
Mario Lins, BSc

Design and implementation of an

enterprise solution for asset inspections

in the electrical power industry

to achieve the university degree of

MASTER'S THESIS

 Master's degree programme: Computer Science

submitted to

Graz University of Technology

Univ.-Prof. Dipl-Ing. Dr.techn. Wolfgang Slany

Institute of Software Technology

 Diplom-Ingenieur

Supervisor

Graz, December 2015

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present master‘s

thesis dissertation.

Date Signature

Abstract

An electricity provider has to ensure the proper functioning of all com-
ponents in the electrical field. Therefore, it is important to continuously
perform testing and maintenance activities for all these components. There
already exist several software solutions in order to support the responsi-
ble testers on performing these activities. However, there are still special
circumstances where it is not possible to use such software solutions. As
a consequence, the testers have to use the traditional error-prone pen and
paper approach to perform their activities.
This master thesis is done in cooperation with the company OMICRON
electronics GmbH. OMICRON already offers a software solution to support
the tester in the field under common circumstances. The focus of this thesis
is to design and realize an enterprise solution that combines the already
existing software infrastructure with a solution to replace the error-prone
pen and paper approach. This enterprise solution is called ADMO Inspect.
The first part of this thesis is to analyse the current application landscape.
Based on this analysis it is possible to define the requirements and in addi-
tion to plan the architecture of ADMO Inspect. The final decision regarding
the architecture is to introduce an additional service layer and to realize a
mobile app to support the tester in the field. The next part of this thesis is to
evaluate possible technologies that can be used to realize these components.
After a detailed comparison of the evaluation results the decision was made
to use Windows Communication Foundation to realize the service layer
and Xamarin to implement the mobile app. At this point this thesis focuses
on several implementation details. First, it shows how to create a screen
design for the mobile app. Then, the most important implementation details
about the service layer and the mobile app are presented. The mobile app
part comprises topics like code modularization, ”Inversion of Control”,
”Model-View-ViewModel”, the user interface and some details about data

iii

consistency and synchronization. In addition, this thesis discusses a devel-
oping practice called ”Continuous Integration” and also some details about
the testing strategy of ADMO Inspect. The last part of this thesis is about
the empirical evaluation of the app. This evaluation is done by performing
a usability test with representative users.

iv

Kurzfassung

Ein Energieversorger muss sicherstellen, dass alle Komponenten im elek-
trischen Feld richtig funktionieren. Dazu ist die Durchführung von kon-
tinuierlichen Test- und Wartungsarbeiten für alle Komponenten essentiell.
Es existieren bereits einige Software-Lösungen um die dafür zuständigen
Tester bei diesen Arbeiten zu unterstützen. Allerdings gibt es immer noch
gewisse Umstände, bei denen so eine Software-Lösung nicht eingesetzt
werden kann. Das führt dazu, dass die Tester eine fehleranfällige Papier
und Bleistift Methode verwenden müssen.
Diese Masterarbeit ist in Kooperation mit der Firma OMICRON electron-
ics GmbH erstellt worden. OMICRON stellt bereits eine Software-Lösung
zur Unterstützung von Testern, die unter normalen Umständen im Feld
arbeiten, zur Verfügung. Der Fokus dieser Arbeit liegt auf der Planung
und der Realisierung einer Unternehmenslösung, welche die bestehende
Software-Infrastruktur mit einer Lösung, welche die fehleranfällige Papier
und Bleistift Methode ersetzt, kombiniert. Diese Unternehmenslösung hat
den Namen ”ADMO Inspect”.
Der erste Teil dieser Arbeit beschäftigt sich mit der Analyse der bestehenden
Infrastruktur. Basierend auf dieser Analyse ist es möglich die Anforderun-
gen zu definieren und zusätzlich die Architektur von ADMO Inspect zu
planen. Die finale Entscheidung bezüglich der Architektur war es, eine
zusätzliche Service-Schicht einzuführen und eine mobile App zu realisieren,
um den Tester im Feld zu unterstützen. Der nächste Schritt dieser Arbeit
beschäftigt sich mit der Evaluierung von möglichen Technologien, die für
die Umsetzung der einzelnen Komponenten verwendet werden können.
Aufgrund eines detaillierten Vergleichs der Evaluierungsresultate, wurde
entschieden ”Windows Communication Foundation“ für die Service-Schicht
und Xamarin für die mobile App zu verwenden. Die darauffolgenden Kapi-
tel beschreiben einige Implementierungsdetails. Zuerst wird gezeigt wie

v

das Design der Benutzeroberfläche der mobilen App erstellt wird. An-
schließend werden die wichtigsten Implementierungsdetails betreffend der
Service-Schicht und der mobilen App präsentiert. Bezüglich der mobilen
App werden Themen wie Code-Modularisierung, ”Inversion of Control“,

”Model-View-ViewModel“, die Benutzeroberfläche und Details bezüglich
Datenkonsistenz und Synchronisation behandelt. Zusätzlich diskutiert diese
Masterarbeit den Prozess ”Continuous Integration“ und die verwendete Test-
strategie von ADMO Inspect. Der letzte Abschnitt dieser Arbeit beschreibt
die empirische Evaluierung der App. Diese Evaluierung ist anhand eines
Usability Tests mit repräsentativen Benutzern durchgeführt worden.

vi

Contents

Abstract iii

1 Introduction 1

2 Application Landscape 3

3 Requirements 9
3.1 Functional Requirements . 9

3.2 Non-functional Requirements 12

4 Architecture 13

5 Technical Evaluation 16
5.1 Service Layer . 16

5.2 Mobile App . 30

5.2.1 Evaluation Criteria . 30

5.2.2 Native Development . 31

5.2.3 Hybrid Development . 38

5.2.4 Xamarin . 44

6 Comparison and Decision 56
6.1 Comparison . 56

6.2 Decision . 58

7 Screen Design 60

8 Implementation of Service Layer 67

9 Implementation of Mobile App 70
9.1 Code Modularization . 70

vii

Contents

9.2 Inversion of Control - IoC . 73

9.3 MVVM - ModelViewViewModel 75

9.4 User Interface . 76

9.5 Data Consistency and Synchronization 81

10 Continuous Integration and Testing 83

11 Usability 90
11.1 Definitional Basics . 90

11.2 Usability Test Setup . 91

11.3 Test Process . 97

11.4 Evaluation Result . 98

11.5 Final Result . 100

12 Summary and Outlook 104
12.1 Summary . 104

12.2 Outlook . 108

Appendices 109

Bibliography 124

viii

List of Figures

2.1 ADMO Location Tree. Source: Screenshot ADMO 4

2.2 ADMO New Asset Dialog. Source: Screenshot ADMO 5

2.3 Define maintenance intervals. Source: Screenshot ADMO . . . 6

2.4 ADMO Time line. Source: Screenshot ADMO 7

2.5 Client-server infrastructure. Source: Own representation . . . 8

4.1 ADMO Inspect - Architecture. Source: Own representation . . 15

5.1 WCF Architecture. Source: Microsoft, 2015j 18

5.2 Transport Security. Source: Microsoft, 2015b 23

5.3 Message Security. Source: Microsoft, 2015b 24

5.4 Publish WCF service. Source: Screenshot Microsoft Visual
Studio 2013 . 26

5.5 Android software stack. Source: Google, 2015a 31

5.6 Building a Cordova app. Source: Wargo, 2014 40

5.7 Architecture - Shared Code. Source: Xamarin, 2015b 45

5.8 Shared Project. Source: Xamarin, 2015b 47

5.9 Portable class library. Source: Xamarin, 2015b 49

5.10 Xamarin Forms. Source: Xamarin, 2015a 51

7.1 Flowchart. Source: Own representation 61

7.2 Scribble. Source: Own representation 63

7.3 Wireframe. Source: Own representation 65

8.1 Service code modularization. Source: Own representation . . 69

9.1 Model-View-ViewModel Pattern. Source: Microsoft, 2015g . . 75

10.1 TFS-Build configuration. Source: Screenshot Microsoft Visual
Studio 2013 . 84

ix

List of Figures

10.2 Testing pyramid. Source: In dependence on Lisa Crispin, 2009,
p. 277 . 85

11.1 Questionnaire before the test. Source: In dependence on Iso-
Metrics, 2015 and Steve Mulder, 2007 95

11.2 Questionnaire after the test. Source: In dependence on Iso-
Metrics, 2015 and Steve Mulder, 2007 96

11.3 Template dialog. Source: Screenshot ADMO Inspect 100

11.4 Hint dialog. Source: Screenshot ADMO Inspect 101

11.5 Location tree. Source: Screenshot ADMO Inspect 102

11.6 Location button. Source: Screenshot ADMO Inspect 103

x

1 Introduction

On the 9th of November 1965, 5:16 p.m. in New York state and it’s neigh-
borhood. 800.000 people were trapped in subways and thousands could not
leave office buildings, elevators or trains. 10.000 National Guardsmen and
5000 additional off-duty policemen were on alert to prevent looting.
All of this happened due to a great blackout 1. A reason for this event was a
human failure but also insufficient monitoring of the power supply system.
This shows how crucial the infrastructure of an electricity provider is. That
is why, nowadays an electricity provider has to continuously perform testing
and maintenance activities for all the electrical components. Those testing
and maintenance activities are very important to ensure that all the electrical
components are working properly and therefore to prevent such problems
like the blackout of 1965.

Meanwhile, there exist several software solutions to support performing
and reporting maintenance and testing activities on electrical components.
The main purpose of these solutions is to offer the tester a well defined,
automatic and reliable process in order to guarantee the proper functioning
of the assets. Although, these software solutions are continuously enhanced
and improved, there are still circumstances where it is not possible to use
such reliable processes in a satisfying way.

One example of such a special circumstance would be a maintenance task for
an electrical tower. Most of the electrical towers are located in areas where it
is not possible to get any kind of mobile connection. In addition, it is hardly
possible to carry a laptop or similar up an electrical tower. Therefore, the
testers have to use the traditional error-prone pen and paper approach to
perform their activities. This approach leads to already stated problems,

1cf: history.com, 2015, rense.com, 2015.

1

1 Introduction

where the reliability of the power supply system can be affected. Unfortu-
nately, even nowadays there are some maintenance and testing activities,
which face the same problem as the one that caused the blackout of 1965 - a
high probability of human failure.

As a consequence, reporting of maintenance and testing results of those
electrical components is often done via pen and paper. There are multiple
error-prone steps by using this pen and paper method for reporting such
important results. For example, hand writing cannot always be clearly de-
ciphered at a later point of time. Another problem is the additional work,
because when the tester is back in the office, the results have to be entered
into a software system. Since the tester has to write down all the results
twice, it is more probable to produce a mistake. In summary, it is not always
possible for testers working under these special circumstances to use a
reliable automated process, which reduces the probability of human failure,
in order to perform their maintenance and testing activities.

This master thesis is done in cooperation with the company OMICRON
electronics GmbH. One main business segment of OMICRON is to support
electricity providers in performing those important testing and maintenance
activities for electrical components. OMICRON already offers a software
solution, which enables the tester to plan, manage and report those activities.
In case of the mentioned special circumstances, the already existing solution,
which is designed for office use, does not fully satisfy the requirements
needed to replace the current error-prone pen and paper approach.

Therefore, this master thesis focuses on the design and implementation
of an enterprise solution, that combines the already existing infrastructure
with a solution to replace the pen and paper approach. It should minimize
the probability of human failure and offer a reliable automatic process for
reporting important test and maintenance results.

2

2 Application Landscape

OMICRON already offers a product to support electricity providers in man-
aging their maintenance and testing activities. This master thesis describes
the combination of this existing product with new components to form a
solution that replaces the pen and paper approach. Therefore, the first step
of this master thesis and thus also this chapter is to analyse this already
offered product and its infrastructure.

It is very important for an electricity provider to continuously perform
maintenance and testing activities on all kinds of electrical components to
ensure their proper functioning. Planning, managing and reporting these
activities is often difficult in practice. In order to support the customer in
these tasks, OMICRON developed an innovative solution called ADMO.
The following workflow illustrates the basic functionalities of ADMO and
shows how the software can be used to support an electricity provider.

In most cases, an employee of the electricity provider, acts as the main-
tenance manager. When starting ADMO, the first task of the maintenance
manager is to enter several kinds of information about the components of
an electrical power system into the software. Before any of these electrical
components, which are often called assets, can be created in ADMO, the
maintenance manager needs to add the corresponding substations. Option-
ally it is possible to add voltage levels and feeders to a substation.

3

2 Application Landscape

The following figure illustrates the location tree which can be used to add
the location information and afterwards to find the containing assets.

Figure 2.1: ADMO Location Tree. Source: Screenshot ADMO

After creating all necessary substations and optionally their voltage levels
and feeders, the maintenance manager is able to create an asset in ADMO.
There exist several asset kinds, which can be managed in ADMO - for
instance: a circuit breaker, a protective relay or a current transformer.

4

2 Application Landscape

The following illustration shows a section of the new asset dialog.

Figure 2.2: ADMO New Asset Dialog. Source: Screenshot ADMO

In this dialog, it is also possible to define a maintenance plan and to attach
test templates. The maintenance plan is an important means of planning
maintenance activities for an asset. In order to define the maintenance cycle
of an asset, the maintenance manager is able to set different maintenance
intervals. Another section of the new asset dialog allows the maintenance
manager to attach test templates. These files are often necessary to perform
specific maintenance activities.

5

2 Application Landscape

The figure below shows the section of the dialog where it is possible to
define the maintenance intervals of an asset:

Figure 2.3: Define maintenance intervals. Source: Screenshot ADMO

The planning of such activities needs to be done quite a long time before
the activity itself is performed. The reason for this is, that often the whole
feeder has to be disconnected from the network when performing such
an activity. Thus, the maintenance manager has to precisely plan the next
maintenance activity of an asset. In terms of ADMO, such a maintenance
activity is called Event.
When creating an event related to an asset, the maintenance manager needs
to have an overview of previous and already planned events, including their
results. This kind of overview, which is realized by a structured timeline
is also a part of ADMO. Thus, the maintenance manager is able to create
a new event in consideration of the already completed ones. The timeline
itself is structured by colors corresponding to the defined intervals, which
can be set in the new asset dialog.

