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ABSTRACT  

 

Coating of technical surfaces represents an important production step in many industrial 

applications for realizing certain surface properties. The coating process has in general to ensure 

continuous, complete, and high quality coverage of the surface with a defined layer of liquid 

finally providing the desired mechanical, chemical, or electrical properties. The present work 

computationally investigates in particular the generalized Couette flow evolving inside 

converging enameling dies which are typically used for the coating of magnet wires with 

electrical insulation. For this purpose an analytical computational model based on the lubrication 

theory approximation was developed accounting for non-Newtonian behavior of the working 

fluid, and including heat transfer as well. Due to the lack of experimental data available on the 

considered narrow gaps flow configuration the predictions of the developed model were 

validated against CFD results from numerical simulations showing in general very good 

agreement. In regions with a strong axial change in cross-section some deviations appeared in 

the predicted velocity fields, and more significantly in the predicted temperature fields for higher 

Prandtl numbers. These deficits essentially resulting from the neglect of advective transport in 

the lubrication theory approximation could be largely reduced for the Newtonian fluid case by 

introducing a first-order extension of the model accounting for the advective transfer of 

momentum and heat. The proposed first-order extension of the zeroth-order base model 

representing the lubrication theory approximation was proven to give markedly improved 

predictions for the local variations of velocity and temperature, which also translates into a very 

accurate description of the global balances of momentum and heat. Having to rely not solely on 

CFD data for validation a special measuring device was built by the industrial partner to measure 

the total drag force exerted on the wire when pulled through the die under real operating 

conditions. The measured data were in good agreement with the results obtained from the 

analytical zeroth-order model for the considered non-Newtonian enamel. The computational as 

well as experimental results made evident that the total drag forces are not sufficiently high to 

cause any large scale plastic deformation or breakage of the wire. The observed mechanical 

stresses may still trigger some undesired microstructural changes of the wire material, making it 

unusable for winding. Based on the computed flow fields the local variation of shear stress on 

the wire was analyzed to derive possible modifications of existing real die geometries as well as 



variants of generic die shapes with an analytically prescribed cosine-type contraction, which 

finally lead to a notable reduction in drag force. This analysis helped to identify the geometrical 

key features of the die contour, which most effectively reduce the resulting total drag force. 

These findings obtained in the first place for the generic analytically prescribed die shapes were 

used to propose technically realizable geometrical modifications of real enameling dies. 

Producing markedly lower total drag forces the proposed novel die designs are well suited 

especially in the light of ongoing and future trends towards the application of more viscous 

enamels and higher production speeds leading both to strongly increased shear forces. A reliable 

computational description as provided by the present analytical model is a prerequisite for any 

further flow related optimization of the die shape expectedly needed to cope with these trends.  
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1.  INTRODUCTION  

1.1 Background and Motivation 

Coating can be basically defined as the covering of the surface of some solid substrate with a 

layer of an adhering liquid. The main reason for applying such a surface coating can vary 

dependent of the application of the final product. It can range from purely decorative to purely 

functional, or the combination of both. Different types (techniques) of coating can result in a 

different coverage of the substrate which, regarding the covered area, can vary from partial 

coverage to full coverage of the substrate. The coating can be applied to a substrate using a 

variety of techniques. Most common processes can be divided into: chemical, mechanical, 

thermal and thermo-mechanical.  

Functional coatings play a dominant role in the industrial application. They are applied in order 

to change the surface properties of the substrate making it more suitable for a specific 

application. The targeted properties of the substrate can be various, affecting adhesion, thermal, 

mechanical, or, chemical resistance, surface wetability, surface roughness etc. Since the 

thickness of the coating is often an important parameter, different techniques have been 

developed to obtain the desired coating thickness. These methods range from simple paint 

brushing layer per layer until a certain thickness is obtained, to fairly complex liquid deposition 

techniques applied in the production of components for electrical industry. 

One representative example of a complex multi-step coating process is met in the production of 

enameled or magnet wire. Enameled wire in general represents a copper or aluminum wire 

covered with a thin layer of electrical insulation (see Figure 1). This type of wire is most 

commonly used in applications, where tight coils are required, such as the coil of stator and rotor 

of an electric motor, or the coil applied inside an electric transformer. A sufficient electrical 

insulation against shorts is in general a prerequisite for safe and reliable operation of these 

devices. For that reason wires are covered with multiple layers of coating ensuring a uniform 

continuous insulation. Especially, in high-voltage devices any imperfection in the coating would 



 

2 

 

most likely lead to strong spurious currents, which may finally result in a burn down of the 

whole device.    

Different polymer solutions are generally used as enameling liquids. The type of polymer mostly 

depends on the technical application of the wire, ranging from polyurethane for less critical 

applications, where wires are subjected to low electrical loads, to combinations of polyester and 

polyamide for the more heavy duty applications. 

 

 

 

Figure 1: Raw wire and enameled copper wire (source MAG) 

 

The production process of enameled or magnet wire is carried out on special wire enameling 

machines. These machines usually involve multiple production steps which have to ensure a 

correct wire diameter and satisfactory quality of the surface of the end product. They can be 

designed as vertical and horizontal machines, but, regardless of the type, the principle of the 

process and the main components of the machine are essentially the same. The main components 

of both types of machines are shown in Figure 2.  
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Figure 2: Main components of the wire enameling machines (source MAG) 

 

Raw copper wire supplied at the entry of the device usually has a wire diameter that is a little bit 

higher than the desired diameter of the blank wire to be coated with enamel. It is therefore 

necessary to pull the wire first through a drawing machine to provide the correct diameter before 

entering the enameling process. Inside the drawing machine the wire is passed through multiple 

drawing dies, successively reducing the diameter. The high stresses imposed during the drawing 

process cause a hardening of the copper wire. In order to regain those material properties 

required for the further production, such as ductility, the wire is passed through an annealing 

zone, where the material is heated up to a certain annealing temperature and cooled down again 

to ambient temperature. In the next step the blank wire enters the enameling process, where its 

surface is successively coated with a certain layer of fresh liquid enamel. After each deposition 

of fresh enamel, the wire passes an oven, where the solvent evaporates, and the remaining solid 

polymer content is cured. Usually, temperatures inside the oven reach up to 700 ⁰C. Such high 

temperatures are required due to the relatively short dwell time of the wire inside the oven, 

especially in the case of smaller wire diameters, to ensure a complete evaporation of the solvent 

and curing of the polymer. After each pass through the oven, the wire is cooled in a cross stream 

of air. A detailed study and optimization of the drying and curing process inside the oven was 

carried out by Czaputa 2009. Finally, the wire is directed to the spooler, where it is wound up 



 

into large coils, appropriate for transport and storage. Some details of each component shown in 

Figure 2 can be seen in Figure 3. 

  

Figure 3: Details of enameling machine components

 

The focus of the present work is

fresh enamel is deposited on the surface of the moving wire. The principle of this liquid coati

process is shown in Figure 4. The process essentially involves two main steps. In the first step an 

initial layer of enamel is deposited on the wire 

wire is pulled through a small bath of enamel which is 
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appropriate for transport and storage. Some details of each component shown in 

Figure 2 can be seen in Figure 3.  

: Details of enameling machine components (source MAG)

focus of the present work is on the liquid enamel deposition step, where a defined layer of 

fresh enamel is deposited on the surface of the moving wire. The principle of this liquid coati

process is shown in Figure 4. The process essentially involves two main steps. In the first step an 

initial layer of enamel is deposited on the wire based on the principle of dip coating, where the 

wire is pulled through a small bath of enamel which is fed from a bigger reservoir 

appropriate for transport and storage. Some details of each component shown in 

 

(source MAG) 

where a defined layer of 

fresh enamel is deposited on the surface of the moving wire. The principle of this liquid coating 

process is shown in Figure 4. The process essentially involves two main steps. In the first step an 

based on the principle of dip coating, where the 

fed from a bigger reservoir beneath. In the 



 

second step the basically undefined thickness of the dip coating is reduced to the desired level by 

pulling the wire through an enameling die. Due to the converging geometry of the annular gap 

between the wire and the die contour the excess enamel is stripped of

wire exits the die with a defined deposition height of fresh enamel (see Figure 4 rhs).

enamel is ejected upstream at the inlet of the die. It is then passed through a 

the enamel reservoir to be applied again for the coating process. The whole coating is

multiple deposition cycles, adding one further layer on top of the other until the final height is 

reached. Within each deposition cycle the deposited fresh enamel is dried and cured in the oven. 

Usually, the number of passes applied in the proc

wire thickness, required wire properties, type of enamel, etc. 

 

Figure 4: Principle of enamel application on the wire surface

 

 

 

 

 

5 

second step the basically undefined thickness of the dip coating is reduced to the desired level by 

pulling the wire through an enameling die. Due to the converging geometry of the annular gap 

d the die contour the excess enamel is stripped off the surface, so that the 

wire exits the die with a defined deposition height of fresh enamel (see Figure 4 rhs).

enamel is ejected upstream at the inlet of the die. It is then passed through a 

enamel reservoir to be applied again for the coating process. The whole coating is

multiple deposition cycles, adding one further layer on top of the other until the final height is 

reached. Within each deposition cycle the deposited fresh enamel is dried and cured in the oven. 

Usually, the number of passes applied in the process varies between 10 and 25 depending on the 

wire thickness, required wire properties, type of enamel, etc.  

Principle of enamel application on the wire surface (source MAG)

second step the basically undefined thickness of the dip coating is reduced to the desired level by 

pulling the wire through an enameling die. Due to the converging geometry of the annular gap 

the surface, so that the 

wire exits the die with a defined deposition height of fresh enamel (see Figure 4 rhs). The excess 

enamel is ejected upstream at the inlet of the die. It is then passed through a filter and re-enters 

enamel reservoir to be applied again for the coating process. The whole coating is applied in 

multiple deposition cycles, adding one further layer on top of the other until the final height is 

reached. Within each deposition cycle the deposited fresh enamel is dried and cured in the oven. 

ess varies between 10 and 25 depending on the 

 

(source MAG) 
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1.2 Literature survey 

The description of the flow evolving inside narrow gaps, or gaps with converging geometry, 

considering different rheological behavior of fluids is of high relevance in many different 

applications. Therefore, a significant number of studies related to this topic are available in the 

literature. The investigated flow evolving inside these narrow gap geometries is often Couette or 

generalized Couette flow, depending on the geometrical outline-contour. 

The generalized Couette flow between two infinite parallel plates subject to a pressure gradient 

was studied in the work of Flumerfelt at al. 1969. Matsuhisa and Bird 1965 provided analytical 

and numerical solutions for a large variety of configurations including the flow between flat 

plates, in tubes, in films, and annuli, assuming a non-Newtonian Ellis fluid.  

Couette type gap flow configurations are also met inside the bore holes in ground drilling 

applications, or inside journal bearings. A computational analysis of such a generalized Couette 

flow inside an annulus, where the flow is driven by the motion of the inner cylinder and 

additionally subjected to a pressure gradient, was presented by Lin and Hsu 1980. In follow-up 

studies Lin and Hsieh 1980, and Lin 1992 included heat transfer into their computations. Young 

and Chukwu 1995 analytically computed generalized Couette flow of a power-law fluid in a 

narrow eccentric annulus in order to investigate the effect of the eccentricity of the inner moving 

cylinder on the axial pressure gradient. Fitt and Please 2000 described an isothermal flow of a 

shear thinning fluid inside an annulus between the two concentric cylinders, where the inner one 

was set into a rotating motion, using an asymptotic analysis and comparing it to CFD results. 

Nessil et al. 2013 analyzed the lubrication of a non-Newtonian power-law fluid inside a journal 

bearing including heat transfer. A recent work describing axial flow of a non-Newtonian fluid in 

a concentric annulus using generalized flow parameters which enable implementation of 

different non-Newtonian flow models was presented by Haobo et al. 2014. Sheeja and Prabhu 

1992 investigated the flow evolving in the annular gap of a journal bearing using both a 

computational and experimental approach, to study the performance characteristics of the 

bearing. Considering a more complex surface involving shallow dimples, a CFD based analysis 

of the lubrication behavior of a journal bearing was presented by Yong and Balendra 2009. He 
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2004 applied the variational principle to derive the Reynolds equations for describing the flow of 

a Rabinowitsch-type non-Newtonian fluid inside a planar slider bearing.  

Apart from the technical application, the narrow gap flow of non-Newtonian fluids is also of 

high relevance in other fields such as biomedical flows, where the emphasis is put on analyzing 

the flow inside the cardiovascular system. In 1972 Oka investigated the evolution of the pressure 

along the axis of a tapered tube with fixed walls, using different types of non-Newtonian fluids. 

Based on the work on Oka a more recent study on the flow inside tapered pipes, considering 

different angles as well as different rheological models in order to obtain flow rate and pressure 

profiles was conducted by Kumar and Kumar 2003. The unsteady flow inside a tapered tube of a 

non-Newtonian fluid inside arteries with a stenosis was computationally analyzed by Mandal in 

2004.  

Hull and Pearson 1984 investigated the non-Couette type flow of non-Newtonian viscoelastic 

fluids through cones and wedges with stationary walls, which is of high relevance for the 

polymer processing technology.  

The basic concepts for the computational analysis of the generalized Couette-type flow and heat 

transfer in converging gaps, specifically met in enameling dies can be found in the review of 

Mitsoulis 1986. Carley et al. 1979 computed the flow and temperature field inside the conical 

section of wire coating dies by solving numerically the simplified conservation equations with a 

semi-implicit finite-difference scheme. Tadmor and Bird 1974 investigated the magnitudes of the 

lateral forces which the fluid exerts on a wire eccentrically positioned inside the coating die, and 

their effect on the stability of the wire during the coating process. 

Dijksman and Savenije 1985 presented an analytical solution of the converging flow through 

coating dies applying the lubrication approximation theory. They introduced a special toroidal 

coordinate system, which suitably fits to their considered conical geometry of the die, but admits 

only straight lines as outer radial contour of the die. In a recent work Shah et al. 2013 presented 

analytical solutions for Couette flow with zero pressure gradient assuming power-law fluids, 

ranging from strongly shear thinning to strongly shear thickening, imposing linearly varying wall 

temperatures.  
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Most of the computational studies performed on the narrow gap flow problem assume the 

approximation of the lubrication theory, which essentially neglects all advective transport. 

Appropriate extensions to the lubrication theory in order to account for the effect of advective 

transport have thus far been proposed only for narrow gap flow configurations different from the 

ones met in the wire coating process, like flow in planar journal bearings considered by Collins 

et al. 1986, or pressure-driven flow through narrow planar channels with axially varying channel 

height studied by Tavakol et al. 2014. 

1.3 Objectives  

Due to the extremely high shear rates occurring inside the converging gaps of the coating dies 

very high shear forces act on the surface of the moving wire resulting in large total drag forces 

exerted on the wire. The pressing need for drag force reduction mainly comes from some 

particular characteristics of the wire enameling process, which have in common that they all 

potentially strongly increase the shear forces. First, the solid mass fraction in the applied enamel 

should be very high to reduce the costs for the solvent, and to deposit a highest possible amount 

of solid coating mass per wire pass through the die. Secondly, the solid content should be mainly 

constituted by large polymers. Large polymers tend to be less volatile, so that the solid losses 

into the hot gaseous ambiance during the drying and curing of the deposited fresh layer can be 

kept low. Meeting both requirements implies more viscous enamels, which translates directly 

into an increase in the drag force on the wire drawn through the coating dies. Thirdly, the 

maximum allowable heat up of the wire, which occurs in the oven for the drying and curing of 

the coating, limits the residence time of the wire in the oven. Since the thinner wires inherently 

heat up faster they permit a shorter residence time in the oven to avoid overheating of the 

material, which implies a faster wire speed. In combination with the typically smaller die exit 

gap heights, this finally leads to much higher shear rates and shear stresses, and hence larger drag 

forces, particularly for the thin wires. Apart from these process-related aspects, the permanent 

economic demand for higher productivity and cost reduction keeps pushing for increased wire 
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velocities, which further fosters the need for most appropriate die shapes to keep the total drag 

forces within an acceptable range.  

The main objective of the work is to computationally investigate the flow field inside wire 

enameling dies, which shall finally also help to identify the possible flow related reasons for the 

wire breakages appearing during production, as reported by the magnet wire producers, 

especially in the case of thin wires (for diameters ranging from 0.15 mm to 0.35 mm). The 

description of the flow field shall be obtained from a suitable computational model to be 

developed. The developed model shall provide an accurate prediction of the flow and 

temperature fields at low computational costs. It shall flexibly handle different die geometries as 

well as different fluid properties, so that it finally also serves as a computationally efficient and 

reliable tool for developing flow optimized die geometries.  

1.4 Approach 

The developed computational model for describing the momentum and heat transfer inside the 

wire enameling dies basically relies on the analytical approach assuming the lubrication theory 

approximation. For the case of Newtonian fluids the lubrication theory approximation is 

extended by a first-order perturbation to include the effect of inertia and convective heat transfer. 

The very confined geometry of the flow domain basically excludes any detailed measurements of 

the flow and temperature fields using today’s available measurement techniques. Due to this lack 

of experimental data, a numerical model was used to provide data for a validation of the 

predictions obtained from the developed analytical model. Solving the full set of equations in a 

discretized formulation inherently makes the numerical simulations computationally more 

expensive than the analytical model. The numerical simulations are performed using the 

commercial CFD code Ansys FLUENT. Some experimental validation could be still carried out 

for the analytically predicted drag forces on the wire. The required experimental data were 

obtained using a drag force measuring device, which was specially designed and constructed by 

the industrial partner MAG. The drag force measurements were carried out on an enameling 

machine running under real production conditions.  



 

10 

 

1.5 Organization of the Thesis 

Chapter 2 deals with the possible flow properties of the working fluid, discussing established 

models for describing the flow behavior of Newtonian and non-Newtonian fluids. It further 

surveys the coating liquids typically applied in the wire enameling process. The main measuring 

techniques for determining the dynamic viscosity of these liquids are described as well, including 

the measured flow curves for some representative enamels.  

Chapter 3 describes the derivation of the analytical computational model using the assumptions 

of the lubrication theory, applying it first to a Newtonian fluid and then the non-Newtonian 

fluids. The extension of the analytical model to the heat transfer is also described. The results 

obtained from the analytical model for generic converging die geometries are discussed and 

validated against CFD results. For the case of Newtonian fluids, the analytical model is extended 

introducing the first-order perturbation to improve the accuracy of the analytical predictions.   

