

Michael GRUBER, BSc

Luft/Luft-Wärmepumpe auf Burg Rabenstein – Analyse von Monitoringdaten und verschiedener Heizstrategien

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

Masterstudium Wirtschaftsingenieurwesen-Maschinenbau

eingereicht an der

Technischen Universität Graz

Betreuer

Dipl.-Ing. Heinz Moisi, BSc Institut für Wärmetechnik

Beurteiler

Ao.Univ.-Prof. Dipl.-Ing. Dr.techn. René Rieberer Institut für Wärmetechnik

Graz, im September 2016

EIDESSTATTLICHE ERKLÄRUNG AFFIDAVIT

Ich erkläre an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen wörtlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch.

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis.

Datum / Date

Unterschrift / Signature

KURZFASSUNG

Titel: Luft/Luft-Wärmepumpe auf Burg Rabenstein – Analyse von Monitoringdaten und verschiedener Heizstrategien

Autor: Michael Gruber

- 1. Stichwort: Beheizung denkmalgeschützter Gebäude
- 2. Stichwort: Monitoring
- 3. Stichwort: Thermische Gebäudesimulation

Die umweltschonende und energieeffiziente Beheizung von denkmalgeschützten Gebäuden mit Wärmepumpen stellt in Hinblick auf die Schonung der Bausubstanz eine besondere Herausforderung dar. Auf Burg Rabenstein wurde eine Multi-Split Luft/Luft-Wärmepumpe aufgrund ihrer kompakten Bauweise installiert.

In vorhergehenden Arbeiten wurden geringere Leistungszahlen der installierten Wärmepumpe gegenüber den Herstellerangaben festgestellt. Ein Luftkurzschluss zwischen Ansaug- und Ausblasöffnung am Innengerät wurde als Grund für die erhöhte Kondensationstemperatur und somit für die mäßigen Leistungszahlen (COP) genannt.

Im Zuge dieser Arbeit wurden die Leistungsmessung der Drehstromzähler und die Effektivität der Luftleitvorrichtung zur Vermeidung des Luftkurzschlusses untersucht und keine Fehler entdeckt. Trotz Funktionstüchtigkeit der Luftleitvorrichtung wurden erneut hohe Kondensationstemperaturen gemessen. Ein möglicher Grund dafür ist, dass für die Leistungsübertragung eine luftseitige Temperaturspreizung von ca. 25 K am Innengerät erforderlich ist. Inverterverluste könnten möglicherweise den mechanischen Wirkungsgrad bei geringer Teillast senken. Dies wäre – neben der hohen Kondensationstemperatur – ein Grund für die geringen Leistungszahlen. Weiters könnten andere elektrische Verbraucher die Effizienzeinbußen verursachen.

Für einen möglichst effizienten Betrieb bzw. geringen Energieverbrauch über ein Jahr wurden Heizstrategien des bereits bestehenden Gebäude- und Wärmepumpenmodells verifiziert. Die Simulation für einen fiktiven Kalender mit neun Veranstaltungen ergab, dass der Heizwärmebedarf für eine geringe Absenktemperatur sinkt, jedoch eine höhere Vorheiztemperatur bzw. längere Vorheizdauer für einen behaglichen Zustand nötig sind.

ABSTRACT

Title: Air-to-air heat pump at Castle Rabenstein – Analysis of monitoring data and different heating strategies

Author: Michael Gruber

1st keyword: heating of historic buildings
2nd keyword: monitoring
3rd keyword: thermal building simulation

The environmental friendly and energy-efficient heating of historic buildings with heat pumps is, regarding to preservation the building structure, a special challenge. At castle Rabenstein, a multi-split air-to-air heat pump was installed due its compact design.

In previous works, low efficiencies of the heat pump at Rabenstein have been observed compared to manufacturer specifications. An air bypass between the intake and the exhaust outlet at the indoor units has been suspected to cause high condensation temperatures and thus moderate efficiencies of the heat pump.

Within this work, the power measurement of the three-phase-current meter and the effectiveness of the air guiding devices to avoid the air bypass, have been checked. No errors were found. The air guiding devices are working but high condensation temperatures were measured again. One possible reason is, that an air-side temperature spread of 25 K is required for heat transmission at the indoor unit. Inverter losses could potentially reduce the mechanical efficiency at lower part loads. This would be, additional to the high condensation temperature, another reason for the low efficiency of the heat pump. Additionally, further electrical consumers may result in a rather low "mechanical efficiency".

To minimize the energy consumption, efficient heating strategies for one year should be simulated. Building simulations (incl. heat pump model) show for a fictional calendar with 9 events, that the heating demand for the building is lower for lower setback temperatures. However, to get a comfortable indoor climate, the preheating temperature for lower preheat time should be raised.

