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Abstract

Hybrid electric vehicles (HEVs) captivate with low emissions, good fuel economy and a
wide driving range which are the result of the combination of different power sources.
In contrast, the coordination of these energy sources and converters and the power flow
control for both the mechanical and the electrical path also imposes the major challenge
for the development of HEVs. The potential of hybrid propulsion units therefore is
highly influenced by the choice of the operation strategy. Whereas initially rule-based
control algorithms found application, current research is being done towards optimization
methods combined with adaptive and predictive control strategies.

As current research is mainly focusing on the energy management, hardly any predictive
and adaptive operation strategies take driveability aspects into account. This leads
to an unrealistic depiction of the fuel saving potential which cannot be achieved in a
mass production vehicle. Therefore, the goal of this research project is to enhance the
driveability of HEVs using the input of advanced prediction and adaptation algorithms.
Serial and parallel-serial hybrid architectures allow the engine speed to be decoupled
from the vehicle speed, making it possible to operate the engine with maximum fuel
efficiency. This property can be regarded as a continuously variable transmission and
is therefore called electro-mechanical CVT (eCVT). While the eCVT offers great fuel
saving potential, it also needs to be considered that it disconnects the driver input
(accelerator pedal) from the engine speed, resulting in an undesirable feeling of being
disconnected with the powertrain.

This project aims to deliver a reconnected HEV performance by having the engine rpm
be a function of accelerator pedal input and vehicle speed. Further, a driving type
classifier allows to adjust the engine speed behavior according to the driver’s needs,
giving the vehicle a specific character while simultaneously ensuring that driving comfort,
driving safety and driving pleasure are held at a very high level. The application of
a predictive charging strategy based on a dynamic programming approach allows to
anticipate the future power demand, assuring a highly intuitive vehicle behavior while
preserving outstanding fuel efficiency.






Kurzfassung

Hybridfahrzeuge bestechen durch niedrige Emissionen, geringen Kraftstoffverbrauch und
grofle Reichweite. Dies wird durch Kombination unterschiedlicher Energiespeicher und
Energiequellen erreicht, was zugleich aber die grofite Entwicklungsherausforderung dar-
stellt. Das Potential hybrider Antriebskonzepte ist daher stark von der Betriebsstrategie
abhéngig. Wahrend friither regelbasierte Strategien angewendet wurden, sind adaptive
und pradiktive Ansétze in Kombination mit Optimierungsstrategien Gegenstand der ak-
tuellen Forschung.

Da die derzeitige Entwicklung vorwiegend auf das Energiemanagement abzielt, wird in
den meisten adaptiven und préadiktiven Strategien der Aspekt der Fahrbarkeit meist aus-
geklammert. Dies fiihrt zu einer unrealistischen Darstellung des Kraftstoffeinsparungspo-
tentials, welche in Serienfahrzeugen nicht erreicht werden kann. Dieses Forschungspro-
jekt zielt daher darauf ab, die Fahrbarkeit von Hybridfahrzeugen mittels der Informatio-
nen adaptiver und préadiktiver Strategien zu verbessern.

Serielle und parallel-serielle Hybridfahrzeuge erlauben es, die Verbrennungskraftmaschine
im verbrauchsoptimalen Punkt zu betreiben, da sie eine Entkoppelung zwischen Motor-
drehzahl und Fahrgeschwindigkeit ermoéglichen. Diese Eigenschaft gleicht einem kon-
tinuierlich variablen Getriebe (CVT) und wird daher als elektro-mechanisches CVT
(eCVT) bezeichnet. Wéhrend dadurch grofies Kraftstoffeinsparungspotential erzielt wird,
muss beriicksichtigt werden, dass es somit zu einer als stoérend empfundenen Abkop-
pelung des Fahrerwunsches (Fahrpedalstellung) von der Motordrehzahl kommt.

Diese Arbeit zielt darauf ab, den Fahrer wieder mit dem Antriebsstrang zu koppeln,
indem die Motordrehzahl durch einen Funktionszusammenhang zwischen Fahrpedalstel-
lung und Fahrzeuggeschwindigkeit festgelegt wird. Eine Fahrertypklassifizierung erlaubt
es des Weiteren, das Drehzahlverhalten nach den Bediirfnissen des Fahrers einzustellen.
Dadurch erhélt das Fahrzeug einen spezifischen Charakter wihrend Fahrkomfort, Fahr-
sicherheit und Fahrfreude auf héchstem Niveau gehalten werden. Die Anwendung einer
auf der dynamischen Programmierung basierenden pradiktiven Ladestrategie erlaubt es,
zukiinftige Leistungsanforderungen vorauszuberechnen, was zu intuitivem Fahrverhalten
und hervorragender Kraftstoffeffizienz fiithrt.
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Introduction

1.1 Motivation

Ongoing energy conservation concerns have led to numerous discussions on the optimal
propulsion technology for future ground vehicles. Since fossil fuels are a non-renewable
resource, the conventional internal combustion engine layout for vehicle propulsion needs
to be adapted. This can either be done by turning away from conventional fuels or by
combination of the internal combustion engine with an electric propulsion system, which
can be summarized under the catchphrase “hybridization”. Another approach is to com-
pletely leave internal combustion engines behind and to focus on hydrogen powered fuel
cells or full electric vehicles. Whereas these approaches face the challenge of effective
production and storage methods, hybrid electric vehicles have gained the highest market
share for alternative powertrains (compare Figure 1.1) as they offer the advantages of a
wide driving range and high flexibility [26], [44].

The use of different propulsion units also results in an additional degree of freedom
(DOF) for the torque supply which needs to be addressed in the operating strategy
(OS). In Figure 1.2 the control problem is presented. The energy management controller
determines the optimal power distribution of both propulsion units by using intelligent
prediction and adaptation algorithms. Whereas the resulting power distribution is op-
timal regarding fuel consumption, it does not comprise any driveability aspects. To
achieve the desired driving characteristics, the driveability controller alters the input of
the energy management controller. The component controller units (CCUs) assure that
the drivetrain components operate within their mechanical, thermal or electrical limits,
and control the powertrain actuators.
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= electric = hybrid = CNG LPG

Figure 1.1: Market share for newly registered alternative powertrains in Germany 2014
[44]

Figure 1.2: Vehicle controller levels, compare [32]



1.2 Objectives

1.2 Objectives

The first objective of this project was to implement a dynamic combined HEV model
into Matlab-Simulink with close to real vehicle behavior. To achieve this, extensive mea-
surements of an existing vehicle have been performed. The needed parameters were then
extracted by using sophisticated parameter identification algorithms.

Many studies have been done on the fuel saving potential of different predictive OS.
Mostly, driveability is insufficiently considered. Therefore, this thesis aims to improve
driveability while still enhancing the fuel saving potential compared to conventional
HEVs. This is done by using crafty prediction and adaptation algorithms to simulta-
neously enhance fuel efficiency, driveability and vehicle performance, which is a unique
aspect of this work.

In order to maximize fuel efficiency, an intelligent operation strategy using past and
future driving information was developed as a replacement for the rule-based operating
strategy implemented in the investigated HEV. This operation strategy is based on a
dynamic programming method (DPM) in combination with a quasistatic vehicle model,
and is real-time capable due to its smart execution. The fuel saving potential is sig-
nificant and can be achieved while simultaneously enhancing driveability. As the used
driving cycle has an impact on the performance of the OS, all algorithms are developed
and tested with real-world driving cycles. This clearly underlines the request of provid-
ing real-driving fuel saving potential.

To improve driveability, the aforementioned eCVT behavior is cancelled by the HCU
leading to a reconnection of the driver with the drivetrain. Moreover, the implemented
operation strategy adapts to different driving styles by tailoring the vehicle’s characteris-
tics according to the driver’s needs, which improves customer acceptance. For example,
sporty drivers will be supported by sportive driving characteristics such as improved ve-
hicle response. Further, the developed operation strategy is compatible with all parallel
and power-split hybrid drivetrain topologies, and can therefore be implemented in a wide
range of hybrid vehicles.

The hardware of the vehicles can be left unchanged, which contributes to the potential
for application in the near future. The presented approach only affects the hybrid control
unit consisting of the energy management controller and the driveability controller and
is designed to be implemented in future mass production HEVs. Consequently, the ad-
ditional costs are held at a minimum while increasing the customers’ acceptance. Using
prediction and adaptation algorithms for both the energy management controller and
the driveability controller enhances driving pleasure and the fuel econonmy of HEVs. By
designing the proposed controller to be used in early development, the effort required in
adapting to prototypes and later mass-production vehicles is reduced. Consequently, the
costs of implementation are diminished and even higher sophisticated hybrid technology
can be offered at affordable prices.

Conclusively, the presented approach allows to improve the driving characteristics of hy-
brid electric vehicles while concurrently reducing fuel consumption without considerably
increasing production costs.
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State of the Art

2.1 Hybrid Electric Vehicles (HEVs)

Hybrid electric vehicles have always been considered as propulsion systems throughout
history. Due to strict emission and fuel consumption regulations HEVs are becoming
more and more popular nowadays. The word “hybrid” originates from the latin noun
“hybrida” which can be translated as crossbreed. HEVs are defined by the UN as follows:
“A wvehicle with at least two different energy converters and two different energy storage
systems (on vehicle) for the purpose of vehicle propulsion” [2].

Chemical, electrical or mechanical systems can be used as energy storage. Conventional
chemical energy storage (petrol or diesel) in combination with electro-chemical (battery)
or chemical energy storage systems have already proved their practicability, whereas
pneumatic energy storage systems are only used in niche applications [26], [46].

According to a study by McKinsey (see [52]) the global market share of HEVs, plug-in
electric vehicles (PHEVSs) and electric vehicles (EV) is estimated to be about 33% by
2020. This can be explained by the advantages of hybrid propulsion systems listed in
the following.



2 State of the Art

2.1.1 Advantages of Hybrid Electric Vehicles

Incorporating additional components in a vehicle’s drivetrain leads to higher complexity
and costs. Therefore, this effort needs to be compensated with an increase in the product
value. For HEVs the resulting benefits can be summarised as follows (compare [46]):

Reduction of CO3 emissions: The greenhouse gas COs is a product of complete
combustion of fossil fuels such as petrol or diesel and is suspected to have impact on
global warming. Legislative regulations therefore aim to achieve an average emission of
95g/km by 2020. Whereas a conventional internal combustion engine (ICE) drivetrain
layout leads to a highly fluctuating power demand at the ICE, HEV drivetrain layouts
reduce the power fluctuations at the ICE by absorbing them with the electrical energy
storage system.

Enhanced vehicle dynamics and driving pleasure: The responsiveness of the ve-
hicle can be improved by adding the power provided by the secondary energy storage to
the power delivery of the primary propulsion system.

HEVs can be regarded the bridge technology to electric and fuel cell vehicles:
HEVs allow a slower electrification process of the drivetrain which is easier to handle
than an abrupt switch to fully electric vehicles.

Possibility of pure electric driving: If the drivetrain layout allows the ICE to be
decoupled from the drivetrain, the vehicle can be propelled fully electrically for low
speeds. Further, start-stop functions can be implemented.

Brake energy recuperation: Conventional drivetrain layouts convert kinetic energy
into thermal energy during a braking manoeuvre, whereas a HEV layout allows to trans-
fer the kinetic energy to the battery via a generator.

The aforementioned benefits, legal regulations, customer demands and OEM strategies
are the biggest motivation for turning away from conventional propulsion systems, but
also other influence factors need to be considered when designing a specific drivetrain
layout (compare [26]):

o Costs

Competitiveness

Image enhancement

Innovation scope

Strategic factors

Market analysis

Well to wheel emissions
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2.1.2 Operation Modes of HEVs

HEVs allow the combination of different systems for propulsion, which results in a greater
variety of operation modes respect to conventional drivetrain layouts. Depending on the
HEV architecture, not all of the modes listed in the following adaption of [26] can be
used in practice.

Start-stop: The ICE is turned of at standstill. This reduces fuel consumption in
comparison to idling.

Coasting: As well as start-stop coasting is not specific for HEVs. The term describes the
deceleration of the vehicle without providing propulsion torque. The ICE is disengaged
from the drivetrain as it would produce drag losses otherwise. When coasting with
engaged clutch, the ICE is put in DFCO (deceleration fuel cut-off) mode.

Recuperation: The electric traction motor is operated in generator mode which pro-
duces a braking torque used for the deceleration of the vehicle. This allows to transform
the kinetic energy of the vehicle into electrical power which is then forwarded to the
battery.

Torque supply: Due to the presence of different propulsion units, the torque to propel
the vehicle can either be provided by the electric motor/generator (EMG), the ICE or
both units.

e Pure electric drive: The vehicle is only propelled by the EMG. The clutch is
disengaged and the ICE is shut off. Locally, emission free driving is possible.

e Boosting: The HEV is propelled by the EMG and the ICE. In this mode, the
maximum power of both propulsion units allows dynamic driving performance.

e ICE only: The traction power provided in the same way as for conventional
vehicle layouts. This operating mode also occurs with discharged battery.

e Load point shifting: The ICE is operated at a higher load point than necessary
for providing the demanded power which results in better efficiency. The excessive
power is transferred to the EMG where it is converted into electrical energy and
then stored in the battery.
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2.1.3 Hybrid Drivetrain Structures

This section illustrates the bacis drivetrain layouts of hybrid electric vehicles and their
properties (compare [26], [46]). As a result of ongoing research in this area, more sophis-
ticated drivetrain layouts have been developed which can be summarized as Combined
Hybrid Drivetrain Structures. For further information see [46].

2.1.3.1 Serial Hybrid

For serial hybrid layouts the ICE delivers the power to a electric motor/generator
(EMG;g), which converts the mechanical energy into electrical energy. After the con-
version from alternating current (AC) to direct current (DC), the energy is stored in
the battery (BAT). The traction power is delivered by the EMGy and forwarded to the
wheels by gearbox (GBX) and final drive (FD), meaning that for this layout the ICE is
disconnected from the drivetrain. The pros and cons of this drivetrain layout are shown
in Table 2.1 and Figure 2.1 depicts the serial HEV architecture.

Table 2.1: Advantages and disadvantages of serial HEVs

Advantages Disadvantages
ICE operates at best efficiency Decoupled engine speed behavior
No emission increasing dynamic loads Multiple energy conversion
for the ICE Necessity of 3 energy converters leads to
Full electric drive possible high weight

Wheel hub drive possible

Figure 2.1: Serial HEV layout [32]
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Figure 2.2: Parallel HEV layout [32]

2.1.3.2 Parallel Hybrid

By engaging the clutch (CL), parallel hybrid drivetrain layouts allow a coupling of the
ICE with the wheels, to which the electrical path can be connected independently. This
allows the vehicle to be propelled by the ICE, the EM or both units, compare Table 2.2
and Figure 2.2.

Table 2.2: Advantages and disadvantages of parallel HEVs

Advantages Disadvantages

Only 1 EM necessary Coupling of ICE to the wheels reduces

Easy integration into conventional drive- ICE efficiency

train layout
Load point shifting possible

ICE power is delivered directly to the
wheels without energy conversion

2.1.3.3 Power-split Hybrid

Power-split HEV's divide the mechanical power provided by the ICE into an electrical and
a mechanical path. The power-split property (which is mostly realized with a planetary
gear system (PGS)) can also be regarded as a transmission and is therefore referred to
as eCVT. The drivetrain layout of power-split HEVs is depicted in Figure 2.3, whereas
the pros and cons are stated in Table 2.3. Figure 2.3 shows, that the electrical path is
realized by the coupled generator whereas the mechanical path is established by the PGS
connecting the ICE directly to the driveshaft. As the mechanical efficiency is higher than
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Figure 2.3: Power-Split HEV layout [32]

the electrical, the electrical HEV components should be designed to achieve maximum
efficiency. This can also be realized by reducing the electrical power flow. A reduction
of the electrical power also results in smaller electrical components which is useful for
this drivetrain layout as it makes 2 EMGs necessary.