Chapter 4 describes the application of the developed analytical computational model for 

describing the flow field inside real die geometries under real operating conditions. The results 

obtained by the analytical model for the hydrodynamic drag forces exerted on the wire are 

further validated against data from a specially designed measuring device. Possible reasons for 

frequently reported problems during the production process, such as breakage and plastic 

deformation of the wire, are discussed. 

Chapter 5 deals with the application of the developed computational model to provide modified 

real die geometries, which generate significantly reduced drag forces exerted on the wire. Using 

such flow optimized geometries shall ensure a save and continuous production process and allow 

for further increase in productivity and reduction in process costs. 

Chapter 6 gives a summary and the main conclusions coming from the presented computations 

and analysis of the results.   
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2. RHEOLOGY OF THE WORKING FLUID 

Fluids exhibit different properties depending on their chemical composition, structure and size of 

the fluid molecules, etc. For any fluid type the most general form of momentum equation, 

neglecting body forces, reads  

 

.
Dv

p
Dt

ρ τ= −∇ +∇⋅
�

     (1) 

 

In order to provide closure for the system it is necessary to define the dependence of the stress 

tensor on the deformation rate tensor, ( )Dτ τ= , where the deformation rate tensor D is written 

as 

 

( ) ( ) .
1
2

T
D v v = ∇ + ∇  

� �
     (2) 

 

In the most general case the shear stress depends on the history of this tensor. The particular 

dependency for the considered fluid is essentially determined by its microscopic structure. A 

highly complex molecular structure in general translates into a more complex relation between 

shear stress and deformation rate. Figure 5 exemplarily shows some modifications of the internal 

structure of the suspensions, containing larger particles or molecules, when subjected to 

deformation. 
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Figure 5: Behavior of suspensions subjected to deformation (adopted from Chhabra, 2010) 

2.1 Purely viscous fluids 

If the stress depends only on the instantaneous deformation rate tensor D and the material 

behaves isotropic, the fluid is termed a purely viscous or Reiner-Rivlin fluid. As stated in the 

book of Giesekus on phenomenological rheology 1994, the relation between the stress tensor and 

the instantaneous deformation rate tensor can be described by the following algebraic 

constitutive equation: 

 

.E D Dτ ϕ ϕ ϕ= + + 2
0 1 2      (3) 

 

Therein, E is the unity tensor and the coefficients ϕi depend on the density and three invariants of 

the deformation rate tensor: 

 

( ); , , , , , ,0 1 2i i D D DI II III iϕ ϕ ρ= =      (4) 

 

with 

 

( ); , , .0 0 00 0ϕ ρ =      (5) 
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Liquids of practical relevance considered in this work are incompressible, implying that their 

density ρ does not vary, such that the coefficient ϕ0 can be set to zero. Moreover, the other 

coefficients are independent ρ of and ID, due to 0DI v= ∇ ⋅ =� , and hence, Eq. (3) can be 

rewritten as 

 

( ) ( ), , .D D D DII III D II III Dτ ϕ ϕ= + 2
1 2      (6) 

 

The coefficients ϕ1 and ϕ2 can be generally rewritten as ϕ1=2η and ϕ2=4ξ, where η denotes the 

apparent shear viscosity and ξ denotes the so called cross-viscosity. The ratio between the two 

coefficients ϕ2 and ϕ1 has the unit of time, which can be interpreted as a material specific time 

scale. This is, however not consistent with the constitutive algebraic Eq. (6), which does not 

involve any dependence on time. Discussing this inconsistency Giesekus 1994 stated that no 

purely viscous fluid has thus far been observed exhibiting any time dependent flow behavior in 

unsteady configurations. Giesekus, therefore, argued that the cross viscosity represented by ϕ2 

should be set to zero, i.e.,ϕ2=0, for the description of purely viscous liquids. Accordingly, Eq. (6) 

reduces to   

 

( ) ( ), ,D D D DII III D II IIIτ ϕ η= =1 2    (7) 

 

where η represents an apparent viscosity depending on the second and third invariants of the 

deformation rate tensor. The most relevant type of flow considered in this work is a simple shear 

flow, where the deformation rate tensor can be written as 

 

0 1 0
1 0 0

2
0 0 0

D
γ
 
 =  
 
 

ɺ

   (8) 
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with γ ̇  denoting the shear rate du dx1 2 . The invariants of the deformation rate tensor read   

 

, , .
2

0 0
4D D DI II III
γ−= = =
ɺ

   (9) 

 

Assuming incompressible fluid with zero cross viscosity the stress components read  

 

,τ τ= =11 22 0    (10) 

 

,τ τ= =11 22 0    (11) 

 

( ) ,2
12 21 1

1
2

τ τ ϕ γ γ= = ɺ ɺ    (12) 

 

,13 23 0τ τ= =    (13) 

 

which implies that the apparent shear viscosity is written as 

 

( ) ( ).2 2
1

1
2

η γ ϕ γ=ɺ ɺ    (14) 

 

Guided by the work of Chhabra 2010, it is possible to distinguish between several types of fluids 

based on the way viscosity depends on the shear rate:  

- Shear thinning fluids 

- Shear thickening fluids 

- Bingham plastics 

Different shear rate dependent behaviors of the fluid are illustrated in Figure 6.   
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Figure 6: Shear rate dependent fluid behavior 

2.1.1 Shear thinning fluids 

This type of rheological behavior of the fluid can be observed as the most common type of non-

Newtonian fluid behavior in various engineering applications. Its apparent viscosity written as 

 

τη
γ

=
ɺ

12
   (15) 

 

is not  a fixed material property, but gradually decreases with increasing shear rate. In general the 

apparent viscosity approaches asymptotically constant levels for vanishing and infinite shear 

rates termed Newtonian plateaus. The so called first Newtonian plateau defined as 

 

lim Iγ

τ η
γ→

=
ɺ ɺ0

12
   (16) 
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is reached for vanishingly small shear rates, while the so called second Newtonian plateau 

written as 

 

lim IIγ

τ η
γ→∞

=
ɺ ɺ

12
   (17) 

 

is approached for very high shear rates. Such a shear thinning trend between two Newtonian 

plateaus is typically observed with polymer solutions, where the second Newtonian plateau is 

usually close to the value of the molecular viscosity of the pure solvent.  

2.1.2 Shear thickening fluids 

In shear thickening liquids the apparent viscosity of the fluid increases with increasing shear rate. 

This type of behavior can usually be observed in concentrated suspensions. The variation of the 

apparent viscosity illustrated in Figure 7 exemplarily shows a possible mechanism of shear 

thickening depending on the applied shear. At very low shear rates or shear stresses the particles 

remain in an equilibrium state, where only the random collisions between them generate a certain 

resistance against the motion of the fluid. For further increased shear rates or shear stresses the 

particles are redistributed in such a way that their mobility is increased, resulting in a reduction 

of the apparent viscosity. Exceeding a certain limit in shear rate or shear stress finally leads to 

the formation of larger agglomerates of particles impeding the motion, such that the apparent 

viscosity increases.  
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Figure 7: Shear thickening phenomena (adopted from Wagner et al. 2009) 

These particular types of fluids were rarely investigated in the past. Due to the rising application 

of highly concentrated suspensions in various industrial applications, they are becoming an 

increasingly interesting topic for basic and applied research. 

2.1.3 Bingham plastics  

A Bingham plastic is defined as a viscoplastic material that behaves as an elastic solid as long as 

the shear stress applied on it is lower than the critical value (yield stress). When the yield stress 

is exceeded, the material behaves like a Newtonian or also non-Newtonian shear 

thinning/thickening fluid. Figure 8 exemplarily shows the respective flow curves. Tooth paste, 

mud, or slurries are typical representatives of these fluids.  
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Figure 8: Flow curve of viscoplastic fluids 

2.1.4 Newtonian fluids  

In a case of simple linear dependence of the stress tensor on the deformation rate tensor which is 

associated with the coefficients  

 

, , ,0 1 20 2 0ϕ ϕ η ϕ= = =  
    

(18) 

 

Eq. (6) becomes  

 

.Dτ η= 2    (19) 

 

These types of fluids are so called Newtonian fluids. Their apparent viscosity, denoted by η in     

Eq. (19), does not depend on the deformation rate and is termed dynamic shear viscosity.  

Examples of fluids which exhibit Newtonian behavior are water, alcohols, low molecular weight 

organic or inorganic solutions, molten metals etc., and all gases. In Newtonian fluids the 
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viscosity represents a pure material property which may only change with pressure and 

temperature. The viscosity of the liquids generally decreases with temperature and increases with 

pressure. Table 1 shows viscosities of different Newtonian fluids ranging from the low values for 

gases to high values met in oils. 

Table 1: Viscosities of different Newtonian fluids at 20 ⁰C 

Fluid Shear dynamic viscosity [Pas] 

Air 1.8 x 10-4 

Water 1.0 x 10-3 

Mercury 1.6 x 10-3 

Automotive engine oil (SAE 10W30) 1.3 x 10-1 

 

 

A typical flow behavior of a Newtonian fluid can be shown in an example of a simple shear flow 

configuration, as met in a Couette flow between two parallel plates, where the upper one is 

moving at the fixed velocity Uw, shown in Figure 9. 

 

 

Figure 9: Couette flow between two parallel plates   

 

The movement of the top plate due to the applied force in the x-direction drives the motion of the 

fluid layers beneath down to the bottom wall. The moving plate leads to a continuous angular 

deformation (shear) of the fluid, which is determined by the velocity gradient in the y-direction, 
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termed shear rate du dxγ =ɺ 1 2 . The applied tangential force per unit area τ12 (shear stress) is 

directly related to the angular deformation rate γ ̇ (shear rate) through 

 

,
du

dx
τ η= 1

12
2

   (20) 

In the Newtonian case a linear velocity profile can be observed, due to the shear rate independent 

viscosity of the fluid, as shown in Figure 9.  

2.2 Fluids with time dependent stress-strain relation 

If the apparent shear viscosity η, as specified in Eq.(7), does not only depend on the 

instantaneous invariants of the deformation rate tensor but also on their histories, two types of 

fluids can be distinguished:    

- Thixotropic fluids 

- Rheopectic fluids  

If some part of the deformation of the fluid is not permanent, as in the case of purely viscous 

fluids, but vanishes after a stress relaxation, similar to the case of an elastic body, the fluid is in 

general termed visco-elastic. The constitutive equation for the dependence of the shear stress on 

the deformation rate includes a temporal derivative involving a relaxation time specific for the 

considered visco-elastic fluid, as will be shown below. 

2.2.1 Thixotropic fluids 

If the viscosity decreases with time when shearing the fluid, it is called thixotropic. In principle, 

all liquids feature thixotropic behavior depending on the difference in the dynamics of internal 

structure breakage due to the shear applied and build-up due to the free motion of particles 

(Brownian motion). An example of a typical flow curve of a thixotropic fluid is shown in Figure 

9. When subjected to a gradually increasing deformation the fluid reaches point denoted A. 

Keeping the constant deformation rate over a certain period of time results in a decrease of the 
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fluids viscosity, such that the shear stress decreases (point B). If the deformation rate would be 

kept constant for an infinite period of time, this would result in a further decrease of viscosity 

towards a theoretically minimal apparent viscosity, associated with point Bt→∞. 

 

 

Figure 10: Flow curve of thixotropic fluids 

2.2.2 Rheopectic fluids 

Rheopectic behavior represents the inverse behavior of the previously described thixotropic 

behavior. This means that the apparent viscosity of the rheopectic fluid increases with the 

duration time of shearing, resulting from a build-up of a flow impeding internal structures inside 

the fluid under the influence of an external shear. Rheopectic behavior is not as common in the 

technical application as thixotropic behavior.  Examples are gypsum pastes and printer inks. 

The phenomenon of rheopexy can be illustrated analogously to thixotropic behavior, as shown in 

Figure 10. When a certain deformation rate is applied the fluid reaches state A. A constant 

deformation rate applied over a certain period of time results in an increase in the viscosity 

leading to an increase in shear stress towards point B. Bt→∞ is associated with the maximum 

possible value of apparent viscosity which would be reached, if a certain shear rate is applied 

over an infinite period of time. 
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Figure 11: Flow curve of rheopectic fluids 

2.2.3 Visco-elastic fluids 

Visco-elastic fluids basically feature material properties of elastic solids and viscous liquids 

when subject to mechanical stress. A widely used constitutive equation for the dependence of the 

stress on the deformation is written as  

 

( ) ( ) .D D

viscous
elastic

II II D
t

ττ η+ Λ =
�����

�������

2D

D     (21) 

 

This equation, generally termed White-Metzner model, covers the most important flow 

properties of many viscoelastic fluids. The unsteady term on the lhs involves a relaxation time 

scale Λ=Λ(ΙΙD) and the so called Oldroyd derivative written as 

 

( ) ( )T
v v v

t t

τ τ τ τ τ∂  = + ⋅∇ − ∇ ⋅ + ⋅ ∇  ∂
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D
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In the viscous contribution on the rhs η denotes the apparent viscosity, also dependent on the 

second invariant of the deformation rate tensor. Many materials in the industrial application 

today show visco-elastic properties, for example, polymer melts, concentrated polymer solutions, 

gels, foams, etc.  

2.3 Flow models for purely viscous non-Newtonian fluids 

Generally speaking all fluids which do not exhibit the simple linear shear stress dependence on 

the deformation rate as given in Eq. (19) are termed non-Newtonian fluids. Since we consider 

only shear thinning and, possibly, shear thickening non-Newtonian fluids, as described in 

subsections 2.1.1 and 2.1.2, well established flow models for only these fluids shall be discussed 

here. A very popular model assumes a simple power-law dependence of the apparent viscosity 

on the shear rate, written as 

 

( ) .
1η γ −= ɺ

n
m    (22) 

 

For exponents n<1 Eq. (22) describes shear thinning, for n>1 shear thickening, and n=1 

Newtonian fluid behavior. The main drawback of this simple model is its inability to capture the 

appearance of the asymptotic transition to Newtonian plateaus at low and high shear rates. 

Additionally, the shear thinning formulation associated with n<1 produces a singularity for 

vanishing shear rate γ ̇ → 0. As such the model cannot cover the full range of possible shear rates.  

The Ellis model was developed to eliminate this shortcoming of the shear thinning power-law 

model at vanishingly low shear rates. The Ellis model expresses the apparent viscosity as a 

function of shear stress (see Chhabra and Richardson 2008) written as 

 

( )/

.1
121
I

α
ηη

τ τ −=
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   (23) 
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Therein, ηI represents the zero shear rate viscosity associated with the first Newtonian plateau, 

which is approached for vanishing shear stress τ → 0. The coefficients α and τ1/2 are determined 

from a best-fit to measured flow curves. It is evident that Eq. (23) describes Newtonian fluid 

behavior, when the denominator is unity, which is achieved by setting the α =1, or τ1/2 to 

infinity. Setting the exponent greater than unity the expression describes shear thinning behavior.  

The models proposed by Cross 1965, Bird and Carreau 1968, and Carreau and Yasuda (see 

Barnes et al. 1989), essentially provide a formulation which correctly describes the asymptotic 

behavior for very low and high shear rates as well as transitional regime in terms of a smooth    

S-shaped function of γ ̇ . The Cross model reads 

 

( )
,

1
1I II

II
n

m

η η
η η γ

−
=

− + ɺ
   (24) 

 

where ηI  and ηII  represent the viscosities of the first and second Newtonian plateaus approached 

for γ ̇ → 0 and γ ̇ → ∞, respectively. The parameter m basically determines the length of the first 

Newtonian plateau and n determines how fast η varies with γ ̇ in the transition to the second 

Newtonian plateau. The Carreau-Yasuda model uses a very similar formulation written as 

 

( ) /
.
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η η
η η γ

−
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−  +  
ɺ

   (25) 

 

Alike the parameters m and n in Eq. (24) the coefficient K1 determines the length of the first 

Newtonian plateau, allowing to adjust the point of transition towards the second Newtonian 

plateau as observed in the measured data, and m1/2 determines the steepness of the flow curve in 

the transition between the two plateaus. A flow curve generated using the Carreau-Yasuda model 

is exemplarily shown in Figure 11.   
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Figure 12: Shear thinning behavior described by the Carreau-Yasuda model 

2.4 Materials for wire enameling 

The main task of the wire enameling solid component is to provide a continuous insulation 

which avoids a possible occurrence of a short circuit between adjacent windings of the wire. For 

the accomplishment of this task the wire enamel has to fulfill some specific requirements, such 

as high chemical and thermal resistance, good adhesion to copper and a sufficient mechanical 

resistance. The quality of the final product is commonly assessed in measurements of special 

enameled wire properties and a comparison of these data against certain standards which are, for 

example, prescribed by the IEC (International Electrical Commission). The solid material which 

meets the imposed requirements to a high degree is polyester-imide. It is therefore nowadays 

most commonly applied in wire enameling, and its global production was increased to the level 

of tens of thousands of tons per year.    

2.4.1 Polyester-imide 

Before the application of polyester-imide, polyethylene teraphthalate (PET) based polyesters 

were applied for coating copper wires, even though the excellent properties of polyamides were 
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The polyester-imide resins are produced from ethylene glycol, THEIC, dimethyleterephtalate, 

trimellitic anhydride and 4,4-diaminodiphenylmethane. The production process involves 

esterification reactions between diols, triols and acids, and cycle forming reactions between 

diamine and anhydride. The esterification requires certain amount of catalysts in order to 

intensify the reaction. Different types of catalysts can be applied. The contemporary production 

processes of polyester-imide resins are usually realized as one step processes. For the application 

on the wire surface the resin has to be dissolved. The solvent generally applied in the case of 

wire enamels is cresol. Cresol is widely accepted due to its affordable price and convenient 

properties. For example, it can be adjusted to a certain boiling range, as required by the wire 

enameling process. Furthermore, the addition of different additives does not cause a significant 

reduction in dissolving power. It further has a high specific reaction enthalpy of combustion of 

34200 kJ/kg, which is used for heating the hot drying and curing sections of the enameling 

machines. The specific reaction enthalpy is catalytically released burning the evaporated solvent. 

The disadvantages of cresol are its toxicity and its very intensive smell, which requires handling 

of the enamels with special care. There were several attempts to replace cresol by an alternative 

solvent, which would be less toxic and easier to handle. Tests performed with cresol-free 

polyester-imide wire enamels showed that the all of the proposed alternatives had lower 

dissolving power which resulted in less hydrocarbons blended in the structure and in the end 

lower specific reaction enthalpy, which is not favorable in the modern wire enameling machines. 