VORWORT

Während meines Studiums Wirtschaftsingenieurwesen-Maschinenbau an der TU Graz mit den Fachrichtungen Energietechnik und Wirtschaft war der ressourcenschonende Einsatz von Energie immer ein besonderer Aspekt. Deswegen entschied ich mich, am Institut für Wärmetechnik meine Masterarbeit zum Thema "Luft/Luft-Wärmepumpe auf Burg Rabenstein – Analyse von Monitoringdaten und verschiedener Heizstrategien" zu schreiben und damit mein Studium abzuschließen.

Ohne die Mitarbeiter des Instituts für Wärmetechnik wäre diese Arbeit nicht möglich gewesen. Speziellen Dank möchte ich meinen Betreuer DI Heinz Moisi aussprechen, der immer als Ansprechpartner zur Verfügung stand. Auch Ing. Markus Sackl, Dr. Richard Heimrath und Ao.Univ.Prof. René Rieberer möchte meinen Dank ausdrücken, die mich bei dieser Arbeit unterstützten.

Ein besonderer Dank gilt der "DI Hochegger Forschungsstiftung für innovative Energiesysteme" für die finanzielle Unterstützung dieser Arbeit sowie den Mitarbeitern der Firma Air-Cond bzw. der Burg Rabenstein für die tatkräftige Unterstützung.

Ebenso möchte ich mich bei meinen Eltern, Johann und Christine bedanken, die mir dieses Studium ermöglicht haben. Auch mein Bruder und meine Großeltern standen mir immer zur Seite.

Zu guter Letzt gilt all meinen Freunden und langjährigen Studienkollegen ein Dankeschön. Sie haben während des Studiums für den nötigen Ausgleich gesorgt und damit den Aufenthalt in Graz unterhaltsam gemacht.

Graz, 12.07.2016

Michael Gruber

INHALTSVERZEICHNIS

<u>1</u>	EINLEITUNG	<u>1</u>
1.1 1.2 1.3	Motivation für die Arbeit 2 Aufgabenstellung 3 Aufbau der Arbeit	1 1 1
<u>2</u>	GRUNDLAGEN	2
2.1	Thermodynamische Grundlagen von Kompressionswärmepumpen	2
2.2	2 Kältemittel	7
2.3	8 Verdichter und Drossel	8
2.4	Warmetauscher	
2.5	Luft/Luft-warmepumpen	14
•		
<u>3</u>	DIE LUFT/LUFT-WARMEPUMPE AUF BURG RABENSTEIN	<u> 16</u>
24	M/ärmen ummen kreiee	10
3.1 2 2	warmepumpenkreise	10
3.Z	2 Ausengerale	10 20
3.2	 P Regelangscharaktenstik des Wahnepunpenkleistadies P Eunktionsweise der Doppelrollkolbenkompressoren 	20
3.2	2.3 Funktionsweise eines pulsmotorgesteuertes Expansionsventil	
3.3	B Innengeräte	
3.3	8.1 Regelungscharakteristik der Innengeräte	
3.3	3.2 Unterkühlung (Vordrosselung) am Innengerät im Heizbetrieb:	27
3.3	B.3 Leistungsanforderung der Innengeräte	
3.4	Temperaturabhängigkeit der Leistungszahl	
3.5	Messtechnische Ausstattung	
3.5	5.1 Messpunkte	
3.5	5.2 Messgeräte	
3.5	b.3 Messdatenaufzeichnung	
<u>4</u>	MESSUNG UND AUSWERTUNG	<u> 33</u>
		••
4.1	Bestandsaufnahme für die Warmepumpenkreise AG3, AG8 und AG9	
4.2	2 Erste Optimierungsmaßnahmen	
4.3	Messungen nach Adaptierung der Innengerate	
4.4	Vermessung der Innengeräte	
4.5	5 1 Abschätzung des Luftvolumenstromes	43
4.5	5.2 Luftseitige Temperaturspreizung in Abhängigkeit der übertragenen Leistung	
4.5	5.3 Erkenntnisse durch Vermessung der Innengeräte	
4.6	analyse von Messdaten bei Wärmepumpenkreis AG8	
4.6	6.1 Ausgewählte Messreihe der Toshiba Luft/Luft-Wärmepumpe	
4.6	6.2 Stationärer Betrieb während der Langzeitversuche	
4.6	6.3 Auswirkung einer geringeren Teillast auf die Wirkungsgrade	69