A special form of the power-split drivetrain layout establishes the mechanical path by
using a clutch instead of the planetary gear system. This topology is then referred to as
combined power-split HEV [26].

Table 2.3: Advantages and disadvantages of power-split HEVs

Advantages Disadvantages
Every HEV operation mode possible High complexity
Shifting without interruption of traction Elaborated software needed for compo-

Load point shifting possible nent coordination

ICE power is delivered directly to the High weight

wheels without energy conversion Transmission needed for power-splitting

2 EMs needed

10
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2.2 Operating Strategy (OS)

2.2.1 Purpose

Whereas conventional drivetrain layouts only comprise the ICE as energy source, hybrid
electric vehicles offer an additional degree of freedom due to two propulsion systems.
The task of the operating strategy is to coordinate these power sources in order to
fulfil the driver’s demand and to ensure that all drivetrain components operate within
their mechanical, thermal and electrical limits. The OS has an immense impact on
the marketability of HEVs as it controls fuel efficiency which is the main reason for
the introduction of HEVs [34]. Previously rule-based OS found application, whereas
nowadays the trend is going towards adaptive and predictive operating strategies. A
detailed classification of operating strategies can be found in the following section.

2.2.2 Classification
2.2.2.1 Heuristic (Rule-based) OS

Heuristic control strategies are based on rules defined by different vehicle variables. Most
commonly, the torque demand and the vehicle speed are used for the derivation of rules
[19], compare Figure 2.4. In this example, the vehicle velocity v and the torque demand
T are used for the calculation of the power-split value u between ICE and EMG. The key
control parameters in this OS type are the thresholds defining the transitions between
the different states. Besides torque thresholds also acceleration or power thresholds
and combinations can be used. Power based formulations have the advantage of the
correlation with the components’ power limits which can be useful when designing the

0S [19].

A:ZH{J

u=1
ﬁe braking

Figure 2.4: Heuristic OS using the vehicle speed v and torque demand T for the deter-
mination of the power-split value u between ICE and EMG [19]

Heuristic controllers are easy to implement and rather intuitive but their utility is
strongly dependent on the choice of the threshold values. As the thresholds differ de-

11
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pending on the driving conditions, a high tuning effort is required to achieve robustness
which motivates the optimization model based controllers described in the following [19].

2.2.2.2 Optimal and Suboptimal OS

Optimal and suboptimal approaches are model based strategies which aim to minimize
a cost functional. A typical cost functional is the fuel consumption my, whereas also
other influences such as emissions can be considered in the cost functional [19]. This
type of OS was derived from so-called model predictive control (MPC) approaches which
try to predict the future system behavior and deducting optimal control variables with
the help of a model of the investigated system [6].

Depending on the length of the prediction horizon, optimization based strategies can be
divided according to local and global optimization strategies.

Local Optimization

These strategies relinquish global optimization and therefore deliver suboptimal results.
Nevertheless, reducing the size of the problem to be optimized also decreases computation
time which comes useful in real time control applications [11], [12].

Special local optimization algorithms compare the energy consumption of the ICE and
the EM. This is done by converting the electrical energy consumed by the electric motor
into an equivalent fuel consumption. These strategies allow a unified representation
of the fuel consumption and the energy used by the battery and are therefore called
equivalent consumption minimization strategies (ECMS) [42].

Charge sustaining strategies (which can be found in autarcik HEVs) require the SOC
of the battery to be the same at the beginning and at the end of a trip. This request
can be regarded as the boundary condition for each prediction horizon and therefore
defines the local control problem. As the battery is not fully exhausted at the end of the
journey, the fuel saving potential is not fully exploited which is especially compromising
for PHEVs. Therefore, efforts were made to estimate the power demand along the entire
journey and perform global optimization to calculate the boundary values for the local
problem [45], [64].

Global Optimization

Global approaches consider the entire remaining journey in the cost functional. This
allows to fully exhaust the fuel saving potential but also increases computation time.
The main influence on the accuracy and on the computational effort is given by the
future velocity profile which determines the power demand. In [27] an effort was made
to determine the influence of the length of the prediction horizon on the global fuel
saving potential. It was assumed, that within the prediction horizon the velocity profile
is exactly known whereas outside the velocity is equal to the legislative speed limits.

12
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2.3 Driveability

2.3.1 Definition

The assessment of driveability began with the introduction of the automobile itself.
Whereas initially only a handling assessment was performed for different driving situ-
ations, the increasing velocity and traffic density made it inevitable to assess the vehicle
behavior under consideration of the interaction between driver, vehicle and environment.
Improved vehicle handling not only helps in terms of accident prevention, it also increases
a vehicle’s marketability [7], [51].

Throughout history the term “driveability” has been given different meanings. Often
driveability is used in context with driving comfort which is defined as the absence of
discomfort and distracting influences according to [4]. This implies a subjective evalua-
tion as every driver experiences comfort in a different way. [38] states that driveability is
an objective evaluation process with the help of characteristic parameters such as chassis
acceleration and response time. In this thesis the term “driveability” will be referred to
as the driver’s subjective perception of the interactions between vehicle and driver which
can be assessed subjectively or by using objective evaluation criteria based on correlation
methods [51].

2.3.2 Subjective Evaluation

In the past, driveability was evaluated subjectively by test drivers and form sheets. These
assessments lack of repeatability and reproducibility and are time and cost intensive. In
[37] it is stated that subjective driving comfort is influenced by all senses: hearing, sight,
chemical senses (smell, taste), somatic system (touch, body position) and vestibular
system (balance). The scope of comfort criteria is defined by [51] according to Figure
2.5. It depicts a comfort assessment for 3 different vehicle models based on a rating from
0-10 for the different criteria. It can be seen that depending on the comfort criteria,
model 3 may outcome the other 2 opponents in terms of handling, whereas it only
scores the lowest points in terms of vibration, for example. Figure 2.6 shows the main
influence factors for driving comfort and driveability for gear shifting according to [33].
Acceleration shows the highest influence, which correlates with the use of acceleration
metrics for objective driveability evaluation. Acoustics are also important as they provide
feedback to the driver. Subjective assessments can either be done using direct or indirect
methods which are both influenced by the evaluator.

Direct methods: Here the evaluator describes the perceptions of the investigated
phenomenon and an assessment is performed with the help of an evaluation scale. The
main disadvantage of this approach lies in the necessity of the conversion of the subjective
perception into a corresponding scale value [4]. Figure 2.7 depicts a ten-tier rating scale
used for evaluating NVH-phenomena. It can be seen that the perception threshold varies
for different costumer types which is attributable to the fact that different costumer types

13
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- — Model1
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Figure 2.5: Comfort criteria [51]

m Acceleration
Response

m Acustic
Shifting frequency

10%

Figure 2.6: Main influence factors of driving comfort for gear shifting [33]

have difficulties in differentiating certain phenomena [4]. Further, it needs to be stated
that the depicted scale undergoes slight variations to comply with the brand’s marketing
strategies.

Indirect methods: These assessment procedures try to capture changes of the evalu-
ator caused by the disturbances correlating with the investigated effect. By having the
evaluator perform extra tasks (e.g. calculations) the influence on the well-being caused
by the absence of comfort is evaluated. These methods have the advantage of being
resistant in terms of manipulation, but require high effort and impose a distraction on
the evaluator [4].

14



2.3 Driveability

unacceptable b(%'ggr acceptable
Rating 1 2 3 4 5 6 7 8 9 10
. impr?ve-
Vi’l;‘r()alfqi'gh unacceptable “”?;’Q?e"" Fggﬂired moderate | minor |very minor| traces none
" trained impercep-
Noticed by custg:Lers average costumers critical customers observers tible

Figure 2.7: Ten-tier rating scale according to [3]

2.3.3 Objective Evaluation

Due to the rapid development of mobile measurement technology, huge efforts were made
to incorporate measurement data into the subjective evaluation process in order to obtain
objective criteria. With the use of correlation criteria, it becomes possible to predict
manifestations of different subjective criteria by investigating measurement data. The
prediction accuracy improves for higher correlation between the comfort assessment and
the objective variable. Objectivization can be performed using multiple linear regression
or artificial neural networks (ANNs). Whereas regression methods have the advantage
of being established, ANNs captivate with the nonnecessity of a mathematical model [4].
Before performing objectivization, objective measures for the description of the system
behavior have to be defined which will be performed in the following.

The exposure of the human body to vibration can be categorized according to the ef-
fect on the health (safety at work) and on the well-being (riding comfort). Thresholds
for the human sensation of vibration depend on the vibration mode, the transmitting
point and the direction of oscillation and can be found in the VDI 2057 standards [59].
The assessment of oscillations is performed in the frequency domain as their interaction
with the human body is frequency dependent. This dependency can be expressed by
performing a frequency weighting of the physical data measured at the entry point of
the vibration exposure into the human body. The most common frequency weighting
functions (Wi, Wy, Wy, Wi, We, W, and W) are given in Figure 2.8 and Figure 2.9.
The frequency weighting plays an important part in terms of objective evaluation as
the human body shows a different perception of vibration depending on the frequency
region. Vibrations in the domain of the human body’s eigenfrequencies are perceived as
extremely disturbing which needs to be considered in the frequency weighting functions.
The eigenfrequency of the stomach for example, lies in the domain of approximately
5Hz [14], which is a reason for the high frequency weighting in the domain of 1-10 Hz in
Figures 2.8 and 2.9.
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Figure 2.8: Frequency-weighting function W according to VDI standards [59]

According to [59], the use-cases of this weightings are as follows:

e Assessment of the health risk connected with vibration exposure in seated and
standing position

— for the vertical axis z (Wy)

— for the horizontal axes z and y (W)

Assessment of the well-being with vibration exposure beneath the back while in
recumbent position

— for the vertical axis z (Wy)

— for the horizontal axes z and y (W)

Assessment of the well-being while sitting or standing
— for the vertical axis z (Wy)

— for the horizontal axes = and y (W)

Assessment of the well-being with undefined body posture (W)

Assessment of low-frequency vertical vibrations possibly resulting in kinetosis (W)
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Figure 2.9: Frequency-weighting function W according to VDI standards [59]

The following cases require additional weighting functions [59]:

e Seated position with vibration transferred via the seat back along the z axis (hor-
izontal direction) for the assessment of well-being (W)

e Rotational vibrations about three axes z, y and z, for the seated position and for
the assessment of well-being (W,)

e Vibration measurements beneath the head of the individual in a recumbent posi-
tion, for assessment of the well-being in the case of vertical vibrations (W)

The strain on the human body caused by vibration exposure is also influenced by the
subjective perception. As the perception and pain thresholds vary from human to human,
these thresholds depend on the age, sex, state of health, attentiveness and the kind of
activity being engaged in [4]. Table 2.5 depicts the correlation values between human
perception and the root-mean-square a,,7 of the frequency-weighted acceleration a,,(t).

The root-mean-square a,7 of the frequency-weighted acceleration a,,(t) is used for as-
sessing the strain on a human being caused by the effects of vibration. The frequency-
weighted acceleration a,,(t) obtained by applying a frequency weighting function (com-
pare Figures 2.8 - 2.9 and Table 2.4) to the acceleration signal a(¢). The root-mean-square
a7 of the frequency-weighted acceleration a,,(t) describes the strain of the human body
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Table 2.4: Summary of application of frequency weighting curves [59]

Strain criterion: Health

. . Direction of Frequency
Body posture Measuring point vibration weighting
Sitting on the seat z W
z,y Wd
Strain criterion: Well-being
Sitting on the seat z Wi
z, Y Wd
foot platform T, Y, 2 Wi
seat back T W,
tati th
rotation on the o, Ty, T A
seat
Standing foot platform z Wi
z,y Wd
Recumbency beneath the back x (vertical) Wi
y, z (horizontal) Wy
under the head
ical ‘
(without cushion) @ (vertical) Wi
in buildings on
Undefined body posture the floor T, Y, z Wi
Strain criterion: Kinetosis
Sitting or Standing || z | W;

Table 2.5: Relationship between the root-mean-square of the frequency-weighted accel-
eration a,(t) and subjective perception in the case of sinusoidal vibration

[59]

Root-mean-square a,,7 of
frequency-weighted acceleration a,,(t) in

Description of perception

m/s?
<0.01 not perceptible
0.015 threshold of perception
0.02 barely perceptible
0.08 easily perceptible
0.315 strongly perceptible
>0.315 extremely perceptible
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for a specified time period and is calculated as follows:

1 [T
T = 7—_/0 a2, (t)dt. (2.1)

The variable 7 denotes the duration of the measurement whereas a,,(t) is the current
acceleration under consideration of the frequency weighting.

[59] also introduces a moving root-mean-square G- (t):

aur® =2 [ el
wr(1) \/T JARCG et 22

The time is equal to the integration variable £ and 7 is the time constant for the moving
average. Depending on the value used for 7, the notation is slightly changed: For 7 = 1s,
ayr(t) becomes a,s(t) where the index S denotes "slow”. When setting 7 = 0.125s the
index F for "fast” is used: a,p(t). The value of 7 = 0.125s is recommended by [59] to
prevent health endangerment due to effects of exposure to whole-body vibration. The
frequency weighted acceleration a,,(w) is obtained by multiplying the acceleration in
the frequency domain a(w) with the associated frequency rating W(w). Thereby, the
variable W (w) denotes one of the aforementioned frequency ratings W., Wy, W,, Wy,
W;, Wy, or W, depending on the investigated effect:

G (0) = W(w) - a(w) (2.3)

The energy content of the vibration is given by the power spectral density which is
calculated according to Equation (2.4).

Da(w) = lim —(a(w))? (2.4)

The total value of the vibration in all three directions of the frequency-weighted acceler-
ation is given by

Quw = \ /K205, + K3a%, + K202, (2.5)
where @z, ayy and a,, denote the frequency-weighted acceleration along the x, y and
z axis. The correction factors k need to be adapted depending on the investigated effect.
For vibration exposure while transporting people k,=1, k,=1 and k.=1 holds. Thus,
Equation (2.5) simplifies to

Ay = \/a?m +a2, +a,. (2.6)
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Figure 2.10: Different assessment criteria for drivability on a time domain basis [28]

The vibration dose value (VDV) is another criterion for assessing the load caused by
vibration [18]. It is calculated using the “4*™" power law” shown in Equation (2.7).

VDV = {/ / ! ak (t)dt (2.7)
0

Further methods of driveability assessment include measurements in the time domain as
suggested by [28]. Investigated parameters are are the first peak acceleration, the first
minimum, the first peak-to-peak value and the change of steady-state acceleration as
shown in Figure 2.10.

In [60] the author presents measurements performed to assess driveability during a tip-in
manoeuvre, which is shown in Figure 2.11. As the vehicle acceleration does not immedi-
ately follow the driver input (full throttle), a sag in the acceleration occurs deteriorating
vehicle driveability. This is experienced as rather unpleasant, because the driver expects
the vehicle to immediately follow his input without any hesitation. Vehicles with auto-
matic transmissions for example, switch to a lower gear when the kickdown is triggered,
resulting in an acceleration delay. Besides the tip-in manoeuvre several other driving
manoeuvres have been developed for assessing driveability. Table 2.6 gives an overview
based on [41].

Driver induced load variations occurring during a tip-in manoeuvre or by engaging the
clutch for example, cause oscillations of the drivetrain. These comfort reducing phenom-
ena can be categorized according to their frequency range.

Shunt phenomena (also referred to as “Bonanza-effect”) are caused by poorly damped
vehicle oscillations. The vibrations can be divided into a rotatory part acting in the driv-
etrain and a longitudinal proportion occuring in the vehicle body. Both fractions can be
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Figure 2.11: Different assessment criteria for drivability on a time domain basis for a
tip-in manoeuvre [60]

measured at the driver’s seat and have an eigenfrequency of 2-10 Hz. The actual value
depends on the drivetrain layout, the stiffness, inertia and current gear ratio. Whereas
this phenomenon does not deteriorate acoustics, it hugely affects driving comfort as hu-
mans are extremely perceptive for oscillations in this frequency range [4].

