwidth CW /  versus 0/ NEb  according 

to Equation (10). 

 

Figure 6: Normalized channel bandwidth as a function of Eb/N0 [RD1] 

The curve from the Figure 6 shows the asymptotical behavior for ∞→CW / . This 

means that error-free transmission is not possible if 0/ NEb  falls below a certain val-

ue. This value can be calculated from Equation (10): 

 dB59.1
0

−=
N
Eb  (11) 

is called the Shannon limit [RD1]. This limit cannot be reached, because the band-

width requirements would increase without bound. 



 
 

 
20 

 

1.7.1. Channel Coding 

Binary modulation schemes alone operate far from the Shannon limit. The goal of 

channel coding is to improve the performance of the communication system, i.e. to 

facilitate the system operation as close to the Shannon limit as possible by adding 

redundancy at the transmitter side, which is then used at the receiver to detect and 

possibly correct errors.  

 

There are two different groups of techniques used for channel coding. Automatic re-

peat request (ARQ) is a strategy that solely detects errors without being able to cor-

rect them at the receiver side. If a transmission error is detected, the retransmission 

request is sent by the receiver and the same message is transmitted again. ARQ 

techniques are suitable for data applications, but they might be problematic for delay-

critical communication, like voice applications, because the information flow is influ-

enced by the channel conditions [RD7]. Also, the repeated transmission of the same 

messages increases the energy consumption. Forward error correction (FEC) tech-

niques are able to correct the detected errors, which means that the state of the 

communication channel has an impact on the error rate, but it does not influence the 

information flow. Using FEC, larger number of errors can be tolerated. This means 

that FEC-coded systems can operate with lower transmit power, transmit over longer 

distances, use smaller antennas and/or transmit at higher data rates [RD4]. ARQ is 

not the topic of this thesis and will not be considered further. 

 

As mentioned, a FEC encoder adds redundancy to the input sequence. An input of 

an FEC encoder is k bits long and the output is n bits long, where n > k. The output of 

an FEC encoder is also called a code word. Although there are 2n possible sequenc-

es using n bits, there are only 2k valid code words [RD11]. The amount of added re-

dundancy is typically described by the code rate: 

 

 
n
kCR =  (12) 



 
 

 
21 

 

The choice of the code rate influences both energy and bandwidth efficiency of the 

system. A trade-off between the two has to be made. Higher code rates result in the 

smaller number of errors, thus improving the energy efficiency of the system. Howev-

er, a higher code rate decreases the bandwidth efficiency of the system, because it 

implies larger number of parity bits for the same number of information bits [RD4]. 

 

There are linear and non-linear FEC codes. If any linear combination of code words 

is also a code word, we speak of linear codes. Channel errors can transform one val-

id code word into another valid code word. In that case, error detection and correction 

is impossible. This means that the maximum number of errors that can be corrected 

depends on the number of positions at which the binary value is different for any two 

code words of a code [RD12]. This number is called minimal Hamming distance and 

it is a measure for the minimum number of channel errors that could have trans-

formed one valid code word into another valid code word. The number t of errors 

whose correction can be guaranteed, depends on the minimal distance. However, it 

is possible to correct more than t errors in the case of code words with weights higher 

than the minimal distance [RD30], which is why the distance distribution A(w) is often 

used to characterize a linear code. It is the number of code words with weights equal 

to w [RD30]. The following figure shows the distance distribution of the (7, 4) Ham-

ming code [RD30]. 

 

Figure 7: Distance distribution of the (7, 4) Hamming code 

Linear codes are divided into convolutional codes and block codes. The following 

figure shows the typical classification of forward error correcting codes. 



 
 

 
22 

 

 

 

Figure 8: Classification of FEC codes 

1.7.1.1. Block Codes 

Block codes operate on distinct data frames or blocks. They do not process data con-

tinuously. An input of a binary block encoder is a k-bit long vector 𝐮 = (𝑢1,𝑢2, … , 𝑢𝑘) 

and its output is a length-n codeword 𝐜 = (𝑐1, 𝑐2, … , 𝑐𝑛), where 𝑢𝑖 ∈ {0,1} and 𝑐𝑖 =

{0,1}. Code words are generated through the linear mapping [RD7]: 

 𝐜 = 𝐮 𝐆 (13) 

with G denoting a 𝑘 × 𝑛 matrix with full row rank k, called the generator matrix. The 

design of the generator matrix is crucial for the performance and decoding complexity 

of block codes.  

 

For every generator matrix G, there is a (𝑛 − 𝑘) × 𝑛 parity check matrix H with full 

row rank 𝑛 − 𝑘 such that [RD7] 

 𝐆 𝐇T = 𝟎𝑘×(𝑛−𝑘) (14) 



 
 

 
23 

 

For any code word c, we have that 

 𝐜 𝐇T = 𝟎(𝑛−𝑘) (15) 

A block code with the generator matrix of the form 

 𝐆 = [𝐈𝑘×𝑘|𝐏] (16) 

where I is the identity matrix and P denotes a 𝑘 × (𝑛 − 𝑘) matrix, is called a system-

atic block code [RD7]. From equations (13) and (16) it can be seen that the first k bits 

of a code word c of a systematic block code are equal to the input vector u, whereas 

the other n – k bits are parity check bits. 

 

The parity check matrix of a systematic block code has the following form: 

 𝐇 = �𝐈(𝑛−𝑘)×(𝑛−𝑘)�𝐏𝑘×(𝑛−𝑘) � (17) 

If a code word c is transmitted, then we have a vector 𝐲 = 𝐜 + 𝐧 at the receiver, 

where n represents the AWGN component. The syndrome of y is defined as follows 

[RD7]: 

 𝐬 = 𝐲 𝐇T (18) 

If the syndrome has a non-zero value, an error must have occurred. However, 𝐬 = 0 
does not guarantee that no errors have occurred, because there is also a possibility 

that due to the large number of channel errors, a valid code word has been trans-

formed into another valid code word. This shows that there is a maximum number of 

channel errors that a block code can detect which given by dmin − 1, where dmin de-

notes the minimal Hamming distance [RD7]. Also, there is an upper limit on the error 

correction capability [RD4]: 

 𝑡 = �dmin−1
2

� (19) 

  



 
 

 
24 

 

1.7.1.2. Convolutional Codes 

Unlike block codes, convolutional codes process data continuously. They use binary 

convolution to encode the whole information sequence, without dividing it into indi-

vidual information words or blocks. There are two basic types of convolutional codes: 

non-recursive and recursive convolutional codes [RD7].  

 

Convolutional encoders are typically represented as finite-state-machines (FSM). The 

way they encode data is determined by the generator polynomials. The number of 

generator polynomials is defined by the desired code rate, as each generator poly-

nomial defines the computation of one parity bit per one information bit. Two genera-

tor polynomials will result in the code rate of 1/2, three in the code rate of 1/3 and so 

on [RD4]. The figure below shows a non-recursive convolutional encoder with a code 

rate of CR = 1/2 and the shift register length K = 3 [RD5]. 

 

Figure 9: Non-recursive convolutional encoder with K = 3, CR = 1/2 

The generator polynomials that define the encoder from the Figure 9 are represented 

as follows: 

 𝑔1(𝑧) = 1 + 𝑧2, 𝑔2(𝑧) = 1 + 𝑧 + 𝑧2 (20) 

Recursive convolutional encoders implement a feedback loop, which is the reason 

why they are infinite impulse response filters (IIR), unlike non-recursive encoders that 

have finite impulse response. The following figure depicts a recursive systematic 

convolutional (RSC) encoder with the generator polynomials [RD5]: 



 
 

 
25 

 

 𝑔1(𝑧) = 1 + 𝑧2,  𝑔2(𝑧) = 1 + 𝑧 + 𝑧2 (21) 

 

Figure 10: RSC encoder for UMTS 

The performance of the RSC codes is better at low SNR and worse at high SNR, 

compared to non-recursive, non-systematic convolutional codes [RD4]. 

 

The common way to describe a convolutional encoder is the trellis diagram. It ena-

bles us to represent discrete time, the state of the shift registers, the input and the 

output of the encoder, all on the same graph. Figure 11 shows the trellis diagram for 

the encoder depicted in the Figure 9. 

 

Figure 11: Trellis diagram related to the encoder in Figure 9 



 
 

 
26 

 

Algorithms based on the Viterbi algorithm (VA) or the maximum a-priori (MAP) based 

algorithms are typically used for decoding of convolutional codes. Both VA and MAP  

use the trellis structure of the code and are able to significantly reduce the computa-

tional complexity of the decoding process, compared to the brute force decoding, in 

which the conditional probabilities for each possible information sequence are com-

puted before the most probable one is chosen [RD4].  

1.7.1.3. Turbo Codes 

A turbo code is a parallel combination of two or more constituent convolutional codes. 

The inputs of the constituent encoders are made statistically independent through 

interleaving. This reduces significantly the probability of both constituent encoders 

producing low weight outputs [RD12], which is of great importance at small SNRs. 

However, turbo codes possess relatively low minimal Hamming distance and are thus 

not able to perform as well at high SNR [RD12]. The following figure depicts a turbo 

encoder with RSC encoders as a constituent components. 

 

Figure 12: Example for a turbo encoder 

Due to its high computational complexity, ML decoding of turbo codes is not used in 

practical applications. This complex decoding problem is divided into smaller tasks 

through the introduction of two constituent decoders and iterative decoding. The con-

stituent decoders exchange information after each half-iteration, which greatly im-

proves the performance of turbo codes [RD4]. In order to make the exchange of a 

posteriori information possible, soft-input soft-output (SISO) constituent decoders 

have to be used.  



 
 

 
27 

 

 

Figure 13: Example for a turbo decoder 

The decoding algorithm used by the two constituent decoders has a great influence 

on the performance and computational complexity of turbo codes. As already men-

tioned, there are two main groups of decoding algorithms for convolutional codes. 

One group is based on the Viterbi algorithm, which itself is not used for turbo decod-

ing due to its inability to produce soft-outputs, and the other is based on the MAP al-

gorithm. The decoding algorithms based on the VA minimize the sequence error 

probability; whereas the MAP based algorithms minimize the bit error probability 

[RD4]. MAP-based algorithms are in general computationally more complex, but they 

are able to achieve better performance [RD12]. 

 

  



 
 

 
28 

 

2. LDPC Codes 

2.1. Brief History 

Prior to the introduction of turbo codes and their iterative decoding in 1993 by C. 

Berrou, A. Glavieux, and P. Thitimajshima, the most popular coding scheme was a 

concatenation of a convolutional code with Viterbi decoding and a Reed-Solomon 

code. Turbo codes are able to perform significantly better than this combination. They 

can perform as close as 0.7 dB to the Shannon limit [RD12]. This substantial pro-

gress explains the great success and popularity of turbo codes. The application of 

iterative decoding was so important that it lead to a small revolution in digital commu-

nications. 