<u>5</u>	THERMISCHE GEBÄUDESIMULATION	<u>73</u>
5.1 5.1.2 5.1.2 5.1.3 5.2 5.3	Gebäude- und Wärmepumpenmodell. Gebäudemodell. Wärmepumpenmodell Anpassung des Wärmepumpenmodells an eine Messreihe Simulation von Heizstrategien Ergebnisse zur Simulation von Heizstrategien	73 73 74 75 77 82
<u>6</u>	FAZIT UND AUSBLICK	<u>83</u>
<u>LIT</u>	ERATURVERZEICHNIS	<u>85</u>
<u>AB</u>	KÜRZUNGS- UND FORMELVERZEICHNIS	<u>87</u>
<u>AB</u>	BILDUNGSVERZEICHNIS	<u>89</u>
<u>TAI</u>	BELLENVERZEICHNIS	<u>91</u>
<u>AN</u>	HANG	<u>93</u>
A1 [A2 E A3 1 A4 1	Datenblatt des Wärmepumpe MMY-MAP2411HT8 Berechnung der Stoffwerte Trnsys Kennfelddaten Testo 410i-Technische Daten	93 93 94 96

1 EINLEITUNG

Simulationen der Zentralanstalt für Meteorologie und Geodynamik (ZAMG) zeigen einen Temperaturanstieg im Alpenraum um 2 °C bis zum mittleren 21. Jahrhundert (ZAMG, 2016). Wegen des anhaltenden Klimawandels und immer knapper und teurer werdenden Ressourcen, müssen in Zukunft vermehrt umweltfreundliche und ressourcenschonende Heizungssysteme eingesetzt werden. Dazu zählen z.B. Wärmepumpen, die in Einfamilienhäuser aber auch in denkmalgeschützten Gebäuden wie Burgen, Schlösser oder Kirchen eingesetzt werden können.

1.1 Motivation für die Arbeit

Aufgrund der hohen Effizienz wird für Einfamilienhäuser häufig eine Sole/Wasser – Wärmepumpe verwendet. Diese hohe Effizienz ist durch eine ziemlich konstante Erdreichtemperatur bedingt. Bei denkmalgeschützten Gebäuden können jedoch aus Platzgründen bzw. wegen festem Gestein, keine Erdkollektoren oder Tiefensonden eingebracht werden. Zudem darf beim nachträglichen Einbau von Wärmepumpen in denkmalgeschützten Gebäuden, die Bausubstanz nur geringfügig verändert werden. Bei Beurteilung all dieser Aspekte führt dies schlussendlich zum Einsatz einer Luft/Luft-Wärmepumpe. Nachteil dieser Variante ist die Umgebungsluft als Wärmequelle. Die Lufttemperatur hat enormen Einfluss auf die Effizienz der Luft/Luft Wärmepumpenanlage. Einer Marktstudie zufolge, benötigen laut Burg Rabenstein (2016b) 25 % aller Schlösser und Burgen in Europa ein neues Heizungssystem. Dies ergibt einen Zielmarkt von Objekten in Europa. Auf Burg Rabenstein wurde eine 4500 Multisplit-Luft/Luft Referenzwärmepumpenanlage mit variablem Kältemittelmassenstrom und drehzahlgeregelten Kompressoren mit einer Heizleistung von insgesamt 546 kW installiert (Tockner, 2012).

1.2 Aufgabenstellung

Die installierte Wärmepumpe soll hinsichtlich ihrer Effizienz untersucht werden. Dazu wurde ein Messsystem an drei der insgesamt elf Außengeräte installiert. In vorigen Arbeiten (Gründhammer, 2014) wurde ein Luftkurzschluss an den Innengeräten der Luft/Luft-Wärmepumpe entdeckt. Dies wurde als Grund für die mäßigen Effizienzwerte im Vergleich zu den Herstellerangaben genannt. Dieses Problem wurde mithilfe einer Luftleitvorrichtung behoben. In dieser Arbeit soll nun die Effektivität der Luftleitvorrichtung untersucht werden. Auch sollen die Innengeräte vermessen sowie einige stationäre Messpunkte untersucht werden, um etwaige Optimierungspotentiale zu finden.

Bei denkmalgeschützten Gebäuden werden die Räumlichkeiten (meist) nicht durchgehend verwendet und deshalb auch nicht kontinuierlich beheizt. Um den Heizenergiebedarf so gering wie möglich zu halten, wurde in vorhergehenden Masterarbeiten ein Gebäude- (Tockner, 2012) und ein Wärmepumpenmodell (Böhm, 2014) entwickelt. Im Zuge dieser Arbeit sollen die Modelle adaptiert werden, um damit Heizstrategien in Bezug auf möglichst gute Effizienz, geringen Heizenergieverbrauch und Bedacht auf Behaglichkeit zu überprüfen.

1.3 Aufbau der Arbeit

Um Optimierungspotentiale zu finden, werden in Kapitel 2 die Grundlagen zum Thema Wärmpumpentechnik recherchiert. Einerseits werden thermodynamische Grundlagen, andererseits das verwendete Kältemittel sowie einige Komponenten näher betrachtet. Kapitel 3 beschreibt die installierte Luft/Luft-Wärmepumpe auf Burg Rabenstein. Es werden die untersuchten Außen- und Innengeräte und ihre Regelung näher erklärt. Am Ende wird das installierte Messsystem erläutert. In Kapitel 4 erfolgt die Messdatenauswertung. Da historische Gebäude nicht durchgehend beheizt werden, werden in Kapitel 5 Heizstrategien in Bezug auf Effizienz, möglichst geringen Energieverbrauch und Behaglichkeit überprüft.

