

Nada Stefanie Breznik, BSc

Information Management to Support the Sustainable

Implementation of Patient Blood Management
Requirement Analysis, Specification and Prototypical

Implementation of a PBM Benchmarking Tool for Hospitals

MASTER THESIS

to achieve the university degree of

Diplom-Ingenieurin

Individual Master's degree programme:

IT-based Biomedical Engineering

submitted to

Graz University of Technology

Supervisor

Dipl.-Ing. Dr.techn. Priv.-Doz. Günter Schreier, MSc

Institute of Neural Engineering

Graz, May 2016

I

In Cooperation with

AIT Austrian Institute of Technology GmbH

Digital Safety and Security Department

Reininghausstraße 13/1

8020 Graz

Austria

Supervisor

Dipl.-Ing. Peter Kastner, MBA

II

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not

used other than the declared sources/resources, and that I have

explicitly indicated all material which has been quoted either literally or

by content from the sources used. The text document uploaded to

TUGRAZonline is identical to the present master thesis dissertation.

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig

verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt,

und die den benutzten Quellen wörtliche und inhaltlich entnommene

Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline

hochgeladene Textdokument ist mit der vorliegenden

Masterarbeit/Diplomarbeit identisch.

 Date/ Datum Signature/ Unterschrift

III

Abstract

“Transfusions are one of the most overused treatments in modern medicine, at a cost of

billions of dollars [1]”. To place optimisation and preservation of the patient’s own blood over

the transfusion of donor blood are the basic principle for Patient Blood Management (PBM)

[2]. To support sustainable implementation of PBM, benchmarking is an essential process,

because its primary aim is to improve own performances and learn from others who have

achieved high standards of excellence [3]. The PBM benchmarking process was designed

under consultation of medical as well as PBM experts and based on existing benchmarking

processes. The technical modules “data extraction”, “data processing”, “report generation”

constitute the focus of this work. The PBM Analytics and Benchmarking Service (PBM-ABS)

web application was implemented using AngularJS. An automatic data extraction method

was established for the General Hospital of Vienna (Allgemeines Krankenhaus Wien – AKH

Wien) as a showcase.

Kurzfassung

Transfusionen sind eine der am meisten übermäßig verwendeten Behandlungsarten in der

modernen Medizin, mit verbundenen Kosten in Milliardenhöhe [1]. Das Grundprinzip von

Patient Blood Management (PBM) ist es, die Optimierung und Erhaltung des Eigenblutes

eines Patienten über die Transfusion von Spenderblut zu stellen [2]. Dabei ist Benchmarking

ein essenzieller Prozess um die nachhaltige Umsetzung von PBM zu unterstützen. Das

primäre Ziel dabei ist, seine eigenen Leistungen zu verbessern und von den besten seiner

Konkurrenten zu lernen [3]. Der PBM-Benchmarking Prozess wurde unter Hinzuziehen

medizinischer, wie auch PBM-Experten entwickelt und basiert auf bereits bestehenden

Benchmarking Prozessen. Die technischen Module „Datenextraktion“,

„Datenverarbeitung“ und „Report Generierung“ bildeten den Fokus dieser Arbeit. Die PBM-

Analyse und Benchmarking Service (PBM-ABS) Web-Applikation wurde mittels AngularJS

implementiert. Als Showcase wurde eine automatische Datenextraktion aus bestehenden

Datenquellen im AKH Wien durchgeführt.

IV

Content

1 Background .. 1

1.1 European Guide on Good Practices for Patient Blood Management (EU-PBM

project)... 1

1.1.1 Concept of Patient Blood Management .. 1

1.1.2 Benchmarking .. 3

1.1.3 Benchmarking in Transfusion Medicine .. 3

1.1.4 Existing Models for Benchmarking in Transfusion Medicine 4

1.2 Used Benchmarking Process and Focus of this Thesis ... 6

1.2.1 Requirements for Information Management in Hospitals 6

1.2.2 Description of the Used Process .. 7

2 Methods ... 10

2.1 Use Cases .. 10

2.2 Requirements for the PBM-ABS Service ... 12

2.2.1 Definition of the Core Dataset ...12

2.2.2 Data Acquisition and Extraction (EDC System vs. Internal Sources)13

2.2.3 Data Processing and Report Generation ...17

2.3 Architectural Design .. 18

2.3.1 Realisation of the PBM-ABS Tool as Web Application19

2.3.2 Webserver ...21

2.3.3 Data Storage ...22

2.4 Verification of Software Components and Database Transactions 23

2.5 Used Software Tools, Devices and Technologies .. 23

2.5.1 Technologies for Automatic Data Extraction ..23

2.5.2 Description of AngularJS for PBM-ABS App Development25

2.5.3 Additional technologies and JS Libraries used for the Realisation of the PBM-

ABS App ...27

3 Results ... 30

3.1 Showcase for Retrospective Data Extraction from Existing Data Sources in the AKH

Wien 31

3.1.1 Data Extraction from the Patient Data Management System (PDMS)33

3.1.2 Merging Data from Internal Data Sources ...37

3.1.3 Resulting Tables of the Data Extraction Queries ...43

V

3.2 PBM-ABS App ... 47

3.2.1 Services ..49

3.2.2 Client Side App ...50

3.2.3 Verification of the PBM-ABS App/ Feasibility Test ...70

4 Discussion .. 71

4.1 Showcase for Retrospective Data Extraction from Existing Data Sources in the AKH

Wien 71

4.1.1 Data Extraction from the PDMS ..71

4.1.2 Merging Data from Internal Data Sources ...71

4.2 PBM-ABS App ... 72

4.3 Future Work .. 73

4.3.1 Future Extension Possibilities ..73

5 References ... 74

6 Appendix ... A1

List of Tables

Table 1: Dataset collected by the AIT-EDC system ..12

Table 2: Dataset for PBM-ABS tool ..13

Table 3: Parameters and corresponding filter conditions concerning type and plausibility

thresholds ...18

Table 4: PBM core dataset and corresponding data sources of the AKH Wien32

Table 5: Applied filters and number of cases from the extracted PDMS table43

Table 6: Equality of cases of the extracted PDMS table and the Cardio-db43

Table 7: Accordance of transfused RBC units per patient comparing TDB and Cardio-db44

List of Figures

Figure 1: Triad of independent risk factors for adverse patient outcome [2] 2

Figure 2: Three Pillars of Patient Blood Management [4] ... 2

Figure 3: Number of red blood cell units transfused per 1000 inhabitants in European

countries in 2010 [7] .. 4

Figure 4: Three benchmarking models from Apelseth et al [3] ... 5

Figure 5: Conceptual benchmarking process from Barty et al [10] ... 5

Figure 6: Used conceptual benchmarking process with PBM specific steps 8

Figure 7: Acquisition form for intraoperative PBM data ...14

Figure 8: Architectural design of the PBM-ABS service ..19

Figure 9: AngularJS interpreted as MVC or MVW framework. [45]25

VI

Figure 10: Commonly used bootstrap components (Navigation, Buttons, Forms). [48]28

Figure 11: Overall workflow of the PBM-ABS service ...30

Figure 12: More detailed illustration of the data extraction part. ..32

Figure 13: Database structure of the PDMS reconstructed by analysing existing queries34

Figure 14: Legend for database transaction diagrams ..34

Figure 15: Query to retrieve the required parameters from the PDMS36

Figure 16: First part of the query for merging data of all four sources.38

Figure 17: Second part of the query for merging data of all four sources.40

Figure 18: Third part of the query for merging data of all four sources.41

Figure 19: Fourth part of the query for merging data of all four sources.42

Figure 20: Overall query showing interaction of the four subquery parts.42

Figure 21: Pie diagram of concordance comparing transfused RBC units44

Figure 22: Relation of one to two simultaneously ordered RBC units within OR-Groups and

ICU 2015 ..46

Figure 23: Transfusion timeline of a patient ..46

Figure 24: Software components and decision tree of the PBM-ABS app.............................47

Figure 25: Detailed software architecture ...49

Figure 26: Screenshot of the start view with implementation comments and marked areas

indicating the corresponding html files. ...51

Figure 27: Two different scenarios of the validation screen with implementation comments.

(a)First scenario shows the validation screen after upload of a complete dataset b) the

second after upload of an incomplete dataset) ...54

Figure 28: Popup for accepting the upload agreement ...56

Figure 29: Configuration information for transfusion index table. ..58

Figure 30: Three configuration steps to define, which tables and charts should be included in

the report ..59

Figure 31: Illustration of how the reportParts variable was changing dependent on the

decisions of the user ..60

Figure 32: Configuration screen for selecting up to a maximum of three time ranges for

internal benchmarking. ...61

Figure 33: Example of the yn category of the summary variable, shown by a screenshot of

the browser console. ..63

Figure 34: Example of the cat category of the summary variable, shown by a screenshot of

the browser console. ..63

Figure 35: Directive template used for creating standard tables. ..65

Figure 36: Highcharts example ...66

Figure 37: Excerpts of the analytics part configuration screen, including interactive

configuration possibilities. ...67

Figure 38: Selection screen for choosing two centres for comparison (C1-C5 stands for

centre 1 to 5 and DC is the abbreviation of the user’s centre, in this case “Demo-Centre”) ..68

Figure 39: Box plot showing interquartile ranges of transfused RBC units for every indication

of the three centres (DC stands for Demo-centre, C1 and C2 are the centres for comparison)

 ...69

VII

Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

AIT Austrian Institute of Technology

AKIM AKH Information Management

AKH Wien General Hospital of Vienna

API Application Programming Interface

CABG Coronary Artery Bypass Surgery

CAR Cardiac Surgery

Cardio-db Database of the Cardiothoracic and Vascular Anaesthesiology Ward

CRM Customer Relationship Management

CSS Cascading Style Sheets

CSV Comma Separated Values

DOM Document Object Model

EC European Commission

EDC Electronic Data Capture

EMR Electronic Medical Record

Epo Erythropoietin

EU European Union

EU-PBM Project Project for developing a European Guide on Good Practices for Patient

Blood Management

FFP Fresh frozen plasma

GCP Good Clinical Practice

GUI/UI (Graphical) User Interface

Hb Haemoglobin

HIMSS Health Care Information Management Systems

HIS Hospital Information System

H-TEP Hip-Total Endoprosthesis or THR (Total Hip Replacement)

HTTP/S Hyper Text Transfer Protocol (Security)

ICCA IntelliSpace Critical Care and Anaesthesia

ICU Intensive Care Unit

IDE Integrated Development Environment

JS JavaScript

JSON JavaScript Object Notation

KPI Key Performance Indicator

VIII

MVC/W Model-View-Controller or Model-View-Whatever

MVVM Model-View-View-Model

Nadir lowest point

NaN Not a Number

ODBC Open Database Connectivity

PAN Pancreas Resection

PBM Patient Blood Management

PBM-ABS PBM-Analytics and Benchmarking Service

PDMS Patient Data Management System

RBC Red blood cells

SQL Structured Query Language

SVG Scalable Vector Graphic

TCP/IP Transmission Control Protocol/ Internet Protocol

TDB Transfusion Database

Web app Web Application

 1 of 76

1 Background

1.1 European Guide on Good Practices for Patient Blood Management

(EU-PBM project)

“Transfusions are one of the most overused treatments in modern medicine, at a cost of

billions of dollars [1]”. One of the primary concerns to the European Commission (EC) is

patient safety for which the safe and adequate use of substances derived from human blood

plays an important role. Therefore, in 2013 the EC commissioned the AIT - Austrian Institute

of Technology, which was supported by a panel of experts, to develop an „EU Guide for

Member States on Good Practices for Patient Blood Management (PBM). This PBM

Implementation Guide was used to start PBM pilot programmes at five participating teaching

hospitals in different Member States of the European Union (EU). [4]

1.1.1 Concept of Patient Blood Management

To place optimisation and preservation of the patient’s own blood over the transfusion of

donor blood in order to improve patient safety and to reach optimal clinical outcomes

constitutes the basic principle for PBM. For this purpose, the triad of anaemia, blood loss and

transfusion (Figure 1), which are the three independent risk factors for an adverse outcome,

should be addressed as early as possible in the course of treatment. [2]

Anaemia is characterised by a subnormal concentration of circulating red blood cells (RBCs)

and is a prevalent trigger for transfusion, which was considered to be the optimal treatment

for anaemia and/or blood loss for decades. Although RBC transfusions lead to corrected

laboratory values but they do not treat the actual cause of anaemia, nor do they stop any

bleeding. Additionally, several studies in various patient populations have shown a dose-

response relationship between transfusion and nosocomial infections as well as an increased

risk of rebleeding and respectively further blood loss. As a result, this triad constitutes a

vicious circle which is illustrated in Figure 1. [2]

All clinical measures influencing these risk factors can be categorised into three classes

called the three pillars of PBM (Figure 2). The first pillar represents mainly preoperative

measures to optimise the patient’s own red blood cell mass such as stimulating

erythropoiesis or treating anaemia and iron deficiency. The second pillar includes any kind of

2 of 76

efforts to minimise diagnostic, interventional and surgical blood loss to preserve the patient’s

RBC mass. [2]

Figure 1: Triad of independent risk factors for adverse patient outcome [2]

Measures belonging to the third pillar are concerning the optimisation of the patient specific

tolerance to anaemia by maximising the oxygen delivery while reducing the metabolic rate

and adhere rigidly to physiological transfusion thresholds. Implementing the first two pillars

are in most clinical scenarios sufficient to keep the haemoglobin values of the patient’s

majority above the predefined thresholds where transfusions are required. [2]

Figure 2: Three Pillars of Patient Blood Management [4]

As shown in Figure 2 the three pillars are built up on a multidisciplinary team approach which

represents the basis of the PBM concept. This multidisciplinary team should involve for

example physicians, nurses as well as quality managers and PBM experts. Team meetings

3 of 76

and audit programs for self-evaluation should improve the physician’s skills and knowledge

as well as undergoing critical self-assessment with active participation of medical experts.

Resulting interventions of such assessment-cycles should enable the development of

suitable implementation strategies and its implementation progress should be monitored over

time. [2, 5, 3]

Accordingly, benchmarking turns out to be an indispensable process for these tasks.

1.1.2 Benchmarking

The term “Benchmarking” has its origin in the manufacturing industry in the late seventies

when chief executive officer in Xerox Corporation, David T Kearns defined it as “the process

of measuring ourselves against the products, services, and practices of our toughest

competitors”. The primary aim is to improve own performances and learn from others who

have achieved high standards of excellence by comparing certain parameters. [3]

In the 1990s benchmarking was transferred to the health care sector with the distinct

difference to the business world that patient outcomes and safety are replacing financial

factors from being the key parameters of benchmarking concerns. [2, 3]

Basically, it has to be differentiated between internal and external benchmarking. Internal

benchmarking is characterised by continuous measurement of one’s own performances and

compare and monitor the results reflecting the pre- and post-implementation situation of

certain measures in regular intervals. The outcome comparison of institutional procedures

and behavioural habits with best-performers in a typical group of organisations to learn about

their latest methods and practices are established as external benchmarking. [6, 5]

In general an indication for benchmarking of specific health care services for comparable

patients to achieve significant improvements is given when they [2]:

 have a high incidence and are affecting a large number of patients,

 have widespread variability in resource use and/ or outcome and

 are macro-economically relevant.

1.1.3 Benchmarking in Transfusion Medicine

In the field of transfusion medicine, all of the mentioned criteria indicating benchmarking to

be valuable are fulfilled. With 85 million RBC units transfused worldwide to an estimated

number of 25 million patients annually, the transfusion incidence rate can be considered as

high. [2]

As can be seen in Figure 3 the variability in use of RBC units in European countries lies

between 58,6 units/1000 population, in Greece 20,9 and in Romania [7]. Taking into account

4 of 76

that these results are concerning to countries with a similar high standard of care, also the

variability can be stated as high.