Load change shocks occur at higher revolutions and result in an alternation of the torque
bracing. Due to the eigenfrequency of 15-200 Hz, this phenomenon affects the vibration
comfort and the acoustics [53].

Clonk phenomena can be witnessed with lower gears and at a low revolution range.
The alternation of the drivetrain load causes oscillations of the components fitting with
clearances. The collisions of the parts result in a high frequency metallic sound in the
frequency range of 300-6000 Hz [4].

When investigating the aforementioned effects (compare Section 3.1 and 4.1), the sam-
pling frequency has to be chosen according to the Nyquist-Shannon sampling theorem:
The sampling frequency should be at least twice the highest frequency contained in the
signal. In practice, the sampling frequency is 8-10 times the signal frequency in order
to allow a reconstruction of the original signal out of the time-discrete signal without
information loss. [14]

The main task when performing objective driveability evaluation lies in the determination
of rating quantities (such as the acceleration peak of a tip-in manoeuvre) based on vehicle
measurement data (e.g longitudinal acceleration). Further it needs to be investigated
which quantities are representative for a phenomenon and therefore need to be considered
in the evaluation process. [28] suggests that the correlation between rating quantities
and investigated phenomena can be categorized into the following 3 methods:
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Table 2.6: Different driving manoeurves for evaluation of the driveablity of a vehicle [41]

Manoeuvre | Criteria | Additional information

Acceleration Acceleration gradient, elas-
ticity, full load, 0-100km/h,
steady torque, torque increase,
torque response

Constant speed | Speed fluctuation, noise |
Drive away Acceleration peak, accelera-| Creep, hill climbing,
tion performance launch, vehicle stop

Engine shut off/on | |

Motoring | Expected deceleration | DFCO on/off
Noise Constant speed, engine start, | A-weighted filter with
full load acceleration, motor-| averaging  time  of
ing, normal driving, tip-in 125ms to focus on
frequencies around
3-6 kHz
Tip-in Jerk, peak-to-peak, response | After constant speed,
delay, sag during acceleration,
short tip-in after con-
stant speed, ...
Tip-out Jerk, peak-to-peak, response
delay

e Each phenomenon is rated with exactly 1 quantity, meaning that rating quantity
and evaluation index are identical

e Several quantities are used for rating one phenomenon without combining them to
one single assessment value

e Each phenomenon is rated with several quantities which are transformed into 1
single evaluation index by considering the correlations between the measured quan-
tities and subjective assessments

Whereas the first method lacks of descriptive quantities for the investigated phenomena,
the second one makes it difficult to perform an objective assessment as the consideration
of several numeric values is necessary. The third approach is the most sophisticated
one and also used in AVL-Drive. AVL-Drive is a commercially available tool for the
objective evaluation of driveability introduced in 1998. This tool can be applicated in real
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Table 2.7: AVL driveability ratings and description [35]

Rating | Subjective Rating |

10 | excellent | Not noticeable even by experienced test drivers
9 | very good | Disturbing for experienced test drivers

8 | good | Disturbing for critical customers

7 | satisfying | Disturbing for several customers

6 | even satisfying | Disturbing for all customers

) | adequate | Very disturbing for all customers

4 | defective | Felt to be deficient by all customers

3 | insufficient | Reclaimed as deficient by all customers

2 | bad | Limited vehicle operating only

1 | very bad | Vehicle not operating

vehicle measurements as well as in simulation, therefore enabling objective driveability
evalutaion during the complete vehicle development process. [35]

AVL-Drive uses 270 driveability criteria and differs 75 driving modes. After performing
the detection of the driving mode (e.g. idling) via fuzzy logic, the driveability calculation
unit evaluates driveability online by using ANNs. The result is a rating from 1-10 shown
in Table 2.7 [35].
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Methodology

3.1 HEV Drivetrain Modelling

To investigate driveability issues at an early stage of development, a detailed model of
the hybrid drivetrain is required. Figure 3.1 depicts the implemented combined HEV
drivetrain layout. By using merely the EMGy; as propulsion unit the HEV operates
all-electric. The electric energy is either supplied by the battery or by the EMG; oper-
ating as an electric generator (EG), which converts the power delivered by the internal
combustion engine. In this mode the vehicle behaves like a serial HEV. Parallel mode is
activated when engaging the clutch (CL) and directly powering the wheels by the ICE.

—EMG,—

EMG, ‘

ICE |
CL L

Figure 3.1: Implemented drivetrain layout



3 Methodology

3.1.1 Modeling Approaches

Due to the complexity of HEVs and the necessity of frontloading during the development
process, the simulation of HEVs has become indispensable. There are two main types
of simulation models which will be described in the following.

3.1.1.1 Dynamic Models

Dynamic models describe the vehicle behavior by using algebraic and differential equa-
tions. This results in higher physical accuracy and also allows the investigation of dy-
namic effects and driveability assessments [26].

Figure 3.2 shows that dynamic models have the benefit of a physically correct power
flow: The pedal input of the driver is used to determine the ICE torque which is then
used to calculate the resulting forces at the wheels under consideration of the gearbox
and other powertrain components such as the final drive for example [1].

n n n n
Engine [~ Clutch | Gearbox mq Final Drive  mivg Wheels
T T T T

Figure 3.2: Dynamic vehicle model

3.1.1.2 Quasistatic Models

Quasistatic models use velocity, acceleration and road inclination as input variables. The
driving cycle is discretized into steps (typically 1s [19]), for which the inputs are assumed
to be constant. Due to the consideration of acceleration forces, the approach can be re-
garded as quasistatic. The resistance forces (compare Section 3.1.2) are then used to
determine the force acting on the wheels. From the tire forces the operating point of the
motor can be calculated under consideration of the drivetrain losses as shown in Figure
3.3.

As most of the influence factors on fuel consumption are relatively slow [19], a qua-
sistatic model will be used for the determination of the fuel saving potential given by
the predictive charging strategy described in Section 3.4.

n n n n n
Wheel Eq FinalDrive  mEgq Gearbox maq Clutch || Engine
T T T T T

Figure 3.3: Quasistatic vehicle model
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Figure 3.4: Resistance forces [32]

3.1.2 Longitudinal Vehicle Dynamics

Longitudinal vehicle dynamics describe vehicle movements in driving direction (longitu-
dinal direction). Driving and braking performance as well as fuel efficiency and noise
emissions are mainly evaluated [25].

Resistance Forces
The driving resistance forces comprise rolling resistance, air resistance, climbing resis-
tance and acceleration resistance [25] and are illustrated in Figure 3.4.

The variables used in Equations 3.1 - 3.4 refer to the following physical quantities:

e v, ...velocity in longitudinal direction

e ¢ ...acceleration in longitudinal direction
e ¢ ...gravity constant

e m ...vehicle mass

e [ ...inclination angle

Rolling resistance

The rolling resistance F;. is a result of the viscoelastic deformation of the tire [25]. The
material pairing between tire and ground and the tire pressure are the main influence
factors on the rolling resistance. Higher tire pressure results in a lower rolling resistance
coefficient ar and vice versa if other parameters are kept constant.
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F.=agr-m-g-cos(B) (3.1)

Air resistance

The longitudinal air resistance force (air drag) Fy shows a quadratic dependence on
the velocity and can be approximated by Equation (3.2) which contains the resistance
coefficient cyy, the air density p4 and the front view surface Ay.

1
Fdzicw-pA-Af-vx-|vm| (3.2)

Climbing resistance

The climbing resistance F; needs to be taken into account when the inclination 8 towards
the horizontal is unequal to zero.

Fy=m-g-sin(p) (3.3)

Acceleration resistance
a) Translational

According to Newton’s second law of motion, acceleration forces F, are necessary for the
alternation of motion (acceleration).

F,=m-a (3.4)

b) Rotational

For rotating components such as axles, wheels, the rotational acceleration resistance has
to be considered. The required momentum for acceleration Ty, is a function of the inertia
© and the angular acceleration w:

T,=0-i (3.5)

Equation of motion solved in the dynamic model

The longitudinal vehicle motion is described in Equation (3.6).

m-a=F,—F;+Fy+F, (3.6)

The propulsion force F; acting on the tires is calculated within the tire model described
later in this section and therefore also considers tire slip.
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3.1.3 Internal Combustion Engine (ICE)

Throughout history a great variety of internal combustion engines have developed. The
layouts range from the most commonly used piston engine over rotary engines up to radial
engines. The powertrain of the HEV described in this thesis comprises an Otto piston
engine, working according to the four-stroke principle: After intake and compression the
air-fuel mixture is ignited by a spark plug. The generated heat causes high pressure
in the combustion chamber which is then converted into mechanical energy during the
expansion phase. The complete combustion of fossil fuels CzH,0, according to [39] can
be expressed as follows:

o

C,H,0, <7r + fz) - 5) 03 — 7CO3 + gH2o (3.7)
As Equation (3.7) is not applicable for incomplete combustion, besides CO9 other emis-
sion components such as CO and HC are produced. The amount of NOx emission rises
with temperature and particulate matter (PM) is a result of small mixture formation
time [21]. Since no data is available, emissions are not considered in this work.

Mean Value Model

The demanded ICE torque T7op is characterised by the angular velocity wyop and the
accelerator pedal postion p,:

Tice = f(wice; pp) (3.8)

Sophisticated engine models such as en-DYNA are not taken into consideration here,
as the described approach is sufficient for vehicle handling and ride analysis [49]. The
described engine map is usually measured on a dynamometer, but unfortunatley not
available for this thesis. It was therefore assumed, that p, = 0 represents the engine’s
drag torque T7cE drag, Whereas p, = 1 results in the full load curve T7cEg mas. Inbe-
tween these values linear interpolation is performed [32], compare Equation (3.9). The
resulting ICE map is shown in Figure 3.5.

Trce(wice) = TicE,drag(WicE) + Pp [=T1cE drag(WicE) + TrcEmaez(wWicE)] . (3.9)

As the drag torque summarises the internal engine friction and other losses, such as the
compression of the air, it is less than zero and increases linearly with the engine speed
WICE [38]

The ICE dynamics are formulated with the principle of angular momentum:

Orck - wice = Tice — T1cE,out- (3.10)

The variable ©rcg represents the inertia of the engine and T7¢E out is the momentum
at the crankshaft. As it is necessary to consider the combustion delay and the intake
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Figure 3.5: Implemeted ICE map with its brake specific fuel consumption in g/kWh

process, a first-order lag element in combination with a dead-time element according to
[30] found application to model the system response time. The transfer function G; of
a first-order lag element in the s-domain is a function of the amplification factor K; ;cg
and the time constant T} jog:

K ice
G = 0 3.11
1(3) 1+ sTiicn ( )

The transfer function Gy of the dead-time element depends on the time constant Ty rog:

Gy(s) = e~sTarce, (3.12)

The ICE’s fuel consumption 7 ¢(t) shows a dependency on the ICE speed wrcp and the
required load T7op and is therefore modelled likewise:

my(t) = f(wice(t), Tics(t)). (3.13)

To account for the fuel efficiency of the engine a brake specific fuel consumption bsfc
[15] map was implemented. The correlation between engine efficiency nyor and bsfc is
shown in Equation (3.14). The variable 1 stands for the fuel mass flow, H,, represents
the fuel’s lower heating value and Prog is the effective engine power.

o 1
bsfc = = 3.14
/ Prcg nice - Hy (3.14)
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Engine control unit (ECU)

Modern engines are controlled by numerous electronic control units, for example mixture-
and idle speed control [15], which have a main influence on the engine characteristic.
Therefore, modeling ICE behavior always includes control algorithms [38]. ECUs have
the aim of improving fuel consumption, emissions and driveability. The implemented
controllers in this thesis comprise the engine speed limiter, the idle speed controller,
the deceleration fuel cut-off and an automatic start-/stop function. The engine speed
limiter is integrated into the engine map, by having the engine provide zero torque at
maximum engine speed. Idle speed control is performed using a proportional-integral-
differential (PID) controller. DFCO is a way of increasing fuel efficiency by stopping
fuel injection during tow phases. The automatic start-/stop function stops the ICE at
stop for conventional vehicles. For HEVs the start-/stop function also controls electric
driving.

3.1.4 Battery

Lead-acid batteries are a common element in conventional drivetrains. But when talking
about batteries in combination of HEVs, this term refers to the energy storage device
(ESS). In general an ESS can rely on mechanical, chemical or electrical storage principles,
whereas the most common is the electrical storage system in the form of a lithium-ion
battery [31]. Batteries convert chemical into electrical energy by performing a redox
reaction. The electrode at which the oxidation occurs is called anode whereas the elec-
trode where the reduction takes place is called cathode. To account for the ion transport,
an electrolyte is necessary. For automotive applications many of these galvanic cells are
combined to battery packs by serial and/or parallel arrangement. When designing a bat-
tery system for HEVs the following aspects should be considered: high specific power,
high specific energy, long calendar and cycle life, low initial and replacement costs, high
reliability, and high robustness [19].

With respect to the model requirements battery models can be categorized as follows
[29]:

e Mathematical black-box models,

e Physical-chemical models,

e Equivalent-circuit models.

Equivalent-circuit models describe the battery characteristics by the use of resistances,
inductances and capacitances. As this model type reproduces the basic dynamic effects
with appropriate accuracy without long computation times, this type was chosen for
the implemented battery model which is depicted in Figure 3.6. Being a simplification
of the Randles model, the following effects are considered: self-discharging, the SOC
dependency of the open-circuit voltage U,. and thermal effects. While retaining good

31



3 Methodology

Rz/:‘
I

Bat,
I I URC
]|

gl Vg C
U, 3 U

Figure 3.6: Equivalent-circuit model of the implemented battery model [32]

accuracy, the parametrization is facilitated in comparsion to the Randles model due to
the simplifications [62].

An ideal voltage-source provides the open-circuit voltage U,., which is a function of
the battery temperature ¥, and the SOC. To account for the dynamic behavior, a
RC-element was implemented. The internal resistance R;(SOC,¥p4) is comprised as
follows:

R; = Ry+ Ry + R,. (3.15)

The diffusion resistance Ry models the diffusion of ions in the electrolyte, whereas R
denotes the “charge-transfer” resistance caused by the electron movement [19]. The
variable R, is the ohmic resistance.

The capacitive effects of the charge accumulation-/ separation occurring at the interface
between the electrodes and electrolyte are depicted by the capacitance C' [19]. The
dynamic behavior is described by Kirchhoff’s laws:

d Urc
cC—U =Ipayt — , 3.16
qUro = Ipa — (3.16)
UBat — Uoc - URCa (317)

The voltage drop in the RC-branch is accounted by Ugc, the battery voltage is denoted
by Upa: and the battery current by Ig,;. Given the initial SOC of the battery SOCy
and its nominal capacity Qpnom, the current state of charge SOC(t) reads

t
SOC(t) = SOCy — Q[B—t dr. (3.18)
0 nom
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Battery management system (BMS)

The battery monitoring unit accounts for the battery’s health throughout its lifetime
by permanently supervising the battery voltage Up,: and current Ig,: as well as the
SOC. To prevent lithium plating, the current and power need to be limited, which is
described in Section 3.2.3. As severe discharging results in capacitance loss and higher
self-discharging effects and over-voltage causes spontaneous ignition [31], the cell voltage
is also monitored.