 

However, there is a coding algorithm based on iterative decoding, called low-density 

parity check (LDPC), discovered by Gallager [RD13] in 1963, thirty years before the 

discovery of turbo codes. LDPC codes were neglected and forgotten due to the ina-

bility of the processing units at that time to satisfactorily perform calculations needed 

for decoding this sort of codes. LDPC codes were rediscovered by MacKay [RD14] in 

1999, who showed that LDPC codes are able to compete with turbo codes. In 2001, 

Richardson and Urbanke [RD15] demonstrated that LDPC codes perform better than 

turbo codes in the case of long frame lengths. A very significant advantage of LDPC 

codes over turbo codes is the fact that they are computationally less demanding 

[RD3]. 

 

The excellent performance of LDPC codes for long frame lengths makes them suita-

ble for digital video broadcasting (DVB). The first standard recommending LDPC 

codes for its FEC strategy was the Second Generation of Digital Video Broadcasting 

via Satellite (DVB-S2) in 2003. LDPC is also used in the two other second generation 

digital television broadcasting standards: Terrestrial DVB (DVB-T2) and Digital Video 

Broadcasting via Cable (DVB-C2). The same decoder can be used for all three DVB 

standards. Since 2008, LDPC codes are used in the home network technology family 

of standards developed under the International Telecommunication Union (ITU-T 



 
 

 
29 

 

G.hn). Other standards that suggest LDPC codes are the 10GBase-T Ethernet and 

the Wi-Fi 802.11 standard (optional part of 802.11n and 802.11ac). 

 

In DVB standards, a BCH code is used as an outer code in order to correct few errors 

that are left by LDPC decoding. 

2.2. Representation of LDPC Codes 

LDPC codes are a class of linear block codes. They got their name because of the 

fact that they use sparse or low-density parity check matrices. An 𝑀 × 𝑁 matrix is low 

density or sparse, if each column and each row is specified by 

 𝑤𝑐 ≪ 𝑁, 𝑤𝑟 ≪ 𝑀 (22) 

where column weight 𝑤𝑐 and row weight 𝑤𝑟 denote the number of non-zero entries 

in a column and the number of non-zero entries in a row, respectively. For the parity 

check matrix of an LDPC code, all non-zero entries are binary 1’s. An LDPC code is 

called regular, if its parity check matrix meets the following condition: 

 𝑤𝑐 = 𝑐𝑜𝑛𝑠𝑡., 𝑤𝑟 = 𝑐𝑜𝑛𝑠𝑡. (23) 

It is not practical to give an example of a low-density matrix on a single sheet of pa-

per, as the matrix dimensions have to be very large so that the condition from (22) 

can be met. In that sense, the following matrix is not sparse, but it can be used as an 

example for the representation of LDPC codes. 

 𝐇 = �  
1 0
1 1

1 1
0 0

0 1
0 0

1 0
0 1

0 0
1 0

0 1
1 0

0 1
1 1

0 1
1 0

   � (24) 

Like with other block codes, every valid code word c is determined by 

 𝐜 𝐇T = 𝟎 (25) 



 
 

 
30 

 

As already mentioned, LDPC codes are able to perform near the Shannon limit, if the 

block lengths are very high. Very long frames mean very large parity check matrices 

and a multiplication of a code word with a large matrix can be a very complex task. 

The computational complexity is proportional to the number of 1’s in the parity check 

matrix, which is why low-density parity check matrices are used. 

 

Each column of the parity check matrix H corresponds to one code word bit. Parity 

check equations are defined by the rows of the parity check matrix H, i.e. by their 

non-zero elements. Each row corresponds to one parity check equation and a non-

zero element at the position (i, j) means that j-th bit contributes to the i-th parity check 

equation. Parity check equations associated with the parity check matrix H from (24) 

have the following form: 

𝑧1 = 𝑦1 + 𝑦3 + 𝑦4 + 𝑦8 

𝑧2 = 𝑦1 + 𝑦2 + 𝑦5 + 𝑦7 

𝑧3 = 𝑦2 + 𝑦3 + 𝑦6 + 𝑦8 

𝑧4 = 𝑦4 + 𝑦5 + 𝑦6 + 𝑦7 

A typical way to represent LDPC codes is using a bipartite graph, called Tanner 

graph, whose incident matrix is equal to the parity check matrix of the code. A bipar-

tite graph is a graph whose nodes are divided into two disjoint sets such that there is 

no branch that connects two nodes belonging to the same set. In the Tanner graph, 

the nodes are divided into check nodes (CN), which represent parity check equations 

and variable nodes (VN), which represent code bits. The following figure depicts the 

Tanner graph associated with the parity check matrix from (24). 

 

Analog to (23), all variable nodes in the Tanner graph of a regular LDPC code are 

connected to the same number of check nodes and vice versa. The Tanner graph 

depicted in the Figure 14 represents a regular code with  𝑤𝑐 = 2  and  𝑤𝑟 = 4.  

 



 
 

 
31 

 

 

Figure 14: Tanner graph corresponding to the parity check matrix (24) 

2.3. Construction of LDPC codes 

Besides the obvious sparseness requirement, there is one more aspect of great im-

portance which should be considered when constructing an LDPC code – the girth of 

the Tanner graph. The girth of a graph is the length of the shortest cycle in the graph. 

A cycle in a Tanner graph is defined as a finite set of connected edges, the cycle 

starts and ends at the same node and it satisfies the condition that no node (except 

the initial and final node) appears more than once [RD23]. The cycles in the Tanner 

graph of a LDPC code, especially short ones, significantly influence the performance 

of the code. They can even prevent the decoding algorithm from converging. This 

happens because the independence of the extrinsic information exchanged during 

the iterative decoding of LDPC codes is affected by the cycles in the Tanner graph 

[RD23]. Because of this, a well-constructed LDPC codes will have Tanner graphs 

with large girths. The following figure shows a Tanner graph with a cycle of length 4, 

which is indicated by bold lines. 

 

 

Figure 15: An example of a short cycle 

 

 



 
 

 
32 

 

2.3.1. Construction of Regular LDPC Codes 

In this chapter, a brief overview of several construction methods for regular LDPC 

codes (𝑤𝑐 = 𝑐𝑜𝑛𝑠𝑡,𝑤𝑟 = 𝑐𝑜𝑛𝑠𝑡) is given. 

2.3.1.1. Gallager Codes 

This is the original construction presented by Gallager in [RD13]. The parity check 

matrix is obtained by concatenating wc sub matrices:  

 𝐇 = �

𝐇𝟏
𝐇𝟐
⋮

𝐇𝑤𝑐

 �  (26) 

The sub-matrix 𝐇𝟏 contains a single binary 1 in each column and wr  binary 1’s in 

each row. The i-th row contains 1’s in columns  (𝑖 − 1)𝑤𝑟 + 1 to 𝑤𝑟.  

 

The sub-matrices 𝐇𝟐 …𝐇𝒘𝒄 are random permutations of 𝐇𝟏. The block length of a 

Gallager code is equal to 𝑛 ∙ 𝑤𝑟, there are 𝑛 ∙ 𝑤𝑐 parity checks and the design rate is 

equal to 

 𝐶𝑅 = 𝑛∙𝑤𝑟− 𝑛∙𝑤𝑐
𝑛∙𝑤𝑟

= 1 − 𝑤𝑐
𝑤𝑟

   (27) 

The actual code rate may defer from the design rate because H is not guaranteed to 

be full rank. Additional disadvantages of Gallager codes are the possibility of short 

cycles and their non-suitability for quick encoding. On the other hand, they are easy 

to construct and show good performance. 

2.3.1.2. Quasi-Cyclic LDPC Codes 

The parity check matrix of a quasi-cyclic LDPC code consists of square sub-matrices 

which are either full-rank circulants, or zero matrices. The circulant matrix has the 

following form [RD24]: 



 
 

 
33 

 

 𝐏 =  

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0
0 0 1
0 0 0

⋯
0
0
0

⋮ ⋱ ⋮
0 0 0
1 0 0 ⋯ 1

0⎦
⎥
⎥
⎥
⎥
⎤

  𝐿 𝑥 𝐿

  (28) 

The parity check matrix H is constructed in the following way: 

 𝐇 =  �
𝐏𝑎11 𝐏𝑎12  ⋯
𝐏𝑎21 𝐏𝑎22  ⋯
⋮ ⋮  ⋯

𝐏𝑎1𝑛
𝐏𝑎2𝑛
⋮

𝐏𝑎𝑚1 𝐏𝑎𝑚2 ⋯ 𝐏𝑎𝑚𝑛

�  (29) 

where 𝑎𝑖𝑗 = {1,2, … , 𝐿 − 1,∞} and 𝐏∞ is a zero matrix. The block size of a quasi-

cyclic LDPC code is equal to 𝑛𝐿, there are 𝑚𝐿 parity checks and the design rate is 

equal to  

 𝐶𝑅 = 𝑛𝐿−𝑚𝐿
𝑛𝐿

= 𝑛−𝑚
𝑛

   (30) 

In order to produce a regular LDPC code, all sub matrices have to be non-zero matri-

ces. As well as Gallager codes, quasi-cyclic LDPC codes neither guarantee the ab-

sence of short cycles, nor the generation of the full rank matrix H (actual code rate 

may defer from the design code rate). However, these codes are suitable for low 

hardware cost encoding (feedback shift registers with spatial complexity proportional 

to 𝑚𝐿) and they have low memory requirements. 

2.3.1.3. Array Codes 

The same circulant matrix P as for quasi-cyclic LDPC codes is used. For L = q, 

where q is a prime number and integers 𝑗 ≤ 𝑘 ≤ 𝑞, the parity check matrix is gener-

ated in the following way: 

 𝐇 =  

⎣
⎢
⎢
⎢
⎡
𝐈 𝐈      ⋯
𝐈 𝐏1      ⋯      𝐈 ⋯          𝐈

 𝐏j−1  ⋯         𝐏(k−1)

𝐈 𝐏2     ⋯
⋮     ⋮
𝐈  𝐏(j−1) ⋯

 𝐏2(j−1) ⋯  𝐏2(k−1) 
⋮ ⋮

 𝐏(j−1)(j−1)  ⋯  𝐏(j−1)(k−1) ⎦
⎥
⎥
⎥
⎤
  (31) 



 
 

 
34 

 

The block length of array codes is equal to 𝑘𝑞, there are 𝑗𝑞 parity checks and the 

design rate is equal to 

 𝐶𝑅 = 𝑘𝑞− 𝑗𝑞
𝑘𝐿

= 𝑘−𝑗
𝑘

  (32) 

Array codes guarantee non-existence of cycles with length 4, when 𝑗 > 3 [RD24]. 

Unlike Galager and quasi-cyclic codes, the actual rate is always equal to the design 

rate, because the generated parity check matrix H is guaranteed to be full rank. Array 

codes show worse performance than Gallager codes and do not have structure suit-

able for quick encoding. 