In the Netherlands initial PBM measures were introduced in 2004, when the first national

guideline “Blood Transfusion” including PBM was published. As a result, the number of RBC

transfusions decreased around 26% until 2014. [8]

Consequently, the Netherlands turned out to be an appropriate benchmark for Figure 3.

Assuming that with proper PBM efforts the other countries would be able to reach this

benchmark and the reduction capacity for RBC transfusions amounts to over 4 million RBC

units per year.

Due to the fact that the overall (direct and indirect) costs for a RBC unit lie between $522 and

$1183 (mean: $761 ± $294, [9]) the macro-economic relevance cannot be ignored.

Figure 3: Number of red blood cell units transfused per 1000 inhabitants in European

countries in 2010 [7]

Adapted for transfusion medicine the benchmarking process itself has to be additionally

structured and collaborated with the aim of continuous quality improvement. Therefore, after

implementation of new practices, re-evaluation of performances should be undertaken,

preferably by continuous data collection. [3]

1.1.4 Existing Models for Benchmarking in Transfusion Medicine

Apelseth et al defined three possible models for benchmarking processes in transfusion

medicine. The first model describes a national or regional benchmarking program using data

from existing electronic sources linked by patient identification numbers, which is centrally

coordinated. This model turns out to be the “gold standard” of benchmarking in transfusion

medicine but implies many implementation challenges. The second model, called sentinel

5 of 76

site model, where data is collected from a limited number of institutions and a central

coordinator provides the data analysis. In the third model an institution collects and analyses

information and approach other institutions who they feel would be appropriate comparators.

[3]

Figure 4: Three benchmarking models from Apelseth et al [3]

Another benchmarking program for transfusion medicine was introduced by Barty et al

(Figure 5).

Figure 5: Conceptual benchmarking process from Barty et al [10]

6 of 76

It consists of two embedded active cycles to enhance continuous information flow and quality

improvement. A crucial part of this concept is the data management system which provides a

direct data flow form transfusion medicine programs at each participating hospital to the data

centre for analysis, enabling high data accuracy. Furthermore a benchmarking website was

introduced to hospitals giving feedback about their progress over time and comparing RBC

outdating rates with those of other hospitals of similar size and geographic location. To raise

awareness of certain issues and promote benchmarking targets annual meetings and site

visits were accompanied by high-tech measures like webinars and other online resources.

Certificates of recognition for achieved benchmarking targets were provided to increase

motivation levels. [10]

The benchmarking process described by Kastner et al [5] already included specifically

adjusted modules for PBM and was - with some modifications influenced by the previously

described models - used for this work.

1.2 Used Benchmarking Process and Focus of this Thesis

1.2.1 Requirements for Information Management in Hospitals

“Information management in hospitals is the sum of all management activities in a hospital

that transpose the potential contribution of information processing to fulfil the strategic

hospital goals into hospital’s success.” [11]

This definition of information management in hospitals of Winter et al is mainly targeted on a

particular hospital information system (HIS). This leads to the term: “management of

information systems” which implies the planning of a hospital information system constituting

the basis, further directing the progress of its architecture and operation and monitoring its

development with respect to the planned objectives. Beside technical information processing,

also the aspect of humans as a part of information processing actions have to be considered.

[11, 12]

This means, the goals of the PBM implementation and consequently the goals of the

participating hospitals have to be taken into account within planning of the benchmarking tool

with direct relation to the HIS.

The main task of a HIS is to provide the right information and knowledge concerning patients,

at the right time and place, in the right format accessible for relevant personnel in making the

correct decisions. Data collection, storage, processing, preparation and transmission are

essential components and are playing an important role in a HIS and in the process of the

EU-PBM project. [12]

7 of 76

Information management itself can be divided into three parts: strategic, tactical and

operational information management. Strategic information management affects the

hospital’s information processing as a whole by describing the HIS’s intended architecture or

its systematic manipulation to fit into a strategic plan. It also has to deal with required

resources like money, personnel, soft- and hardware, network architecture etc., depending

on the specific requirements of every individual hospital. Tactical management relates to

hospital functions like planning and documenting an operation while operational

management is responsible for maintaining the HIS and its components. The range of

operational management tools and methods comprises activities from intra-enterprise

marketing of services to helpdesk and network management. All three are not just affecting

machines and computers but also humans and their social behaviour, makes a HIS a

sociotechnical subsystem of a hospital. [11]

Ashawi et al describes the required architectural process for customer relationship

management (CRM) applications in health care organisations. In CRM patient data from

internal (e.g. administrative, medical and pharmacy departments) and external (includes e.g.

geographic, demographic and statistical data) data sources are required. [13]

The conditions for the described process show many parallels to those of the PBM

benchmarking process, although using different data sources. Therefore, the four

architectural process levels for CRM applications were also taken into account for designing

the used process.

These four levels are [13]:

1. Source identification of patient data

2. Data quality matching and comparison phase

3. Data integration process

4. Final data quality checks (evaluation, monitoring, archival and distribution

phase)

1.2.2 Description of the Used Process

Most of the modules constituting the used conceptual process (Figure 6) were adopted from

Kastner et al [5], complemented with “data extraction” and “continuous improvement

measures”. Measures to improve own processes and performances are a crucial part of

benchmarking and also integrated in the other described models of chapter 1.1.4. Therefore

this module was also included in this process.

The “benchmarking management process” stands above all other modules. An internal team

supported by an expert panel should undertake quality control and decide which setting of

8 of 76

internal and/or external benchmarking concerning procedures, time ranges for data capture

and benchmarking indicators of interest are appropriate for their centre. Also providing

required resources and communication are also their responsibility. [5]

Figure 6: Used conceptual benchmarking process with PBM specific steps

The process was arranged as a cycle to illustrate the required continuity according to

Apelseth et al. The whole process has been separated in two categories.

The first category represented by the blue modules contains all measures the centres

supported by an expert panel are responsible for. The second category can be realised by

technical means, which represent the focus of this work. For this reason the data extraction

was outsourced from the “data acquisition module“ of [5] and will make up one of two big

components in this work. The second part will be the implementation of a web application

called “PBM-Analytics and Benchmarking Tool” (PBM-ABS tool) which encompasses the

“data processing” and “report generation” modules.

The „data acquisition module" includes data collection from different sources. It belongs to

both categories because of the definition of the minimal dataset. The minimal data set should

9 of 76

fulfil the main PBM requirements but has to be adjusted to the specific needs of the

participating centres in coordination with the responsible team of PBM experts. In addition

availability and accessibility of data items also influence the requirements for the technical

realisation. For further information see section 2.2.1.

10 of 76

2 Methods

This chapter describes the use case scenarios of the PBM benchmarking process steps,

which should be covered by the technical realisation of the software components. Derived

from these scenarios the resulting requirements will be explained and the technological

framework which has been chosen to fulfil them. Furthermore, the reasons for choosing

these technologies will subsequently be given. The architectural design will also be

described in detail, together with software tools, devices and technologies used for

implementation. All following chapters will focus on the main benchmarking process steps

(see red modules Figure 6), which are summed up under the term of PBM-Analytics and

Benchmarking Service (PBM-ABS service).

2.1 Use Cases

By consultation with physicians form hospitals, which are participating at the EU-PBM project

as well as international PBM experts a list of use cases were identified. The use cases are

grouped in the following classes:

1. Basis use cases

1.1. A PBM related core dataset should be defined which might be optionally extended by

additional data items (supplementary dataset).

1.2. Data from in-house electronic documentation systems or web based electronic data

capture (EDC) systems should be used for benchmarking purposes to allow flexible

utilisation. Data imports from EDC systems (comparable to clinical trials and online

registries) should be supported in case that direct data export from HIS is not

available. A dedicated EDC system was provided e.g. to the participating hospitals of

the PBM Benchmarking trials in Austria [14].

1.3. Only data which was undertaken automatic filtering regarding their plausibility should

be stored.

1.4. Data should be checked for completeness with respect to a predefined list of a core

dataset.

1.5. Benchmarking of data related to different predefined medical disciplines (e.g.

coronary artery bypass graft, total hip/knee replacement) should be supported.

1.6. No patient identification (name, address, date of birth) should be used for

benchmarking to guarantee privacy of patients.

1.7. A graphical user interface should guide the user through the different configuration

steps.

11 of 76

2. Hospital specific use cases

2.1. Use case for analytics:

To analyse specific datasets, data should not be mandatorily stored outside the

hospitals IT infrastructure, i.e. no upload to an external server should be required.

For this case data should only be loaded into the client side application.

2.2. Use case for internal benchmarking:

For internal benchmarking data from previous uploads should be available to choose

at least two different time periods for comparison. Therefore the user should be

asked to commit the willingness to upload data from the own hospital to the

benchmarking server. In this case the data should not be available for other

hospitals.

2.3. Use cases for external benchmarking:

For external benchmarking, the user should be asked to commit the willingness to

make the uploaded data from the own hospital available for other centres using the

external benchmarking feature. Consequently the user should be able to select two

other centres for comparison, which already committed to provide their data to other

centres.

3. General use cases

3.1. It should be considered that the solution needs to be provided to hospitals in different

European countries with heterogenic IT-infrastructures. The tool should require

minimal PC infrastructure at the client side (PC, Internet Browser) without additional

setup or installation.

3.2. For advanced utilisation of the PBM-ABS tool users should be able to upload and

store centre specific data.

3.3. Access should be restricted to authorised users.

3.4. The tool should provide comparison of main key performance indicators (KPIs)

 Number of cases, period, age, medical indications

 Transfusion rate (TR) for RBC, FFP, factor concentrate

 Transfusion index (TI) for RBC

 Mean length of stay, complication rate

 Haemoglobin (Hb) before and after surgery

3.5. Results should be represented in tables and/or diagrams.

3.6. Printing or client side storing of a summary report should be enabled.

12 of 76

2.2 Requirements for the PBM-ABS Service

Based on the defined use cases the system requirements to support the benchmarking

process are derived.

2.2.1 Definition of the Core Dataset

As previously mentioned, the used EDC system was already in use for the Austrian

Benchmark Trial. The acquired parameters are shown in Table 1. From this dataset the most

important parameters were selected according to [2] and some were added on

recommendation of the PBM expert panel.

Table 1: Dataset collected by the AIT-EDC system

Basic data for each case:

 ID

 Name

 Surgery date

 Phase (pre/post PBM)

 Length of stay (days)

Surgery details

 Intervetnion (3 letter code)

 Surgical technique (conventional/minimal

invasive)

 Surgery duration (min)

 complications

 estimated blood loss

 reoperation (yes/no)

 in case of cardiac surgery:

o Number of grafts

o Extracorporal circulation (ECC)

o Duration of ECC

Demographic data about each case

 Gender (m/f)

 Age (years)

 Weight (kg)

 Size (m)

 ASA-Score

 Euroscore

Transfused blood components and blood products about each case

 RBC ordered

 Allogeneic RBC transfused (intra and post)

 Autologous RBC transfused (intra and post)

 Fresh Frozen Plasma/ FFP (intra and post)

 Platelet concentrates (intra and post)

 Coagulation factor concentrates (intra and post)

Clinical data (pre / intra / postoperative) about each case

 Platelet inhibitors (no/ ASS/ Plavix)

 Thromboprophylaxis (no/ Iron/ Epo)

 Type and Screen

 Tranexamic aid

 Cell salvage

 Unwashed shed blood

 Type of anesthesia (general/regional/ other)

Laboratory Values

 Preoperative haemoglobin value (g/dl)

 Haemoglobin value of 3
rd
 postoperative day

(g/dl)

 Haemoglobin value of 5
th
 postoperative day (g/dl)

 Preoperative MCH

 Preoperative MCV

Criteria for exclusion

 Age < 18 years

 Emergency surgery
 Coagulation dysfunction

Furthermore, it had to be considered that another approach of data acquisition beside the

EDC system should be the retrospective extraction of relevant data from existing data

sources of the AKH Wien. This dataset was divided into a core dataset, which is mandatory

and contains only parameters available in existing data sources of the AKH Wien and a

supplementary dataset. The core dataset in this case is the minimal dataset and the core and

13 of 76

supplementary datasets together are optimal. Analytics and Benchmarking features for

parameters of the supplementary dataset should be provided but they have to decide

whether they want to integrate those parameters to their benchmarking strategy or not.

Table 2 shows the whole dataset consisting of the core- and the supplementary dataset.

Table 2: Dataset for PBM-ABS tool

Core-Dataset Supplementary Dataset

 ID

 Surgery date

 Length of stay (days)

 Intervention (3 letter code)

 Gender (m/f)

 Age (years)

 Weight (kg)

 Size (m)

 Allogeneic RBC transfused (number of units

total)

 FFP (units total)

 Platelet concentrates (yes/no total)

 Coagulation factor concentrates (yes/no total)

 Preoperative haemoglobin value (g/dl)

 Haemoglobin value of 5
th
 postoperative day

(g/dl)

 Minimal haemoglobin value/ hb_nadir (g/dl)

 Surgical technique (conventional/minimal invasive)

 reoperation (yes/no)

 Complications

 Surgery duration (min)

 in case of cardiac surgery:

o Extracorporal circulation (ECC)

o Duration of ECC

 ASA-Score

 RBC ordered (number of units)

 Allogeneic RBC transfused (number of units intra)

 FFP (units intra)

 Platelet inhibitors (no/ ASS/ Plavix)

 Tranexamic aid

 Cell salvage

 Type of anesthesia (general/regional/ other)

 Haemoglobin value of 3
rd
 postoperative day (g/dl)

 Haemoglobin value at end of surgery (g/dl)

 Haemoglobin value at discharge (g/dl)

 Emergency surgery

 Anaemia-treatment

For inter- and intra-institutional comparison the main key performance indicators are

transfusion index and transfusion rate, which are defined by Gombotz et al as follows [2]:

o transfusion rate: “proportion of transfused patients within a defined patient

population”

o transfusion index: “average number of blood components administered per patient

of a defined patient population”

The defined core dataset provides all required parameters for calculating transfusion index

and rate as well as perioperative blood loss according to the Mercuriali algorithm, which is

another important parameter in PBM. [2]

2.2.2 Data Acquisition and Extraction (EDC System vs. Internal Sources)

2.2.2.1 EDC System

An EDC system (electronic data capture) is a convenient data collection tool because

these systems are used for clinical trials, including quality management tools (audit trail,

source data verification), as they are required by good clinical practise (GCP) guidelines. [5]

14 of 76

In the EU-PBM project four of the five centres are using such an EDC system for data

collection. For data extraction this means that if a special EDC system is used, it depends on

which data structures are provided for exports, if further steps of data processing are

required. The EDC system used for the EU-PBM project was provided by the Austrian

Institute of Technology, based on the EDC system which was already used for the Austrian

Benchmark Trial in 2009 [15]. The parameters that are captured by using this system can be

seen in Table 1, the form for the acquisition of intraoperative data is illustrated in Figure 7.

Figure 7: Acquisition form for intraoperative PBM data

Extracting data in an automated way from existing data sources would decrease time

exposure of clinicians and increase data accuracy and reliability.

2.2.2.2 Data Extraction for Centres Using the EDC System

The EDC system used by four of the participating centres is a web application developed by

AIT. For each case, the data entered by the centres for the parameters listed in Table 1, is

stored in a PostgreSQL® (PostgreSQL Global Development Group, [16]) database. Zope

2.13® (Zope Foundation, Richardson, USA, [17]), a PythonTM-based (Python Software

Foundation, Beaverton, USA, [18]) framework for building secure web applications [19], was

used for the application server. This EDC system already provides the required data

extraction facilities for using the PBM-ABS tool.

