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Abstract 

Locomotor impairments represent one of the main factors preventing stroke survivors from leading an 
autonomous and self-determined life. A major motor rehabilitation goal is therefore that patients regain 
a certain level of functional gait. However, there is still no scientific consensus on the neural 
mechanisms underlying the recovery of lower limb functions. Brain-Computer Interfaces (BCI) may be 
a powerful tool for motor rehabilitation because they can decode motor intention and mental states 
from neurophysiological signals alone and capture information on brain activity related to the state of 
recovery. 

In order to develop BCIs for gait rehabilitation, it is important to understand the cortical 
processes that are involved in human locomotion. Recent advances in signal processing methods have 
made it possible to counteract movement artefacts in the electroencephalogram (EEG) and to study 
neural correlates during actual gait. 

The aim of this thesis was to investigate the electrocortical dynamics that accompany functional 
gait movements and hence contribute to the development and application of BCI technology for gait 
rehabilitation after stroke. Furthermore, this thesis aimed at investigating how well different training 
paradigms activate cerebral motor networks in healthy individuals. This measurement may help to infer 
the efficacy of certain therapy approaches. These problems were tackled using high-density EEG 
recordings and Independent Component Analysis (ICA) during robot assisted – and independent 
treadmill walking in able-bodied individuals. 

Three studies were carried out as part of this thesis, covering different aspects of gait training. 
Since active participation and voluntary drive in a movement has been shown to be crucial for motor 
learning, study I compared active to passive gait movements in a robotic gait trainer. Study II 
investigated motor planning during walking in an interactive virtual environment. Given that motor 
impairments often affect the ability to adapt gait patterns, study III investigated neural correlates of gait 
adaptation strategies using a novel sensorimotor synchronization task.  

These studies show that functional gait movements are represented in oscillatory electrocortical 
activity. Study I demonstrated that single gait cycle phases are reflected in low gamma band amplitude 
(25-40Hz) modulations over the premotor cortex. Furthermore the results suggest that mu and beta 
suppression over midline sensorimotor areas during steady-state gait and step adaptation reflect 
increased motor activation during human upright walking. Study II showed for the first time the 
involvement of mu and beta suppression in a premotor-parietal network in visuomotor integration 
during walking. Study III revealed that two distinct beta band oscillatory networks interplay in the 
service of gait adaptation – motor cortical beta desynchronization (13-35 Hz) reflecting motor 
readiness and frontal beta synchronization (14-20 Hz) related to cognitive top down control. 
Furthermore, a right frontal beta band power increase was modulated by task difficulty (step 
lengthening - easy vs. step shortening - difficult). This effect may reflect higher demand of cognitive 
control and inhibition related to movement-control during step shortening. 

This thesis also shows the extent of cortical activation relative to different training strategies 
which may allow to infer the efficacy of certain therapeutic approaches. Study I shows that active 
participation in gait movements is represented by a desynchronization in the mu and beta band over 
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midline sensorimotor areas. Furthermore study II shows that interactive movement related feedback in 
a Virtual Environment (VE) compared to movement unrelated feedback decreases mu and beta rhythms 
in premotor and parietal areas during robot assisted gait, suggesting stronger activation of these areas. 
This indicates that the interactive feedback task increases voluntary motor drive during walking. 
Interestingly the interactive feedback task was associated with higher activation of the right parietal 
lobe – an area that has been connected to the feeling of agency. The experience of agency is generated 
by the perception of changes in the environment caused by our actions and also plays a role in motor 
learning. The results of these studies provide the first neurophysiological evidence that goal and task 
oriented training paradigms promote the active motor planning of gait movements and thus may 
stimulate and enhance motor learning during the therapy.  

This thesis provides an exemplary framework for future electrophysiological paradigms to study 
movement disorders and their recovery. The results show that cortical excitability during gait training 
can be determined through neuronal oscillations. This measurement may be used in clinical settings to 
assess the activation of cortical motor networks and identify neural correlates of plasticity. The results 
further demonstrate the functional significance of electrocortical oscillations in gait movements. These 
findings contribute to the fundamental knowledge about cortical control in gait movements and may 
lead to a better understanding of cortical recovery and reorganization during locomotor therapy.  
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Zusammenfassung 

Motorische Gangstörungen nach dem Schlaganfall beeinträchtigen nachhaltig die Lebensqualität der 
Betroffenen durch Einschränkung von Autonomie und Selbstbestimmtheit im Alltag. Das Erreichen 
eines gewissen Grades funktionaler Gehfähigkeit ist deshalb ein entscheidender Faktor in der 
motorischen Rehabilitation. Es ist jedoch unklar, welche Trainingsstrategien die rehabilitationsindu-
zierte Plastizität in Bezug zu Gangbewegungen bestmöglich fördern. 

Brain-Computer Interfaces (BCIs) erlauben die Erkennung von Bewegungsintention und 
mentalen Zuständen durch die Ableitung neuroelektrischer Aktivität von der Kopfoberfläche. Der 
Einsatz von BCIs im Bereich der Rehabilitation von Schlaganfall ist vielversprechend, da diese 
Systeme rehabilitationsinduzierte Änderungen der Gehirnaktivität rückmelden, und so neuronale 
Korrelate plastischer Veränderungen erfassen könnten. Um BCIs für die Gangrehabilitation zu 
entwickeln, ist jedoch ein grundlegendes Verständnis der in den menschlichen Gang involvierten 
kortikalen Prozesse erforderlich.  

Die Anwendung von BCI Technologien während der Gangrehabilitation ist besonders 
herausfordernd, weil Bewegungsartefakte Störungen im Elektroenzephalogramm (EEG) verursachen 
können. Aus diesem Grund werden in aktuellen Studien meist nur einzelne Teile von 
Bewegungsabläufen untersucht. Jüngste Fortschritte im Bereich der Signalverarbeitungsmethoden 
ermöglichen die Untersuchung neuronaler Korrelate des aufrechten Gehens mithilfe von 
Quellentrennverfahren. 

Das primäre Ziel dieser Arbeit ist die Untersuchung der kortikalen Kontrolle von funktionalen 
Gangbewegungen, um ein umfassenderes Bild der Gehirnfunktionen in Bezug zu komplexen 
Bewegungsabläufen zu erlangen. Ein weiteres Ziel betrifft die Erforschung kortikaler Aktivierung in 
Relation zu verschiedenen Trainingsstrategien,  um die neuronale Wirkung von Rehabilitations-
verfahren zu evaluieren. Dieses Wissen könnte für einen gezielteren Einsatz von derartigen 
Interventionen in der Neurorehabilitation genutzt werden, welche Informationen über den Zustand des 
Gehirns  berücksichtigen. 

In drei Studien wurden verschiedene Aspekte des Gangtrainings mittels hochauflösenden EEG 
Aufnahmen und Independent Component Analysis während robotergestütztem- und unabhängigem 
Gehen auf einem Laufband untersucht. Da aktive Bewegungsplanung kritisch für motorisches Lernen 
ist, wurde in Studie I aktives und passives Gehen in einem robotergestützen Gangtrainer untersucht. 
Studie II untersuchte die motorische Planung während dem Gehen in einer interaktiven, virtuellen 
Umgebung. Die Fähigkeit unser Gangmuster an Veränderungen in der Umwelt anzupassen ist oft durch  
motorische Störungen nach dem Schlaganfall beeinträchtigt, was zu einem erhöhten Sturzrisiko führt. 
Um die kortikale Steuerung von Gangkorrekturen zu untersuchen, wurden Teilnehmer in Rahmen von 
Studie III instruiert, ihre Schritte an Veränderungen im Tempo einer rhythmischen auditorischen 
Sequenz anzupassen (längere und kürzere Schritte). 

Die Ergebnisse dieser Arbeiten geben Hinweise auf die funktionale Rolle von neuroelektrischen 
Oszillationen in Zusammenhang mit Gangbewegungen. Studie I zeigte, dass einzelne Gangphasen in 
Amplitudenmodulationen des unteren Gamma Bandes (25-40Hz) über dem prämotorischen Kortex 
abgebildet sind. Darüber hinaus beweisen die Ergebnisse, dass rhythmisches und adaptives Gehen zu 
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einer Unterdrückung von Mu- und Beta Band Oszillationen in sensomotorischen Arealen führt. Dieser 
Effekt kann als eine gesteigerte Aktivierung des motorischen Systems während dem menschlichen 
aufrechten Gang verstanden werden. Studie II zeigte zum ersten Mal die Beteiligung von Mu- und Beta 
Band Desynchronisation in einem prämotorisch-parietalen Netzwerk in der visuomotorischen 
Integration beim Gehen. Studie III gibt Hinweise auf die Rolle zweier oszillatorischer Beta Band 
Netzwerke in der Anpassung des Gangmusters: Motorische Beta Band Desynchronisation (13-35 Hz) 
in Bezug zu motorischer Bereitschaft und frontale Beta Band Synchronisation (14-20 Hz) in 
Verbindung mit kognitiver top-down Kontrolle. Zusätzlich erhöhte die Schwierigkeit der 
Bewegungsaufgabe die Beta Band Leistung im rechten Frontallappen (längere Schritte leichter, kürzere 
Schritte schwieriger). Dieser Effekt spiegelt vermutlich die erhöhte kognitive Kontrolle während 
Schrittverkürzungen wieder.  

Die Arbeit zeigt auch das Ausmaß kortikaler Aktivierung in Relation zu verschiedenen 
Trainingsansätzen und könnte somit Hinweise auf deren Effektivität geben. Studie I zeigt, dass aktive 
Teilnahme an Gangbewegungen sich in einer Desynchronisation von Mu- und Beta Band Rhythmen in 
zentralen sensomotorischen Arealen wiederspiegelt. Studie  II weist nach, dass Gehen in einer 
interaktiven virtuellen Umgebung die Aktivierung (Desynchronisation von Mu- und Beta Rhythmen) in 
prämotorischen und parietalen Arealen, im Vergleich zu Feedback ohne Bezug zur Bewegung, 
signifikant steigert. Dies weist darauf hin, dass die interaktive Feedback Aufgabe motorische Planung 
während dem Gehen erhöht. Interessanterweise wies die interaktive Feedback Aufgabe auch eine 
höhere Aktivierung im rechten Parietallappen auf, der in Verbindung mit Agency gebracht werden 
kann. Das Gefühl von Agency entsteht durch den wahrgenommenen Effekt unserer Aktionen auf unsere 
Umwelt, und dieser Mechanismus spielt auch bei motorischem Lernen eine Rolle. Die Ergebnisse 
beider Studien liefern erste neurophysiologische Hinweise, dass ziel- und aufgabenorientierte 
Trainingsparadigmen aktive motorische Planung von Gangbewegungen fördern, und somit einen 
besseren motorischen Lerneffekt in der Therapie erzielen könnten. 

Zusammengefasst ist diese Forschungsarbeit relevant für den Bereich der Neurorehabilitation, 
denn sie zeigt, dass kortikale Aktivierung während dem Gangtraining anhand von neuroelektrischen 
Oszillationen erfasst werden kann. Die Ergebnisse belegen zudem, dass Gangbewegungen durch die 
Modulation von neuronalen Rhythmen beschrieben werden können. Diese Erkenntnisse tragen zum 
Grundlagenwissen der Gehirnfunktionen in Beziehung zu funktionalen Gangbewegungen bei, und 
können so zu einem verbesserten Verständnis von kortikaler Erholung und Reorganisation während der 
Gangrehabilitation führen.  

Diese Dissertation hat darüber hinaus gezeigt, dass durch Quellentrennverfahren kortikale 
Aktivität von mechanischen Störungen und Muskelaktivität im EEG getrennt werden kann, und so 
neuronale Korrelate während dem aufrechten Gehen untersucht werden können. Dieser Aspekt ist vor 
allem auch für die klinische Forschung relevant, da durch die Überwachung der Gehirnaktivität 
während der Therapie, Korrelate neuronaler Plastizität untersucht und identifiziert werden können. Dies 
dient der Entwicklung von  neurowissenschaftlich informierten motorischen Therapien.  
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1. Introduction 

Rhythmic movements such as walking, running and swimming are defined by fluent and counterbal-
anced movements that allow to explore the environment and permit quick sensorimotor adaptations. 
For this reason, locomotion has been previously portrayed as ‘the silent music of the body’ (Harvey, 
1627, quoted in Sacks, 2004). In pathological gait disorders such as stroke, this effortless, smooth 
stream of movements is disturbed. 

Locomotor impairments after stroke are typically expressed by marked asymmetries in the gait 
pattern. Gait parameters such as speed, cadence, stride length, endurance and symmetry of gait are af-
fected in stroke patients. Besides impairments in the regularity of the gait pattern affected individuals 
also have difficulties to adapt their steps to variations in the environment. This results in a reduced abil-
ity to avoid obstacles (e.g., den Otter et al., 2005) and an increased risk of falls (e.g., Weerdesteyn et 
al., 2006). Therefore, stroke survivors rarely reach a level of functional gait (Perry & Davids, 1992) i.e. 
the ability to walk safely and independently at an acceptable speed, and hinders affected individuals to 
perform every day activities autonomously (Duncan et al., 1998).   

Consequently, gait impairment is a major goal in post-stroke rehabilitation and has been one of 
the most investigated topics in studies on neurological gait disorders. Recovery of gait related motor 
functions can only be maximized by a fundamental understanding of the normal mechanisms of gait 
control in healthy individuals and anomalies in pathological gait. 
 

1.1. Rehabilitation of motor impairment 

Stroke lesions are a result of oxygen deprivation due to an interruption of blood flow, causing cell death 
in the affected brain area. Most commonly this is caused by a blood clot (arterial ischemia) or when a 
blood vessel bursts (hemorrhage) resulting in a flow of blood into parts of the brain. The location of the 
stroke lesion also determines the nature of impairments, i.e. motor dysfunctions may be associated with 
damage in sensorimotor areas.  

Restoration of neurological impairments is a complex process comprising spontaneous and 
functional recovery. The mechanisms of spontaneous recovery are not yet fully understood but are 
thought to be related to spontaneous rewiring, sprouting and branching processes of neurons in the area 
surrounding the stroke lesion (Ueno et al., 2012). External factors such as motor behavior seem to have 
no impact on these processes. Spontaneous recovery after stroke generally occurs within the first 3-6 
months and has a predictable timecourse, with a rapid initial improvement of cognitive and motor 
functions and a negative acceleration with time (Skilbeck et al., 1983). Functional recovery is related to 
cortical reorganization and is of special interest as it can be guided by the principles of motor learning 
Nudo (2003).  

In the healthy animal brain, motor skill acquisition is associated with morphologic changes to 
the motor cortex (Diamond et al., 1964, Greenough et al., 1985, Kleim et al., 1996, Rosenzweig et al., 
1964). In fact, functional reorganization of the rat (Kleim et al., 1998) and monkey (Plautz et al., 2000) 
motor cortex occurs not simply relative to simple repetitive movement but only relative to the 
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development of skilled forelimb use. Nudo (2003) proposed that plastic changes related to motor 
learning share the same functional mechanisms on the neuronal level as post-stroke recovery of motor 
functions. Indeed, recent research in humans has identified two main properties that promote neural 
plasticity in motor skill acquisition during gait training: 1) intensity of the training (Langhorne et al 
2009) and 2) problem-solving in functional tasks to achieve a behavioral response, (Adkins et al., 2006, 
Liepert et al., 2000, Van Peppen et al., 2004; Salbach et al., 2004). In contrast, training that is focused 
on single parts of movements such as muscle strengthening and muscular re-education, fails to 
generalize to functional tasks and activities (Van Peppen et al., 2004). 

Assisted over ground walking is the main intervention in current physical gait rehabilitation 
therapies. This approach requires that physical therapists manually control the lower limb position of 
motor impaired individuals. Functional gait movements have been shown to improve with assisted over 
ground - and treadmill training in combination with body weight support (Moseley et al., 2005). 
However, the number of movement repetitions is restricted in this form of therapy due to the physical 
load placed on the therapist. In the last decade robotic devices have been introduced for people with 
mild to severe motor impairments in gait rehabilitation. These devices can provide task oriented 
training while enabling a large number of movement repetitions (Brütsch et al., 2010; 2011, Schuler et 
al., 2011). In a later stage of recovery other approaches suggest to use external rhythms to improve 
timing aspects of gait movements. It has been shown that gait parameters such as speed, cadence, stride 
length, and symmetry of gait, can be improved with training using auditory cues compared to other 
state of the art rehabilitation approaches (Hurt et al., 1998, Roerdink et al., 2007, Thaut et al., 1997; 
2007).  

However, there is no clear evidence that one rehabilitation approach is more effective than 
another in promoting cortical reorganization and consequently functional gait after stroke (Pollock et 
al., 2007). Recently, it has been proposed to pursue a so-called top-down approach in gait rehabilitation 
(Belda-Lois et al., 2011), that aims at designing rehabilitation therapies relative to the state of the brain 
after stroke. A technology which may open up a window to information on cortical changes in stroke 
patients and the cerebral activation patterns relative to different therapy approaches is the brain-
computer interface (BCI).  

 

1.2. Brain-computer interfaces for post-stroke rehabilitation 

Brain-computer interfaces (BCI) can measure and decode motor intention and mental states from neu-
rophysiological signals. Therefore, BCIs might be a powerful tool for motor rehabilitation, because 
they can capture and transfer information on brain activity related to the state of recovery (Pfurtscheller 
& Neuper, 2006; Dobkin et al., 2007; Birbaumer et al., 2008; Daly and Wolpaw, 2008). 

Traditional BCI-based approaches have proposed to use mental simulation of movement, to 
promote motor learning in post-stroke rehabilitation (Daly and Wolpaw, 2008). Mental imagery of 
movements shows similar patterns to motor execution in primary- and pre-motor areas and represents a 
safe way to practice movements even in the absence of residual motor function. There is some evidence 
that motor imagery of lower limb movements such as dancing or foot sequences can help to improve 
gait (Dickstein et al., 2004; 2007). Motor imagery can also be paired with sensory stimulation of the 
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affected limb. In this approach motor imagery is commonly used to control an assistive device or 
activate electric stimulation of the muscles for moving the affected limb. This pairing of motor and 
sensory activation is thought to enhance cortical plasticity by Hebbian principles. Indeed, a recent study 
has shown that precise temporal pairing of imagery of motor evoked potentials and muscle stimulation 
increases cortical plasticity as assessed by cortical excitability through TMS (Mrachacz-Kersting et al., 
2012).  

BCIs can be also used to measure the current state of the brain after stroke (Belda-Louise et al., 
2011, Kaiser et al., 2012) and convey information about the patients’ activation patterns in cortical 
motor networks during the therapy. This would allow to relate changes in cortical activity to functional 
gait improvements and provide a means to evaluate the effects of therapeutic interventions.  However, 
in order to develop BCIs for gait rehabilitation, fundamental research investigating the neural dynamics 
during locomotion is critical to determine the role of cortical involvement in gait control.  
 

1.3. Locomotion 

1.3.1. Description of the Gait Cycle 

Human gait is composed of a sequence of symmetric recurrent movements. One gait cycle is defined as 
the execution of two full steps starting and ending with the initial contact of the right heel so that a left 
heel strike marks the 50% of the gait cycle (see Figure 1). According to Perry & Davids (1992) the gait 
cycle is comprised of stance (0 to 60% of the gait cycle) and swing phase (60 to 100% of the gait cy-
cle). The stance phase of gait divides into four stages: Loading response (0 to 10%), midstance (10 to 
30%), terminal stance (30 to 50%) and preswing (50 to 60%) phases. The swing phase consists of three 
segments: Initial swing (60 to 73%), midswing (73 to 87%) and terminal swing (87 to 100%) phases.  
 

 

 
 

Figure 1.1.  Gait cycle phases (Perry, 1992, http://www.clinicalgaitanalysis.com/history/modern.html) 
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Each cycle is initiated by a right heel strike which marks the beginning of the stance phase. The center 
of gravity of the body is shifted forwards so that the body weight progressively moves from the heel to 
the ball of the foot.  
The swing phase is initiated when the toes leave the floor and proceeds by advancing the limb forward 
until terminating when the heel hits the ground. Each gait cycle incorporates two periods of double 
limb support occurring at the beginning and at the end of the stance phase of the right leg.  
 

1.3.2. Neural correlates of gait 

Central Pattern Generator: To accomplish the complex sequence of movements during stepping, 
extensor and flexor muscles moving the hip, knee and ankle joints are activated in an alternating 
pattern. A central pattern generator in the spinal cord has been proposed to produce this characteristic 
muscle pattern of stepping (Grillner, 1985; 2006). The central pattern generator receives input through 
sensory afferences on cutaneous reflexes, limb loading and hip position and can directly regulate the 
stepping pattern through this information (Duysens et al., 2000, Pang et al., 2000, Dietz et al., 2002).  

Studies in decerebrate cats and rodents suggest that central pattern generators involved in loco-
motion are partly controlled by efferent input from regions in the brainstem and cerebellum (Arm-
strong, 1986, Drew et al. 1996, Rossignol et al. 2006). Human gait is assumed to be produced by the 
interaction between spinal central pattern generators and supraspinal cortical and subcortical structures 
(Van Hedel & Dietz, 2010, Dietz, 2003, Drew & Marigold, 2015).   

Supraspinal control of gait: Recent evidence on the cortical contribution to walking in humans comes 
from a number of neuroimaging studies. Functional neuroimaging of gait poses practical problems, 
since techniques like positron emission tomography (PET) and functional magnetic resonance imaging 
(fMRI) constrain participants to a lying position with fixated head in the scanner. Furthermore fear of 
movement artefacts in neuroimaging methods such as fMRI, magnetoencephalography (MEG) and 
electroencephalography (EEG) has led to experimental paradigms in which participants have to 
maintain artificially static positions. Few studies have therefore ventured the undertaking to investigate 
direct neural correlates during actual gait in humans. Prior research has mainly extrapolated findings on 
restricted movements e.g., leg or foot movements that represent a part of human locomotion to models 
of cortical and subcortical control of human gait (Dobkin et al., 2004, Luft et al., 2005, Metha et al., 
2009, Müller-Putz et al., 2007, Neuper and Pfurtscheller, 2001, Pfurtscheller et al., 1997, Raethjen et 
al., 2008, Sahyoun et al., 2004, Wieser et al., 2010).   

Studies measuring hemodynamic brain activity during pedaling and ankle dorsiflexion have 
shown a higher activation during active compared to passive movements in central primary sensorimo-
tor and premotor areas (Christensen et al., 2000, Hollnagel et al., 2011, Dobkin et al., 2004; Sahyoun et 
al., 2004). Single-photon emission computed tomography (SPECT) and positron emission tomography 
(PET) studies have measured and compared brain activity before and after walking (Fukuyama et al., 
1997, Hanakawa et al., 1999, la Fougere et al., 2010). These studies report that the premotor cortex, 
parietal cortex, basal ganglia and cerebellum in addition to medial primary sensorimotor areas seem to 
be involved in the supraspinal control of gait. 
Cortical activity during gait initiation and precision stepping has been investigated by several fNIRS 
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studies. During gait adaptation (Suzuki et al., 2004) and motor preparation of gait (Suzuki et al., 2008, 
Koenraadt et al., 2013) the authors observed increased activity over the prefrontal cortex (PFC) and the 
supplementary motor area (SMA). Another study showed that walking compared to single foot 
movements increases activity bilaterally in the central primary sensorimotor area and the SMA (Miyai 
et al., 2001).  

Electrophysiological studies have reported electrocortical potentials related to assisted lower 
limb movements (Wieser et al., 2010), and coherence between the EEG signal over Cz which is located 
over the foot area of the primary motor cortex and muscles of the foot (Raethjen et al., 2008). A greater 
event-related desynchronization (ERD) (Pfurtscheller and Lopes da Silva, 1999) has been observed in 
the mu band relative to active vs. passive foot movement over midline sensorimotor areas (Müller-Putz 
et al., 2007). Mu (8 to 13 Hz) to beta (15 to 25 Hz) band ERD in the motor system has been related to 
the activation of sensorimotor areas (Crone et al., 1998, Pfurtscheller and Lopes da Silva, 1999, Neuper 
and Pfurtscheller, 2001, Pfurtscheller et al., 2003, Miller et al., 2007), while event related synchroniza-
tion (ERS) in these bands has been associated with a deactivation or inhibition in  the sensorimotor 
system (Klimesch et al., 2007, Neuper et al., 2006).  