6

2 Application Landscape

The following figure shows a maintenance timeline, that contains two events.
One event for which maintenance was already performed, and assessed as
”passed” and a second event that is planned in the future.

Figure 2.4: ADMO Time line. Source: Screenshot ADMO

At this point, the maintenance manager has completed the planning task
for an asset and another person becomes involved - the tester. Testers are
employees, who are performing such planned maintenance activities at
assets. Once they are in the particular substation and start their maintenance
activity, they make use of the asset specific test templates, which were cre-
ated by the maintenance manager. When the test is completed, they have to
enter the test results into ADMO. Afterwards, the maintenance manager can
review the results and start planning further events based on these results.

That was one example for a workflow when using ADMO and gave a
brief overview of some features. The next paragraph provides a more tech-
nical insight into the software.

ADMO uses a database to store information about assets. There are two dif-
ferent versions of ADMO. A standalone version and a client-server version.
The standalone version stores all the information in a local database, while
the client-server version uses a database server, which is typically located
directly at the customer. Due to the problem of missing internet connectivity
at some substations, it is not always possible to get a connection to the
database server when using the client-server version. In that case ADMO
offers a solution where it is possible to switch to a special offline mode.
This means all the information, which is stored on the database server is

7

2 Application Landscape

replicated to a local database. In case of any offline changes of the data, it is
of course also possible to synchronize those changes back to the database
server, as soon as the connection to the server can be established again.

The following illustration shows an overview of the current client-server
infrastructure:

Figure 2.5: Client-server infrastructure. Source: Own representation

8

3 Requirements

This chapter is about the functional and non-functional requirements for
the enterprise solution, which is called ADMO Inspect. Those requirements
were defined by OMICRON.

3.1 Functional Requirements

As described in the introduction chapter, a tester has to face some problems
when performing test activities at certain assets in the field. An example for
an asset, where the tester has to deal with several problems, is an electrical
tower. For instance, electrical towers are often located outside the range of
any mobile connectivity. Another problem is that the testers cannot carry
a laptop up the tower. Hence, the current testing process, which is mainly
about dealing with checklists, relies on an error-prone pen and paper ap-
proach.

ADMO Inspect offers a solution to replace the current error-prone test-
ing process. In order to deal with the mentioned problems the solution
has to meet some requirements. One requirement of ADMO Inspect is to
work without any mobile connectivity. Another requirement is to satisfy the
mobile use case, especially in cases like climbing up a tower. Additionally,
ADMO Inspect needs to offer a reliable automatic process to deal with
checklists in order to replace the current pen and paper solution.

9

3 Requirements

The next paragraph describes the functional requirements in the form of
user stories. A user story is part of an agile software development process
like SCRUM. It consists of a formal description of the requirement and the
definition of acceptance criteria. The formal definition follows a pattern
in the form of "As a <user> I want to <requirement>". The acceptance
criteria are used to define the results of a user story and are listed beneath
each formal description 12.

As a tester I want to have access to important information about an asset.

• Tester has access to information about an asset

– General location information (i.e. address, postal code,...)
– General asset data (i.e. serial number,...)
– General maintenance information (i.e. maintenance intervals)

• Tester does not have access to all data available in ADMO (i.e. performed
maintenance activities)

As a tester I want to work with the same data as in ADMO.

• The available data in ADMO Inspect is equivalent to the data in ADMO.

As a tester I want to find an asset by selection of its location like substation, voltage
level and feeder.

• Selecting a substation shows all assets of this substation, its voltage levels
and their feeders.

• Selecting a voltage level shows all assets of this voltage level and also its
feeders.

• Selecting a feeder shows all assets of this feeder.

As a tester I want to find an asset by scanning its QR-Code.

As a tester I want to use my checklists.

• ADMO Inspect contains all checklist templates to create new checklists.

As a tester I want to perform my test activity even when I am offline.

1cf: Henning Wolf, 2012, p. 128,
2cf: Roman Pichler, 2011, p. 40

10

3 Requirements

• Data about locations, assets and maintenance activities is available in ADMO
Inspect even when being offline.

As a tester I want to work with my test results in ADMO.

• Completed checklists in ADMO Inspect are also available in ADMO.

The vision of ADMO Inspect contains the following optional user stories:

As a tester I want to select the checklists required for test activities.

• Beside general information (i.e. location information,...) it is also possible to
select checklists, which are available in ADMO Inspect.

As a tester I want to tag an asset with a QR-Code.

As a tester I want to tag an asset with GEO coordinates.

As a tester I want to use GEO coordinates to find an asset.

As a tester I want to be able to use fully modeled checklists.

As an electricity provider I want to define which users have access to which
information.

• A user, who is not authorized to access restricted information, cannot get
access to those information.

• A user, who is authorized to access restricted information, is able to get access
to this information.

11

3 Requirements

3.2 Non-functional Requirements

As described in the previous chapter ADMO directly communicates with
the database. The database schema is defined by ADMO. Consequently, if
ADMO changes this schema, all clients that are currently using the corre-
sponding database, have to adopt these changes.
OMICRON wants the ADMO Inspect solution to be decoupled from ADMO
release cycles. This means whenever a new version of ADMO is released,
it is not necessary to update ADMO Inspect too. Thus, to achieve such
independence, it is very important to detach the solution from the database.

OMICRON also wants this database abstraction to be available to new
products in the future, independent of their platform. Additionally, this
abstraction should ensure data consistency.

Another requirement for ADMO Inspect is to be compatible with the cur-
rently used database management system, which is Microsoft SQL-Server.
Consequently, ADMO Inspect needs to be compatible with the existing
Microsoft environment.

OMICRON also mentioned code reusability as an optional requirement.
One reason for this is that ADMO already contains some code modules,
that could be reused in ADMO Inspect.

12

4 Architecture

The previous chapter introduced the requirements for ADMO Inspect. Based
on the definition of those requirements, this chapter defines the technical
components of ADMO Inspect and gives an overview of the architecture.

Beginning with the already existing infrastructure, OMICRON wants to
achieve independence between ADMO Inspect and ADMO like defined
in the Requirements chapter. Independence can be gained by using an
additional layer that is responsible for abstracting the database. The main
advantage of using an additional layer is that when the database scheme
gets changed, only this layer has to be adopted instead of all clients which
are using the particular database. An alternative to an additional layer
would be direct database access, which would obviously not comply with
the requirements.

To make a decision about the concrete technology to realize this addi-
tional layer, it is necessary to have a look at further requirements. The main
purpose of the additional layer is to offer an interface for accessing the
database. This interface should be available independently of the customer’s
platform since future products may also use it. That means, the communi-
cation with this interface has to support multiple common communication
technologies. Another requirement is to offer the electricity provider a way
to restrict the access to the database.
In summary, this additional layer should meet the following requirements:

1. Encapsulate the database
2. Available to multiple products
3. Independent of the customer’s platform
4. Support multiple communication technologies
5. Restriction possibilities for accessing the database

13

4 Architecture

A common solution to achieve these requirements is the usage of a service.
The book ”Programming WCF Services”1 describes a service in the following
way:

”A service is a unit of functionality exposed to the world.”

That means, a service can offer its users a set of functionality through a
clearly defined interface. In the case of this thesis the service functionalities
can be used to abstract the communication with the database. Additionally,
the book ”Agile Database Techniques” lists some other relevant advantages
of using a service 2:

1. Service access can be platform independent.
2. Services can be reused.

In summary, these facts and abilities when using a service leads to the
decision to create an additional service layer.

Nevertheless, ADMO Inspect also needs another component in order to
communicate with the service layer and to interact with the tester. One
requirement of ADMO Inspect regarding the tester, is that the tester should
be able to work offline when no internet connection is available. Further
requirements are to offer an intuitive way to work with checklists and to
support the mobile use case. The solution, which is able to achieve those
requirements, is to develop a mobile app running on a tablet. By using a
tablet, the tester is able to work offline, since the data can be stored directly
on the device. The app also offers an intuitive way to work with checklists.
The mobile use case is fulfilled too, because it is much easier to carry a
tablet around instead of a laptop. An alternative solution to the mobile
app would be a website, with which it is also possible to achieve the given
requirements. Nonetheless, based on the realization of the offline use case, it
was decided to use the more established solution that is using an SQL-based
database system like SQLite.

To sum up, ADMO Inspect consists of multiple components, in example
the already existing database, the new service layer and an app in order to

1Löwy, 2010.
2cf: Scott, 2012, p. 341

14

4 Architecture

support the tester during field testing. Hence, ADMO Inspect is based on a
three-tier architecture, which is illustrated in the following picture:

Figure 4.1: ADMO Inspect - Architecture. Source: Own representation

15

5 Technical Evaluation

The previous chapter defined the components of ADMO Inspect - the service
layer and the mobile app. This chapter is about the evaluation of possible
technologies for realizing these components.

5.1 Service Layer

This section describes the service layer which encapsulates the database
access. In order to choose a proper technology for realizing the service layer,
it is necessary to define its technical requirements. The following section
gives an overview of these requirements, which were defined by OMICRON.

One important aspect is the compatibility with the Microsoft environment
and also the currently used database management system, which is Mi-
crosoft SQL-Server. Since the database management system is running in a
Microsoft environment, it is likely that the customer also wants the database
access layer running in the same environment or even on the same ma-
chine. Therefore, the service layer needs to be compatible with Microsoft’s
operating system. As an optional requirement, OMICRON stated the code
reusability. For instance, some code modules for accessing the database can
be reused. Therefore, the database access layer needs to support the same
programming language as ADMO, which is C# .

There is one popular solution developed by Microsoft, which fits all those

16

5 Technical Evaluation

requirements. The framework is called Windows Communication Founda-
tion (WCF). Hence, the next section gives an overview on WCF and also a
detailed evaluation report on this framework.

WCF Evaluation

WCF is a framework for developing services running in a Windows envi-
ronment. It is part of the .NET framework and therefore, it can only be
hosted on a Windows platform. The general purpose of a WCF service is to
expose messages between a client and a service by using common transport
protocols like HTTP, TCP ,... 1

Architecture This first paragraph describes the architecture of WCF, which
consists of several layers. The following figure gives an overview of these
layers. Afterwards, a brief description of each layer is given. 2

1cf: Löwy, 2010, pp. 1,3
2cf: Microsoft, 2015j

17

5 Technical Evaluation

Figure 5.1: WCF Architecture. Source: Microsoft, 2015j

18

5 Technical Evaluation

Contracts layer - In order to consume a service the client and the service
need to define what type of data they are using. Therefore, WCF uses con-
tracts like the data contract or the message contract. The difference between
these contracts is that a data contract only defines the content of the message,
while the message contract can define the whole message format. The follow-
ing examples show a data contract and a message contract. The data contract
defines the Substation class which can be transferred between the service
and the client. The message contract defines the SubstationRequestMessage

which also contains the header field UserName.

//This annotation creates a data contract

[DataContract]

public class Substation

{

[DataMember]

public string Id { get; set; }

[DataMember]

public string Name { get; set; }

}

//This annotation creates a message contract for

// requesting a substation

[MessageContract]

public class SubstationRequestMessage

{

[MessageHeader ()]

public string UserName;

[MessageBodyMember ()]

public string Id;

}

19

5 Technical Evaluation

Another important contract is the service contract. The contract is defined
via an interface class and lists all methods that can be called by a client. An
example for such a service contract is shown below:

[ServiceContract]

public interface IService

{

[OperationContract]

IList <Substation > GetAllSubstations ();

}

Service runtime This layer contains several modules regarding the be-
haviour of the service at runtime. One important module is the error be-
haviour, which describes how the propagation of an error to the client is
handled. Restricted propagation is necessary, because exposing too many
error details to the client, could enable an attacker to use that data to
compromise the system.

Messaging The messaging channel contains several different channels,
which are responsible for handling messages. There are two different types
of channels - the protocol channel and the transport channel.
A protocol channel can be a Web Service Security (WS-Security) protocol3,
for instance. This protocol can be used, for example, for signing messages
to guarantee the authenticity of the sender.
A transport channel can be HTTP, for instance, and it defines the way
messages are delivered. Consequently, this channel is responsible for reading
and writing messages.

Activation and hosting A service needs to be executed. This can be done
either by implementing a self-hosted service or by using a hosted service.
The different hosting scenarios are described in more detail in chapter
”Implementation - Service Layer”.

3Microsoft, 2015h.

20

5 Technical Evaluation

Security Security is an important topic when developing WCF services.
When talking about security in terms of a WCF service, there are several
aspects like authentication, authorization and transfer security that should
be considered. This chapter covers these three security aspects by giving
a short description of each one of them and providing a brief evaluation
of implementing these aspects when using WCF. The information in this
paragraph and a more detailed description of the specific topics can be
found on the official Microsoft website4 and in the book ”Programming
WCF Services” 5.

Authentication Authentication describes the process when the client or
the service confirm their identity. When developing a service, a possible
requirement is to restrict access to a specific function. Therefore, the client
has to confirm his identity to execute this function. On the other hand,
when the client transfers sensitive data to the service, it is important that the
service confirms its identity to the client. A service authenticates itself by
using a certificate. WCF offers several authentication possibilities regarding
client authentication:

• No authentication - There is no authentication of clients.
• Windows authentication - The client uses his windows credentials for

authentication
• User name and password - The client provides a user name and

corresponding password
• Certificates - As an alternative to the user name and password ap-

proach, the client can also transmit a certificate
• Issue token - Service and client use a secure token service. The service

offers the client a token, which can be verified by the service.
• NTLM - This approach uses a challenge response protocol (only avail-

able with HTTP)

Authorization Talking about authorization means defining of what a user
is allowed to do. Therefore, the client has to be authenticated first. WCF

4Microsoft, 2015d.
5Löwy, 2010, p. 525

21

5 Technical Evaluation

supports the following approaches regarding authorization:

• Role-based authorization - A common method where the user’s role is
used for granting access to a function. A role can be based on Windows
groups, custom roles or ASP.NET roles.