Apart from the resins and solvent, other additives may be added to the formulation of the wire 

enamel. Among these are catalysts, which support the transesterification reactions during the 

curing process.  

The second large group of polyester-imides are the unsaturated polyester-imides. Their usual 

area of application is the impregnation of the electrical coils. The impregnation has the task of 

protecting the coil against water or some corrosive chemicals that can be present in the 

environment, where a certain device is applied. Additionally, these types of coatings enable 

better thermal conductivity. An important practical application is the insulation of the coils of 

electric motors. Applying unsaturated polyester-imides allows for the reduction in size of an 
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electric motor without losing power. The solution is deposited on the coils by dip coating and 

cured at temperatures between 130°C and 160°C. The resin copolymerizes very rapidly.  

In the magnet wire production process, after exiting the enameling dies with a defined fresh 

coating the wire enters the oven, where the deposited enamel is dried and cured. During this 

process the solvent and the resins are cured. The temperatures in the oven rise to 700°C. When 

the content of the solvent is reduced to about 60% of the initial value the curing process starts. In 

order to achieve a high final quality of the coating, the thickness of the deposited fresh enamel 

layers should be sufficiently small.  In case of a too thick layer, imperfections like blisters can 

appear after the curing, which would make the enameled wire unusable. For this reason, the 

coating is applied in multiple deposition steps by passing the wire successively through the dies, 

gradually increasing the thickness of the coating in each pass. The evaporated solvents have to be 

kept inside the wire enameling machines to become finally burned catalytically with a very high 

level of efficiency resulting in very low emission of waste gases. The high temperatures of the 

exhaust gasses are used in heat exchangers to preheat the drying air entering the system.  

2.5 Viscosity measurements 

The commonly used experimental techniques are generally based on the measurement of the 

forces which are required to deform the fluid in a defined and controlled manner. The desired 

rate of deformation can be produced in different ways, for example by dragging the fluid with a 

moving (sliding or rotating) solid, by forcing the fluid through a geometry imposing a pressure 

gradient or using gravitational force, by sinking a body submersed in the fluid, etc. Depending on 

the way how the flow, and hence the deformation, is induced, viscometers can be divided in 

certain classes, as listed in Table 2 following Macosko, 1994.   



 

Table 2: Viscometer 

 

Since the measurement principles in general assume perfect flow conditions, such as fully 

developed flow, an infinitely extended domain, negligible viscous heating, laminar flow

any possible deviations from thes
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: Viscometer classification (adopted from Macosko, 1994

Since the measurement principles in general assume perfect flow conditions, such as fully 

developed flow, an infinitely extended domain, negligible viscous heating, laminar flow

these ideal conditions result in errors, exemplarily listed in Table 3.  

Macosko, 1994) 

 

Since the measurement principles in general assume perfect flow conditions, such as fully 

developed flow, an infinitely extended domain, negligible viscous heating, laminar flow, etc., 

ideal conditions result in errors, exemplarily listed in Table 3.   



 

Table 3: Viscometer errors (

2.5.1 Drag flow type viscometers

According to the classification in Table 2, drag flow type viscometers are the ones where the 

motion of the examined fluid is induced by the motion of a solid surface. The most well known 

representatives of this group are so called rotational viscometers.

cylinder type viscometer shall be described in more detail here, because this measuring technique 

was mostly applied in this work. Other alternative measuring techniques will just be briefly 

addressed. 

The rotational viscometer is essentially designed to appl

fluid for the longer period of time. This feat

fluid’ s viscosity for a given range of shear rates, but also for the experimental investigation of a 

possible time dependent flow behavior of the fluid. Furthermore, it is possible to measure the 

effect of the temperature on the viscosity, if the temperature of 

As shown in Figure 14 the experimental device usually consists of an outer cylinder and a 

concentric inner cylinder. The gap between two cylinders is filled with the investigated fluid. 

Usually, the measurements consist 

the rotational speed of the moving cylinder.  
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: Viscometer errors (adopted from Macosko, 1994

Drag flow type viscometers  

According to the classification in Table 2, drag flow type viscometers are the ones where the 

motion of the examined fluid is induced by the motion of a solid surface. The most well known 

representatives of this group are so called rotational viscometers. Among these, the 

cylinder type viscometer shall be described in more detail here, because this measuring technique 

was mostly applied in this work. Other alternative measuring techniques will just be briefly 

is essentially designed to apply a defined constant shear rate

fluid for the longer period of time. This feature allows for steady state measurements of the 

s viscosity for a given range of shear rates, but also for the experimental investigation of a 

possible time dependent flow behavior of the fluid. Furthermore, it is possible to measure the 

effect of the temperature on the viscosity, if the temperature of the fluid can be controlled. 

the experimental device usually consists of an outer cylinder and a 

concentric inner cylinder. The gap between two cylinders is filled with the investigated fluid. 

Usually, the measurements consist in measuring the torque exerted on the stationary cylinder and 

the rotational speed of the moving cylinder.    

Macosko, 1994) 

 

According to the classification in Table 2, drag flow type viscometers are the ones where the 

motion of the examined fluid is induced by the motion of a solid surface. The most well known 

Among these, the concentric 

cylinder type viscometer shall be described in more detail here, because this measuring technique 

was mostly applied in this work. Other alternative measuring techniques will just be briefly 

y a defined constant shear rate on the 

steady state measurements of the 

s viscosity for a given range of shear rates, but also for the experimental investigation of a 

possible time dependent flow behavior of the fluid. Furthermore, it is possible to measure the 

the fluid can be controlled.  

the experimental device usually consists of an outer cylinder and a 

concentric inner cylinder. The gap between two cylinders is filled with the investigated fluid. 

suring the torque exerted on the stationary cylinder and 
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Figure 14: Concentric cylinders viscometer (adopted from Macosko, 1994) 

From the known torque on the inner cylinder and the geometry it is possible to determine the 

shear stress at any given radius inside the gap between the two cylinders from the expression 
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The effective length Le =L+Lc represents the real length of the cylinder L modified by a so called 

end-effect correction Lc. Accounting for the fact that the torque is constant at all radial positions 

it is possible to write 
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where τm denotes a representative shear rate exerted at a certain representative radius Rm. This 

radius is computed from Eq. (27) as 
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where β denotes the ratio between the radii of the two cylinders written as  
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Since the gap between the two cylinders is very small (β ≈1), it is possible to assume a planar 

Couette type flow associated with a linear velocity profile between the inner and the outer 

cylinder, regardless of the fluid type being measured. Due to this assumption the angular velocity 

at any radial position, induced by the motion of the outer cylinder rotating with the angular speed 

ω, reads 
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which implies a uniform shear rate inside the gap written as 
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Expressing the representative shear stress in terms of the representative radius according to     

Eq. (27), and using the Eqs. (28) and (31) the apparent viscosity is determined as 
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It was shown in the work of Jimenez and Kostic 1993, that the present model, which is 

independent of the fluid’s rheology, covers very well a large variety of fluid behaviors. For 

example, considering non-Newtonian power-law fluids, the present concept provides values for 

the viscosity with an accuracy of ±1% for the range of the power-law exponent n between 0.35 

and 3.5 and concentric cylinder radii ratios β between 1 and 1.2. 

One further effect that should be taken into account is the appearance of possible secondary flow 

structures in form of the vortices which can affect the measurement results. Even though in the 

Couette type viscometers there are no vortex structures to be expected inside the narrow gap 

between the cylinders, they may appear near the bottom end of the inner cylinder. The transition 

to turbulent flow can become an additional issue, if the Reynolds number defined as  
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reaches values between 103 and 104.  

2.5.2 Pressure flow type viscometers 

As already outlined above, in this type of technique the motion of the fluid is induced by 

pressure or gravitational forces. A popular representative of this technique is the capillary 

viscometer, as illustrated in Figure 15. This technique was used in the present work as well and 

will therefore be discussed here in more detail. 

The main assumption regarding the flow inside these types of viscometers is a fully developed 

laminar pipe flow. The geometry of these devices is designed in such a way that the length of the 

capillary tube is much larger than the diameter of the tube. The quantities which are measured in 
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this type of viscometer are the flow rate of the fluid and the axial pressure difference between the 

two measuring points.  

 

 

Figure 15: Capillary viscometer 

In general the viscosity of a fluid can be obtained from the ratio between the shear stress and 

shear rate at the wall 
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A simple momentum balance applied to a control volume of axial length L provides the wall 

shear stress in terms of the measured axial pressure difference written as 
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The shear rate at the wall, which is obtained as 
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basically requires the knowledge of the radial profile of the axial velocity u(r). For a Newtonian 

fluid this can be easily computed yielding the well-known parabolic Hagen-Poiseuille profile, 

which finally gives the following linear relation between the wall shear rate and the measured 

volumetric flow rate:     

 

, 3
4

w N V
R

γ
π
 =  
 

ɺ ɺ
   (37) 

 

For non-Newtonian fluids the dependence of the viscosity on the shear rate excludes an a priori 

computation of the velocity profile, which is required to evaluate the wall shear rate from the 

derivative (36) producing finally a relation to the volumetric flow rate similar to Eq. (37). In the 

non-Newtonian case the wall shear rate is therefore computed in an alternative way. The starting 

point is the general expression for the volumetric flow rate written as 
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 Integration of this equation by parts yields 
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For fully developed pipe flow the shear stress always varies linearly with the radial coordinate as 
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regardless of the rheological flow behavior. Using Eq. (40) the radial coordinate r can be 

substituted by the shear stress τ, such that the Eq. (39) can be rewritten as 
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where γ ̇  denotes the shear rate at position r given as 

 

.
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Equating the volumetric flow rates obtained in the case of Newtonian, given by Eq. (37), with 

the Eq. (41) obtained for non-Newtonian fluids yields 
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where  ,w Nγɶɺ  represents an “equivalent Newtonian wall shear rate”. Taking the derivative of    

Eq. (41), with respect to τw gives 
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which can be transformed into 
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The correction parameter s is obtained by measuring different operating points associated with 

different flow rates V̇ and pressure differences ∆p. The variations in V̇ and ∆p translate via     

Eqs. (37) and (35) into corresponding variations in ,w Nγɶɺ  and τw, which are used to estimate s. 

Using γ ̇w from (45) and τw from (35) finally gives the apparent viscosity η, according to Eq. (34). 

2.5.3 Other viscometer types  

There are multiple other techniques using different phenomena to determine the viscosity of a 

fluid, but since they were not relevant for this work, they shall be only briefly addressed in the 

following lines.  

One of these alternative techniques, which is also based on the principle of drag flow 

viscometers, is the so called oscillating method. This method is particularly applied for 

measuring fluids with low expected values of viscosity ranging between 10-5 Pas and 10-2 Pas.  

A further group of measuring techniques is based on the ultrasonic method. It relies on the fact 

that the dissipation of energy of an acoustic wave passing through the fluid is dependent on the 

viscosity of the fluid.  
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2.6 Viscosity measurements of wire coating enamels 

One of the main prerequisites for a correct computational prediction of the drag force on the wire 

is a reliable description of the flow field inside the die, which is only possible with a correct 

modeling of the fluid behavior when subjected to shear. Two sets of measurements have been 

conducted in order to determine the shear rate dependent flow behavior of the wire enamels 

applied in the enameling process. The first set of measurements used a capillary viscometer to 

reach highest possible shear rates which are expected to appear inside the dies. These 

measurements were performed by the company BASF. The second set of measurements was 

conducted at the Research Centre for Pharmaceutical Engineering (RCPE) at the Graz University 

of Technology, using a concentric cylinders viscometer. Both sets of measurements were carried 

out for both basecoat and overcoat enamels supplied by the enamel producer company Elantas. 

As stated in the introductory part, enamels are polymer solutions, which differ within each group 

(basecoat and overcoat) dependent of the fraction of solid mass content contained by each 

solution. For the considered enamels the solid content of the solutions varied between 25% and 

45%. 

2.6.1 Capillary viscometer measurements 

The high shear rate measurements were performed for the basecoats Terebec MT-533-25, 

Terebec MT-533-34, Terebec MT-533-41, Terebec MT-533-45, and the overcoats Sivamid 595-

25, Sivamid 595-34, Sivamid 595-38. They were measured for shear rates ranging between 

1x105 and 2x106s-1, at the constant temperature of 60⁰C. This temperature was selected 

according to the temperature of the enamel in the enamel tank during real application. The results 

shown in Figure 16 were repeatedly obtained in two consecutive sets of measurements in order 

to check the reproducibility of the results.  
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Figure 16: Viscosity measurements results – capillary viscometer 

As seen from Figure 16 all enamels exhibit shear thinning behavior except Terebec 533-25, 

which shows a shear thickening tendency occurring on a very low level of viscosity though. 

Since the measurements do not cover the low shear rate range down to zero, they were redone 

using a concentric cylinders viscometer. The results obtained in this second set of measurements 

are shown in the following subsection. 

2.6.2 Concentric cylinders viscometer measurements 

The second set of measurements considered the same seven fluid samples of both basecoat and 

overcoat enamels as considered in the capillary viscometer measurements. The measurements 

were also conducted at the temperature of 60⁰C varying the shear rates from 1 s-1 to 7000 s-1. The 

measurements were conducted three times for each fluid type in order to provide consistent 

reproducible results. Figure 17 shows the averaged viscosities as obtained from the three 

measurement cycles for each enamel.  

. 
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Figure 17: Viscosity measurements results - concentric cylinders viscometer  

As seen from Figure 17 all enamels exhibit shear thinning properties. The measured range in the 

second set covers the range of the first Newtonian plateau, and the start of the transition towards 

the second Newtonian plateau for all fluids. When comparing the results obtained from the 

capillary viscometer measurements against those obtained from the concentric cylinders 

viscometer, a certain offset in the values can be observed. A possible reason for this offset may 

reside in the estimation of the parameter s appearing in the Eq. (45) for determining the wall 

shear rate as required in the estimation of the viscosity of non-Newtonian fluids in the capillary 

viscometry. Even small inaccuracies in this correction factor can significantly change the results 

leading to the observed discrepancies. Due to this uncertainty associated with the results of the 

capillary viscometer, the measurements obtained from the concentric cylinder viscometer 

appeared to be more reliable. Therefore, only these data were further used for modeling the flow 

behavior in the computations of the flow field evolving inside wire enameling dies.  

. 
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3.  ANALYTICAL MODEL 

The present analytical model relies on lubrication theory approximation, whose most essential 

features are the neglect of inertial forces and the thin-layer approximation. This neglect appears 

to be justified due to the typically very small height of the gap between the moving wire and the 

radial outer contour of the die. The analytical model shall provide a reliable and computationally 

efficient approach for the analysis of the flow inside coating dies, which basically allows for a 

large variety of die shapes as well as non-Newtonian flow models. The computational analysis 

carried out with this approach focuses in particular on the effect of the non-Newtonian shear-

thinning, or shear-thickening, behavior, and on the influence of the die geometry on the resulting 

total drag force. The effect of heat transfer is included as well. The considered material 

properties and operating conditions are selected based on real-life enameling applications. The 

results of the computational analysis shall help to determine die shapes which generate lowest 

possible drag total forces on the wire. Figure 18 shows the basic schematic of the generalized 

Couette flow met in coating dies. The flow is driven by a fast moving wire of velocity Uw. Due 

to the converging die geometry only a small portion of the enamel, which is entrained by the 

wire, finally forms the defined deposition layer. 

 

 

Figure 18: Flow configuration inside a coating die 
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3.1 Governing equations 

The converging flow through the coating die is described in cylindrical coordinates, where the z-

direction (axial direction) is aligned with the axis of the moving wire, as seen in Figure 19. The 

radial (cross-stream) direction r varies between the radius of the wire, r=rw, and the outer 

contour of the die, r=rd (z). L denotes the axial length of the die. The flow is assumed as 

axisymmetric and steady. 

 

Figure 19: Schematic sketch of the computational domain 

The governing conservation equations of axial momentum, radial momentum, and thermal 

energy read in dimensional form 
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with the normal and shear stresses written as 
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respectively. The conservation of mass is enforced by imposing a constant flow rate at each cross 

sectional position inside the die, which closes the governing set of equations: 
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The order of magnitude of the individual terms occurring in the formulation shall be estimated 

by non-dimensionalizing the equations, introducing the following normalized variables: 
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The non-dimensionalized representation of the momentum equation in the axial direction, radial 

direction, energy equation, and the continuity equation read 
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respectively. In this rescaled representation the relative magnitudes of the individual non-

dimensional terms are determined by the prefactors occurring in front of them. The non-

dimensional parameter occurring as prefactor of the advective transport terms on the lhs 

represents the so called reduced Reynolds number 
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Due to the very small aspect ratio he/L<<1 and the fact the Reynolds number based on the axial 

length of the die in general strongly exceeds unity (typical values are in the range ReL≈ O(103), 

the definition (56) implies 
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The advective and viscous dissipation terms in the energy equation (54) involve the Prandtl and 

the Eckert numbers defined as 
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respectively. Analogously to the momentum transport a non-dimensional scaling parameter 

appears as prefactor of the advective term on the lhs of the thermal energy equation. It is defined 

as 
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and basically represents a reduced Pèclet number. 

Due to Ec << ReL, it follows 

 

Ec Pr .
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≪e
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h
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Considering the relations (56) and (60) it becomes evident that the terms which are scaling with 

(he/L)2, are much smaller than the terms scaling with ε or εT, respectively.  

The solutions of the non-dimensionalized set of equations shall be assumed as series expansions 

written as 

 

* * * * ,2
0 1 2ε ε= + + +…u u u u    (62) 

* * * * ,2
0 1 2v v v vε ε= + + +…    (63) 

* * * * ,2
0 1 2p p p pε ε= + + +…    (64) 

* * * * ,2
0 1 2T TT T T Tε ε= + + +…    (65) 

* * * * .2
0 1 2η η ε η ε η= + + +…    (66) 

 

Introducing these expressions into the non-dimensional form of the balance equations (52)-(55) it 

is possible to derive the constitutive equations for each individual order by equating all terms of 

the respective same order. Truncating the solutions at ε2 and εT
2 the present work computes the 

zeroth-order solution and its first-order extension for Newtonian fluids. 