Recent EEG studies suggest that these principles can be extrapolated to whole body movements 
such as gait. Decreased alpha and beta band power over the foot motor area has been shown relative to 
assisted stepping movements in an upright position compared to periods of rest in a lying position 
(Wieser et al., 2010). Advances in signal processing methods have spawned a new research field called 
mobile brain body imaging (MoBI) aiming at the neuroimaging of whole body movements during natu-
ral behavior with EEG (Makeig et al., 2009). Several studies have emerged from this new approach 
showing for the first time the analysis of EEG during actual gait (Gwin et al., 2010; 2011, Presacco et 
al., 2011). Importantly, Presacco et al. (2011) reported a suppression of alpha band power during preci-
sion walking compared to standing. These electrophysiologic principles seem to extend also to subcor-
tical structures. Singh et al. (2011) performed human local field potential (LFP) recordings from the 
basal ganglia during walking and found that power in low (4 to 12Hz) and high (60 to 90Hz) was sig-
nificantly increased while beta band power (15 to 25Hz) was significantly decreased during walking 
compared to sitting or standing.  

A few studies have also shown gait cycle related electrocortical and subcortical dynamics dur-
ing walking. Fitzsimmons et al. (2009) were able to predict the kinematics of bipedal walking in mon-
keys by decoding of invasive recordings in sensorimotor cortex. Interestingly Singh et al. (2011) 
showed a gait related modulation of theta-alpha band power (6 to 11 Hz) in human LFP from the basal 
ganglia. Gwin et al. (2011) has shown broad band frequency modulation in the human EEG relative to 
the gait cycle during treadmill walking. The authors demonstrate that the method of independent com-
ponent analysis (ICA) is able to decompose the EEG in artifact, muscle, and brain sources and allows 
to model cortical dynamics during whole body movements (Gwin et al., 2010; 2011, Gramann et al., 
2010).  
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2. Methodological considerations 

Brain-imaging methods such as fMRI or MEG require that participants remain motionless in a sitting 
or lying position and are highly susceptible to movement artefacts. The method of EEG in combination 
with sophisticated source separation analysis allows to overcome these limitations (Baillet, 2001, 
Michel, 2004, Makeig et al., 2009). EEG is the only non-invasive neuroimaging method that combines 
1) mobile, low weight sensors that allow for head and body movements in ambulatory conditions and 
2) a temporal resolution fine enough to analyze temporal brain dynamics relative to single gait cycle 
phases. In addition EEG allows to uncover different elements of cortical motor and cognitive control by 
investigating frequency-specific functions of neuroelectric oscillations. (Pfurtscheller et al., 2003, 
Buzáki and Draguhn, 2004, Neuper et al., 2006, Siegel et al., 2012). 
 

2.1. Generation of the EEG 

EEG is generated by the coordinated activity of a large number of neurons in the cortex (Luck, 2005, 
Buzaki, 2006, Kandel et al., 2013). On the single cell level, e.g. excitatory synapses of a neuron induce 
a current inflow to the cell (sink) at the apical dendrites and a current outflow (source) at the cell body.  
This flow of current causes a voltage difference between the sites of current influx (sinks) and current 
outflux (sources) to the cell and generates a tiny dipole in the extracellular space around the neuron. 
The linear sum of these overlapping dipoles or voltage fields, produced by the interaction of a large 
number of neurons, can be measured as the local field potential invasively or from the scalp (Buzaki, 
2006).   

 
 
Figure 2.1. The EEG is a linear sum of voltages: Different cortical sources project to the scalp and produce a 
linear sum of voltages at scalp sensors. (Makeig, 2005, Onton et al, 2006), 
(http://sccn.ucsd.edu/mediawiki/images/a/a8/EEGLAB2010_SM_mining_brain_dynamics_I.pdf). 
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We can assume that many patches of neurons in different parts of the cortex are simultaneously 
active and generate electrocortical potentials that project and sum at the scalp. Due to the basic law of 
voltage conductance these electrocortical potentials spread out as they travel through tissues, cortex, 
the skull and the scalp (Nunez & Srinivasan, 2006). The voltage deflections we can measure at the 
scalp are therefore a mixture of relatively independent far field potentials generated in different parts of 
the cortex (Onton et al., 2006, Onton & Makeig, 2006, Buzaki, 2006) (see Figure 2.1).   

Recovery of the location and orientation of the neural field generators underlying the EEG 
based on the spatially averaged activity detected by the scalp electrodes is limited due to the under-
completeness of the inverse problem. This under completeness is given due to the fact that the inverse 
problem does not have a unique solution and any number of brain source configurations can produce an 
observed voltage distribution at the scalp (Luck, 2005, Buszaki, 2006, Nunez & Srinivasan, 2006) 
 

2.2. EEG rhythms 

The mean field (EEG) resulting from the summed collective behavior of neurons is a mixture of 
rhythms.  Different oscillatory bands, involving frequencies from 0.1 Hz to 1000 Hz are generated by 
neuronal networks in the human cortex (Buszaki, 2006, Scheer et al., 2011, Fedele et al, 2012, Nikulin 
et al., 2014). These neuronal oscillators are linked to the much slower metabolic oscillators (Buszaki, 
2006, Nikulin et a.l, 2014). 

Following Berger’s discovery and denomination of the EEG alpha rhythm in 1929, the later ob-
served and distinguished frequency bands were named according to the  Greek alphabet: delta, 0.5 to 4 
Hz; theta, 4 to 8 Hz; alpha, 8 to 12 Hz; beta, 12 to 30 Hz; gamma, >30 Hz. There is evidence that dis-
tinct frequency bands have different functional roles in motor and cognitive processing (Klimesch, 
1999, Pfurtscheller et al., 1997, Curio, 2000, Neuper et al., 2006, Buzsaki, 2006), however studies also 
show that the exact boundaries between the different bands overlap and vary across participants, tasks 
and brain areas (Buszaki, 2006, Neuper et al., 2001, Andrew & Pfurtscheller, 1997, Pfurtscheller et al., 
2000). Motor behavior for example has been connected mainly to alpha/mu (8 to 12Hz) to beta (13 to 
30Hz) and gamma (30 to 200Hz) rhythms (Crone et al., 1998, Pfurtscheller and Lopes da Silva, 1999, 
Neuper and Pfurtscheller, 2001, Pfurtscheller et al., 2003, Miller et al., 2007). The power spectrum of 
the oscillatory frequencies in the EEG has a 1/f, distribution meaning that higher frequency oscillations 
occur at smaller amplitudes and are harder to detect (Buzsaki, 2006, Miller et al., 2009). 

However, the precise functional mechanisms of most cortical and subcortical oscillations are 
unknown. Buszaki (2006) proposed that our brain is not continuously processing information but sam-
pling discrete segments of time. This is achieved by using oscillatory cycles that act as a temporal pro-
cessing window marking the beginning and the end of the encoded signal. Furthermore, information 
processing in the brain implies that information is transferred between brain areas. Since effective con-
nectivity involves the synchronization of two cortical areas in a certain frequency band the period 
length of oscillations determines how far information can be transferred by one cycle. Thus information 
transfer between distant neuronal groups needs more time and therefore recruits slow oscillations 
whereas local processing involves fast oscillations (von Stein & Sarnthein, 2000, Libet et al., 2004, 
Buszaki, 2006).  
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2.3. Independent Component Analysis 

Blind source separation with Independent Component Analysis (ICA) is a powerful approach to 
separate electric potentials composing the EEG (Makeig et al., 1996). ICA assumes the temporal 
independence of electrophysiological sources underlying the EEG signal and performs a linear data 
decomposition that parses multichannel EEG data into independent source signals.  
 

2.3.1. Theoretical considerations 

ICA, was originally developed for technical signal processing (Comon, 1994, Bell & Sejnowski, 1995). 
Infomax ICA is a specific type of ICA and has been applied to EEG data the first time by Makeig in 
1996. Infomax ICA belongs to a group of methods that performs blind source separation by unmixing 
linearly summed signals. 

A well-known problem in audio speech processing that can be solved with blind source 
separation methods is the cocktail party dilemma: assuming we have two persons s1 and s2 speaking 
simultaneously and two microphones x1 and x2 recording both voices.  
The signals recorded at the microphones are a mixture of the two voices and can be expressed as 
(Comon, 1994, Lee et al., 2000):  
 

X1(t) = a11s1(t) + a12s2(t)                         (1.1) 
X2(t) = a21s1(t) + a22s2(t)  

 
which can be formulated in matrix form as  
 

X = A × S                 (1.2) 
 
Where X are the signals recorded at the microphones, S are the underlying voice sources and A is the 
mixing matrix (Comon, 1994, Lee et al., 2000). In theory S can be obtained by   
 

S = A-1 × X                 (1.3) 
 
However, since A is unknown we need to solve the unmixing matrix W (the inverse of A) to recover the 
original sources. This can be done by blind source separation. 
 
EEG measurement poses a similar dilemma as the cocktail party problem, since the sensors at the scalp 
record a linear overlay of independent sources (Lee et al., 2000, Hyvärinen & Oja, 2000, Palmer et al., 
2006): 
 

 X(t) = a1s1(t)+a2s2(t)+…+ansn(t) = AS(t)      (1.4) 
 
Where X is the EEG signal and s are the underlying sources. Infomax ICA learns an unmixing matrix 
W that maximizes the independence of the sources (see Figure 2.1). 
 

U = W × X          (1.5) 
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W is a n × n matrix while X and U are n × t matrices. The IC activations (U) are the independent source 
signals underlying the EEG. The independence of two events A and B is defined as:  
 

P(A and B) = P(A)P(B)        (1.6) 
 
The two events are independent if the product of the probability of A and B occurring individually 
equals the probability of both occurring. Independence is a more powerful characteristic than 
uncorrelatedness. If the mean of the product of two random variables X and Y equals the product of the 
means, X and Y are uncorrelated (Hyvärinen & Oja, 2000).  
 

E{XY}=E{X}E{Y}    E{(X-mean(x))(Y-mean(y))}= 0    (1.7) 
 
Two independent events are always uncorrelated however uncorrelatedness does not imply 
independence. A measure that can be used to determine independence is Mutual Information (MI) 
(Cover & Thomas, 1991, Lee et al., 2000, Hyvärinen & Oja, 2000). MI equals zero only when two 
events X and Y are independent. 
 

MI(X,Y) = D(px,y(x,y) || px(x)py(y)) >= 0       (1.8) 
 
Infomax ICA maximizes independence of the resulting sources by minimizing their mutual 
information. Infomax ICA can only uncover the same number of sources as there are recording sensors 
(Bell & Sejnowski, 1995, Lee et al., 2000, Hyvärinen & Oja, 2000). 

The studies in this thesis use an adaptive independent component analysis (ICA) mixture model 
algorithm [AMICA] to decompose the EEG (Palmer et al., 2006; Palmer et al., 2008). This is a 
generalization of the Infomax ICA algorithm (Bell and Sejnowski, 1995; Makeig et al., 1996). The 
original Infomax ICA method assumes the spatial stationarity of sources, however for electrocortical 
sources this may not always be true. A single source model may therefore not be sufficient to represent 
signals in non-stationary environments. AMICA allows to represent EEG sources with multiple models 
(Palmer et al., 2006). 

 
 
Figure 2.2. The observed EEG signal X  represents a linear mixture of sources s. ICA learns an unmixing 
matrix W. Multiplying W with the EEG signal X results in the maximally independent source timecourses (Y) 
(Jung et al., 2000). (http://sccn.ucsd.edu/eeglab/workshop06/handout/TP_Jung_Workshop06_ICA.pdf) 
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2.3.2. Application of ICA to EEG 

Outcomes of ICA decompositions and anatomic assumptions suggest that the cortical EEG sources 
uncovered by ICA can be interpreted as the waveforms of the original far field potentials projecting to 
the scalp (Onton et al., 2006). In fact, independent cortical sources have an associated scalp projection 
resembling that of a single equivalent dipole resulting from the synchronous local field activity in a 
patch of cortex (Delorme et al., 2012).  

An ICA decomposition is valid as long as the properties of EEG dynamics coincide with the 
assumptions of the ICA model. Electric potentials underlying the EEG signals must exhibit relative 
temporal independence, mix linearly at scalp sensors and be spatially stationary (Makeig et al., 1996, 
Hyvärinen & Oja, 2000, Lee et al., 2000, Onton et al., 2006). The basic laws of volume conduction and 
studies showing the relative temporal independence between synchronuous activity in different patches 
of cortex support these assumptions (Salinas & Sejnowski 2001, Nunez & Srinivasan, 2006). 

Circumventing the under-completeness of the inverse model with ICA: Since the scalp 
projection of independent cortical EEG sources resembles that of an equivalent current dipole their 
location can be relatively unequivocally estimated. With standard inverse source modeling methods an 
equivalent current dipole can be calculated whose scalp projection provides the best fit relative to the 
observed scalp distribution (Onton et al., 2006). Different head models can be used to localize 
equivalent current dipoles. Due to their simplicity spherical head models that use only three layers of 
conductive tissue (cortex, skull and scalp) are widely used. However, it has been shown that more 
realistic head models that assume different layers within the cortex give more exact results 
(Oostenveld, & Oostendorp, 2002). It has to be taken into consideration however that the EEG has a 
low spatial resolution (about 1-2cm) and can measure only cortical surface activity. Thus the locations 
of estimated dipoles have to be interpreted with caution.  

In the studies of this thesis a standard boundary element (BEM) model (Gramfort et al., 2010) 
using an anatomical template colin27 / MNE brain (Collins, 1994) has been utilized which employs the 
method of finite element models. In the BEM the brain is divided into segments assuming different 
resistance and conductance properties for separate compartments of tissue (Luck, 2005).  

Homogenous source activity over subjects: EEG signals recorded at any scalp sensor contain the 
summed activity from multiple cortical and non-cortical processes in different parts of the cortex 
(Nunez & Srinivasan, 2006). In traditional EEG research comparisons across subjects are generally 
made according to electrode locations. For example in many EEG studies brain activity relative to right 
hand movement has been generally compared using electrode location C3 (Pfurtscheller et al., 1997, 
2000, Neuper & Pfurtscheller, 2001). However, each human cortex is uniquely folded and thus EEG 
sources of individual subjects may differ in size, strength and orientation (Onton et al., 2006). The 
same scalp sensor may therefore record different portions of cortical and non-cortical potentials over 
participants, making it impossible to determine which sources add up to the EEG signal (Onton et al., 
2006). On the other hand separating the EEG into independent source signals allows to group truly 
similar source signals by comparing homogeneous collections of source scalp maps, locations and time 
course over subjects (Onton et al., 2006, Onton & Makeig, 2006). 
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2.4. Artefacts during gait 

The EEG signals recorded at the scalp have a weak amplitude in the range of microvolts compared to 
electric noise and artefacts present at the scalp electrodes. Furthermore biological noise such as electric 
muscle activity (electromyogram- EMG), eye movements (electrooculogram - EOG) and heart electri-
cal activity (electrocardiogram - ECG) have overlapping frequency ranges relative to the EEG.  

Furthermore, due to the physical activity during walking participants are prone to start sweating 
which introduces slow drifts in the EEG recordings caused by the activation of sweat glands. Since 
these artefact signals exhibit relative temporal independence between each other and electrocortical 
sources they can be relatively easily separated with ICA (Jung et al., 2000, Delorme et al., 2007, Hoff-
mann & Falkenstein, 2008). 

Additionally, recording of EEG during gait can be complicated by other sources of noise intro-
duced by movement artefacts such as head movements, cable swinging and electrode movement. It has 
been shown that these motion artefacts are not limited to a restricted band of frequencies but overlap 
with the EEG frequency range. A study by Gwin et al., 2010 compared methods to remove motion arte-
facts in the EEG recorded during walking and running. The authors found that the EEG spectrum ex-
hibits frequency peaks coinciding with the step frequency and its harmonics. Furthermore the authors 
demonstrate that during steady state walking the EEG signal is affected most considerably in the low 
frequencies below 4 Hz. Importantly the study shows that performing blind source separation with ICA 
on the EEG data they were able to separate movement artefacts, neurophysiological artefacts and elec-
trocortical sources during walking (Gwin et al., 2010; 2011, Gramann et al 2012).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12 
 

3. Aim of this work  

Locomotor impairments hinder affected individuals to perform activities of daily living autonomously. 
Regaining a level of functional gait (Perry, 1992) is therefore an important goal in post-stroke motor 
rehabilitation. However there is little consensus on the mechanisms promoting gait recovery and the 
effectiveness of different rehabilitation approaches (Pollock et al., 2007).  Brain-Computer Interfaces 
(BCI) provide the possibility to measure and translate brain activity during gait rehabilitation and 
would allow to relate cortical changes to functional improvements and to evaluate the efficiency of 
training approaches (Belda-Luis et al., 2011). 

In order to develop BCIs for gait rehabilitation and improve rehabilitation therapies, it is crucial 
to understand the supra-spinal mechanisms involved in human locomotion. Complex movements such 
as gait require the precise temporal coordination of different body parts and the synchronization of 
these movements with events in the environment. The high temporal resolution of EEG recordings al-
lows us to analyze electrocortical activity as it relates to single gait cycle phases and to sensory events 
that require the modification of the regular gait pattern. Yet, electrocortical dynamics during human 
upright walking are not well-studied (Gwin et al., 2010, Haefeli et al., 2011, Presacco, 2011) mainly 
due to concerns of movement artefacts in the EEG signal that occur during whole body movements. 
Recently it has been shown that with the application of advanced signal processing methods such as 
ICA (Gwin et al., 2010; 2011) it is possible to account for movement artefacts in the EEG signal. 

The goal of this thesis was to model brain activity in the EEG relative to functional gait move-
ments and identify novel features for the application of BCIs to motor rehabilitation systems. Since 
EEG rhythms such as mu, beta and gamma rhythms have been shown to be related to motor processing 
(Crone et al., 1998, Pfurtscheller and Lopes da Silva, 1999, Neuper and Pfurtscheller, 2001, Pfurtschel-
ler et al., 2003, Miller et al., 2007) the studies of this thesis aimed at uncovering the role of these 
rhythms in steady state gait movements as well as the adaptation of steps to external changes. This 
knowledge is essential for studying motor impairment after brain injury and may help to identify novel 
features for the application of BCIs to motor rehabilitation systems. Finally, this thesis aimed at inves-
tigating neural correlates related to different training strategies to determine the efficacy of certain ther-
apy approaches. This knowledge is important since there is no consensus on the effectiveness of differ-
ent rehabilitation approaches and currently there is no way to determine how well affected individuals 
activate their cerebral motor networks during the gait training.   

To approach these problems, this thesis concentrated on the analysis of neuronal oscillations obtained 
from high-density electroencephalographic (EEG) recordings in healthy participants during walking. 
ICA was used to separate brain and artefact sources. Three studies were carried out within the scope of 
this thesis:  

1) Since active participation and voluntary drive are crucial for motor learning (Lotze et al., 2003), 
in the first study in this thesis the neural correlates of active participation in robot assisted gait 
training (Wagner et al., 2012) were examined. Goal was to explore novel features in the EEG 
for the development of a BCI that detects active engagement in gait movements. This study also 
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investigated the feasibility of recording EEG during automated gait training and examined neu-
ral oscillations related to single gait cycle phases.  

2) Voluntary actions are important for motor learning and involve two different subjective experi-
ences: the experience of intention, i.e. planning to do something and the experience of agency, 
which is the feeling that our actions have caused a particular event in the environment (Kaelin-
Lang et al., 2005; Lotze et al., 2003). Therefore the second study in this thesis, investigated 
whether interactive movement related feedback in a Virtual Environment (VE) task increases 
voluntary motor drive and agency during robot assisted gait (Wagner et al., 2014).  

3) A recent study demonstrated that stroke patients prefer longer step responses in gait adaptation 
to shorter step responses (Roerdink et al., 2009). Interestingly dual task paradigms during walk-
ing cause participants to take longer strides (Li et al., 2012; Lovden et al., 2008; De Sanctis et 
al., 2014) suggesting that voluntary deceleration of steps requires less cognitive resources (Var-
raine et al., 2000). The third study in this thesis therefore used rhythmic auditory cues during 
treadmill walking to study the underlying neural correlates of gait adaptation strategies (Wagner 
et al., 2015).  

 
Chapter 4 provides a short summary of Study 1 and 2 (these studies are attached in published form to 
the thesis) and a detailed description of Study 3 and Chapter 5 provides a general discussion of the re-
sults and conclusions. 
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4. Methodology and results  

4.1. STUDY I: Level of participation in robotic-assisted treadmill 
walking modulates midline sensorimotor EEG rhythms in able bodied 
subjects 

Wagner, J., Solis-Escalante, T., Grieshofer, P., Neuper, C., Müller-Putz, G., & Scherer, R. (2012). 
Neuroimage, 63(3), 1203-1211. doi:10.1016/j.neuroimage.2012.08.019  

Post-stroke gait rehabilitation therapy aims at the functional recovery of gait movements by promoting 
cortical reorganization of the areas related to motor execution. Robotic gait trainers are increasingly 
used in locomotor rehabilitation as the repeated execution of the motor pattern of human locomotion is 
believed to reactivate supraspinal locomotor centers. Robot assisted gait training can lead to passive 
movements as it executes a constant force and does not adapt to motor contributions by the patient 
(Hidler and Wall, 2005; Israel et al., 2006). It has been previously shown that functional recovery of 
movements shares the same neuronal mechanisms as motor learning Nudo (2003) and that the active 
contribution in a movement is crucial for the encoding of motor memory (Lotze et al., 2003; Kaelin-
Lang et al., 2005).  

Prior studies have tried to assess patient participation using only indirect measures such as 
force, heart rate and oxygen uptake (Lünenburger et al., 2007, Koenig et al., 2011, Pennycott et al., 
2010).  We propose the direct assessment of active participation in gait movements based on the 
amount of cortical activation determined from the electroencephalogram. The measurement of electro-
cortical patterns during automated gait training however is challenging due to the contamination of the 
EEG signal with movement and muscular artefacts. Previously a study (Gwin et al., 2010) showed that 
it is possible to separate electrocortical and artifactual activity in the EEG with Independent Compo-
nent Analysis during walking.  

The aim of this work was to investigate the electrocortical patterns that accompany functional 
gait movements and establish the feasibility of measuring EEG during automated gait training. Fur-
thermore, the study aimed at examining the neural correlates of active participation in the execution of 
locomotor movements. To this end we recorded high density EEG (120 sensors) from 15 participants 
and compared active and passive walking in a gait robot. 

Major contributions: The study demonstrated that the recording of meaningful EEG signals during 
automated gait training is feasible and that active participation during gait training can be assessed di-
rectly based on neuronal oscillations. The study showed a significantly higher activation (desynchroni-
zation in mu and beta bands) in the sensory foot area during active compared to passive walking. It has 
been demonstrated in two further studies (Solis-Escalante et al., 2012; Wagner et al., 2014) that these 
findings can be used to detect active participation in gait movements on a single trial basis.  

Furthermore, the study shows that gait movements can be described by cortical rhythms. We 
show for the first time that gait cycle phases are related to power modulations in the lower gamma band 
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(25 to 40Hz) over the premotor cortex. At the same time mu (7 to12Hz) and beta rhythms (15 to 22Hz) 
are suppressed during walking compared to standing. This study is the first to provide evidence that the 
functional role of mu and beta rhythms in the motor cortex is valid also for functional gait movements. 
 