3.1.5 Electric Motor/Generator (EMG)

The electric motor/generator is a key component of HEVs [19]. Whereas in purely ICE
propelled vehicles the EMG is only used as a starter/alternator, the EMG is an active
part of the drivetrain in HEVs, which can operate in the following modes (compare [19]):

1. Conversion of electrical power into mechanical power used for propulsion

2. Conversion of mechanical power from the ICE into electrical power in order to
charge the battery

3. Recuperation of mechanical power to charge the battery (regenerative braking)

The number of EMGs varies depending on the drivetrain layout [26], the HEV investi-
gated in this thesis consists of two EMG units. The stronger one (EMGy) is used as a
traction motor, whereas the EMGyr provides additional electrical power for the battery
and/or EMGi. According to the type of current used, EMGs can be categorized into
direct current (DC) and alternating current (AC) machines. Nevertheless, the general
layout always stays the same, consisting of a stator and a rotor.

Phenomenological EMG model
The mechanical behavior of the EMG can be described with the following Equation:

Opmc - wemc = Teme — TEMG out- (3.19)

The variable © g);¢ denotes the EMG’s rotor inertia, Tr ;¢ the demanded torque, wgya
the rotational speed and TgaG,out the momentum at the output shaft, respectively. The
EMG’s response time is modeled using a first-order lag element [36].

The current required for the demanded output torque Trargout can be calculated by
transforming the mechanical energy demanded into the corresponding electrical energy
under consideration of the EMG efficiency ngarg. The EMG efficiency map and rota-
tional speed-torque characteristic is shown in Figure 3.7. Using the principle of energy
conservation, the required current Igysq reads:
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Figure 3.7: EMG characteristics of the implemented models with its mechanical efficiency

Figure 3.8: Schematic representation of the implemented gearbox model

T G w G —
I = == g ™ (3:20)

The signum function accounts for the direction of power conversion: In motor mode
(Teme >= 0) provokes a division of the efficiency, whereas in generator mode Try g
is less than zero, leading to a multiplication of ngarg. The voltage of the battery is
denoted by Upggs.

3.1.6 Gearbox (GBX)

Gearboxes or transmissions are a crucial part in conventional drivetrain layouts as well as
in hybrid electric vehicles. They are essential in terms of fuel efficiency and also allow to
adapt the angular speed and momentum provided by the traction motor to be converted
into the measures requested at the wheels. The investigated HEV drivetrain consists
of two gearbox modules: One connecting the ICE and the EMGi, the other acting as
a summation gear between the ICE and EMGyy, see Figure 3.8. The two modules are
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Figure 3.9: Schematic representation of a final drive [32]

implemented considering the inertias of the input shafts (0;, /o) and the output shaft
(@out):

Tout = En,l : Z‘1 + En,Z : i2 - O:)out(("')iml : 1% + @in72 : Z% + @out)y (321)
Win,1 = Wout * 1, (322)
Win,2 = Wout * 19. (323)

The variable Tyt denotes the torque at the output-shaft, i;/,, the gear ratio, Tj, 1/2
the torque at both input shafts and wg,; the angular acceleration of the output-shaft,
respectively. The rotational speeds of the output-shaft and both input shafts are given
by wout and Win,1/2-

3.1.7 Final Drive (FD)

The final drive allows the wheels to rotate at different speeds while retaining equal
torque distribution. If the driven wheels rotate at the same speed, the pinion gears are
not moving (see Figure 3.9). In case of a speed difference of the wheels (e.g caused
by cornering or u-split surfaces) the pinion gears start moving and mechanical power is
dissipated [17]. To prevent high traction losses, locked differentials are used which can
provide a degree of lock up to 100% .

As no wheel speed balancing is considered in the longitudinal simulation model, the FD
is modelled as a rigid axle without considering any inertia. The torque Trp ou¢1/r and
the angular speed wrp ;n are calculated under consideration of the FD gear ratio irp,
the torque at the input shaft Trp ;,, the efficiency nrpp and the rotational speeds of the
left and right output shafts wrp out; and Wrp eutr:
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Figure 3.10: Dynamics of the clutch and a charactertistic curve. In (a) the clutch dy-
namics are depicted, in (b) a specific friction characteristics for a specific
friction pad is represented. [32]

Trpouti/r = 5tFD * TFD,in * MFD, (3.24)

N = DN =

WED,in = 5 * LFD (WFD,Out,l + wFD,out,r) . (325)
The final drive efficiency ngp is assumed to be a bit lower than the transmission efficiency
nNapx which is caused by the bevel gear used. The efficiency reads:

<1 T >0,
nED = {_ FD,out,l/r = (326)

>1 TFD7out7l/7" < 0.

3.1.8 Clutch (CL)

The task of the clutch is to disengage the traction unit from the remainder drivetrain,
to provide a comfortable start-up process and to adapt the angular speeds of the input
and output shafts [9]. The momentum transferred by the clutch is given by T, which
is a function of the number of friction plates Npjqses, the mean friction radius r,, the
friction coefficient p and the axial force F, cr:

Ter = Nplates Tm - W Fx,CL- (3-27)

As depicted in 3.10, u is a function of the slip Awer. Without slip, i is equal to the static
friction coefficient pg. If the slip increases, p reduces to the sliding friction coefficient
st

Modelling the clutch behavior is quite complex, as the two inertias O¢r in and Ocr out
move independently during slipping [63]. The formulation in [63] has the benefit of

36



3.1 HEV Drivetrain Modelling

good stability and was therefore chosen for this thesis. The relations for a fully engaged
clutch (reduced order) are shown in Equation (3.28), whereas the system equations for
the slipping clutch (wer out # wer,in) are depicted in Equation (3.29).

(OcL,in +OcrLout) -wor = Tor,in — Tor,out WCL,in = WCL,out = WCL (3.28)

@CL,in 0 . wCL,in o TCL,in _ 1 T . [1 _1] . WCL,in
0 O & - -7 —q] HeLeeh w
,out CL,out CL,out N—— CL,out

N d ~~ S~—~— d
M w T ar w

(3.29)

The mass matrix is denoted by M, the angular acceleration vector by w, the vector
containing the coefficients by d and the angular speed vector by w, respectively.

[63] suggests a state space transformation which decouples the main dynamics from the
relative dynamics. This is performed by introducing the transformation matrix K and
using Ocrx. = Ocr,in + OcrL out:

_ ZPCL,in
OcL,y

1 @CL,out
K= [1 QoL ] (3.30)

The transformation of the angular speed vector w into the generalised speed vector z is
given by:
w =Kz (3.31)

After introducing Ocr11 = Ocr,in - ©CL,0ut, the system dynamics read

P Sors  Gors | [ Tows 0 0]" [=
[.1:| = (?CCLL’;Z (?H)CCLLEM [_TCLm :| —Teor |ecrys | sgn [1:| |: 1:| (3.32)
22 ©crn OcLn CL,out OcL.n z2

The variable Z; denotes the main dynamics, whereas Zo accounts for the relative dynamics.
By inverting Equation (3.30), the angular accelerations of the input and output shaft
can be obtained. The system described in Equation (3.32) is solved by applying sliding
mode theory and using the torque Ty, as input variable [63]. If zo = 0, the transferable
momentum switches at a finite frequency between +7¢y,. As this frequency is required to
be rather high, a small simulation time step needs to be applied, which rises computation
time [63].
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Figure 3.11: Dynamic axle load shifting due to vehicle acceleration, adapted from [25]

3.1.9 Chassis Model

In order to describe the vehicle motion in longitudinal direction a tire model and a hub-
pitching model are implemented. Vehicle acceleration or deceleration results in axle load
shifts and causes an oscillation of the bodies.

Figure 3.11 shows the axle loads which can be calculated as follows:

Feppe=Foppm+Flpp (3.33)
F2p =mg- br - cosf — ?COG ‘sin B (3.34)
Fl = —ma- hCZOG (3.35)
F;?,r — g ly-cosf —i—lhcog sin 8 (3.36)
Fj’r =ma- hClOG (3.37)

The static portion of the front and rear axle load is given by FZO e the dynamic portion

by Fj e The variable hcog represents the height of the center of gravity (COG) and
ly/r the distance between the COG and the front and rear axle. The wheelbase [ is
calculated by lf+!,. The road inclination is given by 8 and the vehicle mass by m.

Equation (3.38) allows to determine the longitudinal vehicle acceleration a:

m-a=2-(Fyj+ Fop) —Fy—F, (3.38)

The transferable longitudinal tire force at the front or rear wheels is denoted by F) ¢/,
compare Equation (3.42). The aerodynamic drag F, (compare Equation (3.2)), and the
resistance force due to the road grade F, (compare Equation (3.3)), also need to be
taken into account.
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Figure 3.12: Dynamics of the tire and charactertistic curves. In (a) the tire dynamics

are depicted, in (b) the tire characteristics for a specific tire are represented.
[32]

Tire

The tires are the only interaction point between vehicle and road and transmit all forces.
Therefore, an adequate description of the interaction between tires and road is crucial
in vehicle dynamics modelling [23].

Semi-physical tire models have the benefits of short simulation time in combination
with a physical meaning of the parameters. A well-known representative of this type
of simulation models is TMsimple [22], which will be used in this project. The tire
dynamics shown in Figure 3.12 read:

@T'CZJT:TT_Fx'rdyn_Fz‘aR‘rdyn (339)
The inertia of the tire is given by ©p, the longitudinal tire force by F,, the vertical tire

load by F, the torque acting on the tire by 77, the dynamic tire radius by gy, and the
rolling resistance coefficient by ag.

The slip velocity is calculated as follows:

Vs = WT * Tdyn — Uz (3.40)
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The longitudinal tire slip s* reads:

vs Tr >0,
s* = {‘;j’”dyn TT i (3.41)
v <0,
Vg

The available longitudinal grip potential F,, can only be affected by the vertical tire load
F, and the longitudinal tire slip s* if other influences (road surface, temperature ...) are
kept constant [24]. The available longitudinal grip potential in the TMsimple approach
is calculated by:

F, = K -sin [B <1 — e_lj*> sign(s*)] . (3.42)
The coefficients are determined as follows:
K =Fy maz, (3.43)
B = 7 — arcsin M, (3.44)
A= ! K - B. (3.45)
dFy

The parameter Fj ., stands for the maximum longitudinal tire force, the saturation
value is given by Fj ;. and dFyo represents the initial longitudinal tire stiffness. All
of these parameters need to be evaluated for a given vertical load F,. The following
approach accounts for the degressive influence of the vertical tire load:

F;

FZ 2
F F) = 3.46
m,max( z) ay Fz,nom + a2(Fz,nom) s ( )
F F
Frinf(F.) = b + b2(F Z )2 (3.47)
z,nom z,nom
F F
dFu(F,) = ¢j—— + e Z )2, (3.48)
z,nom z,nom
The coefficients read:
ay =2 Fpgiom — 0.5 Forzmom. (3.49)
as = 0.5 Falzmem — Fiamom (3.50)

The coefficients by,bs and c¢q,co are evaluated in the same way, but instead of using

Ff iﬁ’}l‘;’”,Fi%g?m the saturation value F, ;,; and the initial tire stiffness dF,o at the

nominal load F, ,om and twice the nominal load 2F, 0., have to be used [22].

Hub-Pitching model

For driveability investigations the vertical vehicle dynamics also have to be considered.
This is done by a hub-pitching model which is shown in Figure 3.13.
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Figure 3.13: Hub-Pitch Model, adapted from [25]

Four rigid bodies are included in the model: The chassis m,, the seat ms; and the
undamped axle masses at front and rear my,.. The horizontal distance between the
chassis center of gravity and the axles is given by [y, whereas the horizontal distance
between the COG and the seat is denoted by .

The equation of motion including all undamped masses in vertical direction at the front
yields:
my-Zp =2 F;priee —mypg — 2 (Fo g+ Fa). (3.51)

The linear momentum at the rear including all undamped masses in vertical direction
can be written as follows:

My - Zp = 2+ Fz,r,Tz‘re —myg —2- (Fs,r + Fd,r) . (3-52)

A multiplication factor of two is necessary, as the tire force F f/. 7. and the spring-
/damper forces Fy ;/, and Fy 5/, are only calculated for one side of the axle. The variables
my and m, stand for the undamped masses at the front and rear axle, respectively. The
vertical acceleration is denoted by Z;/, and the vertical tire force for one tire by F, 1/, pire-

For the chassis two degrees of freedom are modelled: the translation z. in vertical di-
rection and the rotation ¢, along the y-axis. The chassis equation of motion (compare
Figure 3.14) can be written as:

Me* Ze =2+ (Fs,f + Fd,f) +2. (Fs,r + FdJ«) — Meg. (3.53)
Whereas the rotational DOF can be expressed in the following form:
Oc - Pe=2"1- (Fsﬂ« + de,») 215 (FSJ + Fd7f) — (Tf +71;), (3.54)

The variable Iy stands for the horizontal distance between the COG and the front axle,
whereas [, is used for the rear axle. The propulsion or brake torques are considered by
Ty and T.
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Figure 3.14: Free body diagram of the hub-pitch model, adapted from [25]

The tire force F, ;). can be expressed as

1 0 d
sz/nTire = 5 : Fz,f/r,Tire - Fz,f/r,Tire' (355)

For better handling, the tire force is split into two parts: a static %FZO f/rTire and a
dynamic de f/rTire load proportion. The dynamic part (under assumption of constant
vertical tire stiffness ¢/, 7ire) is calculated as follows:

Fj,f/'r,Tire = Cf/r Tire " (Zf/r - zRoad)- (356)

As the influence of the tire damping force is negligible, it is not considered here [49]. The
variable F} /. denotes the force of one suspension

1
Fogpe= G = 2pme) Coppr+ 5 (B2 pp = Mpng)- (3.57)
%,_/
Azf/r
The damper force Fy ¢/, is determined by
Fagpm= Gepe = Zppre) dipr -l g (3.58)
ﬁf_/

Azp)p

For ¢. << 1 the chassis movement in z-direction at the position of the spring/damper
fixing point 2/, . and the corresponding vertical velocities 2/, . can be written as

Zf/rc = e T lf/r " Pe (359)
7;f/r,c = Zc— lf/r " Qe (360)

The spring damper conversion ig ¢/, is the ratio of the absolute speed in direction of
the spring-/damper axis and the absolute value of the vertical velocity of the wheel [25].
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Figure 3.15: Spring-Damper characteristics. In (a) the modelled spring characteristics
are depicted, in (b) the corresponding damper behavior is shown.