2 GRUNDLAGEN

In diesem Kapitel werden die thermodynamischen Grundlagen, die Kältemitteleigenschaften und die Komponenten von Kompressionswärmepumpen näher erläutert. Am Ende des Kapitels wird im speziellen noch auf Luft/Luft-Wärmepumpen eingegangen.

2.1 Thermodynamische Grundlagen von Kompressionswärmepumpen

Bei Wärmepumpen handelt es sich meist um eine Kompressionswärmepumpe. Grundlage für Kompressionswärmepumpen wie auch für Kompressionskälteanlagen, stellt der Carnot Prozess dar. Beim linksläufigen Carnot-Kreisprozess wird bei einem bestimmten Temperaturhub der geringste Energieaufwand erzielt, siehe dazu Abbildung 2-1. (nach Recknagel und Schramek, 2007)

Abbildung 2-1: Carnot Prozess (Rieberer, 2015)

Der Carnot Prozess als Idealprozess (siehe Abbildung 2-1) zeigt dabei folgende Zustandsänderungen:

- Punkt 1 nach 2: Isentrope Verdichtung
- Punkt 2 nach 3: Isotherme Kondensation
- Punkt 3 nach 4: Isentrope Entspannung
- Punkt 4 nach 1: Isotherme Verdampfung

Die Beurteilung der Effizienz einer Wärmepumpe erfolgt durch die Leistungszahl, dem COP (Coefficient of Performance). Zur Berechnung der Carnot-Leistungszahl $COP_{C,h}$ wird laut Rieberer (2015) GI.2-1 verwendet.

$$COP_{C,h} = \frac{T_h}{T_h - T_0}$$
GI.2-1

Je niedriger die Kondensationstemperatur T_h und je höher die Verdampfungstemperatur T_o , umso höher ist die Carnot-Leistungszahl $COP_{C,h}$.

Da aus maschinentechnischen Gründen eine Verdichtung bzw. Entspannung im Zwei-Phasengebiet nur sehr schwer möglich ist, muss dieser Prozess abgewandelt werden (Recknagel und Schramek, 2007). Der Perkins/Evans - Kreisprozess ist in Abbildung 2-2 dargestellt und wird in der Kälte- bzw. Wärmepumpentechnik als idealer Vergleichsprozess für unterkritische Prozesse verwendet.

Abbildung 2-2: Perkins/Evans – Kreisprozess (Rieberer, 2015)

Die Zustandsänderungen für den Perkins/Evans – Kreisprozess lauten (siehe auch Abbildung 2-2):

- Punkt 1 nach 2: Isentrope Verdichtung durch einen Kompressor
- Punkt 2 nach 3: Isobare Kondensation im Wärmetauscher
- Punkt 3 nach 4: Isenthalpe Entspannung in der Drossel
- Punkt 4 nach 1: Isobare Verdampfung im Wärmetauscher

Um die Zustandsänderungen für den Vergleichsprozess zu erreichen, sind folgende Komponenten erforderlich (siehe Abbildung 2-3):

- Kompressor
- Kondensator zur Wärmeübertragung vom Kältemittel an die Wärmesenke
- Drossel
- Verdampfer zur Wärmeübertragung von der Wärmequelle an das Kältemittel

Abbildung 2-3: Komponenten des Perkins/Evans-Vergleichprozesses (in Anlehnung an Rieberer, 2015)

Ausgehend von Punkt 1 (vgl. dazu Abbildung 2-2 und Abbildung 2-3) an der Sättigungslinie x=1, wird durch den Kompressor dampfförmiges Kältemittel isentrop verdichtet. Das überhitzte Kältemittel tritt mit Zustand 2 in den Wärmetauscher ein und wird isobar enthitzt und kondensiert bei der Kondensationstemperatur T_h (Wärmeabgabe im Kondensator). Die Wärmeleistung \dot{Q}_h wird in weiterer Folge an den zu beheizenden Raum bzw. Gebäude (Wärmesenke) abgegeben. Das kondensierte Kältemittel liegt in flüssiger Form an der Sättigungslinie x=0 vor und wird durch die Drossel von Zustand 3 auf Zustand 4 isenthalp entspannt. An der Wärmequellenseite wird z.B. aus der Umgebung, die Wärmeleistung \dot{Q}_0 entzogen. Durch die Wärmeaufnahme im Verdampfer wird das Kältemittel von Zustand 4 auf Zustand 1 isobar bei der Verdampfungstemperatur T_0 verdampft. (Rieberer, 2015)