 
 

 
 
Fig. 4.1. Experimental setup; average EEG channel power spectral density (PSD) at electrodes F10, C3, Cz, 
C4 and P10 and average event related spectral perturbation (ERSP) plots for Cz and Pz. (a) (From left to 
right) Experimental setup: subject walking in the Lokomat gait orthosis with body weight support. The 
amplifiers for EEG recordings are fixed on a board in front of the participant. The orthosis is adapted and fixed 
to the participant's legs with the help of an experienced physical therapist; average ERSP plots over all subjects 
for channels Cz and Pz showing significant changes in spectral power during the gait cycle for active walking. 
Non-significant differences relative to the full gait cycle baseline (p≤0.05) are masked in green (0 dB). The right 
leg heel contact marks the beginning and end of the gait cycle, the vertical line signs the temporally aligned 
event of left heel-strike (50%). (b) For three artifact rejection stages: 1. Channel based artifact removal (black 
line), 2. After removing non physiological artifacts (blue line) 3. Retaining only activity classified as cortical 
(red line), for channels F10, C3, Cz, C4 and P10. Panel a: (Part of this image was modified from 
http://atec.utdallas.edu/midori/Handouts/walkingGraphs.htm). 
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Fig. 4.2. Scalp projection, dipole locations, power spectral density (PSD) and Event related spectral 
perturbations (ERSPs) for cluster A, located in the premotor cortex. (a) (From left to right) Cluster average 
scalp projection; dipole locations of cluster ICs (blue spheres) and cluster centroids (red spheres)visualized in 
the MNI brain volume in coronal and sagittal views; gait cycle PSD for active and passive walking and 
standing; (b) average cluster ERSP plots showing significant changes (relative to the full gait cycle baseline 
(p≤0.05)) in spectral power during the gait cycle for active walking (bottom left), and passive walking (bottom 
right). Non-significant differences are masked in green (0 dB). The right leg heel contact marks the beginning 
and end of the gait cycle, the vertical line signs the temporally aligned event of left heel-strike (50%). Part of this 
image was modified from http://atec.utdallas.edu/midori/Handouts/walkingGraphs.htm. 
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Fig. 4.3. Scalp projection, spatial location and power spectra of independent component cluster. B located in 
the sensorimotor cortex, foot area; From left to right: Cluster average scalp projection; dipole locations of 
cluster ICs (blue spheres) and cluster centroid (red spheres) visualized in the MNI brain volume in coronal and 
sagittal views; PSD for active and passive walking and standing. A significant difference in PSD between active 
and passive walking and standing in the mu and in the beta range has been observed; boxplot showing 
differences (active minus passive walking) in normalized average spectral power for the single gait cycle phases. 
The edges of the box mark the 75th percentiles, black dots the median. Whiskers sign the range of values, 
outliers are plotted as empty circles. Significant differences are marked with * for p≤0.05 and ** for p≤0.01; 
these difference plots are displayed for Cluster B in the mu and beta bands. 
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4.2. STUDY II: It's how you get there: walking down a virtual alley 
activates premotor and parietal areas 

Wagner, J., Solis-Escalante, T., Scherer, R., Neuper, C., & Müller-Putz, G. (2014). Frontiers in human 
neuroscience, 8.  doi: 10.3389/fnhum.2014.00093 

It has been proposed that post-stroke functional reorganization of the motor cortex can be guided by 
principles of motor learning (Nudo, 2003). A factor that has been shown to be crucial for the encoding 
of motor memory is voluntary drive in the movement (Lotze et al., 2003; Kaelin-Lang et al., 2005). 
Two distinct subjective experiences have been associated with voluntary movements: ‘intention’ which 
relates to the experience of being about to do something and ‘agency’ which refers to the feeling that 
our movements generate some effect in the environment (Tsakiris et al., 2010). Thus, the feeling of 
agency can be enhanced when our actions are accompanied by visual or sensory feedback (Blakemore 
et al., 2002). In line with these observations the execution of a functional task to reach some behavioral 
goal has been shown to be related to motor learning (Diamond et al., 1964, Greenough et al., 1985, 
Kleim et al., 1996, Rosenzweig et al., 1964, Plautz et al., 2000) and promote cortical changes related to 
post-stroke lower limb recovery (Adkins et al., 2006, Liepert et al., 2000, Van Peppen et al., 2004). In 
post-stroke locomotor rehabilitation Virtual Environments (VEs) in combination with robotic gait 
trainers provide the possibility to implement functional tasks and provide visual feedback relative to 
lower limb movements.  

To determine whether walking in a Virtual Environment (VE) would generate motor planning 
and intention we examined the impact of an interactive VE feedback task on the EEG patterns during 
robot assisted gait training in able bodied participants. We compared walking in the VE to two control 
conditions: Walking with mirror feedback, in which participants observed their own movements and 
walking with a visual attention paradigm, in which visual stimuli were unrelated to the motor task. We 
hypothesized that interactive feedback in a VE would suppress mu and beta rhythms and thus activate 
premotor and parietal cortices - areas that have been previously related to motor planning and intention. 
Additionally, we hypothesized that if the VE task would yield higher cortical activation of these areas 
compared to mirror feedback interactive VE feedback may be more beneficial for motor learning. 

Major contributions: The analysis showed that the interactive VE feedback task significantly sup-
presses mu and beta rhythms in premotor and parietal areas compared to mirror feedback and motor 
unrelated feedback. Such suppression indicates increased activation of these brain areas that have been 
related to motor planning. Interestingly the interactive feedback task induced a higher activation in the 
right parietal lobe, a brain area that has been related to the feeling of agency (Tsakiris et al., 2010). Fur-
thermore this is the first study to show the involvement of a premotor-parietal network in visuomotor 
integration during walking. Activity in the parietal cortex likely reflects direct visuomotor transfor-
mations related to gait movements required by the task. We also show that low gamma power changes 
(25 to 40Hz) relative to gait cycle phases are modulated by motor planning during visually guided gait 
adaptation. The results of this study suggest that goal directed walking tasks recruit brain areas in-
volved in motor planning and agency and may thus promote motor learning in post-stroke gait rehabili-
tation therapy. 
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FIGURE 4.4. Experimental setup: subject walking in the lokomat gait orthosis with bodyweight support. The 
amplifiers for EEG recordings are fixed on a board in front of the participant. The orthosis is adapted and fixed 
to the participant’s legs with the help of an experienced physical therapist; Left: robotic assisted walking. Speed 
(≤2.2 km/h) and body weight support (∼30%) were adjusted for each participant; Right top: participant walking 
in the virtual environment (VE) condition with 3rd person view. Right bottom: gaze screen with possible locations 
for the graphical objects. Participants were instructed to walk in the gait orthosis and focus their gaze on objects 
appearing on the screen 
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FIGURE 4.5. Scalp projection, spatial location and power spectra of independent component clusters (A) 
Cluster A located in the supplementary motor area( premotor cortex); (B) Cluster B located in the posterior 
cortex (Brodmannarea7); (C) Cluster C located in the posterior cortex (Brodmannarea 40). From left to right 
in each row: cluster average scalp projections; dipole locations of cluster ICs (blue spheres) and cluster 
centroids (red spheres) visualized in the MNI brain volume in coronal and sagittal views; PSD for all feedback 
conditions. For cluster B and C a clear difference in PSD between noFB and Gaze vs. both of the VE conditions 
in the mu and in the beta range can be observed [Naming: Ss, ICs - number of subjects (Ss) and Independent 
Components  (ICs) in the cluster]. 
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4.3. STUDY III: Distinct beta band oscillatory networks subserving 
motor and cognitive control during gait adaptation 

Wagner, J., Makeig, S., Gola, M., Neuper, C., Müller-Putz, G.R. submitted 

Everyday locomotion and obstacle avoidance requires effective gait adaptation. Many studies have 
shown that efficient motor actions are associated with mu rhythm (8 to 13 Hz) and beta band (13 to 35 
Hz) power desynchronizations in sensorimotor and parietal cortex, while a number of cognitive task 
studies have reported higher behavioral accuracy to be associated with increases in beta band power 
and coherence in prefrontal and sensory cortex. How these two distinct patterns of beta band 
oscillations interplay during gait adaptation, however, has not been established. Here we recorded 108-
channel electroencephalographic (EEG) activity from 18 participants attempting to walk on a treadmill 
in synchrony with a series of pacing cue tones while also adapting their step rate and length as quickly 
as possible to sudden shifts in the tempo of the pacing cues. 

This paper has been submitted to a scientific journal but has not yet been published at the time of 
writing the thesis. Therefore the submitted manuscript is included in this section. 
 
Major contributions: Understanding brain dynamics supporting gait adaptation is crucial for 
understanding motor problems in walking such as those associated with stroke and Parkinson’s and 
could guide development of rehabilitative therapies for these conditions. Only a few electromagnetic 
brain imaging studies have examined neural correlates of human upright walking. Here, application of 
independent component analysis to EEG data recorded during treadmill walking allowed us to uncover 
two distinct beta band oscillatory cortical networks that are active during gait adaptation: (8 to 13 Hz) 
mu rhythm and (13 to 35 Hz) beta band power decreases in central and parietal cortex and (14 to 20 
Hz) beta band power increases in frontal brain areas. In the right dorsolateral prefrontal cortex (dlPFC), 
the beta band power increase was stronger during (more effortful) step shortening than during step 
lengthening, possibly related to inhibitory motor control. These results show that two distinct patterns 
of beta band activity modulation accompany gait adaptations, one likely serving movement initiation 
and execution and the other, motor control and inhibition.  

 

4.3.1. Introduction  

Impairment in gait adaptability (i.e., one’s ability to change walking speed or direction as required) 
(Den Otter et al., 2005, Hofstad et al., 2006) produces a reduced ability to avoid obstacles and an 
increased risk of falling in affected individuals including many stroke and Parkinson’s patients 
(Weerdesteyn et al., 2006). Rhythmic auditory cues have been widely used in the rehabilitation of gait 
(Thaut & Abiru, 2010). Use of an auditory pacing stimulus stream including infrequent tempo shifts has 
been recommended to identify deficits and train improvements in gait adaptation in stroke patients 
(Roerdink et al., 2009, 2007).  Unfortunately, because of the ill effects of movements on brain imaging 
data the precise temporal brain dynamics of step adaptation remain largely unexplored in neuroimaging 
studies. Recent signal processing advances, however, allow study of source-resolved EEG dynamics 
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during walking (Gwin et al., 2010, 2011, Gramann et al., 2011, Seeber et al., 2015) and other actions, 
an approach termed Mobile Brain/Body Imaging (MoBI) by Makeig and colleagues (2009). 

Previously we have reported mu-rhythm and beta-band power decreases (desynchronizations) 
over central sensorimotor and parietal areas during active walking relative to standing or passive 
walking (i.e., when participants’ legs are moved by a robot) (Wagner et al., 2012, Seeber et al., 2014a) 
and during step adaptation to interactive visual feedback in a virtual environment (Wagner et al., 
2014a). Mu and beta band power in the motor system decrease during the preparation and voluntary 
execution of movements (Jasper & Penfield, 1949, Pfurtscheller & Berghold, 1989, Pfurtscheller & da 
Silva, 1999) while beta band power increase in scalp EEG data has been related to movement 
suppression (Gilbertson et al., 2005, Androulidakis et al., 2007, Zang et al., 2008, Pogosyan et al., 
2009, Joundi et al., 2012, Solis-Escalante et al., 2012). 

Electrophysiological studies suggest that beta band oscillations may also index top-down 
signaling. For example, visual top-down attention and behavioral rule switching are related to 
oscillatory synchronization of beta-band local field potentials in monkeys’ prefrontal cortex (PFC) and 
parietal cortex (Buschman et al., 2007; 2012). PFC effects top-down control by sending information 
about goals and appropriate actions to other brain areas (Miller & Cohen, 2001). Swann and colleagues 
(2009) reported that an electrocortical beta band power increase in PFC during motor inhibition 
preceded mu and beta band power decreases in motor cortex, while in older subjects beta band activity 
increases may have compensatory effects (Geerligs et al., 2012, Gola et al., 2012; 2013).  

Recent studies of gait adaptation using EEG showed increased event-related potential (Haefeli 
et al., 2011) and hemodynamic responses (Suzuki et al., 2004) during preparation for and performance 
of stepping over obstacles, as well as during adaptive walking and precision stepping (Koenraadt et al., 
2013). A recent study demonstrated that during gait adaptation stroke patients prefer step lengthening 
over step shortening (Roerdink, 2009), suggesting that brain mechanisms controlling voluntary gait 
acceleration and deceleration differ (Varraine et al., 2000). Recent studies have reported that 
performing a secondary task during walking induces participants to take longer strides (Li et al., 2012, 
Lovden et al., 2008, De Sanctis et al., 2014), suggesting that step lengthening requires fewer attentional 
resources. 

To examine whether difficulty in gait adaptation is related to PFC beta band activity, we 
designed a high-density EEG study in which participants walking on a treadmill moving at a steady rate 
had to adapt their step length and rate to shifts in the tempo of a pacing tone (i.e., shifts requiring both 
longer and shorter step responses). We expected three different processes would accompany step rate 
adaptations to auditory tempo shifts: 1) mu and beta band desynchronization in sensorimotor and 
parietal cortex, reflecting increased motor flexibility and adaptation; 2) increased beta band power 
within the PFC, reflecting additional cognitive control; 3) scaling of PCF beta band power changes 
with task difficulty, producing a stronger increase in beta band power during step shortening than 
during step lengthening.   
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4.3.2. Materials and methods 

Participants. Twenty healthy volunteers with no neurological or motor deficits participated in this 
study. The data of two subjects were excluded because of heavy EEG artifact. The remaining data of 
eighteen subjects (ten males and eight females aged 22 to 35 years; mean, 29.1, std. dev., 2.7) was 
considered in the analysis. All participants were right handed. Prior studies show that footedness 
follows handedness in right handers, though not consistently so in left handers (Peters & Durding, 
1979). The experimental procedures were approved by the human use committee of the Medical 
University Graz. Each subject gave informed consent before the experiment. 

 Experimental design and procedure. Figures 4.6 and 4.7 show the experimental setup and a 
schematic of the task paradigm, which was adapted from Bank et al. (2011). 

 

Figure 4.6. Experimental setup: Participant walking on the treadmill with auditory pacing cues delivered 
through in-ear headphones. During the initial training period, treadmill speed (3-3.5 km/h) was adjusted to the 
most comfortable pace for each participant and thereafter remained constant. 

Training. Prior to the experimental procedure participants practiced walking on the treadmill for 2-3 
minutes. While walking on the treadmill participants adapted the belt speed to their most comfortable 
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walking speed; this ranged from 3.0 to 3.7 km/h across participants. Belt speed was then fixed at the 
participant’s comfortable walking speed and thereafter remained constant throughout the experiment. 
Next, participants practiced the gait adaptation task with auditory pacing to become familiar with the 
task and to reach acceptable performance, meaning that they correctly responded to step-advance and 
step-delay pacing signal tempo shifts by shortening or lengthening their steps  correspondingly so as to 
synchronize their steps to the new tempo.  

 

Figure 4.7. Experimental paradigm: Throughout the session, treadmill speed remained fixed at a rate 
comfortable to the participant. During each roughly minute-long trial, participants first walked for about 10 sec 
without auditory cues, then walked for 10-18 sec synchronous with cue tones delivered at their then-prevailing 
step rate and phase. Thereafter, beginning at a right heel strike, a sudden (accelerated or decelerated) tempo 
shift occurred in the pacing cue sequence. In response, participants were instructed to adapt their step length, 
rate, and phase as quickly as possible so as to again synchronize their steps with the cue tones at the new tempo.  
After 30 to 70 steps at the new step rate, the next trial began immediately, returning again to 10 sec of uncued 
walking during which participants were instructed to return to their most comfortable step rate.  

Trial structure. During each roughly minute-long trial period participants first walked without pacing 
cues for about 10 seconds. During the next 8 to 12 seconds, they heard a stream of auditory cue tones 
delivered via in-ear headphones at a tempo matching to their current step tempo (the mean of the step 
intervals between their six most recent six uncued steps). The cue sequence was an alternating series of 
high and low tones presented so as to match the participant’s right and left (or left and right) heel 
strikes respectively (this high/low assignment was randomized over subjects). Participants were asked 
to synchronize their heel strikes to the cue tones. 

Next, following a randomly selected right heel strike (after 8 to 12 s of cued walking) the tempo 
of the cue sequence was suddenly increased or decreased by 1/6th of a cycle (60 deg) (as in Roerdink et 
al., 2009) and this new cue tempo was maintained for 30 to 70 steps. Participants were instructed to 
adjust their heel strikes so as to synchronize with the new cue sequence as quickly as possible. The gait 
adjustments required to restore synchronization with the metronome were: a 1/6th longer step interval 
and step length in (+60° phase shift) step-delay trials, and a 1/6th shorter step interval and step length in 
(-60° phase shift) step-advance trials. After 30 to 70 steps at the new step rate, the next trial began 
immediately with, again, uncued walking, during which participants were instructed to return to their 
most comfortable step rate. 
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A total of 60 step-advance and 60 step-delay trials were conducted in 10 blocks of 12 trials each 
comprised of 6 step-advance and 6 step-delay trials presented in random order. Between blocks, when 
asked for by participants short breaks of 5 minutes were given during which participants were standing 
on the treadmill.  

Data acquisition. Seven 16-channel amplifiers (Gtech, Graz, Austria) were combined so as to record 
EEG data from 108 electrode channels in the 5% International 10/20 System (EasyCap, Germany) 
(Oostenveld & Praamstra, 2001). Electrode locations that extended below the conventional 10–20 
spherical layout included PO9, POO9, OI1, OI2, POO10, PO10, I1, Iz, and I2. Reference and ground 
electrodes were placed on the left and right mastoids respectively. All electrode impedances were 
reduced to below 5 kΩ before the recording. Electromyographic (EMG) signals were recorded from the 
skin over the tibialis anterior muscles of both legs using standard adhesive-fixed disposable Ag/AgCl 
surface electrodes. These EMG channels were also recorded using left and right mastoids as reference 
and ground respectively. The EEG and EMG data were sampled at 512 Hz, high pass filtered above 
0.1 Hz, and low pass filtered below 256 Hz. Foot contacts were measured by mechanical foot switches 
placed over the calcaneus bone in the heel of each foot. These switches produced event markers for gait 
cycle heel strike and heel off events. To record the exact timing of the auditory cues we recorded the 
auditory stimulation via digital inputs to one of the amplifiers. 

Behavioral analysis. Two participant timing error correction processes have been distinguished:  1) 
period correction to bring the motor acts (here, heel strikes) to the same tempo as the stimulus sequence 
(Michon, 1967), and 2) phase correction to make the motor acts coincident with pacing stimulus onsets 
by compensating for any phase difference (Repp, 2001a, 2001b). To assess sensorimotor 
synchronization we thus analyzed phase correction and period correction separately. Phase correction 
was assessed by computing asynchronies between heel strikes and pacing tone onsets (for an overview, 
see Repp, 2005, Repp & Su, 2013) while period correction was assessed by computing temporal 
differences between cue intervals (time intervals between consecutive cue onsets) and step intervals (or 
step onset asynchronies, intervals between consecutive heel strikes). 

Phase correction. For each trial, the relative phase angle difference between each heel onset and the 
corresponding auditory cue was calculated. Phase was defined as phase = 360° * (tcue - tHS )/Tcue,  
with tcue (in ms) denoting the time of cue onset, tHS denoting the time of the nearest heel strike, and 
Tcue denoting the time interval between consecutive ipsilateral step cues (Roerdink et al., 2007). For 
each trial, pre-shift coordination between steps and cues was quantified by computing the mean and 
standard deviation phase angle difference in the five steps immediately preceding the tempo shift. The 
time course of gait adjustments made by the participant to restore coordination following cue tempo 
shifts was quantified by calculating the phase difference from baseline for the 14 steps following the 
shift and dividing by ±60 so that step phase at S0 (the first time-perturbed stimulus) was +60° (Pelton 
et al., 2010, Roerdink et al., 2009). Trials were excluded from analysis if any of the steps exceeded 
normalized phase of 180° which corresponds to a 180° difference from pre-manipulation performance. 
Based on these criteria, on average 5 (std. dev., ±6) shift trials were excluded (6% of all trials). 

A 2×14 repeated measures ANOVA with factors “tempo shift” (long vs. short) and “step 
number” (step numbers 1 to 14 following the shift) was used to assess significant differences in fidelity 
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of adaptation. between step-advance and step-delay shifts. Post hoc tests were corrected a priori to a 
significance level of 0.05 using false discovery rate (Benjamini & Yekutieli, 2001).  

EEG analysis. EEG data analysis was performed using custom scripts written in Matlab 2014a (The 
MathWorks Inc., Natick, MA) incorporating EEGLAB 14.0b functions (Delorme & Makeig, 2004). In 
Wagner et al. (2012, 2014a) we showed that artifact contamination of the EEG during upright walking 
can be separated from the brain source data using Infomax Independent Component Analysis (cf. 
Onton et al., 2006, Gwin et al., 2010).  

The EEG data were high-pass filtered at 1 Hz [zero phase FIR filter, order 7,500] to minimize 
slow drifts, and low pass filtered below 200 Hz [zero phase FIR filter, order 36]. EEG channels with 
prominent artifacts were identified by visual inspection and removed. On average, 106 channels (std. 
dev. 2.2; range: 102 to 108) per participant remained for analysis. The EEG data were then re-
referenced to a common average reference. After visually rejecting artifacts in the continuous EEG, the 
data were partitioned into epochs of 0.5 s and segments with values exceeding the average of the 
probability distribution of values across the data segments by ±5 SD were rejected. On average, an 
average of 45 post-shift steps per condition (80% of each participant's EEG data) remained in the 
analysis (range, 71% to 89%; std. dev., ±11%). 

Next, the preprocessed EEG data were decomposed using adaptive mixture independent 
component analysis (AMICA) (Palmer et al., 2006; 2008). AMICA is a generalization of the Infomax 
ICA (Bell & Sejnowski, 1995, Makeig et al., 1996) and multiple-mixture (Lee et al., 1999, Lewicki & 
Sejnowski, 2000) ICA approaches. AMICA performed blind source separation of all concatenated 
preprocessed data trials for each individual subject individually, based on the assumed temporal near-
independence of the effective EEG sources (Makeig et al., 2002, 2004).  

Using a standardized three-shell boundary element head model (BEM) implemented in the 
DIPFIT toolbox within EEGLAB (sccn.ucsd.edu/eeglab) we calculated a best-fitting single equivalent 
current dipole matched to the scalp projection of each independent component (IC) source (Delorme et 
al., 2012, Oostenveld & Oostendorp, 2002). Standard electrode locations corresponding to the 
Extended 10-20 System were aligned with a standard brain model (Montreal Neurological Institute, 
MNI, Quebec, Canada). We retained ICs for further analysis for which the equivalent dipole model a) 
explained more than 90% of variance of the IC scalp map and b) was located within the brain. 

We visually inspected the remaining IC scalp maps, event-locked time courses, and mean power 
spectra to identify ICs related to non-brain source artifacts (eye movement and scalp/neck muscle 
artifacts). Non-artifactual ICs were retained for further analysis. For these, feature vectors were 
constructed coding IC differences in dipole locations, scalp projection maps, and power spectral 
densities (PSD) (3 to 45 Hz) (Makeig et al., 2002). Using principal component analysis (PCA) these 
feature vectors were reduced to 10 principal components and clustered using k-means (k = 18). ICs 
were identified as outliers if their locations in the clustering vector space were more than five standard 
deviations from the obtained cluster centers. Only clusters including ICs from more than half of the 
participants are reported here. 

Cortical IC Clusters. The data were segmented into time epochs relative to onsets of cue tempo shifts 
(e.g., from -4 s to 10 s around the first right post-shift heel strike). Event-related spectral perturbations 
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(ERSP) (Makeig, 1993) were computed for each IC. Single-trial spectograms were computed and time 
warped to the median step latency (across subjects) using linear interpolation. This procedure aligned 
time points of right and left heel strikes over trials for the 7 heel strikes preceding and the 15 heel 
strikes following each tempo shift. Relative changes in spectral power were obtained by computing the 
mean difference between each single-trial log spectogram and the mean baseline spectrum (the average 
log spectrum between -4 s to -0.5 s preceding tempo shifts). Significant deviations from the baseline 
were detected using a non-parametric bootstrap method (Delorme & Makeig, 2004).  