2.3.1.4. Random Regular LDPC Codes 

Starting from the zero matrix 𝐇𝟎, a regular LDPC code with CR = (n – m)/n can be 

constructed in the following three steps, which are repeated until n columns (matrix 

𝐇𝐧) have been generated [RD24]: 

 
Step 1: At step i, choose a random 𝑚 ×  1  column of weight wc, which is not 

already being used in 𝐇𝐢−𝟏 or rejected in previous steps, and add it to 𝐇𝐢−𝟏. 

 

Step 2: Check whether the added column has more than one 1-component in 

common with any column in 𝐇𝐢−𝟏. If not, go to next step. Else reject the 

column and go back to step 1. 

 

Step 3: If all rows have weight less than wr , save 𝐇𝐢 and continue to the next 

round. Else, reject the column and go back to step 1. 

 

Random LDPC codes are proven to have good performance [RD20]. One of the rea-

sons for their good performance is the non-existence of cycles with length 4 due to 

step 2 of the generation algorithm. The parity check matrix may not be full rank, 

which is why the actual rate is perhaps not equal to the design rate. The structure of 

random LDPC codes is not well suited for quick encoding and the construction itself 

can be computationally very demanding for large frame lengths and column weights. 



 
 

 
35 

 

2.3.2. Construction of Irregular LDPC codes 

Several different methods for construction of irregular LDPC codes are briefly ex-

plained in this section. 

2.3.2.1. Modified Array Codes 

Sub-matrix P and integers 𝐿, 𝑗,𝑘 and 𝑞 are defined as done with array codes. The 

way the parity check matrix H is created is modified in the following way: 

 𝐇 =  

⎣
⎢
⎢
⎢
⎡
𝐈 𝐈     𝐈         ⋯

 𝟎 𝐈    𝐏1    ⋯
     𝐈 ⋯                    𝐈

 𝐏j−2     ⋯                 𝐏(k−2)

  𝟎 𝟎  𝐈        ⋯
    ⋮ ⋮     ⋮              
    𝟎 𝟎  𝟎       ⋯

 𝐏2(j−3)     ⋯            𝐏2(k−3) 
⋮ ⋮
𝐈  ⋯              𝐏(j−1)(k−j) ⎦

⎥
⎥
⎥
⎤
  (33) 

Same as in array codes, the block length of modified array codes is 𝑘𝑞, there are 𝑗𝑞 

parity checks and the design rate is equal to  

 𝐶𝑅 = 𝑘𝑞− 𝑗𝑞
𝑘𝐿

= 𝑘−𝑗
𝑘

 (34) 

H is always full rank which means that the actual code rate equals the design rate. 

For 𝑗 > 3, no length-4 cycles exist. Modified array codes can be encoded using the 

encoding algorithm proposed in [RD25], whose time complexity is linearly proportion-

al to the block length. 

2.3.2.2. Random Construction of Irregular LDPC Codes 

One can represent the variable and check node degree distribution for irregular 

LDPC codes in polynomial form. For variable node degree distribution we have 

[RD26] 

 𝜆(𝑥) = ∑ 𝜆𝑖𝑥𝑖−1
𝑑𝑣
𝑖=2  (35) 

where 𝜆𝑖 is the fraction of edges emanating from variable nodes of degree i and 𝑑𝑣 is 

the maximum variable node degree of the irregular LDPC codes. The check node 

degree distribution can defined in similar manner: 



 
 

 
36 

 

 𝜌(𝑥) = ∑ 𝜌𝑖𝑥𝑖−1
𝑑𝑐
𝑖=2  (36) 

where 𝜌𝑖 is the fraction of edges emanating from check nodes of degree i and 𝑑𝑐 is 

the maximum check node degree of the irregular LDPC codes. The random construc-

tion technique for an irregular LDPC code from a profile given by 𝜆(𝑥) and 𝜌(𝑥) as 

well as block length N consists of the following steps:  

 

Step 1: Start with an empty matrix with size 𝑀 × 𝑁, where 𝑀 = 𝑁(1 − 𝑅). For 
rate R we have: 

 𝑅 = 1 −
∑ 𝜌𝑖

𝑖�𝑖

∑ 𝜆𝑗
𝑗�𝑗

 (37) 

Step 2: According to a given degree distribution, calculate the number of ones 

in each row (from 1 to M) and in each column (from 1 to N). 

 

Step 3: For each column, select a random row and assign ones to this matrix 

entry (row, column). 

 
Step 4: Check if the degree constraint for the corresponding row is violated 

and if any cycles of length 4 will be formed. If any of the two constraints is 

violated, select another random row and check again. 

This technique guarantees that the girth is higher than four and that the column 

weights are exactly as desired. However, for short block lengths, row weights cannot 

be controlled.  

2.3.2.3. Accurate Random Construction of Irregular LDPC Codes 

In [RD26], an improved version of the random construction technique, called accurate 

random construction, is presented. In order to precisely control the row weights, step 

3 from the random construction algorithm is changed. The improvement is achieved 

by the generation of a vector u with length equal to the total number of 1s in the pari-

ty check matrix. Each element of u contains a row number in which a non-zero entry 

can be placed. Instead of the direct random selection of rows, they are randomly se-



 
 

 
37 

 

lected from the vector u. After placing the non-zero entry in the parity check matrix, 

the corresponding element of u is deleted. At the end of the process, the vector u will 

be empty.  

2.3.2.4. Speed-up Accurate Random Construction Irregular LDPC Codes  

According to [RD26], this technique provides better performance of LDPC codes than 

the previous two. The following example describes the technique (CR = 0.5, i.e. N = 

2M): 

 

Step 1: Start with an empty matrix H with size 𝑀 × 𝑀 

 

Step 2: Split H into two sub-matrices [  𝑀 × 𝑀  |  𝑀 × 𝑀  ] 

 
Step 3: Set both sub-matrices to eye matrices (identity matrices in our case). 

 

Step 4: According to a given degree distribution (λ, ρ), calculate the number of 

ones in each row and column. 

 

Step 5: Subtract one from the number of ones of each column and two from 

the number of ones of each row.  

 

Step 6: For each column, randomly choose rows from u and assign ones to 

that position.  
 
Step 7: Check if the degree constraint for the corresponding row is violated 

and if any cycles of length 4 will be formed. If any of the two constraints is 

violated, select another random row and check again. When a row which 

satisfies the two constraints has been found, delete the entry from the vector 

u. 



 
 

 
38 

 

2.4. Encoding 

Like with any linear block code, LDPC encoding can be performed through linear 

mapping of an information sequence u into the corresponding code word c using 

generator matrix G: 

 𝐜 = 𝐮 𝐆 (38) 

2.4.1. Conventional Encoders 

The conventional LDPC encoding algorithm is systematic with the generator matrix G 

derived from the parity check matrix H by Gaussian elimination (row permutations, 

sums of rows, column permutations). The goal is to transform the parity check matrix 

into the systematic form: 

 𝐇′ = [𝐏 | 𝐈] (39) 

Generator matrix 𝐆 = [𝐈𝑘×𝑘|𝐏] is then easily obtained, according to Equation (14). 

The computational complexity of transforming the parity check matrix into systematic 

form is Ο(𝑛3)  [RD16], where n stands for the frame length. The low-density property 

is lost in the Gaussian elimination process, which is why the computational complexi-

ty of the encoding is approximately equal to the complexity of the matrix multiplication 

[RD16], namely O(𝑛2). LDPC codes are very often used with large block sizes, in 

which case the encoding complexity can be significant. Because of this, the focus is 

on algorithms for encoding of LDPC codes which would, unlike the conventional en-

coding of block codes, take advantage of the sparseness of LDPC codes and result 

in lower complexity. 

2.4.2. Message-Passing Encoders 

In [RD17] and [RD18] a message-passing encoder is proposed. The main idea is to 

look at the code word at the transmitter side like it has been transmitted over a binary 

erasure channel, with the missing parity bits being erased by the channel and then to 

perform message-passing decoding algorithm (discussed in the next chapter) in or-

der to recover the erased bits, i.e. missing parity bits. This algorithm is not completely 



 
 

 
39 

 

reliable, because it fails in the case when missing parity bits form a stopping set. A 

stopping set is a subset S of the variable nodes such that every check node connect-

ed to S is connected to S at least twice. This happens due to the inability of the mes-

sage-passing algorithm to proceed with decoding, if there is a check node connected 

to more than one erasure [RD19].  

2.4.3. Encoding by Approximate Linear Triangulation 

Another encoding algorithm, without any stopping set constraints is presented in 

[RD16]. It transforms the parity check matrix into an approximate lower triangular 

form (ALT) by performing row and column permutations. Additions of rows are not 

performed. The main advantage of this algorithm is the fact that the sparseness of 

the parity check matrix is preserved in its ALT form. This results in almost linear en-

coding computational complexity O(n+g2), where n denotes the block length and  

g << n is called the “gap” of linear encoding and represents the number of rows that 

cannot be transformed into triangular through simple permutations.  

The first step is to transform the parity check matrix into its ALT form. The result is 

the matrix HALT  of the following form: 

 

Figure 16: Approximate lower triangular form of the parity check matrix 



 
 

 
40 

 

It is important to note that all sub-matrices of the matrix HALT are sparse. The next 

step is to construct the systematic approximately lower triangular form (SALT) of the 

parity check-matrix. Using Gaussian transformation, the matrix E is transformed into 

an all-zero matrix and matrix D into an identity matrix. 

 

Figure 17: Systematic approximate lower triangular form of the parity check 
matrix 

The first n-m bit positions of the code word are occupied by data bits u. Parity bits are 

divided into two segments: g bits long segment p1 and m-g bits long segment p2. The 

first segment of parity check bits is obtained in the following way: 

 𝐩𝟏 = 𝐮 ∙ 𝐂𝟏𝐓 (40) 

From the parity check condition in Equation (15) we obtain 

 𝐀 ∙ 𝐮𝐓 + 𝐁 ∙ 𝐩𝟏𝐓 +  𝐓 ∙ 𝐩𝟐𝐓 =  𝟎𝒎×𝟏 (41) 

And for the second segment 𝒑𝟐 we have that 

 𝑝2(𝑙) = ∑ 𝐴𝑙,𝑗 ∙ 𝑢𝑗 +𝑛−𝑚
𝑗=1 ∑ 𝐵𝑙,𝑗 ∙ 𝑝1(𝑗) +𝑔

𝑗=1 ∑ 𝑇𝑙,𝑗 ∙ 𝑝2(𝑗)𝑙−1
𝑗=1  (42) 

for 𝑙 = 1,2, … ,𝑚 − 𝑔. 



 
 

 
41 

 

All matrices used to calculate parity bits are sparse, except for C1, which is used to 

calculate g parity bits. As total computational complexity of the algorithm equals 

O(n+g2), it is of utmost importance to find a SALT form of the parity check matrix in a 

way that minimizes g. In [RD16], an algorithm called “greedy permutation algorithm” 

is proposed for generating SALT form of a sparse matrix. The complexity of this algo-

rithm is O(n3), i.e. it is the same as the complexity of the Gaussian permutation. 

2.5. Decoding 

As already mentioned, decoding of LDPC codes is performed in an iterative manner. 