Zur Berechnung der Leistungszahl $COP_{PE,h}$ des idealen Vergleichsprozesses (bei dem auch keine Verluste im Kompressor auftreten) wird Gl.2-2 verwendet. Einfluss auf die Leistungszahl hat das Kältemittel, die Verdampfungstemperatur T_o und die Kondensationstemperatur T_h . Je höher die Verdampfungstemperatur T_o und je niedriger die Kondensationstemperatur T_h , umso höher ist $COP_{PE,h}$. (Rieberer, 2015)

$$COP_{PE,h} = \frac{\dot{m}_{ref} \cdot (h_2 - h_3)}{\dot{m}_{ref} \cdot (h_2 - h_1)}$$
 GI.2-2

Für den Realprozess sind in Abbildung 2-4 die Komponenten und die internen Vorgänge im Kältekreislauf zu sehen. Abbildung 2-5 zeigt den dazugehörigen Kältekreislauf im T/h-Diagramm.

Abbildung 2-4: Komponenten einer Wärmepumpe im realen Betrieb (Webasto, 2000)

spezifische Enthalpie h in kJ/kg

Abbildung 2-5: t/h- Diagramm einer Wärmepumpe im realen Betrieb (Webasto, 2000)

Im Vergleich zum idealen Vergleichsprozess (siehe Abbildung 2-2), wird beim Realprozess das Kältemittel im Verdampfer noch überhitzt (vgl. Abbildung 2-5) um Flüssigkeitsschläge am Kompressor zu verhindern. Im Kondensator wird noch unterkühlt (siehe Abbildung 2-5).

Zusätzlich, zu den in Abbildung 2-4 dargestellten Komponenten, können noch interne Wärmetauscher, Hoch- oder Niederdrucksammler verwendet werden (Rieberer, 2015).

Die Unterschiede vom Realprozess zum idealen Vergleichsprozess sind nachfolgend nach Rieberer (2015) angeführt (vgl. Abbildung 2-4 und Abbildung 2-5 mit Abbildung 2-2 und Abbildung 2-3):

- Die Verdichtung durch den Kompressor verläuft nicht adiabat und nicht reibungsfrei.
- In den Wärmetauschern entstehen Druckverluste aufgrund von Reibung.
- Zeotrope Kältemittelgemische weisen einen Temperaturgleit während der Verdampfung bzw. Kondensation auf
- Im Wärmetauscher wird meist noch überhitzt (am Verdampfer) bzw. unterkühlt (am Kondensator bzw. Verflüssiger).
- Wärmeverluste

Die Leistungszahl *COP_h* für den realen Prozess kann durch GI.2-3 berechnet werden.

$$COP_h = \frac{\dot{Q}_h}{P_{el}} = \frac{\dot{m}_{ref} \cdot (h_2 - h_3)}{P_{el}}$$
 GI.2-3

Die Leistungszahl stellt einen Momentanwert dar und wird aus der Wärmeleistung des Kondensators \dot{Q}_h dividiert durch die elektrisch aufgenommene Leistung P_{el} am Kompressor berechnet.

Laut Kulterer (2007) ist bei Anhebung der Verdampfungstemperatur um 1 K eine Energieeinsparung von ca. 3-4 % möglich. Bei Verminderung der Kondensationstemperatur um 1 K kann ca. 1-2 % Energie eingespart werden.

Eine Energieeinsparung an elektrischer Leistung führt zu einer höheren Leistungszahl (siehe GI.2-3). Die COP-Erhöhung liegt ungefähr im selben Prozentausmaß wie kurz zuvor angegeben. Bei einer höheren Verdampfungstemperatur kann von ca. 3-4 % und bei geringerer Kondensationstemperatur von ca. 1-2 % COP-Steigerung ausgegangen werden.

Um die Wirtschaftlichkeit von Wärmepumpen zu bestimmen, muss über einen längeren Zeitraum, bei unterschiedlichen Temperaturen und Leistungen, die Arbeitszahl *SPF* (Seasonal Performance Factor) ermittelt werden. Dadurch werden An-, Abfahrverluste, die Vereisung und Abtauzyklen berücksichtigt. Die Arbeitszahl *SPF* wird aus der Wärmemenge Q_h dividiert durch die aufgenommene elektrische Arbeit W_{el} gebildet. Gl.2-4 zeigt die Berechnung der Arbeitszahl (Rieberer, 2014).

$$SPF = \frac{\int \dot{Q}_h d\tau}{\int P_{el} d\tau} = \frac{Q_h}{W_{el}}$$
GI.2-4

2.2 Kältemittel

Die hier betrachtete Wärmepumpenanlage verwendet R410A als Kältemittel. Das Kältemittel hat maßgebenden Einfluss auf die Charakteristik einer Wärmepumpe und damit auch auf die Effizienz einer Wärmepumpe. In Tabelle 2-1 sind die wichtigsten Stoffdaten für das Kältemittel R410A sowie einige Kältemitteleigenschaften angeführt.