• Identity-based authorization - The user credentials are used for autho-
rization. A typical use case for this method is to issue token authenti-
cation.

• Resource-based authorization - A WCF service is a resource, which is
secured by ACL (Windows Access Control Lists)

Transfer security The last security aspect is transfer security6, which de-
scribes the process to secure messages between the service and the client.
If messages are not secured when being transferred from the client to the
service, the whole process of authentication and authorization can be com-
promised. There are some security related targets that needs to be achieved
in regard to transfer security:

• Integrity - The messages should not be modified during transport.
• Confidentiality - The message can only be read by approved parties.
• Authentication - Only the trustworthy service is able to read the client’s

messages

The following approaches are offered by WCF to achieve these security
aspects:

• None - The transfer of the messages is being not secured.
• Transport security - Transport security relies on a low level of trans-

porting messages. The messages including the user authentication
information is encrypted with common transport protocols like Trans-
port Layer Security or Secure Socket Layer. These protocols provides
integrity, confidentiality and authentication since the whole commu-
nication is encrypted. The following figure illustrates the transport
security mode:

6Microsoft, 2015b.

22

5 Technical Evaluation

Figure 5.2: Transport Security. Source: Microsoft, 2015b

• Message security - Message security encrypts the messages, which
also includes the user credentials, by using an approach defined by
the WS-Security standard. The messages get encrypted at the client
and decrypted at the service. Therefore, the transfer security does
not rely on the transport layer. Since the messages get encrypted, this
approach achieves the security requirements for the same reason as
the transport security mode. The following figure illustrates message
security:

23

5 Technical Evaluation

Figure 5.3: Message Security. Source: Microsoft, 2015b

• Both - Uses message and transport security. May be an overkill for
some applications.

• Mixed - Uses transport security to achieve integrity, confidentiality
and authentication regarding the messages and message security to
secure the user’s credentials.

Hosting scenarios A WCF service needs to be hosted within a Microsoft
Windows environment in order to be usable. There are multiple possibilities
to host such a service. The following list presents several ways of hosting
WCF services 7:

• Internet Information Service (IIS)
• Self-Hosting
• Windows Activation Service (WAS)
• Windows Server AppFabric

7cf: Löwy, 2010, p. 11

24

5 Technical Evaluation

Internet Information Service This paragraph gives an overview on hosting
a WCF service using IIS8. For the following explanation it is presumed that
an IIS server is installed and that an IIS website is already set up for the
service. An IIS hosted WCF service can be created via a template project
offered by Visual Studio. When creating a project with this template, there
are two important files regarding the hosting process. The first one is a .svc

file, which contains the basic information about the code behind file and
the service class. The following line of code shows an example of a .svc

file, where the programming language, the debugging state and the service
class are defined:

<%@ ServiceHost Language="C#" Debug="true"

Service="Omicron.Service.AppWebService"%>

The second important file is a configuration file called Web.config. This file
can be used to define bindings of a service, for example HTTP or HTTPS, or
to define the version of the .NET framework. The following code extract
shows an example where the program state is set to debug mode and the
.NET framework version is defined:

<system.web >

<compilation debug="true" targetFramework="4.5.1" />

</system.web >

After the configuration of these two files and the implementation of the
service functionality is completed, the service is ready for IIS deployment.
In order to do that, Visual Studio offers an easy-to-use deployment wizard,
which allows the developer to define the deployment target. The following
figure shows an example of the deployment wizard that deploys the service
to http://server.omicron.at/AppWebService.svc:

8Microsoft, 2015a.

25

5 Technical Evaluation

Figure 5.4: Publish WCF service. Source: Screenshot Microsoft Visual Studio 2013

26

5 Technical Evaluation

Windows Process Activation Service (WAS) Another hosting approach
for WCF services is using Windows Process Activation Service9. Hosting
a service with IIS allows communication through HTTP or HTTPS, only.
However, WAS also allows non-HTTP transport protocols like TCP. The
main hosting configurations like the .svc file and the Web.config files are
also used when hosting a service by WAS. The following example 10 shows
how to implement a Windows service that hosts the service. The installation
process of a Windows service is not described in the example but can be
found on the official Microsoft website11.

class Program : ServiceBase

{

static void Main(string [] args)

{

ServiceBase.Run(new Program ());

}

protected override void OnStart(string [] args)

{

ServiceHost serviceHost =

new ServiceHost(typeof(HelloWorld));

serviceHost.AddServiceEndpoint(typeof(IHelloWorld),

new WSHttpBinding (), "");

serviceHost.Description.Behaviors.Add(

new ServiceMetadataBehavior {

HttpGetEnabled = true });

serviceHost.Open ();

}

}

Windows Server AppFabric Windows Server AppFabric is an extension
for improving WAS, because WAS is not optimized for hosting WCF services
like mentioned in the book ”Programming WCF Services” 12. The main pur-
pose of this extension is to offer more configuration possibilities regarding

9Microsoft, 2015e.
10cf: Microsoft, 2015c
11Microsoft, 2015c.
12Löwy, 2010, p. 20

27

5 Technical Evaluation

the hosting process. Windows Server AppFabric also offers features like
health monitoring and diagnostic functionality. A more detailed description
of Windows Server AppFabric and of other hosting scenarios can also be
found in the book ”Programming WCF Services”13.

Self-Hosting One of the main differences when using a self-hosted service
instead of an IIS or WAS hosted one, is that the developer has to create an in-
stance of the service in the software code. Both the IIS and WAS approaches
create this instance on their own, whenever a client makes a request. 14

Using a self-hosted service means that the developer has to create the host-
ing process first. Such a hosting process can be implemented by developing
a console application. The following code extract provides a short example
of using a console application to host a WCF service. A more detailed
example with explanation can be found on the Microsoft website15.

private static readonly Uri ServiceAddress =

new Uri("http :// localhost :1234/ HelloWorldService");

static void Main(string [] args)

{

try

{

ServiceHost serviceHost =

new ServiceHost(typeof(HelloWorldService),

ServiceAddress);

// Add endpoints to the service

serviceHost.AddServiceEndpoint(

typeof (IHelloWorldService),

new WSHttpBinding (), "");

// Add Metadata behaviour

serviceHost.Description.Behaviors.Add(

13Löwy, 2010.
14cf: Microsoft, 2015f
15Microsoft, 2015f.

28

5 Technical Evaluation

new ServiceMetadataBehavior {

HttpGetEnabled = true });

serviceHost.Open ();

}

catch (Exception)

{

Console.WriteLine(

"Error when starting service ..");

}

}

29

5 Technical Evaluation

5.2 Mobile App

This section provides an evaluation of several development technologies for
developing the mobile app, which replaces the pen and paper approach. As
part of this thesis, three popular app development technologies are evaluated
and discussed in detail. Those technologies are native development, hybrid
development and Xamarin. The evaluation comprises a brief overview of
each technology and an investigation report about the feasibility of the
evaluation criteria below. The main target operating system, which was
defined by OMICRON, is Android.

5.2.1 Evaluation Criteria

The evaluation of the three app types is based on several criteria, which are
necessary to achieve the requirements. One very important requirement is
the possibility to work offline, since many substations do not have internet
connectivity. Therefore, one evaluation criterion is to use the device’s inter-
nal database. Since the app needs to communicate with the service layer, an
additional criterion is the use of a REST service. In order to find an asset,
the tester has the possibility to scan its QR-Code. Hence, the app needs to
have access to the internal camera of the device.
An optional requirement defined by OMICRON is that the app can be used
on different platforms. Thus, another evaluation criterion is cross-platform
capability.

The list below gives an overview of the evaluation criteria:

1. Access device’s internal database (SQLite)
2. Access camera
3. Using a REST service
4. Cross-platform capability (optional)

30

5 Technical Evaluation

5.2.2 Native Development

Android is based on the Linux kernel and is developed by Google. It is
an operating system primarily used for mobile devices like tablets and
smartphones. Apps for the Android operating system are developed in
the Java programming language. Nowadays, Android is the most popular
operating system on mobile platforms 16. Its market share is 81.1% 17.

Architecture

The following figure illustrates the Android software stack with its five
layers:

Figure 5.5: Android software stack. Source: Google, 2015a

16cf: Google, 2015b
17cf: Statista, 2015

31

5 Technical Evaluation

At the bottom of the stack is the Linux kernel, which is responsible for low
level operations like memory management, process management or drivers.
Basically, the kernel is the abstraction between hardware and software.

The layer above is called ”Libraries”. Those libraries are written in C/C++
and can be used by developers of Android apps. One important library for
this thesis is the SQLite module, for instance.

The layer to the right of the library layer is called ”Android Runtime”18.
This layer transforms the byte code into native instructions.

The ”Application Framework” layer contains all the libraries that can di-
rectly be used with the App.

At the top of the stack are the applications itself. For instance, the already
installed applications from Google and also the self-developed apps.

Components

In order to develop an Android app, there are several necessary components
19.

Activity:
One main component is called ”Activity”. An activity represents a single
screen. The main purpose of an activity is to offer a user interface.

Services:
Other important components are services. A service is used to perform long
running tasks and therefore runs in the background. For example, a service
can be a task to synchronize the completed checklists of a substation.

Content providers:
The purpose of content providers is to handle app data. For instance, a

18Google, 2015e.
19cf: Google, 2015c

32

5 Technical Evaluation

content provider is responsible for storing data in an SQLite database.

Broadcast receivers:
When using an app, it is possible to receive broadcasts from the system. For
example, such broadcasts can be notifications concerning low energy or that
the screen has been turned off.

Evaluation Criteria

Access internal database The first evaluation criterion is the possibility to
access the internal database of the device. The software stack of Android
already comprises a library for accessing the SQLite database. Therefore,
when using native development it is possible to use this module for handling
database access. The following examples are taken from the official Android
website 20 and have been slightly modified. They provide an overview on
working with the device’s internal SQLite database.

First of all, the database scheme has to be determined. When using the
method of native developing, this can be done by creating contract classes.
The following example shows how to define the name and columns of a
table:

public final class SubstationContract {

public SubstationContract () { }

public static abstract class Substation implements

BaseColumns {

public static final String Table_Name =

"substations";

public static final String Column_Name_Id =

"substationId";

public static final String Column_Name_Name =

"Graz";

}

}

20cf: Google, 2015d

33

5 Technical Evaluation

After defining the contract class, the ”create” and ”delete” statements can
be determined as follows:

private static final String SQL_CREATE =

"CREATE TABLE " + Substation.Table_Name + " (" +

Substation.Column_Name_Id + " INTEGER PRIMARY KEY ," +

Substation.Column_Name_Name + " TEXT)";

private static final String SQL_DELETE =

"DROP TABLE IF EXISTS " + Substation.Table_Name;

The most important task is to set up the communication with the database.
To achieve this, it is recommended by Google to write a helper class for
each database. Android offers a set of APIs in the SQLiteOpenHelper class.
The following example shows such a helper class that implements the
SQLiteOpenHelper class.

public class SubstationDbHelper extends SQLiteOpenHelper {

public static final int Db_Version = 1;

public static final String Db_Name = "Substation.db";

public SubstationDbHelper(Context context) {

super(context , Db_Name , null , Db_Version);

}

public void onCreate(SQLiteDatabase db) {

db.execSQL(SQL_CREATE);

}

.....

}

In the example, the function onCreate() is overwritten and executed when
the database is created for the first time. The SQLiteOpenHelper class con-
tains functions like getWritableDatabase(), which can be used to get an
SQLiteDatabase- Object, or getReadableDatabase() to receive a read only
database object.

34

5 Technical Evaluation

Writing data to the database is now easily possible by instantiating the
helper class and inserting new rows in the database.

SubstationDbHelper helper =

new SubstationDbHelper(getContext ());

SQLiteDatabase db = helper.getWritableDatabase ();

//Map with values - column names are keys

ContentValues values = new ContentValues ();

values.put(Substation.Column_Name_Id , id);

values.put(Substation.Column_Name_Name , name);

long newRowId = db.insert(

Substation.Table_Name ,

values);

To read from the database, it is possible to use the query() method like in
the following example:

SQLiteDatabase db = helper.getReadableDatabase ();

String [] projection = {

Substation.Column_Name_Id ,

Substation.Column_Name_Name };

String sortOrder = Substation.Column_Name_Name + " DESC";

Cursor cursor = db.query(

Substation.Table_Name , //Table name

projection , // Columns

selection , // Columns for WHERE clause

selectionArgs , // Values for WHERE clause

null , //group rows?

null , // filter row groups?

sortOrder); //sort order

35

5 Technical Evaluation

Access camera The second evaluation criterion is about accessing the de-
vice’s camera. Since it is sufficient to just snap a picture, the already existing
camera app can be used instead of creating a new one. Android uses intents
for calling external apps and getting their results. An intent is used to start
an activity, which can also be part of another app.

The following example shows how to call the already existing camera
app and save the result, in this case the picture.

@Override

public void onCreate(Bundle savedInstanceState) {

.....

// first of all create an intent with existing camera app

Intent intent = new Intent(

MediaStore.ACTION_IMAGE_CAPTURE);

//get the directory to save the picture

Uri fileUri = getOutputMediaFileUri(MEDIA_TYPE_IMAGE);

//set filename for picture

intent.putExtra(MediaStore.EXTRA_OUTPUT , fileUri);

//start the activity in order to take a picture

startActivityForResult(intent ,

CAPTURE_IMAGE_ACTIVITY_REQUEST_CODE);

}

After the user finished taking a picture, the event onActivityResult() is
triggered and receives the taken picture.