Iterative decoding is a technique that employs a soft-output decoding algorithm that 

is iterated several times. The goal is to approach the performance of ML decoding 

while minimizing the computational complexity [RD2]. Iterative decoding algorithms 

are sometimes referred to as probabilistic decoding, because of their property to 

maximize the a posteriori probability that a certain symbol has been sent given the 

noisy observation [RD2]. They typically represent a posteriori information in the form 

of likelihood ratios (LR) or, if decoding is performed in logarithmic domain, in the form 

of log-likelihood ratios (LLRs): 

 𝐿𝑅(𝑢𝑖|𝐲) = 𝑃(𝑢𝑖=1|𝒚)
𝑃(𝑢𝑖=−1|𝒚)

 (43) 

 𝐿𝑅(𝑦𝑖|𝑥𝑖) = 𝑃(𝑦𝑖|𝑥𝑖=+1)
𝑃(𝑦𝑖|𝑥𝑖=−1)

 (44) 

 𝐿𝐿𝑅(𝑦𝑖|𝑥𝑖) = 𝑙𝑛 𝑃(𝑦𝑖|𝑥𝑖=+1)
𝑃(𝑦𝑖|𝑥𝑖=−1)

 (45) 

where 𝑢𝑖, 𝑦𝑖, 𝑥𝑖 denote output, noisy observation (received signal) and the original 

message bit, respectively. The hard decision on a bit is determined by the sign of its 

LLR and the magnitude indicates the probability that the right decision has been 

made [RD3]. In case of BPSK, for the output of an ideal demodulator we have [RD4]: 

 𝑃(𝑦𝑖|𝑥𝑖 = ±1) = 1
�𝜋∙𝑁0

exp �− 𝐸𝑠
𝑁0

(𝑦𝑖 ∓ 𝑎)2� (46) 



 
 

 
42 

 

where 𝐸𝑠 stands for the energy per symbol and 𝑎 is the fading amplitude. By com-

bining Equations (45) and (46) we get: 

 𝐿𝐿𝑅(𝑦𝑖|𝑥𝑖) = 4𝑎 𝐸𝑠
𝑁0
∙ 𝑦𝑖 = 𝐿𝑐 ∙ 𝑦𝑖 (47) 

For an AWGN channel, 𝑎 = 1. The value 𝐿𝑐 reflects the state of the channel and it 

might be considered as a measure for channel reliability [RD4]. 

2.5.1. Belief Propagation 

The belief propagation algorithm was proposed by Gallager in his original paper. It 

has been re-discovered several times and it is also known under other names such 

as Pearl’s algorithm or Sum-Product algorithm [RD2]. 

 

The algorithm is based on the Tanner graph representation in which each received 

bit is associated with one variable node. The nodes of the graph exchange messages 

through the edges in an iterative manner. The messages are in LR form and repre-

sent soft information about the state of a bit corresponding to a variable node. The 

node update schedule used by the belief propagation algorithm is called flooding 

schedule and it consists of four steps [RD3], which are presented in detail in the se-

quel. 

 

Step 1: Initialization 

A priori LRs are calculated for each VN: 

 𝐿𝑅𝑖𝑛 = 𝑃(𝑥𝑖=+1|𝑦𝑖)
𝑃(𝑥𝑖=−1|𝑦𝑖)

= 𝑒2𝑦𝑖/𝜎2 (48) 

where 𝜎2 is the variance of the received signal. Message passing starts in that each 

VN passes its 𝐿𝑅𝑖𝑛 value to each CN it is connected to. At this point we have: 

 𝑀𝑣→𝑐 = 𝐿𝑅𝑖𝑛 (49) 



 
 

 
43 

 

Step 2: Check node update 

In this step, a response of each check to each variable node it is connected to is cal-

culated: 

 𝛿 = ∏ 1−𝑀𝑣′→𝑐
1+𝑀𝑣′→𝑐

𝑣′∈𝑣𝑐\𝑣  (50) 

In the above equation, 𝑣 is the variable node that the response is being calculated 

for, 𝑣𝑐 represents the set of all variable nodes the check node is connected to and 

𝑣𝑐\𝑣 is the same set, but without the variable node 𝑣. For the outgoing message we 

have: 

 𝑀𝑐→𝑣 = 1−𝛿
1+𝛿

 (51) 

Step 3: Variable node update 

In this step, soft outputs are calculated along with the response to the check nodes: 

 𝑆𝑂𝑣 = 𝐿𝑅𝑖𝑛  ∏ 𝑀𝑐→𝑣𝑐∈𝑐𝑣  (52) 

From the soft-output, outgoing messages are finally calculated: 

 𝑀𝑣→𝑐 = 𝑆𝑂𝑣
 𝑀𝑐→𝑣

  (53) 

Step 4: Stopping criteria 

At this point, soft outputs are available and hard decisions are made. If parity check 

equations are fulfilled or the maximum number of iterations has been reached, the 

decoding process is terminated. Otherwise, the process is repeated starting with step 

2 of the procedure. 

2.5.2. Belief Propagation in the Logarithmic Domain 

Belief propagation algorithm demands a large number of multiplications which are 

expensive to implement compared to additions. Because of this, the BP algorithm is 

often implemented in the logarithmic domain. The schedule stays the same: 



 
 

 
44 

 

 

Step 1: Initialization 

Instead of a priori LRs, a priori LLRs are calculated for each VN: 

 𝐿𝑅𝑖𝑛 = 𝑙𝑛 𝑃(𝑥𝑖=+1|𝑦𝑖)
𝑃(𝑥𝑖=−1|𝑦𝑖)

= 2𝑦𝑖
𝜎2

 (54) 

which are then passed to the check nodes: 

 𝑀𝑣→𝑐 = 𝐿𝐿𝑅𝑖𝑛 (55) 

Step 2: Check node update 

Transforming the equation into logarithmic domain we get: 

 𝛿 = ∏ 1−exp�𝑀𝑣′→𝑐�
1+exp (𝑀𝑣′→𝑐)𝑣′∈𝑣𝑐\𝑣 = ∏ −tanh

𝑀𝑣′→𝑐
2𝑣′∈𝑣𝑐\𝑣  (56) 

 𝑀𝑐→𝑣 = −2 atanh(𝛿) (57) 

Step 3: Variable node update 

 𝑆𝑂𝑣 = 𝐿𝑅𝑖𝑛 + ∑ 𝑀𝑐→𝑣𝑐∈𝑐𝑣  (58) 

 𝑀𝑣→𝑐 =  𝑆𝑂𝑣 − 𝑀𝑐→𝑣 (59) 

 Step 4: Stopping criteria 

If parity check equations are fulfilled or the maximum number of iterations has been 

reached, the decoding process is terminated. Otherwise, the process is repeated 

starting with the step 2. 

 

Because of the high computational complexity of the tangent hyperbolic and arc-

tangent hyperbolic functions, sub-optimal versions of the belief propagation algorithm 

in the logarithmic domain, which do not use these functions, are used. All these algo-

rithms differ from the standard belief propagation algorithm only in the way they per-



 
 

 
45 

 

form check node updates, because the variable node update of the belief propaga-

tion algorithm are not critical. 

2.5.3. Min-Sum Algorithm 

The sign and the absolute value of the 𝑀𝑐→𝑣 message are calculated separately. For 

the sign we have that 

 𝑠𝑖𝑔𝑛( 𝑀𝑐→𝑣) =  ∏ 𝑠𝑖𝑔𝑛(𝑀𝑣′→𝑐)𝑣′∈𝑣𝑐\𝑣  (60) 

Magnitude is calculated using following equation: 

 |𝑀𝑐→𝑣| ≈ min𝑣′∈𝑣𝑐\𝑣|𝑀𝑣′→𝑐| (61) 

This means that all incoming messages, except the one with the smallest magnitude, 

are ignored. The min-sum algorithm significantly reduces the computational com-

plexity of the BP algorithm, however it performs poorly because it always overesti-

mates the magnitude |𝑀𝑐→𝑣|. 

2.5.4. Normalized Min-Sum Algorithm 

The idea behind the normalized min-sum algorithm is quite simple. The over-

estimation of the outgoing messages is compensated through multiplication by a 

normalizing factor α, with 0 < α ≤ 1: 

 |𝑀𝑐→𝑣| ≈ α ∙ min
𝑣′∈𝑣𝑐\𝑣

|𝑀𝑣′→𝑐| (62) 

2.5.5. Offset Min-Sum Algorithm 

Another way to compensate the over-estimation of the outgoing messages is to intro-

duce negative offset: 

 |𝑀𝑐→𝑣| ≈ max  (min𝑣′∈𝑣𝑐\𝑣|𝑀𝑣′→𝑐| − 𝛽, 0) (63) 

  



 
 

 
46 

 

3. DVB-S2 and DVB-S2X Standards 

Standards for digital video broadcasting (DVB) have been issued by a Joint Technical 

Committee (JTC) of the European Telecommunications Standards Institute (ETSI), 

European Committee for Electrotechnical Standardization (CENELEC) and European 

Broadcasting Union (EBU). DVB standards define physical and data distribution lay-

ers depending on the data distribution method: 

 

• DVB-S, DVB-S2, DVB-S2X (draft) and DVB-SH for television via satellite 

• DVB-C and DVB-C2 for television via cable 

• DVB-T and DVB-T2 for terrestrial television 

 

DVB-S2X (Draft ETSI EN 302 307-2) is an extension to the DVB-S2 standard (ETSI 

EN 302 307). DVB-S2X systems are optimized for the following broadband satellite 

applications [RD21]: 

 

• Broadcast Services (BS) - Digital Multi-Program Television (TV)/High 

Definition Television (HDTV) 

• Interactive Services (IS) - Interactive data services including Internet access 

• Digital TV Contribution and Satellite News Gathering (DTVC/DSNG) 

• Data content distribution/trunking and other professional applications (PS) 

3.1. System Architecture  

The following figure shows the system architecture of the DVB-S2 System. The archi-

tecture is not changed in the DVB-S2X extension.  

 



 
 

 
47 

 

 

Figure 18: DVB-S2 and DVB-S2X system architecture 

3.1.1. Mode Adaptation  

Mode adaptation is application-dependent. It provides input stream interfacing, input 

stream synchronization (optional), null-packet deletion, CRC-8 coding for error detec-

tion at packet level in the receiver (for packetized input streams only), merging of in-

put streams (for multiple input stream modes only) and slicing into data fields [RD21]. 

3.1.2. Stream Adaptation  

Stream adaptation is applied, to provide padding to complete a baseband frame and 

baseband scrambling. 