15 of 76

2.2.2.3 Internal Data Sources

In general, if hospitals are equipped with a state-of-the-art and well-established HIS and/or

other data sources the required data can be exported and - if more than one data source is

used - joined by using patient identifiers, similar to the first model of Apelseth et al [5, 3]. To

support the capability of deciding whether the own centre satisfies these requirements the

Health Care Information and Management Systems company (HIMSS) provides a 7 stage

model, which according to HIMSS “identifies the levels of electronic medical record (EMR)

capabilities ranging from limited ancillary department systems through a paperless EMR

environment” [20].

For the showcase in the AKH Wien the PBM-required data, according to a predefined core

dataset (see next section) can be found in three different data sources:

 the hospital information system (HIS),

 the patient data management system (PDMS, IntelliSpace Critical Care & Anesthesia

information system, ICCA Philips Healthcare, USA, [21]) of the intensive care unit

(ICU)

 and the transfusion database (TDB).

The task is, to find an automated way with a high usability for physicians in this clinical

setting to extract and merge data of these sources to get a file containing all parameters

defined in the core dataset for specific interventions and time ranges.

The HIS of the AKH Wien is called AKIM (Cerner Corporation, [22]), which stands for AKH

information management. It is a project of the city of Vienna and the medical University of

Vienna, not from the AKH itself, which was one of the reasons for the restricted system

access. It should support routine processes of the hospital as well as scientific research.

AKIM is the sum of software- and EDV systems of former SIEMENS Health Services and

since 2015 of the Cerner SOARIAN-family.

For routine processes, e.g. the documentation of out-patient and in-patient cases, the main

feature is the so called “AKIM Viewer”, in use since 2010, giving an overview over patient

data, documents, diagnoses, services and laboratory results. The HIS contains all required

features for patient administration and cost accounting. [23]

The AKIM research documentation and analysis platform (AKIM RDA-Platform) is an IT-tool

of the medical University of Vienna and enables individual database construction and

automated import of the routine patient data. It is integrated in the HIS and provides a central

data pool for hospital routine and science. [24]

For extracting the EU-PBM core dataset only a small extract of the captured patient data was

available in form of an excel export.

16 of 76

The PDMS system is an advanced tool used for clinical decision support and documentation

in the ICU of the AKH. This encompasses patient data, admissions documents, vital signs,

laboratory results and consultation notes. To enter a procedure or diagnosis, which can be

displayed beside infusion orders or medications on patient’s charts and nurses’ worklist, it is

possible to enter free text or select from standard or internal coding catalogues. Data

analytics are not only limited to reports by patient, also reports by time, person, disease,

process or a combination is possible. [25]

This flexibility can only be provided by a complex data structure, which had to be analysed in

detail to query the required data.

2.2.2.4 Data Extraction from Internal Data Sources

From use case 1.1, 1.2 and 1.6 (section 2.1) results the requirement of an automatic data

extraction when using in-house electronic documentation systems, because the only

parameters of the predefined core or supplementary dataset should be contained in the

export. A possible realisation of this automatic data extraction was shown in this thesis on

the example of the AKH Wien.

The task was to collect the predefined core dataset for using the PBM-ABS app out of

existing data sources of the AKH. It should give an example how such a data extraction can

be done, but because of high differences in used hospital information systems and other

required data sources has to be individually done for every hospital. First it was intended to

merge data from the HIS (AKIM), the PDMS of the ICU (ICCA) and the TDB. Concerning

these data sources, direct access to the PDMS was granted, for the other two data sources,

only excel exports of corresponding systems were provided. Even if the excel export

contained all required data concerning transfusions for the core dataset, no further detailed

information about the TDB on the data capturing procedure or system was available.

Since the required data quality could not be provided by extracting the data form the

mentioned sources a fourth data source, the cardio database (Cardio-db), was added for the

extraction of the EU-PBM core dataset. The Cardio-db is a Microsoft® Access (Microsoft

Corporation, Redmond, USA, [26]) database established by the IT-department of the

Cardiothoracic and Vascular Anaesthesiology of the AKH. From this data source an excel

export was provided.

Concerning the direct access to the PDMS it has to be mentioned that for quality

management of the AKH there had already been the demand for individual data queries,

17 of 76

which was realised by Philips via accessing the data out of Microsoft® Access. This access

was enabled by Open Database Connectivity (ODBC).

Because of this existing process- which will not require further user training or other

unreasonable expense in its implementation- the decision was made to perform the EU-PBM

data extraction as well by using Microsoft® Access.

For constructing queries to extract the required data from the PDMS and for combining the

data of all four sources the SQL-view (structured query language) of Microsoft® Access was

used because it enables a higher query complexity. This means, that all queries were

constructed by using SQL, which is explained in more detail in chapter 2.5.

2.2.3 Data Processing and Report Generation

For the "data processing" and "report generation" steps a reporting tool should be developed,

where the exported file containing at least parameters of the PBM-core dataset will be

imported by the clinicians and all relevant analytics- and benchmarking-statistics will be

calculated automatically and exported in the form of a PDF report. This tool is called PBM-

ABS tool. Regarding data processing the tool should perform a set of quality checks.

First it has to be checked if the parameters meet the specification requirements concerning

parameter name and type. All cases, not compliant with the criteria of the predefined core

dataset, have to be excluded. Each parameter has to be checked for its physiological

plausibility and cases containing outliers (i.e. data outside normal physiological, clinical or

other reference values) have to be removed. Table 3 shows the parameters and the

corresponding filter conditions concerning type and plausibility thresholds which are checked

by the PBM-ABS tool.

Additionally, the tool should give a feedback, how many rows of the loaded dataset are valid

and how many do not satisfy the given specification.

After processing key-performance indicators like transfusion index, transfusion rate or

estimated blood loss have to be calculated. [5]

To cover use case 2.2 and 2.3 (section 2.1) the tool should be connected to a PBM database

where the physicians have to upload data of their centre to use all features of the tool. If they

are not willing to upload their data, only analytics of recent imported data should be available.

Possibility should be given to upload the data for internal benchmarking without making it

available to other centres. In this case, no comparison to other centres should be available

but comparing oneself with results of former time ranges.

18 of 76

Table 3: Parameters and corresponding filter conditions concerning type and plausibility

thresholds

Core-Dataset Supplementary Dataset

Parameter Filter conditions Parameter Filter conditions

ID - Surgical technique (conventional/minimal
invasive)

CONV, MNINV

Surgery date >2011 reoperation (yes/no) Yes, No

Length of stay (days) 1-99 Complications Yes, No

Intervention (3 letter code)
REC, CAR, CABG ,

LIV , PAN,TEP, ECV
Surgery duration (min) 30-300

Gender (m/f) m, f, male, female in case of cardiac surgery:

Age (years) 18-110 Extracorporal circulation (ECC) Yes, No

Weight (kg) 51-180 Duration of ECC 30-300

Size (m) 100-220 ASA-Score 1-3

Allogeneic RBC transfused (number
of units total)

0-30 RBC ordered (number of units) 0-9

FFP (units total) 0-30 Allogeneic RBC transfused (number of
units intra)

0-30

Platelet concentrates (yes/no total) Yes, No FFP (units intra) 0-30

Coagulation factor concentrates
(yes/no total)

Yes, no Platelet inhibitors (no/ ASS/ Plavix) 0-30

Preoperative haemoglobin value
(g/dl)

6-18 Tranexamic aid Yes, No

Haemoglobin value of 5th
postoperative day (g/dl)

6-18 Cell salvage Yes, No

Minimal haemoglobin value/
hb_nadir (g/dl)

6-8 Type of anesthesia (general/regional/
other)

GA, RA, OTH

 Haemoglobin value of 3rd postoperative
day (g/dl)

6-18

 Haemoglobin value at end of surgery (g/dl) 6-18

 Haemoglobin value at discharge (g/dl) 6-18

 Emergency surgery Yes, No

 Anaemia-treatment Yes, No

2.3 Architectural Design

Figure 8 illustrates the architectural design of the whole PBM-ABS service according to the

requirements in 2.2. In the beginning stands the definition of the minimal and the optimal

dataset as described in 2.2.1. In the data acquisition part the path is dividing in two branches.

The fist branch includes data acquisition with existing data capturing and information

management tools of the hospital. The following step in the data extraction module is the

automatic data extraction from these sources. The second branch illustrates data acquisition

using an EDC system, which requires an export depending on the technology of the EDC

system as data extraction step. In the EU-PBM service this could be done with an SQL-

19 of 76

query. Having the resulting file of these branches, which should meet the predefined

specifications and is shown as data export in Figure 8 the branches are merging into one

branch again.

Figure 8: Architectural design of the PBM-ABS service

On this point the PBM-ABS app is entered. The data export is loaded into the client side app

and is undertaken some processing steps, listed in the processing module of Figure 8. After

data exchange between client and server of already stored and currently loaded data,

depending on the users configurations, all calculations required for the report are made and

the report is generated. The grey exchange arrow illustrates the storage of the generated

report. This step will not be realised in this work but should be considered for the future.

Storing the reports might have benefits for documentation and quality management

purposes. For more details about the architectural designs of the single parts of the PBM-

ABS service see section 3.2.

2.3.1 Realisation of the PBM-ABS Tool as Web Application

Based on the use cases and main requirements, the implementation of the PBM-ABS tool as

a JavaScript® (JS, JavaScript.com, Orlando, USA, [27]) web application (web app), was

decided. For this tool the term PBM-ABS app is used in this work. There are some

disadvantages of web apps compared to desktop applications like:

 web apps rely on internet accessibility,

 web apps sometimes have reduced performance,

 execution of JS is dependent on the browser and

 the code is visible for the user.

However, web applications have far more advantages. It is easier to make a web app user

friendly for multiple platforms and screen sizes, world wide access is provided and it requires

no further installation than having a standard web browser available. Because everyone is

20 of 76

accessing the same web application provided by the developer, the application is always up

to date and no user storage is required. A secure log-in can easily be provided which also

reduces the problem that the code is visible for everyone, because only code of content

displayed to the user can become visible. Consequently people without access to the

application will have no access to the code. This can also be beneficial because it provides

transparency, often required for quality management purposes.

Additionally, there are minifying programs which are making the code-size smaller less

readable. [28] As integrated development environment (IDE) Visual Studio® 2015 Community

edition (Microsoft, Redmond, USA, [29]) was used, which is “an extensible IDE for creating

modern applications for Windows, Android an IOS as well as web applications and cloud

services” [30] and is open source.

Most webpages are written in HTML®, with JS elements to handle the interaction between

the interface and the back-end service and Cascading Style Sheet (CSS®) elements. [31]

JS is a programming language that can be interpreted by the browser, which means the

browser has a built-in interpreter that can parse and execute the language. This provides

direct access to browser events and the Document Object Model (DOM) objects and

accordingly the possibility to add, modify and remove web page elements without reloading

it. [31]

There are many libraries extending JS and one of the most common is JQuery (JQuery

Foundation, Redwood, USA, [32]), which provides quick access to specific elements using

selectors and built-in functions. Not just access to single DOM elements but also to groups

such as paragraphs belonging to the same class or containing a certain substring in their ids.

This access and the built-in functions enable easy manipulation of these DOM elements in

many ways. [31]

Because of the high complexity- caused by many configuration options and dynamic content

the PBM-ABS app should provide - using plain JS and JQuery would be possible but not very

efficient.

Therefore AngularJS (Google, Mountain View, USA, [33]), a JS MVC framework developed

by Google®, was used. Because of its architecture it is possible to make the implementation

more structured and well-designed. AngularJS enables handling user input in the browser,

manipulating data on the client side and controlling all elements visible to the user. [31]

There are many further advantages of AngularJS of which some contributed to the decision

to use it for the PBM-ABS app [31, 34]:

21 of 76

 Data Binding:

As mentioned in the beginning of this section JQuery for example can update parts of

the DOM without reloading the whole page. In AngularJS this is much easier and

more dynamical. Data bindings map parts of the UI to JS properties and are updated

automatically. This works in both ways: changes in the UI will change the JS

properties and vice versa.

 Extensibility:

Beside many features provided by AngularJS almost every aspect, like filters or

directives can also be realised by custom implementations.

 Clearness:

The developer is forced by Angular to write clean and logical code.

 Reusable Code:

The combination of extensibility and clearness of the code usually results in reusable

custom services which can easily be incorporated in other software. How this can be

facilitated can be seen in section 2.5.2.

 Support:

Google is providing a lot of documentation and there is a large community using

AngularJS, which is very helpful for any kind of problem during the implementation

process.

 Compatibility:

On one hand this means the compatibility with existing code: Because AngularJS is

based on JS and is also related with JQuery, existing code can also be integrated. On

the other hand high browser compatibility is given. The most popular browsers are

Chrome® (Google, Moutain View, USA, [35]), Firefox® (Mozilla Foundation, USA,

[36]and Internet Explorer® (Microsoft, Redmond, USA, [29]) and even in these three

browsers some differences exist in compiling JS code. This is because the browser

uses an engine to parse data from server, build objects etc. But each browser is

using a different engine and accordingly interprets the scripts differently. When using

AngularJS, it takes care of most of these issues.

2.3.2 Webserver

Compared to former websites with primarily static content, nowadays the websites have

become much more dynamical enabled by the aforementioned technologies. Direct

interaction with the user from a client side application as well as with back-end web services

on the web server is facilitated by JS, JQuery and AngularJS. This communication between

web server and browser consists basically of a request, sent by the browser and a response

from the server which is further displayed to the user. Accordingly, the web server constitutes

22 of 76

a very critical component, checking the format and validity of requests to provide the required

security. The PBM-ABS app is a combination of client side and server side scripting. The

App itself is client side scripting, which means the code is sent to the client where it is

processed. There is no processing on the server. This makes it easy to provide the

application to a large number of people. The web services are processed on the server, so

they are the server side component. Therefore choosing the right development platform for

the webserver is essential.

For the PBM-ABS app Node.js (Node.js Foundation, USA, [37]) with express was chosen as

a webserver. Node.js is a JS platform built on V8 engine of Google Chrome, which enables it

to run JS applications outside a browser. It easily enables adding and managing external

modules like the express module which is a framework that provides the actual web server.

This provided webserver is easy to implement, has a robust feature set for e.g. parsing

requests or error handling. Node.js itself is easy to install and set-up and it enables JS

snippet testing without using a web browser. A plug-in for Visual Studio® is available which

makes it simple to create Node.js projects. Because it’s based on JS it is unnecessary to

understand a back-end scripting language like Python or PHP. [31]

For data storage of the PBM-ABS app a MySQL(Oracle Corporation, Redwood, USA, [38])

database was used. For further information see section 2.3.3.

Another reason for choosing both technologies, MySQL and Node.js, was that there is an

existing MySQL driver for Node.js, written in JS. This driver already provides the required

features for creating the web service which handles the data exchange between application

and database.

2.3.3 Data Storage

As mentioned above, MySQL® was chosen for storing the PBM data. But before choosing a

relational database, it had to be decided if a relational or a so called “No-SQL”-database

should be used. “No-SQL” does not mean that it is not SQL, it means that it is Not-Only-SQL.

The main difference between those database types is, that “No-SQL” databases offer

horizontal scaling, which means that data is not stored in tables or rows but in documents

and one document can be embedded into another.

Furthermore, relational or SQL databases provide ACID transactional properties (Atomicity,

Consistency, Isolation, and Durability), while “No-SQL” databases don’t. [39]

Even if “No-SQL” databases offer many features to increase scalability and to achieve higher

performances in certain circumstances (see [39]) the data storage of the PBM-ABS app just

requires the conventional tabular relation data principle of having one entry per patient and

23 of 76

every entry has the same parameters. Therefore, no higher scalability is required, while

ACID properties are quite important, so there is no need for choosing a “No-SQL” database.