3.2 Zeroth-order solution 

The governing equations for the zeroth-order are derived by equating all terms of the order ε0 

and εT
0 in Eqs. (52)-(55). It can be seen that the zeroth-order formulation represents the 

approximation based on the lubrication theory assumption, where the convective and axial 

diffusive transports are neglected. The zeroth-order balance equations for momentum and heat 

read 

 

* *
* *

* * * *
,0 0

0
1p u

r
z r r r

η
 ∂ ∂∂=   ∂ ∂ ∂ 

   (67) 
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*

*
,0 0p

r

∂
=

∂
   (68) 

 

* *
* *

* * * *
EcPr ,

2
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0
1 T u

r
r r r r

η
   ∂ ∂∂ =      ∂ ∂ ∂   

   (69) 

 

*

*

* * * * .0 0

d

w

r

r

r u dr constV = =∫ɺ
   (70) 

 

At the radial inner and outer walls no-slip boundary conditions are imposed, while constant 

temperature and adiabatic wall conditions are prescribed for the energy, i.e.,  

 

* * * *: ,0 0   ,1 1wr r u T= = =    (71) 

 

*
* * *

*
: , .0

0   0 0d
dT

r r u
dr

= = =    (72) 

 

Ambient pressure is prescribed at the inlet of the die, such that 

 

* * .00 :     0z p= =    (73) 

 

Solving the continuity equation (70) for the unknown flow rate V̇0
* requires an appropriate 

boundary condition for the pressure at the exit as well. This necessitates a closer look at the local 

flow conditions next to the exit, as schematically shown in Figure 20. In this exit region the flow 

shall be assumed as Couette flow, which is subject to a certain axial pressure gradient arising 

from the capillary pressure inside the curved liquid meniscus pσ ∼σ/Rc. 
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Figure 20: Flow condition at the die exit 

Assuming for simplicity planar flow, the flow rate at the die exit can be computed as 

 

.
3

2 12
e e

w
e

h hdp

dz
V U

η
= −ɺ

   (74) 

 

Assuming the exit gap height as length scale he for the surface curvature radius Rc as well as for 

the local streamwise pressure variation the pressure gradient can be estimated as 

 

.2
e e

dp

dz h

σ=    (75) 

 

Introducing this estimate for the pressure gradient into the Eq. (74) yields  

 

.
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2 6
e

w
h

U
Ca

V
 

= − 
 

ɺ
   (76) 

 

Eq. (76) involves the capillary number, which basically represents the ratio between the viscous 

forces and surface tension and is defined as 
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,wU
Ca

η
σ

=    (77) 

  

where σ  denotes the surface tension and η denotes the local value of viscosity. The contribution 

of the capillary pressure at the exit is evidently determined by the magnitude of the capillary 

number. As will be shown in the discussion of the computationally investigated flow cases in 

section 3.2.3, the relevant capillary number is always sufficiently large, so that the effect of the 

capillary pressure can be neglected. Thus, the ambient pressure can be imposed at the exit 

boundary as well, i.e.,  

 

* * .01 :    0z p= =    (78) 

 

The radial integration of the non-dimensional form of the axial momentum equation yields the 

following expression for the axial velocity  

 

( ) ( )
( ) ( ) ( )

( )
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* * * * *
* * * * *
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, , ,
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0 1

 
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 
  

d

d d

I z r II z rdp
u I z r II z r

dz II z r II z r
   (79) 

 

where I and II represent the definite integrals 

 

( ) ( )
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* * *
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d
I z r d II z r
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η ζ η
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respectively. The expression for the velocity given by Eq. (79) still contains the yet unknown 

axial pressure gradient. The axial pressure gradient is obtained by substituting the axial velocity 

(79) into the equation of continuity (70), which yields  
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  (81) 

 

The flow rate V̇0
* is iteratively obtained by integrating (81) into the axial direction until the 

pressure boundary conditions at the inlet and the exit are satisfied. 

Analogously to the solution of the momentum equation, the radial integration of the energy 

equation given by Eq. (69) yields the following non-dimensional expression for the temperature: 

 

( ) ( )
*

* * *
*

ln
.

ln
0 1 d

w

r
T IV r IV r

r
= − + +    (82) 

 

Therein, IV represents the integral 
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r
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IV r d III d r r
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ϕ ϕ γ η ζ ζ ϕ

ϕ
= = ≤ ≤∫ ∫ ɺ    (83) 

 

For non-Newtonian fluids the dependence of the viscosity on the shear rate impedes an analytical 

evaluation of the integrals occurring in (80) and (83). This is only possible for Newtonian fluids, 

as will be shown in the following subsection. 

3.2.1 Newtonian fluid model  

Considering Newtonian flow behavior implies that the viscosity of the fluid does not vary with 

the shear rate, such that η=ηI=const. Furthermore, excluding any dependence of the viscosity on 
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the temperature as well, its non-dimensional representation becomes η0
*=1. Assuming unity for 

non-dimensional viscosity, the integrals occurring in Eqs. (80) and (83) can be evaluated 

analytically. Which finally yields an analytical expression for the velocity written as  

 

( ) ( ) ( ) ( )
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  (84) 

 

where the axial pressure gradient, obtained from Eq. (81), is rewritten as 
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  (85) 

 

Upon substitution of the upper radial contour r=rd
*(z*) of the considered die shape this 

expression is successively integrated in an iterative procedure to obtain the flow rate V̇0
*, for 

which the pressure boundary conditions (73) and (78) are satisfied. Using the analytically 

obtained expressions for the integrals III and IV occurring in Eq. (82) the temperature is rewritten 

as 
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((86) 

3.2.2 Non-Newtonian fluid model 

Since the presently derived computational model shall be applicable to real-life wire coating 

conditions, non-Newtonian flow behavior typically met with most enamels has to be considered. 

A non-Newtonian fluid model has therefore been introduced into the zeroth-order solution. As 

already presented in the section 2.2.1.1, there exists a large variety of models that describe the 

shear rate dependent behavior of non-Newtonian fluids. For the considered enamel, which is a 

polymer solution the Carreau-Yasuda model, as given in Barnes et al. 1989, appears as a very 

convenient approach. It is written as 
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ɺ
ɺ

   (87) 

 

The model parameters K1 and m1/2 determine the transition between the first and the second 

Newtonian plateau, which are reached in the limits of zero shear rate, �� → 0, � → ��, and 

infinite shear rate, �� → ∞, � → ���, respectively. A typical flow curve for a shear thinning fluid 

is exemplarily shown in Figure 21. The model parameters have been set to K1 =1.74x10-5 s and 
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m1/2 =0.4, such that the flow curve fits best the available experimental data which are denoted by 

the symbols. The experimental data were measured for the enamel “Terebec 533-45” with a solid 

polymer mass fraction 45%, which corresponds to a volume fraction 39%, using a rotational 

viscosimeter. It is noted that the region of very high shear rates, where the flow curve is plotted 

as dashed line, is not accessible to available standard rheometers. The level of the second 

Newtonian plateau had therefore to be assumed due to the lack of experimental data. 

 

 

Figure 21: Flow curve of a typical wire enamel (Terebec 533-45) 

The dependence of the viscosity of the shear rate, �∗ = �∗��� ∗� with  �� ∗ = �� ∗��∗, �∗�, allows only 

for a numerical evaluation of the integrals defined in Eqs. (80) and (83). As a consequence, the 

governing set of equations has to be solved iteratively with the local shear rate �� ∗as the basic 

unknown. The iterative solution procedure is briefly outlined below: 

1) An initial solution is computed assuming a Newtonian fluid with η=ηI=const. setting 

η∗=1 

2) Based on the actually obtained flow field at iteration step (n) the shear rate at the new 

level (n+1), i.e., �������
∗ , is computed from the implicit equation 
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 where �∗��������
∗ � is substituted as defined in the flow model Eq. (87). 

3) The flow field at the new level (n+1) is recomputed using the updated shear rate �������
∗  

for the viscosity �∗��������
∗ �  

4) Steps 2) and 3) are repeated until the solution for the whole �� ∗- field has converged, i.e.,  

�������
∗ -�����

∗ <0.001 

5) The velocity field is evaluated from Eq. (79) using the converged viscosity �∗��� ∗� in the 

integrals I and II. 

 

Apart from the shear rate dependent behavior of the viscosity of the fluid, the computational 

model was additionally extended to account for a possible dependence of the viscosity on the 

temperature. The temperature dependence was incorporated by reducing the values of the 

viscosity for the first Newtonian plateau (zero shear viscosity) to lower levels for increasing 

temperature. The dependence of the zero shear viscosity of the temperature was assumed as 

Vogel equation written as 

 

( ) expI
B

T A
T C

η  =  − 
   (88) 

 

involving the model parameters A, B and C. 
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3.2.3 Test cases 

The test case conditions considered in the present computations of the zeroth-order solution were 

specified very close to real enameling conditions of thin copper wires. Accordingly, the diameter 

of the wire was set to d0=0.15 mm, and the velocity of the wire was set to a typically high value 

for thin wires Uw=22.3 m/s. The length of the die is L=25 mm, and the gap height at the exit is 

he=5 µm. The difference in gap height between the die inlet and exit was assumed δ =2.5 mm. 

Based on this parameter setting the local value of the reduced Reynolds number, analogously to 

Eq. (40) defined as Re�
2

w

I

U L h

L

ρ
η

 =  
 

, varies between Re� = 8.9 at the die inlet, where h= h0+δ, 

and  Re� =ε =8.91x10-5 at the outlet, where h=he. Although this value exceeds unity near the inlet, 

the assumption of the lubrication theory approximation still provides reasonable predictions for 

the velocity field even in the entrance region, as it will be shown below in the discussion of the 

results. 

The effect of the shape of the die was examined by varying the axial contraction assuming a 

cosine-type variation of the radially outer contour generally written as  

 

* cos1 1 . 
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δ π
     = = + + +       

   (89) 

 

As shown in Figure 22 the prescription of the geometrical parameter ngeo determines the shape of 

contour. For the low values of the parameter, the geometrical outline becomes purely convex, 

while by increasing its value it changes towards concave shapes, finally ending in step like 

change in the geometry as the values of the geometrical parameter tend to infinity. The 

functional dependence (89) provides by definition a zero gradient at the exit, i.e., drd
*/dz*=0, 

which follows from a specific requirement of the real enameling process.    
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Figure 22: Die contours for different values of exponent ngeo 

The presently computed cases are essentially distinguished by the flow behavior of the fluid. 

They are all listed in Table 4. 

Table 4: Computational cases; parameters for non-Newtonian fluids according to Eq. (87) 

Case     
1 Newtonian  Isothermal η [Pas] = ηΙ = 0.25 = const. 

 
ηΙ   

[Pas] 
ηII  

[Pas] 
K1x105 

 [s] 
m1/2  
[-]  

2 
Non-

Newtonian 
Shear 

thinning 
Isothermal 0.25 0.0167 1.74 0.3 

3 
Non-

Newtonian 
Shear 

thinning 
Non-

isothermal 

at Τref 

= 
333.15

K 

0.25 0.0167 1.74 0.3 

4 
Non-

Newtonian 
Shear 

thickening 
Isothermal 0.25 3.75 1.74 0.3 

 

Case 1 represents a reference base case considering Newtonian fluid behavior with constant 

dynamic viscosity independent of both shear rate and temperature. The dynamic viscosity of this 

base case is assumed as η =0.25 Pas, which corresponds to the measured first Newtonian plateau 
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of the enamel “Terebec 533-45” with 45% solid mass fraction. This value is also assumed as the 

zero-shear rate viscosity ηI  for all non-Newtonian cases. The viscosities of the first and second 

Newtonian plateau always differ by roughly one order of magnitude.  

Case 3 essentially considers the same shear thinning fluid as Case 2, but it additionally assumes a 

dependence of the viscosity on the temperature described by the Vogel equation (89) with the 

model parameters set to A=0.003906 Pas, B=414 K, and C=234 K. The thermal conductivity and 

heat capacity required for the solution of the heat transfer equation were set to λ=0.5 W/mK and       

cp =10 J/kgK, respectively. Using the value of the first Newtonian plateau ηI as reference 

viscosity this translates into Prandtl and Eckert numbers Pr=5, and Ec=0.14, respectively.  

The surface tension is assumed as σ=0.06 N/m, which represents a typical value for wire 

enamels. Based on this setting and the viscosity of the second Newtonian plateau the capillary 

number defined in Eq. (77) is at minimum in the shear thinning cases 2 and 3, being Ca=6.21. As 

seen from Eq. (76), this value is still sufficiently high to justify the neglect of the capillary 

pressure at the exit of the die.  

3.2.4 Results 

A wide range of the geometrical parameter ngeo was considered to evaluate the accuracy of the 

zeroth-order solution obtained for very different geometrical outlines, as well as to investigate 

the influence of the change in die shape on the flow and temperature fields. The computed range 

extends from ngeo=0.3, describing a fully convex geometrical outline, to ngeo=50, describing a 

fully concave geometry of the die.   

Detailed zeroth-order results of the flow field and heat transfer are discussed in the following 

only for the geometrical parameter ngeo=1.8, because this case is well representative for the 

geometries commonly met in the application. Moreover, the basic structure of the flow and 

temperature fields showed qualitatively no substantial differences for the other considered values 

of ngeo, which would require any particular analysis. 
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3.2.4.1 Flow field 

Figure 23 gives a qualitative insight into the structure of flow field showing the contours of the 

streamwise velocity component obtained for the Newtonian fluid. The flow field can be 

evidently split into two sub-regions. The radially inner sub-region near the wire is associated 

with a positive axial velocity, where the flow is driven by the viscous entrainment of liquid due 

the motion of the wire. The radially outer sub-region is characterized by reverse flow, carrying 

excess enamel out of the die. The resulting considerable ejection of excess enamel from the inlet 

is typically observed in the real application as well.  

The rheological behavior of the fluid notably affects the shape of the velocity profile, as seen 

from Figure 24 showing the radial variations of the streamwise velocity component at different 

axial positions. The results at the inlet, z/L=0, and half-way downstream, z/L=0.5, shown in 

Figures 24 (a) and (b), respectively, indicate that the shear thinning behavior of the fluid leads to 

a certain flattening of the velocity profile in the backflow region. This effect is most significant 

in the shear thinning non-isothermal case 3, where the viscosity is additionally reduced as the 

temperature is increased by viscous heating. An opposite effect on the velocity can be observed 

in the case of the shear thickening fluid, where the profile is steeper as compared to the 

Newtonian reference case. At the exit cross-section shown in Figure 24 (c) the profile of the 

shear-thinning isothermal case somewhat exceeds the others, which implies a higher volumetric 

flow rate exiting the die at the outlet cross-section. The differences observed in Figure 24 (c) 

give also insight into the interaction between the pressure and the viscous forces governing the 

generalized Couette-flow. For the shear-thinning isothermal case the favorable pressure gradient 

occurring at the exit evidently increases most effectively the flow rate relative to the purely 

shear-driven contribution entrained by the moving wire. Accordingly, case 2 exhibits the bulkiest 

profile at z/L=1. 

The differences in the shape of the velocity profiles observed in Figures 24 (a) and (b) also 

translate into different radial extensions of the backflow regions. Figure 25 shows the contour 

lines of zero axial velocity u*=0, which separate the regions of forward and reverse flow. It is 

clearly seen that shear thinning leads to a broader while shear thickening leads to a narrower 
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backflow region. The axial extensions of the backflow region do not differ significantly, as 

indicated by the intersection of the contour lines with the upper wall contour shown in the 

zoomed detail in Figure 25. 

 

 

Figure 23: Contours of the streamwise velocity component u* for Newtonian fluid (Case 1); ngeo=1.8; 

solid contours denote �∗ ≤ �, dashed contours denote �∗ > 0 
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Figure 24: Velocity profiles at different streamwise positions for ngeo=1.8: (a) z/L=0, (b) z/L=0.5,    

(c) z/L=1 
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Table 5 lists the volumetric flow rates exiting the die at the outlet cross-section V̇*
out together 

with volumetric flow rates exiting the die with the backflow at the inlet V̇*
backflow. As already 

indicated by the close velocity profiles at the outlet, the differences in the flow rates at the outlet 

are fairly small. In contrast, the amount of enamel which is ejected upstream at the inlet cross-

section is considerably decreased for the shear thinning fluids and significantly increased for the 

shear thickening fluid as compared to the Newtonian reference case. Due to the very small exit 

gap height it is conceivable that only a very small fraction of the fluid, which is entrained at the 

inlet, passes the outlet coating the wire. Most part of the entrained liquid is redirected and leaves 

the die as backflow at the inlet. This reverse motion gets evidently enhanced for the shear 

thickening fluid.   

 

 

Figure 25: Contours of zero velocity u*=0 separating forward flow and backflow regions 

Table 5: Flow rates at die outlet and backflow flow rates 

 Newtonian 
(Case 1) 

Shear thinning 
isothermal 
 (Case 2) 

Shear thinning 
non-isothermal 

(Case 3) 

Shear 
thickening 
(Case 4) 

     
V̇*out 0.0410 0.0434 0.0395 0.0407 
V̇*backflow 4.6239 3.4865 3.1224 7.5124 
V̇*out  / V̇*backflow [%] 0.87  1.24  1.27 0.54 
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A most significant influence of the rheological flow behavior can be observed in the variation of 

the wall shear stress along the wire displayed in Figure 26. Since the shear rate at the wall is 

always below zero, the wall shear stress is always negative as well. It is plotted with negative 

sign, which implies the higher the shown ordinate value the more it contributes to the total drag 

force Fd obtained as 

 

* *
1

0

2  .d w I wF LU dzπ η τ= − ∫    (90) 

 

Relating this quantity to then cross-sectional area of the wire Aw yields the corresponding tensile 

stress exerted on the wire written as 

 

. d
wire

wire

F

A
σ =    (91) 

 

All curves exhibit a characteristic peak closely upstream of the axial end of the backflow region 

shown in the zoomed detail of Figure 26. As expected the increase in viscosity due to shear 

thickening leads to the highest peak level, while the decrease in viscosity due to shear thinning 

and the raise in temperature (shear thinning non-isothermal case 3) leads to the lowest level for   

-τw
*. Since the momentum balance is basically governed by the pressure and the viscous forces, 

the streamwise variation of the wall shear stress is reflected in the variation of pressure, as 

depicted in Figure 27. The peak is highest for shear thickening and lowest for the shear thinning 

non-isothermal case. The axial position of the peak is close to the exit, and it does not differ 

notably for the considered cases, very similar the shear stress. The peak in the pressure also 

denotes the position, where the curvature of the axial velocity profile changes from positive near 

the inlet to negative near the exit. The different curvature can also be seen in the profiles already 

shown in Figures 24 (a)-(c).  
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Figure 26: Variation of wall shear stress along the wire; ngeo=1.8 

 

  

Figure 27: Variation of the pressure along the wire; ngeo=1.8 
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3.2.4.2 Heat transfer 

In the shear thinning non-isothermal case 3 heat transfer is included by solving the energy 

equation as given by Eq. (69). Figure 28 shows radial variations of the temperature at three 

selected axial positions, analogously to the velocity profiles presented in Figure 24. The solution 

for the Newtonian case 1 computed from Eq. (86) is displayed as well, representing a reference 

case with constant material properties. The increase in temperature caused by the viscous heating 

is well visible, but it is markedly less pronounced for the non-Newtonian fluid. The decrease in 

viscosity with both increasing shear rate and temperature effectively reduces the generation of 

viscous heat appearing as source term ( )2
* * *

, 0 0 0

*
Ec Prvisc u rφ η= ∂ ∂  on rhs of Eq. (69).  