3.1.3. FEC Codec 

Forward error correction (FEC) coding is carried out by the concatenation of BCH 

outer codes and LDPC inner codes. All allowed code rates and digital modulation 

schemes for normal and short frames are listed in the Table 1 and in Table 2, respec-

tively. Original DVB-S2 combinations are marked as S2-MODCODs. The DVB-S2 

standard defines two FEC block lengths: 𝑛𝑙𝑑𝑝𝑐 = 64 800 bits or 𝑛𝑙𝑑𝑝𝑐 = 16 200 bits 

depending on the application area. DVB-S2X introduces an additional block length of 

𝑛𝑙𝑑𝑝𝑐 = 32 400 bits. An outer BCH codec provides the correction of additional 12, 



 
 

 
48 

 

10 or 8 errors per frame, depending on the MODCOD, which are left over after LDPC 

decoding. The system can provide Constant Coding and Modulation (CCM), Variable 

Coding and Modulation (VCM) or Adaptive Coding and Modulation (ACM). In this lat-

ter case, a single satellite receiving station typically controls the protection mode of 

the full TDM multiplex, or multiple receiving stations control the protection mode of 

the traffic addressed to each one [RD21]. In the case of VCM and ACM, FEC and 

modulation scheme may differ for different frames, but they remain constant within a 

single frame. 

 

FEC coding should enable “Quasi Error Free” (QEF) transmission using the highest 

code rate possible. The definition of QEF adopted for DVB-S2 is "less than one un-

corrected error-event per transmission hour at the level of a 5 Mbit/s single TV ser-

vice decoder", approximately corresponding to a transport stream packet error ratio 

PER < 10−7 before de-multiplexer [RD21].  

 

Figure 19: DVB-S2 format of data before bit interleaving 

3.1.4. Bit Mapping into Constellations 

In DVB-S2 four digital modulation schemes are defined: QPSK, 8PSK, 16APSK and 

32APSK. Due to theirs quasi-constant envelope, QPSK and 8PSK are well suited for 

the applications in which the high power amplifier (HPA) in a transponder is driven 

near saturation. Non-constant envelope modulations are much more sensitive to non-

linear distortions, e.g. at the output of a saturated high power amplifier there would 

be only one magnitude level even though the input signal is modulated with two 

magnitude levels using 16APSK. Non-linear compensation techniques, which can 

improve the power efficiency of non-constant envelope modulations, exist. The non-



 
 

 
49 

 

constant modulus modulations used in DVB-S2 have higher spectral efficiency than 

the quasi constant envelope ones, due to the higher number of bits in one symbol. 

DVB-S2X introduces additional non-constant modulus modulation schemes. 

 
FECFRAME (normal) 

(see MODCODs below) 

64 800 bits 

 

 

 

QPSK 

1/4, 1/3, 2/5 

(S2-MODCODs) 

1/2, 3/5, 2/3, 3/4, 4/5, 5/6 

 

8/9, 9/10 

(S2-MODCODs) 

13/45 

9/20; 11/20 

 

8PSK 

3/5, 2/3, 3/4, 5/6, 8/9, 9/10 

(S2-MODCODs) 

23/36; 25/36; 13/18 

8APSK-L 5/9; 26/45 

 

16APSK 

2/3, 3/4, 4/5, 5/6, 8/9, 9/10 

(S2-MODCODs) 

26/45; 3/5; 28/45; 23/36; 25/36;  

13/18; 7/9; 77/90 

16APSK-L 5/9; 8/15; 1/2; 3/5; 2/3 

 

32APSK 

3/4, 4/5, 5/6, 8/9, 9/10 

(S2-MODCODs) 

 

32/45; 11/15; 7/9 

32APSK-L 2/3 

64APSK 11/15; 7/9; 4/5; 5/6 

64APSK-L 32/45 

128APSK 3/4; 7/9 

256APSK 32/45; 3/4 

256APSK-L 29/45; 2/3; 31/45; 11/15 

Table 1: Code rates and modulation schemes for DVB-S2X – normal frame 
[RD21] 

 



 
 

 
50 

 

FECFRAME (short) 

(see MODCODs below) 

16 200 bits 

 

 

 

QPSK 

1/4, 1/3, 2/5 

(S2-MODCODs) 

1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9 

(S2-MODCODs) 

11/45; 4/15; 14/45; 7/15; 8/15 

32/45 

 

8PSK 

3/5, 2/3, 3/4, 5/6, 8/9 

(S2-MODCODs) 

7/15; 8/15; 26/45; 32/45 

 

16APSK 

2/3, 3/4, 4/5, 5/6, 8/9 

(S2-MODCODs) 

7/15; 8/15; 26/45; 3/5; 32/45 

 

32APSK 

3/4, 4/5, 5/6, 8/9 

(S2-MODCODs) 

2/3; 32/45 

Table 2: Code rates and modulation schemes for DVB-S2X - short frame[RD21] 

3.1.5. Physical Layer Framing 

Physical layer framing shall be applied in a synchronous manner to the FEC frames, 

to provide Dummy PLFRAME insertion, Physical Layer Signaling, pilot symbols inser-

tion (optional) and Physical Layer Scrambling for energy dispersal. Dummy PLF-

RAMEs are transmitted when no useful data are ready to be sent on the channel. 

The system provides a regular physical layer framing structure, based on SLOTs of 

M = 90 modulated symbols, allowing reliable receiver synchronization on the FEC 

block structure [RD21]. 

3.1.6. Baseband Filtering and Quadrature Modulation 

Baseband filtering with squared-root raised cosine filters is used in order to shape the 

spectrum of the signal. DVB-S2 allows for roll-off factors: 0.35, 0.25 and 0.2. DVB-

S2X introduces additional roll-off factors: 0.15, 0.1 and 0.05. Quadrature modulation 

is applied to produce the RF signal.  



 
 

 
51 

 

4. Implementation 

The goal of the current thesis is to produce an efficient implementation of a DVB-S2X 

compatible LDPC codec for simulation purposes. In order to achieve this, Intel® Ad-

vanced Vector Extensions (AVX) are used. The programming language of choice is 

C++.  

4.1. Intel® AVX 

Intel® AVX is an instruction set enabling Single Instruction Multiple Data (SIMD) op-

erations on Intel® CPUs. The basic idea behind SIMD is the processing of multiple 

data in a single step, which can significantly speed-up the throughput. For example, 

an addition of two length-8 vectors using AVX instruction set has the same through-

put as the addition of two scalars.  

 

Figure 20: SIMD versus scalar instructions [RD27] 

The hardware supporting Intel® AVX consists of the 16 256-bit YMM registers and a 

32-bit control/status register called MXCSR [RD27]. The 256-bit register length ena-

bles the use of length-8 floating-point vectors (32 bit long elements) or length-4 dou-

ble precision vectors (64 bit long elements). 

 

Figure 21: AVX-256 types [RD27] 



 
 

 
52 

 

The IEEE 754-2008 floating-point format offers satisfactory precision for the messag-

es which are exchanged between check and variable nodes of an LDPC decoder. 

This means that it is possible to decode eight DVB-S2X frames in parallel using the 

AVX instruction set. The original goal of this thesis was to implement highly efficient 

LDPC codec for simulation purposes using the AVX instruction set, i.e. to encode and 

decode eight frames in parallel in order to maximize the data throughput. This ap-

proach increases latency (e.g. the decoding of the first received frame doesn’t start 

before seven more frames are received) and is thus not well suited for real time op-

erations. 

4.2. AVX Implementation Problems 

The main problem is the lack of an instruction in the AVX set, which can calculate the 

sign of a floating-point number efficiently. This represents a significant drawback be-

cause of the large number of sign computations which have to be performed in the 

scope of the check node updates. The sign of the outgoing messages (from the 

standpoint of a check node) is computed using the following relationship: 

 𝑠𝑖𝑔𝑛( 𝑀𝑐→𝑣) =  ∏ 𝑠𝑖𝑔𝑛(𝑀𝑣′→𝑐)𝑣′∈𝑣𝑐\𝑣  (64) 

Direct application of this equation for each outgoing message would require 𝑤𝑟 − 2 

multiplications per outgoing message, i.e. 𝑤𝑟(𝑤𝑟 − 2) multiplications per check node 

update. Instead, we can calculate the product of signs of all incoming messages, 

𝑃𝑠𝑖𝑔𝑛𝑠. In order to calculate the sign of the message 𝑀𝑐→𝑣′ we just need to calculate 

the product of the sign of the message 𝑀𝑣′→𝑐 and 𝑃𝑠𝑖𝑔𝑛𝑠: 

 𝑃𝑠𝑖𝑔𝑛𝑠 =  ∏ 𝑠𝑖𝑔𝑛(𝑀𝑣′→𝑐)𝑣′∈𝑣𝑐  (65) 

 𝑠𝑖𝑔𝑛( 𝑀𝑐→𝑣) =  𝑃𝑠𝑖𝑔𝑛𝑠 ∙ 𝑠𝑖𝑔𝑛(𝑀𝑣′→𝑐) (66) 

This requires a total of  2𝑤𝑟 − 1 multiplications. The needed functionality can be de-

fined as follows: 



 
 

 
53 

 

 𝑠𝑖𝑔𝑛(𝑀𝑣→𝑐) = �−1, 𝑀𝑣→𝑐 < 0
1, 𝑀𝑣→𝑐 ≥ 0 

As already mentioned, the AVX instruction set doesn’t offer such an instruction, so a 

function using multiple SIMD instructions has to be programmed. An “if - else” branch 

cannot be used because it is not a SIMD operation. Since |𝑀𝑣→𝑐| has to be comput-

ed anyway, a function which uses the following equation has been considered: 

 𝑠𝑖𝑔𝑛(𝑀𝑐→𝑣) =  𝑀𝑣→𝑐

 |𝑀𝑣→𝑐|
 (67) 

The AVX division instruction performed on 16 floating-point numbers (8 dividends 

and 8 divisors) has a latency of 21 CPU cycles and throughput of 13, 14 or even 28 

cycles depending on the CPU architecture. Because of the poor performance of divi-

sion operation, an approach using multiple, computationally less demanding, opera-

tions has been considered. The result is the following function: 

 

 

 

 

 

 

 

 

Comparing SIMD operation and addition, both have a latency of 3 and a throughput 

of 1 CPU cycle, multiplication has a latency of 5 and a throughput of 1 CPU cycles. 

Data type conversion adds 3 additional cycles of latency and 1 of throughput. How-

ever, each instruction requires the result of the previous one. This results in very 

large latencies which in this case also reduces throughput. Latency could be de-

creased by insertion of additional instructions which have to be executed anyway, in 

times when CPU is idle. 

inline __m256 LDPC_codec::copy_sign_avx(__m256 a){ 
   
 __m256 c; 
 
 c = _mm256_cmp_ps(a, zeros, 2); 
       c = _mm256_castps_si256(c); 
 c = _mm256_cvtepi32_ps(c); 
 c = _mm256_mul_ps(c, twos);  
 c = _mm256_add_ps(c, ones); 
  
 return c; 
  
  
   



 
 

 
54 

 

However, processors offering the AVX2 instruction set came to market in the course 

of this thesis. The AVX2 instruction is a significantly improved version of AVX and it 

was decided to start implementing from the beginning using AVX2 instead of improv-

ing the AVX implementation which did not result in a satisfactory throughput. 