To compute significant differences between step-advance and step-delay shifts, individual 
frequency bands were selected per subject by determining ranges from 8 to 13 Hz (alpha) 14 to 20 Hz 
(lower beta), 21 to 35 Hz (upper beta), and choosing the frequency band with maximally varying power 
modulation over time. For statistical analysis, ERSPs relative to step-advance and step-delay shifts 
were computed by time warping single trial spectrograms to the same (group median) step latencies 
and subtracting the overall average log spectrum for both conditions computed from -4 s to -0.5 s 
before the tempo shift. For statistical analysis, we selected four time windows centered on the first left 
(L1) and second right (R2) steps following tempo shifts. 

A 2×4 repeated measures within-subject ANOVA with factors “tempo shift” (long vs. short) and 
“step number” (4 time windows) was computed for each IC cluster and each frequency range (alpha, 
lower beta, upper beta) in the (individually subject-selected) dominant frequency range. Multiple 
comparisons were corrected by controlling for false discovery rate (Benjamini and Yekutieli, 2001) 
with an a priori significance level of p = 0.05. In cases in which the assumption of sphericity was 
violated, significance values were Greenhouse-Geisser corrected.  

 

4.3.3. Results 

Behavioral Analysis. Step onset asynchrony (StOA) before tempo shifts was on average 641 ms (std. 
dev., ±5.3 ms). Following tempo shifts a new stable StOA was generally achieved within 3±1 steps, as 
shown in Figure 4.8C. Step-delay shifts (+60°) produced increases in both StOA (754 ms (calculated 
for the first 15 steps following shifts); std. dev., ±14 ms) and step length, while step-advance shift (-
60°) produced decreases in StOA (mean time between steps, 523 ms; std. dev., ±13 ms) and step length. 
These changes were fairly large, on average 18% relative to baseline, slightly larger than the expected 
1/6th (16.7%), though not significantly so.   

Period correction. The evolution of adjustments in step rate to the two new pacing frequencies for all 
participants are depicted in Figure 4.8D which also shows the difference between StOA and cue onset 
asynchrony (COA). On average, period adaptation was achieved well within the first two steps 
(between L1 and R2). During the four steps following, an overcorrection (R2) occurred, after which 
participants seem to match perfectly the new pacing frequency.   

Phase correction. Negative StOA - COA differences indicate that the step onset preceded stimulus 
onset. As shown by comparing the step latency histograms in Figure 4.8B with the median step 
latencies in Figure 4.8C, during walking at the preferred cadence (e.g., steps -7 to -1 before the shift) 
we observed that heel strikes were consistently ahead of the cues (mean difference, -59 ms; std. dev., 
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±43 ms).  This difference matches a well-known phenomenon called 'phase lead' in finger tap 
synchronization studies. It has been suggested that this difference approximates the difference between 
the times of delivery of the sensory information from the tip of the finger and the auditory information 
from cue onset to the cortical areas in which their timing is compared. Thus, to establish synchrony at 
the level of central representations finger taps should precede the auditory signals (Aschersleben & 
Prinz, 1995; 1997) Adjustment of steps relative to cues was achieved within 6 steps following tempo 
shifts. As shown in Figure 4.8E, the phase lead between steps and cues (measured from steps 7 to 15 
following the shift) became larger in step-delay (step lengthening) trials (mean, -122 ms; std. dev., ±61 
ms), and became positive phase delay in step-advance (step shortening) trials (mean, 19 ms,; std. dev., 
±36 ms). 

Calculation of the normalized relative phase revealed differences in adaptation relative to 
positive and negative step rate changes. The direction of the tempo shift significantly affected 
synchronization accuracy (significant interaction, F(13, 221) = 5.2, p = 0.00025). Post hoc tests 
revealed a significantly larger initial phase deviation at steps L1 and R2 in step-advance compared to 
step-delay trials. Also, as shown in Figure 3F when participants reached stable post-shift cue 
synchronization, asynchrony between steps and cues was significantly larger in step-advance than in 
step-delay trials. This suggests that participants had fewer difficulties in adapting to step-delay 
compared to step-advance shifts.  

Cortical IC source clusters. Altogether, three IC source clusters in frontal brain, one in left temporal 
cortex, one in central midline cortex, and two clusters in parietal areas showed event-related changes in 
alpha and beta band power following cue tempo shifts. The numbers of subjects and sources contained 
in each cluster as well as Tailarach coordinates of the cluster centroids are given in Table 4.1. Figure 
panels 4.8A and 4.8B show cluster location and average cluster spectral changes in right frontal cortex 
time locked to step-advance shifts. Comparing spectral changes (Figure 4.8B) and behavioral data 
(Figure 4.8C-F) shows that a right frontal beta band increase coincides with the main adaptation period 
of steps 2 to 4 after the shift. While, as shown in Figures 4.8B, 4.9 and 4.10, during the first four steps 
after the shift frontal and temporal clusters exhibited significant transient increases in alpha and/or beta 
power (13 to 20 Hz in frontal clusters, 7 to 20 Hz in the left temporal cluster), mu and beta band power 
in central midline and parietal clusters decreased during this time period (Figures 4.11 and 4.12). 
Interestingly, for the left and right parietal clusters (Figure 4.12) this desynchronization lasted at least 
15 steps following tempo shifts, and was most pronounced just prior to contralateral heel strikes. The 
parietal cluster desynchronization was prominent and long lasting in two frequency bands: mu (7 to 12 
Hz) and high beta (18 to 30 Hz).  

In central medial sources (Figure 4.11), however, the desynchronization was not as strong but 
included higher frequencies (up to 35 Hz) and began immediately after the tempo shifts. Only the right 
frontal cluster showed a significant ERSP difference between step-delay and step-advance trials; this 
was in the lower beta band (14-20 Hz) (F(1,18) = 9.67, p = 0.006). This significant difference is 
highlighted in Figure 8 showing median beta band ERSPs and confidence intervals for step-advance 
and step-delay shifts in each frontal cluster. The difference-ERSP map for the r-dlPFC cluster (Figure 
4.10) also showed a significantly larger increase in beta band power for step-advance compared to step-
delay trials during the first left and second right steps following tempo shifts. 
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Figure 4.8. Event-related spectral perturbation (ERSP) and behavioral adaptation performance following 
tempo shifts. (A) Cluster mean scalp projection map and equivalent dipole locations of cluster ICs (blue 
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spheres) and their centroid (red sphere) visualized in the MNI template brain and located in and near right 
dorsolateral prefrontal cortex (r-dlPFC). (B) Cue latency histograms (above) and cluster mean ERSP image 
(below) for the r-dlPFC IC source cluster in step-advance (step shortening) trials. Single-trial spectrograms 
were computed between -4 s to 10 s around the first time-shifted cue (0 s marks the target right heel strike). To 
construct the group-mean ERSP, for each subject  the single-trial EEG spectrograms were first time warped to 
the group-median latencies of the heel strikes during the imaged interval (red vertical lines in the cue latency 
histograms). Relative changes in spectral power were obtained by subtracting the mean log spectrum in the 
interval -4 s to -0.5 s before the shifts. Non-significant changes from baseline are masked in grey. Vertical lines 
mark right and left heel strikes; R’s and L’s mark right and left foot placements. Dashed horizontal lines mark 
alpha (8 to 13 Hz) lower beta (13 to 20 Hz) and upper beta (20 to 35 Hz) bands. The ERSP plot shows, first, a 
synchronization in the beta band between the second and third heel strikes following the tempo shift, the later a 
desynchronization with respect to baseline. (C) Behavioral record: Median step onset asynchronies (StOA) (blue 
and red traces) for each subject in the two conditions (step advance and delay), and cue onset asynchronies 
(COA) (grey traces) in ms. (D) Difference between StOA and COA at each step; this reflects adaptation of step 
frequency to the pertrubed pacing cue tempo. (E) Time intervals (in ms) between heel strikes and nearest cue 
onsets reflect sensorimotor synchronization performance – e.g., step adaptation to the tempo-shifted cue 
sequence. (F) Absolute step-cue phase difference (in deg of the baseline cue cycle).   

 

Table 4.1. Independent component clusters and cluster centroid locations 

Cluster Number of 
subjects (Ss) and 
sources (ICs) 

Tailarach 
Coordinates 

Brodmann 
Area 

Cortical Location 

left temporal 13 Ss, 14 ICs -42, -10, -5 BA21 Temporal lobe 

frontal central 15 Ss, 15ICs -1, 39, 31 BA9 Medial Prefrontal Cortex 

left frontal 13 Ss, 15 ICs -28, 20, 25 BA9 Dorsolateral Prefrontal 
Cortex 

right frontal 17 Ss, 19 ICs 28, 20, 29 BA9 Dorsolateral Prefrontal 
Cortex 

central midline 11 Ss, 11 ICs  3, -2, 47 BA6 Supplementary Motor area

left parietal 13 Ss, 16 ICs -34 ,-29, 42 BA40 Parietal Cortex 

right parietal 14 Ss, 16 ICs 35, -44, 37 BA39 Parietal Cortex 
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Figure 4.9. Scalp projection, spatial location and cluster mean ERSP images for IC source clusters located in 
temporal and frontal cortex. From left to right in each row: Average scalp projection, and dipole locations of 
cluster ICs; cue onset histogram and cluster mean ERSP images time locked to (left) step lengthening (step 
delay) and (right) shortening (step advance) tempo shifts beginning with the cue nearest to the right heel strike 
(0 s). Single-trial log spectrograms were time warped to median step latencies before averaging. Mean log 
power at each frequency from -4 s to -0.5 s before the tempo shift was subtracted to obtain relative changes in 
log spectral power. Non-significant changes from baseline are masked in grey. All three IC clusters show 
increases in mean beta band power between the second and fourth heel strikes following the shift. 
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Figure 4.10. Significant event related spectral differences between adaptations to step-advance and step-delay 
tempo shifts in and near right dorsolateral frontal cortex. Top: Average scalp projection and equivalent dipole 
locations of cluster ICs. Bottom: (above) Cue tone onset histograms and (below left, center) source cluster mean 
ERSP images for step-delay and step-advance trials respectively, time locked (0 s) to the nearest right heel strike 
to the first tempo-shifted cue tone, and (right) the difference between these two adaptation responses. 
Significance of condition differences were computed using a bootstrap method and corrected for multiple 
comparisons using false discovery rate. Non-significant differences are masked in grey. The difference ERSP 
shows stronger beta band power increase near the second and third post-shift steps in step-advance than in 
(subjectively easier) step-delay shift adaptations. 

 

  

Figure 4.11. Mean scalp projection, brain locations, and cluster mean ERSP images for the IC source cluster 
located in and near supplementary motor area (SMA). Cluster mean ERSP images relative to step lengthening 
and step shortening tempo shifts include desynchronization in the upper beta band (25 to 35 Hz). Other details 
as in Figure 4. 
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4.3.4. Discussion 

Use of a novel sensorimotor gait synchronization task, coupled with advanced EEG source signal 
processing methods, revealed two different beta band oscillatory networks involved in orchestrating 
motor adjustments during gait adaptation. Our results thus combine, mu and beta band power 
desynchronization (blocking) in motor and parietal cortex (PPC), with a concurrent beta band power 
increase in PFC. This indicates two distinct patterns of beta band activity during gait control:  

1) a motor cortical mu and beta band decrease expressing motor execution and motor readiness related 
to gait movements (as in Pfurtscheller & Da Silva, 1999, Neuper et al., 2006, Wagner et al., 2012; 
2014a, Seeber et al., 2014a), and  

2) a frontal beta band increase related to cognitive top-down control (as in Bushman et al., 2012, 
Swann et al., 2009).  

Observed mu (7 to 13 Hz) and beta band desynchronization (13 to 30 Hz) (Figures 4.11 and 
4.12) in the motor system after a shift in tempo of the pacing cue sequence  may reflect an increased 
disposition for motor adjustments, as suggested by Engel and Fries (2010), possibly guided by the PFC 
as proposed by Miller and Cohen (2001, Siegel et al, 2012). The fact that we observed temporary 
increase in a frontal beta band oscillatory network (13 to 20 Hz; Figures 4.9, 4.10, and 4.13) during 
step tempo adaptation may reflect action monitoring and top down signaling from the PFC to the motor 
cortex. Our results also show that beta band power in right dlPFC was modulated by task difficulty. 
This lateralized frontal beta band power increase during step shortening may represent neurocognitive 
response inhibition processes that involve beta band rhythms.  

Frontal beta band oscillations in motor control. Near the second and third heel strikes following shift 
onsets (Figures 4.9, 4.10 and 4.13), we observed an increase in beta band power in EEG sources 
localized to left, central, and right frontal cortex (Table 4.1). As proposed by Miller and Cohen (2001), 
these regions may play an important role in the top-down signaling of current behavioral goals to guide 
adjustment of motor plans. In our task the participant’s goal was to adapt their gait to cue-induced shifts 
in step tempo, either a phase advance (more difficult) or a phase delay (easier). Comparison between 
decelerations and accelerations revealed significantly higher beta power in the right dlPFC during step-
advance trials (Figures 4.10 and 4.13). This result is in line with our hypothesis and the study by Swann 
and colleagues (2009) showing a relationship between a beta band power (~16 Hz) increase in the right 
inferior frontal gyrus and successful response inhibition in a stop signal task. Since in our task step 
shortening (in step-advance trials) required inhibiting execution of the accustomed full stride action, it 
is probable that this process requires more explicit motor inhibition than step lengthening. 

In fact our behavioral results show that participants performed significantly more accurate step delays 
(lengthening) than step advances (shortening), stepping closer in time to the step-delay cues. This is in 
line with finger tapping studies showing that motor adaptation is somewhat faster to decelerations than 
to accelerations (Michon, 1967). Our results are the first neurophysiological evidence for previous 
hypotheses that behavioral preference for longer step adaptation responses in stroke patients (Roerdink, 
2009) and dual task paradigms (Li et al., 2012, Lovden et al., 2008, De Sanctis et al., 2014) is 
associated with the higher demands of cognitive control and inhibition involved in step shortening.     
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Studies have shown that while right dlPFC is associated with response inhibition (Swann et al, 
2009, Aron, 2014) medial and left PFC may relate to error detection (Rubia et al 2003, Ridderinkhof et 
al., 2004) and motor adjustment  (Miller & Cohen, 2000, Wittfoth et al., 2009, Cavanagh et al., 2009, 
2010, Kübler et al, 2006) respectively.  This lateral dissociation is in line with our results as only the 
right dlPFC showed a difference between step-advance and step-delay trials, while medial and left PFC 
showed beta band power increased during both gait accelerations and decelerations.  

It has been proposed that frontal cortex interacts with basal ganglia structures during motor 
suppression, and that this interaction occurs via beta band oscillations (Kühn et al., 2004, Lalo et al., 
2008). Beta band synchrony within the basal-ganglia-cortical loop promotes tonic activity that is 
detrimental to voluntary movement, thus providing further evidence for the role of beta band 
oscillations in motor inhibition (Jenkinson & Brown, 2011).  

 

 

Figure 4.13. Beta band spectral perturbations in frontal clusters.  Individual beta frequency bands were 
selected for each individual subject as the frequency within the range 14 to 20 Hz having maximal ERSP power 
variance. For statistical analysis, ERSPs relative to step-advance and step-delay tempo shifts were computed. 
Heel strike events were time warped to the same (median) latencies in step-delay and step-advance shift trials. 
Blue and pink lines and areas depict mean beta band power as a function of trial latency and its 95% confidence 
interval. Only the right frontal cluster shows a significant difference between step advances and step delays as 
evidenced by the non- overlapping confidence intervals.   

Feedback motor control in parietal and central-midline cortices. Parietal clusters show a prominent 
and long-lasting decrease in two frequency bands – mu (7 to 12 Hz) and beta (18 to 30 Hz) in (Figure 
4.12) while beta band power decrease in medial central regions is short lasting and recruits higher 
frequencies (up to 35 Hz) (Figure 4.11). This may suggest that both clusters reflect different processes 
or different stages of gait adaptation. Mu and beta band power desynchronization in left and right PPC 
was strongest near contralateral heel strikes for up to 17 steps after the shift and may reflect the 
matching of steps and auditory cues.  Since auditory, visual and tactile information converge in parietal 
regions, PPC has been proposed as sensorimotor interface responsible for multisensory integration with 
ongoing movements (Buneo et al., 2002, Buneo & Andersen, 2006). Thus PPC may play a key role for 
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anticipatory motor control by sensorimotor feedback matching (Krause et al., 2012; 2014, Thaut, 
2008).  

Krause et al. (2014) have shown that inhibition of the PPC interrupts a matching process of 
anticipated and real sensorimotor feedback during synchronization but not during continuation tapping. 
In a previous study we showed a decrease in mu and beta band power in PPC during visually guided 
gait adaptation in a virtual environment suggesting that the PPC is involved in matching steps with 
visual input (Wagner et al., 2014). Taking into account our current results the role of the PPC in 
mapping visual representations with motor output in space (Buneo & Andersen, 2006) may possibly be 
transferable to the matching of a distance in time between auditory and motor events. 

Participants made most of their adaptation effort within the first three steps after the cue tempo 
shifts, with a rapid adaptation of the step period and a gradual reduction in the phase difference 
between steps and cues. These results are in line with finger tapping studies showing that a small 
sudden tempo change in the pacing sequence tends to be followed by rapid adaptation of the tapping 
period accompanied by slow adaptation of tapping phase (Thaut et al., 1998a).  Considering the 
temporal dynamics of beta band changes the temporary frontal beta band power increase we observe 
may correspond to period adaptation, while long lasting parietal mu and beta band decrease may be 
related to phase correction. According to Vorberg and Wing (1996), phase correction is a peripheral 
motor process while period correction involves changing the period of a mental timekeeper that drives 
the motor response. 

Beta band oscillations in temporal prediction. Interestingly, beta band activity in sensory and motor 
systems seems to reflect anticipatory processes. In the motor system an upcoming action is reflected in 
decreased motor cortical beta band activity several seconds before execution (Donner et al., 2009), and 
beta band cortico-spinal coherence increases with decreasing likelihood of an upcoming action 
(Schoffelen et al., 2005). In the auditory cortex the violation of top-down predictions (the omission of a 
sound in a regular beat sequence) evokes an increase of beta band power (Fujioka et al., 2009) and may 
represent an error-related response. Similar to these findings our results also show an alpha and lower 
beta band power (7 to 20 Hz) increase in a temporal cortex source cluster following tempo shifts 
(Figure 4.9). Synchronization-continuation tapping studies indicate that beta band power is linked to 
the development of subjective time or to the guidance of internally driven motor sequences (Bartolo et 
al., 2014, Bartolo & Merchant, 2015). Precise sensorimotor timing and anticipation of subsequent 
events is essential in quick adjustment of movements with respect to external changes. Thus the beta 
band activity we observed could point to a wider function of beta band oscillations in the updating of 
internal representations for upcoming actions and events (Arnal & Giraud, 2012, Engel & Fries, 2010), 
to perform corrective motor adjustments. 

Summary and future directions. Our results show two distinct beta band oscillatory networks 
subserving motor and cognitive control. According to our knowledge this is the first study showing 
neural correlates of these two distinct mechanisms interplaying in the service of gait adaptation. Beta 
band power increase within the r-dlPFC was modulated by adaptation difficulty. This effect may reflect 
an involvement of additional control resources for movement-control, and provides the first direct 
evidence that gait adaptation strategies involving step shortening require more cortical 
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inhibition/control compared to lengthening. Taking into account our results, deficits in gait adaptation 
are most probably due to an impairment of prefrontal control guiding motor inhibition. This idea has 
been previously tested in two TMS studies (del Olmo et al., 2007, Lee et al., 2014). Authors were 
stimulating right dlPFC with repetitive TMS at 10 Hz (no other frequencies were tested). Both studies 
have shown temporal improvement of gait and tapping but not Parkinson symptoms. Our results (along 
with Swann et al., 2009) suggest that stimulation at a higher frequency (16 to 17 Hz) might prove more 
effective. Such interventions could be used for voluntary motor suppression training with real-time 
feedback of motor cortical beta oscillations and motor evoked potentials (as proposed in Majid et al., 
2015). 
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5. Discussion and conclusion 

5.1. Summary 

In order to develop BCIs for gait rehabilitation and to advance lower limb motor rehabilitation 
therapies, it is fundamental to understand the role of cortical processes involved in human locomotion. 
The aim of the thesis was therefore to investigate the electrocortical dynamics that accompany 
functional gait movements and consequently advance the development of BCI technology for post-
stroke locomotor rehabilitation therapies.  
Furthermore this thesis aimed at uncovering cortical activation patterns related to different 
rehabilitation approaches to evaluate their efficacy in promoting lower limb recovery. These problems 
were tackled using high-density electroencephalographic (EEG) recordings and ICA during walking. 

The studies in this thesis explored and identified the role of mu, beta and gamma rhythms in 
steady state gait movements as well as in gait adaptation. Finally, this thesis shows cortical activation 
relative to different training approaches in gait rehabilitation. These results may be used to provide 
feedback on optimal activation of motor-cortical networks during the therapy and may also be 
exploited as a measure to determine the efficacy of certain therapy approaches.  
 
The following paragraphs summarize the main contributions of this thesis.  
 

1. Functional gait movements were shown to be represented in oscillatory neuroelectrical activity. 
We observed a modulation of low gamma band power (25 to 40Hz) over the premotor cortex 
relative to the gait cycle. In the same brain area walking induces a mu and beta band suppres-
sion during walking compared to standing (Wagner et al., 2012). This study has led to two fur-
ther publications exploring the role of low (Seeber et al., 2014a) and high (Seeber et al., 2015) 
gamma rhythms in gait movements, and the reconstruction of gait cycle patterns based on low 
gamma amplitudes (Seeber et al., 2014b). 

2. Active participation is represented by a desynchronization in the mu and beta band over the 
sensory foot area during robot assisted gait training (Wagner et al., 2012). The results of this 
study have been exploited in several BCI studies for single trial detection of active participation 
in gait movements (Solis-Escalante et al., 2012, Wagner et al., 2014b). 

3. Interactive movement related feedback in a Virtual Environment (VE) task increases voluntary 
motor drive and agency during robot assisted gait (Wagner et al., 2014a). This is reflected in a 
decrease of mu and beta rhythms in premotor and parietal areas during movement related feed-
back compared to mirror feedback and movement unrelated feedback. Furthermore, low gamma 
(25 to 40 Hz) gait cycle related modulations in the premotor cortex were shown to be dependent 
on the VE task. 

4. By employing a novel sensorimotor gait synchronization task I show that two distinct beta band 
oscillatory networks subserving motor and cognitive control interplay in the service of gait ad-
aptation. The results showed mu and beta ERD over premotor and parietal areas relative to 
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adaptive walking while beta power was transiently increased over frontal areas possibly related 
to cognitive control (Wagner et al., 2015). 

5. Beta band power increase within the right dorsolateral prefrontal cortex was modulated by ad-
aptation difficulty. This effect is the first direct evidence that gait adaptation strategies involving 
step shortening may require additional cortical control resources compared to lengthening 
(Wagner et al., 2015). 

 

5.2. Relationship to the state of the art 

Advances in signal processing methods (Makeig et al., 2009, Gwin et al., 2020; 2011, Presacco et al., 
2011) have led to an increasing number of EEG studies exploring cortical motor control during natural 
behavior and gait. While some studies have explored the cognitive load of walking by employing dual 
task paradigms and examining ERPs relative to secondary tasks (Gramann, et al., 2010, de Sanctis et 
al., 2014, Malcolm et al., 2015), other studies have tried to assess neural correlates related to the actual 
cortical control of walking (Gwin et al., 2010; 2011, Presacco et al., 2011, Haefeli et al., 2011, Sipp et 
al., 2013, Peterson et al., 2012, Wagner et al., 2012; 2013; 2014a; 2014b,  Seeber et al., 2013; 2014a; 
2015).  
 