36

5 Technical Evaluation

Calling a REST service Another important evaluation criterion is calling a
REST service. This can be done with the help of the class java.net.HttpURLConnection.
The following example shows how to call a REST address and get an input-
stream. For this evaluation the results have not been parsed.

public void LoadSubstations ()

{

URL restUrl = new URL(

"http :// exampleservice.omicron.at/GetAllSubstations");

HttpURLConnection connection =

(HttpURLConnection)restUrl.openConnection ();

InputStream stream =

new BufferedInputStream(connection.getInputStream ());

//here the stream should be parsed to business objects

.....

}

37

5 Technical Evaluation

5.2.3 Hybrid Development

This section describes hybrid app development and contains a detailed
evaluation. First of all, a brief introduction provides an overview of the
basics of hybrid apps 21. Then, a detailed analysis of the realization of the
evaluation criteria is given.

When talking about a hybrid app, the app is basically developed like
websites. In other words, developing hybrid apps means using a combi-
nation of web technologies like HTML, CSS and JavaScript. The apps are
called hybrid, because the so called ”WebView” is not directly hosted in
the browser, but within a native application. This aspect allows the app
to access the device’s internal hardware, which is not possible by using a
common browser. Another very important difference between a website and
a hybrid app is their distribution capability. A hybrid app can be distributed
via the official app store, while a website has to be hosted on a web server.
On the other side when comparing hybrid apps with native apps it is possi-
ble to share code across different platforms when using the hybrid approach.

As part of this thesis, a popular framework, called ”Apache Cordova”22 for
developing hybrid apps is evaluated. The following section describes the
framework and how it works 23.

Since Apache Cordova is a framework for hybrid app development it is a
combination of native app development technologies and web technologies.
Apache Cordova contains the following components:

1. Native application container
2. Core APIs
3. Additional tools

The native application container depends on the platform where the app is
executed. Its purpose is to render the whole app.

21cf: Bristowe, 2015

22Cordova, 2015.
23cf: Wargo, 2014

38

5 Technical Evaluation

The core libraries are part of the native application container, written in
Javascript and have access to the native device capabilities. Corresponding
to these libraries there are native implementations, which communicate
directly with the hardware. Currently, the official Apache Cordova website
lists the following APIs: Battery Status, Camera, Console, Contacts, De-
vice, Accelerometer, Device Orientation, Dialogs, FileSystem, File Transfer,
Geolocation, Globalization, InAppBrowser, Media, Media Capture, Net-
work Information, Splashscreen, Vibration, StatusBar, Whitelist and Legacy
Whitelist.

The additional tool set helps the developer with tasks like building na-
tive applications.

As stated on the Apache Cordova website24, the framework supports the
following platforms: Amazon Fire OS, Android, BlackBerry10, Firefox OS,
iOS, Ubuntu, Windows Phone 8, Windows and Tizen.
When developing a Cordova application, the first step is to create a web
application. After this task is completed, the web application has to be
packed into the native container before it can be distributed to the users.
The following illustration gives an overview on the process for building a
Cordova app.

24Cordova, 2015.

39

5 Technical Evaluation

Figure 5.6: Building a Cordova app. Source: Wargo, 2014

On the left hand, the web application side, are the components of the web
technologies like HTML, JavaScript and CSS files and the native applica-
tion source code files to access the native device APIs. When starting the
packaging process of the web application, the whole set of components gets
packed and installed into a native app container.

40

5 Technical Evaluation

Evaluation Criteria

Access internal database To get access to the internal SQLite database,
a third party plugin has to be used. Among other plugins, the website
http://ngcordova.com/docs/plugins/sqlite/ also contains the sqlite plu-
gin reference25. This plugin can easily be installed by executing the following
command and is compatible with Android, iOS and Windows Phone:

cordova plugin add

https://github.com/litehelpers/Cordova-sqlite-storage.git

The following example illustrates how to access the database and execute a,
SQL query.

module.controller("DatabaseController",

function($scope , $cordovaSQLite) {

var database = $cordovaSQLite.openDB(

{ name: "substation.db" });

$scope.execute = function () {

var query =

"SELECT Name FROM Substations WHERE Id = 1";

$cordovaSQLite.execute(database ,

query).then(function(result) {

... }, function(error) {

console.error("Error");

});

};

});

25Brody, 2015.

41

http://ngcordova.com/docs/plugins/sqlite/

5 Technical Evaluation

Access camera The camera access evaluation criterion can be fulfilled too
by using an additional plugin. Like the database plugin, this one also needs
to be installed via the following command:

cordova plugin add org.apache.cordova.camera

In order to take a picture the plugin provides a getPicture(...) function.
This is illustrated in the example below:

module.controller("CameraController",

function($scope , $cordovaCamera) {

document.addEventListener("deviceready", function () {

var options = {

quality: 40,

sourceType: Camera.PictureSourceType.CAMERA ,

destinationType: Camera.DestinationType.DATA_URL ,

....

};

$cordovaCamera.getPicture(options).then(

function(image){

var picture = document.getElementById("Photo");

picture.src = "data:image/jpeg;base64 ," + image;

}, function(error) {

}

);

},false);

}

42

5 Technical Evaluation

Call a REST service Since hybrid apps are mainly developed with Javascript

it is easily possible to create a REST call using the $.ajax() method. The
following example shows how to call a REST service and receive the result
in JSON-format:

$.ajax({

type: "GET",

dataType: "json",

url: "http :// exampleservice.omicron.at/GetAllSubstations",

success: successFunction ,

error: errorFunction

});

43

5 Technical Evaluation

5.2.4 Xamarin

This section describes the development of mobile apps with Xamarin. First,
an introduction on Xamarin 26 provides a basic overview on the product
and how it works. Then, the evaluation criteria are analysed and tested.

Xamarin is a company that offers an intuitive new product for developing
mobile apps. The key concept of Xamarin is the development of mobile apps
for iOS, Android and Windows Phone by using one common programming
language - C#.

Architecture To support the development for Android and iOS, Xamarin
offers two products: ”Xamarin.iOS” and ”Xamarin.Android”. Both products
are based on Mono.

Mono is an open source platform and based on the .NET framework. The
correlated .NET implementation is based on the ECMA standards for C#
and the Common Language Infrastructure. Mono comprises the following
components:

• C# Compiler
• Mono Runtime
• Base Class Library
• Mono Class Library

A more detailed description of these components can be found on the official
website.27

26cf: Xamarin, 2015c
27Mono, 2015.

44

5 Technical Evaluation

Cross platform - Code sharing Xamarin offers two options to share code
among different platforms (iOS, Android and Windows Phone): ”Shared
Projects” and ”Portable Class library” 28 29. Basically, each platform target
requires its own application project that references either as a shared project
or a portable class library. For instance, when developing an app for Android
and iOS, there is one specific project for each of these platforms and one
shared project. The shared project can be used by both platform specific
projects. The following illustration shows the architecture, which is used to
share code among the three different mobile platforms.

Figure 5.7: Architecture - Shared Code. Source: Xamarin, 2015b

28cf: Xamarin, 2015b
29cf: Hermes, 2015, p. 367

45

5 Technical Evaluation

Shared Projects One way to share code across different platforms like
iOS, Android and Windows Phone is to use the shared project approach. 30

The following illustration gives an overview on the architecture of shared
projects. The most important aspect on this approach is that each platform-
specific project includes the shared project. This means, when compiling the
platform-specific project, the shared projects are directly compiled within it.
This behavior is illustrated in the picture below. It shows that the shared
project is also part of each of the individual platform application projects.

30cf: Hermes, 2015, p. 382

46

5 Technical Evaluation

Fi
gu

re
5

.8
:S

ha
re

d
Pr

oj
ec

t.
So

ur
ce

:X
am

ar
in

,2
0

1
5

b

47

5 Technical Evaluation

There are some benefits, but also disadvantages when using shared projects.
One benefit is that the shared code can also contain platform-specific code by
using compiler directives, for instance, #if __ANDROID__. A disadvantage
is that a shared project does not produce an output assembly since it is
compiled directly within the platform-specific application project.

48

5 Technical Evaluation

Portable Class Library Another approach for sharing code across different
platforms is the use of portable class libraries 31. These libraries define the
supported target platform, because each of the platforms contains different
base class libraries. This means, the set of base class libraries for targeting
Android and iOS does only contain libraries that are available on both
platforms. It is possible to define a combination of the supported platforms.

The main difference between shared projects and portable class libraries is
that portable class libraries produces their own DLLs when the projects are
built. The following illustration gives an overview on the architecture for
using portable class libraries among different platforms:

Figure 5.9: Portable class library. Source: Xamarin, 2015b

When the portable class library targets all three platforms, it can be refer-
enced in the respective application project. There are also some advantages
and disadvantages when using this approach. One main advantage is that

31cf: Hermes, 2015, p. 373

49

5 Technical Evaluation

when the code in the portable class library is refactored, also the corre-
sponding references are updated. A disadvantage is that, depending on the
selected platforms, only the base class libraries are available.

Xamarin Forms Xamarin offers a toolkit called Xamarin Forms 32 33, for
code reusability across iOS, Android and Windows Phone. With this toolkit
it is possible to share user interfaces across these platforms. A special key
feature of this framework is that the rendering process of the user interface
uses native controls for the corresponding platform. Hence, it is possible to
share user interface code and still get a native looking app.

Xamarin Forms offers two possibilities for creating user interfaces. It is
possible to define and structure the whole user interface either with source
code or by using XAML (Extensible Application Markup Language). XAML
was developed by Microsoft and can be used to define a user interface. The
following illustration shows an example of Xamarin Forms running on iOS,
Android and Windows Phone:

32cf: Xamarin, 2015a
33cf: Hermes, 2015, p. 368

50

5 Technical Evaluation

Figure 5.10: Xamarin Forms. Source: Xamarin, 2015a

51

5 Technical Evaluation

Evaluation Criteria

Access internal database To get access to the internal sqlite database of
the device, it is necessary to use an additional third party tool. Krueger
Systems, Inc. developed this tool, which is available on https://github.

com/praeclarum/sqlite-net.

The first step is to create the database. This can be done via a simple
line of code:

var database = new SQLiteConnection(databasePath);

The parameter databasePath refers to the directory where the SQLite file is
stored. This path is different on each platform and can be defined by the
developer.

After creating the database, it is possible to insert items. The tool uses
ORM (Object Relational Mapping), which enables the developer to directly
store the object in the database instead of writing additional SQL statements.
To illustrate this workflow, the following example shows an object that is
stored in the database and afterwards read from the database. The first part
explains how to define an object:

public class Substation {

[PrimaryKey , AutoIncrement , Column("id")]

public int Id { get; set; }

[MaxLength (8)]

public string Name { get; set; }

}

The third party tool also supports annotations regarding the database. In
this example, an attribute is used for the primary key and to limit the length
of the name.

The next step is to create an object, to create a table for the substation
class and to store the object in the database:

var substation = new Substation ();

52

https://github.com/praeclarum/sqlite-net
https://github.com/praeclarum/sqlite-net

5 Technical Evaluation

substation.Name = "Boston";

var database = new SQLiteConnection(databasePath);

// create a table for the substation class

database.CreateTable <Substation >();

database.Insert(substation);

The next step is to get the stored substation from the database. There are
multiple methods of how to get an entry from the database. For instance, it
is possible to use sql queries for every database operation. The following
example shows a method to get an object from the database, when the
primary key is known:

var storedSubstation = database.Get <Substation >(1);

This call returns a substation object with the ID 1.

53

5 Technical Evaluation

Access camera Xamarin also enables the developer to access the internal
hardware of the device, such as the camera module. Since the camera access
differs when using another platform, this section is more platform-specific.
Due to the fact that the main target is Android, the following example shows
Xamarin code for accessing the camera within an Android application. In
this example, an already existing camera app is used, because it is not part
of this thesis to write an own implementation for the camera.

private void TakeAPicture(object sender ,

EventArgs eventArgs) {

Intent cameraApp =

new Intent(MediaStore.ActionImageCapture);

File picture =

new File(directory , "picture.jpeg");

intent.PutExtra(MediaStore.ExtraOutput ,

Uri.FromFile(picture));

StartActivityForResult(intent ,0);

}

Starting external activities is nearly the same as in native Android develop-
ment. The result is also captured by an event called OnActivityResult.

54

5 Technical Evaluation

Call a REST service Another important evaluation criterion is the capa-
bility to call REST services. Xamarin is able to use REST and also SOAP. In
order to use a REST service, an asynchronous task is created like shown in
the example below:

private async Task <JsonValue > GetAllSubstations () {

sting restUrl =

"http :// exampleservice.omicron.at/GetAllSubstations";

// define the request for the rest service

HttpWebRequest request =

(HttpWebRequest)HttpWebRequest.Create(new Uri(restUrl));

request.Method = "GET";

request.ContentType ="application/json";

using(WebResponse response = await

request.GetResponseAsync ())

{

using(Stream stream = response.GetResponseStream ())

{

return await Task.Run (() => JsonObject.Load(stream));

}

}

}

55

6 Comparison and Decision

This chapter presents a comparison between the different technologies
evaluated in the previous chapter. It focuses on mobile technologies since
there is no need for a comparison regarding the service layer.

6.1 Comparison

The previous chapter described the evaluation of native, hybrid and Xamarin
app development based on the necessary requirements. These previously
defined requirements are: access to the database, access to the camera and
using a REST service. An additional optional requirement, namely cross-
platform capability, is also mentioned.

All three technologies satisfy the defined requirements as already analysed
in the previous chapter. Hence, the comparison is not based on the technical
feasibility of the defined criteria, but on the details of the implementa-
tion itself. The following paragraphs describe similarities and differences
when implementing the defined requirements in all three development
approaches.

Access internal database The first evaluation criterion is the access to
the internal database. One big advantage of the native development ap-
proach compared to the others is that the software stack of Android already
contains the SQLite library for the communication with the database. By
choosing the hybrid or the Xamarin approach the developer has to involve
a third party library to meet this criterion.

56

6 Comparison and Decision

Another major difference is the implementation itself. The library used with
Xamarin offers the developer the possibility to use ORM (object-relational-
mapping) out of the box.