4.3. Intel® AVX2 

The most significant advantage of the AVX2 over the AVX instruction set is the exist-

ence of 256-bits integer SIMD instructions. The vector elements can be 64-bits, 32-

bits, 16-bits or 8-bits long.  

 

Figure 22: New Features (AVX2 vs. AVX) 

The decoding of LDPC codes can be performed with a precision of 3 or more bits 

without performance loss [RD32]. In order to exploit this fact, 8-bits long elements are 

chosen which enables parallel processing of 32 frames. As it is presented in the fol-

lowing table, operations on 8-bit integers have lower latency and throughput than op-

erations on floating-point numbers. Another very important improvement is the exist-

ence of sign instruction with the latency of 1 and the throughput of 0.5 CPU cycles. 

This feature alone saves 10.5𝑤𝑟 − 3.5 CPU cycles per check node update compared 

to the implementation using AVX instruction set, because it enables efficient compu-

tation of the sign of the outgoing message. The AVX2 instruction set does not sup-

port multiplication for 8-bits longs integers. This is not a major issue when implement-

ing the min-sum algorithm, because at least one operand in all multiplications per-



 
 

 
55 

 

formed has unit absolute value. This enables the replacement of the multiplication 

instruction by the sign instruction. For example, the following instruction call multiplies 

32 absolute values (any positive 7-bits long value is allowed) stored in abs_buf  vec-

tor with the corresponding 32 sign values stored in sign_buf (all elements must be 

equal to ±1). 

 

 

 

The _mm256_sign_epi8 instruction copies the absolute value of the first operand 

and changes its sign if the sign of the second operand is negative. This makes it suit-

able for multiplications of two values with unit absolute values but whose signs have 

to be considered too; unlike in the previous example where it is guaranteed that the 

first operand is positive. 

 

Another advantage of AVX2 is the existence of the instruction which computes abso-

lute values of AVX2 array elements. This enables the additional increase of the data 

rate compared to the implementation using the AVX instruction set, because this set 

does not include such an instruction on floating-point numbers. Instead, in order to 

calculate the absolute value of an incoming message, one binary maximum operation 

and one multiplication are performed: 

 |𝑀𝑣→𝑐| = max ( 𝑀𝑣→𝑐  ,−1 ∗ 𝑀𝑣→𝑐) (68) 

The following table compares AVX and AVX2 in terms of latency and throughput of 

their instructions. In the case of the AVX instruction set, the values for absolute value 

and sign computations correspond to multiple instructions used to implement these 

functionalities.  

  

Hcn[i][0].CV = _mm256_sign_epi8(abs_buf, sign_buf); 

 



 
 

 
56 

 

 

Instruction AVX (latency, through-

put) 

AVX2 (latency, through-

put) 

Minimum 3, 1 1, - 

Maximum 3, 1 1, - 

Addition 3, 1 1, 0.5 

Sign 14, 4 1, 0.5 

Subtraction  3, 1 1, - 

Absolute value 6, 2 1, - 

Table 3: AVX vs. AVX2 instruction set 

4.4. Min-Sum Algorithm Family 

Belief propagation algorithm has been implemented without use of SIMD operations, 

because of the lack of vector instructions that could perform complicated computa-

tions needed for the check node update as it is defined in this algorithm. The BP al-

gorithm is used solely as a reference for the Min-Sum algorithm family in terms of 

frame error rate (FER). Its extremely bad performance in terms of computational 

complexity makes it unsuitable for time-efficient simulations. This is the reason why 

this thesis focuses on the efficient implementation of min-sum, normalized min-sum 

and offset min-sum algorithms. 

 

The min-sum algorithm is the only decoding algorithm implemented using the AVX2 

instruction set. The normalized min-sum and the offset min-sum algorithm are imple-

mented using the AVX instruction set. The quantization of the offset and normalizing 

factors to 8 bits as well as the way to implement the multiplications needed for the 

normalized min-sum algorithm are some of the problems that arise. The data rate, 

latency and throughput values mentioned in the following chapters refer to the im-

plementation of the min-sum algorithm using AVX2 instruction set. 



 
 

 
57 

 

4.4.1. Check Node Update 

The sign and the absolute value of the outgoing messages are computed separately. 

The following table shows the rules used for the computation of absolute value for 

the three variations of the min-sum algorithm.  

 

Min-sum |𝑀𝑐→𝑣| ≈ min
𝑣′∈𝑣𝑐/𝑣

|𝑀𝑣′→𝑐| 

Normalized min-sum |𝑀𝑐→𝑣| ≈ α ∙ min
𝑣′∈𝑣𝑐/𝑣

|𝑀𝑣′→𝑐| 

Offset min-sum |𝑀𝑐→𝑣| ≈ max  (min
𝑣′∈𝑣𝑐𝑣

�𝑀𝑣′→𝑐� − 𝛽, 0) 

Table 4: Check node updates used by the min-sum algorithm family 

4.4.1.1. The Computation of the Absolute Value of the Outgoing Messages 

It is clear that the calculation of the minimum value is the computationally most de-

manding aspect of the absolute value computation from the above table. This holds 

for each of the three algorithms. It is important to notice that the new minimum value 

has to be computed for each outgoing message, because the incoming message 

from a particular variable node has to be excluded from the set whose minimum is 

calculated when calculating the answer to that particular node. This means that each 

check node calculates wr minima from wr different sets of 𝑤𝑟 − 1 positive numbers, 

where wr stands for weight row of the sparse parity check matrix. 

 

The straight forward approach to this problem would be to exclude the message 

𝑀𝑣→𝑐 from the set when computing 𝑀𝑐→𝑣 and then to compute the minimum using a 

soft coded function able to compute the minimum of a set of any given length. The 

procedure is repeated w times for each check node. This approach requires 

𝑤𝑟(𝑤𝑟 − 2) binary minimum operations per check node per iteration. The operations 

needed to be performed in order to exclude one value from the set are not counted 

in. Independently of the way the wr minima are calculated, all messages sent from a 

particular check node have the same absolute value except one. Let’s use a check 



 
 

 
58 

 

node connected to five variable nodes (𝑤𝑟 = 5) with incoming messages 𝑀𝑣1→𝑐 =

1,𝑀𝑣2→𝑐 = 2, 𝑀𝑣3→𝑐 = 3,  𝑀𝑣4→𝑐 = 4, 𝑀𝑣5→𝑐 = 5 as an example. Using the min-sum 

algorithm, the absolute values of outgoing messages would be as follows: 

|𝑀𝑐→𝑣1| = 2 

|𝑀𝑐→𝑣2| = 1 

|𝑀𝑐→𝑣3| = 1 

|𝑀𝑐→𝑣4| = 1 

|𝑀𝑐→𝑣5| = 1 

This means that the calculation of the minimum for each sub-set of incoming mes-

sages doesn’t have to be performed. Instead, we can calculate the first and the se-

cond minimum of the complete set of incoming messages. However, it is necessary 

to know which variable node has sent the message with the minimal absolute value 

to store this information. We can then set the absolute value of all outgoing messag-

es to the first minimum of the complete set of incoming messages, with the exception 

of the message which is sent to the variable node from which the minimal absolute 

value has been received. The absolute value of this message should have the value 

of the second minimum. 

 

This approach significantly reduces the computational complexity, especially for large 

weight rows. However, it cannot be used for parallel decoding of multiple frames us-

ing SIMD operations, because there is no guarantee that the messages with minimal 

and second minimal absolute value are sent from the same variable nodes for differ-

ent frames. On the contrary, this will rarely be the case. An approach, which enables 

parallel minima calculation for multiple frames using SIMD operations, has to be 

used. Let’s consider the straightforward method. 

 

Below is the C++ source code which computes the absolute value of an outgoing 

message using this approach. The incoming messages are stored in vector VCs. It 

can be seen that for each outgoing value, we have a different set of positive numbers 

whose minimum is calculated. However, these sets are very similar; all elements of 

any two sets are the same but one. This means that a method that calls the above 



 
 

 
59 

 

function for each outgoing message is calculating the binary minimum of same num-

bers multiple times. 

 

 

 

 

 

 

 

 

 

 

 

A significant reduction of the computational complexity can be achieved by storing 

these values instead of calculating them repeatedly. In order to achieve this, an algo-

rithm which produces 𝑤𝑟 outputs from a set of 𝑤𝑟 positive floating-point numbers is 

used. The graphical representation in the following diagram illustrates this algorithm 

in the case when 𝑤𝑟 = 6. 

 
   VCs[0] 

                                               min01 

   VCs[1] 

                                                                                  min0123 

   VCs[2] 

                                                min23                        min0145 

   VCs[3] 

                                                                                  min2345 

   VCs[4] 

                                                min45 

   VCs[5] 

 
Figure 23: Minimum calculation 

for (branch = mod2sparse_first_in_row(H, i); 
      !mod2sparse_at_end(branch); 
    branch =mod2sparse_next_in_row(branch)) 
        {  
     if (c != 0) 
      min_1 = VCs[0]; 
     else 
      min_1 = VCs[1]; 
      
     for (j = 0; j < k; j++) { 
 
      if (c != j) 
      
 min_1=_mm256_min_ps(VCs[j], min_1); 
 }   
    } 
 



 
 

 
60 

 

Each node labeled with “min” calculates the minimum from its two inputs. The nodes 

labeled with “VCs” represent the incoming messages. AVX2 data types and SIMD 

minimum operations are used, which means that the algorithm actually calculates 

32𝑤𝑟 outputs from 32𝑤𝑟 inputs. The graph shows the example when 𝑤𝑟 = 6. Using 

the values min0123, min2345 and min0145 we can calculate the absolute value of 

the outgoing messages (CVs) using one minimum operation per message. In our ex-

ample we have that 

|𝐶𝑉𝑠[0]| = min(𝑉𝐶𝑠[1],𝑚𝑖𝑛2345) 

|𝐶𝑉𝑠[1]| = min(𝑉𝐶𝑠[0],𝑚𝑖𝑛2345) 

|𝐶𝑉𝑠[2]| = min(𝑉𝐶𝑠[3],𝑚𝑖𝑛0145) 

|𝐶𝑉𝑠[3]| = min(𝑉𝐶𝑠[2],𝑚𝑖𝑛0145) 

|𝐶𝑉𝑠[4]| = min(𝑉𝐶𝑠[5],𝑚𝑖𝑛0123) 

|𝐶𝑉𝑠[5]| = min(𝑉𝐶𝑠[4],𝑚𝑖𝑛0123) 

Twelve minimum operations have to be performed using this algorithm in order to 

calculate the absolute values of all outputs when 𝑤𝑟 = 6. It is clear that this ap-

proach delivers better performance in terms of computational complexity than the 

algorithm that repeatedly calculates the minimum of sets of 𝑤𝑟 − 1 numbers which 

uses  𝑤𝑟(𝑤𝑟 − 2) = 24 minimum operation for the same functionality. 