For this thesis, ig ¢/, is assumed to be 1. Therefore, when comparing the damper forces
between the real vehicle Fj ., and the simulation model Fy gy, the following relation
applies:

Fd,sim = Fd,real : Z‘d,f/'r' (361)

[48] suggests the spring characteristics to be modelled progressive and nonlinear:

C/r0 Zam < Dzpsr < Zap,
Azf/r—zam 2
Cs7f/7~ — cf/r,O ' 1 + |: Zdm —Zam :| AZf/T < ZCLTI’M (362)
Azfp—2ap ]2
cf/ryo : 1 + [—;;;_ijp} > AZf/T > Zap-

If Azy)p < zam or Azg,. > z4p the constant spring rate cy ;.o is extended by a quadratic
function, leading to a progressive characteristic when moving past zgm oOr zgp. At Zgm
and zg, the spring constant cg;/. is equal to 2 - cy/. 9. Since symmetric behavior is
assumed zqm = —2qp and 2gm = —Zdp-

For the damper coefficient d¢/, a degressive model was chosen (compare [48]):

df/ryo .
dpjp =4 RS g 20 (3.63)
AL /Y S Azs <0 ’
1—p, Dig), flr =

The degression at compression (AZ;/, > 0) and at rebound (Azy,, < 0) is given by p. and
p,. Besides the spring characteristics also the damper characteristics are implemented
as symmetric (p. = p;). At low damper velocities (AZy,, — 0) the damper coefficient
is defined by dy/,.o. The spring-damper model is shown in Figure 3.15.
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3.1.10 Driver

The driver is modelled as a combination of a PI controller and an inverse feedforward
vehicle model. The PI controller relies on the difference between the calculated vehicle
speed v, and the predefined driving cycle speed v.. The controller is split into two
branches in order to allow an individual tuning of the controller’s parameters for the
cases v; > v, and v, < v.. Depending on the values of v, and wv., the controller then
determines the correspondent driver pedal position. Even though the parameters are
adapted to the real world driving cycle, the PI controller alone can not sense speed
deviations between v, and v. with the requested rapidity. Therefore, a feedforward
model is included in the calculation of the driver’s pedal position. This model takes the
vehicle speed v, and acceleration a as inputs and determines the force acting on the
tires under consideration of the rolling resistance force F., the air drag Fy, the climbing
resistance Fy, the acceleration resistance [y, the inertias of the drivetrain components
(©1, Opnme) and the gear ratios of the final drive ipp and summation gear isgr. The
resulting driver pedal position is then forwarded to a rate limiter to account for the finite
alteration time of the real vehicle’s pedals due to human motion. In Section 4.1 it can
be seen that the model reflects the real vehicle’s behavior with good accuracy.
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3.2 Development of an Operation Strategy

3.2.1 Quasistatic Pedal Map

The HEV investigated in this thesis uses a rulebased OS which was determined by load
variation manoeuvres. A static pedal map was generated by driving with constant pedal
position. In order to allow a detection of hysteresis between increasing and decreasing
pedal positions, the static map was extended to a quasistatic one. Whereas the increasing
pedal map is used for positive pedal position rates, the decreasing pedal map is used
for negative pedal rates. As sharp borders between the operation modes would cause
frequent mode shifts, a hysteresis is included which separates mode shifts with decreasing
pedal position from the shifts with increasing pedal position. Figure 3.16 shows the
quasistatic pedal map for high SOC and Figure 3.17 for low SOC. The main operation
mode is series mode which is denoted by the yellow area. The dark blue and light
blue zones stand for electric drive and recuperation mode, respectively. The brown area
indicates combined operation, meaning that the ICE and EM contribute to the traction
force which is achieved by engaging the clutch.
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Figure 3.16: Implemented operation strategy with increasing (left) and decreasing (right)
pedal position rates at high SOC level [50]

3.2.2 Braking and Recuperation Strategy

Besides the operation modes, the OS also controls the braking behavior. As HEVs have
the possiblity of recuperating energy during vehicle deceleration phases, it needs to be
determined to which extent the traction motor supports the friction brakes. In order to
obtain a map of the recuperation torque, several braking manoeuvres were conducted.
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Figure 3.17: Implemented operation strategy with increasing (left) and decreasing (right)
pedal positions at low SOC level [50]

The results are shown in Figure 3.18. The braking torque (which is equal to the effective
torque at the drive axle) is a function of the engine speed and therefore of the vehicle
speed. For speeds lower than 50 km/h the recuperation torque is constant, whereas it is
then limited by the maximum recuperation torque. The total requested braking torque
is denoted by the cyan lines and the recuperation torque of the EMG is shown in blue.
The energy dissipated by the friction brakes can be calculated by subtracting the recu-
peration torque from the total requested braking torque.

3.2.3 Component Controller Units (CCUs)

The maps described in Sections 3.2.1 and 3.2.2 do not consider the dynamic behavior of
the drivetrain components and therefore do not depict the transient real vehicle behavior.
The expedient approach therefore is to extend the quasistatic maps with a dynamic OS
relying on the behavior of the drivetrain components and their limits by implementing
component controller units. The CCUs ensure that every part of the drivetrain operates
within its thermal, mechanical and electrical limits. As the battery of a HEV is the most
critical component in terms of longevity, the OS needs to ensure that its limits are not
exceeded under any circumstances.

Mechanical limits are set by implementing torque maps as a function of the rotational
speed and pedal position as described in Section 3.1. From the requested mechanical
power the needed electrical power can be calculated for each timestep. In Table 3.1
the power limitations for the battery and the EM are described. It can be seen that the
maximum power request cannot be covered solely by the battery which makes it necessary
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Figure 3.18: Results of the braking strategy evaluation [50]

to have the ICE provide additional power. As the ICE cannot immediately deliver power
due to its finite startup time, an engine starting routine has to be implemented to ensure
that the maximum power is available without any delay or battery overstrain. This is
achieved by using the Simulink stateflow environment. A schematic representation of
the states and transition conditions (TC) is given in Figure 3.19. In order to enable
a transition from one state to the other, the corresponding transition condition has to
be triggered. The TCs are given by the current and power constraints of the battery
(which also affect the EM power Pgps and current Igys) and the ICE idle speed wjgje.
The notation && indicates that if the condition to the left of the operand is false, the
one to the right does not have to be evaluated, which reduces computation time. The
use of || also decreases the computation effort by evaluating the condition on the right
side of the operand only if the condition on the left is false. In Equation (3.64) the
implementation of a kickdown switch based on the pedal position pgys is shown. The
threshold values used in the transition conditions account for the ICE startup time and
the battery’s limitations and were determined empirically by investigation of different
driving manoeuvres. Whereas the startup of the ICE is triggered, when the EM current
and power exceed threshold values related to the discharging constraints of the battery
(compare Equation (3.64)), it needs to be ensured that the ICE is not switched off due
to dynamic fluctuations caused by the drivetrain controllers. Consequently, a hysteresis
for the ICE state is implemented which is entered when the discharging constraints are
below a certain threshold (Equation (3.66)) and can only be left, when the discharging
of the battery increases (Equation (3.68)), otherwise the ICE is switched off if after 1
second the transition conditions specified in Equation (3.69) are true. Equation (3.67) is
triggered, if the ICE would cause an overcharging of the battery. As overcharging harms
the longevity of the battery, the transition directly leads to an ICE off state without
consideration of any hysteresis.
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Table 3.1: Component Restrictions

Component Restriction Numeric Value
Maximum battery charging power Py, cng -50kW
Maximum battery discharging power P, dchg 80kW
Maximum battery charging current Iy, chg -148A
Maximum battery discharging current Ij;, deng 300A
SOCin 0.3
SOChax 0.95
Maximum EM power (traction) 124kW

unconstrained ICE off

Figure 3.19: ICE startup routine

(PEM > Plz'm,dchg — 30000 && PBat > f)lz’m,chg + 5000 && IBat > Ilim,chg + 10)”
TCI = (IEM > Ilim,dchg — 50 && PBat > Plz'm,chg -+ 5000 && IBat > Ilz’m,chg + 10)”
(pEM > Pkickdown && PBat > f)lim,chg + 5000 && IBat > Ilim7chg + 10)

(3.64)
TCy = wicE > Widle (3.65)
TC3 = Pey < Pimdeng — 30000 && Tpnr < Iiim,dehg — 50 (3.66)
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TC4 = Ppat < Plim,chg || Ipat < Ilim7chg (367)

TCs = Pgpy > Plz‘m,dchg — 20000 && Igy > Ilz‘m,dchg —40 (3.68)

((PEM < Plim,dehg — 30000 && Ign < Ijim,dehg — 50
TCs = § && pariver < 0) && after(1,sec))|] (3.69)
(PBat < })lz’m,chg + 5000)”([3[11& < Ilim,chg + 10)

To start the ICE, conventional drivetrain layouts use an alternator. HEVs use the EMG
coupled to the ICE to perform this task. To achieve this, the EMG works as a motor
providing power for the ICE startup. Figure 3.20 depicts the EMG torque for the startup
procedure. As soon as the ICE reaches wyq,, the fuel injection starts and the ICE produces
torque as shown in Figure 3.21. The EMG then works in generator mode and forwards
the energy to the battery.
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Figure 3.20: EG torque during ICE startup

In the simulation, the torque at w;q,, is assumed to be equal to the torque at idle speed.
A comparison of the starting behavior of the real vehicle and the simulation model can
be found in Section 4.1. In [34] two different types of starting the ICE are explained: For
the slipping start, the ignition is only activated when the ICE rotational speed is equal
to the angular speed of the connected gearbox shaft. A tear start is performed when the
ignition is triggered as soon as the crankshaft rotates. The start procedure used in the
investigated model is not clearly relatable to one of the two types, but similar to the tear
start procedure. When turning the ICE off, the EMG recuperates the energy provided
by the ICE until it reaches standstill and charges the battery. For high and low SOC
states close to the SOC boundaries of SOC,,;, and SOC},qz, the behavior of the ICE
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Figure 3.21: ICE torque

needs to be modified. If the battery cannot provide any more propulsion power, the ICE
needs to be permanently switched on whereas it cannot be operating if the SOC exceeds
the maximum allowed value. These dependencies are modelled with a similar stateflow
to the one depicted in Figure 3.19. Thermal constraints are imposed by a temperature
dependent battery model which calculates the battery temperature under consideration
of the thermal capacity of the body and the thermal resistance of the wall. This results
in a temperature dependent inner resistance R; (compare Equation (3.15)) influencing
the battery power output.
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3.3 Driveability Controller Development

As mentioned at the beginning, current research is mainly focusing on energy manage-
ment topics of HEVs. Yet, driveability is not less important as it is a key decisive factor
for the marketability of a vehicle. This is because the final decision to buy a car is
mostly made after a test drive. Therefore, HEVs need not only focus on reducing emis-
sions but also on improved pedal response and oscillations of the engine speed as these
are important driveability criteria (compare Section 2.3). This is especially important
for series and parallel-series hybrid architectures as they allow the engine speed to be
decoupled from the vehicle speed, making it possible to operate the ICE at maximum
fuel efficiency. This property can be regarded as a continuously variable transmission
and is called electro-mechanical CVT. While the eCVT offers great fuel saving poten-
tial it also needs to be considered that it decouples the driver input (accelerator pedal)
from the engine speed, resulting in an undesirable feeling of being disconnected with the
powertrain. In order to cope with the possible decoupled engine speed a relationship
between vehicle speed and engine speed is introduced, compare Figure 3.22. Such a
relation can be expressed in a tabular form. A piecewise linear characteristic was chosen.
This is due to the fact that a linear characteristic corresponds with the human assump-
tion of a linear relation between control variable and resulting effect [10]. Figure 3.22
shows that the implemented relation is also a function of the driving style. The methods
used for driving style classification will therefore be discussed in the following whereas
Figure 3.22 will be further discussed under Implemented engine speed relation and pedal
characteristic.

RPM relation
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Figure 3.22: Relation between vehicle speed and engine speed
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3.3.1 Driving Style Classification

Another important aspect of driveability is the possibility of giving the vehicle a specific
character, while simultaneously ensuring that driving comfort, driving safety and driving
pleasure are held at a very high level. This methodology leads to a completely new
human-vehicle interaction as the vehicle owner is able to form a mass produced vehicle
according to his demands. Thus, the loss of identification between owner and product
can be avoided [35]. A driving style classifier does not only allow to individually refine
the vehicle character, it is also an important input for the parametrization of advanced
driver assistance systems. It allows the accelerations chosen by a cruise control system to
be adapted to the desired accelerations of the driver [13]. Furthermore, the driving style
also plays an important role for the energy management, since greater power demands
require an adaptation of the operating strategy in order to maintain optimal SOC level.
Due to the aforementioned synergies between adaptive and predictive tasks, it comes
useful to take a glance at model predictive control solutions when it comes to the choice
of the adaptation strategy. In the following fuzzy logic systems and artificial neural
networks will be presented.

Fuzzy Logic

Fuzzy logic allows the representation of complex input-output relations as a synthesis of
multiple simple input-output relations, which are called fuzzy rules. The boundaries of
these rules are not sharp, but “fuzzy”. Whereas boolean logic only allows to determine
if a statement is true or false (e.g. driver=sporty=true, driver=normal=false), fuzzy
logic is more refined and allows classifications of the type driver=60 % sporty and 40 %
normal. According to [5] the following stages are executed in order to process an output
of a fuzzy system for a given input:

e Fuzzification: Map any input to a degree of membership in one or more membership
functions.

e Fuzzy inference: Fuzzy inference is the calculation of the fuzzy output.
e Defuzzification: Defuzzification converts the fuzzy output to a crisp output.
The aforementioned three stages differ for each type of fuzzy model (compare [57]):

e Mamdani models link a fuzzy variable to a fuzzy number, e.g. yp=big, yr=small,
which allows rather intuitive description of qualitative knowledge.

e TSK Models (Tagaki, Sugeno, Kang) describe a fuzzy variable as linear combina-
tion of weighted input variables: yr = ag + > a;x;, whereas a; denotes a constant
and z; the input variable. These systems may lack in the transparency of rules,
but offer increased system performance.

Artificial Neural Networks

Artificial neural networks can be considered as a biological approach, since they are
simple abstractions of biological neurons. A biological neuron consists of a cell body,
a dendrite, and an axon (Figure 3.23). The connections between the axons of one cell
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Dendrites

Figure 3.23: Biological neuron [20]

and the dendrite of another cell are called synapses. Electric pulses coming from other
neurons are translated into chemical information at each synapse and transferred to
the cell body. An electric pulse is generated if the sum of the inputs exceeds a certain
threshold [57], [20].

This biological model can be represented by a mathematical approach which is shown in
Figure 3.24. The cell body is represented by the summation and the transfer function
ft, the output o is equal to the signal on the axon and n, can be interpreted as the
strength of the synapse. The neuron output o is calculated as follows: at first the
input 4, is multiplied with the weight n,, which results in n,, - i,. At the sum n,, - ¢,
and the bias b are connected and forwarded to the transfer function f;, which produces
the output 0. Whereas the transfer function is specified a-priori by the designer of the
ANN, the parameters n,, and b are adjustable and can be modified by training the
neural network. Training can also be referred to as learning. Depending on the applied
learning rule, supervised learning, unsupervised learning and reinforcement learning can
be distinguished [20].

In Table 3.2 fuzzy logic systems and neural networks are compared regarding online
adaptation, accuracy, repeatability, computation time and the number of input variables.
Since neural networks require a lot of training data to ensure proper functionality a fuzzy
system will be chosen to perform the classification tasks. The property of fixed rules
comes useful in classification, but makes an adaption to modified inputs difficult. In
terms of handling multiple input variables, fuzzy logic has drawbacks in comparison to
ANNS.
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Figure 3.24: Single input neuron [20]

Table 3.2: Comparision fuzzy logic and artificial neuronal networks

| Fuzzy Logic | Neuronal Networks
Online Adaptation | Rigid rules | Continuously updateable
Computation Time | Real time | Longer processing times
Good, but sensitive to Good representation of
Accuracy :
data complex behaviours
If no learning occurs:
Repeatability Yes, fixed rules same output for same
input
. . . <5, as training becomes
N f 1 <3b f lexit, - .
umber of input variables <3 because of complexity more difficult
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3.3.2 Implementation of the Classifier

Before designing the actual classifier a few general conditions need to be defined:

e Since the Simulink model delivers noisy data, a moving average filter with a window
length of two seconds needs to be applied to the signals used for classification

e Driving style does not change rapidly, therefore it will be evaluated every 60 sec-
onds, for the first 60 seconds a default value will be used

e For classification a time window of 180 seconds of data is used, since recent data
should have higher impact on the driving style, the data used for classification
needs to be weighted according to the weight function from [61] depicted in Figure
3.25.

Weight Function

weighting factor

0 80 180
age in s

Figure 3.25: Weight function

The classification of the driving behavior can be done in two ways: either by evaluating
acceleration and jerk signals ([16], [40]) or via pedal signals [61]. The approach used
here was to take acceleration signals as an outline for the classifier design and step by
step refining the algorithm by incorporating other signals.