As a reminder, ORM enables the developer to create tables based on the
properties of a coded class. Hence, it is possible to read and write entire
objects to and from the database. In contrast, standard SQL queries need to
define the columns and their values within a query. One advantage of using
object relational mapping is that whenever the object is being changed, only
the related class needs to be adapted. When using SQL queries, all queries
that depend on the object need to be updated.

The libraries used in native or hybrid development do not support ORM
functionality out of the box.

Access camera The second evaluation criterion is access to the camera.
Basically, all three technologies are able to access the camera. Regarding this
criterion the native and the Xamarin approach are nearly identical. Both
of them already support camera access out of the box and both are using
”intents” to call the existing camera app for taking pictures. In contrast, the
hybrid approach requires an additional plugin to access the camera and to
take pictures.

57

6 Comparison and Decision

Consuming REST service The third evaluation criterion is the use of a
REST service. All three technologies basically support this criterion. The
native and the Xamarin approach are again nearly identical. Both are using
a library which offers the functionality for accessing the HTTP traffic and
for processing the corresponding stream. The hybrid approach is mainly
written in javascript and therefore basic ajax calls are straight forward.

Cross-platform capability (optional) An optional criterion is cross-platform
capability. Obviously, the native approach can not be used on different plat-
forms. Hence, each of the supported platforms has to be implemented in its
native coding language. In contrast the hybrid and the Xamarin technologies
are suitable for cross-platform usage.

6.2 Decision

The first criterion - access internal database - can be realised by all three
technologies, but only Xamarin supports ORM out of the box. This aspect is
important for the final decision because using ORM enables better mainte-
nance of the app and supports the developer when creating or modifying
the database.

The hybrid approach needs an additional plugin for accessing the cam-
era, therefore the preferred technology is either native or Xamarin, since
both of them are nearly identical regarding camera access.

The third criterion is the use of a REST service. This can easily be real-
ized by all three technologies and therefore, there is no preferred technology
regarding this criterion.

Also included in the decision is the optional criterion, the cross-platform
capability. Since OMICRON might want to run the app also on the iOS
platform at a later point of time, it is desirable to choose a technology
with which this is possible. Therefore, only the hybrid and the Xamarin
technologies qualify.

58

6 Comparison and Decision

In regard to the requirements, all three technologies could be used to
implement the app. However, the decision was made to use the Xamarin
technology. When comparing Xamarin to native development, there is no
Android functionality within the scope of this thesis, that can only be used
by its native implementation. In fact, Xamarin covers all necessary native
functionality and is additionally platform-independent.
The hybrid and the Xamarin technology are nearly equal regarding their
functionality. The decision to use Xamarin instead of the hybrid approach
is based on prototyping experience. It showed that Xamarin offers a more
comfortable programming environment, especially when considering that
OMICRON developers are far more familiar with the .NET programming
language. Therefore the proper choice is Xamarin.

59

7 Screen Design

The first task when implementing a mobile app is to create the screen design.
The process, that leads to the final design of the app follows three different
steps:

1. Flowchart
2. Scribble
3. Wireframe + Style guide

In the following paragraphs, these three steps are described in regard to
creating the screen design for one of the features of the app: the creation of
a new inspection event.

Flowchart First, a flowchart is drawn to visualize the workflow for creating
a new inspection event. Basically, the flowchart defines what the user needs
to do in order to create such an event 1. The following list gives an overview
of the necessary steps:

1. Select a template.
2. Fill out the checklist.
3. Enter the name of the checklist.
4. Need to create another checklist?

a) Yes: Go back to 1).
b) No: Continue.

5. Save the inspection event.

1cf: Jacobsen, 2014, p. 109

60

7 Screen Design

Figure 7.1: Flowchart. Source: Own representation

61

7 Screen Design

Scribble When the flowchart is done, the next step is to create a scribble.
Basically, a scribble can be created with minor effort by using pen and paper.
It is useful to get a better overview of a specific page of the app and its
components.2

The following figure illustrates a scribble based on one step of the flowchart:

2cf: Jacobsen, 2014, p. 150

62

7 Screen Design

Fi
gu

re
7

.2
:S

cr
ib

bl
e.

So
ur

ce
:O

w
n

re
pr

es
en

ta
ti

on

63

7 Screen Design

Wireframe At this point, the illustrated workflow can be verified by the
customer. The next step is to create a more detailed illustration called
wireframe. It visualizes the components of the elements of the app in a more
precise way. However, the final position and design definitions are not part
of a wireframe 3. The following picture shows the wireframe corresponding
to the requirements, the flowchart and the scribble:

3cf: Jacobsen, 2014, p. 151

64

7 Screen Design

Figure 7.3: Wireframe. Source: Own representation
65

7 Screen Design

Style guide The last step to get the final design of the app is to apply the
style guide on the wireframe. The style guide describes the basic design of
the user interface 4. The style guide was defined by OMICRON in order to
get a similar graphical user interface across all offered software applications.
The reason for this is that the software applications should immediately be
recognizable as OMICRON products. Therefore, the style guide provides
recommendations on how to design buttons, screen layouts and many other
design-related elements.

4cf: Jacobsen, 2014, p. 322

66

8 Implementation of Service Layer

One of the most interesting topics regarding the implementation of the
service layer is code modularization. As already mentioned, there are sev-
eral different hosting scenarios that can be used to offer a service interface.
Choosing the appropriate code modularization is essential when code ought
to be shared between the different hosting scenarios. This chapter gives an
overview on the service modules and, in particular, on their dependencies.

The most important code modules are:

• ADMO Core
• Host services
• Service implementation

ADMO Core This module contains the reused code parts of the ADMO
client such as the repositories that are responsible for communicating with
the database. Basically, the whole data procurement process is implemented
within this module. The common interface between the ADMO Core module
and the service implementation is the domain object that is defined in the
ADMO Core module. Every time the service implementation requests data
from the database, the ADMO Core module collects that data and returns
the corresponding domain objects. When new data is stored in the database,
the service implementation transfers the new data via these domain objects
to the ADMO Core module.

Service implementation Unlike the projects that are part of the host ser-
vices module, the service implementation can be shared between different
hosting scenarios. The main purpose of this module is to implement the

67

8 Implementation of Service Layer

service contract. This is usually done by only one single class. This class can
reference other modularized implementation classes such as the location- or
the asset-related implementation.

Host services As described in the Technical Evaluation chapter, a WCF
service can be hosted by multiple different hosting approaches. The purpose
of the host service module is to serve as a storage container for all neces-
sary hosting specific projects. OMICRON already runs an IIS web server
and therefore, the first task was to implement a WCF service that can be
deployed to this server. Another reason for using IIS is that OMICRON
wants to offer their customers a sample database hosted on Azure Cloud.
The Web App hosting approach of Azure Cloud is the most inexpensive
one and therefore, an IIS hosted service is needed. In respect to the multiple
hosting approaches, the service implementation itself is decoupled from
the hosting-dependent project. The advantage of this is that less work is
involved in order to provide a different hosting option. In case of the imple-
mented IIS hosting scenario the code-behind file of the .svc file is deleted
and another shared implementation class is referenced.

The following figure illustrates the dependencies between these modules
and shows the interfaces to the client and the database. It is apparent that
the host service only needs to know the service implementation. The gap
between the database and the service implementation is filled by the ADMO
Core module. Therefore, whenever a client requests data, all modules are
accessed. When calling the service, the host module gets involved. This
module then runs the related implementation, which gathers the data by
using the ADMO Core module. Another aspect that is visualized by the
figure below is the already mentioned multi-tier architecture.

68

8 Implementation of Service Layer

Figure 8.1: Service code modularization. Source: Own representation

69

9 Implementation of Mobile App

This chapter presents a few selected topics regarding the implementation
of the mobile app. The first topic is about code modularization, especially
about sharing code across different platforms. Then, a basic explanation and
some implementation details about a pattern called Inversion of Control
are given. Another pattern, which is also part of this chapter, is called
Model-View-ViewModel . The last section of this chapter focuses on data
persistence and the synchronization between app and service layer.

9.1 Code Modularization

Basically, the app can be grouped into two different modules. One module
contains all platform-specific projects, whereas the other module contains
platform-independent Xamarin.Forms projects. The latter one can be refer-
enced by all platform-specific projects.

The interaction between these two modules can easily be explained. Each
platform needs some kind of start-up project, which contains all code that
is necessary to start the app. When using Android, this start-up project
contains the MainActivity. These platform-dependent projects can refer-
ence the shared Xamarin.Forms projects that contain platform-independent
code and the user interface implementation. Xamarin offers the possibility
to write most of the code platform-independently. Therefore the start up
project has to load a Xamarin.Form application. The following code extract
shows an example where the Xamarin.Form application is loaded by an
Android start up project:

70

9 Implementation of Mobile App

[Activity]

public class MainActivity: FormsApplicationActivity

{

// OnCreate of Android ’s main activity loads

// Xamarin.Forms application

protected override void OnCreate(Bundle bundle)

{

Xamarin.Forms.Forms.Init(this ,bundle);

LoadApplication(new AppController ());

}

}

// Xamarin.Forms AppController for starting the app

public class AppController : Xamarin.Forms.Application

{

public AppController ()

{

MainPage = new HomeScreen ();

}

}

However, some functionality, such as native hardware access, has to be im-
plemented independently for each platform. Therefore, the Xamarin.Forms
part defines a shared interface, which is implemented for each platform. An
example for such a platform-specific implementation is starting the camera.
The Xamarin.Forms module defines the ICameraService interface, which is
implemented by an Android-specific class called CameraService:

71

9 Implementation of Mobile App

public interface ICameraService

{

void StartCamera(Action <byte[]> callback);

}

public class CameraService : ICameraService

{

// returns the picture as byte[]

public void StartCamera(Action <byte[]> callback)

{

Intent intent =

new Intent(MediaStore.ActionImageCapture);

Java.IO.File file =

new Java.IO.File(tempDirectory , fileName);

intent.PutExtra(mediaStore.ExtraOutput ,

Uri.FromFile(file));

((Activity)Forms.Context).

StartActivityForResult(intent ,1);

}

}

In order to implement this interface correctly, Xamarin offers a class called
DependencyService. This enables the developer to get the right implementa-
tion of the corresponding platform. Before using this service the implemen-
tation itself has to be registered on each platform. To do this the developer
needs to add the following line to the AssemblyInfo.cs file:

[assembly: Dependency(typeof(CameraService))]

Then, the right instance can be resolved with the following syntax:

ICameraService cameraService =

DependencyService.Get <ICameraService >();

72

9 Implementation of Mobile App

9.2 Inversion of Control - IoC

Inversion of Control 1 is a pattern to achieve a loosely coupled software
system and better testability. The basic principle of this pattern can be
described by a famous Hollywood quotation: ”Do not call us, we will call
you”. This means, when the Inversion of Control pattern is not used, the
usual way to get dependencies is to instantiate their specific implementation.
The following example shows two classes and how the SubstationManager

class instantiates a Service class.

public class SubstationManager

{

public SubstationManager ()

{

Service service = new Service ();

}

}

By using this approach, the SubstationManager class depends directly on
the Service class.
Inversion of Control uses an additional container, which manages the spe-
cific implementations of the registered interfaces. This means, the container
is able to decide during runtime which implementation should be used. In
order to realize this pattern, it is necessary to use interfaces for abstracting
the implementations. One common realization of Inversion of Control is
called Dependency Injection. It is part of this thesis and therefore, described
in more detail.
Dependency Injection is used to inject the necessary dependencies into
the particular constructor. An advantage of using such a pattern is better
testability, for instance. When testing a class that gets all dependencies
injected, it is easy to create a mock-up (simulation of a class) for each of
these dependencies. On the other hand, when the dependency gets resolved
by instantiating the specific implementation, it is not possible to create a
mock-up for this instance. The following example shows how Inversion of
Control decouples the SubstationManager class and the Service class by

1cf: ITWissen, 2015

73

9 Implementation of Mobile App

using dependency injection. The IService parameter is the interface of the
Service class.

public interface IService

{

IList <Substation > GetAllSubstations ();

}

public class SubstationManager

{

public SubstationManager(IService service)

{

IList <Substation > substations =

service.GetAllSubstations ();

}

}

The implementation shown above does not have any dependencies in regard
to the specific implementation of the service class any more. Therefore,
the container decides which implementation is resolved at runtime. The
following paragraph gives a brief overview of a framework that is used to
realize IoC in the implementation part of the app.

AutoFac AutoFac 2 is an IoC Framework for Xamarin. It offers the devel-
oper multiple ways of realizing the IoC pattern. When starting the app, all
necessary modules have to be registered at the container.

ContainerBuilder containerBuilder = new ContainerBuilder ();

containerBuilder.RegisterType <Service >.As <IService >();

IContainer appContainer = containerBuilder.Build ();

The example above illustrates how to register a Service-specific class as an
interface called IService. Then, it is possible to resolve a Service imple-
mentation just by knowing the interface.

IService service = appContainer.Resolve <IService >();

2cf: Autofac, 2015

74

9 Implementation of Mobile App

9.3 MVVM - ModelViewViewModel

This section is about the Model-View-ViewModel architectural pattern. The
pattern itself consists of three components: the view, the model and the
view model. The basic idea of this pattern is to separate the user interface
(View) from the domain (Model) by using an additional layer, called the
ViewModel. The following figure illustrates the relations between these
components and their interactions. Afterwards, a more detailed description
of this pattern is given 3.

Figure 9.1: Model-View-ViewModel Pattern. Source: Microsoft, 2015g

Model The model represents the domain object. Basically, the model con-
tains the information about an object. For instance, a model for the domain
object Substation can contain properties like: Substation name, address,
city, postal code,...

3cf: Microsoft, 2015g

75

9 Implementation of Mobile App

View The view represents the user interface for interacting with the user
and displaying all necessary information. Typically, each view is related to
a specific view model. A more detailed description of how to create views
is given in the paragraph ”User Interface”.