Figure 29 shows the streamwise variation of the heat flux at the moving wire. It is always 

negative in sign for the Newtonian case as well as for the non-isothermal shear thinning case 

which simply follows from a global balance of internal energy. Due to the neglect of convective 

transport and the adiabatic outer radial boundary condition the viscous heat generated inside the 

enamel is completely transferred into the wire. This heat flux into the wire is markedly smaller 

for the shear thinning case due to the already mentioned lower production of viscous heat. The 

curves obtained for the heat flux essentially follow the trend of the momentum flux represented 

by the wall shear stress shown in Figure 26. As such they remain on an almost constant level for 

a large section near the inlet, and they exhibit an extremum near the exit.  

Despite the intense local heat flux into the wire induced by the strong viscous dissipation (the 

non-dimensional peak value shown in Figure 29 corresponds to more than qw=2x107 W/m2), its 

potential to heat up of the wire is still very small. Table 6 shows the total heat transferred into the 

wire, written as 

 

0

 
L

w w wQ q d dzπ= ∫    (92) 
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and the corresponding potential increase in the temperature of the wire on its way through the die 

computed as 

 

,

,
/2  
4

w
w

p w w w w

Q
T

c U dρ π
∆ =    (93) 

 

assuming for cp,w and ρw  material properties of copper. The very small heated surface combined 

with the very short residence time evidently allow only for an insignificant increase in wire 

temperature. Therefore despite the very intense generation of viscous heat no particular 

previsions are required in order to impede a possible undesirable heat up of the enamel as well as 

the surrounding material. This holds true for the Newtonian as well as the non-Newtonian fluids. 
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Figure 28: Temperature profiles at different streamwise positions for ngeo=1.8: (a) z/L=0,               

(b) z/L=0.5, (c) z/L=1 
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Figure 29: Heat flux along the wire; ngeo=1.8 

 

 

Table 6: Total heat flux into the wire and corresponding potential change in wire temperature; 

ngeo=1.8 

 Newtonian 

(Case 1) 

Shear thinning 

non-isothermal 

(Case 3) 

Qw [W] 2.64 1.94 

∆Tw [K]  1.76 1.44 
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3.2.5 Evaluation against numerical results 

The numerical approach generally termed “Computational Fluid Dynamics” (CFD) solves 

numerically the discretized representation of the full set of transport equations. As such it is in 

general computationally far more expensive than the analytical approach. Since there are 

practically no experimental data available on the flow field inside enameling dies, CFD 

simulations basically represent the only reliable approach to provide comprehensive data for 

validation. The used CFD setup will be explained in detail in the following section. 

3.2.5.1 CFD setup 

The problem of wire coating basically represents a two phase problem involving gas-liquid 

interfaces between the ambient air and the initial dip coat deposited upstream of the die, and the 

thin final coat exiting the die. Considering nonetheless the flow inside the die as purely single-

phase requires some justification for excluding a possible two-phase flow situation as 

schematically shown in Figure 30. 

 

 

Figure 30: Possible two-phase flow situation inside the die 

Therein, V̇in represents the incoming volumetric flow of enamel which has been deposited on the 

wire in the dip coating step. Inside the die this incoming amount of enamel per time unit is split 

into two branches. V̇exit represents the amount of enamel which exits the die at the outlet with a 

very small deposition height determined by the exit gap height of the die. V̇rev >>V̇exit represents 
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the much larger amount of enamel directed back towards the die inlet due to the axially 

converging geometry of the gap. Sustaining the conditions shown in Figure 30 would require a 

stable balance of forces on the liquid and the air side of the meniscus inside the die. Introducing 

estimates for the capillary and viscous pressure forces on the liquid side, and for the dynamic 

pressure on the air side this balance would require 

 

.
2

2
w w

air
U U

h h

σ η ρ+ ≈    (94) 

 

Rescaling into a non-dimensional representation 

 

1 w
air

w

U h

U h

σ ρ
η

+ ≈    (95) 

  

makes evident that the equality stated in (94) does not hold, as the rhs, which can be rewritten as 

 

 1air wU L h

L

ρ ρ
ρ η

 
 
 

≪   

 

is well below unity due to the small density and aspect ratios. Hence, the die can be assumed as 

completely occupied by the liquid, which allows for a pure single-phase consideration of the 

flow inside. 

Figure 31 shows the computational domain used for the single phase simulations, indicating the 

individual boundaries. The flow was assumed as steady and axisymmetric. The wall boundary 

conditions strictly follow the analytical model. Accordingly, no-slip conditions were imposed at 

the inner and the outer radial boundary of the domain, while for the temperature a constant value 

boundary condition was set at the moving wall, and an adiabatic boundary condition was set at 

the outer radial wall. As can be seen from Figure 31, the computational domain is extended 
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upstream of z=0 by a short cylindrical section. The attachment of this short cylinder of 10% 

length of the die allows for some axial development of the Couette-type flow in order to provide 

flow conditions at z=0, which are well comparable with the inlet conditions of the computations 

with the lubrication theory based analytical model. Uniform ambient pressure p=p0  and 

reference temperature T=Tw were prescribed at the inlet and the outlet of the computational 

domain, respectively. Although the temperature is not constant at the exit, imposing a constant 

temperature does not have any significant effect on the temperature field inside the domain, as it 

will be seen in the discussion of the results. This insensitivity can be attributed to the negligibly 

small effect of heat conduction in the axial direction and to the only outgoing flow at the die exit. 

The non-Newtonian rheological behavior as described by Eq. (87), where u rγ = ∂ ∂ɺ  (due to 

/v z u r∂ ∂ << ∂ ∂ ), was implemented with User Defined Functions (UDFs), as well as the 

additional temperature dependency given by Eq. (88). The total size of the computational mesh 

was about 40000 cells for all considered cases. 

 

 

Figure 31: Computational domain and boundary conditions of the numerical CFD model 
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3.2.5.2 Assessment of analytically predicted momentum and heat transfer  

The shear thinning non-isothermal case 3, assuming a geometry associated with the parameter 

ngeo=1.8 as die shape, was selected as validation case. This case particularly challenges the 

analytical model due to the coupling of the flow field with the temperature field through the 

dependence of the viscosity of both the shear rate and temperature. Both dependencies 

expectedly lead to the most pronounced reduction of the local viscosity below the reference 

value, which basically might increase the local values of the reduced Reynolds number             

Re�
2

w

I

U L h

L

ρ
η

 =  
 

, jeopardizing the assumption of the lubrication theory to neglect all convective 

transports. On the other hand, it has to be noted that this decrease in the local viscosity, which 

can result into a reduction by a factor 10 with respect to the reference value, mainly occurs in the 

highly sheared region near the exit of the die. Due to the small gap heights (h<<L) met in this 

region, the local reduced Reynolds number does effectively not exceed unity there.  

In Figure 32 the analytically obtained zeroth-order predictions for the flow field are assessed by 

comparing the radial profiles of the velocity at selected streamwise positions, analogously to 

Figure 24. The agreement is very good at all shown positions, which indicates that the inertia 

terms remain negligibly small despite the substantial decrease of the local viscosity due to shear 

thinning and increase in temperature. The good agreement observed for the velocity profiles is 

also reflected by the accordance of the streamwise variations of the wall shear stress shown in 

Figure 33. 

Some considerable disagreement appears in the zeroth-order predictions for the temperature near 

the entrance and in the middle region of the die, as seen from the temperature profiles in Figure 

34. As compared to the balance of momentum, where the advective transport scales with the 

reduced Reynolds number ε, the advective transport in the energy balance scales with the 

reduced Pèclet number εΤ= εPr which is for the considered parameter setting for Pr, 5 times 

higher than ε. Thus, the neglect of the advective transport in the energy balance has evidently a 

more pronounced effect in the region of the reversed flow. As indicated by the good agreement 

of the velocity profiles shown in Figure 32, the strain field is predicted very well, so that a 
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significantly different predicted generation of viscous heat can be ruled out as most relevant 

reason for the observed discrepancy in temperature. The disagreement of the temperature profiles 

between the analytical and numerical solution have therefore rather to be attributed to the way, 

how the generated viscous heat is distributed inside the domain. The zeroth-order solution 

provides radial heat conduction as the only available heat transfer mechanism. This limitation 

evidently leads to markedly increased temperature levels near the adiabatic outer wall. As seen 

from Figure 35, generally higher predicted temperatures also lead to an increased heat flux into 

the wire as compared to the numerical solution. 

The analytical zeroth-order has been further examined for its accuracy in predicting the total drag 

force on the wire considering very different geometries as determined by the parameter ngeo=1.8, 

10, and 20. The obtained results are summarized in Table 7 showing only small discrepancies to 

the numerical results of CFD. Based on this assessment the zeroth-order model appears as a 

reliable and computationally efficient approach for developing flow optimized die geometries. 

This will be demonstrated in the next section putting the focus the on the possible reduction in 

the drag force exerted on the wire which can be achieved by a variation of the converging 

geometry of the die for different rheological flow behavior. 
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Figure 32: Predicted velocity profiles compared against CFD results at different streamwise 

positions for Case 3,  ngeo=1.8: (a) z/L=0, (b) z/L=0.5, (c) z/L=1 
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Figure 33: Predicted wall shear stress compared against CFD; Case 3, ngeo=1.8 

 

Table 7: Drag forces obtained from the analytical and numerical (CFD) computation 

 
Newtonian 

(Case 1) 

Shear 

thinning 

isothermal 

(Case 2) 

Shear thinning 

non-isothermal 

(Case 3) 

Shear 

thickening 

(Case 4) 

ngeo=1.8 
FD [N] 

Analytical 1.0501 0.3503 0.2346 10.81 

Numerical 1.0608 0.3553 0.2424 10.843 

Relative error [%] 1.00 1.41 3.23 0.34 

ngeo=10 
FD [N] 

Analytical 0.5433 0.2721 0.1790 3.9836 

Numerical 0.5649 0.2783 0.1915 4.0495 

Relative error [%] 3.82 2.22 6.53 1.63 

ngeo=20 
FD [N] 

Analytical 0.4874 0.2620 0.1720 3.1624 

Numerical 0.5021 0.2693 0.1855 3.1584 

Relative error [%] 2.93 2.71 7.3 0.13 
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Figure 34: Predicted temperature profiles compared against CFD results at different streamwise 

positions for Case 3, ngeo=1.8: (a) z/L=0, (b) z/L=0.5, (c) z/L=1 
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Figure 35: Analytically predicted wall heat flux at the wire compared against CFD results; Case 3, 

ngeo=1.8 

3.2.6 Model application to generic die shapes 

The targeted reduction of the total drag force is based on the evaluation of influence of the shape 

of the die by varying the geometry parameter from ngeo=0.3 to ngeo=50. The four different fluids 

specified in Table 4 were considered again in order to cover the effect of the rheological 

behavior as well. Figure 36 gives an overview of the results of this evaluation. The increase in 

the geometry parameter ngeo leads evidently to a monotonous decrease of the drag force 

regardless of the rheological behavior. As for the influence of the shear rate and temperature on 

the viscosity, the total drag force clearly reflects the tendency which has already been indicated 

by streamwise variation of the wall shear stress for the case ngeo=1.8 shown in Figure 25. It 

always reaches the highest level for the shear thickening case, whereas it is always lowest for the 

case 3 associated with shear thinning and additional thinning at increased temperature. It 

becomes further evident that the beyond the value ngeo≈10 the total drag force shows no 

significant reduction any more for all types of fluids. This implies that assuming ngeo=10 or 

higher provides a shape of the die which meets the targeted low drag force very well. Since this 
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result applies to all considered fluids, there is no need for any further modification of the shape 

dependent of the different rheological properties. It is still important to note that the obtained 

total drag forces vary over orders of magnitude for the different types of fluid, as indicated by the 

logarithmic scale of the ordinates in Figure 36. The dashed ordinate to the right shows the 

corresponding values for tensile stresses on the wire as given by Eq. (91). The horizontal line 

represents the yield strength of copper, which has the value of about 70 N/mm2. The tensile 

stress reaches and exceeds this value for the case of shear thickening and Newtonian behavior of 

the fluid, as well as for the case of shear thinning in case of small values of ngeo. In general shear 

thickening and Newtonian behavior of the fluid do not describe the realistic enamel behavior, 

which is usually shear thinning.  Nonetheless, even though the stresses may remain below the 

yield strength limit, they can still be relevant due to the phenomenon termed “low stress 

elongation”. It is known that stresses well below the yield strength, can still cause 

microstructural changes of the wire material, making it possibly unusable for winding 

afterwards. 

 

  

Figure 36: Variation of total drag force and corresponding tensile stress dependent of the 

parameter ngeo for different fluids                                         
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3.3 First-order solution  

The first-order solution represents basically a linear perturbation of the zeroth-order solution, 

which accounts for the advective transport of momentum and heat. The perturbed solutions shall 

particularly provide more accuracy when considering strongly converging geometries associated 

with a rapid axial decrease in gap height. Accounting for the convective transport of heat shall 

also improve the predictions for the temperature field, especially for the Prandtl numbers 

exceeding unity. The first-order extension is applied only to Newtonian fluids with constant 

dynamic viscosity, though. For non-Newtonian fluids the perturbation of the non-linearly shear 

rate dependent viscosity would lead to an unfeasible complex mathematical formulation, which 

impedes the analytical solution of the problem.  

Recalling the non-dimensional form of the governing equations (52)-(55), including the series 

expansions given by Eqs. (62)-(66), and equating all terms of the order ε1 and εT
1, yields the 

following first-order balance equations for momentum and heat: 

 

* * * *
* * *

* * * * * *
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The first-order conservation equation of mass reads 

 

*

*

* * * * .1 1

d

w

r

r

r u dr constV = =∫ɺ
   (99) 

 

Assuming no-slip boundary conditions implies zero perturbation for the velocity at both the 

radially inner moving and outer fixed walls. Assuming a constant wall temperature at the radially 

inner boundary implies zero perturbation for the temperature as well. Analogously, the adiabatic 

boundary condition at the radially outer boundary implies a zero gradient for the first-order 

temperature solution. Based on these assumptions the radial boundary conditions read: 
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wr r u T= = =
 (100) 
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∂  (101) 

The prescription of fixed ambient pressure at the inlet and the outlet of the die requires imposing 

zero pressure perturbations at these axial boundaries.  

 

* * *, : 10  1    0
                          
z z p= = =

 (102) 

In contrast to the zeroth-order solution, accounting for the advective transport of momentum and 

heat into the axial direction the first-order solution would basically require axial boundary 

conditions for velocity as well as the temperature to compute the axial derivatives 
*

*
0u

z

∂
∂

and 
*

*
0T

z

∂
∂

in Eqs. (96) and (98), respectively. Such a setting is not needed here, as both expressions can be 
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simply obtained by evaluating the axial derivatives of the analytical zeroth-order solutions for u0
* 

and T0
*, given by Eqs. (84) and (86), respectively. 

The first-order solution for the axial velocity is obtained by integrating Eq. (96) in the radial 

direction and reads 
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 (103) 

 

where A(z*,r*) denotes a sum of integrals given as 
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It can be seen that the zeroth-order solution for the radial velocity component is required in the 

second integral in Eq. (104). This component is computed from the zeroth-order continuity 

equation as 
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The first-order pressure variation is computed by substituting Eq. (103) into the integral mass 

balance given by Eq. (99) and integrating the obtained expression over the axial direction. The 

first-order temperature is obtained by integrating Eq. (98) over the radial direction and it reads 
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where the integrals denoted by D(z*,r*)  and E(z*,r*) read 
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respectively. 

3.3.1 Test cases 

The results presented in the following were obtained for the same die geometries and operating 

conditions as defined in section 3.2.3 for the computation of the zeroth-order solution. 

Accordingly, the diameter of the wire was set to dw=0.15 mm, the velocity of the wire was set to 

Uw=22.27 m/s, the length of the die was L=25 mm, the gap height at the exit was he=5 µm and 

the difference in gap height between the die inlet and exit was assumed δ =2.5 mm. Since the 

first-order expansion shall help to make the analytical solution applicable to a wider range of gap 

geometries, the results obtained for three very different die shapes shall be discussed. The 

considered geometries are associated with the geometrical parameter ngeo=0.5, ngeo=1.8, and 

ngeo=10, which implies that the inner contour of the die varies from a purely convex to a purely 

concave shape. The first-order solution considers only Newtonian fluid, whose viscosity and 

thermal conductivity were assumed as η=0.25 Pas, and λ=0.5 W/mK, respectively. For the 

considered operating conditions and characteristic length scales this implies a Reynolds number 

ReL=2230. The specific heat capacity was varied as cp =2 J/kgK, cp =10 J/kgK, and cp =20 J/kgK 

in order to assess the capability of the proposed first-order extension to capture the convective 

transport of heat. The selected values of the specific heat capacity translate into Prandtl numbers 

Pr=1, Pr=5, and Pr=10, respectively. The corresponding values of the Eckert number read 

Ec=0.72, Ec=0.14, and Ec=0.07, respectively. The reduced Reynolds number defined in Eq. (53), 
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which is used as expansion parameter in the series expansion for the momentum is ε = 8.91x10-5. 

The reduced Pèclet number, which is used as expansion parameter in the series expansion for the 

internal energy balance (60), varies with the selected Prandtl numbers as εΤ = 8.91x10-5, εΤ = 

4.45x10-4, and εΤ = 8.91x10-4, respectively.  