5.2.1. Gait movements are represented in electrocortical rhythms 

Mu and beta desynchronization during gait related to motor readiness: Suppression of mu and beta 
rhythms during the preparation and execution of voluntary movements is a well-established phenome-
non and has been shown previously in numerous studies on single limb movements (Jasper and Pen-
field, 1949, Pfurtscheller and Berghold, 1989, Pfurtscheller and Lopes da Silva, 1999). The studies that 
were conducted as part of this thesis (Wagner et al., 2012; 2014a; 2015) provide evidence that this prin-
ciple also holds for whole body movements such as walking.  

In Wagner et al. (2012), I show that the active contribution to gait movements is related to the 
reduction of mu and beta power in sensorimotor areas.  Furthermore active walking significantly sup-
pressed mu and beta rhythms (Wagner et al., 2012) in the premotor cortex relative to standing. Further 
analysis of the same data revealed that mu and beta band synchrony between sensorimotor areas is re-
duced during active walking compared to standing (Wagner et al., 2013). Single trial connectivity anal-
ysis also revealed that information flow between sensorimotor sources is decreased in mu and beta 
rhythms during active compared to passive walking (Wagner et al., 2014b). Seeber et al. (2013; 2014a) 
used inverse modeling and individual MRI images to reanalyze the data collected in Wagner et al. 
(2012) and confirmed that active walking compared to standing enhances mu and beta ERD over sen-
sorimotor areas. Thus, our results provide evidence that mu and beta suppression indeed represent an 
active state during walking as has been shown for restricted lower limb movements (Crone et al., 1998, 
Pfurtscheller and Lopes da Silva, 1999, Neuper and Pfurtscheller, 2001, Pfurtscheller et al., 2003, Mil-
ler et al., 2007), and suggests that active walking increases the activation of sensorimotor regions and 
reduces information flow between these areas.  
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Recent results from other studies further support these findings. Severens et al. (2012), observed 
a suppression of β oscillations in central sensorimotor areas during walking relative to a non-movement 
baseline. Furthermore in line with our results another study showed that walking reduces connectivity 
between sensorimotor areas relative to standing (Lau et al., 2014).  Interestingly, recently Bulea et al. 
(2015) observed mu and beta decrease over sensorimotor and parietal areas relative to active walking 
on a user-driven treadmill simulating overground locomotion compared to normal treadmill walking.  

Low gamma modulations relative to gait cycle phases: Wagner et al. (2012) is the first study that pro-
vides evidence of low gamma (25 to 40 Hz) power modulations locked to the gait cycle.  Wagner et al. 
(2014a) demonstrated that these power fluctuations are task dependent and are modified by motor 
planning during gait adaptation. Seeber et al. (2014a), (using the data from Wagner et al., 2012) identi-
fied the same lower gamma band modulations (25 to 40Hz) over central sensorimotor areas. Interest-
ingly a recent study observed significant coherence in the same frequency range (25 to 40Hz) between 
EEG recordings over foot motor areas at electrode Cz  and the anterior tibialis muscle during treadmill 
walking (Petersen et al., 2012). The time lag between the EEG and the EMG signal suggests that 
rhythmic cortical activity in this particular frequency band is driving lower limb muscles during walk-
ing. The results of Wagner et al. (2012) and Seeber et al. (2014a) show that beta band suppression dur-
ing active walking relative to standing and low gamma modulation are simultaneously present during 
walking. In Wagner et al. (2012) these two phenomena appear to be located in the same independent 
source in the premotor cortex.  

Seeber et al., 2015 recently employed a novel frequency clustering method to analyze high 
gamma activity during walking using the data collected in Wagner et al. (2012). The method employs 
principal component analysis (PCA) to separate broadband from narrowband frequency activity. He 
was able to identify high gamma power modulations (70 to 90Hz) located focally in central sensorimo-
tor areas modulating conversely to the low gamma amplitude changes (25 to 40Hz). Interestingly, the 
authors also uncovered a general sustained increase in high gamma power (60 to 80Hz) in the same 
areas during walking compared to standing. While beta band synchrony has been shown to be detri-
mental to voluntary movements gamma band synchrony has been shown to promote motor execution 
(Jenkinson and Brown, 2011). Thus taking into account the previous findings (Wagner et al., 2012; 
2014a, Seeber et al., 2014a), Seeber et al. (2015) proposes that beta suppression and high gamma in-
crease during walking may be related to motor readiness while low and high gamma amplitudes influ-
ence the excitability of this state.   

Using ICA, Gwin et al. (2011) also reported interstride modulations in the EEG relative to 
treadmill walking. Our findings however differ from the results by Gwin et al. 2011 in two important 
points. First, we reported low and high gamma power modulations in restricted frequency bands that 
modulate conversely relative to the gait cycle. Instead Gwin et al. (2011) report broad band frequency 
modulations that range from mu to high gamma bands. Second, low and high gamma modulations were 
observed only over central sensorimotor areas (Seeber et al., 2014a; 2015) and localized to the supple-
mentary motor area (Wagner et al, 2012; 2014a), whereas Gwin et al. (2011) observed broadband in-
trastride modulations in a wide range of brain areas.  
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Two distinct beta band oscillatory networks in gait adaptation: Few EEG studies up to now have 
investigated the neural correlates of gait adaptation strategies. Haefeli et al. (2011) showed an increased 
event related potential (ERP) in the EEG over prefrontal areas during preparation and performance of 
steps over obstacles on a treadmill (Haefeli et al., 2011). Recently, Sipp et al. (2013) showed an 
electroencephalographic theta band increase over cortical areas following loss of balance during 
walking. 

In the second part of this thesis (Wagner et al., 2014a) I show that adaptive walking in an inter-
active task in a virtual environment decreases mu and beta power in premotor and parietal areas sug-
gesting a higher activation of these areas relative to walking without movement related feedback. The 
results indicate that visually guided gait adaptation requires increased motor planning and matching of 
visual and motor information in the parietal cortex. Interestingly a recent study by Lisi & Morimoto, 
(2015) showed suppression of mu and beta rhythms in parietal areas suggesting a higher activation of 
these areas during gait speed changes.  

In Wagner et al. (2015), perturbations in a regular auditory sequence of cues induced gait adap-
tations (longer or shorter steps) during treadmill walking. A recent study revealed that stroke patients 
preferentially use gait adaptation strategies involving longer steps (Roerdink et al., 2009). Walking with 
a secondary task (Li et al., 2012, Lovden et al., 2008, De Sanctis et al., 2014) also induced participants 
to take longer strides. These findings have led to the hypothesis that step shortening requires higher 
cognitive control. The results of our study revealed two distinct beta band oscillatory networks interact-
ing in the adjustment of motor responses during gait adaptation and suggest two different functions of 
beta band oscillations in gait control. We observed mu and beta band power desynchronization in pre-
motor and parietal cortex expressing a prokinetic state related to motor readiness (as in Pfurtscheller & 
Da Silva, 1999, Neuper et al., 2006, Wagner et al., 2012; 2014a, Seeber et al., 2014a) and synchroniza-
tion of beta band oscillations in the frontal cortex related to cognitive top-down control (as in Bushman 
et al., 2012, Swann et al., 2009). Furthermore beta band power increase within the right dorsolateral 
prefrontal cortex was modulated by the difficulty of the employed gait adaptation strategy (step length-
ening - easier, step shortening - more difficult). This effect may reflect higher demand of cognitive con-
trol and inhibition related to movement-control during step shortening. 
 

5.3. Towards Brain-Computer Interface technology for gait 
rehabilitation 

Several single trial analysis based on the results of Wagner et al. (2012) have been carried out aiming at 
the automatic detection of active participation during gait training. Solis Escalante et al. (2012), at-
tempted single trial classification of active and passive walking from the EEG recorded during robotic 
assisted gait training. Using common spatial patterns (CSP) (Ramoser et al., 2000, Blankertz et al., 
2000) and Laplacian filters, accuracies reached levels better than chance in all participants. Differences 
between active and passive walking emerged mostly in mu (6 to 14 Hz) and low gamma (34 to 42 Hz) 
frequency bands over the somatosensory cortex in foot and hand areas. The study showed also that La-
placian filters may be a better choice in artifact prone environments as they are less sensitive to noise 
than CSP.  
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Based on measures that quantify interactions between brain areas in Wagner et al. (2014b) we 
aimed at differentiating active and passive gait movements in single trial EEG. The data was pruned 
using ICA to account for muscle and movement artefacts. Single trial connectivity between brain 
sources was estimated in three frequency bands: mu (7 to 12Hz), beta (15 to 21Hz), and a subject spe-
cific frequency band ranging from 24 to 40 Hz selected according to previous findings in Wagner et al. 
(2012). Using connectivity features, classification accuracies were above chance in all subjects, and 
outperformed previous results employing band power features (Solis-Escalante et al., 2012) by 10%. 
Interestingly, using an adaptive treadmill a recent study by Lisi & Morimoto (2015) distinguished voli-
tional gait speed changes and steady state walking based on mu and beta suppression in the EEG over 
parietal areas. 

In Seeber et al. (2014b) we concentrated on the decoding of gait cycle phases from EEG signals 
using a Laplacian Cz derivation and low gamma amplitude modulations (based on the results in Wag-
ner et al., 2012; 2014a, Seeber et al., 2014a). The method succeeded in reconstructing gait cycle pat-
terns in all of ten participants during passive walking and 8/10 participants during active walking. This 
difference is possibly due to the higher artefact contamination during active walking. 
 

Other studies that aimed at implementing BCI technology for gait rehabilitation, have mainly 
exploited low frequency signals recorded from the EEG such as movement related cortical potentials 
(MRCPs) that have been shown to be associated with the preparation and execution of movement (Toro 
et al., 1994, Birbaumer et al., 1999, Waldert et al., 2008). Presacco et al. (2011) employed EEG signals 
between 0.1 to 2 Hz and linear autoregressive models to decode kinematics of the ankle, knee and hip 
joints during human treadmill walking. Bulea et al. (2014) differentiated between the motor preparation 
of standing-up, sitting-down and standing quietly using delta-band (0.1-4Hz) EEG features. Another 
recent study attempted single trial classification of walking and pointing direction (Velu et al., 2013) 
using a feature space from 0.5 to 50 Hz in the EEG. Their analysis showed that frequencies between 
0.5 and 2Hz were most critical for discriminating the classes. Based on the combination of MRCPs and 
ERD single trial EEG features, Sburlea et al. (2015) were able to detect motor preparation related to 
self-paced gait initiation. Using an online approach with automatic artefact rejection based on ICA, 
Jiang et al, 2014 were able to detect step initiation from single trial MRCPs in the EEG over electrode 
Cz.  

All of the studies summarized above however have been carried out offline except for Jiang et 
al. (2014), due to the lack of efficient automatic artefact rejection methods operating in real time. Re-
cently, several online artefact rejection methods to recover electrocortical dynamics during movement 
have been proposed. Lau et al. (2012) implemented the Weighted Phase Lag Index, that quantifies the 
phase lag between EEG signals to recover ERPs during walking. Mullen et al. (2013) proposed an ‘arti-
fact subspace reconstruction method’ that uses templates of clean EEG recordings and PCA to identify 
and remove high amplitude artefacts in the EEG. Recently Daly et al. (2014) implemented a method 
based on wavelet decomposition and SOBI ICA to remove artefactual frequency components. A meth-
od that has been shown to effectively remove broadband frequency noise during walking has recently 
been introduced by Seeber et al. (2015). The method allows for the separation of broad band and nar-
row band frequency activity by frequency clustering and PCA. 
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A limitation of the above listed studies is the lack of EEG recordings from individuals with 
stroke as all of the studies have been carried out in able bodied participants. Thus there is a clear need 
to translate results to real rehabilitation applications in clinical settings. Recently, two studies have im-
plemented a BCI translating motor imagery based EEG features in mu (13 to 16Hz) and beta bands (23 
to 28Hz) to actual gait movements in one paraplegic patient with spinal cord injury (Do et al., 2013, 
King et al., 2014, 2015). The patient was able to walk via BCI induced gait movements in a robot as-
sisted gait orthosis (Do et al., 2013) and over ground using functional electric stimulation (FES) of the 
leg muscles (King et al., 2014, 2015).  
 

5.4. Limitations 

Recently, two studies (Castermans et al., 2014, Kline et al., 2015) showed that movement artefacts in 
the EEG during walking can involve frequencies from 1 up to 150 Hz. Castermans et al. (2014) com-
pared EEG and accelerometer signals recorded from the head during walking and found similar time-
frequency properties between the two signals in bands extending up to 150 Hz. Furthermore in line 
with previous results from Gwin et al. (2010), the analysis of Castermans et al. (2014) showed that up 
to 15 harmonics of the step frequency can contaminate the EEG signal. Kline et al. (2015) blocked 
electrophysiological signals by using a silicone swim cap as a nonconductive layer to record pure 
movement artefact with EEG electrodes. In line with Castermans et al. (2014), they found that move-
ment artefacts recorded at scalp electrodes contain frequencies from 1 up to 150 Hz and depend on 
speed and electrode locations.  

It has been shown that EMG appears in frequencies above 20Hz (Muthukumaraswamy et al., 
2013, Castermans et al., 2013) and spreads from marginal to central EEG channels during walking 
(Gramann et al., 2010, Gwin et al., 2010, 2011, Seeber et al., 2014a). Instead, electrocortical oscilla-
tions relative to motor processing synchronize or decrease in narrow frequency bands such as mu (7 
to12Hz) and beta (15 to 30Hz) as has been shown by many EEG and electrocorticography (ECoG) 
studies during restricted lower limb movements (Pfurtscheller et al., 1997, Crone et al., 1998, Miller et 
al., 2007, Müller-Putz et al., 2007) and walking (Wagner et al., 2012; 2014a, Severens et al., 2012, 
Seeber et al., 2014a). Due to these distinct properties in frequency range and spatial distribution of cor-
tical signals, biological noise and mechanical artefacts, proper application of signal processing methods 
allows to separate these sources (Gwin et al., 2010, Wagner et al., 2012, Seeber et al., 2014a; 2015).  

The low and high gamma gait related power modulations we observed (Wagner et al, 2012, 
2014a, Seeber et al, 2014a; 2015) can be considered biologically plausible as they are restricted to a 
narrow frequency band. They are also localized to a confined cortical area. Furthermore, Petersen et al, 
2012 demonstrated that motor cortical rhythmic activity in the 25 to 40Hz range drives leg muscles 
during walking. Our results are consistent with the observation by Petersen et al., (2012), both in corti-
cal location as in frequency range. Furthermore our results on beta band suppression and high gamma 
increase related to movement execution are in line with previous findings in literature on the functional 
role of these rhythms in motor execution. Additionally, participants in our studies walked at relatively 
slow walking speeds that have been previously shown to not be heavily affected by artefacts (Gwin et 
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al., 2010). This accumulated evidence indicates that the observed frequency specific power modula-
tions in the EEG are of cortical origin.   

Gwin et al. (2010) also demonstrated that during steady state walking the EEG signal is affected 
most considerably in the frequencies below 4 Hz. Wagner et al. (2012) showed that power in frequen-
cies from 1 to 2Hz was significantly increased in the raw EEG, compared to ICA pruned EEG, during 
walking. This power increase is probably related to movement artifacts as the frequency range 1 to 2 
Hz contains the step frequency of participants. However BCI studies using low frequency modulations 
from 1 to 4Hz as in Presacco et al. (2011), do not report on the use of particular artefact rejection meth-
ods to remove artifactual components in the EEG. This may suggest that decoding of gait kinematics 
using low frequency modulations (1 to 2Hz) and linear autoregressive models as shown by Presacco et 
al. (2011) is based on periodic movement artefacts in the EEG. Furthermore recently Antelis et al. 
(2013) showed significant correlations between randomly shuffled low frequency EEG signals and up-
per limb kinematics. The authors suggest that prior reports of reconstructing limb kinematics based on 
low frequency EEG signals are simply due to the mathematical properties of the linear regression mod-
el.    

 

5.5. Conclusion and outlook 

In the area of movement dysfunctions, gait has clearly emerged as a major field of investigation. This 
rising interest is partly due to the awareness that autonomy in daily living is highly dependent on the 
recovery and conservation of mobility and the avoidance of falls. On the other hand advances in neu-
roimaging methods and signal processing tools have opened a new avenue to examine the neural corre-
lates of gait.  

In this respect the studies, that were conducted as part of this thesis demonstrate that EEG based 
neuroimaging provides an excellent methodology by which the underlying cortical dynamics of motor 
and cognitive control processes involved in full body movements such as upright gait can be studied. 
This allows to overcome the traditional, rather artificial paradigms in neuroimaging studies that gener-
ally examine only a very restricted sample of the behavior controlled by the brain, such as a finger but-
ton press.  This is crucial in the case of neurorehabilitation for gait disorders to discover the relation 
between anomalies in neural dynamics and associated impairments in gait parameters.   
Importantly, the results of this thesis make a fundamental contribution to the understanding of the cor-
tical mechanisms and the role of neuronal rhythms in gait control. This knowledge can be used to de-
velop a model of the cortical control of gait in health and disease and may also contribute to a better 
understanding of cortical reorganization related to lower limb movements. 

This thesis also provides directions for the use of non-invasive electrical neuroimaging in the 
clinical neurorehabilitation of gait and shows that the extent of cortical activation patterns during gait 
training can be assessed through neuronal oscillations. This measurement may be used as a tool to as-
sess motor cortical excitability throughout the therapy in clinical settings and identify cortical corre-
lates of plasticity. This thesis provides an exemplary framework for future electrophysiological para-
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digms to investigate neuronal dynamics linked to movement disorders and their recovery. This may 
open new prospects in the development of neuroscientifically informed motor therapies. 
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In robot assisted gait training, a pattern of human locomotion is executed repetitively with the intention to
restore the motor programs associated with walking. Several studies showed that active contribution to
the movement is critical for the encoding of motor memory. We propose to use brain monitoring techniques
during gait training to encourage active participation in the movement.
We investigated the spectral patterns in the electroencephalogram (EEG) that are related to active and pas-
sive robot assisted gait. Fourteen healthy participants were considered. Infomax independent component
analysis separated the EEG into independent components representing brain, muscle, and eye movement ac-
tivity, as well as other artifacts. An equivalent current dipole was calculated for each independent compo-
nent. Independent components were clustered across participants based on their anatomical position and
frequency spectra. Four clusters were identified in the sensorimotor cortices that accounted for differences
between active and passive walking or showed activity related to the gait cycle. We show that in central mid-
line areas the mu (8–12 Hz) and beta (18–21 Hz) rhythms are suppressed during active compared to passive
walking. These changes are statistically significant: mu (F(1, 13)=11.2 p≤0.01) and beta (F(1, 13)=7.7,
p≤0.05). We also show that these differences depend on the gait cycle phases. We provide first evidence
of modulations of the gamma rhythm in the band 25 to 40 Hz, localized in central midline areas related to
the phases of the gait cycle. We observed a trend (F(1, 8)=11.03, p≤0.06) for suppressed low gamma
rhythm when comparing active and passive walking. Additionally we found significant suppressions of the
mu (F(1, 11)=20.1 p≤0.01), beta (F(1, 11)=11.3 p≤0.05) and gamma (F(1, 11)=4.9 p≤0.05) rhythms
near C3 (in the right hand area of the primary motor cortex) during phases of active vs. passive robot assisted
walking.
To our knowledge this is the first study showing EEG analysis during robot assisted walking. We provide ev-
idence for significant differences in cortical activation between active and passive robot assisted gait. Our
findings may help to define appropriate features for single trial detection of active participation in gait train-
ing. This work is a further step toward the evaluation of brain monitoring techniques and brain–computer in-
terface technologies for improving gait rehabilitation therapies in a top–down approach.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Locomotor disorders represent amajor burden after stroke. The ability
to walk safely and independently at an acceptable speed and therefore
regaining a level of functional gait (Perry, 1992), is an important factor
in allowing patients to lead an autonomous and self-determined life.
However the underlying mechanisms of motor recovery of gait in stroke
survivors are still not well understood (see Calautti and Baron, 2003;
ology, Institute for Knowledge
316 873 5349
er).

rights reserved.
Forrester et al., 2008 for a review). In the last years, rehabilitation therapy
with robotic gait trainers has been often presented as an addition to ther-
apist assisted gait training. In robot assisted gait training, a pattern of
human locomotion is executed repetitively. This is assumed to restore
motor functions of gait by restoring the motor programs associated
with walking (Galen et al., 2011; Wirz et al., 2001). An advantage over
traditional gait training where therapists manually facilitate stepping in
patients is the increased number of movement repetitions that are possi-
ble (Hornby et al., 2008). Manual assisted therapy is limited due to the
physical demand placed on therapist. Hence the efficacy of the locomotor
therapy may be adversely affected (Hornby et al., 2008). One advantage
of manual assisted over automated therapy is however that patients are
only assisted-as-needed. Robot assisted gait training can lead patients to

http://dx.doi.org/10.1016/j.neuroimage.2012.08.019
mailto:reinhold.scherer@tugraz.at
http://dx.doi.org/10.1016/j.neuroimage.2012.08.019
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move passively, as the robot executes enough force to impose move-
ments of their legs and is not sensitive to the effort exerted by the patients
(Hidler and Wall, 2005; Israel et al., 2006). Several studies showed that
active contribution to a movement is critical for the encoding of motor
memory (Kaelin-Lang et al., 2005; Lotze et al., 2003). For example,
Lotze et al. (2003) found that active training improved motor perfor-
mance and increased corticomotor excitability in comparison with pas-
sive training. Training effectiveness and motor recovery could therefore
be improved by monitoring patients' performance and encouraging
them to participate actively in the movement.

Different methods have been proposed to measure active partici-
pation of patients in robot assisted gait training. These methods use
physiological and mechanical variables like force executed by the pa-
tient (Lünenburger et al., 2007), heart rate (Koenig et al., 2011) and
oxygen uptake (Pennycott et al., 2010) to assess patient participation.
Oxygen uptake and heart rate variability are rather unspecific indica-
tors of cooperation to the training as they will reflect any increase in
physical activity. Force sensors provide more information about the
kinematics of the movement, however, up to now output from force
sensors has not been shown to be related to the benefit of a move-
ment for locomotor recovery (Lünenburger et al., 2007).

We propose to assess active participation in the gait training based on
brain monitoring techniques. In this way, cooperation to the movement
and the amount of cortical activation can be verified directly from the
patient's electroencephalogram. In the future this measurement may
alsohelp to examine the therapeutic benefits of themovement anddeter-
mine neurophysiological correlates of improvements in motor perfor-
mance (Boyd et al., 2007). In gait rehabilitation therapy up to now there
are few objective criteria for measuring functional improvements. Brain
monitoring techniques that surveille the patients' cortical pattern during
therapy could be therefore useful to relate changes of cortical activation in
certain brain areas to clinical scales coding functional improvements. This
could also help to evaluate the efficiency of therapeutic interventions.

Up to now, few studies have investigated direct neural correlates
during actual gait in humans, mainly due to the restrictions that move-
ment artifacts pose for neuroimaging techniques, i.e. EEG, functional
magnetic resonance imaging (fMRI), and near infrared spectroscopy
(NIRS). The cerebral correlates of gait have been partly studied using
isolated movements, e.g., leg or foot movements that represent a part
of human locomotion (Dobkin et al., 2004; Luft et al., 2005; Metha et
al., 2009; Müller-Putz et al., 2007; Neuper and Pfurtscheller, 2001;
Pfurtscheller et al., 1997; Raethjen et al., 2008; Sahyoun et al., 2004;
Wieser et al., 2010). Single-photon emission computed tomography
(SPECT) and positron emission tomography (PET) studies have tried
to measure brain activity before and after walking (Fukuyama et al.,
1997; Hanakawa et al., 1999; la Fougere et al., 2010), and have revealed
that besides medial primary sensorimotor areas, also the premotor cor-
tex, parietal cortex, basal ganglia and cerebellum seem to be contribut-
ing to gait.