 

Figure 23 will be different for different weight rows of the parity check matrix. The par-

ity check matrices are defined in the DVB-S2 and DVB-S2X standards which are dif-

ferent for different code rates and frame lengths. The algorithm is hard-coded and the 

adequate variant is chosen depending on the weight row. For some code rates, 𝑤𝑟 

differs throughout the matrix; this is why the choice of the algorithm variant has to be 

made independently for each check node. This can be done in real time by simply 

counting the number of incoming messages. An alternative approach would be to 

store weight rows of all check nodes for all code rates in a look-up table. The weights 

of parity check matrices from DVB-S2 standard are listed in the following table. 

 

It is clear that the knowledge of all possible row weights is crucial for efficient imple-

mentation of min-sum algorithm. For this purpose, a simple program which investi-



 
 

 
61 

 

gates the parity check matrices for all MODCODS was written. The following table 

shows the properties of parity check matrices used for decoding of LDPC codes as 

they are defined in the DVB-S2 and DVB-S2X. 

 

Frame Length Code Rate Row Weights Column Weights Standard 

long 1/2 6, 7 8, 3, 2, 1 DVB-S2 

long 1/3 4, 5 12, 3, 2, 1 DVB-S2 

long 1/4 3, 4 12, 3, 2, 1 DVB-S2 

long 2/3 9, 10 13, 3, 2, 1 DVB-S2 

long 2/5 5, 6 12, 3, 2, 1 DVB-S2 

long 2/9 3, 4 11, 3, 2, 1 DVB-S2X 

long 3/4 13, 14 12, 3, 2, 1 DVB-S2 

long 3/5 10, 11 12, 3, 2, 1 DVB-S2 

long 4/5 17, 18 11, 3, 2, 1 DVB-S2 

long 5/6 21, 22 13, 3, 2, 1 DVB-S2 

long 7/9 17, 18 12, 5, 3, 2, 1 DVB-S2X 

long 8/9 26, 27 4, 3, 2, 1 DVB-S2 

long 9/10 29, 30 4, 3, 2, 1 DVB-S2 

long 9/20 6, 7 12, 4, 3, 2, 1 DVB-S2X 

long 11/20 8, 9 13, 3, 2, 1 DVB-S2X 

long 13/18 13, 14 10, 3, 2, 1 DVB-S2X 

long 13/45 4, 5 12, 3, 2, 1 DVB-S2X 

long 18/30 10, 11 19, 4, 3, 2, 1 DVB-S2X 

long 20/30 12, 14, 13 16, 4, 3, 2, 1 DVB-S2X 

long 22/30 15, 16, 14, 13, 17 14, 4, 3, 2, 1 DVB-S2X 

long 23/36 9, 10 11, 6, 3, 2, 1 DVB-S2X 

long 25/36 12, 13 11, 9, 3, 2, 1 DVB-S2X 

long 26/45 9, 10 13, 12, 2, 3, 1 DVB-S2X 

long 28/45 9, 10 11, 7, 3, 2, 1 DVB-S2X 

long 90/180 6, 8, 7 18, 3, 16, 9, 6, 2, 1 DVB-S2X 

long 96/180 7, 9, 8 20, 14, 12, 3, 4, 2, 1 DVB-S2X 

long 100/180 7, 9, 8 16, 3, 15, 10, 8, 2, 1 DVB-S2X 

long 104/180 8, 10, 9 18, 14, 3, 7, 4, 2, 1 DVB-S2X 



 
 

 
62 

 

long 116/180 10, 12, 11 18, 12, 10, 3, 4, 2, 1 DVB-S2X 

long 124/180 12, 14, 13 16, 3, 13, 12, 2, 1 DVB-S2X 

long 128/180 13, 15, 14, 12 14, 12, 3, 4, 2, 1 DVB-S2X 

long 132/180 14, 15, 16 14, 12, 3, 4, 2 ,1 DVB-S2X 

long 135/180 15, 17, 16 14, 11, 3, 4, 2, 1 DVB-S2X 

long 140/180 18, 19, 20 14, 12, 4, 3, 2, 1 DVB-S2X 

long 154/180 28, 30, 29 13, 12, 3, 5, 2, 1 DVB-S2X 

short 1/3 4, 5 12, 3, 2, 1 DVB-S2 

short 2/3 9, 10 13, 3, 2, 1 DVB-S2 

short 2/5 5, 6 12, 3, 2, 1 DVB-S2 

short 3/5 10, 11 12, 3, 2, 1 DVB-S2 

short 8/9 26, 27 4, 3, 2, 1 DVB-S2 

short 1/2 3, 8 6 DVB-S2 

short 1/4 3, 12 4 DVB-S2 

short 3/4 3, 12 12 DVB-S2 

short 4/5 3 14 DVB-S2 

short 5/6 3,13 19 DVB-S2 

short 9/10 3,4 30 DVB-S2 

short 4/15 4, 5 21, 4, 3, 2, 1 DVB-S2X 

short 7/15 8, 9 24, 4, 3, 2, 1 DVB-S2X 

short 8/15 9, 10 21, 4, 3, 2, 1 DVB-S2X 

short 11/45 3, 4 10, 3, 2, 1 DVB-S2X 

short 14/45 4, 5 12, 9, 3, 2, 1 DVB-S2X 

short 32/45 12, 13 12, 5, 3, 2, 1 DVB-S2X 

short 26/45 8, 9, 10 13, 12, 2, 3, 1 DVB-S2X 

     

Table 5: Properties of DVB-S2 and DVB-S2X LDPC codes 

The number of minimum calculations needed to calculate the absolute value of all 

outgoing messages for all values of 𝑤𝑟 from the previous table is shown in the follow-

ing figure.  



 
 

 
63 

 

 

Figure 24:  Number of binary min. operations per check node per iteration 

Clearly, the number of performed binary minimum operations per check node per 

iteration increases linearly with the number of variable nodes the check node is con-

nected to (weight row): 

 𝑁𝑏𝑖𝑛−𝑚𝑖𝑛 =  3 ∙ 𝑤𝑟 − 6 (69) 

The check nodes with higher weights are producing more outputs, so the number of 

minimum operations per outgoing message (edge) might be more intuitive way to 

represent the computational complexity. This is shown in the following figure. 

1.00

11.00

21.00

31.00

41.00

51.00

61.00

71.00

81.00

91.00

3 8 13 18 23 28 33

N
um

be
r o

f b
in

ar
y 

m
im

im
zn

 c
al

cu
la

tio
ns

 p
er

 e
dg

e 

Row Weight 



 
 

 
64 

 

 

Figure 25:  Binary min. operations per edge (sequential decoding) 

It can be seen that the computational complexity per edge increases with the in-

crease of row weight. As it can be seen from Table 5, the DVB-S2 and DVB-S2X par-

ity check matrices used for higher code rates typically have higher row weights than 

the ones used for lower code rates which is why the check node update of the frames 

encoded with higher code rates is computationally slightly more demanding than 

check node update of frames encoded with lower code rates. However, the number 

of check nodes decreases as the code rate increases, which overpowers the more 

complex check node update of higher code rates and results in higher decoder com-

plexity for lower code rates than for the higher ones, as expected. 

 

The use of the AVX2 binary minimum instruction enables the decoding of 32 frames 

in parallel. This means that 32 times more outgoing messages are calculated using 

the same number of binary minimum operations. We can look at this as if there were 

32 times more edges, although not all of them are used for decoding of the same 

0

0.5

1

1.5

2

2.5

3

3 8 13 18 23 28 33

To
ta

l n
um

be
r o

f b
in

ar
y 

m
in

im
um

 o
pe

ra
tio

ns
 

Row weigth 



 
 

 
65 

 

frame. The following figure shows the needed number of binary minimum instructions 

per edge using the AVX instruction set. 

 

 

Figure 26:  Binary min. operations per edge, decoding of 32 frames in parallel 

4.4.1.2. Computation of the Sign of Outgoing Messages 

As already mentioned, AVX2 instruction set offers a convenient and efficient way to 

compute the sign of outgoing messages. First, the signs of all incoming messages 

are computed using _mm256_sign_epi8 instruction. The output is a length-𝑤𝑟  array 

of AVX2 vectors. Vector elements have unity absolute values and the sign which is 

equal to the sign of the corresponding incoming message. After that, all the signs are 

combined using the same instruction. This is equivalent to the multiplication of 𝑤𝑟 

number with unity absolute values. At the end, the sign of an outgoing message is 

obtained by the multiplication (using _mm256_sign_epi8) of the combined signed of 

all incoming messages by the sign of the incoming messages which originates from 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

3 8 13 18 23 28 33

To
ta

l n
um

be
r o

f b
in

ar
y 

m
in

im
um

 o
pe

ra
tio

ns
 

Row weigth 



 
 

 
66 

 

the variable node which is the destination of the outgoing message whose sign is 

being calculated. 

4.4.1.3. Summary 

In the sequel, a part of the source code is used for check node updates in the case 

when 𝑤𝑟 = 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it can be seen from the source code, in order to avoid latency caused by the de-

pendence of the instructions to be executed on the results of the previously executed 

instructions, the instructions used for the calculation of the absolute value and the 

sign of the outgoing messages are executed alternately. 

 

 
min01 = _mm256_min_epi8(VCs[0], VCs[1]); 
sign = _mm256_sign_epi8(sign, VC_signs[1]); 
min23 = _mm256_min_epi8(VCs[2], VCs[3]); 
sign = _mm256_sign_epi8(sign, VC_signs[2]); 
min45 = _mm256_min_epi8(VCs[4], VCs[5]); 
sign = _mm256_sign_epi8(sign, VC_signs[3]); 
min0123 = _mm256_min_epi8(min01, min23); 
sign = _mm256_sign_epi8(sign, VC_signs[4]); 
min2345 = _mm256_min_epi8(min23, min45); 
sign = _mm256_sign_epi8(sign, VC_signs[5]); 
min0145 = _mm256_min_epi8(min01, min45); 
 
sign_buf0 = _mm256_sign_epi8(VC_signs[0], sign); 
abs_buf0 = _mm256_min_epi8(min2345, VCs[1]); 
 
sign_buf1 = _mm256_sign_epi8(VC_signs[1], sign); 
abs_buf1 = _mm256_sign_epi8(min2345, VCs[0]); 
 
sign_buf2 = _mm256_sign_epi8(VC_signs[2], sign); 
abs_buf2 = _mm256_min_epi8(min0145, VCs[3]); 
 
sign_buf3 = _mm256_sign_epi8(VC_signs[3], sign); 
abs_buf3 = _mm256_min_epi8(min0145, VCs[2]); 
 
sign_buf4 = _mm256_sign_epi8(VC_signs[4], sign); 
abs_buf4 = _mm256_min_epi8(min0123, VCs[5]); 
 
sign_buf5 = _mm256_sign_epi8(VC_signs[5], sign); 
abs_buf5 = _mm256_min_epi8(min0123, VCs[4]); 
 
Hcn[i][0].CV = _mm256_sign_epi8(abs_buf0, 
sign_buf0); 
Hcn[i][1].CV = _mm256_sign_epi8(abs_buf1, 
sign_buf1); 
Hcn[i][2].CV = _mm256_sign_epi8(abs_buf2, 
sign_buf2); 

   



 
 

 
67 

 

After the signs and the absolute values of the outgoing messages have been calcu-

lated, the check node update is complete, if min-sum algorithm is used. Normalized 

min-sum algorithm requires 𝑤𝑟 additional multiplications, and offset min-sum requires 

𝑤𝑟 additional maximum operations and 𝑤𝑟 additional subtractions (see Table 4). The 

following table shows the number of computations needed to perform a check node 

update for 32 frames in parallel, using the min-sum algorithm, depending on the 

check node weight. The total number of computations depends on the number of 

check nodes, which depends on the frame length and the code rate.  