The possible gain in accuracy provided by the first-order extension is further evaluated by 

comparing the predictions of the analytical model against 2D CFD results, which were obtained 

for the three considered die geometries using the same CFD setup as described in section 3.2.5.1. 

3.3.2 Assessment of the analytically predicted momentum and heat transfer 

Figures 37 (a) and (b) depict the axial velocity isotachs for the die geometry associated with 

ngeo=1.8 obtained from the extended lubrication theory solution (zeroth- + first-order solution) 

and numerical CFD solution, respectively, providing a qualitative comparison of the predicted 

structure of the flow field. The predicted velocity isotachs show very good agreement and exhibit 

typical features of the converging Couette type flow, such as the partitioning of the flow field 

into two sub-regions with forward and reverse motion, respectively. The same flow structure was 

already predicted by the zeroth-order solution as seen from Figure 23. The reason for this good 

agreement between the CFD results and both analytical solutions (zeroth-order, zeroth- + first-

order) is that this particular structure of the flow essentially follows from continuity, which is 

enforced, and, hence captured, by the analytical solutions at all orders. Figure 38 shows the 

predictions for the velocity isotachs obtained from the extended lubrication theory solution for 

the die geometries with ngeo =0.5 and ngeo =10. It can be seen that regardless of the geometrical 

outline the basic subdivided structure of the flow field remains unchanged. The contour 

associated with zero axial velocity, which separates two sub-regions, always resembles the shape 

of the outer gap contour.  

Despite the fairly accurate description of the basic structure of the flow field already provided by 

the zeroth-order solution, notable quantitative differences occur in the predicted velocity profiles 

at axial positions, where the cross-sectional area most rapidly changes as indicated by high axial 

gradients of the outer contour drd
*/dz*. This is illustrated in Figure 39 showing radial profiles of 
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axial velocity at four selected cross-sections for all considered die geometries. The inclusion of 

the advective transport in the first-order extension evidently eliminates very well the 

shortcomings of the zeroth-order solution indicated by its deviations from the CFD results at the 

positions with the steepest decrease in cross section.  

The observed improvements for the velocity profiles are also reflected in the axial variation of 

the pressure displayed in Figure 40. The first-order correction brings again the analytical solution 

very close to the CFD results in the in the axial cross sections, where the radial outer contour 

converges fastest. The observed discrepancy of the pressure profiles between the analytical 

predictions and numerical results in the close proximity of the die inlet is the result of the domain 

extension used in the CFD computations in order to match the inflow conditions with the 

velocity boundary conditions in the analytical solutions. Simulating the flow in such somewhat 

extended domain leads to a non-zero pressure at the position z/L=0 for all considered geometries. 

Its value is still vanishingly small, though.  

 

 

Figure 37: Axial velocity isotachs comparison (ngeo=1.8): a) zeroth- + first-order solution, b) CFD 
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Figure 38: Axial velocity isotachs (zeroth- + first-order solution): a) ngeo=0.5, b) ngeo=10 
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Figure 39: Radial profiles of axial velocity at selected cross sections: zeroth-order (solid line), 

zeroth- + first-order (dashed line), numerical CFD (dots) 
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Figure 40: Axial pressure variation: a) ngeo=0.5, b) ngeo=1.8, c) ngeo=10 
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As compared to the balance of momentum the balance of internal energy involves a source term 

on rhs of the formulation due to the production of viscous heat. The spatial variation of the 

viscous dissipation obtained from zeroth- + first-order solution written as 
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 (108) 

 

 is displayed in logarithmic scale downstream of z/L=0.5 in Figure 41. As expected, the viscous 

heat is mainly generated in the highly sheared region near the moving lower radial boundary 

with an increasing tendency towards the exit due to the converging geometry. Due to the neglect 

of convective heat transfer in the zeroth-order solution the generated viscous heat can only be 

transferred by conduction in the radial direction. As already addressed in the evaluation of the 

zeroth-order results in the previous section 3.2.5.2 this limitation leads to a significant 

discrepancy in the prediction of the temperature. The effect of this limitation can be qualitatively 

seen in the contours of temperature shown in Figure 42, where the zeroth-order solution exhibits 

markedly increased temperature levels near the adiabatic outer wall. On the other hand, including 

the convective transport significantly reduces the extension of the high-temperature region as 

indicated in Figure 42 by the highlighted contour line for T*=1.3. In the extended lubrication 

theory solution, as well as in the CFD results, the region associated with T*>1.3 occupies only a 

limited zone near the exit, while it extends across the entire radially outer part of the flow 

domain in the zeroth-order solution.   

A more quantitative insight into the possible gain in accuracy of the predicted heat transfer 

provided by the first-order extension is obtained by comparing the temperature profiles at 

different axial positions, analogously to the previous assessment of the velocity predictions. 

Figures 43-45 show the temperature profiles for the different geometries obtained for the 

considered Prandtl numbers Pr=1, Pr=5, and Pr=10, respectively. It has to be noted that the 

zeroth-order solution does not vary with the Prandtl number, due to the setting EcPr = const. 
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This implies that the viscous source term on the rhs of Eq. (69) does effectively not change for 

different Prandtl numbers, so that the zeroth-order solution becomes independent of Pr.   

 

 

Figure 41: Viscous dissipation (zeroth- + first-order solution) : a) ngeo=0.5, b) ngeo=1.8, c) ngeo=10 



 

Figure 42: Contours of non-dimensional temperature for geometry 

contour line denotes isotherm 
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dimensional temperature for geometry ngeo=1.8 with Pr=5;

contour line denotes isotherm T*=1.3 

 

=1.8 with Pr=5; black 
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In the case of unity value of Prandtl number the solutions generally agree very well for all 

considered die geometries due to the relatively small contribution of the convective heat transfer 

in the internal energy balance. At the cross sections associated with a strong contraction of the 

radially outer contour the first-order extension still somewhat improves the predictions to a 

similar extent as observed in the predictions of the velocities. For the higher Prandtl numbers 

significant differences appear near the radially outer wall. These discrepancies, which have 

already been addressed above in the discussion of the temperature contours, become evident for 

all geometries. The zeroth-order generally predicts considerably higher temperatures in the 

region adjacent to the outer adiabatic wall of the gap. The apparently stronger deviations for 

increasing Prandtl number can be attributed to the fact that the advective transport in the non-

dimensional integral energy balance scales with the reduced Pèclet number, such that its total 

neglect becomes more influential as the Prandtl number gets higher. Including the first-order 

extension produces evidently always considerably lower temperatures near the adiabatic outer 

wall, so that the predicted profiles come much closer to the CFD results for the two higher 

Prandtl numbers. For Pr=10 the temperature profiles of the extended solution fall even below the 

CFD solution. For Pr=10 and higher the increasingly high expansion parameter 
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 
  leads evidently to an overshooting reduction in temperature, when including 

only the linear first-order perturbation in the series expansion (65). Applying the series 

expansion solution to such high Prandtl numbers would require including the non-linear higher-

order terms.   

While the analytical solutions, especially the zeroth-order approximations, increasingly deviate 

from the CFD solutions as the Prandtl number is increased, no such pronounced tendency can be 

observed for the effect of the geometry. The discrepancies between the individual solutions 

generally tend to increase as ngeo becomes higher.  
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Figure 43: Radial temperature profiles at selected cross sections for Pr=1: zeroth-order (solid line), 

zeroth- + first-order (dashed line), numerical CFD (dots) 
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Figure 44: Radial temperature profiles at selected cross sections for Pr=5: zeroth-order (solid line), 

zeroth- + first-order (dashed line), numerical CFD (dots) 
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Figure 45: Radial temperature profiles at selected cross sections for Pr=10: zeroth-order (solid 

line), zeroth- + first-order (dashed line), numerical CFD (dots) 

 



 

A very detailed insight into the redistribution of the locally generated viscous heat is given by 

Figure 46, illustrating exemplarily
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sections. Both the radial and the axial convective term exhibit positive peaks near the moving 

inner wall. This effectively reduces the increase in temperature caused by viscous heating, whose 
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Figure 46: Radial variation of advective transport terms in horizontal and vertical direction and

the local viscous heat production for 
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detailed insight into the redistribution of the locally generated viscous heat is given by 

exemplarily the results for the case of ngeo=1.8 with Pr=5. The radial 

order convective distributions are shown here together with the locally 

visc, 0+1 computed according to Eq. (108) at four selected axial cross 

sections. Both the radial and the axial convective term exhibit positive peaks near the moving 

inner wall. This effectively reduces the increase in temperature caused by viscous heating, whose 

maximum is always located at the inner radial boundary of the domain. From this

locally generated viscous heat rapidly decreases to almost zero in the rest of the domain as 

indicated by the steep radial decrease of the red curves. 
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Including the convective transport of heat in terms of the first-order expansion necessarily affects 

the global energy balance applied to the whole flow domain as well. This global balance of 

internal energy is also of relevance for satisfying the conservation of energy, which is, unlike the 

conservation of mass, not explicitly enforced in the analytical solution. The global balance of 

internal energy over the whole flow domain inside the die can be written as 

 

* *
* * * * .1 0 wz z

H H P Qη= =− = +  (109) 

 

Therein, Pη
* represents total amount of viscous heat obtained as 

 

*

*

* * * * * *EcPr .
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d
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r

P S r dr dzη τ= ∫ ∫  (110) 

 

Considering dynamically and thermally steady state conditions the produced viscous heat has to 

completely exit the domain.  It can be partly conducted into the wire and partly convectively lost 

through the die inlet and outlet, as stated in the balance (109). The non-dimensional conductive 

heat flow into the wire is computed as 

  

*

*
* * *

*
.

1
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w w

r

T
Q r dz

r

∂= −
∂∫  (111) 

 

The convective heat flows at the die inlet (z*=0) and outlet (z*=1) are obtained as 
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respectively. It is noted that the total convective heat flow at the inlet is always negative, 

H*
z*=0<0, due to the strong reverse flow in the radially outer region near the adiabatic wall of the 

die.  

The individual contributions to the energy balance as obtained for the considered variation of 

Prandtl numbers and die geometries are listed in the Tables 8-10. It can be seen that already the 

zeroth-order solution predicts considerably well the total amount of the produced viscous heat 

Pη
* for all considered cases. On the other hand, significant differences appear in the distribution 

of the outgoing heat flow. Considering an adiabatic radial outer boundary the total neglect of 

advective transport implies that the total generation of viscous heat must be fully balanced by the 

conductive heat loss into the moving wire in the zeroth-order solution, such that Pη
* = -Qw

*. In 

the case of Pr=1 the contribution of the advective transport appears to be fairly small, as seen 

from the relatively small convective heat losses predicted by the extended analytical and CFD 

solutions. For Pr=5, the contribution of the advective transport is evidently more pronounced, 

and it relatively increases with increasing value of ngeo. The convective loss through the die inlet 

runs up in the case of ngeo=10 to approximately 25% of the total production of viscous heat. The 

convective loss through the die outlet has a negligibly small contribution in all considered cases 

due to the very small exit gap height. The extended analytical solution (zeroth- + first-order) 

somewhat overpredicts the convective heat loss through the inlet as compared to the CFD 

solution for Pr=10. In turn, the conductive heat loss into the wire is somewhat underpredicted. 

Aside from this small deviation the extended analytical solution appears to describe the 

redistribution of heat in the global internal energy balance very well. 

Summing up the individual contributions according to the global balance (109) it can also be 

seen that the global conservation of energy is fulfilled in both the zeroth- and first-order solution 

for all considered cases.  
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Table 8: Energy balance for different die geometries; Pr=1 

 ngeo=0.5 ngeo=1.8 ngeo=10 
 0th 0th+1st CFD 0th 0th+1st CFD 0th 0th+1st CFD 
*

ηP  1.6451 1.6494 1.6502 0.926 0.928 0.929 0.3674 0.3714 0.3725 
*− wQ  1.6451 1.6296 1.6303 0.926 0.9116 0.9123 0.3674 0.353 0.3539 

*
*

0z
H =−   0.0194 0.0194  0.0161 0.0163  0.0178 0.0179 

*
*

1z
H =   0.0004 0.0005  0.0003 0.0004  0.0006 0.0007 

 

Table 9: Energy balance for different die geometries; Pr=5 

 ngeo=0.5 ngeo=1.8 ngeo=10 
 0th 0th+1st CFD 0th 0th+1st CFD 0th 0th+1st CFD 
*

ηP  1.6451 1.6494 1.6502 0.926 0.928 0.929 0.3674 0.3714 0.3725 
*− wQ  1.6451 1.5505 1.5507 0.926 0.8462 0.8455 0.3674 0.2798 0.2795 

*
*

0z
H =−   0.097 0.097  0.0804 0.0816  0.0888 0.0896 

*
*

1z
H =   0.0019 0.0025  0.0014 0.0019  0.0028 0.0034 

 

Table 10: Energy balance for different die geometries; Pr=10 

 ngeo=0.5 ngeo=1.8 ngeo=10 
 0th 0th+1st CFD 0th 0th+1st CFD 0th 0th+1st CFD 
*

ηP  1.6451 1.6494 1.6502 0.926 0.928 0.929 0.3674 0.3714 0.3725 
*− wQ  1.6451 1.4321 1.4515 0.926 0.7555 0.7622 0.3674 0.1758 0.1867 

*
*

0z
H =−   0.2110 0.1937  0.1681 0.1631  0.1885 0.1791 

*
*

1z
H =   0.006 0.005  0.0044 0.0037  0.0071 0.0067 
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3.4 Scope of the analytical model  

Based on the discussion of the analytical results and the validation against CFD data the scope 

and the limits of the zeroth-order solution, which essentially represents the full lubrication theory 

approximation, and of the first order extension can be summarized as follows: 

 

Zeroth-order solution 

- predicts the velocity field very well despite the effectively increased values of the local 

reduced Reynolds number above unity 

- captures very well the effect of different rheological properties in terms of shear thinning 

or shear thickening on the flow and temperature fields inside the die.  

- predicts reliably well the axial variation of the wall shear stress and the and the resulting 

drag force on the wire 

- captures sufficiently accurately the effect of the geometry of the die on the resulting total 

drag forces for all considered rheologies 

- describes fairly accurately the local production of viscous heat 

- exhibits major shortcomings in the predicted heat transfer as the Prandtl number exceeds 

unity. This particularly means that 

the increase in temperature caused by viscous heating is significantly 

overpredicted 

the conductive heat transfer into the moving wire is predicted too high 

the convective heat loss with the reverse flow at the inlet is completely 

disregarded in the global internal energy balance. 

First-order extension 

- accounting for the advective transport in the momentum balance improves the         

zeroth-order  predictions for the velocity at the positions inside the die with the steepest 

decrease in cross section 
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- the inclusion of the convective heat transport effectively leads to a smaller increase in 

temperature caused by viscous heating, bringing the predicted temperature profiles much 

closer to the CFD data 

- describes the individual contributions to the global balance of internal energy very 

accurately 

- is restricted to Newtonian fluids with constant dynamic viscosity. A shear rate dependent 

viscosity would lead to a first-order formulation, which cannot be solved analytically. 

Summing up, it can be stated that the zeroth-order solution can be applied as a reliable and 

computationally efficient tool when considering the flow field evolving inside the die for fluids 

with different rheological behavior in the large variety converging gap geometries, ranging from 

purely convex to purely concave. For an accurate description of the local heat transfer it is 

necessary to extend the model using the presented first-order perturbation in order to account for 

all relevant heat transfer mechanisms.  
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4. APPLICATION TO REAL ENAMELING DIE GEOMETRIES  

A highly controlled deposition of a defined liquid enamel layer on the wire surface is a 

prerequisite for the production of high quality magnet wires. Realizing this deposition based on 

the principle of die coating poses two particular challenges: 

First, the fresh coating must not be overheated in the drying and curing zones, which the wire 

passes immediately after each deposition step. This limits the residence time of the wire in the 

respective heated regions, implying that, the thinner the wire, the higher the production velocity 

(= wire velocity). In the practical application, this relationship is determined by the operating 

parameter “vxd” representing the product of the production velocity (given in m/min) and the 

wire diameter (given in mm). Due to the tendency to push this parameter as high as possible for 

productivity reason the thin wires are inherently subject to the highest flow induced shear forces.  

Secondly, for the sake of a most efficient coating process and low costs for diluent solution the 

manufacturers of enameled wire tend to deposit a highest possible amount of solid mass per each 

pass through the dies. This ambition fosters the general trend using fresh enamel solutions with 

the highest possible content of solid mass being mainly constituted by large polymers, which are 

less volatile during the drying and curing process. Using such highly concentrated fresh enamel 

solutions implies a strongly increased dynamic viscosity, which further adds to the total drag 

force on the wire. 

In summary, both challenges have in common, that they expectedly bring about significantly 

increased mechanical loads especially on the thin wires. Even though this increase may not yet 

be high enough for wire breakage, it may still lead to a so called “low stress elongation” (LSE) 

of the material, which makes the wire unusable for further application like winding on spools. 

Table 11 lists the horizontal wire enameling machines presently produced by the company MAG, 

including the ranges of possible wire diameters, velocities, and enamel solid contents they cover. 

The machine processing the thinnest wires is evidently associated with the most stringent upper 

limit in solid content. Accordingly, it was reported by magnet wire producers that the range of 

wire diameters processed on the machine Mozart Zero H3 is generally the most critical one, 

where both wire deformation and even wire breakage most likely appear even when applying  
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initial basecoat. 

 

Table 11: Horizontal machines, some of their key operating conditions and proposed ranges of solid 

content for the enamels  

Machine model Mozart Zero H3 Mozart Zero H4 Mozart Zero H5 Mozart Zero H6 

Wire material Copper Copper Copper Copper 

Wire diameter 0.15-0.35 mm 0.20-0.50 mm 0.30-0.80 mm 0.50-1.20 mm 

Production 
velocity 

1240-487 m/min 1135-416 m/min 733-236 m/min 416-111 m/min 

Enamel solid 
content 

up to 32% up to 36% up to 40% up to 45% 

 

 

Reliable drag force calculations require first of all a very accurate description of the die 

geometry. Wire enameling dies basically consist of a stainless steel body, into which the die core 

is embedded. While the geometry of the steel body is the same for all wire diameters, the inner 

radial geometry of the die core is varied in order to provide the targeted gap height between the 

moving wire and the inner surface of the die. Regarding the material the die cores are made from 

there are currently two types available on the market. The most widely used type of dies cores is 

made of hard metal. The other type is made of diamond, and is used rather scarcely due to the 

markedly higher price of the material.   
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4.1 Present die designs 

4.1.1 Hard metal dies 

As stated in the previous section the wire enameling dies usually consist of two main parts, the 

steel body and the core of the die. The first is typically produced in a standard geometry being 

the same for the whole range of die exit diameters. The die core is responsible for removing the 

excess enamel deposited on the wire surface in the preceding dip coating process and for 

ensuring the desired thickness of the fresh coating at the exit of the die. Therefore, the core part 

of the die has to be made from a material which can be processed with high geometrical 

accuracy, and also provides high durability during the operation. Hard metal can meet these 

requirements reasonably well. It is therefore widely used as core material, in particular tungsten 

carbide. 