Direct evidence comes from several NIRS studies that have mea-
sured cerebral activity during actual gait (Miyai et al., 2001; Suzuki et
al., 2004, 2008). These studies showed that walking increases cerebral
activity bilaterally in themedial primary sensorimotor cortices, the sup-
plementary motor area (SMA), and the prefrontal cortex. Several stud-
ies have shown the feasibility of recording EEG during treadmill
walking. A low resolution EEG study (Haefeli et al., 2011) found that
during the preparation and the performance of obstacle stepping on a
treadmill the EEG signal was enhanced in the prefrontal cortex com-
pared to normal walking. Presacco et al. (2011) showed that frequen-
cies below 2 Hz in the human EEG contain information about angular
and linear kinematics of the hip, knee, and ankle joints during treadmill
walking. Previously Fitzsimmons et al. (2009) had shown that it is pos-
sible to decode 3D coordinates of leg joints during treadmill walking
fromneurons inmonkeymotor cortex. Recently Gwin et al. (2010) pub-
lished the first study showing intrastride activity in the human EEG
related to treadmill walking. The authors used independent component
analysis (ICA) to separate artifacts, muscle, and brain sources, and dem-
onstrated that themethod allows for a high spatial resolution analysis of
EEG recorded during whole body movements.

The purpose of this work was to explore cortical patterns related to
robot assisted walking and establish the feasibility of recording EEG
during automated gait training. A second goal was to examine the neu-
rophysiological correlates of active participation during robot assisted
gait training. To these ends we investigated spectral patterns in the
EEG related to active and passive walking in a gait robot.

Materials and methods

Participants

Fifteenhealthy volunteerswithnoneurological or locomotor deficits
participated in this study. One subject's data was excluded because of
heavy muscle artifact contamination of the EEG recordings. The
remaining data of fourteen subjects (eight males and six females, age
22 to 28 years avg: 24.3, SD: 2.7, right handed) was analyzed. The ex-
perimental procedures were approved by the ethical committee of the
Medical University Graz. Each subject gave informed consent before
the experiment.

Experimental design and procedure

Participants completed eight runs of robot assisted walking (four
in each of twowalking conditions) and three runs of upright standing.
Experiments were carried out in the Rehabilitation Clinic Judendorf-
Strassengel (Austria), using the robotic gait orthosis Lokomat (Hocoma,
Switzerland). Fig. 2 illustrates the experimental setup. The Lokomat is a
robotic driven gait orthosis that includes electrical drives in knee and
hip joints and incorporates a motorized treadmill and body weight sup-
port system. Parameters of the Lokomat were adjusted according to the
common practice in clinical therapy with the help of physical therapists
having experience with the Lokomat for several years. Walking speed
was kept low and adjusted to the participants leg length according to
the formula: speed=0.54(leg)/27.8 where leg is the participant's leg
length in cm and the speed is computed in km per hour. Walking
speed ranged from 1.8 to 2.2 km per hour between participants lying
below the comfortable overground walking speed at around 5 km/h
(Bohannon, 1997). This walking speed is slightly below the walking
speeds used in other studies that measured EEG during treadmill walk-
ing (Gwin et al., 2010: 2.4 km/h; Presacco et al., 2011: 2.9 km/h and
4.5 km/h). Body weight support (BWS) was adjusted to a participant
specific minimum with the help of experienced physical therapists.
This adjustment was necessary to ensure a correct activation of foot
switches (left/right heel) used to track the gait cycle and at the same
time allow passive walking that requests a certain level of BWS. This
adjustment resulted in a bodyweight support thatwas in all participants
below 30%. The Lokomatwas run in a control mode with 100% guidance
force. The movement tasks consisted of active and passive walking. In
the activewalking condition, the participantswere instructed towalk in-
dependently in the gait robot on the treadmill supporting their own
weight during the stance phase as far as the body weight support
allowed it. Participants were asked to walk at the speed of the treadmill
and to avoid pushing against the knee and hip orthosis. Passive walking
demandedparticipants to let their legs bemovedby the robot, and not to
oppose the movement. In a control condition, subjects were instructed
to stand in the Lokomat and support their ownweight. Bodyweight sup-
portwas kept constant between conditions. In all conditionsparticipants
were asked to relax their arms and rest them on the sidebars of the
Lokomat. Each walking session lasted 6 min, each rest session lasted
3 min. Six minutes of robot assisted walking consisted in 150 to 225
gait cycles (one gait cycle lasting from 1.6 to 2.4 s depending on the
participant's leg length). We defined one gait cycle as the interval be-
tween two right leg heel contacts. Before starting the experimental
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sessions subjects were asked to train active and passive walking in the
gait robot for some minutes to get used to the orthosis and the move-
ments. After a short acclimation period (about 2 min for each walking
task), all subjects reported that walking in the device felt sufficiently
comfortable and the kinematic trajectory of the movement tasks was
easy to follow. Conditions were randomized. In all conditions, partici-
pants were asked to look straight ahead, not to close their eyes for
prolonged periods of time, and to blink normally.

Data acquisition

We combined four 32-channel amplifiers (two BrainAmp DC and
two BrainAmp MR plus amplifiers, Brainproducts, Munich, Germany)
to record the EEG from 120 electrode sites. The montage was in accor-
dance with the 5% 10/20 system (EasyCap, Germany) (Oostenveld
and Praamstra, 2001). Electrode locations that extended below the
conventional 10–20 spherical layout included PO9, POO9, OI1, OI2,
POO10, PO10, I1, Iz, and I2. Reference and ground electrodes were
placed on the left and right mastoids respectively. Electrode imped-
ance was less than 10 kΩ. Three-dimensional electrode coordinates
were measured with the Zebris Elpos system (Noraxon, USA) on a
screening day prior to the actual measurement. We took precautions
to correctly position the electrode cap over the participants' head, to
ensure that the electrode coordinates did not change.

Electromyogram (EMG) was recorded from biceps femoris and
tibialis anteriormuscles of both legs using standard adhesive disposable
Ag/AgCl electrodes. EMG was recorded monopolarly, using left and
right mastoids as reference and ground. EMG bipolar derivations were
calculated offline. EEG and EMGwere sampled to 2.5 kHz, high pass fil-
tered at 0.1 Hz, and low pass filtered at 1 kHz. Foot contact was mea-
sured by mechanical foot switches placed over the calcaneus bone at
the heel of both feet. These switches produced the markers for the
gait cycle: heel on, heel off (relative to each leg).

EEG analysis

EEG data analysis was performed in Matlab using EEGLAB 8.0.3.5b
(Delorme and Makeig, 2004) (available online http://www.sccn.ucsd.
edu/eeglab), based on Gwin et al. (2010). Considering the noise pres-
ent in robotic gait training, Infomax independent component analysis
was used to account for possible contamination of the EEG. Before
submitting the EEG data to an ICA decomposition the data had to be
preprocessed accordingly and was subjected to a rigorous artifact
rejection following the methods of Gwin et al. (2010) and Onton et
al. (2006).

The data was high pass filtered at 1 Hz [zerophase FIR filter order
7500] tominimize slowdrifts, and lowpassfiltered at 200 Hz [zerophase
FIR filter order 36]. After removing channels with prominent artifacts
identified by visual inspection, channels with probability more than
five times the standard deviation from the mean across all channels
were rejected. On average 112 EEG channels were kept for further anal-
ysis for each subject (range: 94–118, SD: 6). Then, a common average
reference was computed from the remaining channels. The continuous
EEG data was visually inspected for non‐stereotyped artifacts (e.g.
swallowing, electrode cable movements, etc.). Affected segments were
rejected from further analysis. Typical artifacts caused by eye move-
ments, eye blinks andmuscle tensionwere kept in the analysis. These ar-
tifacts produce a stereotyped pattern in the EEG data, and can be
separated by ICA into only a few independent components.

The data was segmented into epochs of 0.5 s. Outliers were
removed by determining the probability distribution of values across
the data epochs (avg. ±5 SD). On average, 76% of the gait cycles of
each participant's EEG data remained in the analysis (range: 64–
91%, SD: 9).

After these preprocessing steps, an adaptive independent component
analysis mixture model algorithm (AMICA) (Palmer et al., 2006, 2008)
was run on the data. AMICA is a generalization of the Infomax algorithm
(Bell and Sejnowski, 1995; Makeig et al., 1996) and multiple mixture
(Lee et al., 1999; Lewicki and Sejnowski, 2000) ICA approaches. It sepa-
rates EEG signals into independent components (ICs) assumed to be spa-
tially static andmaximally temporally independent (Makeig et al., 1996).
One ICA decomposition was computed for each subject over all condi-
tions (active walking, passive walking and rest).

A best-fitting single equivalent current dipole, was calculated for
the scalp projection for each independent source using a standardized
three-shell boundary element head model (BEM) implemented in the
DIPFIT toolbox of EEGLAB (Delorme et al., 2012; Oostenveld and
Oostendorp, 2002). Electrode positions measured from the partici-
pants' head were co-registered and aligned with a standard brain
model (Montreal Neurological Institute, MNI, Quebec, Canada). Fur-
ther analysis considered only ICs if the associated dipoles were located
within the head and explained more than 90% of variance of their
scalp projection.

The remaining independent components (ICs) were visually
inspected considering power spectrum and event-locked time course
to identify ICs which isolate activations related to brain activity. This
procedure led to an average of 14 brain related ICs per participant
(ranging between 6 and 18 ICs) used in further analyses.

ICs across subjects were clustered using EEGLAB routines (Delorme
and Makeig, 2004). Feature vectors were created coding differences in
dipole location, power spectral density (1–45 Hz), and scalp projection
of each IC. The dimensionality of the resulting joint vector was reduced
to ten principal components, using the principal component analysis
(PCA). Vectors were clustered with k-means (with k=19). ‘Outlier’
components further than three standard deviations from any of the
resulting cluster centers were relegated to a separate cluster.

Analysis of artifact contamination to the surface signal

We computed the power spectral density (PSD) usingWelch'smeth-
od for different stages of artifact removal for the representative channels
F10, Cz, C3, C4, and P10 (see Fig. 1). 1) Channel based artifact removal,
2) after rejecting ICs representing non physiological artifacts such as
line noise and movement artifacts, and 3) after rejection of all ICs that
were classified as non cortical activity. Stage 1) corresponds to the
preprocessed EEG data before it is submitted to ICA. For stage 2), clusters
related tomuscle and eye activitywere selected according to their dipole
locations, time course and frequency spectra and then together with
brain related components backprojected to the EEG. For stage 3) the
brain related ICs were backprojected to the EEG. A 1×3 ANOVA was
computed with factor artifact rejection stage (levels 1–3), for frequency
ranges of 1–2 Hz and 30–40 Hz. The low frequency band (1–2 Hz) was
selected as it encompassed the step frequency for all subjects, and the
high frequency range (30–40 Hz) was chosen as frequencies at 30 Hz
or higher are likely to containmuscle activity. Additionally event related
spectral perturbations (ERSP) (Makeig, 1993) were computed for each
subject and channels Cz and Pz and then averaged for artifact rejection
stage 1). ERSPs are generally calculated, computing the power spectra
over a sliding latencywindowandnormalizing these spectograms divid-
ing by their respective mean baseline spectra. These normalized trans-
forms are then averaged over trials. To generate gait cycle ERSPs, for
each subject and channel single trial spectograms were computed and
timewarped using a linear interpolation function, to align the timepoints
for the right and left heel strikes over epochs following the methods by
Gwin et al. (2010). Visualization of relative changes in spectral power
was obtained by subtracting the average log spectrum for all gait cycles
within a channel from each single-trial log spectogram according to
Gwin et al. (2010). These normalized spectograms were averaged
obtaining grand average ERSPs for each condition and each channel
over subjects. Significant deviations from the average gait cycle log spec-
trum were computed with a bootstrapping method (Delorme and
Makeig, 2004).

http://www.sccn.ucsd.edu/eeglab
http://www.sccn.ucsd.edu/eeglab
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Fig. 1. Experimental setup; average EEG channel PSD at F10, C3, Cz, C4 and P10 and average ERSP plots for Cz and Pz. (a) (From left to right) Experimental setup: subject walking in
the Lokomat gait orthosis with body weight support. The amplifiers for EEG recordings are fixed on a board in front of the participant. The orthosis is adapted and fixed to the
participant's legs with the help of an experienced physical therapist; average ERSP plots over all subjects for channels Cz and Pz showing significant changes in spectral power dur-
ing the gait cycle for active walking. Non-significant differences relative to the full gait cycle baseline (p≤0.05) are masked in green (0 dB). The right leg heel contact marks the
beginning and end of the gait cycle, the vertical line signs the temporally aligned event of left heel-strike (50%). (b) For three artifact rejection stages: 1. Channel based artifact
removal (black line), 2. After removing non physiological artifacts (blue line) 3. Retaining only activity classified as cortical (red line), for channels F10, C3, Cz, C4 and P10.
Panel a: (Part of this image was modified from http://atec.utdallas.edu/midori/Handouts/walkingGraphs.htm).

1206 J. Wagner et al. / NeuroImage 63 (2012) 1203–1211
Clusters of cortical ICs

For clusters of brain related sources the PSD was computed for each
source and condition usingWelch's method and a one way ANOVAwas
computed to compare the types of movement (active walking, passive
walking and rest) for each cluster. ERSPs were computed for each inde-
pendent source using the same procedure described previously for
channels. Here for each source, single trial spectogramswere computed
and timewarped and then the average log spectrum for all gait cycles
within a source from each single-trial log spectogram was subtracted.
Then these spectogramswere averaged for each condition andeach clus-
ter (Delorme and Makeig, 2004). To assess differences between active
and passive walking independent component ERSPs were calculated in
three frequency bands: mu (8–12 Hz), beta (15–21 Hz) and gamma
(25–40 Hz); using a common baseline (the average over all gait cycles)
for active and passive walking trials. The frequency bands were selected
by visual inspection of the clusters' mean power spectra. A 2×7 ANOVA
with factors “Movement Type” (active vs. passive walking) and “Gait
cycle phase” (seven gait cycle phases according to Perry (1992)) was
computed. Following the definition by Perry (1992) the gait cycle can
be divided into: stance phase (0–60%) and swing phase (60–100%).
These phases are subdivided into: Loading response (0–10%),mid stance
(10–30%), terminal stance (30–50%) and preswing (50–60%) for the
stance phase; and initial swing (60–73%), midswing (73–87%) and ter-
minal swing (87–100%) for the swing phase. The gait cycle phases
were always calculated relative to the right leg, providing the frame-
work for awhole cycle. All significance valueswere Greenhouse–Geisser
corrected in cases where the assumption of sphericity was violated.
Post-hoc tests were computed using simple paired t-tests, controlling
for false discovery rate (Benjamini and Yekutieli, 2001) with a signifi-
cance level set a priori at 0.05.

Results

Analysis of artifact contamination to the surface signal

Sensor based analysis revealed significant differences between
artifact removal stages in frequency ranges of 1–2 Hz and 30–40 Hz
computed with PSD for all electrodes tested (F10, C3, Cz, C4, P10) (see
Fig. 1, for significance values see Table 1). Post hoc tests revealed that
in these frequency ranges all artifact removal stages are significantly
different from each other at the 0.05 level, except for Cz at 1–2 Hz.
Fig. 1 shows average ERSP maps for electrodes Cz and Pz computed
for artifact removal stage 1. Both channels show significant changes

http://atec.utdallas.edu/midori/Handouts/walkingGraphs.htm


Table 2
Clusters of independent sources obtained with ICA.

Cluster Location of Talairach Number of
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(p≤0.05) from baseline relative to the phases of the gait cycle in the
lower gamma band (25–40 Hz) during active walking visible in the
channel average ERSPs.
cluster centroid coordinates
(x, y, z)

subjects (S)
and ICs

A Premotor cortex −1, −4, 63 9 S, 9 ICs
B Somatosensory

cortex foot area
6, −36, 56 12 S, 14 ICs

C Left primary motor
cortex hand area

−35, −17, 47 10 S, 10 ICs

D Right primary motor
cortex hand area

36, −14, 48 10 S, 12 ICs
Clusters of cortical ICs

Four clusters revealing differences between active and passive
walking were identified and accounted for activity in the sensorimotor
areas. The number of subjects and sources contained in each cluster and
Talairach coordinates of cluster centroids is displayed in Table 2.

Cluster A, located in the premotor cortex, showed significant
changes (p≤0.05) from baseline relative to the phases of the gait
cycle in the lower gamma band (25–40 Hz) during active and passive
walking visible in the cluster average ERSPs (see Fig. 2). This cluster
presented a significant difference in the PSDbetween activewalking, pas-
sive walking and rest in all three frequency bands mu: (F(2, 16)=11.03,
p≤0.01), beta: (F(2, 16)=9.03, p≤0.01) and gamma (F(2, 16)=10.5,
p≤0.01). Post hoc tests revealed significant differences between active
walking vs. rest (p≤0.05) and passive walking vs. rest (p≤0.05) in the
mu and in the gamma band. Differences in single gait cycle phases be-
tween active and passive walking did not reach significance however a
trend (F(1, 8)=11.03, p≤0.06) was evident for the gamma band.

Cluster B, located in the foot area of the sensory cortex, showed sig-
nificant differences in power spectral density between conditions in the
mu band (F(2, 26)=22.28, p≤0.01), in the beta band (F(2, 26)=25.7,
p≤0.01), and in the gamma band (F(2, 26)=18.61, p≤0.01) (see
Fig. 3). Post hoc tests revealed a significant difference (p≤0.05) be-
tween active and passive walking in the beta band. Additionally signifi-
cant differenceswere present between activewalking vs. rest (p≤0.05)
and passive walking vs. rest (p≤0.05) in the mu, in the beta and in the
gamma band. We found a significant difference in gait cycle phases be-
tween active and passive walking in the mu (F(1, 13)=11.2, p≤0.01)
and in the beta band (F(1, 13)=7.7, p≤0.05). Post hoc tests revealed
significant differences (p≤0.05) from 0 to 73% and from 87 to 100% of
the gait cycle in the mu band and from 10 to 50% of the gait cycle in
the beta band (see Fig. 4).

For cluster C a significant difference between conditions in the PSD
was observed only in the beta band (F(2, 22)=7.16 p≤0.05). Post
hoc tests revealed a significant difference (p≤0.05) between active
walking and standing. For cluster D located in the right hand area of
the primary motor cortex there is a significant difference in PSD in the
mu (F(2, 18)=8.15, p≤0.05), beta (F(2, 18)=13.7, p≤0.01), and
gamma band (F(2, 18)=4.8, p≤0.05) between the three conditions
(see Fig. 3). Post hoc tests revealed significant differences (p≤0.05) be-
tween passive walking and standing for themu, beta and gamma bands
and between active walking and standing (p≤0.05) for the beta band.
In single gait phases a significant difference between active and passive
walking was observed for this cluster in the mu (F(1, 11)=20.1,
p≤0.01), the beta (F(1, 11)=11.3, p≤0.05) and the gamma band
(F(1, 11)=4.9, p≤0.05). Post hoc tests revealed that this difference in
the mu band was present and significant (p≤0.05) during the whole
gait cycle. In the beta band comparison of single gait phases revealed
significant differences (p≤0.05) from 0 to 73% of the gait cycle. In the
gamma band the preswing phase (50–60%)was found to be significant-
ly different (see Fig. 4).
Table 1
Significant differences between artifact rejection stages.

Channel 1–2 Hz 30–40 Hz

F10 F(2, 26)=30.75, p≤0.01 F(2, 26)=24.27, p≤0.01
C3 F(2, 26)=7.1, p≤0.05 F(2, 26)=13.04, p≤0.01
Cz F(2, 26)=7.0, p≤0.05
C4 F(2, 26)=26.15, p≤0.01 F(2, 26)=6.67, p≤0.05
P10 F(2, 26)=8.27, p≤0.05 F(2, 26)=13.39, p≤0.01
Discussion

Analysis of artifact contamination to the surface signal

Comparison of different artifact rejection stages shows for the PSDof
channels F10, C3, Cz, C4, P10 that after IC based artifact rejection power
is significantly reduced at 1–2 Hz and 30–40 Hz. Average channel PSD
plots also show that only with artifact rejection stage three we are
able to reveal a peak in the mu band (8–12 Hz) at channels C3 and Cz.
These results show that sensor-level analysis can only partly, deal
with such complex, artifact-laden signals. ERSP plots at Cz and Pz
show a similar activation pattern in the gamma band as cluster A. Obvi-
ously, artifact contamination at electrodes Cz and Pz is moderate and
can be controlled by normalizing the spectograms when computing
ERSPs. However, spatial resolution is poor as the pattern spreads from
Cz to Pz. The good quality of the data can be explained by the slowwalk-
ing speed and the fact that the upper body of participants in the
Lokomat is partly immobilized by the body weight support. Gwin et
al. (2010) showed that at slow walking speeds (2.9 km/h) artifact con-
tamination is moderate and average channel PSD computed before and
after IC based artifact removal gives similar results.

Clusters of cortical ICs

Four clusters were identified in the sensorimotor cortices that are
related to robot assisted walking. We demonstrate that significant
differences between active and passive walking are evident in the
foot area of the sensory cortex and in the right primary motor cortex
hand/arm area. Additionally we show that lower gamma band activity
in the premotor cortex is related to the gait cycle during robot assisted
walking.

The PSD for cluster A located in the premotor cortex shows a peak
in the mu (8–12 Hz) and in the beta (18–21 Hz) band for the rest
condition. The activity in these bands is suppressed during active
and passive walking. This suggests that during the movement condi-
tions this brain area is more active than during standing. Lower
gamma band frequency modulations in the premotor cortex show
an event related desynchronization (ERD) (Pfurtscheller and Lopes
da Silva, 1999) during initial contact (0–10%) terminal stance and
preswing (40–60%) and terminal swing (90–100%) and an event re-
lated synchronization (ERS) during midstance (20–30%) and during
midswing (70–80%) in the average cluster gait cycle ERSPs during ac-
tive and passive walking. Thus the ERD occurs before, during and after
left and right heel strikes, which correspond to the period when the
opposite leg is prepared for leaving the ground. The ERD could there-
fore represent a preparation for the transition between stance and
swing phase. On the contrary, ERS occurs inside these phases when
one of the feet is flat on the ground. The activation pattern during ac-
tive walking seems to be more consistent and stronger than during
passive walking, however differences between the conditions do not
reach significance. There is a trend in the gamma band suggesting
that these changes are more pronounced during active walking. The
similar activation pattern in the gamma band related to the active
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Fig. 2. Scalp projection, dipole locations, PSD and ERSPs for cluster A, located in the premotor cortex. (a) (From left to right) Cluster average scalp projection; dipole locations of
cluster ICs (blue spheres) and cluster centroids (red spheres)visualized in the MNI brain volume in coronal and sagittal views; gait cycle PSD for active and passive walking and
standing; (b) average cluster ERSP plots showing significant changes (relative to the full gait cycle baseline (p≤0.05)) in spectral power during the gait cycle for active walking
(bottom left), and passive walking (bottom right). Non-significant differences are masked in green (0 dB). The right leg heel contact marks the beginning and end of the gait
cycle, the vertical line signs the temporally aligned event of left heel-strike (50%).
Part of this image was modified from http://atec.utdallas.edu/midori/Handouts/walkingGraphs.htm.
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and passive gait cycle could be explained by a similar activation pat-
tern of leg muscles in both types of movements. Wieser et al. (2010)
showed that legmuscle activation during assisted lower limbmovement
occurs with a similar time course but with smaller amplitude compared
to active movement. Several studies show that patients with complete
para-/tetraplegia and infants afferent input from load receptors and
from hip joints lead to a locomotor-like leg muscle activation pattern
(Dietz, 2002; Dietz et al., 2002; Pang and Yang, 2000). The Lokomat gait
orthosis moves hip and knee joints and reduces the load on participants'
legs only partly, therefore it is probable that during passive walking
lower limb muscles are activated by these afferences.