View model The view model is responsible for connecting all three compo-
nents like shown in the figure above. One responsibility of the view model is
to update the model every time when data is changed. In addition, the view
model is responsible to bring the data of the model to the view. Therefore,
the view defines view elements with data bindings. Such bindings are used
to connect the content of the view element to a property that is defined in
the view model. This property typically consists of data from the model.
Handling the behaviour of data bindings is similar to handling interactions
with the user. The most popular example for this is the use of a button. The
view is responsible for defining the look of the button. Additionally, the
view defines the command that is executed whenever the button is pushed.
The implementation of this command is done in the view model.
The figure above also shows the notification mechanisms. They are used
to notify the relevant component in case of changes. Therefore, when a
property of the view model is changed, the corresponding view element is
updated accordingly. It is not necessary to render the whole view again.

9.4 User Interface

When using Xamarin, a View is called Page and represents a single page
of the app. A page can comprise several view elements to display data or
interact with the user. Xamarin.Forms supports two different methods of
designing a page. One possibility is to use code only when the whole page
and its components are defined in C# code. Another approach is XAML.

XAML (Extensible Application Markup Language) 4 is developed by Mi-
4cf: Microsoft, 2015i

76

9 Implementation of Mobile App

crosoft and based on a markup language called XML. Its purpose is to
visualize the application and therefore, to define the page’s components.
The following example shows how to define a label with XAML:

<Label Text="Substation Name:"

VerticalOptions="Center"

... />

In contrast, the same example can also be implemented with the code-only
approach:

Content = new Label {

VerticalOptions = LayoutOptions.Center;

Text = "Substation Name:";

}

For the implementation of the app, the decision was made to use XAML
instead of code-only pages. One reason for this decision is the better read-
ability of XAML files. Furthermore, ADMO also uses XAML for defining
the user interface. Thus, already existing knowledge can be used.

ViewModel First There are two commonly methods to realize the naviga-
tion in an MVVM project: ”View-First” and ”ViewModel-First”. The obvious
difference between these two approaches is that either the view or the view
model is called first. One main advantage of calling the view model first
is that this makes it possible to directly pass parameters from one page to
another. Let us assume that the user wants to navigate from page A to page
B. When using the ”View-First” approach there is no way to directly pass a
parameter to another view. However, when the navigation is done via view
models, it is of course possible to pass parameters. For instance, this can be
done directly via the constructor. Additional examples can be found on the
referenced website5.

By default, Xamarin uses the ”View-First” approach. In order to use the
”ViewModel-First” method, the following components need to be imple-
mented:

5András, 2015.

77

9 Implementation of Mobile App

• Page factory
• Navigation service
• Registry

The first component is the page factory. This factory is responsible for
storing information, about which view model is related to which page. This
information is stored in a dictionary. When all pages and view models are
registered, the page factory is able to deliver the page corresponding to the
view model. The following code extract shows this resolving-functionality.
The property called viewModelInstanceMap, is the dictionary containing the
registered view models and views. The binding between the page and the
view model is also done by using the resolving function.

public Page Resolve <TViewModel >(TViewModel viewModel)

{

if(viewModelInstanceMap.ContainsKey(typeof(TViewModel)))

{

return viewModelInstanceMap[typeof(TViewModel)];

}

var pageType = viewModelMap[typeof(TViewModel)];

Page page = Activator.CreateInstance(pageType) as Page;

page.BindingContext = viewModel;

return page;

}

When starting the app, one of the initialization tasks is to register the view
models and views. The following code extract illustrates the initialization
function of the page factory that registers the inspection view model and
the related inspection page:

internal static IPageFactory InitializePageFactory ()

{

IPageFactory pageFactory = new PageFactory ();

pageFactory.Register <IInspectionViewModel ,

InsepctionPage >();

....

return pageFactory;

}

78

9 Implementation of Mobile App

The last step is to set up the navigation between pages. For that, an ad-
ditional navigation service is used. The navigation is realized by using a
navigation stack. To display a new page, the page has to be pushed to the
top of the stack. When navigating backwards, the page is popped from the
stack. The navigation service implements these push and pop functions and
contains the reference to the page factory.

public async Task <IViewModel > PopAsync ()

{

//pops the page from the top of the navigation stack

Page page = await navigationPage.PopAsync ();

// returns the view model of the page

return page.BindingContext as IViewModel;

}

public async Task <TViewModel > PushAsync <TViewModel >(

TViewModel viewModel)

{

Page page = pageFactory.Resolve(viewModel);

//Push the page to the top of the stack

await navigationPage.PushAsync(page);

return viewModel;

}

The example above shows the push and pop function of the navigation
service. The developer only needs to know the view model of the new page.
By passing the view model to the PushAsync method the corresponding
page is resolved by the page factory and pushed to the top of the stack.
The next example focuses on the navigation to the inspection page. The
first step is to get an instance of the view model. For this, the navigation
service contains the function PrepareViewModel, which resolves the specific
implementation for the given interface. This function is necessary because
only the navigation service contains the IoC-container. This means, the
developer gets an instance of the given interface of the view model and can
continue with loading the data to the view model. After the view model
preparation is finished, it is pushed to the navigation stack.

79

9 Implementation of Mobile App

IInspectionViewModel viewModel =

navigationService.PrepareViewModel <IInspectionViewModel >();

viewModel.LoadDetails(selectedAssedId , currentLocationId);

navigationService.PushAsync(viewModel);

80

9 Implementation of Mobile App

9.5 Data Consistency and Synchronization

Since the mobile app implementation needs to store a lot of data locally and
to synchronize new inspection events with the service layer, this chapter de-
scribes the implementation details of data consistency and synchronization.

For storing data on the device, an SQLite database is used. Both, Android
and iOS support this type of database and provide access to this module.
The implementation of the platform specific database access is done via
a shared interface and the DependencyService class. The Android specific
implementation can be achieved with the following code extract:

public class DatabaseService : IDatabaseService

{

public SQLiteConnection GetConnection ()

{

string folder =

Environment.GetExternalStoragePublicDirectory(

Environment.DirectoryDownloads).Path;

string databasePath =

Path.Combine(folder ,"ADMODatabase.db3");

return new SQLiteConnection(databasePath);

}

}

When using the SQLiteConnection, which is returned by the DatabaseService
it is possible to query data from the database or to manipulate it. Since the
SQLite.Net component supports ORM, it is possible to define the database
scheme by objects as described in the Technical Evaluation chapter.

Synchronization Whenever a tester has completed an inspection event, it is
possible to synchronize this inspection event, including all of its attachments,
with the service layer. When the synchronization process is finished, the

81

9 Implementation of Mobile App

inspection event is available within the ADMO client. The synchronization
process performs the following steps:

1. Delete tables on the local database.
2. Retrieve all data from the service layer.
3. Store these data in the local database.
4. Synchronize finished inspections.
5. Delete synchronized inspections.

First, the synchronization process deletes everything on the local database
except the inspection events and their attachments. Then, the new data of
the service layer is stored locally. The last step is to upload the completed
inspection events, including their attachments to the service and to delete
them afterwards. This process was chosen, because only new data gets
stored in the productive database and therefore, no conflicts can appear.

82

10 Continuous Integration and
Testing

One very important task when developing software is testing. This chapter
presents a developing process called ”Continuous Integration” (CI) and also
some details about the testing strategy of ADMO Inspect.

Continuous Integration Martin Fowler describes Continuous Integration
in the following way:1

Continuous Integration is a software development practice
where members of a team integrate their work frequently, usu-
ally each person integrates at least daily - leading to multiple
integrations per day. Each integration is verified by an automated
build (including test) to detect integration errors as quickly as
possible. ...

When realizing CI, two components are necessary: an automated build
infrastructure and a set of tests. Automated builds means that whenever
a developer makes changes to the source code, the tests to check whether
the changes affect the correct behaviour of the application are executed
automatically. The following paragraph describes how such an infrastructure
was used during the implementation of ADMO Inspect. Afterwards, a
detailed overview of the testing strategy is given.

1Fowler, 2015.

83

10 Continuous Integration and Testing

Build infrastructure In order to support automated builds, OMICRON
uses the (TFS) Team Foundation Server approach from Microsoft. TFS also
provides a version control system, which manages the changes of the source
code. Each software project can comprise several build definitions, with
which it is possible to parameterize the build. A build parameter can be
the trigger for the build, for instance. When using CI, TFS already offers a
suitable build trigger as shown in the figure below:

Figure 10.1: TFS-Build configuration. Source: Screenshot Microsoft Visual Studio 2013

For a better understanding of the build process at OMICRON, the following
example is given. A developer adds a new functionality to a software that
is managed by TFS. To check if the new functionality is working properly,
the developer also writes some tests for this functionality. After everything
is implemented, the changes are checked in to the version control system.
Whenever a check-in is done the trigger of the build definition, which is
configured as ”Continuous Integration” build, is executed. This means,
the whole software is being built and the tests that are defined in the
build definition are executed. The main purpose of the last step is to check
whether a new functionality leads to any unwanted behaviour of any other

84

10 Continuous Integration and Testing

component of the software.

Testing strategy Testing is necessary to ensure good code quality. The
testing strategy that was chosen for the mobile app is based on a suggestion
mentioned in the book ”Agile Testing” 2. In this book, the authors use a
test automation pyramid, which was introduced by Mike Cohn3. For the
scope of this thesis, a slightly modified version of the pyramid was used.
The used testing pyramid is shown in the following figure:

Figure 10.2: Testing pyramid. Source: In dependence on Lisa Crispin, 2009, p. 277

The difference between the used version and the version described in the
book is the middle tier. While the authors of the book use a more abstract

2cf: Lisa Crispin, 2009, p. 276

3Cohn, 2015.

85

10 Continuous Integration and Testing

category called ”Acceptance Tests” as the middle-tier layer, this thesis fo-
cuses only on a part of this abstraction called ”Integration Tests”.

The main purpose of this pyramid is to visualize the proportion between
the amounts of tests for each test category. In respect to this pyramid, most
of the tests are unit test, and the least are UI tests. All three test categories
that are shown in the pyramid are explained in more detail in the following
paragraphs.

Unit test A unit test is the simplest of all three test types. Its purpose is
to test a single unit and nothing more. The main advantage of unit tests
compared to the other test types is that these tests can be written very
quickly and are usually much less complex than the others. Consequently,
it is desirable to write as much tests as possible for this testing level. The
following code extract shows a unit test of ADMO Inspect:

[TestMethod]

public void LoadNewInspection_ShouldSetLastSelectedAsset ()

{

// Arrange

InspectionViewModel viewModel = new InspectionViewModel(

navigationServiceMock , fileServiceMock ,);

// Act

viewModel.LoadNewInspection("123", "12354");

// Assert

Assert.AreEqual(lastSelectedAsset.GetAssetAsString (),

viewModel.CurrentAsset);

}

The test given in the example above checks if the property CurrentAsset is
set correctly when the method LoadNewInspection is called. An important
aspect about this test is that all parameters of the InspectionViewModel

constructors are mock-ups. This means, the test does not really depend on
these parameters and therefore, the real implementation does not affect the
test.

86

10 Continuous Integration and Testing

Integration test There are some parts of an application that cannot be
tested by a unit test. For instance, the database access. In this case, the
developer needs to write an integration test that combines several necessary
modules and checks their interactions. Another difference between a unit
test and an integration test is that an integration test can only be run on a
specified platform, whereas a unit test does not rely on any platform details.
The following code extract gives an example of an integration test for the
Android platform:

[Test]

public void GetSubstations_ShouldReturnSubstationList ()

{

// Arrange

ILocationRepository repository =

appContainer.Resolve <ILocationRepository >();

databaseConnection.InsertAll(substations);

// Act

IList <SubstationListItem > result =

repository.GetAllSubstationListItems (). ToList ();

// Assert

Assert.IsNotNull(result);

Assert.AreEqual(substations.Count , result.Count);

}

The test given above validates the ILocationRepository implementation
and that all substations in the database are returned. For this, the real
database is prepared with data. Then, the repository method is called and
the test checks if the quantity of substations stored in the database is equal
to the quantity returned by this method.

UI test The third test type that is used in ADMO Inspect is the user
interface test (UI test). This test simulates a user interaction in the application
and verifies the behaviour of the application. The infrastructure of a UI test
is a little bit different than the infrastructures of unit and integration tests.
A virtual machine was set up for the UI tests to enable easy maintenance
and because it is much easier to reset a virtual machine than a physical

87

10 Continuous Integration and Testing

computer. Every time the UI tests are executed, an Android emulator is
started. This Android emulator is used to run the app and to simulate a
few user interactions. The following line shows how to start the Android
emulator by using C# code:

string command = @"c:\android -sdk\tools\emulator.exe

-avd nexus9 -no -boot -anim -noaudio";

ProcessStartInfo startInfo =

new ProcessStartInfo("cmd", "/c " + command);

startInfo.RedirectStandardOutput = true;

startInfo.UseShellExecute = false;

startInfo.CreateNoWindow = hideWindow;

Process process = new Process { StartInfo = startInfo };

process.Start ();

After the emulator is finished, the boot process is complete and the TestMethod
is executed. The following code extract gives an example of a UI Test that
simulates a tap on the Inspection button:

[TestMethod]

public void InspectionButton_ShouldStartInspectionScreen ()

{

// Arrange

Func <AppQuery , AppQuery > InspectionButton =

c => c.Marked("InspectionButton");

// Act

app.Tap(InspectionButton);

// Assert

AppResult title = app.Query(element =>

element.Property("Text", "Inspection"));

Assert.IsNotNull(title);

}

88

10 Continuous Integration and Testing

The button can be found by the test because the property StyleId is assigned
to it in the Xaml file:

<Image

HorizontalOptions="Start"

StyleId="InspectionButton"

HeightRequest="250"

WidthRequest="250"

Source="inspectionButton.png">

<Image.GestureRecognizers >

<TapGestureRecognizer

Command="{Binding StartInspectionWorkflowCommand}" />

</Image.GestureRecognizers >

</Image >

89

11 Usability

The last part of this thesis is about the empirical evaluation of the app. The
developer of an application can only assess the behaviour of the application
from a technical point of view. Therefore, it is very important to test how
representative users experience the application. To evaluate the user experi-
ences it is very common to perform a usability test. This kind of test helps
to discover undetected problems and to gain a better understanding of the
user expectations.