Generally the more features a software or database provides, the more complex its usage

and maintenance becomes.

2.4 Verification of Software Components and Database Transactions

After implementation, the developed software components and database transactions have

to be tested for their correctness.

Concerning the data extraction it would require too much effort to manually check every

single entry of the results. Therefore, 30 random samples were checked for their correctness.

This includes the inspection of correctly matched patient entries as well as checking the

results of aggregation functions, like how many transfusions a patient received.

The only possibility for verifying the PDMS query was to check against the data of the

Cardio-db. This was the case, because access was limited to database transactions, which

means that there is no possibility to use features of the PDMS GUI itself. The only

parameters that were appropriate for this comparison were gender, age and height.

Concerning the PBM-ABS app there are two different parts to check. For checking the data

processing, a test-loading file was generated, containing failures of notation- and type-

correctness, missing values as well as exceeding or falling below plausibility thresholds. All

fields of these test-loading files were checked manually.

The main part was to verify the benchmarking indicators, analytics and statistics which are

calculated by the PBM-ABS app and included in the generated report. Therefore the

Microsoft® Access queries used for the required calculation of the EU-PBM-D6-Evaluation-

Report were used to calculate the same indicators and statistics that would be provided by

the generated report. The original dataset of the EU-PBM project was uploaded on the PBM

database and the report was generated for every participating centre. Afterwards, the results

of both technologies were compared. Verification via checking results against other results of

the same kind but produced by different tools also meets the requirements of the AIT

process definition for sustainability tests in the accredited field.

2.5 Used Software Tools, Devices and Technologies

2.5.1 Technologies for Automatic Data Extraction

2.5.1.1 ODBC

The Open Database Connectivity framework is an interface language, which provides

Application Programming Interfaces (APIs) to enable application development without tying it

to a specific database server or operating system. This means that beside developing an

application without knowing which database server is going to be used, also replacing the

24 of 76

original database server without modifying the source code is possible. For this purpose all

database interactions are handled by the API and the corresponding ODBC calls. The

module translating queries from the application for the database server and the results the

other way round is the ODBC driver. [40]

So the application, in this case Microsoft® Access, connects to the ODBC Driver Manager

which uses the required driver e.g. Microsoft SQL ODBC driver to connect to the database

server. [41]

2.5.1.2 Microsoft® Access

Access offers the WYSIWYG system (What you see is what you get) which facilitates dealing

with very complex data queries over a graphical user interface. Tables in Access are created

with data definition language (DDL) in a database management system (DBMS). DDL is

usually part of the structured query language (SQL), which is - with some deviations from the

original SQL standard - used in background to perform the actual database operations. The

user has the possibility to create queries over the graphical user interface and the SQL-

statement is created automatically in background or the user can directly use the SQL-view

where he or she can construct the SQL query manually. Alternatively Visual Basic can also

be used over another user interface. The tables and query results which are visible for the

user are called the frontend database. All information about the frontend database including

notations, links and the data itself are stored in the backend database. [42]

2.5.1.3 Structured Query Language (SQL)

SQL is a database manipulation language and basically there are two ways to issue an SQL

command to a database:

 To send a manually typed single command to the database and receiving the result in

form of a virtual table stored in main memory, or

 using embedded SQL, like in this case, in an application program with a form based

or command line based interface for query construction.

The syntaxes of both kinds of SQL are very similar, but the embedded SQL does not require

conforming to all standards. Nevertheless, all SQL commands are built up on the same

elements: keywords, tables, columns and functions. Tables and columns mean the name of

the tables and columns on which the command should operate. Keywords and tables are

mandatory, columns and functions are functional. [43]

The main keywords for queries are SELECT and FROM. Between those keywords all

attributes have to be inserted which should be selected from a specific table defined after the

25 of 76

FROM notation. As can be seen, SQL is not asking how to search for data but which data it

has to search for. Using the keywords UNION, INTERSECT or EXCEPT, different tables or

data sources can be combined and with GROUP-BY can be sorted alphabetically or

numerically according to one or more defined columns. It is possible to add filter conditions to

the query or group entries with the same attributes. On attributes, which are equal,

aggregation functions can be applied returning for example average, standard deviation,

minimum or maximum of a group. Also arithmetic operators like summation, subtraction,

multiplication and division are applicable. [44]

These main functionalities facilitated the extraction of the relevant parameters from the

PDMS databases.

2.5.2 Description of AngularJS for PBM-ABS App Development

As mentioned in 2.3.1, AngularJS - a JS MVC framework developed by Google®, which also

includes a reduced JQuery library called JQuery lite - was used for developing the PBM-ABS

app. [31]

An MVC structure, or Model View Controller structure, means that there is a clear separation

of code dealing with the data representing the current state of the application (model), the

application logic, which manages the relationship between view and model (controller) and

the graphic illustration of the data presented to the user (view). [34]

Beside the definition of AngularJS as an MVC framework many publications are using the

term of an MVW (model-view-whatever) framework which are quite similar. Figure 9 gives an

illustration how AngularJS fits in two of these models.

Figure 9: AngularJS interpreted as MVC or MVW framework. [45]

26 of 76

2.5.2.1 Modules

Modules are a kind of container for related JS code. Each module can contain its own

controllers, services, factories and directives. With the declaration of a module AngularJS

checks whether all defined parts of this particular module are available. Using the ng-app

directive, the module can be defined, which should be loaded as main entry point for the

application. [46]

2.5.2.2 Controllers

A controller is almost always linked to a corresponding view or HTML. As described in the

MVC structure in 2.5.2 it is like a gateway between view and module and accordingly

performs the main UI-oriented operations. The controller requests the required data for the

current UI from the server and makes decisions which part of it is further shown to the user

and its presentation. It also handles user interaction like data input or clicking events.

Each controller, as well as other elements – e.g. directives - has a scope, which constitutes

its context and handles the access permissions of DOM elements in terms of functions,

variables etc. [46]

2.5.2.3 Service, Factory and Provider

Services are functions or objects which can be accessed by every component of the

application and are holding states or behaviours. One common AngularJS service is the

$location service. (the $ sign is the prefix of all services) It enables interaction with the URL

in the browser bar via manipulating it or just gaining information from it.

Another very important service is the $http service. [46]

HTTP stands for Hypertext Transfer Protocol, which defines the data exchange between

browser and webs server. HTTPS adds an additional security layer in form of a certificate

provided to the browser, which is required that the server will respond to any request. The

most important requests are the GET-request, which retrieves information from the server

and the POST-request that sends data to the server. [31]

Those requests are also provided by the $http service as well as setting the headers,

caching and dealing with server responses and failures. [46]

Beside those built-in services it is possible to create own AngularJS services as well. One

way to define such a services is the factory function, which is recommended for a functional

programming style and if the developer prefers to use functions and objects. The service

function is also a possibility for creating a service but instead of invoking the function and

storing the return value, AngularJS will always call “new” on the function to create an

instance of a class. Defining a service using the provider function is only recommended if

configurations are required before loading the application. [46]

27 of 76

2.5.2.4 Directives

Directives are dealing with DOM manipulation and provide a way to create reusable UI

widgets. DOM manipulation means, that they can change the behaviour of existing HTML

snippets and reusable UI widgets mean that the directive creates a new HTML structure and

has its own rendering logic. Every directive has its own scope and a link function, which is

performed on the scope, when the directive gets called. When data is passed to a directive,

this is always by reference. This can be realised by a two-way-binding, where changes

performed by the directive are also performed in the scope of the corresponding controller or

a one-way-binding where only changes of scope variables are passed to the directives but

not the other way round. [46]

2.5.2.5 Filters

Filters are changing the format or the values of the user interface. They can be applied

directly from the HTML or inside a controller or other services. An example of a predefined

filter is the “number” filter which is rounding the digits after the decimal point or adding a

thousands separator. [46]

2.5.2.6 Dependency Injection

Dependency injection constitutes the bases for the whole service concept in AngularJS.

Every service can be “injected” into another service, controller or directive defining it as a

dependency. AngularJS is then checking if all dependencies a service needs are available

and fully instantiated before the service is executed. [46]

2.5.2.7 Routing

As mentioned before it is possible to have multiple controllers with their corresponding views,

but the question is, how to switch from one to the other. This is enabled by the

$routeProvider.when function. The first argument of this function is an URL for which the

appropriate configuration will be triggered. This configuration tells the service, which

controller is needed and which view should be shown by the ng-view directive. Usually the

ng-view directive is integrated in an index-html - which is the “main HTML” and is always

shown - and handles the content which is displayed in a certain step of navigating through

the application. [46]

2.5.3 Additional technologies and JS Libraries used for the Realisation of the
PBM-ABS App

2.5.3.1 MySQL® database

MySQL® is an open source project for a rationale database management system. MySQL®

can be used through a text oriented mysql client, GUI clients or through the browser using a

server side scripting language, like in this case. All three can access the database via a

28 of 76

TCP/IP network but the text oriented Client can also communicate directly with the server

over the console. To access the MySQL server with root-rights, connection parameters like

hostname, password etc. have to be given. The whole communication is based on SQL

statements. Further information regarding SQL was already stated in section 2.5.1. [42]

2.5.3.2 Bootstrap

Bootstrap (Mark Otto et al, USA, [47]) is a CSS framework and its principal advantage is its

responsive grid system. The framework separates the browser window in a 12-column grid

and window sizes are classified in four classes: extra small for a mobile device, small for

tablets or netbooks, medium for notebooks and large for large screen desktops. The

developer can now define for every class on how many columns an element should be

extended. But there are a lot of bootstrap components which are commonly used and some

of them are shown in Figure 10. [48]

Figure 10: Commonly used bootstrap components (Navigation, Buttons, Forms). [48]

For the PBM-ABS app the Angular ui-bootstrap 13.3 library was used.

2.5.3.3 Other JS Libraries

The first step for using the PBM-ABS app is to upload a CSV file. Therefore the JS library

Papa Parse was used to parse the CSV data to Java Script Object Notation (JSON) format

for further processing. JSON has multiple hierarchies and is of key-value concept, which

means the value can be obtained by using the corresponding key.

For all kinds of charts the highcharts (Highsoft, Vik i Sogn, Norway, [49]) library was used,

which is a JS library for interactive chart creation. It supports more than 20 chart types and

offers many features. HC adjusts itself to every screen size and is dynamic according to data

updates and adding or removing axis or series. It is supported by almost all modern browsers

and the charts are rendered using Scalable Vector Graphics (SVG). [50]

29 of 76

A lot of AITs web applications are already using highcharts, why its use was recommended

and conform to corporate design. Essential for report generation is transforming the

produced content to PDF format. For creating the PDF itself jsPDF (James Hall, Leeds, UK,

[51]) library was used but first the content had to be transformed. This content consists

mainly of tables and charts, and seemed the easiest solution in transforming each element

onto a canvas. A canvas is an HTML element on which images, graphics or animations can

be projected. For transforming HTML content, like text or tables onto a canvas html2canvas

(Niklas von Hertzen, Helsinki, Finland, [52]) library was used. It was also possible to

transform highcharts elements with this library, but because highcharts is using SVG, some

parts of the charts were blurry. Consequently canvg(Gabe Lerner, Chicago, USA, [53]) library

had to be used for highcharts elements, which is dependent on rgbcolor (Stoyan Stefanov,

Los Angeles, USA) library and the exporting (Highsoft, Vik i Sogn, Norway, [49]) library of

highcharts. Using these libraries was also recommended by the highcharts support.

30 of 76

3 Results

This chapter outlines a detailed description of all development, implementation, configuration

and installation steps as well as verification results. The overall workflow of the PBM-ABS

service, illustrated in Figure 11, is divided into the data extraction process in the AKH Wien

and the PBM-ABS app. The data exports from the AIT-EDC system (see Table 1) fulfilled the

specification and therefore no further adaptation was required.

Figure 11: Overall workflow of the PBM-ABS service

An EDC system has the following advantages:

 As a stand-alone system, which means neither integration into the hospital’s IT-

infrastructure, nor cooperation or coordination with the hospital’s IT-department is

required.

 It is mature since it was successfully used and tested in many data acquisition

processes in Austria

 It is tested for its usability, therefore easy to use.

Nevertheless, there are important reasons why using an EDC system is not the optimal

method of choice:

 EDC systems are time consuming for clinicians because beside internal data capture

for the hospital, all data have to be entered for a second time.

 Accordingly, additional personal resources have to be provided to ensure that the

data entry is on time.

31 of 76

 Repeated data entry may cause individual faults (e.g. double data entry, source data

verification), which makes time consuming quality checks essential in order to ensure

data accuracy and reliability.

 Possible individual case selection may lead to non-consecutive data sets. This has to

be checked, because consecutive data selection is an important requirement for

reliable intra- and external for benchmarking

3.1 Showcase for Retrospective Data Extraction from Existing Data

Sources in the AKH Wien

As previously mentioned, Figure 11 shows another kind of architectural design illustration of

the overall workflow, in which the data extraction process in the AKH Wien makes up the first

part, apart from extracting data from EDC systems. A more detailed illustration of this part

can be seen in Figure 12.

In this diagram the four data sources are shown. As described in 2.2.2 for the TDB, the HIS

and the Cardio-db an excel export was available, which is also indicated in Figure 12 as well

as the direct access to the PDMS. Looking at the illustrated exports shown in Figure 12, all

sources apart from the Cardio-db are containing an ID. This ID is internally called BCMAC, or

short MAC, in the AKH Wien and is a case identifier. For PBM it is not important to have a

unique patient identifier because every intervention is considered independently. The

BCMAC was used for the core dataset. The identifier of the Cardio-db is the so called MAC,

or long MAC, which is a patient identifier and is also contained in the HIS. For this purpose

the Cardio-db had to be merged with the HIS data over the MAC first, to gain the case

identifier for further steps.

For the showcase only parameters of the core dataset were extracted, even when the

Cardio-db was containing some of the supplementary dataset parameters too. This was also

because within the prototypical implementations of the PBM-ABS app, only analysis of the

core dataset was included, but can be arbitrary extended. Table 4 shows the parameters of

the core dataset and the sources in which they are contained.

32 of 76

Figure 12: More detailed illustration of the data extraction part.

Table 4: PBM core dataset and corresponding data sources of the AKH Wien

Core-Dataset

Parameter Source

ID All sources

Surgery date PDMS or Cardio-db

Length of stay (days) -

Intervention (3 letter code) Cardio-db, (PDMS)

Gender (m/f) Cardio-db, PDMS, HIS

Age (years) Cardio-db, PDMS

Weight (kg) Cardio-db, PDMS

Size (m) Cardio-db, PDMS

Allogeneic RBC transfused (number
of units total)

Cardio-db, TDB

FFP (units total) Cardio-db, TDB

Platelet concentrates (yes/no total) Cardio-db, PDMS

Coagulation factor concentrates
(yes/no total)

Cardio-db, PDMS

Preoperative haemoglobin value
(g/dl)

Cardio-db, PDMS, HIS

Haemoglobin value of 5th
postoperative day (g/dl)

PDMS, HIS

Minimal haemoglobin value/
hb_nadir (g/dl)

PDMS, HIS

33 of 76

Looking at Table 4, there could already twelve of fifteen parameters of the core dataset be

extracted from the PDMS under the assumption that all needed Hb values can be retrieved

from the HB and the HB_time parameter and the intervention can be derived from the

primary diagnosis. Actually this was not the case, because the PDMS contains just data from

the ICU. If there are no adverse events the patient is just staying at the ICU after surgery and

the rest of the time at the normal ward. Accordingly the PDMS contains almost no

preoperative data. The data of the normal ward should be in the HIS. Even if the data about

how many RBC units or other blood components were transfused should also be available in

the PDMS, the transfusion database was used to retrieve this information because of higher

data accuracy without dependency on the ward where the patient was located.