In the following the basic classifier, which considers only the absolute value of the accel-
eration signals will be presented: After filtering and weighting the absolute value of the
acceleration signals with the methods described on top of this page, the maximum value
of the acceleration is forwarded to a sugeno type fuzzy logic system. Next, a degree of
membership is calculated in compliance with the a-priori defined membership functions
shown in Figure 3.26.
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Figure 3.26: Membership functions acceleration

Then, the fuzzy output is calculated using fuzzy rules and later defuzzified. The rules
used here are adapted from [5]:

1. If acceleration is low, then driving style is low
2. If acceleration is medium, then driving style is medium
3. If acceleration is high, then driving style is high

All rules are weighted with one, since no acceleration region (low, medium, high) should
be favoured. The output of the fuzzy logic system is the driving style which can be
interpreted as follows:

e Eco: driving style=0
e Normal: driving style=0.5
e Sporty: driving style=1

As the fuzzy system produces a continuous output between 0 and 1, linear interpolation
is performed between the curves depicted in Figure 3.22. This is because deposing only
3 driving styles in the OS would result in abrupt changes in the vehicle behavior when
switching between sporty and normal drivers for example. Due to the linear interpolation
the vehicle behavior is adapted smoothly.

For a better understanding of the illustrated processes, the output of the fuzzy system
for a given input will be depicted.
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Figure 3.27: Input-output relation for different accelerations

Whereas in Figures 3.27, 3.29(top) and 3.30 only one membership function is triggered,
Figures 3.28(bottom) and 3.29(bottom) show cases where the so-called fuzziness comes
to play: the border between two membership functions is not sharp, but fuzzy. Fig-
ures 3.28(bottom) and 3.29(bottom) also show that different rule weights could cause a
favouritism of a specific membership function, which is unwanted in this case.
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Figure 3.29: Input-output relation for different accelerations
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Figure 3.31: Results of the acceleration based classification

Figure 3.31 shows the results obtained by the acceleration based classification. Abrupt
changes in driving style can be witnessed which do not correspond with realistic driving
behavior. Therefore, a second variable for classification was added, namely the excess of
the speed limit defined as follows:

Vexcess = U — Ulimit (370)

This equation is only evaluated if v > 0.3m/s. For this variable membership functions
were defined by using empirical values, which can be learned from Figure 3.32.
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Figure 3.32: Membership functions vegcess in m/s
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For the combined classification the following distinction was chosen:

e If the maximum of the filtered and weighted acceleration values is equal to 1.5 m /s
or exceeds this barrier, an acceleration based classification will be performed

e Otherwise a vezcess based classification will be performed

The threshold value of 1.5m/s? was chosen as for driving scenarios which do not include
start or stop manoeuvres the acceleration stays about or beyond this level for all driving
styles [5]. It needs to be added that no signals are lost when switching between these two
types, assuring that for every classification task the full time window of acceleration and
Vezcess Telated data is available. The consideration of two input variables for classification
leads to an increase in accuracy, as the abrupt changes in driving style are reduced. But
it needs to be stated that the excess of the speed limit as an absolute deviation does not
consider that a speed deviation of 10 m/s in a rural area is much more critical than on the
motorway for example. Therefore, this input is be modified according to Equation (3.71),
in order to obtain the relative deviation as an input.
Av v = Vimit

Vexcess,rel = = (371)
UVlimit UVlimit

For further improvements it is also necessary to make a distinction between acceleration
and deceleration phases. Therefore, the algebraic sign is included in the input variable
acceleration and the membership functions for low, medium and high acceleration are
extended to negative values for the consideration of deceleration phases. The refined
membership function for the vehicle acceleration is depicted in Figure 3.33.
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Figure 3.33: Refined membership functions acceleration

It can be seen, that the acceleration value reached in deceleration phases is greater than
the value for acceleration. This is a result of the vehicle’s braking power being much
greater than the EM’s traction power. The acceleration boundaries were calculated
by transforming the maximum traction and braking torque into a force acting on the
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wheels and then calculating the corresponding acceleration by applying the equation of
motion. Figure 3.34 shows the membership function for the input variable vegcess,rei- The
threshold values were determined empirically under consideration of the most common
speed limits (rural area, country road and highway).
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Figure 3.34: Membership functions vegcess,rei

The results of the combined classification can be seen in Figure 3.35. By using two input
variables, the fluctuations of the basic classification depicted in Figure 3.31 could be
reduced.
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Figure 3.35: Results refined classification
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Further improvements could be achieved by incorporating pedal signals such as the brake
pedal actuating frequency into the classification process. Also it could be useful imple-
ment other acceleration related inputs such as the lateral acceleration a, for example.
However, in this thesis, driving style classification is only performed by using the accel-
eration a and the relative velocity deviation vegcess,rel-

Implemented engine speed relation and pedal characteristics

T in NmA
Full load curve

bsfc in g/kWh

high

low

w in rpm
Figure 3.36: ECVT target line

In order to retain good fuel economy, the ICE characteristic is still bound to the eCVT
target line which is depicted in Figure 3.36. It can be seen, that along the eCVT target
line the ICE’s fuel consumption is minimal. The actual reconnection of the driver with
the drivetrain is performed via intelligent generator control. A driver dependent engine
speed relation (see Figure 3.22) delivers an engine target speed based on the current
velocity. The actual engine speed and the target engine speed are subtracted and then
forwarded to a proportional generator controller. The output of the controller is the EG
pedal position pgg which is proportional to the controller’s amplification factor K, and
the speed difference Aw;og:

PEG — Kp . AOJICE (372)

This ensures, that the EG delivers power only if the actual speed is beyond the target
speed. This allows the ICE to operate at the best efficiency points while having the
engine speed be a function of the vehicle speed.
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Comparing Figures 3.36 and 3.22 the following statements can be made for the different
driving styles:

e ECO:
— The engine operates from 1900 to 3000 rpm at speeds of 10 to 20 m/s assur-

ing best fuel economy in rural areas while reconnecting the driver with the
drivetrain

— For the motorway (35 m/s) the engine is set to operate at 5000 rpm, delivering
a high amount of power and torque without corrupting fuel efficiency

¢ NORMAL:

— Straight linear rpm relation throughout the whole speed range

— For speeds under 20m/s the BSFC does not exceed 233 g/kWh

— Excellent power delivery for high speeds (around 100 kW @6000 rpm)
e SPORTY:

— Steep inclination of the engine rpm for fast power delivery without exceeding
233 g/kWh at 10m/s

— Having reached 4000 rpm the inclination of the engine torque in the eCVT
target line can be used for fast acceleration

— Excellent power delivery for high speeds (around 100 kW @6000 rpm)

For further improvement of the vehicle response, a driver dependent accelerator pedal
characteristic was implemented. This approach can be compared to the “pedalbox” strat-
egy used to define the character of a vehicle [9]. While the pedal characteristic is left
unchanged for eco drivers, sporty drivers benefit from an amplification factor of 1.2 to
1.5. The rise at 3860 rpm targets on compensating the decreasing EM torque at this
speed (see Figures 3.37 and 3.38), whereas the amplification factors were determined em-
pirically by investigating specific driving manoeuvres. The EM characteristic depicted
in Figure 3.38 is a piecewise linear approximation of the real EM characteristic.
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Figure 3.37: Pedal response adpation
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Besides performing a pedal response adaption for pgys, driveability can also be enhanced
by including a feedforward control module in the calculation of pgps. This allows to
prevent unexpected hesitations in acceleration as depicted in Figure 3.39. It can be seen
that the initial layout (blue line) shows a bend in the pgpjs progression which occurs
when triggering one of the battery constraints. The feedforward layout (green line) may
result in a less steep pgy progression, however no power drop occurs which results in a
predictable acceleration behavior. The controller uses the requested torque 7., and the
EM angular speed wgps to calculate the electrical power needed at the EM:

Treq-wrm (3.73)

Ppyel =
NeM

By dividing Pgpse; and Upggt, the required EM current I, can be calculated:

Pgel
Treqg = 2 3.74
q UBat ( )

The available power at the EG Pgg  is calculated by multiplying the battery voltage
Upat and the EG current Igq:

Prge = Igc - Upat (3.75)

The resuling battery power and current are then calculated according to Equations (3.76)
and (3.77).

Ppat = PeM el + PEG el (3.76)

IBat = IEG + Ireq (377)

If the battery power or current do not trigger any of the battery’s restrictions, no alterna-
tion of pgys is necessary. If a restriction is triggered, the allowed torque T, is calculated
based on the triggered restriction. In the following Equation this procedure will be ex-
plained for discharging constraints. Charging constraints are handled similarly. Due to
the sign change, the minimum in Equation (3.78) needs to be replaced by maximum.

Pc = min(PBata ]Dlim,dchg)

[c = min([Baty [lim,dchg)

P,
T =—-2°% .
" w1 M (3.78)
UBat : Ic
Ty = B4t < .
2 (wEM+1) Nem

Tc = min(Tl, TQ)
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Figure 3.39: Feedforward pgps control

As wgyy is found in the denominator in Equation (3.78), 1 is added to its value in order
to avoid a division by zero at standstill. The allowed torque T is then compared to the

maximum EM torque TEn mae in order to obtain pgays.
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3.4 Predictive Charging Strategy (PCS) Development

3.4.1 Optimization - Optimal Control

Optimization is a way of expanding the frontiers of technical feasibility and has therefore
penetrated many branches of natural, engineering and economic science. The number
as well as the magnitude of problems solved by optimization is steadily increasing [47].

The design of a predictive charging strategy counts among the domain of optimal control,
which will be described in the following.

For the optimal control problem, [58] suggests a problem formulation similar to Equa-
tion (3.79). The state ( € Z and the control variable y € X are optimized by minimizing
the functional f(x, () under consideration of the constraint ¢(x, ¢)=0:

min f(x, () subject to c¢(x,¢) =0, d(x) € Cy,e(C) € Cy
with the transformations

fiAXZ R c:AXZ-0,d:X—=1,e:Z-7P,

the spaces O, 11, P, X, Z and the closed sets C, C C,C,, C P

(3.79)

Where d(x) € C, denotes, that the state X is bounded. e(¢) € C,, expresses the bounded
control variable. The Equation ¢(x, ()=0 denotes the answer of the system in the state
X € X to the control variable ( € Z. Discretization has to be applied in order to
obtain a finite dimensional problem [58]. The dynamic programming approach is one
possible solution and will be described Section 3.4.2. For the predictive charging strategy
development, the general optimal control problem can be limited to an optimal control
problem with specified final state and fixed end time, which will be presented in the
following.

Optimal Control with specified (final) state and fixed end time

Having introduced the optimal control problem using general variables and statements
in the previous section, the problem formulation for the charging strategy application
will be shown.

Objective function: In this case, the objective function is defined by the minimal fuel
consumption or maximum fuel efficiency. The two formulations do not compromise, as
minf(x) = mazx— f(z) holds [47]. Besides the assessment of the fuel saving potential, the
objective function also denotes the COs saving potential. If the assumption of carbon-
neutral electricy generation holds, the objective function is a direct measure, otherwise
weighting factors have to be introduced [27].

Control variable: The control variable allows to interfer with the system’s behavior.
In this thesis, the ICE state (on/off) was chosen, resulting in a boolean control variable
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(see Equation (3.80)). The grid resolution N, can therefore reduced to 2, which results
in faster computation, see Section 3.4.3. If (=0 holds, the propulsion power has to be
provided solely by the battery, otherwise the ICE generates power which is transferred
to the battery by the EMG and then used for propulsion.

0  ICE off
(= © (3.80)
1 ICE on

State variable: The state variable x denotes the dynamic state of the system defined
by ¢(x, ()=0 [58]. There is no restriction to one state variable, but the number of state
variables increases computation time exponentially [56]. Due to this reason, the battery’s
state of charge will be used as the only state variable, in compliance with [19], [54] and
[56].

In the following, the restrictions of the optimal control problem according to [55] are
explained.

Fixed end time: The end time is defined by the specified driving cycle and therefore
known a-priori. If the cycle’s velocity profile cannot be reproduced by the vehicle model,
the problem formulation is declared as infeasible and the simulation is stopped.

Specification of the (final) state: As the SOC needs to comply with the battery’s
restrictions SOCp;n and SOCy,,, it is limited for every time step. Conclusively, the
final state is also limited. In particular, for the predictive charging strategy the final

SOC is equal to SOC,,;p.

Disturbances: In order to apply the dynamic programming approach, all disturbances
have to be known a-priori [19]. This requires the control variable to be perfectly realized,
which is assumed in this case.

With this specifications, the optimal control problem can be reformulated as follows (see
[55]):

min J(((t)) subject to
min J(((1)) subj

X(t) = F(x(),¢(1),t)
x(0) = xo

x(tf) € [Xfmin Xfmaz)
x(t) € [SOCin SOC 4]
((t)elo1]

(3.81)
ty

with J(0(8) = Glx(ty) + [ HOx(®): (), e
0
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®

. N\
*(t) X*(t)

X

X0 @

G(x(t).t)=0

Figure 3.40: Bellmann’s optimality principle: (1) optimal trajectory (2) remaining trajec-
tory (3) non existing trajectory reaching the final state with reduced costs;
an existence of (3) would corrupt the optimality of (1) [43]

The cost function J(((¢)) consists of the infinitesimal cost functional H(x(t),((t),t),
which describes the fuel consumption for every time step, and the weighting term of the
final state G(x(ty). This allows an assessment of the final state, as G(x(ty) penalizes
the deviation from the specified final state x(t5) = SOCpin. The dynamic system and
its physical relations are described by x. The functional F(x(t),((t),t) describes the
alternation of the SOC x for a specified timestamp ¢ under consideration of the control
variable . The initial SOC is denoted by o and the feasible area of the SOC during
the driving cycle is restricted by [SOCh,in SOCpaz]. Theoretically, the SOC at the final
state x(ty) underlies the same restrictions, but as mentioned before x(t5) = SOCpnin
applies. In this formulation, {(¢) and x(t) are continuous variables which are discretized
when applying the dynamic programming approach described in the following.

3.4.2 Dynamic Programming (DP)

Dynamic programming was developed in the 1950’s by Richard Bellmann [8] and has
proven to be a highly capable tool for optimal control problems. The fundamental idea
of the dynamic programming approach is expressed in Bellmann’s optimality principle:
An optimal policy has the property that whatever the initial state and initial decision
are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision [8]. This means that the solution method is to divide
the specified complex problem into smaller subproblems, see Figure 3.40.

Solution method

To solve the problem specified in Equation (3.81) using the DP approach, the continuous
variables ¢ and x need to be discretized in the form (; € Z; and i € &X%. The index k
denotes the corresponding time step. The number of elements contained in Z; and X}
is determined by the grid resolutions N and Ny. The solution method described in the
follwing is based on [55].
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The discretized model is defined as follows:

X1 = Fe(xw: G) k=0...N—1 (3.82)

This can be reformulated as:

Xk+1 =Xk ¥ Ax =X + fe(xk, G) k=0...N—-1 (3.83)

The cost Jy for the final state % is defined according to Equation (3.84). The variable
gn denotes an assessment of the final state, whereas @ imposes a penalty on infeasible
regions of the final state in order to exclude them from the optimal solution. The
discretized state variable for a specific time step k and state node 7 is given by x&4.

In(X') = gn(X') + D (x") (3.84)

The cost-to-go function .J; for the remaining time steps k = N — 1...0 is defined as:

Ji(x) = C?Z”ggk {he(X", ) + Pr (X)) + T (Fr(X', ) } (3.85)

The variable hy performs an assessment of the state ¢ and ®j penalizes infeasible com-
binations of x? and (. Optimal control is performed by minimizing the cost function
Ji. Fk(xi,Ck) represents a continuous variable, whereas Ji;1 is only evaluated in the
discretized state space. To have F(x?, (x) match one of the possible states X}, linear
interpolation is performed [55]. Applying the nearest neighbour method would also be
possible, but requires a fine grid [19] and is therefore discarded.