Central midline activity in the lower gamma band has been previous-
ly related tomuscle activation during upper and lower limbmovements.
In linewith a study byRaethjen et al. (2008), activationwas concentrated
on the central midline area. Raethjen et al. (2008) observed that coher-
ence between 15 and 30 Hz related to isometric contraction of the calf
muscles during bilateral anti-phase rhythmic foot movements. Other
studies have demonstrated that coherence between cortex and muscle
in the gamma band is most evident during maximal voluntary muscular
contraction and during movement (Brown, 2000; Mima et al., 2000).
Also increases in EEG beta activity (40 Hz) during brisk self pacedmove-
ments (Pfurtscheller and Neuper, 1992; Pfurtscheller et al., 1993) as well
as during sustainedmovements have been shown. A decrease in gamma
(35–45 Hz) has been observed during passive relaxation over the
corresponding somatotopic locations of primary sensorimotor areas
(Alegre et al., 2003). Considering these findings the observed activation
and deactivation in the lower gamma band over central midline areas
during walking might be related to sensorimotor processing of the
lower limbs in the complexmotor pattern of human locomotion. A num-
ber of studies on rhythmic movements, such as walking and running in
animals have shown that the movements are generated by a spinal net-
work, andmerely the initiation andmodification of the rhythmic activity
are controlled by supraspinal structures (Grillner, 1998; Rossignol et al.,
2006). Nevertheless, to what degree human locomotor activity is gener-
ated by such a spinal network andwhich influence the cortexhas on such
a pattern generator, are unknown. Additionally it is not clear to what de-
gree walking in a robotic gait orthosis differs from natural walking on a
surface or on a treadmill.

The walking speed was around 2 km/h lying below the comfortable
overground walking speed (5 km/h) (Bohannon, 1997). Other studies
show that muscle activation and kinematics during Lokomat walking,
differ from common treadmill walking (Hidler and Wall, 2005; Hidler
et al., 2008). Therefore it is possible that the gamma band activity is re-
lated to sensorimotor processing required by the specific walking task
in the orthosis.

This would also explain the differences to the results of Gwin et al.
(2010)whoalready showed intrastride changes in the EEG duringwalk-
ing on a treadmill. Contrary to our results, the authors found a similar

http://atec.utdallas.edu/midori/Handouts/walkingGraphs.htm
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Fig. 3. Scalp projection, spatial location and power spectra of independent component clusters. (a) Cluster B located in the sensorimotor cortex, foot area; (b) Cluster C located in the
left primary motor cortex (hand area); (c) Cluster D located in the right primary motor cortex (hand area). From left to right in each row: Cluster average scalp projections; dipole
locations of cluster ICs (blue spheres) and cluster centroids (red spheres) visualized in the MNI brain volume in coronal and sagittal views; PSD for active and passive walking and
standing. For all clusters a difference in PSD between active and passive walking and standing in the mu and in the beta range can be observed.
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pattern related to the gait cycle phases in different regions of the brain
that were present over a broad range of frequencies (1–200 Hz). Also
the activation and deactivation in Gwin et al. (2010) show a different
time course compared to our present results. We observed a decrease
in power during the right and left heel strikes in lower gamma band ac-
tivity, while Gwin et al. (2010) found an increase in power over a broad
range of frequency bands during this interval. However compared to
our study the walking task differed substantially, as subjects in Gwin et
al. (2010) were moving freely without restrictions on the treadmill,
supporting their own weight and the walking speed was higher
(2.9 km/h and 4.5 km/h). However they report that they did not find sig-
nificant differences in their results due to these two walking speeds.

Power in the mu and beta bands in the foot/leg area of the sensory
cortex (cluster B) was significantly decreased during active compared
to passive walking. The cluster is located in the right hemisphere, and
the activity therefore relates to the left leg and can be interpreted as an
increased activation. This is in line with previous findings. Müller-Putz
et al. (2007) observed a greater ERD (Pfurtscheller and Lopes da Silva,
1999) in themuband during active vs. passive footmovement over cen-
tral sensorimotor areas most pronounced at electrode position CPz and
adjacent electrodes (Cz, C2 and Fcz). Additionally, a PET study
(Christensen et al., 2000) and a recent fMRI study (Hollnagel et al.,
2011),measuring brain activity during pedaling, showed ahigher activa-
tion during active compared to passive movements in central primary
sensorimotor and premotor areas. fMRI studies on active and passive
ankle dorsiflexion (Dobkin et al., 2004; Sahyoun et al., 2004) found sim-
ilar results. Additionallywe found that this increased activation is specif-
ic to gait cycle phases (see Fig. 4). For the alpha band this difference is
significant between 0 and 73% and from 87 to 100% of the right leg
gait cycle. This corresponds to the swing phase and parts of the stance
phase of the left leg. The non significant period corresponds to the
midstance phase of the left leg when the left foot is flat on the ground.



-3

-2

-1

0

1

d
B

Cluster B 18−21Hz

0-10 10-30 30-50 50-60 60-73 73-87 87-100

-3
-2
-1
0
1

d
B

Cluster B 8−12Hz

Gait Cycle %

*

* * * *

*

**

-2

-1

0

1

d
B

Cluster D 25−40Hz

-4

-2

0

d
B

Cluster D 18−21Hz

0-10 10-30 30-50 50-60 60-73 73-87 87-100

-6
-4
-2
0

Cluster D 8−12Hz

d
B

Gait Cycle %

* * * * * * *

*

* ****

Fig. 4. Boxplots showing differences (active minus passive walking) in normalized average spectral power for the single gait cycle phases. The edges of the box mark the 75th per-
centiles, black dots the median. Whiskers sign the range of values, outliers are plotted as empty circles. Significant differences are marked with * for p≤0.05 and ** for p≤0.01; these
difference plots are displayed for Cluster B in the mu and beta bands (left) and Cluster D, in the mu beta and gamma bands (right).

1210 J. Wagner et al. / NeuroImage 63 (2012) 1203–1211
In the beta band a significant difference between 10 and 50% of the right
leg gait cycle is evident. This corresponds to the midswing and terminal
swing phase of the left leg. Presacco et al. (2011) already showed sup-
pression in PSD in the mu band (8–12 Hz) during precision walking on
a treadmill compared to standing. Additionally they showed that low
frequencies (0.1–7 Hz) have higher power during walking compared
tor rest. However these differences are not significant and not related
to a specific brain area (the PSD is averaged over all channels).

Additionally, we found a significant decrease in the mu, beta and
gamma bands during active compared to passive walking in the right
primary motor cortex hand area. The activity relates to the left arm
and can be interpreted as an increased activation. For the mu band this
difference is constant across the gait cycle, which suggests dissimilarity
in the gait cycle average spectrumduring active vs. passivewalking. Dur-
ing active walking beta band activity was significantly reduced in the
terminal stance, the preswing and the initial swing phases of the right
leg gait cycle. Gamma band powerwas found to be significantly reduced
in the preswing phase during active walking (see Fig. 4). During these
phases, in overground walking, the left arm moves forward following
the movement of the right leg. Studies show that arm swing is an inher-
ent part of human gait (Fernandez Ballesteros et al., 1965). Different
beneficial effects of arm swing during locomotion have been presumed,
among others its contribution to stability during walking (Ortega et al.,
2008), or its role in gait by reducing vertical ground reaction moments
and thereby reducing the energetic costs related to walking (Collins et
al., 2009; Li et al., 2001; Witte et al., 1991). Although subjects were
instructed to relax their arm muscles, they may have involuntarily
contracted the muscles that usually make part of arm swing in locomo-
tion. Fernandez Ballesteros et al. (1965) have shown that muscular ac-
tivity in the upper limbs related to stepping was present even when
swinging of the arms was inhibited. Unpublished data recorded in a fol-
low up studywherewemeasured EMG from the arms (posterior deltoid
and theflexor carpi radialis) during active robot assisted gait, shows that
armmuscle activity is rhythmically related to the gait cycle. In this study
subjects were also resting their arms on the siderails of the Lokomat and
had the instruction to relax their arms. Miyai et al. (2001) compared
cerebral activities evoked during gait, alternating foot movements and
arm swing using NIRS. These authors showed that during walking cere-
bral activity was increased bilaterally in the central primary sensorimo-
tor area and the SMA. This activationwas spread over a larger area of the
cortex when compared to the simple alternation of foot movements. In
addition, they comment on unpublished data according towhich the ac-
tivation patterns of gait with arm swing did not differ from those of gait
with subjects holding the siderails by both hands. Taking into account
these findings, cortical activity related to arm swing during walking
could provide important information about active participation in gait
training.
Conclusion

We demonstrate that it is possible to identify cortical activity re-
lated to lower limb movements in robot assisted gait that account
for differences between active and passive walking. We show that
power in the mu and beta bands over central midline areas is signif-
icantly reduced during active walking. We also show that this de-
crease depends on gait cycle phases. This decrease might be related
to sensory processing of the lower limbs. We provide first evidence
for cortical activity localized in the premotor cortex in the lower
gamma band that is related to the gait cycle phases in robot assisted
walking. Additionally, there is a trend for decreased gamma power
in this brain area during active robot assisted walking probably relat-
ed to movement planning and/or sensorimotor processing. Addition-
ally, we find significantly decreased alpha, beta and gamma power in
the right hand area of the primary motor cortex. Further work has to
examine whether these findings can be used to define features for
single trial detection of active participation in gait training. This im-
plies in a next phase to investigate our current results in patients.

This work is a further step toward the evaluation of brain monitor-
ing techniques for improving gait rehabilitation therapies in a top–
down approach (Belda-Lois et al., 2011). Our results show that EEG
recordings may be a powerful tool to monitor cortical activation dur-
ing automated locomotor rehabilitation. This could help to relate
changes in brain activity to functional improvements and determine
the effects of therapeutic interventions.
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Voluntary drive is crucial for motor learning, therefore we are interested in the role that
motor planning plays in gait movements. In this study we examined the impact of an
interactive Virtual Environment (VE) feedback task on the EEG patterns during robot
assisted walking. We compared walking in the VE modality to two control conditions:
walking with a visual attention paradigm, in which visual stimuli were unrelated to the
motor task; and walking with mirror feedback, in which participants observed their own
movements. Eleven healthy participants were considered. Application of independent
component analysis to the EEG revealed three independent component clusters in
premotor and parietal areas showing increased activity during walking with the adaptive
VE training paradigm compared to the control conditions. During the interactive VE walking
task spectral power in frequency ranges 8–12, 15–20, and 23–40 Hz was significantly
(p ≤ 0.05) decreased. This power decrease is interpreted as a correlate of an active cortical
area. Furthermore activity in the premotor cortex revealed gait cycle related modulations
significantly different (p ≤ 0.05) from baseline in the frequency range 23–40 Hz during
walking. These modulations were significantly (p ≤ 0.05) reduced depending on gait
cycle phases in the interactive VE walking task compared to the control conditions. We
demonstrate that premotor and parietal areas show increased activity during walking with
the adaptive VE training paradigm, when compared to walking with mirror- and movement
unrelated feedback. Previous research has related a premotor-parietal network to motor
planning and motor intention. We argue that movement related interactive feedback
enhances motor planning and motor intention. We hypothesize that this might improve
gait recovery during rehabilitation.

Keywords: neurorehabilitation, robotic gait training, locomotion, motor planning, electroencephalography,

interactive feedback, gait adaptation

1. INTRODUCTION
Gait recovery is a major rehabilitation goal in post-stroke ther-
apy. Impairments in normal gait affect balance, stride length,
walking speed, obstacle avoidance and endurance. These factors
often lead to an increased risk of falls and related injuries (Said
et al., 1999). In consequence, affected individuals are not able to
react adequately and promptly to demands within their environ-
ment, which hinders them in performing activities of daily living
autonomously (Duncan et al., 1998).

Much has been discussed about optimal training strategies
in rehabilitation and different therapy approaches. Several key
features including the form and intensity of motor training
are assumed to support neural plasticity in motor learning. In
gait rehabilitation extensive training can be provided by using
a robotic gait orthosis that allows a high number of move-
ment repetitions (Lum et al., 2002; Mehrholz et al., 2013).
However, robotic rehabilitation alone generates a highly repetitive
and monotonous practice environment that requires little effort
from the individual. Findings on discrete upper limb movements

indicate that active performance in the training is more effective
for motor learning (Lotze et al., 2003; Kaelin-Lang et al., 2005).
Furthermore several studies suggest that the individual’s motiva-
tion in the training is one of the critical factors in determining the
therapy outcome (Maclean and Pound, 2000; Liebermann et al.,
2006). It has been argued that a more interactive and demand-
ing learning context, might enhance the individual’s motivation
and promote active participation in the motor task. Virtual
Environments (VEs) provide a convenient solution to these ends
as different kinds of motor tasks with various degrees of diffi-
culty can easily be implemented (Holden, 2005; Liebermann et al.,
2006). Recent studies suggests that VE can in fact promote active
participation during robotic gait training. Brütsch et al. (2010,
2011) and Schuler et al. (2011) showed that training with VE sig-
nificantly increased active participation during robot assisted gait
in children with various neurological gait disorders and healthy
controls. Active participation was assessed using biofeedback val-
ues from hip and knee torques (Brütsch et al., 2010, 2011) and
electromyographic activity of the lower limbs (Schuler et al.,
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2011). Other research suggests that VE combined with robot
assisted lower limb training has a greater effect on improving gait
parameters such as balance, speed, and endurance in individuals
after stroke than robot-assisted training alone (Jaffe et al., 2004;
You et al., 2005; Mirelman et al., 2009, 2010).

However, so far the underlying neurophysiological processes
that are elicited by motor related feedback in a VE during gait
training and their relevance to the relearning of motor skills have
not been investigated. Active participation and voluntary drive
in movements have been shown to be crucial for motor learn-
ing (Lotze et al., 2003; Kaelin-Lang et al., 2005). But how does the
notion of voluntary drive translate to the movement of gait? In
general voluntary movements have been defined as two different
kinds of subjective experiences: “intention” which relates to the
phase of movement planning and “agency” describing the feel-
ing that one’s own movement has caused a specific effect (Tsakiris
et al., 2010). These feelings can be promoted by feedback in a
VE. Findings also indicate that the experience of agency is related
to the presence of perceptual and sensory feedback about the
effects of motor actions in the physical world (Blakemore et al.,
2002). Thus the feeling of agency can be increased by enhancing
feedback to motor actions in a VE. Investigations on upper limb
movements reveal a sensorimotor network of premotor-parietal
cortices that is related to motor awareness and intention (Sirigu
et al., 2003; Berti et al., 2005; Tsakiris et al., 2010), (for a review see
Haggard, 2008). However, walking is a rhythmic and highly auto-
mated movement and it is not clear which parts of the movement
are controlled by the cortex, the brain stem and central pattern
generators in the spinal cord (Armstrong, 1988; Grillner et al.,
1998). Hence motor awareness and intention most likely differ
between walking and discrete upper limb movements. In animals
motor areas of the cortex are only activated during gait initiation
and gait adaptation, but not during unperturbed gait (Armstrong,
1988; Drew et al., 2008).

Few studies in humans have investigated motor preparation
during gait. Recently we compared active to passive walking in
a gait robot and found a trend for differences in sensorimotor
EEG rhythms over the premotor cortex additionally to differ-
ences over sensory areas (Wagner et al., 2012). Wieser et al. (2010)
studied evoked potentials related to gait like movements dur-
ing an upright position. They found that the cortical activity
over sensorimotor areas was highest shortly before a change of
direction between the flexor and extensor movement of the legs.
Haefeli et al. (2011) showed an increased activation over pre-
frontal areas during the preparation and performance of obstacle
steps with EEG. Recently Sipp et al. (2013) showed that walk-
ing on a balance beam elicited increased electroencephalographic
theta band activity over a wide range of mostly midline cor-
tical areas compared to steady state treadmill walking. Several
fNIRS studies have investigated motor preparation during gait.
Increased activity over the prefrontal cortex (PFC) and the SMA
was observed during adaptive walking compared to steady state
walking (Suzuki et al., 2004), as well as during the preparation
before gait initiation (Suzuki et al., 2008; Koenraadt et al., 2013).
Additionally Koenraadt et al. (2013) found increased activation
over the PFC during precision stepping. Consequently it seems
that adaptive and challenging training paradigms that continually

require participants to adjust their gait are necessary to produce
motor planning during gait.

In the current study we examined the impact of an interac-
tive VE feedback task on the EEG patterns during robot assisted
walking. We compared this to walking with a visual attention
task in which the stimuli were unrelated to the movement and
mirror feedback where participants were observing their own
movements. We chose these control conditions for two differ-
ent reasons. First, to account for the amount of visual attention
that is required by the interactive feedback task. The visual atten-
tion task provides visual stimuli unrelated to the movement, while
the mirror feedback consists of visual information relevant to the
participants’ movement. The latter condition should thus activate
the mirror neuron system and account for possible activations of
this system during VE feedback. Higher cortical activation dur-
ing VE compared to mirror feedback and the visual attention task
should therefore reflect additional motor planning and visuomo-
tor processing required by the interactive feedback. The second
reason we chose the mirror feedback as a control conditions is
that in automated gait rehabilitation therapy mirror feedback is
often used. Research has demonstrated that mirror feedback dur-
ing therapy can improve motor recovery after stroke (for a review
see Ramachandran and Altschuler, 2009). These studies assume
that part of the efficacy of mirror feedback could be due to the
stimulation of dormant “mirror neurons.” Thus we wanted to
examine whether the interactive VE feedback would produce a
measurable higher activation of sensorimotor areas relative to
mirror feedback.

In particular we hypothesize that walking with interactive
feedback in a VE would increase motor planning and inten-
tion and thus activate premotor and parietal areas relative
to walking with mirror feedback and a visual attention task.
Additionally we hypothesize that if the VE task would yield
higher cortical activation of these areas compared to mirror feed-
back interactive VE feedback may be more beneficial for motor
learning.

2. MATERIALS AND METHODS
2.1. PARTICIPANTS
Eleven healthy volunteers (26 ± 2 years, 7 male) with no past
or current neurological or locomotor deficits participated in this
study. The experimental procedures were approved by the ethi-
cal committee of the Medical University Graz. Written informed
consent was obtained from all subjects before the experiment.

2.2. EXPERIMENTAL DESIGN AND PROCEDURE
Participants walked with a robotic gait orthosis (Lokomat,
Hocoma AG, Switzerland) under five different visual feedback
conditions. Each condition lasted 4 min and was repeated two
times during the experiment. The Lokomat is a robotic driven gait
orthosis that includes electrical drives in knee and hip joints and
incorporates a motorized treadmill and body weight support sys-
tem. Parameters of the Lokomat were adjusted according to the
common practice in clinical therapy with the help of experienced
physical therapists. Walking speed was adjusted according to the
participants leg length with the formula: speed = 0.54(leg)/27.8
where leg is the participant’s leg length in cm and the speed is
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computed in kilometer per hour. Walking speed ranged from
1.8 to 2.2 km per hour between participants. For comparison,
fast overground walking speed lies at around 5 km/h (Bohannon,
1997). Body weight support (BWS) was adjusted for each partic-
ipant at around 30%. The Lokomat was run in a control mode
with 100% guidance force. The feedback conditions consisted of:

NoFB Participants walked while looking at a black screen.
GAZE Participants looked at white graphical objects sequentially

appearing (for 3 s) in different locations on a black screen (see
Figure 1).

MIRROR Participants watched themselves in a mirror while
walking in the orthosis.

3rdP VE and 1stP VE Participants walked in a 3D Virtual
Environment in 3rd and 1st person view. The task consisted
in steering an avatar down an alley without crashing into
the walls marking the edge of the path. The movement of
the avatar was controlled using the participant’s kinematic
information measured within the gait orthosis. Steering of
the avatar depends on the force executed by the participant
on the gait orthosis and is measured by force sensors within
the Lokomat. We used the augmented performance feedback
that is implemented as standard in the Lokomat (Hocoma AG,
Switzerland).

One gait cycle was defined as the interval between two right leg
heel contacts (one gait cycle lasted from 1.6 to 2.4 s depending
on the participant’s leg length). Before starting the experimen-
tal sessions subjects were asked to train under the virtual reality

FIGURE 1 | Experimental setup: subject walking in the lokomat gait

orthosis with body weight support. The amplifiers for EEG recordings
are fixed on a board in front of the participant. The orthosis is adapted and
fixed to the participant’s legs with the help of an experienced physical
therapist; Left: robotic assisted walking. Speed (≤2.2 km/h) and body
weight support (∼30%) were adjusted for each participant; Right top:
participant walking in the 3rd person VE condition. Right bottom: gaze
screen with possible locations for the graphical objects.

feedback conditions for some minutes to get used to the orthosis
and to steering in the VE. After a short training period (about 3
min for each VE task), all subjects reported that they were able
to control sufficiently well the VR. Conditions were randomized.
In all conditions, participants were asked to look straight ahead,
not to close their eyes for prolonged periods of time, and to blink
normally. Figure 1 summarizes the experimental setup.

2.3. DATA ACQUISITION
The EEG was recorded from 61 sites using two 32-channel
amplifiers (BrainAmp MR plus amplifiers, Brainproducts,
Munich, Germany). Electrodes were mounted in an electrode
cap (EasyCap, Germany) according to the 5% 10/20 system
(Oostenveld and Praamstra, 2001). The electrooculagram (EOG)
was recorded from three electrodes, two placed on the outer can-
thi of the eyes and one between the eyes on the forehead. Both
EEG and EOG were referenced to the left mastoid, and ground
was placed on the right mastoid. All electrode impedances were
reduced below 10 k� before the recording. Three-dimensional
electrode coordinates were measured on a screening day prior to
the actual measurement with the Zebris Elpos system (Noraxon,
USA). EEG and EOG was acquired with 1 kHz sampling rate, and
band pass filtered between 0.1 and 500 Hz. The timing of the heel-
strike of both legs was assessed using mechanical foot switches
placed over the calcaneus bone at the foot sole of both feet.

2.4. EEG ANALYSIS
EEG data analysis was performed using Matlab 2012b (The
MathWorks Inc., Natick, MA) and EEGLAB 11.0b functions
(Delorme and Makeig, 2004).

In Wagner et al. (2012) we showed that it is possible to
account for artifact contamination of the EEG with Infomax
Independent Component Analysis during robotic gait training
following the methods of Onton et al. (2006) and Gwin et al.
(2010). Before submitting the EEG to an ICA the data was
preprocessed accordingly.

First the data (EOG and EEG) were high pass filtered at 1 Hz
using a zerophase FIR filter (order 7500) to minimize drifts,
low pass filtered at 200 Hz (zerophase FIR filter order 36), and
subsequently downsampled to 500 Hz. Channels with prominent
artefacts were excluded from further analysis (avg. 2.2; range:
0–7), and the EEG and EOG were rereferenced to a common
average reference that was computed from the remaining EEG
channels. The continuous EEG data were then visually inspected
for non-stereotyped artifacts (e.g., swallowing, electrode cable
movements, etc.) and affected partitions were removed from
further analysis. For automatic artifact rejection the data were
partitioned into segments of 0.5 s to identify outliers exceeding
the average of the probability distribution of values across the
data segments by ±5 SD. On average, per condition 72% of the
gait cycles of each participant’s EEG data remained in the analysis
(range: 61–89%, SD: 11).

Next, the preprocessed datasets containing EEG and EOG were
decomposed using an adaptive independent component analysis
(ICA) mixture model algorithm (AMICA) (Palmer et al., 2006,
2008). AMICA is a generalization of the Infomax algorithm (Bell
and Sejnowski, 1995; Makeig et al., 1996) and multiple mixture
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(Lee et al., 1999; Lewicki and Sejnowski, 2000) ICA approaches.
Infomax ICA utilizes temporal independence to perform blind
source separation (Makeig et al., 1996). ICA was performed on
individual subjects over all conditions (GAZE, MIRROR, 1stP VE,
3rdP VE, noFB).