The following sections will describe each part of the process, which is needed to gain the

PBM core dataset in form of a csv file. This csv file constituted the goal of the data extraction

workflow as well as the beginning of the PBM-ABS app workflow.

3.1.1 Data Extraction from the Patient Data Management System (PDMS)

3.1.1.1 Basic Data Structure of the PDMS

As mentioned in section 2.5.1, before constructing an SQL query to extract the required data,

a detailed analysis of the database structure had to be performed. Therefore existing SQL

queries provided by Philips were analysed step by step to obtain the structure and

relationships shown in Figure 13.

34 of 76

Figure 13: Database structure of the PDMS reconstructed by analysing existing queries

If the query should retrieve patient information the main table has to be dbo_D_Encounter,

also marked as “Patient” in Figure 13. This means, that if no filter is applied all entries of this

table will be shown in the query result. This table already includes the case identifier

(BCMAC), age and gender of the patient. The case identifier is called encounterNumber

within the PDMS database. Another ID used within the PDMS databse is the encounterId,

which is also the primary key of the dbo_D_Encounter table. The primary key signifies the

parameter which is used as identifier for each row and implies that every entry is unique

inside this table. The arrow pointing to the dbo_PtDemographic table represents a 1:n

relationship, which means there are n entries in this table connected to one encounterId of

dbo_D_Encounter. These entries contain for example the surgery date, height, weight or BMI

of the patient.

3.1.1.2 Data Extraction Measures

In the following sections the queries will be described in detail. Figure 14 shows a legend

describing the required query elements used in the following database transaction diagrams.

Figure 14: Legend for database transaction diagrams

The databases and tables as well as the 1:n relation are illustrated in the same way as in

Figure 13. Inside of a query window expressions and filters are applied on the tables. Every

query window has a resulting database/table which is indicated by the bold arrows.

Figure 15 shows the query that extracts the data from the PDMS, also including filters and

expressions. For example to retrieve parameters of the patient from the dbo_PtDemographic

table filters have to be applied. To get the height of the patient the table has to be filtered for

entries with “attributeId =11637” then the parameter valueNumber will return the hight of the

patients. The majority of the other subqueries are performed more or less analogously. It is

also possible to perform this kind of query on more than two tables. The process steps

35 of 76

depicted with symbols of elliptical shape are indicating expressions which are applied. An

expression can be an if-else expression, an aggregation function or just the renaming of a

parameter. An expression is for example applied in the subquery, marked with the red

dashed border in Figure 15.

In this expression an aggregation function is applied on the filtered tables. For example

“GROUP BY encounterNumber; Count(valueNumber) AS ei” means that all entries with the

same encounterNumber will be grouped and instead of the valueNumber the number of non-

null entries of the parameter valueNumber will be returned. The new parameter will be called

ei. Afterwards an if-else expression is performed, which returns yes if ei is greater than zero

otherwise it will return no. The AS expression once again renames the parameter as epo/iron

and returns if the patient has received erythropoietin(epo) or iron. Other expressions used in

Figure 15 are performed analogously. For information about the SQL syntax see chapter

2.5.1.

3.1.1.3 Data Extraction Steps of the PDMS Query

In the PDMS query in Figure 15 following steps were performed:

 First the case-ID, gender and age are extracted from the dbo_D_Encounter table

together with the surgery date from the dbo_PtDemographic table.

 Then the primary diagnose, age, weight, height and body mass index are extracted

from dbo_PtDemographic table. (If height or weight is missing, it could be calculated

from the body mass index)

 If epo or iron, tranexamic acid, factor concentrates or platelets have been transfused

was extracted from the dbo_PtMedication table using the dbo_D_Intervention table

for filtering.

 Hb values and corresponding Hb time (time when the value was entered into the

sytem) were extracted from the dbo_PtLabResult table.

 Finally all extracted parameters were merged into one table named ICCA.

 36 of 76

Figure 15: Query to retrieve the required parameters from the PDMS

 37 of 76

3.1.2 Merging Data from Internal Data Sources

3.1.2.1 Data Availability

As stated in 2.2.2 the data quality of combining those three sources was not sufficient (see

3.1.3). The major problem was that the intervention could not be determined. There were

some different kinds of diagnoses available in the HIS, but in most cases this information

was not consequently documented in a structured way, but in free text. All diagnoses from

the HIS were already imported into the PDMS under “primary diagnosis”, because there have

already been some efforts of the AKH Wien to enable data exchange between the two

systems. That was why the primary diagnosis of the PDMS was used for attempts of

retrieving the intervention, but provided inexact results because of the free text

representation.

Nevertheless, after all efforts it was only possible to identify a small fraction of total cases

with the desired interventions. There have been some other data quality issues, like e.g.

double entries for height – sometimes showing more than 10 cm differences - missing

parameters and for some parameters only parts of the required information could be

extracted. Therefore, the Cardio-db was used as a fourth source to extract additional data of

cardiac surgery cases. The Cardio-db was introduced and administered by the department of

Cardiothoracic and Vascular Anaesthesiology. Entering the required parameters into this

database is well integrated in the daily hospital routine of the physicians, resulting in a high

completeness of the database entries. For this reason it was decided to use the Cardio-db as

primary source which then were extended by parameters retrieved from the other data

sources.

3.1.2.2 Data Extraction

Figure 16 shows the first part of the query for merging the data of the four sources. This part

contained following extraction steps:

 The left part of Figure 16 was to match the patient ids (MAC) in the Cardio-db to the

case ids(BCMAC) by using the HIS export, which contains both of them.

 Because time of surgery - which is relevant to derive the correct data from transfusion

database - was not available from the Cardio-db, the time of surgery, if available, was

retrieved from the PDMS.

 38 of 76

 The resulting table called Step0_heart was then containing all required parameters of

the Cardio-db, the BCMACs which could be matched and reduce surgery time.

Figure 16: First part of the query for merging data of all four sources.

 In the right part of Figure 16 all Hb-values and the corresponding entering time of HIS

and PDMS were joined into one table. From the HIS the following data exports were

available:

o Diagnoses- containing primary diagnoses (AKIM)

o Intraoperative Hb values and associated laboratory parameters from operation

room (AKIM_OP)

 39 of 76

o Postoperative Hb values and associated laboratory parameters from intensive

care unit (AKIM_ICU)

Lots of these Hb values existed in all three tables. Because of using the SELECT

DISTINCT keyword for the query instead of just SELECT, the resultant table called

Step1_Union_AKIM_ICU_OP_ICCA included all entries of all sources but only once.

Because the preoperative Hb was already available in the Cardio-db, Hb values from

blood samples before the surgery date were excluded. The resulting

Step2_Hb_postop_time table contained just Hb values measured during or after the

surgery.

The PDMS was also containing preoperative Hb values because they are automatically

imported from the laboratory, but because the preoperative Hb was available in the Cardio-

db, this value was used.

The second part shown in Figure 17 concerns the TDB:

 For comparing results of how many transfusions a patient received, from the Cardio-

db and the TDB, a filter was included in the query where it was possible to just return

the number of RBC or FFP units transfused from the Cardiothoracic and Vascular

Anaesthesiology ward. This filter was only used for retrieving the results shown in

Figure 21 (section 3.1.3), otherwise it was inactive.

 Blood components units with a delivery date lying out of a time range of three days

before and seven days after surgery were excluded.

 Entries were later divided into RBC units and FFP units.

 The RBC units table was then separated into one table only containing units with

status transfused and one with all units to get the number of ordered RBC units. They

were then grouped and matched to case identifier and surgery date.

 The resulting table denoted as Step8_join was then containing BCMAC, surgery date,

number of transfused RBC and FFP units as well as ordered RBC units.

Figure 18 illustrates the third part of this query. It is the continuation of part 1 for retrieving

the required postoperative Hb values:

 Now the Hb values are separated into values between the 3rd and the 4th, 4th and 5th

and 5th and 6th postoperative day and are categorised as hb_3postop, hb_4postop

and hb_5postop. The perioperative period is defined from the beginning of the

surgery until the 5th postoperative day [2]. On the 5th postoperative day all influences

from medication given during the surgery should be compensated which allows

representative conclusions. If the Hb value of the 5th postoperative day is not

available, the latest possible value should be taken as recommended in [15].

 40 of 76

 Then an if-else expression is applied taking the hb_5postop if available, otherwise

the hb_4postop and again if not available the hb_3postop as hb_postop. If no

postoperative Hb value can be found for this patient hb_postop is set to null.

 The minimal postoperative Hb of the patient which can be determined in the given

time range is categorised as hb_nadir (nadir = lowest point).

 In the last subquery all Hb values and all required parameters of the Step0_heart

table constitute the Step6_heat_and_hb table.

Figure 17: Second part of the query for merging data of all four sources.

 41 of 76

Figure 18: Third part of the query for merging data of all four sources.

Finally part 4, shown in Figure 19, combines the results of part 2 and part 3. How the four

parts interact can be seen in Figure 20.

 42 of 76

Figure 19: Fourth part of the query for merging data of all four sources.

Figure 20: Overall query showing interaction of the four subquery parts.

 43 of 76

3.1.3 Resulting Tables of the Data Extraction Queries

3.1.3.1 PDMS (ICCA) Query

The unfiltered query result had 588051 entries of 65620 patients for a time range between

the beginning of December 2013 and the end of October 2015. To find cases with

interventions of interest filters were applied on the primary diagnosis field. The interventions

of interest in the AKH Wien were Coronary artery bypass surgery (CABG, or three letter

code: CAR), with no valves and between one and four bypass grafts, Pancreas resection

(PAN) and total hip endoprosthesis (H-TEP, or three letter code: THR). Table 5 shows the

number of the extracted cases after applying filters for determining surgeries belonging to the

three interventions of interest.

Table 5: Applied filters and number of cases from the extracted PDMS table

Intervention Filter conditions Number of cases

CABG (CAR) LIKE “*CABG*” 214

H-TEP (THR)
LIKE “*TEP*” AND

NOT LIKE “*Knie*”

94

PAN LIKE “*Pan*” 194

These are fewer cases than expected. Regarding CABG cases, there were 214 extracted

cases from the PDMS as shown in Table 5. But comparing this with the Cardio-db cases

from 2014, which can be assumed as ground truth, these are far too less cases, because the

Cardio-db contained 507 CABG cases just for the year 2014.

As mentioned in 2.4, for verification of data exports from PDMS, the only way to verify the

resultant PDMS table was to compare some parameters of the entries which could be

matched, to the corresponding entries of the Cardio-db. After filtering the CABG cases once

again for having between one and four bypass grafts and for surgeries without valves, as

well as for not having the apposition “diverse”, there were 313 cases left. Table 6 shows the

equality of the Cardio-db and the extracted PDMS table for the parameters gender, age and

size.

Table 6: Equality of cases of the extracted PDMS table and the Cardio-db

Parameter Overall # of cases # of equal cases [%]

gender 313 310 99,0

age 313 309 98,7

height 313 262 83,7

 44 of 76

The greatest deviation of the two tables was for the height of the patients. Out of 51 unequal

cases, 29 were because of missing values and 22 because of different values.

3.1.3.2 Query for Merging the Data Sources

As documented in 2.4, 30 random samples were checked for correctness of the matching

and the aggregation functions. Regarding both categories 100% of the 30 random samples

were correct. This means, that all 30 entries of the Cardio-db were matched to the correct

entries of the PDMS, HIS and TDB as well as the correct number of RBC transfusions were

determined using the “Count” aggregation function of Access.

The resulting table of the query contained 314 cases. 232 (73,0%) complete data rows and

82 (27%) with containing missing values. The Cardio-db export was also filtered for CABG-

cases with one to four bypass grafts, without valves and apposition “diverse” before it was

imported to Access for performing the query.

A comparison between the number of transfused RBC units according to the TDB and the

Cardio-db was done. For this purpose the “on demand” filter shown in Figure 17 was applied

to extract just the units which were deliverd to the Cardiothoracic and Vascular

Anaesthesiology ward. The TDB was chosen as reference table. The results are shown in

Figure 21 and Table 7.

Figure 21: Pie diagram of concordance comparing transfused RBC units
of TDB and Cardio-db

Table 7: Accordance of transfused RBC units per patient comparing TDB and Cardio-db

 ±1 day -3 days and +7 days

Number of transfused patients 113 117

Same number of transfused RBC
units

91 93

Different number of transfused RBC
units

17 19

Only transfused according to the
TDB

5 5

 45 of 76

To obtain results for the other interventions the available cases from the PDMS were used.

To retrieve pancreatic resection cases the primary diagnosis field was filtered for “Panc” or

“Pank” because the diagnosis field is a free text field and both terms, “Pancreas” and

“Pankreas” were used. After consultation with responsible physicians a new strategy was

found for extracting THR-cases. First, the primary diagnosis field was filtered for

“Coxarthrose” or “Koxarthrose”, because almost all THR surgeries have a previous diagnosis

of coxarthrosis. Also if a surgery date for the cases could be found it was further checked

manually if this patient actually received a hip implant and an implant pass. Of 193 cases in

the year 2014 69 remained after manual check. On the basis of these cases the rest of the

query was performed analogously.

3.1.3.3 Additional Results Based on Internal Data Extraction

An essential benefit of extracting the data directly from internal sources is that the extraction

can be arbitrarily extended. The internal data sources of a hospital contain very detailed

information which can be analysed in multiple ways. This allows accessing the effectiveness

of newly implemented changes in processes and logistics.

Just in Time Ordering and Single Unit Strategy

To improve the fast supply of transfusion products within the hospital a tube delivery systems

was implemented in AKH Wien. Additionally, the ordering process was switched to “just in

time” ordering, which should support the physicians to change their behaviour from double

unit to a single unit transfusion strategy. This strategy implies “gradual and controlled

replacement of the deficient RBC volume until the recommended transfusion threshold is

reached [2].”

Figure 22 and Figure 23 illustrate how these changes can be supported by internal data

analytics. Figure 22 shows the increase of single unit orderings in 2015 for OR-Groups and

ICU. Figure 23 shows the transfusion timeline of a patient. By analysing such timelines of

random samples it can be checked the effectiveness of transfusions and if the transfusion

behaviour complies with the guidelines of the single unit strategy. For this illustration, the Hb

values of all internal sources were merged.

 46 of 76

Figure 22: Relation of one to two simultaneously ordered RBC units within OR-Groups and

ICU 2015

Figure 23: Transfusion timeline of a patient

 47 of 76

3.2 PBM-ABS App

Figure 24 shows a flow diagram of the PBM-ABS app including the decision tree of the app.

Additionally, a rough illustration of the implemented components is integrated to give an

overview on the software architecture.

Figure 24: Software components and decision tree of the PBM-ABS app

The following section describes the 4 components of the client side app. The corresponding

implementation steps are described in detail in section 3.2.2.

 Load: In this section, the user loads the csv file, containing the PBM core dataset into

the application. The data is then converted to JSON format for further steps. The user

also has the possibility to download an example csv file or an xls-file containing an

example dataset and a description of all specifications, like plausibility thresholds or

type definitions.

 Validation: In the validation part a preview of the loaded data is shown. The preview

is displayed as a table, with different coloured fields. If there are valid rows, the user

has the possibility to proceed, but invalid rows will be ignored. If there are no valid

rows or the user is not satisfied with the feedback, he or she has to modify the file in a

way that it meets the specifications and repeat the loading process. Before

proceeding the user has to decide whether he or she just wants to use the analytics

 48 of 76

features for the loaded data or the benchmarking features. When choosing

benchmarking, the user has to agree with the terms and conditions because for this

feature an upload to the PBM database will be required.

 Configuration and calculation: In this part the user has to do all required

configurations for the desired report. If the benchmarking path was chosen the user

has to decide if internal or external benchmarking is required.