 

 

Figure 47: Outer design of the die body 

 

 

Figure 48: Meridional section; inner design 
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Figure 47 shows the outer design of the die body, while Figure 48 shows a meridional cut 

through both the stainless steel body and the core at the die exit. The radially outer contour of the 

die is shown in Figure 49, including a more detailed view of the exit section made of hard metal. 

 

 

Figure 49: Hard metal die geometry 

The die cores are produced for a specific wire diameter. The pre-fabricated hard metal dies have 

in general a core with a conically shaped exit hole. The desired short cylindrical shape of the exit 

section, which essentially determines the resulting deposition height of fresh enamel, is realized 

in a further manufacturing step. In this final step the cylindrical exit geometry is obtained by 

pulling a bore with a defined diameter dbore = d through the converging exit section of the pre-

fabricated die. As seen from Figure 50 the resulting length of the cylindrical exit section, 

generally termed calibration region, depends of the bore diameter and the cone angle α of the 

exit hole of the pre-fabricated die. The increase in diameter due to the successive deposition of 

enamel in each pass through the dies has to be matched with a corresponding increase in exit 

diameter of the dies d being successively passed by the wire as well. This increase is generally 

realized in diameter steps of 5 µm. 
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Figure 50: Die exit section 

4.1.2 Diamond dies 

The dies with diamond cores also cover a wide range of wire diameters, so that they are basically 

applicable to all types of wire enameling machines. Usually the dies covering smaller wire 

diameters have cores made of natural diamond, while for the larger diameters synthetic 

polycrystalline diamond is mainly used. The radially outer contour of the die with a diamond 

core is shown in Figure 51. It can be seen that the main geometrical outline of the die is similar 

to the one with a tungsten carbide core. The design mainly differs in the detailed geometry of the 

exit section made of diamond, shown in the zoom in Figure 51.  

 

 

Figure 51: Diamond die 
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The complex production procedure of diamond dies ensures highest possible accuracy regarding 

the diameter and the shape of the calibration region. Since diamond can practically not be 

deformed it is no longer possible to use a bore to finalize the cylindrical calibration section as in 

the case of hard metal cores. 

The production process is divided into multiple steps. First, it is necessary to conduct an optical 

inspection for the selection of diamonds which are suitable for this kind of application. They 

must not have any imperfections in their internal structure, because during further manufacturing 

steps (especially drilling) any imperfection can cause breakage of the diamond making it 

unusable. After selecting appropriate diamonds without any relevant imperfections the top and 

the bottom surfaces of each diamond are flattened which become the inlet and the outlet cross 

sections of the final geometry. After that the diamonds are embedded in a sinter shell which 

finally holds the diamond core inside the die body. The realization of the accurate diameter of 

the calibration section is again a multiple stage process:  

A conical hole is initially drilled into the diamond using a special laser drilling technique. The 

surface of the obtained conical hole is then further smoothened with ultrasonic shaping, where an 

ultrasound probe gradually removes the step-like roughness elements produced by the laser 

drilling, making the surface optically smooth. In a final polishing step the targeted diameter of 

the cylindrical calibration section is produced with very high geometrical accuracy. In this step a 

thin wire covered with diamond paste is pulled through the die, grinding a small amount of 

excess material from the surface. This process can take even up to three days in order to ensure 

perfect surface quality. 

The outstanding hardness of the diamond material together with the sophisticated production of 

the calibration section brings about least possible deviations of the real geometry from the target 

geometry. Imperfections in the real geometry, such as a slightly oval instead of a cylindrical 

shape of the calibration section, inevitably lead to a faulty deposition, which, when accumulating 

in successive deposition steps, possibly lead to solid contact between the moving wire and the 

die, resulting in a breakage of the wire. Apart from the highly accurate geometry diamond is 

further extremely resistant to weir, so that it can resist against a long term change of the 

geometry during the operation.  
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4.2 Computational analysis 

The computational analysis of the flow evolving inside real enameling dies with a piecewise 

linear contraction of the radially outer contour was conducted analogously to the analysis of the 

flow inside dies with different generic shapes presented in the previous section. The present 

computations consider real-life geometries of hard metal and diamond dies, assuming for both 

types the same operating conditions.  

The computations in particular investigate the flow field evolving inside the wire enameling dies 

for the most critical cases, where wire breakage frequently occurs, as it is reported from the 

magnet wire producers. Since the focus of this investigation is on the prediction of the 

hydrodynamical drag force exerted on the wire as a possible reason for deformation and 

breakage of the wire, the computational results will all be presented in dimensional form. As 

already stated above, the production parameter vxd (= product of wire velocity and diameter) is 

generally pushed as high as possible for productivity reason, which implies that the small wire 

diameters are associated with very high production velocities. The most critical cases will 

therefore be met in the enameling of the thin wires. The present computations consider in 

particular the diameter dw=0.25 mm, which is well representative for the thin wire processing 

covered by the machine Mozart ZERO H3. The highest shear rates appearing during the 

complete multi-pass coating process will not be observed in the passage of the first die due the 

relatively large gap heights. The largest shear rates are rather expected in some of the successive 

passes, where the already solidified coating of the previous deposition steps effectively leads to a 

thicker wire entering the next die and, hence, smaller gap heights. For that reason the wire 

diameter actually chosen for computation exceeds the value of the bare wire diameter              

dw,0 = 0.25 mm, taking into account amount of enamel already deposited on the wire surface. As 

it can be seen from Table 11 the enamel which is currently applied to the considered thin wire 

diameter range contains between 25% and 32% solid mass fraction of polymer. It has been 

reported that using hard metal dies, exceeding the upper limit of this range would lead to 

permanent deformation or even breakage of the wire. The present computations attempt to gain 

more insight into this problem assuming two basecoat enamels with 25% and 45%, respectively. 
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Especially the latter concentration, which markedly exceeds the currently permissible range shall 

reveal to which extent the increase in viscosity can finally contribute to wire deformation and 

breakage due to an increased drag force.  

A reliable description of the flow field inside the die requires first of all a realistic description of 

the rheological behavior of the considered wire enamels. The shear rate dependent behavior of 

the fluid was described using series of measurements for different enamel solid contents. The 

obtained flow behavior was implemented into the analytical formulation using a Carreau-Yasuda 

model, whose model parameters were fitted to the measured data. The extension of the Carreau-

Yasuda model towards the second Newtonian plateau could not be based on experimental 

measurements, as the respective range of extremely high shear rates cannot be reached using 

conventional measuring techniques for measuring viscosity. The level of the second Newtonian 

plateau, which is indicated in the flow curves shown in Figure 52 (a) and (b) as dashed line had 

therefore to be arbitrarily chosen. 

 

 

Figure 52: Shear rate dependent viscosity; (a) Terebec 533-25 (b) Terebec 533-45 

The parameters used for fitting the Carreau-Yasuda model to the measurements are given in 

Table 12. 
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Table 12: Model parameters for Carreau-Yasuda model 

 Terebec 533-25 Terebec 533-45 

ηI [Pas] 0.0155 0.25 

ηII [Pas] 0.0145 0.0167 

K1 [s] 0.000145 1.74 x 10-5 

m1/2 [-] 1.4 0.3 

4.2.1 Results for hard metal dies 

Accounting for an already solid coating of height hs=0.01 mm which has been deposited in the 

passes before, the computations consider a wire diameter dw = dw,0 +2hs=0.27 mm. The wire 

velocity and die exit gap height were set to Uw=11.5 m/s, and he=8.2 µm, respectively. 

Figure 53 shows the contours of the axial velocity which were computationally obtained for the 

two considered wire enamels. The difference in solid content does evidently not affect the 

structure of the flow field inside the die, which is characterized by strong backflow in the 

radially outer part of the domain, carrying the excess enamel towards the die inlet, and forward 

flow in the radial inner region of the domain, where the enamel is entrained by the motion of the 

wire.  
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Figure 53: Velocity contours inside hard metal die: (a) Terebec 533-25, (b) Terebec 533-45 

A more quantitative insight into a possible effect of the different considered polymer 

concentrations shall be given by the velocity profiles obtained at selected cross-sections of the 

domain. The positions of the cross sections were chosen similarly to the discussion of the results 

for the generic die shapes located at the die inlet (z=0 mm), the middle (z=12.5 mm) of the die, 

and die outlet (z=25 mm), respectively. Figure 54 shows the velocity profiles as obtained at these 

three positions. At the inlet and the middle cross section the velocity profiles for the case of the 

fluid with 45% solid content are evidently a bit more bulky. This difference can be attributed to 

the fact that the enamel with 45% solid content exhibits a considerably more pronounced shear 

thinning behavior than the one with 25% solid content as seen from the flow curves in Figure 53. 

In the last cross section at the die outlet velocity profiles practically collapse so that the 

volumetric flow rate at the exit is the same. This implies that the amount of the deposited fresh 

enamel on the surface of the wire is not affected by the amount of solid content in this case. 
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Figure 54: Velocity profiles at different cross sections, hard metal die; (a) z=0 mm, (b) z=12.5 mm, 

(c) z=25 mm  
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Figures 55 and 56 show the streamwise variation of the pressure and wall shear stress along the 

wire for the considered enamels. All profiles evidently exhibit a sharp peak at the same axial 

position very close to the exit. The observed magnitudes of both pressure and wall shear stress 

are always higher for Terebec 533-45, which can be attributed to the higher apparent viscosity of 

this enamel.   

 

Figure 55: Streamwise variation of pressure along the wire for two considered enamels; hard metal 

die 

 

Figure 56: Streamwise variation of wall shear stress along the wire for two considered enamels; 

hard metal die 
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Figure 57: Subsections inside the die; hard metal die 

The axial integration of the wall shear stress along the surface of the wire between the inlet and 

the outlet gives the total drag force which is for the case with 25% solid content enamel    

Fd=0.0293 N and Fd=0.2285 N for the case with 45% solid content enamel. The local generation 

of drag force is analyzed in more detail by evaluating the individual contributions from six 

subsections of the domain as specified in Figure 57. The individual subsections are evidently 

distinguished by the different inclination angles α of the piecewise linear radially outer contour. 

The contributions to the total drag force coming from each individual subsection are given in 

Table 13. 

Table 13: Local distribution of drag force generation, hard metal dies; Terebec 533-25 and Terebec 

533-45  

 Subsection 1 2 3 4 5 6 Ʃ 

Terebec 
533-25 

Fd [N]  0.0192 0.0014 0.0009 0.0021 0.0074 0.0009 0.0319 

Contrib. [%] 60.19 4.39 2.88 6.43 23.04 3.07 100 

 

Terebec  
533-45 

Fd [N]  0.111 0.00519 0.0209 0.0247 0.06222 0.00448 0.2285 

Contrib. [%] 48.60 2.27 9.13 10.81 27.23 1.96 100 

Two subsections contribute evidently most to the total drag force exerted on the wire regardless 

of the applied solid content in the used enamel. In subsection 1 the major part of the drag force is 

generated, even though the cross section available for the flow is highest in this section, which 
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leads to the lowest shear rates. The relatively highest contribution of this subsection is simply 

due its axial length which makes up almost 80% of the total length of the die. The second 

significant contribution to the drag force comes from subsection 5. In this region the wall shear 

stress is increased to a sharp peak as seen in Figure 56. Even though the axial length of this 

subsection is relatively small, the peak in the local shear stress still leads to a significant 

contribution. The results of the present analysis of the local drag force generation suggest that a 

possible shape optimization should be focused on the variation of these two subsections in order 

to obtain a significant drag force reduction.   

4.2.2 Results for diamond dies 

The computations consider the same operating conditions as in the case of hard metal dies, 

assuming again dw=0.27 mm, Uw=11.5 m/s, and he=8.2 µm for the wire diameter, velocity, and 

exit gap height, respectively. The total length of the die is somewhat shorter than that of the hard 

metal die. This is due to a short diverging section at the die exit which results from the 

production process of the diamond core. Under the considered contact conditions the radial outer 

surface of this diverging exit section remains unwetted, as schematically shown in Figure 58.  

 

 

Figure 58: Detail of the diamond core with diverging exit section 
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This section has therefore no relevant effect on the flow field upstream and the finally obtained 

enamel deposition, so that it can be excluded from the computational domain leading to a 

somewhat shorter axial length L=24.2 mm.     

Analogously to the hard metal die case the solid polymer content of the enamels was 25% and 

45%. The velocity contours shown in Figure 59 provide a qualitative insight into the structure of 

the velocity field evolving inside the diamond die for the two considered enamels. Similar to the 

case of the hard metal dies the structure of the flow field exhibits also no notable difference for 

the considered enamels. Both cases show again the typical structure of the Couette-type flow 

inside converging gaps, featuring a strong reverse flow towards the inlet for continuity reason.  

 

 

Figure 59: Velocity contours inside diamond die: (a) Terebec 533-25, (b) Terebec 533-45 

 

A more quantitative insight into the velocity field is obtained again by comparing the velocity 

profiles at three different cross-sections located at the inlet, the middle, and the outlet of the die, 

with the axial positions z=0 mm, z=12.1 mm, and z=24.2 mm, respectively, as shown in      

Figure 60. Similar to the results for the hard metal dies the enamel with the higher solid content 

shows somewhat more bulky profiles at the two upstream positions due to the more pronounced 

shear thinning, while the profiles collapse at the exit cross-section. 
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Figure 60: Velocity profiles at different cross sections, diamond die; (a) z=0 mm, (b) z=12.1 mm,   

(c) z=24.2 mm  
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Streamwise variations of pressure and wall shear stress are shown in Figures 61 and 62 

respectively. They both exhibit a peak at close to the die exit as already observed in the case of 

hard metal dies. It can be seen that the peak values of both pressure and wall shear stress are 

higher in the case of diamond dies as compared to the hard metal dies.  

 

  

Figure 61: Streamwise variation of pressure along the wire for two considered enamels; diamond 

die 

 

Figure 62: Streamwise variation of wall shear stress along the wire for two considered enamels; 

diamond die  
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Even though the observed peak of the wall shear stress is higher in the case of diamond dies, the 

integral values of the drag force computed as Fd=0.0319 N for the case with 25% solid content 

and Fd=0.1951 N for the case with 45% solid content are lower as compared to the drag forces 

computed for hard metal dies. The reason for that is that the peak shear stress region extends 

along a very short part of the wire, so that it does not significantly contribute to the total drag 

force.  

Similar to the hard metal dies the diamond dies are also subdivided into individual axial 

subsections based on the inclination angle of the piecewise linear outer contour to analyze the 

local generation of drag force. The positions of the individual subsections, which are again 

distinguished by the different inclination angles α of the radially outer contour, are shown in 

Figure 63. The contribution of each individual subsection to the total drag force is listed in   

Table 14. 

 

 

Figure 63: Subsections inside the die; diamond die 

 

 

 

 



 

118 

 

Table 14: Local distribution of drag force generation, diamond dies; Terebec 533-25 and Terebec 

533-45  

 Subsection 1 2 3 4 5 6 Ʃ 

Terebec 
533-25 

Fd [N] 0.0174 0.00054 0.00234 0.00242 0.00625 0.00034 0.0293 

Contribution 
[%] 

59.43 1.84 7.99 8.25 21.32 1.17 100 

 

Terebec  
533-45 

Fd [N] 0.1044  0.0098 0.005 0.0123  0.0553 0.0082 0.1951  

Contribution 
[%] 

53.55 5.03 2.56 6.29 28.35 4.22 100 

 

As already observed in the results for the hard metal dies, the major contributions in the case of 

diamond dies come also from the relatively longest subsection at the inlet 1, and the most 

downstream converging subsection 5 immediately before the cylindrical exit section 6. A good 

starting point for a possible drag force reduction through optimization of the geometry could 

therefore lie in a modification of subsections 1 and 5. 

4.3. Experimental validation of predicted drag force 

Since there exists basically no experimental data on the flow induced drag forces occurring in the 

presently considered generalized Couette flow, it was decided to perform own measurements 

under real operating conditions using a specially designed experimental device. The acquired 

data should provide additional validation of the present analytical model, along with the already 

obtained numerical data from CFD simulations.  

4.3.1 Experimental facility 

An experimental device was specially designed to measure the drag force exerted on the wire 

when being pulled through the coating die. As schematically shown in Figure 64, the 

measurement principle is based on Newton’s third law (actio=reactio). Following this principle 

the drag force exerted on the wire is obtained indirectly by measuring the equivalent counter 
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force which holds the die in place. The counter force is measured using a ring force transducer 

placed between the die carrier and the support. This setup allows for a measurement of the drag 

force without perturbing the coating process.   

 

 

Figure 64: Measurement device operating principle 

The ring force transducer is basically a piezo-electric annular pressure sensor. It is illustrated in 

Figure 65. 

 

Figure 65: Ring force transducer 

Based on the analytical computations the expected magnitudes of the hydrodynamically induced 

drag forces are relatively low. Therefore, a sensor covering the range of relatively small forces 

up to 10 N was chosen. The accuracy of this measuring device is 1% of the maximum measured 
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value, which corresponds to 0.1 N. A meridional cross section through the finally realized 

measuring device is displayed in Figure 66. 

 

 

Figure 66: Meridional cross section through the measuring device 

It can be seen that the die carrier is not rigidly connected with the ring force transducer, but with 

a spring in between. This spring elastic, hence compressible, connection protects the transducer 

from a possible mechanical overload during measurements due to some unforeseen forces. The 

opening above the ring force transducer allows for a monitoring of the enamel temperature, if 

necessary, using a thermocouple. Due to its relatively small dimensions the device can be 

mounted at any die within the die set arrangement.  