Individual component scalp maps were submitted to a sin-
gle dipole source localization algorithm using a standardized
three-shell boundary element head model (BEM) implemented
in EEGLAB (Oostenveld and Oostendorp, 2002; Delorme et al.,
2012). Individual participants’ electrode positions were co-
registered and aligned with a standard brain model (Montreal
Neurological Institute, MNI, Quebec, Canada). Ideally indepen-
dent components representing synchronous activity within a
cortical domain are characterized by scalp maps fitting the projec-
tion of a single equivalent current dipole. Therefore, the goodness
of fit for modeling each independent component scalp map with a
single equivalent current dipole was used to quantify component
quality. Only ICs whose dipoles were located within the head and
fitted their scalp projection with a residual variance of less than
10% were considered further.

ICs representing artifacts were identified and rejected from
further analysis by visual inspection considering the scalp map,
the event-locked time course and the power spectrum. The
remaining ICs were submitted to an automatic clustering rou-
tine implemented in EEGLAB (Delorme and Makeig, 2004) using
principal component analysis (PCA). Feature vectors coding dif-
ferences between ICs in dipole location, power spectral density
(PSD) (3–40 Hz), and scalp projection were reduced to 10 prin-
cipal components and clustered with k-means (with k = 13).
Components further than three standard deviations from the
obtained cluster centers were moved to a separate “Outlier” clus-
ter. Only clusters that contained more than half of the participants
were further analyzed. Furthermore, as we were interested in
motor related functions, we considered only clusters in sensori-
motor areas.

2.5. CLUSTERS OF CORTICAL ICs
The PSD (using Welch’s Method) and event-related spectral
perturbations (ERSP) (Makeig, 1993) were computed for each
independent source. To generate gait cycle ERSPs single trial
spectograms were computed and timewarped using a linear inter-
polation function, thus aligning the timepoints for right and left
heelstrike over trials. Relative changes in spectral power were
obtained by averaging the difference between each single-trial
log spectogram and baseline (the mean IC log spectrum over all
gait cycles per condition). To visualize significant event-related
changes from baseline, deviations from the average gait cycle log
spectrum were computed with a bootstrap method (Delorme
and Makeig, 2004). This analysis revealed gait cycle related activ-
ity in one of the clusters that was significant from baseline (see
Figure 2). This modulation occurred in a varying frequency band
ranging from 23 to 40 Hz between persons. For further statistical
analysis an individual band in this frequency range was selected
for each participant, considering only frequencies that were sig-
nificantly different from baseline. Spectral activity in 8–12 Hz
alpha and 15–20 Hz beta bands did not differ overtly between
subjects. Furthermore the spectra of single subjects did not show

A

B

FIGURE 2 | Gait event-related spectral perturbation maps (ERSPs) for

cluster A: Single IC plots showing significant changes in spectral

power during the gait cycle for (A) GAZE and (B) 3rdP VE.

Non-significant differences relative to the full gait cycle baseline (p ≤ 0.05)
are masked in green (0 dB). Vertical lines mark the temporally aligned
events of right leg heel contact as the beginning (0%) and end (100%) of
the gait cycle, and the left heel-strike (50%). The gait-cycle related
modulation in the 23–40 Hz band is more pronounced during GAZE
compared to 3rdP VE. The band in which this modulation appears varies
over subjects and encompasses frequencies from 23 to 40 Hz. [The codes
on top of the figures (e.g., cc1 20) represent participant codes (e.g., cc1),
and the number of the IC (e.g., 20)].

multiple peaks in these frequency bands. Therefore the standard
bands were used for further analysis.

For statistical analysis ERSPs were computed for the GAZE,
MIRROR, 1stP VE and 3rdP VE using a common baseline: the
average gait cycle log spectrum computed from the noFB condi-
tion. Independent component ERSPs were then averaged in three
frequency bands: 8–12 Hz (alpha), 15–20 Hz (beta), and subject
specific bands in the range 23–40 Hz.

For statistical analysis we divided the gait cycle symmetri-
cally in two stationary phases 10–30% and 60–80% of the gait
cycle and two transition phases 30–60% and 80–10% of the gait
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cycle. Since two of the sensorimotor clusters we identified were
located in midline areas we could not attribute their activity to
one of the hemispheres (see Figure 3). The stationary phases
correspond to the midstance (10–30%), initial swing (60–73%),
and miswing phases (73–87%). The transition phases correspond
to the terminal stance (30–50%), preswing (50–60%), terminal
swing (87–100%), and loading response (0–10%) following the
definition by Perry (1992).

A repeated measurements 4 × 4 within-subject ANOVA with
factors “feedback” (GAZE vs. MIRROR vs. 1stP VE vs. 3rdP VE)
and “gait cycle phase” (two stationary phases and two transi-
tion phases) was computed for each cluster and each frequency
band separately. Multiple comparisons were corrected control-
ling for false discovery rate (Benjamini and Yekutieli, 2001)
with a significance level set a priori at 0.05. In cases where the
assumption of sphericity was violated significance values were
Greenhouse-Geisser corrected. Additionally we computed the

effect size η2. Simple paired t-tests with a bootstrapping method
were employed for post hoc testing, and multiple comparisons
were corrected controlling for false discovery rate with an a priori
alpha level at 0.05. For post hoc comparisons we also computed
the effect size (cohen’s d) based on the distance between means.

3. RESULTS
Three clusters located in central midline areas revealed differences
between the feedback conditions (see Figure 3). The number
of subjects and sources contained in each cluster and Tailarach
coordinates of cluster centroids are displayed in Table 1.

Cluster A, located in the premotor cortex, showed significant
changes (p ≤ 0.05) from baseline relative to the phases of the gait
cycle in the band 23–40 Hz visible in the single IC ERSPs dur-
ing GAZE, NoFB, MIRROR and in reduced form during 1stP VE
and 3rdP VE, (see Figure 2). This cluster also presented a signif-
icant difference in the average spectrum between the feedback

A

B

C

FIGURE 3 | Scalp projection, spatial location and power spectra of

independent component clusters (A) Cluster A located in the

supplementary motor area (premotor cortex); (B) Cluster B located in

the posterior cortex (Brodmann area 7); (C) Cluster C located in the

posterior cortex (Brodmann area 40). From left to right in each row:
cluster average scalp projections; dipole locations of cluster ICs (blue

spheres) and cluster centroids (red spheres) visualized in the MNI brain
volume in coronal and sagittal views; PSD for all feedback conditions. For
cluster B and C a clear difference in PSD between noFB and Gaze vs.
both of the VE conditions in the mu and in the beta range can be
observed [Naming: Ss, ICs—number of subjects (Ss) and Independent
Components (ICs) in the cluster].
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conditions in the beta band (F(3, 24) = 6.9 p ≤ 0.0094, η2 =
0.46), (see Table 2). Post hoc tests revealed a significant (p ≤ 0.03)
difference between VE and all other feedback conditions. For gait
cycle related modulations in the 23–40 Hz frequency range a sig-
nificant interaction between gait phases and conditions was found
(F(9, 72) = 2.6, p ≤ 0.0094, η2 = 0.25)(see Table 3). Post hoc tests
revealed that power in this range was significantly (p ≤ 0.0085)
reduced in the two stationary gait phases during both of the VE
conditions compared to GAZE (see Figure 4). But only the sec-
ond stationary gait phase during 3rdP VE was significantly (p ≤
0.0085) different from MIRROR. Compared to GAZE, MIRROR
showed significantly (p ≤ 0.0085) reduced power in this band in
the first stationary gait phase. Interestingly there is a significant
difference between 1stP VE and 3rdP VE in the second transition
phase of the gait cycle. For an overview and Cohen’s d values see
Table 4.

For cluster B (parietal cortex, Brodman area 7) the ANOVA
revealed a significant main effect for the mean spectrum between
the visual feedback conditions in the mu band (F(3, 27) = 9.9,
p ≤ 0.0094, η2 = 0.56), and in the beta band (F(3, 27) = 11.8,
p ≤ 0.0094, η2 = 0.60). Post hoc tests show that spectral power
in the mu band (p ≤ 0.0025) and in the beta band (p ≤
0.0045) is significantly reduced in the VE conditions compared
to MIRROR and GAZE. The ANOVA for cluster C (parietal cor-
tex, Brodmann area 40) revealed a significant main effect for the
mean spectrum between the visual feedback conditions for the
mu band(F(3, 24) = 10.0, p ≤ 0.0094, η2 = 0.55), the beta band
(F(3, 24) = 14.0, p ≤ 0.0094, η2 = 0.64) and the gamma band

Table 1 | Clusters of independent sources obtained with ICA.

Cluster Location of cluster Tailarach Number of

centroid coordinates (x,y,z) subjects (S) and ICs

(Brodmann area)

A Supplementary
motor area (BA6)

5, −1, 58 9 S, 9 ICs

B Parietal cortex
(BA7)

8, −56, 55 10 S, 10 ICs

C Parietal cortex
(BA40)

37, −35, 37 9 S, 9 ICs

Table 2 | ANOVA results: significant main and interaction effects.

Cluster A Cluster B Cluster C

8–12 Hz Feedback Feedback

F(3, 27) = 9.9 F(3, 24) = 10.0

p ≤ 0.0094, η2 = 0.56 p ≤ 0.0094, η2 = 0.55

15–20 Hz Feedback Feedback Feedback

F(3, 24) = 6.9 F(3, 27) = 11.7 F(3, 24) = 14.0

p ≤ 0.0094,
η2 = 0.46

p ≤ 0.0094, η2 = 0.60 p ≤ 0.0094, η2 = 0.64

23–40 Hz Feedback x
Gait Phase

Feedback

F(9, 72) = 2.6 F(3, 24) = 8.3

p ≤ 0.0094,
η2 = 0.25

p ≤ 0.0094, η2 = 0.51

Table 3 | Significant differences in mean gait cycle spectra between

feedback conditions (p ≤ 0.05 corrected with false discovery rate),

and effectsize (cohen’s d) (d1 and d3, respectively denote Cohen’s d

values for 1stP VE and 3rdP VE).

Cluster A Cluster B Cluster C

8–12 Hz VE-GAZE VE-GAZE

(d1 = 1.30,
d3 = 1.44)

(d1 = 1.48, d3 = 1.19)

VE-MIRROR MIRROR-GAZE

(d1 = 1.05,
d3 = 0.98)

(d = 1.11)

15–20 Hz VE-GAZE VE-GAZE VE-GAZE

(d1 = 1.09,
d3 = 1.00)

(d1 = 1.57,
d3 = 2.51)

(d1 = 2.11, d3 = 1.57)

VE-MIRROR VE-MIRROR VE-MIRROR

(d1 = 0.76,
d3 = 0.74)

(d1 = 0.91,
d3 = 0.81)

(d1 = 0.83, d3 = 0.69)

MIRROR-GAZE

(d = 1.21)

23–40 Hz see Table 4 VE-GAZE

(d1 = 1.65, d3 = 1.59)

VE-MIRROR

(d1 = 0.81, d3 = 0.64)

FIGURE 4 | Average gait event-related spectral perturbations

(ERSPs) for cluster A: for each feedback condition ERSPs are
computed relative to the full gait cycle baseline obtained from the
noFB condition. Then ERSPs are averaged over subject specific
frequency bands between 23 and 40 HZ and then averaged over
subjects for cluster A. Temporally aligned events are marked for the
right leg heel contact at 0% as the beginning and 100% as the end
of the gait cycle, and for the left heel-strike at 50%. Each feedback
condition is represented by a colored trace. It is visible that during
1stP and 3rdP VE in stationary gait phases (10–30% and 60–80%)
power in this band is decreased compared to the other feedback
conditions. Also a difference between 3rdP VE and 1stP VE during
the second transition phase of the gait cycle (30–60%) is evident.
Vertical lines mark the beginning and the end of gait cycle phases.
Asterisks mark significance between feedback conditions in the
indicated gait cycle phase.
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Table 4 | Significant differences in single gait phase spectra between

feedback conditions (p ≤ 0.0085) and cohen’s d values for Cluster A.

MIRROR 1stP VE 3rdP VE

GAZE 1st stationary Stationary Stationary
gait phase gait phases gait phases
d = 0.88 d = 0.63, d = 0.95 d = 0.89, d = 1.03

MIRROR 2nd stationary
gait phase
d = 0.65

3rdP VE 2nd transition
gait phase
d = 0.56

(F(3, 24) = 8.3, p ≤ 0.0094, η2 = 0.51) (see Figure 3). Post hoc
tests show that spectral power in the mu band (p ≤ 0.0055) is
significantly reduced in the VE conditions and in the MIRROR
condition compared to GAZE. The post hoc tests also show that
spectral power in the beta band (p ≤ 0.013) and in the 23–40 Hz
range (p ≤ 0.0075) is significantly reduced in the VE conditions
compared to MIRROR and GAZE. Additionally the tests reveal
that during MIRROR feedback spectral power in the beta band
(p ≤ 0.013) is significantly reduced compared to GAZE. For an
overview of significant comparisons and Cohen’s values refer to
Tables 2 and 3.

4. DISCUSSION
Our analysis revealed three independent component clusters in
premotor and parietal areas that showed significantly decreased
spectral power in alpha, beta and 23–40 Hz frequency ranges dur-
ing the interactive VE tasks compared to MIRROR and GAZE.
This spectral power decrease indicates a higher neuronal activa-
tion (Pfurtscheller and Lopes da Silva, 1999).

Gait cycle related modulations in cluster A visible in the sin-
gle IC ERSPs (see Figure 2) showed reduced activity during 3rdP
VE compared to GAZE. Statistical analysis revealed that during
both VE conditions power in the 23–40 Hz range is significantly
decreased in the two stationary gait phases compared to GAZE.
Also comparisons between MIRROR vs. GAZE and MIRROR vs.
VE show only significant differences in stationary gait phases.
Interestingly, however, there is a significant difference between
1stP VE and 3rdP VE in the second transition phase of the gait
cycle (see Figure 4 and Table 4). In a previous study we found the
same gait cycle related modulation in a 25–40 Hz frequency range
during active and passive robot-assisted walking in the premotor
cortex (Wagner et al., 2012). Central midline activity in the fre-
quency range 30–45 Hz has been previously related to muscle acti-
vation during upper and lower limb movements (Pfurtscheller
and Neuper, 1992; Pfurtscheller et al., 1993; Brown, 2000; Mima
et al., 2000; Alegre et al., 2003; Müller-Putz et al., 2003, 2007;
Raethjen et al., 2008). Results from Pfurtscheller and Lopes da
Silva (1999) and Pfurtscheller et al. (1996) suggest that activ-
ity in an overlapping frequency band is involved also in motor
planning. These studies reported synchrony of oscillations in the
frequency range 36–40 Hz over the premotor area and in relation

to the sensorimotor area shortly before movement-onset and dur-
ing execution of movement. Interestingly Petersen et al. (2012)
recently observed synchrony in the frequency range 24–40 Hz
between EEG recordings over the foot motor area and the elec-
tromyogram from the tibialis anterior muscle during steady state
walking. The significant coupling occurred prior to heel strike
during the swing phase of walking. This corticomuscular coher-
ence is similar in frequency band and cortical location to the gait
cycle related modulation we find in the 23–40 Hz range. The sta-
tionary gait phases in our study coincide with the swing phases
of both legs. Hence the decreased power during VE may repre-
sent processes involved in motor planning during these phases.
The difference between 1stP VE and 3rdP VE during the sec-
ond transition phase of the gait cycle is especially interesting and
may indicate that participants were using different strategies for
steering the avatar in the two conditions. We generally observed
a more variable pattern of the 23–40 Hz modulation during 3rdP
VE compared to the other conditions.

Our results also show a significant decrease in beta band
power in the premotor cortex during VE compared to MIRROR
and GAZE. Numerous scalp EEG and ECoG studies have related
event-related desynchronization (ERD) in the alpha (8–13 Hz)
and beta (15–25 Hz) rhythms to the activation of sensorimotor
areas (Crone et al., 1998; Pfurtscheller and Lopes da Silva, 1999;
Neuper and Pfurtscheller, 2001; Pfurtscheller et al., 2003; Miller
et al., 2007), while synchrony in alpha and beta bands has been
connected to a deactivation or inhibition of these areas (Klimesch
et al., 2007; Neuper et al., 2007). Interestingly two recent studies
showed that elevated synchrony in the sensorimotor beta rhythm
promotes postural and tonic contraction and causes movements
to be slowed (Gilbertson et al., 2005; Joundi et al., 2012); and a
recent review suggests that modulation of beta activity is predic-
tive of potential actions (Jenkinson and Brown, 2011). There is
evidence that these principles hold for whole body movements
such as walking. Wieser et al. (2010) showed decreased alpha and
beta band power during gait like leg movements in an upright
position, compared to periods of rest in which participants were
lying. Presacco et al. (2011) showed that spectral power in the
alpha band is suppressed during precision walking compared to
standing. These results are in line with our recent study where
we showed that alpha and beta spectral power in sensorimotor
areas is suppressed during robot assisted walking compared to
standing (Wagner et al., 2012). We also show that spectral power
in these bands is significantly decreased during active compared
to passive walking. Thus our findings indicate that the task of
active gait adjustment in the VE requires enhanced motor plan-
ning and increases activity in the premotor cortex. This is in line
with numerous studies that relate increased activity in the premo-
tor area to the planning of single limb movements (Pfurtscheller
and Berghold, 1989; Ikeda et al., 1992; Tanji, 1994), (for a review
see Haggard, 2008). Recent studies have demonstrated that the
premotor areas are also activated during gait initiation and adap-
tation (Suzuki et al., 2004, 2008; Haefeli et al., 2011; Koenraadt
et al., 2013).

In the posterior parietal cortex (PPC) two clusters were iden-
tified. One located centrally (Cluster B) and one located in the
right hemisphere (Cluster C). In Cluster B power in the mu and
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beta band was significantly suppressed during both VE condi-
tions compared to MIRROR and GAZE. Cluster C also revealed
decreased power in the beta band and the 23–40 Hz range dur-
ing the VE tasks relative to all other feedback conditions. The
23–40 Hz range is overlapping with the upper beta band, and
is suppressed during feedback conditions in which participants
had to actively modify their steps. We assume therefore that a
decrease in this band has the same functional meaning previously
described for the mu and beta band. Alpha and beta rhythms in
the parietal cortex have been previously linked to spatial atten-
tion, decision making, and sensorimotor integration (Capotosto
et al., 2009; Donner and Siegel, 2011; Hipp et al., 2011; Capotosto
et al., 2012). Interestingly two recent studies by Tombini et al.
(2009) and Perfetti et al. (2011) relate alpha and beta ERD in
parietal regions to the movement planning in visually guided
upper limb movements under both feedforward and feedback
control. For the MIRROR condition a significant power decrease
in mu and beta bands relative to the movement unrelated feed-
back (GAZE) was observed solely in Cluster C. The PPC has been
related to the mirror neuron system (Fogassi et al., 2005), we
therefore conclude that the activation we find during MIRROR
feedback is related to the participants’ monitoring of their own
movements.

Our results show that parietal cortex regions are more acti-
vated in conditions that require visually guided gait adaptation.
These results are in line with studies that associate the PPC with
visuomotor transformations in reaching movements. Neuronal
recordings in monkeys have identified two subareas in the PPC
responsible for the action planning of different body parts: the
lateral intraparietal area (LIP) for saccades and the parietal reach-
ing region (PRR) for reaching (Snyder et al., 1997). In humans,
functional magnetic resonance imaging (fMRI) studies on the
PPC have determined regions corresponding to the monkey PRR
area (Connolly et al., 2003; Pellijeff et al., 2006). Recently Wang
and Makeig (2009) demonstrated that it is possible to decode
intended movement direction using human EEG recorded over
the parietal cortex with a delayed saccade-or-reach task. Neuronal
recordings in cats have revealed a higher activation in the PPC
during visually guided gait modification, and suggest that the
PPC may contribute to locomotor control (Drew et al., 2008).
Interestingly a recent study has related activity in the parietal cor-
tex directly to the awareness of human actions (Desmurget et al.,
2009). Previous findings also indicate that the PPC is involved in
the planning of eye-movements (Snyder et al., 1997). Planning of
eye-movements in our study should have occurred mainly dur-
ing GAZE as subjects were supposed to direct their gaze to objects
appearing in different corners of the screen. In the parietal clus-
ters we can observe decreased power in mu and beta bands during
GAZE compared to NoFB (see Figure 3). Possibly some of this
activity is related to the planning of eye-movements. However,
differences between GAZE and VE should reflect the portion of
activity not related to saccades.

Our findings that an interactive gait adaptation task acti-
vates premotor and parietal areas is especially interesting as these
areas have been related to motor intention and motor planning
(Haggard, 2008). The increased activity we find in premotor
and parietal areas during walking in a VE might thus reflect

increased motor planning that is required by the adaptive train-
ing paradigm. VE feedback elicited a higher activation compared
to movement unrelated feedback and mirror feedback in all of the
clusters. Mirror feedback showed enhanced activation relative to
movement unrelated feedback only in one of the parietal clusters.
This provides evidence that the benefits of gait training with a
more demanding and interactive task may be superior to simple
mirror feedback.

Interestingly we found a significant difference between 1stP
VE and 3rdP VE in the premotor cortex during one of the tran-
sition phases of the gait cycle. In general 3rdP VE seems to be
related to a more variable pattern of the 23–40 Hz modulation
compared to the other conditions, including 1stP VE. This could
be an indication that the gait movements are less regular and less
automatic involving more motor planing during 3rdP VE com-
pared to 1stP VE, at least during certain phases of the gait cycle.
Studies on body ownership show that first person perspective is
superior to third person perspective VE for the induction of full-
body ownership illusions (Slater et al., 2010; Petkova et al., 2011).
These studies relate the first person and third person perspec-
tive, respectively to an egocentric and allocentric reference frame.
Studies show that the processing of egocentric spatial information
and self-motion activates the right parietal cortex (Maguire et al.,
1998; Andersen et al., 1999; Vogeley and Fink, 2003). Interestingly
in our study we found clusters only in the right parietal cor-
tex, and these were more activated during the VE walking tasks
compared to MIRROR and GAZE. However, we did not find dif-
ferences between 1stP and 3rdP VE in these clusters. Differences
between 1st and 3rdP perspective were located in the premotor
cortex, a brain region that has been identified in a previous study
to be related to the feeling of agency (Tsakiris et al., 2010). From
observations we can say that the participants in our experiment
needed more time in the beginning to get used to the first person
control in the VE. We could speculate that this increased perfor-
mance success in visuomotor adaptation might have induced a
greater feeling of agency in the third person perspective.

Our results further support previous findings (Brütsch et al.,
2010, 2011; Schuler et al., 2011) suggesting that a more challeng-
ing gait adaptation task can promote the motivation for active
participation in the movement. It is, however, not clear to which
extent this motivation is increased by the immersiveness of the
VE or whether any kind of interactive feedback might have the
same effect. A recent study by Zimmerli et al. (2013) suggests
that the interactivity of the training environment is fundamental
in promoting the participants’ active engagement in the motor
task. Interactivity can be enhanced by providing functionally
significant responses to the movement.

5. CONCLUSION
This study is the first to analyze brain activity during an interac-
tive visual gait adaptation task with a robotic gait orthosis, and
to show that the premotor and parietal areas are involved in visu-
ally guided gait in humans. We found that mu, beta, and lower
gamma rhythms in premotor and parietal cortices are suppressed
during conditions that require an adaptation of steps in response
to visual input. Such suppression indicates increased activation of
these brain areas. We show that this activity is higher compared
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to mirror feedback and a visual attention task. Higher cortical
activation during visually guided gait adaptation may reflect addi-
tional motor planning and visuomotor processing. Activity in the
parietal cortex likely reflects direct visuomotor transformations
required by the task. Increased activity in the premotor cortex
may indicate motor planning involved in adapting the steps to the
visual input. Considering studies showing that voluntary drive is
crucial for motor learning (Lotze et al., 2003; Kaelin-Lang et al.,
2005), our results suggest the possible benefit of goal directed
walking tasks that recruit brain areas involved in motor planning.
Our results are relevant for gait rehabilitation after stroke and may
help to better understand the cortical involvement in human gait
control.
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