HEV time discrete optimal control

For the time discrete optimal control of a hybrid electric vehicle Equation (3.83) can be
formulated as (compare [55])

Xk+1 = Xk + [u(Xks Cor Vksar) E=0...N —1, (3.86)

where the variable v, denotes the vehicle speed and a; the vehicle acceleration, respec-
tively. Since the velocity profile is assumed to be known in advance, Equation (3.86)
becomes

Xi+1 = Xk + [e(Xk: Cen k) kE=0...N =1, (3.87)

where k denotes the actual time step which allows an assignment of the variables v, and
ag. The time discrete optimal control problem with fixed end time for the determination
of the minimal fuel consumption my reads
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min Amg(C, k)

CLEZy

in order that
Xkt1 = Xk + fr(Xe> Ces k)
rg = SOC,
XN € [SOChin SOCpaz)
Xk € [SOCpin SOC4z]
Ck € [O 1]

73
N=-L 41
At

(3.88)

3.4.3 Computation Time Reduction

Due to the complexity of the problem, efficient computation is inevitable for real time
capability. The taken measures to reduce the calculative burden are described in the
following.

Precalculations

Variables that are not a function of the control variable ( are evaluated before the
optimization algorithm is started. This reduces computation time within the vehicle
model. As the evaluation of the vehicle model is the main contributor in terms of
simulation effort, this helps to significantly diminish the total simulation time [55].

As the velocity profile of the driving cycle is known a priori, the angular speeds and the
resulting overall demanded torque can be calculated for every time step independently
from the control variable (. When calling the DP algorithm, only the effects of the control
variable on the battery have to be considered, which consequently reduces computation
time.

Dimension reduction of lookup tables

By using the precalculated values for the angular speed and torque, the two dimensional
lookup tables of the ICE and EM can be reduced by one dimension. This procedure
decreases simulation time within the vehicle model and is depicted in Figure 3.41. For
details compare [27].

Grid Resolution

The continuous optimal control problem is solved by approximating it with a discrete
problem, which is then forwarded to the dynamic programming algorithm. Discretization
causes the obtained solution to differ from the continuous problem’s optimum. As the
continuous problem cannot be solved, its solution is estimated by increasing the grid
size until no significant changes are notable in the resulting fuel consumption. As the
control variable ¢ is of boolean type in this application case (see Equation (3.80)), the
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- Ipm—

bsfc

constant

. Torque
Figure 3.41: Dimension reduction of 2D lookup tables to 1D lookup tables [27]

control variable’s grid resolution N:=2. The resolution for the state variable is set to
N, =64, as similar studies have shown, that a further increase of N, does only marginally
increase accuracy (<1% deviation between N, =64 and N,=4096 [27]). The necessity
of the optimal choice of N, is attributable to the fact that simulation time increases
linearly with the grid resolution [27].

3.4.4 Quasistatic Vehicle Model

In order to perform optimization tasks, the optimization model (in this case the vehicle
model) needs to be specified. Whereas for driveability investigations a dynamic model
was implemented, the investigation of the fuel saving potential will rely on a quasistatic
model (compare Section 3.1.1) presented in the following. By evaluating the driving resis-
tance forces, the resulting torque at the wheels can be calculated using Equation (3.89).
Under consideration of the efficiencies of the drivetrain components the power demand
for the ICE and the EMG can be computed, which is then converted into the equivalent
battery power delivery. As the drivetrain components have already been discussed when
describing the dynamic vehicle model in Section 3.1, only the properties and Equations
necessary for the predictive charging strategy will be presented.

3.4.4.1 Wheel and Drivetrain

The resulting wheel momentum caused by the resistance forces (compare Section 3.1.2)
reads

Tres:(Fr“‘Fd“‘Fg“‘Fa)'rdyn- (389)

The rotational speed can be calculated by using the velocity v, and the dynamic tire
radius rgy,:

wr = v:c/rdyn- (390)
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Under consideration of the final drive and the summation gear ratio, the angular speed
of the traction motor reads

WEM = WT * iFD . iSGR- (391)

The torque at the EM can be calculated from the torque acting on the tires under
consideration of the tires’ acceleration resistance and the gear ratio of the final drive
ipp and summation gear isgpg:

Tres + @T ‘W

A (3.92)
1FD " 1SGR

TEM,raw =

A consideration of the powertrain losses is done by differentiating between traction mode
and generator mode and including the efficiencies of the final drive npp and the summa-
tion gear nsgr

NSGR

(3.93)
TEM,raw * MFD * NSGR TEMraw <0

TEM raw ° —L TEM raw > 0
Tey = { ) NFD

3.4.4.2 Internal Combustion Engine (ICE)

Evaluation of the data gathered during test drives with the experimental HEV showed,
that combined mode (compare Section 3.2.1) hardly ever occurs. Therefore, the angular
velocity wyog can be calculated by evaluating the engine speed lookup tables imple-
mented in the operating strategy. Consequently, the rotational speed wycg is a function
of the velocity and the driving style as depicted in Figure 3.42.

The ICE’s fuel consumption is a function of the engine speed w;cg and the engine torque
Trcg and is evaluated using the dynamic model’s lookup table depicted in Figure 3.5.

Since the engine is operated along the eCVT target line specified in Figure 3.36, the
drag torque does not have to be considered, as no towing of the ICE occurs. The inertia
in contrast is considered in the acceleration torque denoted by

Toce,icE = OICE - WICE (3.94)

3.4.4.3 Electric Motor/Generator (EMG)

When acting as a motor, the EMG converts the electrical energy delivered by the battery
into mechanical power P,,..;, used for propulsion. In generator mode, the kinetic energy
of the vehicle’s motion is converted into electrical power P,; and then forwarded to the
battery. Under consideration of the power flow, the efficiency can be defined as
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RPM relation

6,000 ‘

4,000 |-

WICE in rpm

2,000 |-

0 ) 10 15 20 25 30 35
velocity in m/s

Figure 3.42: Relation between vehicle speed, driving style and engine speed

Prech T > O
. P, EM =
NEM = { P Toar <0 (3.95)

mech

3.4.4.4 Resulting Battery Current and Power

The equation for the required torque 7., at the EM reads

Treq = Tres,pnm + G - Tresgoe + TeM, (3.96)

where T,..s g denotes the resistance torque of the EM, ¢ the control variable which
represents the ICE state (see Equation (3.80)), Tres,rcr the resistance of the ICE and
Tgas the torque calculated in Equation 3.93.

In case the ICE provides additional power, the generator converts it into electrical power:

wrce " Tice

Prge = (3.97)
NEG
Consequently, the requested battery power reads
Treq L _¢.P Treq >0
Prag = { e WPM iy — 6 Ppaa - Treg 2 (3.98)
Trecup *WEM *TEM Treq <0

It can be seen that for a negative torque request the battery power is a function of the
recuperated torque T ecyp and the EM speed wgyr whereas for traction mode it is further
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l%b! U

Bat

Figure 3.43: Quasistatic battery model

a function of the requested torque 7.4, the control variable ¢ and the electrical generator
power Prg e

3.4.4.5 Battery
The battery model used for the predictive charging strategy is based on [54] and models

the battery as parallel and series circuit of elementary cells with serial inner resistance
R;. One cell is depicted in Figure 3.43 and relies on the following equations:

UBat = UOC - Rz : IBat (399)

When applying the relation Pp.t = Upqt - Ipqt to Equation (3.99), it reads

=Uoc — R; - Ipat (3.100)

After multiplying Equation (3.100) with I, and solving for Ip4:, the following relation
is obtained:

Usat = \/Uhay — 4 Ri + Poat

101
2R (3.101)

IBat =

For higher accuracy, Ug,: and R; are a function of the current SOC, which is equal to
the state variable y in the dynamic programming approach. The maximum charging and
discharging power as well as the current are limited according to the battery’s capabilities
Liim,chg> Ltim,dchgs Prim,chg @and Prip, dehg, respectively. Infeasible values for either Ipqs or
Ppyt are immediately discarded by the optimization algorithm.

The resulting SOC xx+1 is a function of the battery current flow during the timestep
At, the charging or discharging efficiency . 4, the previous SOC x;, and the nominal cell
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capacity Qnom. From Equation (3.102) it can be seen that, a positive battery current
(discharging) diminishes the SOC, whereas negative I, (charging) increases the SOC.

Ipat - Nea(Ipat) - At
Xbt1 = X — —2 ?75(3,:) (3.102)
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3.5 Coupling of the Developed Approaches

Having presented the designed strategies in the previous sections, this chapter aims to
depict the linkings between them.

Whereas the driveability controller described in Section 3.3 and the developed OS from
Section 3.2 are directly incorporated within the dynamic vehicle model described in
Section 3.1, the predictive charging strategy can be regarded as an input to the dynamic
vehicle model. These dependencies are shown in Figure 3.44.

The predictive charging strategy (PCS) evaluates the optimal progression of the control
variable ¢ for the given velocity profile v(t). The resulting progression of the ICE state is
then forwarded to the dynamic vehicle model consisting of ordinary differential equations
(ODE) which also takes the driver model as an input.

vgt!’ PCS ICE state N

ODE
Vehicle Model

Driver >

Figure 3.44: Coupling of the developed approaches
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Results

4.1 Validation of HEV'’s Drivetrain and Vehicle Model

The vehicle and drivetrain model is validated with the help of single driving manoeuvres
and a real-driving cycle, shown in Figure 4.1. The driving cycle in the area of Graz,
Austria is used to prove that the simulation model described in Section 3.1 behaves
similar to the real vehicle. In particular the identified operation strategy is verified with
the help of the cycle: The operation mode for each time step is compared and analysed
to ensure that the simulation model with its identified operation strategy is accurate
enough and provides close to real vehicle behavior.

The accuracy of the model can be determined by comparing the distance of the driving
cycle 0. with the distance d,, computed in the model as shown in Equation (4.1). The
value of 9, for each timestep is obtained by integrating the vehicle velocity v,. As
the distances at the end of the cycle are compared, an integral accuracy assessment
is performed. The values used in Equation (4.1) are valid for the initial layout and
show that the accuracy after completing the whole cycle is about 3.4 % when using a
simulation time step At of 0.001s.

|6y — 0c|  |4.4709 - 10* — 4.6269 - 10*|

A0 = 5, 4.6269 - 104

=0.034 (4.1)
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velocity [m/s]

Further specific events, such as the starting of the ICE by the EG have been investigated
and validated. In Figure 4.2 the generator torque of the real vehicle and the Simulink
model are shown. It can be seen that a good correlation is achieved in the tow start
manoeuvre. Nevertheless, the simulated torque curve is smoother than the measured
curve which is a result of not modelling the combustion process and using a piecewise

Driving Cycle

S
[a)

w
o
T

DO
(e
T

—_
o

time [s]

Figure 4.1: Real-world driving cycle speed profile

linear torque characteristic.
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Figure 4.2: Generator torque at a tow start manoeuvre
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4.1 Validation of HEV’s Drivetrain and Vehicle Model

Also the full load behavior shows a good correlation between simulation and reality. The
dotted lines in Figure 4.3 show the behavior of the actual vehicle, whereas the full lines
represent the results of the implemented Simulink model. The velocity progressions are
almost identical until 5s and also later only little deviation occurs. The EG torque rises
a bit faster in the simulation but overall the torque and angular speed progressions show
a good correlation. The generator power progressions are also nearly identical, only at
7s a small difference is notable.
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Figure 4.3: Validation of the simulation model with the help of full load manoeuvres
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4.2 Comparison of the Developed Driveability Controller and
Initial Layout

Having discussed the implemented strategies to enhance driveability in Section 3.3 the
benefits shall now be presented by the evaluation of different driving manoeuvres.

Full load acceleration:

As the vehicle behavior should remain predictable in emergency situations the full load
characteristic is not affected by the driveability algorithm. Figure 4.4 shows the vehicle
speed and pedal position. It can be seen that the acceleration behavior equal for all
driving styles, meaning that in case of overtaking the full system power is available for
every driver type. In Figure 4.5 the EM rotational speed is depicted. An almost linear
increase in the angular speed can be seen which is an expression of predictable vehicle
behavior. Figure 4.6 displays the power at the EM over time. After reaching the first
plateau between seconds 5 and 10, the power drops to a second plateau which is caused
by the EM characteristic shown in Figure 3.38.

‘ ‘
40 |- === velocity sporty
o] — velocity normal
— ) -’ velocity eco
T ° === velocity basis
o~ ‘O‘ wm Ddriver
& s’
2 20| “0 |
o "
s} *
4 ‘o’
”
Y 4
&
O “ | | | |
0 5 10 15 20 25
time [s]

Figure 4.4: Velocity and pedal position of a full load manoeuvre
Figure 4.7 depicts the rotational speed of the ICE in correlation with the velocity. The

maximum ICE speed is reached at about 17m/s, meaning that from this time the ICE
delivers maximum power to the generator (compare Figure 3.36).
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Figure 4.6: EM power of a full load manoeuvre
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Figure 4.7: ICE rotational speed of a full load manoeuvre
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80 % load acceleration:

This high load driving manoeuvre clearly shows the enhanced vehicle response due to the
driveability controller. Figure 4.8 denotes that the fast rpm increase of the ICE could
be eliminated with the driveability algorithm, therefore delivering a reconnection of the
driver with the drivetrain. Sporty drivers benefit from an engine speed of 4000 rpm at
about 10m/s which results in good power delivery.
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WroE€eco

snms Wropbasis

0 5 10 15 20 25 30 35 40
velocity [m/s]

4
EEEEEEEEED

Figure 4.8: ICE rotational speed of a 80 % load acceleration

Not only the velocity but also the acceleration is improved compared with the basis
layout as shown in Figure 4.9. The acceleration is smooth without containing any drop.
The EM angular speed depicted in Figure 4.10 directly correlates with the vehicle velocity
which underlines the improved vehicle performance for normal and sporty drivers.
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Figure 4.9: Velocity and pedal position of a 80 % load acceleration
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Figure 4.10: EM rotational speed of a 80 % load acceleration

The improved power delivery of the EM for normal and sporty drivers can be seen in
Figure 4.11. Besides increasing the power gradient also the power output is increased.
Whereas the initial layout only provided about 100 kW, sporty drivers benefit from ap-
proximately 120 kW.
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Figure 4.11: EM power of a 80 % load acceleration
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50 % load acceleration:

The half load acceleration manoeuvre also proves the increased vehicle response for
sporty drivers. Figure 4.12 shows that the driveability controller not only affects the
rpm relation, but also the starting point of the ICE. Whereas for eco drivers the ICE is
started at a speed of 13m/s, sporty drivers have an ICE starting speed of about 7m/s
for this manoeuvre. The different starting speeds are a result of the EM power delivery
which is shown in Figure 4.15. In order to comply with the battery limitations, the ICE
has to be started up earlier when demanding more power from the EM.
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Figure 4.12: ICE rotational speed of a 50 % load acceleration
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Figure 4.13: Velocity and pedal position of a 50 % load acceleration
Further it can be seen that eco and normal drivers after 10s benefit from almost constant

power delivery whereas sporty drivers have to cope with decreasing EM power between
seconds 12 and 17. As normal and sporty drivers reach higher velocities than the initial
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layout (compare Figure 4.13), the EM angular velocity displayed in Figure 4.14 also
needs to be greater for these driving styles.
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Figure 4.14: EM rotational speed of a 50 % load acceleration
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Figure 4.15: EM power of a 50 % load acceleration
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4.2 Comparison of the Developed Driveability Controller and Initial Layout

Short pedal kick:

This manoeuvre allows to evaluate the short-time responsiveness of the vehicle. While
sporty and normal drivers provoke an immediate start-up of the engine, the ICE remains
switched off for eco drivers (see Figure 4.16) resulting in better fuel consumption and
driving comfort. Furthermore, it can be seen that the engine rpm is not only a function
of the vehicle speed for acceleration phases, but also for deceleration phases. For sporty
drivers the fast engine start-up and high rpm leads to a benefit in case of a following
acceleration manoeuvre, but triggers the battery constraints in the deceleration phase
leading to a shut down of the ICE, see Figure 4.16. For normal drivers the engine rpm
is also for the deceleration phase a function of the vehicle speed (seconds 6 to 20) which
can be seen by the overlapping red lines in Figure 4.16 in the velocity domain of 7 to
10m/s.
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Figure 4.16: ICE rotational speed of a short pedal kick manoeuvre