 

Instruction Number of instructions Throughput 

Addition 𝑤𝑟 0.5 

Comparison 𝑤𝑟 0.5 

Sign 5𝑤𝑟 0.5 

Absolute value 𝑤𝑟 - 

Minimum 3𝑤𝑟 − 6 - 

Maximum 𝑤𝑟 - 

Total 12𝑤𝑟 − 6 3.5𝑤𝑟 

Table 6: Throughput, expressed in CPU cycles, of check node update  
for Min-Sum Algorithm 

4.4.2. Variable Node Update 

As mentioned before, variable node update is not time-critical and it is performed in 

the exactly same manner regardless of the decoding algorithm. In order to compute 

the soft output and outgoing messages, the following equations have to be imple-

mented: 

 𝑆𝑂𝑣 = 𝐿𝑅𝑖𝑛 + ∑ 𝑀𝑐→𝑣𝑐∈𝑐𝑣  (70) 

 𝑀𝑣→𝑐 =  𝑆𝑂𝑣 − 𝑀𝑐→𝑣 (71) 

The computation of these two equations requires 𝑤𝑐 additions and 𝑤𝑐 subtractions 

per variable node per iteration, where 𝑤𝑐 represent the column weight of the parity 



 
 

 
68 

 

check matrix. The hard-output decision based on the value of soft-output requires 

one addition and one comparison. The addition is needed for reformatting the output 

of the AVX2 comparison instruction.  

 

The following table shows the operations performed during one variable node up-

date. As for check node update, the actual execution time depends on the frame 

length and code rate, i.e. on the parity check matrix. 

 

Instruction Number of instructions Throughput 

Addition 𝑤𝑐 + 1 0.5 

Comparison 1 0.5 

Subtraction 𝑤𝑐 0.5 

Total 2𝑤𝑐 + 2 𝑤𝑐 + 1 

Table 7: Throughput, expressed in CPU cycles, of variable node update  
for Min-Sum Algorithm 

4.4.3. Parity Check 

After each iteration, the parity check is performed and if it is satisfied, the decoding 

process is stopped. The parity check equations are computed using SIMD instruc-

tions, like the rest of the decoding process. Only if all of the 32 frames satisfy the par-

ity check conditions, an early stop is performed and the decoding of the next 32 

frames starts. 

 

Another approach would be to dynamically remove single frames that satisfy the pari-

ty check conditions from the AVX vector and replace them with new ones. Some 

problems that arise if this approach is used are as follows: The iteration count has to 

be tracked separately for each AVX vector element; the data would have to be load-

ed from AVX data type into standard integer arrays and vice versa very often; a high 

number of comparison SIMD instruction would have to be performed in order to cover 

all possible combinations of frames that do and that do not satisfy parity check condi-



 
 

 
69 

 

tions or alternatively, the parity check would have to be computed sequentially for 32 

frames. 

 

Because the efficient way to perform the parity check is not the main focus of this 

thesis and due to the implementation complications introduced by the dynamic ap-

proach and the uncertainty about its influence on the computational complexity of the 

decoding process, the static approach has been implemented. 

4.4.4. Memory Access 

Accessing memory linearly is faster than random memory access. One of the rea-

sons for this is the fact that not only the requested value is loaded into the cache 

memory. One can either linearize variable node memory accesses or check node 

memory accesses and decrease the number of random memory accesses this way. 

Both approaches have been tested and because of the slightly better performance in 

terms of time efficiency, it was decided to linearize the check node accesses.  

 

Additional improvement is achieved due to the quantization of LLRs to 8 bits. The 

quantization results in the lower amount of randomly accessed memory compared to 

the implementations using more accurate data representation. It is important to note 

that quantization to 8 bits does not cause any performance degradation in terms of 

FER.  

4.4.5. Decoder Data Rate 

The following table shows date rates achieved by the decoder implemented using the 

AVX2 instruction set and min-sum decoding algorithm on Intel i7-4790 CPU with 3.60 

GHz processor base frequency. The data rate is increased by the factor less than 

four when the simulation framework is run in parallel. One of the reasons for this is 

the fact that increased (turbo) CPU frequency of 4 GHz is used in single core opera-

tion. 

 

The data rates in the table below are achieved without the use of an early stop crite-

rion because of the intention to investigate the data rates with the exact number of 



 
 

 
70 

 

iterations performed. An early stop can significantly increase the data rate in the sce-

narios with high SNR, i.e. small FER. In the cases when the frame error rate satisfies 

the QEF criterion, the decoder data rates for any maximal number of iterations are 

very similar to each and very close to data rates achieved with 1-3 iterations (more 

than 300 Mbit/s with four Intel i7-4790 CPU cores)  

 

Number of CPU Cores Number of min-sum iterations Data Rate [Mbit/s] 

1 3 115 

4 3 340 

1 20  40 

4 20 100 

1 50 17 

4 50 37 

Table 8: Throughput, expressed in CPU cycles, of variable node update  
for Min-Sum Algorithm 

4.5. Encoder Implementation 

In order to reduce computational complexity of the encoding process, the algorithm 

presented in the Chapter 2.4.3 is implemented instead of the conventional one. As 

already mentioned, the encoding of LDPC codes using approximate linear triangula-

tion has almost linear computational complexity. Using the AVX2 instruction set to 

encode 32 frames in parallel, date rates of about 300 Mbit/s are achieved on the four 

Intel i7-4790 CPU using only one CPU core. If the simulation framework is run in par-

allel on all four CPU cores, the encoder can achieve data rates as high as 800 Mbit/s. 

 

  



 
 

 
71 

 

5. Simulation Results 

5.1. Comparison of Decoding Algorithms  

The better performance of Normalized Min-Sum Algorithm and Offset-Min-Sum Algo-

rithm compared to the Min-Sum-Algorithm are evident from the Figure 27. However, it 

can be seen that the performance improvement decreases with increasing SNR. The 

reason behind this is the fact that the optimal values of the normalizing factor α and 

the offset β change for different SNR values. 

 

 

Figure 27: Short Frame, CR=1/3, 40 iterations 

In [RD28] and [RD29] adaptive algorithms which optimize the values of α and β are 

presented. The implementation of such algorithms is beyond the scope of this thesis. 

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

FE
R 

Eb/No [dB]   

Min Sum

Offset Min Sum

Normalized Min Sum

Belief Propagation



 
 

 
72 

 

Instead, constant values α = 0.9 and β = 0.2 are used. These values are better suited 

for lower than higher SNR values, which explains the slight degradation of the per-

formance improvement rate of the two algorithms, with increasing SNR, compared to 

the min-sum-algorithm. Several trials showed that higher SNR values require lower 

values of the normalizing factor α and higher values of the offset β. 

5.2. Number of Iterations  

The performance of the code for different number of iterations is shown in Figure 28. 

It can be seen that a larger number of iterations results in better performance. LDPC 

codes rely on the exchange of mutual information between check and variable nodes 

which is done twice per iteration. More iterations mean further information exchange, 

which results in better performance. 

 

 

Figure 28: Short Frame, CR=1/3, Min-Sum Algorithm 

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9

FE
R 

Eb/No [dB] 

40 iterations

20 iterations

10 iterations



 
 

 
73 

 

However, performance improves more when the number of iterations is increased 

from 10 to 20 than when it is increased from 20 to 40, even though the increase in 

number of iterations is higher in the second case. Because the rate of performance 

improvement decreases with the number of iterations and each additional iteration 

requires additional computation, an upper bound on the number of iterations is set. 

The rate of performance improvement doesn’t decrease as fast as in the case of tur-

bo codes, which is why LDPC decoders usually use higher number of iterations than 

turbo decoders. 

5.3. Code Rate 

As expected, LDPC codes with lower code rates perform better, in terms of FER vs. 

SNR than the ones with higher code rates, because more redundancy enables better 

error correction. However, the FER curves of high CR codes are a bit steeper. 

 

 
Figure 29: Short Frame, Min-Sum Algorithm, 10 iterations 

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-1.3 -0.8 -0.3 0.2 0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7

FE
R 

SNR [dB] 

CR=8/9

CR=2/3

CR=8/15



 
 

 
74 

 

5.4. Short Frame vs. Long Frame 

As it can be seen in Figure 30, short frame operations shows worse performance 

than long frame operations. This is somewhat expected, because LDPC codes are 

famous for their good performance in the case of long frame lengths, which is one of 

the reason why they were chosen for the new DVB standards. In the DVB-S2 stand-

ard, it is stated that a performance degradation of 0.2 dB to 0.3 dB should be ex-

pected for short frames compared to normal frames. The simulation results confirm 

this statement. 

 

 

Figure 30: CR=1/3, Min-Sum Algorithm, 10 iterations 

  

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

FE
R 

SNR [dB] 

Short Frame - 16200
bits

Long Frame - 64800
bits



 
 

 
75 

 

6. Conclusion 

From the computational point of view, decoding of LDPC codes can very complex if 

the optimal decoding technique, the so-called Belief Propagation Algorithm, is used. 

This is the reason why the Min-Sum Algorithm or one of its modified variants are typi-

cally implemented. 

 

In the case of software decoders, further performance improvement in terms of com-

putational complexity can be achieved through the use of SIMD operations. The 

newest generation of Intel processors offers a single-instruction-multiple-data instruc-

tion extension to the standard x86 instruction set, called the Advanced Vector Exten-

sions which offers registers that are 256 bits long. Because 8-bit data representation 

offers sufficient precision for LDPC decoding, 32 frames can be decoded in parallel. 

This results in decoding data rates of up to 150 Mbit/s on fourth generation Intel i-7 

processors, if 20 iterations of the Min-Sum Algorithm are used. 

 

Static parallel approach to the early stop criterion, as presented in the Chapter 5, will 

result in a higher number of iterations for some frames than it is needed and thus in-

creases the decoding latency. The solution which dynamically replaces the frames 

that satisfied the parity check conditions with new ones, instead of replacing all 32 

frames at the time when all of them have satisfied the parity check conditions, is be-

yond the scope of this thesis and represents an interesting topic for further research. 

The quantization of the offset and normalizing factors to 8 bits as well as the way to 

implement the multiplications needed for the Normalized Min-Sum Algorithm are is-

sues that have to be addressed before implementing the Normalized Min-Sum and 

Offset Min-Sum Algorithms using AVX2 instruction set. 

 