11.1 Definitional Basics

First of all, some definitional basics are given. The following terms are
defined in the EN ISO 9271-210

1 standard.

Usability ”extend to which a system product or service can be used by
specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”

User ”person who interacts with the product”

Goal ”intended outcome”

1Standardization, 2015.

90

11 Usability

Effectiveness ”accuracy and completeness with which users achieve speci-
fied goals”

Efficiency ”resources expended in relation to the accuracy and complete-
ness with which users achieve goals”

Satisfaction ”freedom from discomfort and positive attitudes towards the
use of the product”

Context of use ”users, tasks, equipment (hardware, software and ma-
terials), and the physical and social environments in which a product is
used”

11.2 Usability Test Setup

This section gives an overview of the test setup that was used to perform
the usability test. In order to talk about the test process itself, a detailed
description of the test components involved is given. The selection of these
components and slight modifications were done in cooperation with Dr.
Jörn Walsdorf, usability engineer at OMICRON. This selection and the
modifications were necessary to obtain comparable cross-project results. The
full test can be found in the appendix.

Test candidates The following table gives an overview on the participants
that were identified for the test. Jakob Nielsen, a usability evangelist at
Nielsen Norma Group, showed that it is sufficient to test 5 candidates.
When testing more than 5 people, no other results than the already detected
problems will be obtained 2. The usability test of the app was performed
with an additional candidate to have a backup person if technical problems
occur. The following table lists a few details about the test candidates. The

2cf: Nielsen, 2000

91

11 Usability

selection of these candidates was based on their previous knowledge of
ADMO. Five of them were familiar with ADMO, only one of them was not.

Table 11.1: Test candidates

Test scenarios The usability test serves to find problems related to four
different real world scenarios. The core functionality of the app is to create
an inspection event for an asset. When creating an inspection event, it is
possible to attach a picture, a file from the file system, and a checklist based
on a predefined template. It is also possible to delete one of the attached
files. Based on these core functionalities, the test candidates had to perform
tasks in regard to four different test scenarios. As an example, the following
section describes one of the test scenarios, which is about taking a picture
and adding it to a new inspection event. The other scenarios can be found
in the appendix.

Introduction:
Please imagine the following situation: You are a tester of electrical compo-
nents working for an electricity provider. You are currently performing an
inspection of a voltage transformer which is located in the substation called
Paris. You are using the new ADMO Inspect app to do the inspection.

Task introduction:
You know that the voltage transformer is located in the substation called

92

11 Usability

Paris and its voltage level is 110 kV. The corresponding feeder is called “D”
and the serial number of the asset is h8h85g48. During your inspection you
notice that something at the voltage transformer is wrong. There are some
rusty parts which may affect the proper working of the asset. Of course, you
should document those noticeable problems.

Task:
Find the corresponding voltage transformer and start a new inspection. To
document the rusty parts during your inspection you take a picture of them.
Name the picture “Problem1”, finish the inspection and return to the start
screen.

Test observations While the test candidates are completing the different
test tasks, it is important to document any observations. An efficient way
to do this is the usage of a prepared documentation sheet, which lists all
necessary steps to complete a task. Such a subtask is, for instance, pressing
a specific button. These subtasks have different levels of severity that can be
ticked off on the list. The table below gives an overview of the used severity.
It is based on Rubin J., 2008, p. 261, but was slightly modified as agreed
with Dr. Jörn Walsdorf.

Table 11.2: Severities. Source: In dependence on Rubin J., 2008, p. 261

93

11 Usability

The documentation sheet for this test is based on the table above, but
the wording was slightly modified as agreed with Dr. Jörn Walsdorf.

The following table illustrates such a documentation sheet listing the core
task and a couple of subtasks:

Table 11.3: Test sheet. Source: Modified as agreed with Dr. Jörn Walsdorf

94

11 Usability

Questionnaire The questionnaire basically depends on a mix of the Iso-
Metrics questionnaire 3 and some suggestions mentioned in the book ”The
user is always right”4. One thing that was modified in regard to the Iso-
Metrics questionnaire is the scale. IsoMetrics uses a scale from 1 to 5. Since
OMICRON wants to get a tendency of the test candidate an odd-numbered
scale from 0 to 5 is used.

The main purpose of the questionnaire is to get additional feedback re-
garding usability from the test candidate. At the beginning of the usability
test, the candidate is asked questions like:

Figure 11.1: Questionnaire before the test. Source: In dependence on IsoMetrics, 2015 and
Steve Mulder, 2007

This kind of questions are used to get a better understanding of the experi-
ences the test candidate has already gained.

3cf: IsoMetrics, 2015

4Steve Mulder, 2007, p. 64.

95

11 Usability

There are also some additional questions that are asked after the test, such
as:

Figure 11.2: Questionnaire after the test. Source: In dependence on IsoMetrics, 2015 and
Steve Mulder, 2007

The full questionnaire can be found in the appendix.

96

11 Usability

11.3 Test Process

This section describes the test process in more detail. It gives an overview
on the field of application of the components mentioned above.

First, the test candidate is introduced to the test process and some facts
about the test itself. This includes a very short explanation of ADMO and
of the scope of application of the ADMO Inspect app. The candidate is also
told that it is a thinking aload test.

When doing a thinking aload test it is very important that the candidate
always says what he/she is currently thinking. Its not only about comment-
ing out each click, but also about telling possible expectation thoughts. 5

Another important point is that only the product is tested, but not the skills
of the test candidate. This should reduce the excitement of the candidate
and soften the not natural test situation. The last step of the introduction
part is to ask the specific questions of the questionnaire.
Afterwards, the test is started by talking about the first test scenario. While
the candidate is performing the tasks in regard to the given test scenario, all
relevant observations are being documented with the help of the documen-
tation sheet. After all test scenarios are completed, the final questions of the
questionnaire are asked.

This process is used for each test candidate. After the last test candidate has
completed the test, it is possible to start with the evaluation.

5cf: Nielsen, 2015

97

11 Usability

11.4 Evaluation Result

The last step of the usability test is to merge and evaluate the results. The
main purpose of this evaluation is to assess the level of criticality of all ob-
served problems. The problem with the highest criticality should be solved
as fast as possible.

First, the subtasks are summarized and the ticked severities are counted
like in the example below:

Table 11.4: Subtasks summary and severities

The example above shows the counted severities and in addition, all com-
ments of all test candidates. The next step is to calculate the level of criticality.
This can be done by using the following tables, which was modified by Dr.
Jörn Waldorf in dependence on Rubin 6.

Table 11.5: Frequency of occurrence and overview of severities. Source: Rubin J., 2008,
p. 262

6cf. Rubin J., 2008, p. 262

98

11 Usability

The level of criticality is calculated by adding up the value of Index A
and Index B. An example is shown in the subtask summary above (Figure
11.4). There are two users ”with serious problems”. Two users out of six are
approximately 33%. Therefore, 33% of the candidates are affected by this
problem. When looking up 33% in the first table, Index A is 2.
Then, the level of severity is looked up in the second table. The severity
level ”with serious problems” is rated as 3. Hence, Index B is 3.
The level of criticality is calculated by adding up Index A and Index B.
Therefore, the level of criticality of this subtask is 5.

Important to mention about this method is that the severity level ”no
problem” does not affect the level of criticality and therefore, is not part
of the calculation. Each subtask can have several levels of severity. It is
necessary to calculate the level of criticality for each of these severities levels.
The highest level of criticality of all severity levels is the final result for the
specific subtask. The full evaluation can also be found in the appendix.

99

11 Usability

11.5 Final Result

This section lists the final results including the observation comments. The
problem that occured most was how to return to the ADMO Inspect app
after creating a new checklist. The first step to create a checklist is to select
a template like in the figure below:

Figure 11.3: Template dialog. Source: Screenshot ADMO Inspect

As soon as the user selects a template, a third party app is started in order to
edit the checklist. After editing the template, the user needs to go back to the
app where it is possible to save the changes and create a new checklist. After
testing three people, it became clear that this behaviour is not acceptable
and needs to be changed. Therefore, an additional hint dialog was added
that provides a brief introduction on how to return to the app for the
test candidates. As soon as this dialog was introduced, two of the three
remaining test candidates did not have problems any more.

100

11 Usability

The following figure shows the additional dialog that appears after selecting
a template:

Figure 11.4: Hint dialog. Source: Screenshot ADMO Inspect

The level of criticality of this problem is 6, and the result is shown in
the figure below:

Table 11.6: Problem evaluation

101

11 Usability

The second problem that could be observed was to display all assets of a
substation. One reason for this problem was that the test candidates could
not find the Select button next to the respective substation. The following
figure illustrates the location tree:

Figure 11.5: Location tree. Source: Screenshot ADMO Inspect

The calculated level of criticality is 4. The following figure illustrates the
observation results of this subtask:

Table 11.7: Problem evaluation

102

11 Usability

The third problem is the least critical one and is basically a cosmetic problem
concerning the location button that is illustrated in the figure below:

Figure 11.6: Location button. Source: Screenshot ADMO Inspect

The location button shows a map of the world that includes different
location markers. One out of six test candidates thought that it is necessary
to activate the button by pressing the specific marker. The calculated level
of criticality is 3. The results are shown in the following figure:

Table 11.8: Problem evaluation

103

12 Summary and Outlook

This chapter gives a summary of each individual chapter of this thesis,
including their results. Finally, an outlook on further development plans for
ADMO Inspect is given.

12.1 Summary

Electricity providers have to ensure the proper functioning of the electrical
system in order to prevent blackouts. Hence, it is very important to regu-
larly perform testing and maintenance activities on all electrical components.
These activities are supported by modern software solutions, which provides
a reliable process to minimize possible failures. Nevertheless, there are still
problems that occur under special circumstances when the current software
solutions do not fully satisfy the needs of these special test scenarios. One
of the most relevant problems is that many testers are using an error-prone
pen and paper approach to document their test results. This kind of docu-
mentation is mainly done by using individual checklists for the respective
activity. When the testers have finished a test and completed the checklists,
they need to go back to their offices and enter all results into the existing
software system. A more detailed overview about the actual situation and a
description of the associated problems is given in the Introduction chapter.

One of the already mentioned software solutions that supports the tester
in the electrical field is developed by OMICRON and is called ADMO.
However, there are still some situations where this solution does not fully
satisfy the requirements to replace the error-prone pen and paper approach.
To provide an innovative solution that solves the problems associated to

104

12 Summary and Outlook

these special situations, it is necessary to analyse the already existing infras-
tructure of ADMO.
Chapter three focuses on this analysis and gives an overview on ADMO. It
is shown that the infrastructure comprises the ADMO client and a database
server. At the end of this chapter, the reader will have a better overview of
the existing application, its environment and the involved components.

Then, it is necessary to analyse the requirements that are needed to develop
an innovative solution called ADMO Inspect. There are two different kinds
of requirements. On the one hand there are the functional requirements that
are mainly relevant from the tester’s point of view and on the other hand
there are the non-functional requirements that are mainly relevant from the
technical point of view, especially in regard to the existing infrastructure.
Therefore, chapter four is divided according to these two kinds of require-
ments. The most important functional requirements for ADMO Inspect can
be described by three roughly defined scenarios: First of all, it is necessary
to provide an easy-to-use solution that supports working with checklists.
Additionally, it should be possible to work offline and to gain access to the
already existing asset data of ADMO. The non-functional requirements are
about combining the already existing infrastructure with ADMO Inspect.
One very important aspect in regard to this combination is that the new
solution should not be dependent on the release cycles of ADMO. This
means, when a new version of ADMO is released, the customers do not
have to update ADMO Inspect too. Thus, to achieve such an independence,
it is important to abstract the database.

Based on these requirements, the fifth chapter defines the technical compo-
nents of ADMO Inspect. One component of the new architecture is a mobile
app for tablets. The decision to create a mobile app is based on a detailed
analysis of the requirements. Furthermore, it is necessary to combine the
mobile app with the already existing system, and to decouple it from the
database and the ADMO release cycles. Consequentially, the component
introduced next is an additional service layer. In summary, the architecture
of ADMO Inspect comprises the three tiers - the existing database, an addi-
tional service layer, and a mobile app.

105

12 Summary and Outlook

Since there are many possibilities to implement these components, the next
step is to evaluate possible technologies. The technology used for realizing
the service layer is called Windows Communication Foundation (WCF). The
decision to use WCF is based on the requirements given by OMICRON,
such as the compatibility with Microsoft Windows and the possibility to
reuse existing C# code.
The second part of this chapter focuses on a detailed evaluation of the most
common technologies to realize a mobile app. The considered technologies
are native, hybrid and Xamarin development. Each section contains an
introduction on the respective technology and a detailed evaluation based
on predefined criteria. The purpose of this chapter is to gain better under-
standing of the possibilities that these technologies offer and to create the
basis for deciding which one should be used.

The seventh chapter discusses the evaluation results of the reviewed tech-
nologies. The first section contains a comparison between the three technolo-
gies that is based on the satisfaction of the evaluation criteria. The second
part of this chapter presents reasons for the decision which technology
will be used. Basically, all technologies can be used to satisfy the main
requirements. However, the decision was made to use Xamarin because it is
cross-platform compatible and supports the .NET programming language
that is far more familiar to OMICRON developers.

After analysing the requirements and taking the decision on which kind of
technology should be used, the next step is to plan the screen design. Chap-
ter eight gives a detailed description of the process that is used to create the
screen design. This process follows three steps: creating a flowchart, creating
a scribble, and finally creating the wireframe and applying the OMICRON
style guide to it. At the end of the chapter the reader has an overview on
how the screen design was created.

Then, it is time to start with the implementation. Chapter nine, which covers
the service layer, describes the code modularization that was used for the
implementation. The most important aspect of the modularization used is
that it supports the service implementation for different hosting scenarios.