Further, the following decisions have to be made:

o Report version: standard (predefined minimal version)

 extended (containing all possible charts and tables)

user defined (the user can manually select from all possible

charts and tables)

o Time periods to be compared (only when internal benchmarking is included):

 Maximal three not intersecting timer ranges can be selected

o If the analytics part is included the user has the possibility to interactively

change some configurations of its tables and charts directly while seeing the

results.

 When all configurations are done, the user can proceed to the report part.

 Report: For external benchmarking the centres for comparison can be selected. A

bubble chart, showing the main PBM indicators (transfusion index and transfusion

rate) as well as the number of patients for each centre and intervention is displayed to

support the selection step. After selecting one or two other centres a preview of the

report will be presented to the user. Subsequently the user has the possibility to

create a PDF of this report. The PDF can be opened with any PDF viewer and

accordingly printed or saved.

A more detailed presentation of the software components and how they are interacting is

shown in Figure 25. It is an overview focusing on the location of the components and how

authentication is realised.

 49 of 76

Figure 25: Detailed software architecture

In the ensuing sections implementation of the services will be described as well as the four

components of the app itself: load, validation, configuration and calculation and report

generation. Each component always contains a controller and the corresponding view. As

can be seen in Figure 25 there is a strict binding between controllers and views. For more

information see section 2.5.2. A description of the most important functions of the controllers,

as well as directives, filters and templates interacting with the controllers and views will

subsequently be given.

3.2.1 Services

As can be seen in Figure 25, the main file of the NodeJS/ Express server is server.js.

To enable all required functionalities, some node modules had first to be imported:

 The morgan module enables log requests to the console, which considerably eases the

debugging process.

 The express module, see 2.3.2, is a framework which provides the actual webserver.

This module is responsible for delivering all client side components of the app to the

browser without any server side compilation or execution process.

 The mysql module provides the data exchange functionalities between the services and

the database.

 50 of 76

In the server.js file the port is set to any port which can be found in the environment and if no

port can be found set to port 3000. It further contains the main interaction calls between

server and app using service functions implemented in sub files.

3.2.1.1 Data Exchange Service

Initially, connection to the database has to be established. This was outsourced to an extra

file, containing a createSqlConnection- and a closeSqlConnection- function, because it was

required for all services. Therefore, the following parameters were required: host (localhost

was used for developing) port, user, password and database name of the SQL database.

Once connection was established it was possible to perform queries using the

connection.query function, which requires an SQL statement as a transfer parameter. The

data exchange service contained two methods. The getAllEntries method queries all the data

from the database and converts it into JSON format. The resulting JSON file will then be

returned by the method. The setNewEntries method takes the data, also in form of a JSON

file, sent from the application and creates the corresponding SQL statement to insert it into

the database.

3.2.1.2 Validation Configuration Service

The validation configuration service just consists of the getConfig method, which is

implemented analogously to the getAllEntries method of the data exchange service but

instead the data table it is querying the validation table of the PBM database and converting

it into JSON format.

3.2.1.3 Get Parameter Types Service

For the getParamTypes method, which is once again very similar to the getAllEntries

method, instead of the SELECT keyword, the DESCRIBE keyword was used for the SQL

statement.

3.2.1.4 Set Public Service

The updatePrivacy method of the set public service gets the ids of all entries of the current

centre and the following SQL statement used for the query updates the corresponding

entries: "UPDATE data SET public = 1 WHERE id ='" + ids[id]+"'"

3.2.2 Client Side App

As can be seen in Figure 25, the main components of the app itself were the app.js and the

index.html file. The index.html file contained elements which are displayed in every step

while using the app. These elements were header, footer and status bar, which are illustrated

in Figure 26. The status bar only consisted of elements. The rest of the

 51 of 76

representation was done by CSS and the ng-class directive. The step of the current location

has the active CSS class ultimately it has the complete CSS class.

The main functionality contained in the app.js file is the routing. Therefore the

$routeProvider.when function was used. (For more information see 2.5.2.7)

This shows an excerpt of the $routeProvider function:

It matches the keywords with the corresponding views and controllers.

Using the ng-view directive these html files can be inserted into the index.html, like the

load.html file in Figure 26. The app.js file also contains additional implementation for

elements like the loading spinner and error notifications.

3.2.2.1 Load

The load view is shown inside the blue frame in Figure 26.

It is just showing two example datasets of which the first contains the core dataset with

mandatory parameters and the second one contains the supplementary dataset.

Figure 26: Screenshot of the start view with implementation comments and marked areas

indicating the corresponding html files.

 52 of 76

The .XLS and the .CSV buttons give the possibility to download an example dataset in that

particular format. The excel file had an additional sheet giving a detailed description of all

specifications. The href parameter, which can be seen in the html tag beside the buttons in

Figure 26, linked the buttons to the files. This constituted the Example ds and Specification

Template in Figure 25.

The <file-reader> tag in Figure 26 called the fileReader directive and is the usual way to call

a directive from the html. This directive creates the file selection window. The transfer

parameters of the directive were also passed using the tag, which means that through the

html, $scope variables can be passed to the directive scope. This can be done as one- or

two-way databinding (see 2.5.2). Those transfer parameters were required to restrict the file

selection possibilities, e.g. if multiple files could be selected simultaneously, or which file

endings and types were required.

Once the file was selected the directive imported the data and afterwards papaparse library

was used to convert the imported data to JSON format to the jsonData variable.

jsonData.data then contained the data itself and jsonData.field the parameter names.

If the directive execution ended with success status the $scope function toValidation was

called, which changes the current location path from “/load” to “/validation”. Otherwise an

error message was displayed to the user.

3.2.2.2 Validation

Figure 27 shows screenshots cut-outs of two different validation screen scenarios. The fields

of the preview table, showing the loaded data can be displayed in different colours:

o Green: the parameter is a mandatory field (field of the core dataset) and

satisfies the specifications.

o Blue: the parameter is a supplementary field (field of the supplementray

dataset) and satisfies the specifications.

o Red: the parameter is not satisfying the specifications.

Additional alerts give user feedback about the number of valid or invalid rows, missing or not

required parameters:

o Information alert (blue): Gives feedback about the number of valid rows.

o Warning alert (yellow): Gives information about the number of incomplete

rows, but the user could still proceed.

o Error alert (red): If the core dataset is not available, the user had to load a new

file, containing the missing parameters.

 53 of 76

The comments above and beyond the buttons are notifying the links, which has been

selected or respectively the functions, which have been called when the button was clicked.

The status bar changed to active for the validation step and to complete for load.

The preview table header contained the parameters of jsonData.fields and used the

fieldValidator directive to check if the parameter names were meeting the specifications. The

transfer parameters wrongParams, missingParams and validParams were $scope variables,

passed to the directive with a two-way-databinding.

The ng-repeat directive was used to iterate over jsonData.fields (For information about ng-

repeat see 2.5.2). This directive produced as many html elements of itself as values were

contained in the array.

Then the fieldValidator directive checked every parameter for correctness of its name (not

case sensitive). Depending on if the name was correct, a CSS class was added to the table

field which changed the colour as mentioned above.

 54 of 76

Figure 27: Two different scenarios of the validation screen with implementation comments.

(a)First scenario shows the validation screen after upload of a complete dataset b) the second after

upload of an incomplete dataset)

When the missingParams were passed to the directive, the array contained all parameters of

the core dataset. If a parameter was correct, it was deleted from this array and added to the

validParams, if incorrect it was added to wrongParams. These variables were then used for

creating the alerts giving the user feedback. For feedback about the number of valid and

invalid rows an additional $scope function was implemented. If missingParams was empty,

the buttons Analyse and Upload for Benchmarking became visible.

The table body was evaluated by the typeValidator directive

a)

b)

 55 of 76

The typeValidator directive allowed checking each parameter for correct data type and

whether the plausibility criteria were fulfilled or not. The criteria were defined in the validation

config file, which was a transfer parameter of this directive. Firstly loaded from the PBM

database over a REST interface by a $http.get request (for more details see 2.5.2) and the

validation configuration service. Analogous to the fieldValidator directive it added the

corresponding CSS classes for changing the colour dependent on the correctness of the

fields. If the corresponding field name was identified for being incorrect, the complete column

could not be checked for correctness of type and for plausibility. Accordingly the column was

coloured red, irrespective of its content.

As can be seen in Figure 27 a) if the Analyse button was clicked, the mergeData() has been

called with the transfer parameter ‘an’, which stood for “analytics path”. If the Upload for

Benchmarking button was clicked the toggleTC() function has been called, which displayed

the terms and conditions pop up. This popup was realised using the termsConditions

directive. This directive put text and other elements, which were between its html tags into a

popup window in front of a translucent dark grey background. It was also used in the

configuration part and can be seen in Figure 28. Once the “terms and conditions” popup was

shown the user either had to accept the terms and conditions by clicking the Accept button or

skiped the popup. When clicking the Accept button, the mergeData() function was called with

the transfer parameter ‘bm’ (bm = benchmarking) and the location path has been changed to

“/configuration”, when skipping the popup the user returned to the validation screen.

As previously mentioned the validation configuration file was retrieved from the database via

$http.get request and the validation configuration service. This happened right at the

beginning when the validation controller was loaded as well as the $http.get requests

fetching the data of the other centres from the database also using the data exchange

service. A third $http.get request was located inside the mergeData() function and was

retrieving mockup authentication information from the authentication information template.

This authentication information was retrieved as a JSON file containing the shortcut and the

full name of the current centre. Usually the authentication service should provide this

information.

Once the information about the current centre was retrieved, the mergeData() function

extracted only those parameters from the server data, which were also included in the loaded

csv-file, by checking every parameter for being contained in the validParams array. This was

only done under the condition that the benchmarking path was chosen. Further the valid

rows from the loaded file were again added depending on the path. In the analytics path all

 56 of 76

rows were added, in the benchmarking path only rows with new ids were added, which

means they must not have already been included in the data from the server. Finally

everything was stored in the dataToReport variable of the parent $scope. These rows which

were not already contained in the server data were also added to the dataToServer $scope

variable with the additional parameters: public=”No” and timestamp = new Date;

Depending on the path, the toConfigurationBM() or the toConfigurationAnalyse() function got

called. If not already changed, they set the location path to “/configuration” and the

toConfigurationBM() function additionally posted the content of dataToServer to the database

by using a $http.post request and the data exchange service.

Two filters were also used inside the mergeData() function, one transformed a date string

into date format and the other one transformed the date format into milliseconds

representation. This was a common representation of dates and returned the milliseconds of

a specific date counting form the 01.01.1970.

3.2.2.3 Configuration and Calculation

The configuration and calculation component included all preferences and settings which

could be influenced by the user. If the user selects the benchmarking path, he or she can

then choose between internal and external benchmarking. If external benchmarking was

chosen the data of the current setting became viewable to other centres. Therefor the user

had to agree that this would happen. At this point - for extending the prototypical

implementation to a productive version - pseudonymisation of the data has to be ensured.

For this agreement, the termsConditions directive was used again. In background Figure 28

shows the buttons for choosing internal or external benchmarking. In the foreground the pop

up window for the privacy agreement can be seen.

Figure 28: Popup for accepting the upload agreement

The $scope variable toBeIncluded contained all possible parts, which were set to false in the

beginning. Figure 30 showed all configuration steps, which were required to define which

tables and charts should be included in the report.

The three possible parts had a certain hierarchy:

o External benchmarking

o Internal benchmarking

 57 of 76

o Analytics

This hierarchy of the features resulted from security reasons. For internal and external

benchmarking the user was asked to agree with uploading the data to the PBM server. For

external benchmarking the user was additionally asked to commit that the results of his or

her own centre could become available for other participating centres. Features of a lower

hierarchy could always be included. For example when the user chose the external

benchmarking path, internal benchmarking could be included but not the other way round.

As can be seen in Figure 28 and Figure 30 if the benchmarking path was chosen either the

showInternal() or the showExternal() function got called. These functions handled, which

options were shown for parts that could be included. The parts which were already chosen

were set to true inside the toBeIncluded variable. Additionally the showExternal() function set

all entries of the current centre to public by using a $http.post request and the set public

service.

Calculation of Additional Parameters

In the beginning, when the configuration and calculation controller was loaded, http.get

requests were executed to get on the one hand all types of the parameters, additionally using

the get parameter types service and on the other hand the configuration files for every part

from the configuration templates. Inside the request for getting the parameter types, the

retrieved types were used to reformat some parameters of the dataToReport variable,

because this eased further calculations. At this point additional parameters were calculated

using the corresponding filters. These filters were:

 The hb_cat filter: It added the hb_cat parameter, which contained the classification

the filter has determined according to the preoperative Hb value of the entry and its

position in relation to two predefined thresholds.

 The transfused filter: It filtered all entries of patients who received one or more RBC

units and added the boolean transfused parameter, indicating if the patient received

an RBC transfusion or not.

 The bloodLoss filter: It added the blood_loss variable, containing the blood loss

during surgery according to the Mercuriali algorithm. A summarised formula for this

calculation can be seen in Formula (3) adapted from [2].

𝑊𝑜𝑚𝑒𝑛: 𝐵𝑙𝑜𝑜𝑑𝑉𝑜𝑙𝑢𝑚𝑒 = 0,3561 ∙ ℎ𝑒𝑖𝑔ℎ𝑡(𝑚)3 + 0,03308 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔) + 0,1833 (1)

𝑀𝑒𝑛: 𝐵𝑙𝑜𝑜𝑑𝑉𝑜𝑙𝑢𝑚𝑒 = 0,3669 ∙ ℎ𝑒𝑖𝑔ℎ𝑡(𝑚)3 + 0,03219 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔) + 0,6041 (2)

 58 of 76

Using Formula (1) and (2) it follows:

 𝐵𝑙𝑜𝑜𝑑𝐿𝑜𝑠𝑠 = 𝐵𝑙𝑜𝑜𝑑𝑉𝑜𝑙𝑢𝑚𝑒 ∙
(𝐻𝑏𝑝𝑟𝑒𝑜𝑝−𝐻𝑏5𝑝𝑜𝑠𝑡𝑜𝑝)∙0,91

𝑀𝐶𝐻𝐶
+ 𝑅𝐵𝐶𝑢𝑛𝑖𝑡𝑠 ∙ 𝑉𝑜𝑙𝑢𝑚𝑒𝑅𝐵𝐶𝑢𝑛𝑖𝑡𝑠

∙ 𝐻𝑐𝑡𝑅𝐵𝐶_𝑢𝑛𝑖𝑡𝑠 (3)

The MCHC (mean corpuscular haemoglobin concentration) was not available, so according

to [2] a value of 34 g/dl can be assumed. For 𝐻𝑐𝑡𝑅𝐵𝐶_𝑢𝑛𝑖𝑡𝑠 , which is the average haematocrit

of the RBC units, the value of 43,5% was assumed. This value was chosen because

according to [54] the normal haematocrit value of an adult lies between 42% and 45% of

which 43,5% being the mean value.

Structure of the Configuration Template

Regarding the loaded configuration files, the data from these files was saved in the

reportParts $scope variable. The configuration information was structured as can be seen on

the example, showing the transfusion index table of the internal benchmarking part, in Figure

29. This information included: title (title of the table), needed_params (parameters required

for constructing the table) and the corresponding classes, needed for calculation (“sep”=

parameter required for separation, “av” = averaging required, “yn” = on basis of yes/no

decisions, “cat” = category list required (e.g. for histograms), details (containing parameter

labels for the tables), extended (extended parameters: not required for the table but can be

included on demand), selected (set to true, if selected in the configuration for user defined

report version), std (contained in the standard report verison), separation (separation

parameters: parameters used for categorising the data).

Figure 29: Configuration information for transfusion index table.