In Figure 4.17 the velocity and driver pedal position can be seen. Whereas the accelerator
pedal is fully pressed at 2 seconds, the pedal position is reduced to about 80 % at about
5 seconds and 6 seconds after the start of the manoeuvre the pedal is released. The
increased velocity for normal and sporty drivers can also be witnessed in the angular
speed of the EM shown in Figure 4.18. Even though the accelerator pedal is only
actuated for a short amount of time, sporty drivers cause the EM to rev up to about
3100 rpm whereas the initial layout produces an EM speed of about 2200 rpm.
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4.2 Comparison of the Developed Driveability Controller and Initial Layout

Due to the starting of the ICE for normal and sporty drivers, the EM power can be
increased as the battery is charged by the EG. The resulting EM power progression is
depicted in Figure 4.19. For sporty drivers the EM delivers about 80 kW, whereas the
initial layout only produces close to 40 kW.
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Figure 4.19: EM power of a short pedal kick manoeuvre
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4.3 Predictive Charging Strategy and Fuel Saving Potential

In this section, the fuel consumption of the vehicle is evaluated. As the focus of this
thesis lies on real-driving fuel saving potential, a real world driving cycle is used. In
specific, it is the same cycle used for the model validation in Section 4.1. The velocity
profile is shown in Figure 4.1. The less desirable operation strategy with the accelerator
pedal input being disconnected from the engine speed is used as an outline to address
the fuel saving potential. Figure 4.20 shows the fuel consumption, ICE state and SOC
progression of the initial layout. It can be seen that a total amount of 5.8 litres is used
during the cycle. The ICE state progression shows that frequent mode shifts occur. This
is a result of the rule-based operation strategy allowing the ICE state to change every
second. In order to allow a comparison of the different operating strategies the ICE
state and the SOC progression are shown for the entire driving cycle. To assure a fair
comparison the initial SOC SOCj is set to 0.9 for all of the following investigations.
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Figure 4.20: Fuel consumption, ICE state and SOC of the initial layout
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Figure 4.21: Fuel consumption, ICE state and SOC with driveability controller (normal
driver)

Next, the fuel consumption, ICE state and SOC progression for the implemented drive-
ability controller under estimation of a normal driver are discussed. Figure 4.21 shows
that 4.4 litres of fuel were consumed during the cycle. Comparing the ICE state of the
initial layout with the normal driver’s ICE state it can be seen that the two are almost
identical. This is due to the fact that the OS in general has been left unchanged whereas
the rpm range of the ICE has been modified in order to enhance driveability which in
this case also reduces fuel consumption.

For eco drivers, the ICE state also resembles the progression obtained when assuming
a normal driver. Due to the low engine speed range, the fuel consumption is further
reduced. The eco layout of the driveability controller produces a total fuel consumption
of 4 litres (compare Figure 4.22) which is equal to a saving of 31%! in comparison to the
initial layout. These results clearly state that driveability enhancements also have an
influence on the fuel consumption of a vehicle: By tailoring the vehicle characteristics
according to the driver’s needs fuel efficiency can be significantly increased.

When comparing the SOC progression for the initial layout and the implemented drive-

"Without considering the difference in the final SOC and the model accuracy
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Figure 4.22: Fuel consumption, ICE state and SOC with driveability controller (eco
driver)

ability controller, it can be seen that the high revolution range of the ICE causes the
SOC to be 0.92 at the end of the cycle whereas the driveability controller causes the SOC
to fall to about 0.5 at 3646s for the normal driver (Figure 4.21) as well as for the eco
driver (Figure 4.22). This energy difference also needs to be considered when assessing
the fuel saving potential between the different strategies. Depending on the energy mix
used for electricity generation, the final SOC has to be weighted and converted to a fuel
equivalent to perform a proper depiction of the fuel saving potential.

Nevertheless, the comparison showed that the SOC progression has an impact on the
fuel economy of a vehicle and therefore represents a measure for reducing fuel consump-
tion. This is the point where the predictive charging strategy comes to play: It calcu-
lates the optimal ICE state under consideration of the final SOC (which is set to be
SOCtinal = SOCpin = 0.3 for the following investigations) to further increase fuel econ-
omy. With these constraints the time discrete optimal control problem with fixed end
time given in Equation (3.88) can be reformulated according to Equation (4.2). The
boundaries for the state variable x listed in Equation (4.2) were chosen to ensure maxi-
mum longevity of the battery.
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(eco driver)

min Am ,
CLEZK f (Ck )

in order that

Xkt1 = Xk + fr(Xe> Crs k)
Xo=0.9 (4.2)

v € 0.3 0.95]

Xk € [0.3 0.95]

G €10 1]
N = 3646

The time step is set to At=1s which results in the control variable only being changed
every second and sets N=3646. This is done to ensure that the assumptions made
in the quasistatic vehicle model hold and has also been performed likewise in other
investigations [19], [54], [55], [56]. Figure 4.23 shows the fuel consumption, ICE state
and SOC progression for eco drivers under application of the predictive charging strategy.
The fuel consumption is reduced to 2.6 litres by reducing the on-time of the ICE and
fully exhausting the battery potential which results in a final SOC of 0.3. Furthermore,
the predictive charging strategy reduces the frequency of the mode shifts between ICE
on and ICE off which enhances driveability (compare Figures 4.23 and 4.24).

When applying the predictive charging strategy also to the normal driver, an exact as-
sessment of the fuel saving potential caused by the driveability controller can be made.
The initial SOC and the final SOC are identical in both cases (compare Figures 4.23 and
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Figure 4.24: Fuel consumption, ICE state and SOC with predictive charging strategy
(normal driver)

4.24). Therefore the amount of fuel is a direct measure for the efficiency and no final SOC
deviation has to be considered. It can be seen that when applying the predictive charging
strategy normal drivers consume a total amount of 3.2 litres during the cycle whereas
eco drivers consume 2.6 litres. For eco drivers this is equal to a fuel saving potential of
19%2 which is only attributable to the driveability controller. When comparing the fuel
consumption for the initial rule based layout and the predictive charging strategy under
assumption of an eco driver, the savings attributable to the driveability controller and
the ones caused by the predictive OS are combined and thus the potential is even greater.

Even though a real world driving cycle has found application and the fuel saving potential
has been assessed under consideration of the final SOC, a possible point of criticism lies
in the assumption of a known velocity profile for the whole driving cycle. Even when
predefining the route in the car’s navigation system, considering the driving style with
the implemented driveability controller and accounting for the traffic flow, the exact
velocity profile is never known.

2Without considering the model accuracy
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4.3 Predictive Charging Strategy and Fuel Saving Potential

Nevertheless, [27] proves that when performing global optimization fuel consumption
does not significantly increase when reducing the prediction horizon (=the zone in which
the velocity profile is exactly known). For further information the reader is referred to
[27] and [32].
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4.4 Conclusion

In order to facilitate a driveability assessment at an early stage of development a full
longitudinal vehicle model has been implemented in Matlab Simulink. To reach near
to real vehicle behaviour, parameter identification algorithms have been carried out.
The identified parameters have been implemented into the vehicle model which was
later on validated. After proving good correlation between the simulation and the real
vehicle behaviour an initial driveability assessment has been performed. To improve
driveability, major emphasis was put on the reconnection of the driver with the drivetrain
and the prediction of the driving style using an adaptive algorithm. The advanced
algorithm gathers information of the past driving in order to make a short-time prediction
for the possible driving style. This predicted driving style is then used to adapt the
characteristics of the vehicle.

The presented driving manoeuvres clearly show that an enhancement of driveability
could be performed without corrupting fuel economy. Whereas the eCVT target line has
been retained in the operating strategy, a reconnection of the driver with the drivetrain
could be performed. Now, it is possible that the engine speed is a function of the
vehicle speed. Moreover, the driveability controller also allows to tailor the vehicle
responsiveness according to the driver’s needs. This results in different starting points
of the ICE which is demonstrated with the aforementioned driving manoeuvres. Eco
drivers have the benefit of operating the ICE at lower rpm which further increases the
fuel efficiency of the investigated HEV, proving that the conflicting goals of low fuel
consumption and driving pleasure have been overcome. Sporty drivers in contrast benefit
of optimised vehicle responsiveness without the driver input being disconnected from the
drivetrain. The implemented driveability algorithm not only performs an adaption to the
driver, it further allows a prediction of the driving style given the past information. By
weighting the past information, the accuracy of the prediction is improved. As the vehicle
behavior should be predictable for emergency situations, the full load characteristic is
not affected by the driving style.

By replacing the rule based OS with a predictive charging strategy, the fuel economy of
the HEV is further improved. By performing global optimization and fully exhausting
the battery potential by the end of the trip, the on time of the ICE can be reduced in
comparison to the initial OS. By specifying SOC constraints at the beginning and at the
end of the trip also a comparison of the fuel saving potential between the different driving
styles becomes possible. It is shown that the driveability algorithm not only deletes the
ICE’s loose rpm behavior but also contributes to the fuel consumption reduction.

Moreover, during the work with the real vehicle and the simulation model it turned out
that the lack of driving pleasure and the loose rpm behaviour are not only a result of the
implemented operating strategy. The drivetrain components and their interaction also
have a high impact on the driveability issue of this specific HEV layout: The battery
used in the vehicle and the resulting power or battery current restriction also influence
the ICE behaviour. Incorporating a more capable battery into the drivetrain for example
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4.4 Conclusion

Table 4.1: Component proposal

Maximum EM Power 124 kW
Battery current discharge limitation 80 kW
Proposed Battery current discharge limitation 90 kW

would lead to less frequent ICE starts and wider power and battery current restrictions
which help operating the ICE at lower rpm. This specific change is now to be illustrated
with the following calculation: The demanded power at the ICE in case of a full power
request yields

PrcE,current = 124 — 80 = 44kW (4.3)

PICEJJ?"Oposed =124 — 90 = 34 kW (4.4)

Given the power demand in Equation (4.4) it can be determined from the eCVT target
line chart, that the ICE has to be operated at about 3800 rpm to deliver the requested
power whereas the ICE only needs to be operated at approximately 3000 rpm for the
proposed layout. Further fuel economy could be increased as 3000 rpm correspond to
a BSFC of 220 g/kWh (best operating point) whereas 3800 rpm deteriorate the BSFC.
Given the reduced power demand for the ICE also the needed generator power diminishes,
leading to a smaller generator.
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Summary

The focus of this thesis was to improve the driveability and fuel consumption of an
existing HEV drivetrain layout. In the following the work is summarised chapter-wise.

Introduction: In this chapter the main features of the project are introduced. After
discussing the motivation for hybrid drivetrains, the control problem is presented. By
implementing a detailed vehicle model into Matlab Simulink with close to real vehicle
behavior, driveability issues can be investigated at an early stage of development. This
project aims to use the input of adaptive and predictive strategies to simultaneously
enhance fuel efficiency, driveability and vehicle performance. In order to maximize fuel
efficiency, an intelligent operation strategy using past and future driving information was
developed as a replacement for the rulebased OS implemented in the investigated HEV.
Driveability issues are accounted for by incorporating a driveability controller into the
HCU. As the proposed modifications only require software modifications, the costs are
held at a minimum and the application potential is increased.

State of the Art: This chapter describes the highest level of development regarding
hybrid drivetrain structures, operating strategies and driveability assessment. Different
topologies of HEV powertrains have been developed throughout the last years. Whereas
the complexity constantly increases, these newly developed layouts can all be as refined
versions of the three basic architectures presented in this section. Operation strategies
form the crucial part of HEVs. Whereas initially rule-based approaches found applica-
tion, current research is being done towards optimization methods in combination with
adaptive and predictive strategies. Driveability assessments are as old as the automobile
itself, yet the term driveability is often used with different meanings. This thesis defines
driveability as the driver’s subjective perception of the interactions between vehicle and
driver which can be assessed subjectively or by using objective evaluation criteria based
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on correlation methods. For evaluation of driveability vibrations acting on the human
body are used. In the VDI 2057 standards for example, the accelerations acting on the
human body are assessed in the frequency domain in order perform an objective evalu-
ation of driving comfort. Different measures such as the vibration exposure over time,
the running root-mean-square of the instantaneous frequency-weighted acceleration, the
vibration dose value, peak-to-peak values and many more are introduced. Finally, the
driveability evaluation method implemented in AVL-Drive is presented.

Methodology: This chapter consists of four main parts, namely the vehicle modelling,
the identification and modelling of the OS, the development of the driveability controller
and the design of the predictive charging strategy. Accurate modelling of the hybrid
powertrain is essential when examining driveability issues. The modelling of the dif-
ferent powertrain components such as the internal combustion engine, battery, electric
motor/generator, gearbox, final drive, clutch, tire and hub-pitching model are presented
in this section. By performing various load variation manoeuvres, the rule-based OS
implemented in the investigated HEV was determined. Under consideration of the com-
ponent restrictions, the rule-based approach was modified to comply with the dynamic
vehicle behavior. By performing a driving style classification and incorporating a func-
tional dependency between driving style, vehicle speed and engine speed into the OS the
disconnected rpm behavior could be deleted. Further the driving style classifier allows to
tailor the vehicle characteristics according to the driver’s needs. Eventually, the optimal
control problem solved by using a dynamic programming method is presented. After
reformulating the general problem in suitable form for the given HEV control problem,
measures for computation time reduction are presented and the quasistatic vehicle model
is discussed. Finally, the relations between the developed methods are explained.

Results: This chapter shows the outcome of this work. Firstly it is proved that the
simulation model behaves similar compared to the real vehicle even in real-world driving
cycles, recorded in the area around Graz, Austria. By performing specific driving ma-
noeuvres such as full load accelerations, 80% load accelerations, 50% load accelerations
and a short pedal kick manoeuvre, the influence of the developed driveability controller
on the vehicle behavior is investigated. Whereas the full load characteristic is not af-
fected by the implemented algorithm due to safety reasons, significant changes regarding
the vehicle response and rpm behavior can be observed in the other manoeuvres. The
developed controller performs a reconnection of the driver with the drivetrain by having
the engine rpm be a function of the vehicle speed. Depending on the driving style, the
ICE’s starting point varies and for the short pedal kick manoeuvre it remains shut off
for eco drivers whereas sporty drivers benefit from the immediate response. In contrast,
the implemented charging strategy allows to adapt the SOC progression according to
the driving cycle and therefore allows to fully exhaust the battery’s energy until the
end of the trip leading to great fuel saving potential. Additionally it is shown that the
tailoring of the ICE’s rpm range by the driveability controller also results in better fuel
economy. Consequently, the implemented algorithm allows to enhance driving comfort
and pleasure while simultaneously reducing the vehicle’s fuel consumption. A discussion
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of the influence of the velocity profile’s accuracy and the resulting fuel saving potential
forms the end of this section.

Discussion: Within this section the future application potential in mass production
vehicles is discussed. Hybrid electric vehicles play an important part in every OEMs
product portfolio and are gaining rapidly in market shares. Yet, the possible fuel saving
potential and driving characteristics are highly influenced by the OS. The work shows
that the behavior of the vehicle can be modified with advanced vehicle controllers without
changing its hardware. Moreover, it is shown how innovative prediction and adaption
algorithms positively contribute to driving pleasure, driving safety and driving comfort.
By holding the implementation costs at a minimum and designing the controllers to be
used at an early stage of development, the product development process can be shortened
and the effort of adaption to prototypes and later-mass production vehicles is reduced.

Final statement and Outlook: This work provides an in-depth analysis of a combined
PHEYV drivetrain layout. Major emphasis is put on the operation strategy and driveabil-
ity controller. The introduced driving style classification algorithm is able to predict
the driver’s future power demand short-term and thus allows an adaption to different
driving styles. In combination with a predictive charging strategy the fuel economy of
the HEV powertrain layout is further improved. Future expansions could comprise an
anti-jerk term in the cost function and a limiting of the minimal ICE on time to prevent
frequent mode changes.
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