106

12 Summary and Outlook

At the end of this chapter, the reader has a detailed overview on the struc-
ture of the service layer implementation.

The section about the implementation in chapter ten, explains how the
mobile app is realized and describes the most relevant implementation
aspects. The first part of the chapter is about code modularization, espe-
cially about sharing code between different platforms. Basically, the app
can be divided into two code categories: platform-specific and platform-
independent. Then, some important implementation strategies are discussed.
This discussion focuses on two patterns called Inversion of Control and
Model-View-ViewModel. The following section describes some implementa-
tion details concerning the user interface, for instance, the ViewModel-First
principle. The last section of this chapter deals with data consistency and
the synchronization process with the existing infrastructure.

After the part concerning implementation, chapter eleven explains a de-
velopment method called ”Continuous Integration” (CI) and some details
about the testing strategy of ADMO Inspect. The first part gives a brief
description of CI and its components. For realizing the CI process it is
necessary to use an automated build infrastructure, which is described in
a subchapter. The last part of this chapter shows the testing strategy of
the mobile app that is based on a common test automation pyramid. The
pyramid defines three types of tests: at the bottom are unit tests, followed
by integration tests, and at the top of the pyramid are UI tests. A detailed
description of these test types is also given in this chapter.

The last chapter of this thesis describes the evaluation of the app. Such an
evaluation can be carried out via usability tests and is necessary to find
out how representative users experience the app. The first section describes
the components involved in such tests: test candidates, test scenarios, test
observations, and a questionnaire. Furthermore a detailed overview on the
test process and the use of these components is given. In order to evaluate
the test results it is necessary to calculate the level of criticality of the
detected problems. This calculation is also described in this chapter. At the

107

12 Summary and Outlook

end of the chapter, the test results including the calculated level of criticality
are presented.

12.2 Outlook

This is the last topic of this thesis and gives an overview of the vision for
ADMO Inspect.

The first step will be to present ADMO Inspect to potential customers
in order to receive more feedback. This step is necessary to create a feature
list according to the customer’s requirements.

Additionally, the test results of the usability test will be addressed. The most
critical problem was the interaction with another app on the tablet when
creating a checklist. A solution that is already being discussed involves the
full integration of the checklists into the app and therefore, also into ADMO.

Within the scope of this thesis, only the Android operating system was
covered. At the beginning, however, a few first steps towards the iOS op-
erating system have already been made. Hence, a completely adapted iOS
version of the app will also be realized.

Regarding the synchronization mechanism, it is already planned to support
partial replication. This is a very important feature, because of the memory
restrictions on tablets. A possible solution for this problem would be to
synchronize preselected templates only.

This thesis provides a good basis for further expansions and improvements.
The implemented workflow for checklists is a first example of how to sup-
port testers in the electrical field. In regard to mobile computing, there is an
enormous potential for further innovative solutions that support the tester
in the field and the electricity provider to ensure the proper functioning of
the system.

108

Appendices

109

Bibliography

András (2015). AutoView – the Missing Link for a Good ViewModel First Ap-
proach. url: http://dotneteers.net/blogs/vbandi/archive/2014/
03/25/autoview-the-missing-link-for-a-good-viewmodel-first-

approach.aspx (cit. on p. 77).
Autofac (2015). Autofac. url: http://autofac.org/ (cit. on p. 74).
Bristowe, John (2015). What is a Hybrid Mobile App? url: http://developer.

telerik.com/featured/what-is-a-hybrid-mobile-app/ (cit. on p. 38).
Brody, Chris (2015). Cordova/PhoneGap sqlite storage adapter. url: https:

//github.com/litehelpers/Cordova-sqlite-storage (cit. on p. 41).
Cohn, Mike (2015). The Forgotten Layer of the Test Automation Pyramid. url:

https : / / www . mountaingoatsoftware . com / blog / the - forgotten -

layer-of-the-test-automation-pyramid (cit. on p. 85).
Cordova, Apache (2015). Apache Cordova. url: http://cordova.apache.org/

(cit. on pp. 38, 39).
Fowler, Martin (2015). Continuous Integration. url: http://www.martinfowler.

com/articles/continuousIntegration.html (cit. on p. 83).
Google (2015a). Android Anatomy and Physiology. url: http://androidteam.

googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf (cit.
on p. 31).

Google (2015b). Android, the world’s most popular mobile platform. url: http:
//developer.android.com/about/android.html (cit. on p. 31).

Google (2015c). Application Fundamentals. url: https://developer.android.
com/guide/components/fundamentals.html (cit. on p. 32).

Google (2015d). Application Fundamentals. url: https://developer.android.
com/guide/components/fundamentals.html (cit. on p. 33).

Google (2015e). ART and Dalvik. url: https : / / source . android . com /

devices/tech/dalvik/ (cit. on p. 32).
Henning Wolf Rini van Solingen, Eelco Rustenburg (2012). Die Kraft von

Scrum. First. Pearson (cit. on p. 10).

124

http://dotneteers.net/blogs/vbandi/archive/2014/03/25/autoview-the-missing-link-for-a-good-viewmodel-first-approach.aspx
http://dotneteers.net/blogs/vbandi/archive/2014/03/25/autoview-the-missing-link-for-a-good-viewmodel-first-approach.aspx
http://dotneteers.net/blogs/vbandi/archive/2014/03/25/autoview-the-missing-link-for-a-good-viewmodel-first-approach.aspx
http://autofac.org/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
http://developer.telerik.com/featured/what-is-a-hybrid-mobile-app/
https://github.com/litehelpers/Cordova-sqlite-storage
https://github.com/litehelpers/Cordova-sqlite-storage
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
https://www.mountaingoatsoftware.com/blog/the-forgotten-layer-of-the-test-automation-pyramid
http://cordova.apache.org/
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf
http://androidteam.googlecode.com/files/Anatomy-Physiology-of-an-Android.pdf
http://developer.android.com/about/android.html
http://developer.android.com/about/android.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://developer.android.com/guide/components/fundamentals.html
https://source.android.com/devices/tech/dalvik/
https://source.android.com/devices/tech/dalvik/

Bibliography

Hermes, Dan (2015). Xamarin Mobile Application Development. First. Apress
(cit. on pp. 45, 46, 49, 50).

history.com (2015). The Great Northeast Blackout. url: http://www.history.
com/this-day-in-history/the-great-northeast-blackout (cit. on
p. 1).

IsoMetrics (2015). Über den Fragebogen ’IsoMetrics’. url: http://www.isometrics.
uni-osnabrueck.de/qn.htm (cit. on pp. 95, 96).

ITWissen (2015). IoC (inversion of control). url: http://www.itwissen.info/
definition/lexikon/IoC-inversion-of-control-Umkehrung-des-

Kontrollflusses.html (cit. on p. 73).
Jacobsen, Jens (2014). Website-Konzeption, Erfolgreiche Websites planen, umset-

zen und betreiben. Seventh. Dpunkt (cit. on pp. 60, 62, 64, 66).
Lisa Crispin, Janet Gregory (2009). Agile Testing - A practical guide for testers

and agile teams. First. Addison-Wesley (cit. on p. 85).
Löwy, Juval (2010). Programming WCF Services. Third. O’Reilly (cit. on pp. 14,

17, 21, 24, 27, 28).
Microsoft (2015a). Authentication and Authorization in WCF Services. url:

https://msdn.microsoft.com/en-us/library/ff405740.aspx (cit. on
p. 25).

Microsoft (2015b). Chapter 7: Message and Transport Security. url: https:
//msdn.microsoft.com/en-us/library/ff648863.aspx (cit. on pp. 22–
24).

Microsoft (2015c). How to: Host a WCF Service in a Managed Windows Service.
url: https://msdn.microsoft.com/en-us/library/ms733069.aspx
(cit. on p. 27).

Microsoft (2015d). How to: Host a WCF Service in IIS. url: https://msdn.
microsoft.com/de-de/library/ms733766(v=vs.110).aspx (cit. on
p. 21).

Microsoft (2015e). How to: Host a WCF Service in WAS. url: https://msdn.
microsoft.com/en-us/library/ms733109(v=vs.110).aspx (cit. on
p. 27).

Microsoft (2015f). Self Hosting Windows Communication Foundation Services.
url: https://msdn.microsoft.com/en-us/library/ee939340.aspx
(cit. on p. 28).

Microsoft (2015g). The MVVM Pattern. url: https://msdn.microsoft.com/
en-us/library/hh848246.aspx (cit. on p. 75).

125

http://www.history.com/this-day-in-history/the-great-northeast-blackout
http://www.history.com/this-day-in-history/the-great-northeast-blackout
http://www.isometrics.uni-osnabrueck.de/qn.htm
http://www.isometrics.uni-osnabrueck.de/qn.htm
http://www.itwissen.info/definition/lexikon/IoC-inversion-of-control-Umkehrung-des-Kontrollflusses.html
http://www.itwissen.info/definition/lexikon/IoC-inversion-of-control-Umkehrung-des-Kontrollflusses.html
http://www.itwissen.info/definition/lexikon/IoC-inversion-of-control-Umkehrung-des-Kontrollflusses.html
https://msdn.microsoft.com/en-us/library/ff405740.aspx
https://msdn.microsoft.com/en-us/library/ff648863.aspx
https://msdn.microsoft.com/en-us/library/ff648863.aspx
https://msdn.microsoft.com/en-us/library/ms733069.aspx
https://msdn.microsoft.com/de-de/library/ms733766(v=vs.110).aspx
https://msdn.microsoft.com/de-de/library/ms733766(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms733109(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms733109(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee939340.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx

Bibliography

Microsoft (2015h). Understanding WS-Security. url: https://msdn.microsoft.
com/en-us/library/ms977327.aspx (cit. on p. 20).

Microsoft (2015i). Was ist XAML? url: https://msdn.microsoft.com/de-
de/library/cc295302.aspx (cit. on p. 76).

Microsoft (2015j). Windows Communication Foundation Architecture. url: https:
//msdn.microsoft.com/en-us/library/ms733128(v=vs.110).aspx (cit.
on pp. 17, 18).

Mono (2015). About Mono. url: http://www.mono-project.com/docs/
about-mono/ (cit. on p. 44).

Nielsen, Jakob (2000). Why You Only Need to Test with 5 Users. url: http:
//www.nngroup.com/articles/why-you-only-need-to-test-with-5-

users/ (cit. on p. 91).
Nielsen, Jakob (2015). Thinking Aloud: The #1 Usability Tool. url: http://

www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/

(cit. on p. 97).
rense.com (2015). The Great Northeast Blackout of 1965. url: http://www.

rense.com/general40/95.htm (cit. on p. 1).
Roman Pichler, Stefan Roock (2011). Agile Entwicklungspraktiken mit Scrum.

First. Dpunkt (cit. on p. 10).
Rubin J., Chisnell (2008). Handbook of Usability Testing. How to Plan, Design,

and Conduct Effective Tests. First. Wiley (cit. on pp. 93, 98).
Scott, Ambler (2012). Agile Database Techniques: Effective Strategies for the Agile

Software Developer. First. Wiley (cit. on p. 14).
Standardization, International Organization for (2015). Ergonomics of human-

system interaction — Part 210: Human-centred design for interactive systems.
url: https://www.iso.org/obp/ui/#iso:std:52075:en (cit. on p. 90).

Statista (2015). Prognose zu den Marktanteilen der Betriebssysteme am Ab-
satz vom Smartphones weltweit in den Jahren 2015 und 2019. url: http:
/ / de . statista . com / statistik / daten / studie / 182363 / umfrage /

prognostizierte-marktanteile-bei-smartphone-betriebssystemen/

(cit. on p. 31).
Steve Mulder, Ziv Yaar (2007). The User Is Always Right, A practical guide to

creating and using personas for the web. First. New Riders (cit. on pp. 95,
96).

Wargo, John M. (2014). Apache Cordova API Cookbook. First. Addison-Wesley
Professional (cit. on pp. 38, 40).

126

https://msdn.microsoft.com/en-us/library/ms977327.aspx
https://msdn.microsoft.com/en-us/library/ms977327.aspx
https://msdn.microsoft.com/de-de/library/cc295302.aspx
https://msdn.microsoft.com/de-de/library/cc295302.aspx
https://msdn.microsoft.com/en-us/library/ms733128(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms733128(v=vs.110).aspx
http://www.mono-project.com/docs/about-mono/
http://www.mono-project.com/docs/about-mono/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
http://www.nngroup.com/articles/thinking-aloud-the-1-usability-tool/
http://www.rense.com/general40/95.htm
http://www.rense.com/general40/95.htm
https://www.iso.org/obp/ui/#iso:std:52075:en
http://de.statista.com/statistik/daten/studie/182363/umfrage/prognostizierte-marktanteile-bei-smartphone-betriebssystemen/
http://de.statista.com/statistik/daten/studie/182363/umfrage/prognostizierte-marktanteile-bei-smartphone-betriebssystemen/
http://de.statista.com/statistik/daten/studie/182363/umfrage/prognostizierte-marktanteile-bei-smartphone-betriebssystemen/

Bibliography

Xamarin (2015a). An Introduction to Xamarin.Forms. url: https://developer.
xamarin . com / guides / cross - platform / xamarin - forms / getting -

started/introduction-to-xamarin-forms/ (cit. on pp. 50, 51).
Xamarin (2015b). Sharing Code Options. url: https://developer.xamarin.

com/guides/cross-platform/application_fundamentals/building_

cross_platform_applications/sharing_code_options/ (cit. on pp. 45,
47, 49).

Xamarin (2015c). Xamarin. url: http://xamarin.com/ (cit. on p. 44).

127

https://developer.xamarin.com/guides/cross-platform/xamarin-forms/getting-started/introduction-to-xamarin-forms/
https://developer.xamarin.com/guides/cross-platform/xamarin-forms/getting-started/introduction-to-xamarin-forms/
https://developer.xamarin.com/guides/cross-platform/xamarin-forms/getting-started/introduction-to-xamarin-forms/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/sharing_code_options/
http://xamarin.com/