The prepareBM() function, called when clicking the Proceed button in part 1 of Figure 30,

deleted all parts which were not true according to the toBeIncluded variable. Another function

was called inside prepareBM(), which checked if the parameters listed in needed_params of

 59 of 76

every table were available and if not they have also been deleted from the reportParts

variable.

Selection of Report-Content

Then the screen changed and the second part of Figure 30 became visible. When the user

chose the analytics path at the end of the validation process, the other steps were skipped

and he or she ended up at this step. Here the user had to decide how comprehensive the

desired report should be. A standard version of the report would only include the most

important tables and charts, which were selected by having the std parameter of their

configuration set to true (Figure 29). The extended version would include all possible tables

and charts and by choosing the user defined version the user got the possibility to select

each table or chart manually (see part 3 Figure 30). For displaying part 3 of Figure 30, the

ng-repeat directive was used, iterating over the reportParts variable for labelling the html

input fields. As already mentioned, at this point the reportParts variable were just containing

parts, already chosen by the user and elements of which all required parameters were

available. Figure 31 shows an illustration of how the reportParts variable was changing

dependent on the decisions of the user and which configuration steps had to be done.

Figure 30: Three configuration steps to define, which tables and charts should be included in

the report

 60 of 76

Figure 31: Illustration of how the reportParts variable was changing dependent on the

decisions of the user

 61 of 76

Selection of the Internal Benchmarking Time Ranges

If the current path was “ibm”, or “ebm” with included internal benchmarking (ibm = internal

benchmarking, ebm = external benchmarking), the maximal and minimal surgery date of all

entries of the current centre was calculated and internal benchmarking configurations had to

be done. Further the path was set to ”ibmConfig”. If the path is neither “ibm” nor “ebm”, the

proceed() function was called.

The internal benchmarking could be done by using a datepicker. A datepicker was a

bootstrap element showing a calendar of which only dates lying between the minimum and

maximum surgery date of the current centre, were enabled. The user could then select one

date after another to select the time ranges. The whole process is illustrated in Figure 32. If

two time ranges were intersecting, the selection would be invalid and a warning would be

shown to the user. It was also possible to delete already selected time ranges, by clicking on

the red X next to the time range (see Figure 32, part 3). The selected dates were added to

the ibmRange $scope variable by the setIbmRange(Date) function and removed by the

removeDate() function.

Figure 32: Configuration screen for selecting up to a maximum of three time ranges for

internal benchmarking.

When the user confirmed his or her selection by clicking the Proceed button, the bmConfigs()

function was called again, but now the current path was set to “ibmConfigs” and accordingly

only the proceed() function got called.

 62 of 76

Aggregation of Data Entries for summary

In the proceed() function all tables and charts that were not chosen in the configuration step,

in the first part of Figure 30, were deleted from the reportParts variable.

Additionally two more filters were applied:

 The separationRequired filter was applied on the reportParts variable, returning all

defined separation parameters of every category in the sub variable with the

corresponding category name. In the sub variable separationTotal the separation

parameters of all categories were contained. These results were saved in the

$scope variable requirements.

 The summarise filter was applied on the dataToReport variable with 4 more filters

and the requirements variable as transfer parameters.

Separation parameters, like gender or indication, were defining subcategories to which the

different data entries could belong. For example the separation parameter of the transfusion

index table was indication. This meant that the transfusion index in the table was calculated

over every subcategory defined by the different indications. If there was a second separation

parameter, the subcategories were all permutations of combining the two parameters. For

example having gender and indication as separation parameters would result in two

subcategories, male and female, for each indication (See Figure 33 and Figure 34).

Both filters differentiated between three classes: av for averaging, yn for yes-no decisions

and cat for categorisation. In the configuration file, every parameter of the needed_params

had an assigned class. Depending on this class, different aggregation calculations were

made for this parameter. It was also possible that in the needed_params the same

parameter was contained twice but with different classes (See Figure 29).

For the different aggregation calculations the summarise filter applied one of the following

filters depending on the class, with the parameter name and the parameter value as transfer

parameters:

 av: The appendAverage filter was applied: For every subcategory sum (sum of

values, except values that were Not A Number (NaN) and count (number of values,

without values that were NaN) was calculated.

 yn: The appendYn filter was applied: For every subcategory ysum (sum of all values

>0, meaning that they are “yes”) and yes(count of all values >0) and count (count of

all values) of the values was calculated. Additionally the ycount (count of values >0

for each of the separation categories) and ycountTotalCentre(count of values >0 for

the whole centre) was calculated. This was needed for the calculation of percentages

 63 of 76

of the subcategories from superior subsets. The gender/indication example for just

one indication (ECV) would accordingly appear as shown in Figure 33.

Figure 33: Example of the yn category of the summary variable, shown by a screenshot of

the browser console.

This would enable the calculation of the percentage of women from all surgeries

with indication ECV.

 cat: The appendCatList filter was applied: This filter created a list, with one entry for

each value containing its number of occurrences as in Figure 34.

Figure 34: Example of the cat category of the summary variable, shown by a screenshot of

the browser console.

If the classification according to different internal benchmarking phases (ibm_date) was

required as a separation parameter, also the appendIbmFilter filter was applied before

applying all the other filters. This filter added the ibm_date parameter containing the values:

“phase 1”, “phase 2”, “phase 3” or “no phase” , depending on the time range - selected by the

user as previously described -in which the surgery date of the entry was located. The

resulting summary, saved in the summary $scope variable, was the basis for all tables and

charts.

 64 of 76

Generation of the Tables

If the analytics part was not included in the report, the toReport() function has been called at

the end of the proceed() function. Otherwise the analytics configuration was displayed, where

the user had the option to modify some configurations concerning the resulting tables and

charts directly and interactively.

Figure 37 shows excerpts of the analytics part configuration screen, including interactive

configuration possibilities, marked by the red frames. The most common table structure,

which included the demographics and preoperative haemoglobin value table structures in

Figure 37, was created by the stdTable directive. The transfer parameters were:

 the configuration information for the desired table from the reportParts variable (See

Figure 29),

 the summary variable, the current report part (‘an’, ‘ibm’ or ‘ebm’),

 if the html tag should be replaced by the template table of the directive or if the

directive was just used for calculating the required parameters (replace),

 the current centre (centre of the user),

 the separation parameters and

 the table, in which calculated parameters should have been saved.

A $scope.watch function at the beginning of the directive was executing the directive again if

there were changes in the configuration file. This was necessary because of the interactive

elements. If the directive was called from the “ebm” report part, the calculations were done

for all centres contained in the summary file. Otherwise only calculations for the current

centre were performed. Further all ycounts -if available- were extracted to a certain variable.

As can be seen in the above summary examples, the subcategories consist of a joined string

of separation parameters. These separation parameters were split and those parameters

which were not required according to the configuration file were deleted. Ensuing the

parameters were again joined and those subcategories which were equal after removing

attributes, not required for this table, were summed up. Based on values already calculated

for the different categories, the rest of the required parameters were determined at this point,

again depending on the categories:

 av: already calculated: sum, count; currently calculated: av (average)

 yn: already calculated: yes, ysum, yn, count; currently calculated: yav (average of

positive entries), yperc (percentage of subcategory from positive entries of superior

category), yperc_tot (percentage of subcategory from all positive entries of the

centre)

 65 of 76

 cat: already calculated: list of values with corresponding counts; currently calculated:

catcount (count of all categories), percentage (percentage of each category from all

categories)

Afterwards all parameters were rounded to two decimal places and saved in the table which

was passed as transfer parameter. According to the configuration file (See Figure 29), the

table was created. If the standard structure for tables was needed for the desired table the

replace parameter of the directive could be set to true and the table was inserted using the

directives template. This template is shown in Figure 35.

Figure 35: Directive template used for creating standard tables.

The header was created by first iterating over the separation parameters and latterly over the

needed_params of the configuration file. The body of the table repeated over the table

extracting the parameters using again iterations over the nedded_params of the

configuration file and using them as keywords (See Figure 29).

If standard deviation is required another directive was called for the calculation.

Generation of Charts

For every kind of chart a directive was created. These directives were using the data which

was first calculated by the stdTable directive.

The data was prepared in a way that it satisfied the requirements for using highcharts, e.g.

defining which parameters were displayed on the x-axis, or which entries were belonging to

one series etc. An example of using a highcharts function was shown in Figure 36. The

parameters title, value and series are variables prepared from the directive. An example of

resulting charts can be seen in Figure 37.

 66 of 76

Figure 36: Highcharts example

Interactive Configuration Elements

The interactive configuration parts can be seen in Figure 37 and are marked with a red

frame. Beside the needed_params there were also extended parameters listed in the

configuration file (See Figure 29). This means they were not required for constructing the

table, but if they were available, they could be included in the analytics part configurations.

The stdTable directive calculated the aggregation values for extended and needed

parameters. Under the demographics table in part 1 of Figure 37 all available extended

parameters could be chosen by clicking on the corresponding checkboxes. If activated, the

parameter has been added to the needed_params of this table and accordingly added to the

table. As already mentioned when clicking on the standard deviation checkbox, which could

also be seen in part 1 of Figure 37, the stdd parameter within the extended parameters was

set to true. Consequently the stdDeviation directive was called, which calculated the

standard deviation and added the value to the corresponding table. The third interactive part

was changing the Hb category thresholds. As can be seen in part 1 of Figure 37, the

hbHadChanged() was executed, which called the summarise function again and

consequently all calculations were repeated. The last interactive feature was the addition and

removal of histogram classes. The corresponding addHistClass() and removeHistClass()

functions were changing the configuration file of affected elements and because the stdTable

directive had a $scope.watch function on changes to the configuration files, the directive was

again executed. Accordingly also the calculations of the directive were repeated.

 67 of 76

Figure 37: Excerpts of the analytics part configuration screen, including interactive

configuration possibilities.

To finish the configuration steps, a Proceed button at the end of the analytics part

configuration could be clicked and the toReport function changed the location path to

“/report”.

3.2.2.4 Report

If external benchmarking should be included in the report, the user was required to select

maximal two centres with which he or she wanted to compare with their own centre. If no

other centre was selected, calculations were only shown for that centre. Therefore a bubble

chart of all centres with indication as separation parameter (bubble directive) was displayed

(see Figure 38). The chart had the transfusion rate on the x-axis, the transfusion index on the

y-axis and bubble sizes were correlating with the number of patients.

When the user pressed confirm, the ebmSelectionDone() function has been called. The

function deleted the centres which were not required from the summary and created another

$scope variable called summaryForAll. At the end of a report containing external

 68 of 76

benchmarking, charts showing the transfusion rate and index from all centres were included.

The summaryForAll variable was required for these charts. Then a preview of the report was

shown.

Figure 38: Selection screen for choosing two centres for comparison (C1-C5 stands for

centre 1 to 5 and DC is the abbreviation of the user’s centre, in this case “Demo-Centre”)

The figures and charts were created analogously to the analytics part configuration, using the

corresponding directives. One new element, which was not included in the analytics part,

was a boxplot showing the interquartile ranges for transfused RBC units. An example for

such a boxplot can be seen in Figure 39.

For creating a boxplot, the interquartile directive had to be utilised. This directive received the

summary as data transfer parameter. After summing up the subcategories to the needed

separation level given by the configuration file, the directive was calculating the interquartile

range, minimum and maximum by using the list for a parameter of category cat (See Figure

34).

Zero was excluded for all calculations inside the interquartile directive. The minimum and

maximum were determined by finding the smallest or greatest category of the list. Afterwards

the index of median, lower quartile and upper quartile were determined using Formula (4), (5)

and (6):

𝑚𝑒𝑑𝑖𝑎𝑛𝐼𝑛𝑑𝑒𝑥 =
𝑆𝑢𝑚𝑎𝑙𝑙 𝑒𝑛𝑡𝑟𝑖𝑒𝑠+1

2
 (4)

 69 of 76

𝑙𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝐼𝑛𝑑𝑒𝑥 =
𝑆𝑢𝑚𝑎𝑙𝑙 𝑒𝑛𝑡𝑟𝑖𝑒𝑠+1

4
 (5)

𝑢𝑄𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝐼𝑛𝑑𝑒𝑥 = 3 ∙
𝑆𝑢𝑚𝑎𝑙𝑙 𝑒𝑛𝑡𝑟𝑖𝑒𝑠+1

4
 (6)

Then it was iterated over the categories (See Figure 34) and the occurrences were summed

up by using a counter. If the counter became greater than one of the indices, the category at

this iteration step was the result for the parameter corresponding to the index. If the counter

was equal to the down rounded index, the result was calculated with Formula (7).

𝑋 = 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖 + [(𝐼𝑛𝑑𝑒𝑥𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝐼𝑛𝑑𝑒𝑥𝑥)) ∙ (𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖+1 − 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖)] (7)

The X in Formula (7) stands for median, lower quartile or upper quartile.

The result of a resulting boxplot can be seen in Figure 39.

Figure 39: Box plot showing interquartile ranges of transfused RBC units for every indication

of the three centres (DC stands for Demo-centre, C1 and C2 are the centres for comparison)

Finally the user had the possibility to create a PDF from the created PBM report. Therefore,

the create PDF button had to be clicked, which called the createPDF() function.

Because this PDF creation needed between approximately 5 and 10 seconds, a progress bar

was displayed to the user.

The createPDF() function first replaced all SVG (scalable vector graphic) elements with a

canvas. This could be done using the canvg library and the exports library of highcharts.

Furthermore, every html element, shown in the preview was also converted into a canvas

and one after another was added to the PDF. When the PDF creation was done, the SVG

elements were reconverted. An example of a resulting PDF report can be in the appendix.

 70 of 76

3.2.3 Verification of the PBM-ABS App/ Feasibility Test

The verification of the PBM-ABS app was performed in three independent steps.

1. Verification of the filter conditions

A test data set containing possible data failures, which can be seen in Figure 27 was used to

check, whether the filter settings work correctly. Following failures were included:

1. wrong field name

2. 1/0 instead of yes/no

3. Wrong date format

4. Weight, height and Hb values out of plausibility range

5. Missing values

6. Point used for separation instead of comma

7. Partly capital letters

The results showed that 100% of the failures, which should be identified for being incorrect

were detected (1-5) and 100% of the failures, which should be ignored were classified for

being correct (6,7).

2. Verification of calculation and report generation using a fictional data set

A fictional dataset including 7 entries for a “Test-Centre” was analysed by the PBM-ABS app.

One entry was directly uploaded to the database and the other 6 were used as input file of

the “Test-Centre”. To test the impact of missing values, one mandatory value of the core data

set (preoperative Hb) was removed. The results for comparison were calculated with

Microsoft Excel®. The comparison resulted in 100% equivalence. All results are shown in the

Appendix.

3. Verification of calculation and report generation using real data

For testing the feasibility of the app, test reports for one centres of the EU-PBM project were

created using the PBM-ABS app. Therefore, the original data of 4 centres was directly

loaded into the PBM database and data of one selected “Demo-Centre” was uploaded using

a csv file. Overall 1485 cases were available, however, not all of these single cases fulfilled

the criteria for the core data set and consequently rows with missing values had been

ignored. Overall 1102 values (e.g. blood loss, transfusion rate, transfusion index, etc.) were

calculated which were compared to the original results of the Microsoft® Access queries used

for EU-PBM project. The comparison showed equal results for 97,37% of the resulting

values. The remaining 2,63% showed deviations below 1% which were caused because

interim sums of the implemented java script were rounded for the nearest two decimals.