Komponenten	50% R32 und 50% R125
ODP	0
GWP _{100a} [kg _{CO2-eg} /kg]	1730
brennbar/explosiv	nein
kritsche Temperatur [°C]	72,1
kritischer Druck [bar]	49,2
molare Masse [kg/kmol]	72,6
Siedepunkt [°C]	-51,6

Tabelle 2-1: Eigenschaften von R410A (Rieberer, 2015)

Das Kältemittel R410A ist ein zeotropes Kältemittelgemisch und besteht aus 50% R32 und 50% R125. Vorteil von R410A ist das nicht vorhandene Ozonabbaupotenzial (ODP). Außerdem ist dieses Kältemittelgemisch weder brennbar, noch explosiv. Durch die hohe volumetrische Kälteleistung können Kompressoren geringerer Baugröße und Rohre mit geringem Querschnitt verwendet werden. Nachteil ist der Verbau von Komponenten für Drücke größer als 30 bar. Der Temperaturgleit von 0,1 K (berechnet in EES) während der Verdampfung bei 7 bar, kann beinahe vernachlässigt werden. In Abbildung 2-6 ist das T/h-Diagramm für R410A zu sehen. (Rieberer, 2015)

Abbildung 2-6: T/h-Diagramm für R410A (EES, 2015)

2.3 Verdichter und Drossel

Die Hauptkomponenten einer Kompressionswärmepumpe sind neben den Wärmetauschern (Verdampfer und Kondensator), der Verdichter und die Drossel. Durch die richtige Auswahl des Kompressors in Bezug auf Zuverlässigkeit, Effizienz und Teillasterverhalten kann die Leistungszahl einer Wärmepumpe wesentlich beeinflusst werden.

Der Verdichtungsvorgang eines Kompressors ist in Abbildung 2-7 zu erkennen. Die isentrope Verdichtung (adiabat und reibungsfrei) von Punkt 1 nach 2s kann als idealer Vergleichsprozess gesehen werden (Baehr und Kabelac, 2012). Eine verlustbehaftete aber adiabate Verdichtung (keine Wärmeübertragung an die Umgebung) würde von Punkt 1 nach 2a stattfinden. Durch Wärmeverluste an die Umgebung bzw. Kühlung des Kompressors findet eine Verdichtung von Punkt 1 nach 2 statt.

Abbildung 2-7: Schematische Darstellung des Verdichtungsvorgang im t/h – Diagramm (in Anlehnung an Rieberer, 2015)

GI.2-5 bis GI.2-7 nach Rieberer (2015) beschreiben den Verdichtungsvorgang.

$$\eta_{is,overall} = \frac{P_{is}}{P_{el}} = \frac{\dot{m}_{ref} \cdot (h_{2s} - h_1)}{P_{el}} = \eta_{is} \cdot \eta_m$$
GI.2-5

$$\eta_{is} = \frac{P_{is}}{P_i} = \frac{\dot{m}_{ref} \cdot (h_{2s} - h_1)}{\dot{m}_{ref} \cdot (h_2 - h_1)}$$
GI.2-6

$$\eta_m = \frac{P_i}{P_{el}} = \frac{\dot{m}_{ref} \cdot (h_2 - h_1)}{P_{el}}$$
GI.2-7

Der isentrope Gesamtwirkungsgrad $\eta_{is,overall}$ des Kompressors beinhaltet den inneren isentropen Wirkungsgrad η_{is} sowie den "mechanischen" Wirkungsgrad η_m und berechnet sich aus isentroper durch elektrisch aufgenommener Leistung, siehe GI.2-5. Durch Division von isentroper durch innere Leistung nach GI.2-6 berechnet sich der isentrope Wirkungsgrad η_{is} . In den mechanischen Wirkungsgrad η_m fließen z.B. Kolben-, Motor-, Lager- und Frequenzumrichterverluste ein.

Auf Burg Rabenstein sind je Außengerät, zwei Doppelrollkolbenkompressoren mit stufenloser Drehzahlregelung eingebaut. Diese werden in Kapitel 3.2.2 näher erklärt.

Als Drossel werden meist thermostatische oder elektronische Expansionsventile verwendet. Die Expansionsventile dienen in der Regel zur Regelung der Überhitzung am Verdampferaustritt. Vorteil des elektronischen gegenüber dem thermostatischen Expansionsventil ist ein besseres Regelverhalten im Teillastbetrieb (Recknagel und Schramek, 2007).

Die Charakteristik einer Drossel mit konstantem Querschnitt ist in Abbildung 2-8 zu sehen.