4.3.2 Measured drag forces compared against computational results 

The measurements were performed on a real production machine using an arrangement of ten 

diamond dies, where only basecoat enamel with 45% solid content was successively deposited 

on a wire with a bare wire diameter dw,0=0.25 mm. Two devices for measuring the drag force 

were mounted at the first and the last pass. The first pass was chosen, because there it is easy to 
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determine the gap height at the die exit, since there is no enamel deposited yet on the surface of 

the oncoming wire. The oncoming solid deposition height ahead of the last pass was determined 

assuming a uniform enamel deposition per each pass and taking into account the accumulated 

losses of solid content appearing during the drying and curing steps. The measurements were 

started after stringing in the wire into the machine. The velocity of the wire was gradually 

increased towards the final production velocity Uw=690 m/min, as it is generally done for the 

considered wire diameter to provide the required residence time in the oven during the heat up. 

The velocity of the wire was further increased up to 1200 m/min, which represents almost twice 

the production velocity typically used for the processed wire diameter dw=0.25 mm. This 

substantial increase of the wire velocity far above typical setting in production did still not lead 

to any breakage of the wire.  

Figure 67 shows the drag force which was measured at the last die of the die set arrangement for 

the different wire velocities. The corresponding predictions of the analytical model are included 

for validation as well. The computational predictions lie evidently always well within the 

uncertainty range of the measurements. The measurements do not clearly exhibit the same 

essentially linear dependence of the wire velocity as seen in the analytical results. In the present 

flow configuration non-linearity mainly resides in the non-Newtonian stress-strain dependence. 

However, due to the extremely high shear rates the fluid effectively behaves as Newtonian near 

the wire, so that the experimentally observed deviation from linearity should be rather attributed 

to an inaccuracy in the measurements. 
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Figure 67: Comparison between computations and measurements 

4.4 Discussion of possible reasons for deformation and breakage of the wire 

The computational analysis of the flow inside the hard metal and diamond dies yielded very 

similar drag forces for both types. Using these drag forces and the cross section of the bare wire 

with the diameter dw,0, Eq. (91) yields for the enamel with 25% solid content mechanical tensile 

stresses σwire=0.65 N/mm2, and σwire=0.6 N/mm2 for the hard metal and diamond dies, 

respectively. For the enamel with solid content of 45% the tensile stress is increased to  

σwire=4.65 N/mm2 in the case of hard metal dies, and to σwire=4 N/mm2 in the case of diamond 

dies. For all considered cases the computed tensile stresses remain evidently well below the limit 

of plastic deformation of pure copper σ02=70 N/mm2.  

Even though the drag force generated inside a single die is apparently too small for producing 

any significant plastic deformation of the wire, it is still possible that the drag force is 

accumulated in the successively passed dies to finally reach a critically high level for 

deformation. Additionally, the observed fairly low levels of drag forces may still be sufficient to 

cause a so called low stress elongation (LSE), where a microstructural change of the wire 
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material is induced by the stresses considerably lower than the yield stress limit of plastic 

deformation. This phenomenon is even more relevant, when the stressed wire enters the oven for 

drying and curing due to its exposure to highly elevated temperatures.  

Despite the possible relevance of the flow induced drag force for an undesired change in the 

microstructure of the material and even plastic deformation the resulting tensile stresses will 

most unlikely exceed the ultimate tensile stress of copper σUTS=200 N/mm2 even in a worst-case 

scenario. Thus, the flow induced drag force can be excluded as a possible reason for wire 

breakage. The fact that the tests with diamond dies did not lead to any wire breakage, even when 

strongly exceeding typical production velocities, suggested to look for other possible reasons for 

the reported wire breakage in the case of hard metal dies. Since the calibration section made of 

hard metal can be manufactured with considerably lower geometrical accuracy than those made 

of diamond, the expectedly stronger deviations from the perfect target geometry appeared as 

most likely alternative reason for wire breakage. The effect of such geometrical imperfections on 

the coating was therefore investigated in more detail, as will be shown in the following 

subsection.  

4.4.1 Die imperfections 

Deviations from the target geometry may have different reasons. They can be introduced during 

the production process, or, they may be caused by the wear of the die occurring during a longer 

period of application. A faulty die geometry inevitably leads to a faulty deposition of enamel on 

the wire surface, which can further accumulate, when the wire passes through a sequence of dies. 

The computational model developed in the present work was used to investigate the influence of 

a faulty die geometry on the deposition. The computations considered three different scenarios 

which are representative for an imperfect geometry. The respective cross sections are shown in 

Figure 68. 
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Figure 68: Considered die imperfections 

Case A represents a symmetric deviation from the perfectly round die shape, resulting in an oval 

shape of the die exit cross section. Case B represents an asymmetric deviation, where the lower 

part of the exit cross-section is concentric with the wire, while the upper part has an oval shape. 

In Case C the exit cross-section has the same symmetric oval shape as in Case A, but the position 

of the wire is eccentric. The effective gap heights at different circumferential positions are shown 

for the individual cases in Table 15. The considered geometrical imperfections only affect the 

cylindrical calibration section at the die exit. The eccentric position of the wire assumed as 1 µm 

in Case C axially extends through the whole domain. The perfect reference geometry, from 

which the imperfect cases deviate, is associated with an axisymmetric exit gap height he=8.2 µm. 

The diameter and velocity of the wire are assumed as dw=0.27 mm and Uw=11.5 m/s, 

respectively. 

Table 15: Gap height he at selected circumferential positions of the exit cross section 

he [µm] Θ=0⁰ Θ=90⁰ Θ=180⁰ 

Case A 8.2  10.2  8.2  

Case B 9.42  8.198  8.98  
Case C  9.2  10.3  7.2  
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Figure 69: Influence of the geometry on enamel deposition, the deposition height of the perfect 

reference geometry denoted by the dashed line 
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Figure 69 shows the circumferential variation of the deposition height as predicted for the 

different cases. As one might expect, the obtained variations of the deposition height follow 

clearly the circumferential variations of the exit gap height due to the imperfect geometries. Case 

C turns out as the most critical scenario, as the deposition height exceeds here most significantly 

the target value. It has to be emphasized that the faults in the deposition height can accumulate, 

when the wire is passed through successive dies having also imperfect geometries in the 

calibration section. This may finally lead to a solid contact between the coating, which has 

already been deposited and solidified in previous die passes, and the surface of the die, as 

schematically shown in Figure 70. Such a solid contact between the thin wire and the die at the 

typically high production velocity will inevitably lead to wire breakage.  

 

 

Figure 70: Example of a possible solid contact between the die and wire 

The present analysis helps to explain, why the wire breakage mainly occurs when using hard 

metal dies. The geometries of the calibration section of these dies can be manufactured with 

markedly lower accuracy than it is achieved with diamond dies, so that the imperfections in the 

geometry are the most likely reason for wire breakage. In order to rule out this shortcoming as 

much as possible the proposed new die designs discussed in chapter 5 considered therefore only 

dies with diamond cores, because only these can be manufactured with the required geometrical 

accuracy as needed for future application with further increased solid content and production 

velocities. 
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5.  NEW DIE DESIGNS 

5.1 Motivation and reasoning 

Even though the flow induced drag forces turned out to be too small for breakage of the wire, a 

reduction in total drag force is still beneficial in the light of the expected advances in the 

operating conditions. The availability of enameling dies, which generate lowest possible drag 

forces, gives room to substantially increased production velocities and solid mass contents 

without the hazard of an undesirable permanent elongation of the wire in the heated zone of the 

oven. Finally, some of the suggested modifications of the geometry may simplify the production 

process of the die, which would lower their price. The relatively high price is especially an issue 

for the diamond dies, due to the expensive material, but also due to the sophisticated multi-step 

manufacturing.  

5.2 Proposed designs and computational analysis 

Three different modifications of the currently used design of the dies with a diamond core were 

proposed. The modifications are based on the analysis of the computed flow field revealing the 

local generation of drag force as well as inputs from the manufacturer of the dies. The latter 

ensured that the proposed designs can be practically realized at acceptable, or better, reduced 

production costs as compared to the current design. The current and the proposed designs 

together with their salient geometrical modifications are listed in Table 16. Following the 

analysis of the local drag force generation in the current die design (see Table 14) the focus of 

the modifications was put on the subsections 1 and 5. After discussions with the die producer, it 

was seen that a modification of the geometry of subsection 5 was not possible without extensive 

investment into the development of specialized tools required for its production. It was therefore 

decided to keep the inner contour of the diamond core unchanged, and modifying only the axial 

position of the core and the geometry of subsection 1. As seen from the sketch in Figure 72 the 

core of the design AK1 is axially shifted towards the very end of the die, so that the axial ends of 
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the steel body and the diamond core are in plane. This modification was not proposed for drag 

force reduction reason but rather for reduction of production costs.  

 

Table 16: Proposed geometry variations 

Design Description 

AK0 Currently used die geometry 

AK1 Calibration region shifted towards exit 

BK0 Reduction in the inlet section length 

BZ0 Reduction in the inlet section length and change from conical to cylindrical inlet 

geometry 

 

 

In the design BK0 shown in Figure 73 the conical inlet section (= subsection 1) is strongly 

reduced in length. The diameter of the inlet Din is still left unchanged leading to an increase in 

the cone-angle of the axial contraction. The design BZ0 shown in Figure 74 features the same 

reduced axial length of the inlet subsection 1 as the design BK0, but its shape is changed from 

conical to cylindrical. This modification was again mainly motivated by savings in production 

costs, as cylindrical holes can be produced at much lower costs than conical ones.  
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Figure 71: Geometry AK0 

 

 

Figure 72: Geometry AK1 
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Figure 73: Geometry BK0 

 

 

 

Figure 74: Geometry BZ0 
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The effect of the geometry modifications on the flow field inside the die and the resulting drag 

force was computationally investigated using the analytical model. The calculations were carried 

out for the basecoat with 45% solid content using again the experimentally based Carreau-

Yasuda flow curve shown in Figure 53 (b). Analogously to the computations already performed 

for the currently applied die geometry the wire diameter and velocity were assumed as     

dw=0.27 mm, and Uw=11.5 m/s, respectively. The exit gap height was set to he=8.2 µm.  

The computationally obtained non-dimensional axial variations of the pressure and shear stress 

along the wire are shown in Figures 75 and 76, respectively, where the reference scales only 

differ in the axial length scale L. The peak in the pressure near the exit does evidently not vary 

significantly, which is due to the fact that the geometry of die core at the exit was not modified. 

However a notable increase in pressure can be observed in the inlet section of the die due to the 

reduction in the length of subsection 1, and, more pronouncedly, due to a change from a conical 

to a cylindrical shape.  

 

 

 

Figure 75: Axial variation of pressure along the wire 
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Figure 76: Axial variation of wall shear stress along the wire 

 

 

Figure 77: Velocity profiles at the die inlet 

 



 

133 

 

The tendencies observed for the pressure are also seen in the axial variations of the wall shear 

stress. The shortening and the change from conical to cylindrical shape of the inlet section 

(subsection 1) leads to an increase in shear stress in the inlet region, while the peak near the exit 

essentially remains the same. Table 17 shows the total drag forces and the relative contributions 

of the individual subsections resulting from the axial variation of the shear stress along the wire. 

The shortening of subsection 1 brings about 25% reduction in drag force for the design BK0 and 

a little bit less for BZ0. The constantly narrower gap height associated with the cylindrical shape 

apparently increases the general magnitude of shear stress as compared to the conical gap of 

BK0, which translates into a higher generation of drag force in subsection 1 observed for BZ0. A 

further concern was related to a possible increase in the intensity of the backflow, which may 

arise with the shortening of the inlet section and the reduction of the annular cross section 

between the wire and the die near the inlet in the case BZ0. The resulting higher kinetic energy 

of the backflow would expectedly enfavour a very fast breakup of the ejected liquid lamella into 

small droplets leading to undesirable effects like cross contamination. Using the velocity profiles 

obtained at the inlet cross-section (z/L=0), as shown in Figure 77, the rates of the ejected kinetic 

energy can be computed as 
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As seen from the last column in Table 17, the rate of the ejected energy is not significantly 

increased for the shortened die with the conical shape of the inlet section (BK0), while it is even 

decreased for the cylindrical inlet section (BZ0). These results suggest that both the shortened 

geometries will not lead to a more rapid fragmentation of the continuous liquid backflow.  
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Table 17: Local generation of drag force and rates of kinetic energy ejected at the die inlet 

Design Subsection 
Fd  

[N] 

Ekin x106 

[W] 

 1 2 3 4 5 6 Ʃ  

AK0 
53.55% 5.03% 2.56% 6.29% 28.35% 4.22% 100% 

6.047  
0.1044  0.00981   0.00499  0.0123  0.05531  0.00823  0.1951  

  

AK1 
52.18% 7.58% 2.43% 6.08% 27.62% 4.11% 100% 

6.326  
0.1046  0.01519  0.00487  0.0122  0.05335  0.00824  0.2004  

  

BK0 
41.61% 6.23% 3.14% 7.87% 35.8% 5.34% 100% 

6.711  
0.063  0.00944   0.00476  0.0119  0.0542  0.00809  0.1515   

  

BZ0 
44.65% 6.63% 3.03% 7.36% 33.38% 4.95% 100% 

5.736  
0.0736   0.0109   0.005  0.0121  0.05501  0.00816  0.1648  

 

The present analysis outlines possible gains for the magnet wire coating process yielded by 

relatively simple modifications of the die geometry. As seen from Table 17 the modifications 

affecting both the length and angle of subsection 1 lead to the most significant reduction in the 

hydrodynamically induced drag force of up to 25%. Based on the computed magnitudes of the 

kinetic energies ejected with the backflow at the die inlet, possible negative effects like cross 

contamination due to the intensified backflow turned out as very unlikely. Aside from the drag 

force reduction, the proposed shortening and simplification of the geometry of the subsection 1 

leads to a reduction in the manufacturing costs of the dies, reducing their total price.  
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6.  SUMMARY AND CONCLUSIONS 

The flow evolving inside wire enameling dies applied in the production of electrically insulated 

magnet wires was computationally investigated. The analysis should help to identify possible 

flow related reasons for the appearance of wire hardening due to plastic deformation, or in 

extreme cases even wire breakage, as frequently reported by magnet wire producers. For the 

mathematical description of the generalized Couette flow typically met in this coating 

application an analytical model was developed based on the lubrication theory approximation of 

the Navier-Stokes equations. The developed model does also account for non-Newtonian 

behavior of the working fluid and heat transfer, which allows investigating the effect of different 

rheological properties in terms of shear thinning or shear thickening on the flow and temperature 

fields as well. The computational analysis was applied to a wide range of generic converging die 

geometries following a generalized cosine-type shape as well as real die geometries currently 

used in the production.  

Due to the lack of experimental data on the flow field inside the considered narrow gaps, a 

detailed validation of the analytical predictions had to rely mainly on a comparison against 

numerical results obtained from CFD. The analytically predicted flow field showed generally 

very good agreement with the numerical data. Some deviations appeared mainly at axial 

positions associated with a strong contraction of the annular cross-section. More significant 

discrepancies were observed in the prediction of the temperature field for larger Prandtl numbers. 

These observed deficits clearly illustrate the limits of the lubrication theory due to the total 

neglect of advective transport, especially when applied to strongly converging die geometries 

and fluids with high Prandtl number. The lubrication theory based model was therefore extended 

by first-order perturbations accounting for the advective transfer in both the momentum and 

energy equations for the case of a Newtonian fluid. In a comprehensive comparison against CFD 

results the proposed first-order extension was proven to yield a significant gain in accuracy. 

Especially the convective redistribution of viscous heat, which is increasingly important for 

higher Prandtl numbers, was shown to be captured considerably well by the extended model. 

Less pronounced improvements were observed for the predicted velocity field, which is already 
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described reasonably well by the zeroth-order (non-extended) base model. The total neglect of 

the advective (inertia) terms appears to be less critical for the solution of the momentum transfer. 

Aside from a more accurate prediction of the local variation of the velocity and, particularly, the 

temperature, the proposed first-order extension was also proven to describe better the global 

balances of momentum and heat as compared to the zeroth-order base model. 

A special device was designed for measuring the total drag force on the wire when being passed 

through an enameling die under real production conditions. In the view of the very limited access 

of standard flow measuring techniques to the considered flow configuration these measurements 

provided at least some experimental validation data for this certainly only global, but still 

important, output quantity. The comparison of the measured total drag forces against the results 

obtained from the zeroth-order model for a real die geometry and real shear-thinning enamels 

showed very good agreement.  

The computed, and experimentally validated, levels of drag force were, even for the very viscous 

enamels with high solid content, always much lower than the yield strength of copper, so that 

they could lead at most to some plastic deformation of the wire due to effect of force 

accumulation along the die set, but certainly not to the observed wire breakage. Since wire 

breakage never occurred in the test runs with diamond dies, geometrical deviations from the 

perfect target shape, which are inherently larger for the hard metal dies due to the manufacturing 

process, could be identified as most probable alternative reason for wire breakage. Using the 

present analytical model the detrimental effect of some typical geometrical imperfections could 

be demonstrated. The predicted faulty, in particular non-uniform circumferential deposition of 

enamel may further accumulate in the successive die passes leading finally to solid contact 

between the fast moving wire surface and the die contour. 

The analytical predictions of the flow field inside real dies provide also a valuable insight into 

the local generation of drag force, which allows identifying the most critical regions of drag 

force production, as a useful starting point for the development of flow optimized die shapes. 

Possible improvements of the die design were proposed and computationally analyzed using the 

present analytical model. The proposed modifications yielded a reduction in total drag force up 

to about 25%. More significant reductions could be achieved assuming generic cosine-type die 
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shapes with a very steep axial contraction close to the exit. The technical realization of these 

geometries is however limited due to the specific properties of the applied materials and 

requirements of the manufacturing process.  

Enameling dies producing lowest possible total drag force on the wire remain desirable in the 

view of ongoing and future trends in the magnet wire production. Low flow induced drag forces 

give room for increasing the production velocity of the wire, resulting in an increased 

productivity of the machine. They further allow for the application of enamels with high polymer 

content, reducing the costs of the expensive solvent, as well as for solid content constituted by 

longer polymer molecules, reducing the polymer stack loss during the drying and curing process. 

Finally a modified die design associated with smaller dimensions or simpler geometries can 

translate into lower production costs as well. The comprehensive and reliable description of the 

flow and temperature fields provided by the presently developed analytical model delivers 

important input to reach these goals.   
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