 71 of 76

4 Discussion

4.1 Showcase for Retrospective Data Extraction from Existing Data

Sources in the AKH Wien

4.1.1 Data Extraction from the PDMS

Extracting data from existing sources is part of the “gold standard” model for benchmarking

in transfusion medicine of Apelseth et al [3]. According to Redman an operational repository

usually contains 1 to 5% incorrect values [55]. Appropriate information concerning the data

quality of hospital information systems or medical health records could not be found in

relevant literature. However, this explains minor deviations when comparing the query results

of the different sources (e.g database of the Department of Cardiothoracic and Vascular

Anaesthesiology and the PDMS data). It should be considered that in an ICU environment,

the optimal circumstances for comprehensive documentation are not always given, where

the patients are usually in a critical condition and physicians and nurses are sometimes

under high pressure. For example measuring the exact height or weight of the patient might

be challenging.

During the design of the query, including extraction of specific interventions a patient has

been undertaken (HTEP, PAN, CAGB, etc.), the problem became obvious that this

information was not consequently documented within the available data sources. Although

the primary diagnosis is well recorded and some diagnoses are indicating specific

interventions (e.g. diagnosis “coxarthrosis” usually leads to total hip replacement), however

this is not always the case. Other possible sources of information would be the discharge

report and the accounting documentation of the hospital. Nevertheless, these documents

were not part of the available databases.

4.1.2 Merging Data from Internal Data Sources

Referring to the results in 3.1.3 concerning correct merging of the sources Microsoft® Access

provided a very powerful and flexible tool. For the definition and implementation of complex

queries it is recommended to use the SQL-view, because the graphical user interface does

not support transparent handling of logical expressions. To avoid unexpected errors or

incorrect results, a hierarchical priorisation of parameters, which might be available from

more than one source ore multiple times inside the same source, should be defined.

 72 of 76

For example, the total number of transfused RBC units concerning cardiac surgeries was

documented in the transfusion database (TBD) and the Cardio-db. Reasons for differences

are incomplete and erroneous documentation on both sides. Even if the TDB documentation

basically provides a very high level of completeness regarding the number of units delivered,

the transfusion status might not be recorded permanently. On the other hand at the cardiac

surgery ward documentation errors might happen because of input errors or because RBC

units might be disposed and not transfused.

4.2 PBM-ABS App

During the conceptual phase of the PBM-ABS app, intensive discussions with physicians and

PBM experts were necessary for the definition of the use cases and basic requirements.

Typically for software prototypes the use cases and requirements changed during the

implementation process, which led to a software structure that might have to be redesigned

after receiving feedback from first users.

However, AngularJS provided a powerful technology for the agile development of the PBM-

ABS tool that only requires standard internet browser at the hospitals. No installation at the

client computer is necessary and therefore a Zero-footprint application could be provided.

The App supports flexible utilisation because configuration of the tables and charts can be

adapted to specific needs (e.g. adding subcategories, title, included parameters) by

modifying the configuration file (Figure 29). The App itself provides high usability because the

user is guided through a clear step-by-step workflow and is able to generate comprehensive

benchmark reports within minimal efforts.

The modular design allows flexible extension concerning additional tables and charts with

parameters which are already in the core dataset but also for many other features (See 4.3).

Additional analytics for supplementary fields might be integrated based on specific user

requirements.

To increase motivation for users at the hospitals, the analytics part of the PBM-ABS app

provides immediate results without the necessity to upload data to an external server. The

generated report supports self-assessment e.g. to monitor the effectiveness of implemented

interventions. However, for comparison with other centres data upload and official

commitment for participating at external benchmarking is required.

 73 of 76

4.3 Future Work

In the near future it is planned to use the PBM-ABS app as demonstrational prototype for

hospitals which are interested in internal and/or external PBM benchmarking.

Before first real world utilisation the following issues should be analysed and resolved:

 The PBM-ABS app should be integrated to a web portal with user management and

authentication to replace the authentication information template of the prototype.

This service should provide enrolment information for users and centres.

 Terms of use and disclaimer have to be specified.

 Data anonymisation or at least pseudonymisation should be implemented to comply

with data protection law.

 For quality management reasons traceable documentation of reports and audit trials

should be implemented.

 A user interfaces for service administration would support the maintenance of the

configuration and filter specifications, since this can only be done on development

level.

 A remarkable issue was that the open source jspdf library has an internal bug.

Because of this bug, the pdf creation sometimes aborts, which probably is caused by

content size. The createPdf() function adds canvases (screen shots) to the report. By

using bootstrap the representation of the report preview was dependent on the

screen size. When using high resolution screens, it occurred that the pdf creation

ceased to work.

 Further results and features may be added based on the feedback of the demo users.

4.3.1 Future Extension Possibilities

For supporting the change management process within the hospitals and to increase the

attractiveness of the PBM-ABS service the following additional features should be evaluated:

 Calculation of the expected savings when benchmarking the own status with “best-in-

class” centres.

 Calculation of the expected improvements by using specific PBM related measures

(e.g. potential annual reduction of RBC units by implementing physiological

transfusion triggers).

 Calculation of the potential risk and expected need for transfusion prediction of

required RBC units for elective surgeries by using the Mercuriali algorithm, which

feasibility was shown in [56]. This would allow for more precise ordering and planning

of blood bank storage.

 Extending the core data set with information about the patient’s outcome and

implement additional analytics for outcomes research.

 74 of 76

5 References

[1] E. Anthes, “Evidence-based medicine: Save blood, save lives,” Nature News, 31 march

2015.

[2] H. Gombotz, K. Zacharowski and D. R. Spahn, Pateint Blood Management, Thieme,

2015, pp. 2-10.

[3] T. Oveland Apelseth, L. Molnar, E. Arnold and N. M. Heddle, "Bechmarking: Applications

to Transfusion Medicine," Transfusion medicine reviews, vol. 26, no. 4, pp. 321-332,

2012.

[4] Austrian Institute of Technology, "EU-PBM Leaflet," May 2014. [Online]. Available:

www.europe-pbm.eu. [Accessed 14 March 2016].

[5] P. Kastner, N. Breznik, H. Gombotz, A. Hofmann and G. Schreier, "Implementation and

Validation of a Conceptual Benchmarking Framework for Patient Blood Management,"

EHealth2015–Health Informatics Meets EHealth: Innovative Health Perspectives:

Personalized Health, p. 190, 2015.

[6] A. Ettorchi-Tardy, M. Levif und P. Michel, „Benchmarking: a method for continuous

quality improvement in health,“ Healthcare policy, Bd. 4, Nr. 7, p. e101, 2012.

[7] European Commission, "An EU-wide overview of the market of blood, blood components

and plasma derivatives focusing on their availability for patients," April 2015. [Online].

Available: http://ec.europa.eu/health/blood_tissues_organs. [Accessed March 2016].

[8] M. van Kraaij, "Patient Blood Management in the Netherlands:Between practice and

evidence," Sanquin blood supply, Radboud University Medical Center, Nijmegen, 2015.

[9] A. Shander, A. Hofmann, O. Sherri, O. M. Theusinger, H. Gombotz and D. R. Spahn,

"Activity-based costs of blood transfusions in surgical patients at four hospitals,"

Transfusion, vol. 50, no. 4, p. 753–765, April 2010.

[10] R. L. Barty, K. Gagliardi, W. Owens, D. Lauzon, S. Scheuermann, Y. Liu, G. Wang, M.

Pai und N. M. Heddle, „A benchmarking program to reduce red blood cell outdating:

implementation, evaluation, and a conceptual framework,“ Transfusion, Bd. 55, Nr. 7, pp.

1621-1627, 2015.

[11] A. Winter, E. Ammenwerth, O. Bott, B. Brigl, A. Buchauer, S. Gräber, A. Grant, A. Häber,

W. Hasselbring, R. Haux, A. Heinrich, H. Janssen, I. Kock, O.-S. Penger, H.-U.

Prokosch, A. Terstappen und A. Winter, „Strategic information management plans: the

basis for systematic information management in hospitals,“ Internaltional Journal of

Medical Informatics, Bd. 2, Nr. 64, pp. 99-109, 2001.

[12] E. Ammenswerth, R. Haux, P. Knaup-Gregori und A. Winter, IT-Projektmanagement im

Gesundheitswesen: Lehrbuch und Projektleitfaden Taktisches Management von

Informationssystemen, 2 Hrsg., Schattauer Verlag, 2014.

[13] S. Alshawi, F. Missi und T. Eldabi, „Healthcare information management: the integration

of patients' data,“ Logistics Information Management, Bd. 3/4, Nr. 16, pp. 286-295, 2003.

[14] H. Gombotz, P. H. Rehak, A. Shander and A. Hofmann, “Blood use in elective surgery:

the Austrian benchmark study,” Transfusion, vol. 47, no. 8, pp. 1468-1480, 2007.

 75 of 76

[15] H. Gombotz, P. Rehak and A. Hofmann, "Projekt „Fortsetzung der Studie betreffend

Maßnahmen zur Optimierung des Verbrauchs von Blutkomponenten in fachlicher und

inhaltlicher Sicht" Modul 1: "Fortsetzung und Erweiterung der Benchmark-Analyse","

Österreichische Bundesgesundheitskommission, Wien, 2009.

[16] P. G. D. Group. [Online]. Available: http://www.postgresql.org/. [Accessed may 2016].

[17] “Zope Foundation,” [Online]. Available: http://www.zope.org/. [Accessed may 2016].

[18] P. S. Foundation. [Online]. Available: https://www.python.org/psf/. [Accessed may 2016].

[19] Zope, [Online]. Available: http://zope2.zope.org/. [Accessed april 2016].

[20] “HIMSS Europe,” [Online]. Available: http://himss.eu/emram. [Accessed april 2016].

[21] “Philips IntelliSpace critical care and anesthesia,” [Online]. Available:

http://www.philips.at/healthcare/product/HCNOCTN332/intellispace-critical-care-and-

anesthesia. [Accessed may 2016].

[22] “Cemsiis AKIM,” [Online]. Available: http://cemsiis-akim.meduniwien.ac.at/allgemeines/.

[Accessed may 2016].

[23] Medizinische Universität Wien; AKH EDV; Allgemeines Krankenhaus der Stadt Wien,

"Allgemeine AKIM-Projektinfo," 2011.

[24] T. Wrba, Comprehensive Cancer Center Vienna-Tumordatenbank in der AKIM RDA-

Plattform, Zentrum für Medizinische Statistik, Informatik und Intelligente Systeme, 2011.

[25] Philips Health Care, Enhanced care for your acute patients, Netherlands: Philips, 2015.

[26] “Microsoft,” [Online]. Available: www.microsoft.com/. [Accessed may 2016].

[27] JavaScript, may 2016. [Online]. Available: www.javascript.com.

[28] “ObjectiveIT,” [Online]. Available: www.objectiveit.com/blog/the-advantages-and-

disadvantages-of-web-apps. [Accessed april 2016].

[29] “Visual Studio,” [Online]. Available: www.visualstudio.com. [Accessed may 2016].

[30] Visual Studio, [Online]. Available: visualstudio.com. [Accessed april 2016].

[31] B. Dayley and D. Brendan, AngularJS, JavaScript and JQuery All in One, Sams, 2016.

[32] jQuery. [Online]. Available: https://jquery.com/. [Accessed may 2016].

[33] “AngularJS,” [Online]. Available: https://angularjs.org/. [Accessed may 2016].

[34] B. Green und S. Seshadri, AngularJS, O'Reilly Media, Inc., 2013.

[35] “Google,” [Online]. Available: https://www.google.com/chrome. [Accessed may 2016].

[36] “Mozilla Firefox,” [Online]. Available: https://www.mozilla.org/de/firefox/. [Accessed may

2016].

[37] “Node.js,” [Online]. Available: https://nodejs.org/en/. [Accessed may 2016].

[38] “MySQL,” [Online]. Available: https://www.mysql.com/. [Accessed may 2016].

[39] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM SIGMOD Record, vol. 4, no.

39, pp. 12-27, 2011.

[40] H. Andrade, B. Gedik, M. J. Hirzel, R. J. Soule, H. Wang, K.-L. Wu und Q. Zou,

„Proxying open database connectivity (ODBC) calls“. Patent US Patent 8,321,443,

november 2012.

[41] Microsoft Office Support, [Online]. Available: support.office.com. [Accessed april 2016].

 76 of 76

[42] H. Burnus, “Datenbanksystem Microsoft® Access,” in Datenbankentwicklung in IT-

Berufen: eine praktisch orientierte Einführung mit MS Access und MySQL, Springer

Science & Business Media, 2007, pp. 53-80.

[43] J. L. Harrington, “Introduction to SQL,” in SQL Clearly Explained, Elsevier Sience, 2003.

[44] E. Schicker, Datenbanken und SQL: Eine praxisorientierte Einführung mit Anwendungen

in Oracle, SQL Server und MySQL, 17 ed., Springer-Verlag, 2014.

[45] “Edureka,” [Online]. Available: www.edureka.co/angular-jsSlide. [Accessed april 2016].

[46] S. Seshadri and B. Green, AngularJS: Up and Running: Enhanced Productivity with

Structured Web Apps, O'Reilly Media, Inc., 2014.

[47] “Bootstrap,” [Online]. Available: http://getbootstrap.com/. [Accessed may 2016].

[48] J. Fielding, Beginning Responsive Web Design with HTML5 and CSS3, Apress, 2014.

[49] “Highcharts,” [Online]. Available: http://www.highcharts.com/. [Accessed may 2016].

[50] B. Shahid, Highcharts Essentials, Packt Publishing Ltd, 2014.

[51] “jsPDF on GitHub,” [Online]. Available: https://github.com/MrRio/jsPDF. [Accessed may

2016].

[52] “Niklas von Hertzen on GitHUb,” may 2016. [Online]. Available:

https://github.com/niklasvh.

[53] “Gabe Lerner on GitHub,” [Online]. Available: https://github.com/gabelerner. [Accessed

may 2016].

[54] “Medical Dictionary,” [Online]. Available: http://medical-dictionary.thefreedictionary.com/.

[Accessed april 2016].

[55] T. C. Redman, Data quality for the information age (The Artech House computer science

library), 1996.

[56] D. Hayn, K. Kreiner, P. Kastner, N. Breznik, A. Hofmann, H. Gombotz and G. Schreier,

“Data Driven Methods for Predicting Blood Transfusion Needs in Elective Surgery,”

eHealth2016- Health Informatics meets eHealth, 2016.

 A1 of 9

6 Appendix

To demonstrate the feasibility of the PBM-ABS-Service original data from the EU-PBM data

were anonymised.

Appendix-Table 1 shows a small fictional dataset including 7 entries for a demo centre,

which was analysed by the PBM-ABS-App. One entry was uploaded to the database and the

other 6 were used as input file. Using such a small dataset makes it easier to establish if the

results are correct, since the original data included several hundred entries per centre.

Appendix-Table 1: Fictional data for Graz

Appendix pages A2 to A9 are showing the imported PDF-pages of the Demo-centre report

produced by the PBM-ABS-App.

indication gender age weight size hb_preop hb_end surgery_date rbc_transfused hb_5post hb_nadir length_of_stay blood Volume

CAR m 57 79 174 16,4 10,2 09.04.2013 00:00 1,00 12,3 10,2 15 5079,94801

CAR f 63 65 170 15,3 9,3 10.07.2014 00:00 0,00 8,3 8,3 7 4083,0193

CAR f 61 80 168 7,2 7 12.11.2015 00:00 1,00 10,2 7,2 4 4518,19516

CAR m 75 85 170 10,2 04.04.2014 2,00 11,3 10,2 5

REC f 80 77 180 10,2 6,8 10.05.2013 00:00 5,00 7,9 6,8 15 4807,2352

REC m 52 70 185 10,5 10,2 28.06.2014 00:00 2,00 6,3 6,3 5 5180,47321

REC m 57 79 170 9,6 11,2 01.01.2015 00:00 0,00 8,3 8,2 10 4949,6897

 A2 of 9

 A3 of 9

 A4 of 9

 A5 of 9

 A6 of 9

 A7 of 9

 A8 of 9

 A9 of 9