Abbildung 2-8: Charakteristik einer Drossel mit konstantem Querschnitt (in Anlehnung an Rieberer, 2015)

Bei Abbildung 2-8 tritt flüssiges Kältemittel mit konstantem Eintrittszustand $(p,t)_{ref,in}$ in die Drossel ein. Sinkt der Druck am Austrittsquerschnitt der Drossel $p_{ref,out}$ ab, erhöht sich der Kältemittelmassenstrom \dot{m}_{ref} (lila Pfeilrichtung in Abbildung 2-8). Wenn $p_{ref,out}$ unter der Grenzkurve bei ht = const. liegt (vgl. rechtes Bild, lila Pfeilrichtung), dann ist der maximale Kältemittelmassenstrom erreicht. D.h., der Massenstrom ist bei gegebenem Querschnitt unabhängig vom Austrittsdruck.

Die totale Enthalpie (siehe Gl.2-8) bleibt für eine adiabate Drossel während des Entspannungsvorganges erhalten.

$$h_t = h + \frac{w^2}{2}$$
GI.2-8

Nähere Details zum verbauten elektronischen Expansionsventil der Luft/Luft-Wärmepumpe auf Burg Rabenstein werden in Kapitel 3.2.3 erläutert.

2.4 Wärmetauscher

Für den Betrieb einer Wärmepumpe werden Wärmetauscher zur Wärmeübertragung benötigt. Vom niedrigen Temperaturniveau wird im Verdampfer Wärme von der Wärmequelle entzogen und dem Kältemittel zugeführt, damit dieses verdampft und gegebenenfalls noch überhitzt. Mittels Kompressor wird das Gas auf höheres Druck- und damit Temperaturniveau gehoben und das Kältemittel im Kondensator durch Wärmeabgabe an die Wärmesenke wieder verflüssigt. Es gibt viele verschiedene Ausführungen von Wärmetauschern abhängig vom Wärmeträgermedium wie z.B. Wasser oder Luft. Da diese Arbeit eine Luft/Luft-Wärmepumpe behandelt, werden Wärmetauscher mit Luft als Wärmeträgermedium näher erläutert.

Bei Verdampfer und Kondensator wird in der Regel Kupfer als Werkstoff verwendet. Nachteil und effizienzmindernd ist der hohe benötigte Luftstrom (kleine Wärmeübergangszahlen) und die damit verbundene höhere Gebläseleistung im Vergleich zu Pumpenleistungen bei Wasser als Wärmeträgermedium. Für den Verdampfer muss in Hinblick auf Reifbildung und eventuell anschließender Vereisung, ein Enteisungsvorgang durch Prozessumkehr z.B. durch Umschalten des 4-Wege-Ventiles erfolgen. Durch Heißgas wird der Verdampfer enteist. Damit das Wasser abtropft und keine Kapillarwirkung an den Lamellen auftritt, darf der Lamellenabstand nicht zu klein ausfallen. Anhaftendes Wasser würde bei Normalbetrieb des Verdampfers sofort wieder vereisen. Für die Berechnung von Wärmetauschern bzw. Wärmeübertragung sind Gl.2-9 bis Gl.2-11 relevant. (Rieberer, 2015)

$$\dot{Q} = U \cdot A \cdot \Delta T_{log}$$
 GI.2-9

$$\Delta T_{log} = \frac{\Delta T_e - \Delta T_a}{\ln \frac{\Delta T_e}{\Delta T_a}}$$
GI.2-10

$$\dot{Q} = \dot{m}_{air} \cdot \Delta h_{air}$$
 Gl.2-11

Die Wärmeleistung \dot{Q} berechnet sich aus dem Wärmedurchgangskoeffizient U multipliziert mit der Fläche des Wärmetauschers A und der logarithmischen Temperaturdifferenz ΔT_{log} . Für die logarithmische Temperaturdifferenz ΔT_{log} werden die Temperaturdifferenzen ΔT_e und ΔT_a benötigt und laut Gl.2-12 und Gl.2-13 berechnet. Dabei werden Temperaturdifferenzen an der Eingangs- und Ausgangsseite gebildet, siehe Abbildung 2-9.

Abbildung 2-9: Temperaturverläufe eines Wärmetauschers in Abhängigkeit der Länge (Steiner, 2014)

$$\Delta T_e = T_{1e} - T_{2a} \qquad \qquad \text{Gl.2-12}$$

$$\Delta T_a = T_{1a} - T_{2e} \qquad \qquad \text{Gl.2-13}$$

Abbildung 2-10 zeigt schematisch die Ein- und Austrittszustände des Kältemittels und der Luft für ein Außengerät der verwendeten Wärmepumpe.

Abbildung 2-10: Schematische Darstellung des Außengerätes

Am Außengerät (siehe Abbildung 2-10 und Abbildung 2-11) ist der Verdampfer als Gegenstromwärmetauscher ausgeführt. Luft, als Wärmeträgermedium, tritt mit der Quelleneintrittstemperatur $t_{source,in}$ ein und mit der Quellenaustrittstemperatur $t_{source,out}$ aus. Der Verlauf für die Quellentemperatur ist in Abbildung 2-14 als blaue Linie zu sehen. Durch die übertragene Wärmeenergie verdampft das Kältemittel mit der Verdampfungstemperatur t_{evap} im Kältemittelkreis und wird meist noch überhitzt. Der Kältemittelkreis ist in Abbildung 2-14 grün eingezeichnet. Laut Rieberer (2015) wird in der Phase der Überhitzung für dieselbe Wärmeleistung mehr Wärmetauscherfläche benötigt als im Bereich der Verdampfung. Gründe dafür sind der mäßige Wärmeübergang und die sinkende Temperaturdifferenz zwischen Quelle und Kältemittel, vergleiche dazu auch GI.2-9 und GI.2-10. Die geringste Temperaturdifferenz zwischen Umgebungstemperatur (Quellentemperatur) und Kältemittel liegt beim sogenannten Princh – Point und wird auch als Grädigkeit bezeichnet. Bei realen Wärmetauschern erreicht die Verdampfungstemperatur niemals die Quellentemperatur, deshalb gilt $\Delta T_{PP-Evap} > 0$. Dieser Wert ist ein Maß für die Effektivität des Wärmetauschers. Je geringer der Wert, desto effizienter.

In Abbildung 2-11 ist ein verwendetes Außengerät mit den Ein- und Austrittszuständen dargestellt. Die Kältemittelleitungen sind hier nicht zu sehen.

Abbildung 2-11: Außengerät der Toshiba Luft/Luft-Wärmepumpe

In Abbildung 2-12 ist eine schematische Darstellung des Innengerätes mit den Ein- und Austrittszuständen dargestellt.

Abbildung 2-12: Schematische Darstellung des Innengerätes

Der Kondensator des Innengerätes (siehe Abbildung 2-12 und Abbildung 2-13) ist als Gegenstromwärmetauscher ausgeführt.

Der Kältekreislauf im Heizbetrieb ist in Abbildung 2-14 als grüne Linie zu sehen. Nach der Verdichtung (Kompressoraustritt) tritt gasförmiges, überhitztes Kältemittel in den Kondensator ein. Zuerst erfolgt die Enthitzung und danach die Kondensation bei der Kondensationstemperatur t_{cond} . Die anschließende Unterkühlung erhöht die Enthalpiedifferenz und damit die übertragene wird Wärmeleistung. Als Wärmesenke Raumluft verwendet. Sie tritt mit der Senkeneintrittstemperatur t_{sink,in} ein und mit der Senkenaustrittstemperatur t_{sink,out} aus. Die Senkentemperatur ist in Abbildung 2-14 als rote Linie zu erkennen. Für einen realen Kondensator muss im Pinch-Point $\Delta T_{PP-COND} > 0$ gelten.

Abbildung 2-13 zeigt ein verbautes Truheninnengerät welches im weiteren Verlauf dieser Arbeit noch näher beschrieben wird.

Abbildung 2-13: Truheninnengerät der Toshiba Luft/Luft-Wärmepumpe

Abbildung 2-14: Wärmepumpenkreis und Temperaturverläufe für den Verdampfer und Kondensator im T/h-Diagramm (EES, 2015)

Durch Änderung einiger Parameter welche in Tabelle 2-2 angeführt sind, kann die Verdampfungsund Kondensationstemperatur erhöht bzw. verringert werden.

Parameter	Verdamfpungstemperatur	Kondensationstemperatur	
Außenlufttemperatur steigt	steigt	-	
Raumlufttemperatur sinkt	-	sinkt	
Höherer Luftmassenstrom	steigt	sinkt	
Größere Wärmetauscherfläche	steigt	sinkt	
Vereisung oder Verschmutzung	sinkt	steigt	
Überfüllung	-	steigt	

Tabelle 2-2: Einflussparameter auf die Verdampfungs- und Kondensationstemperatur (Webasto, 2000)

2.5 Luft/Luft-Wärmepumpen

Luft/Luft-Wärmepumpen werden oft als Ersatzgeräte für veraltete Wärmeerzeuger eingebaut. Vor allem wo wenig Platz aufgrund der räumlichen Situation vorhanden ist bzw. kaum ein baulicher Eingriff in bestehende Gebäude möglich ist (z.B. in denkmalgeschützten Gebäuden ist dieser Wärmeerzeuger von Interesse). Luft dient als Wärmequellen- und Wärmesenkenmedium. Problem von Wärmepumpenanlagen mit Außenluft als Wärmequelle ist die tages- und jahreszeitabhängige Temperatur. Der größte Heizwärmebedarf wird vom Gebäude im Winter benötigt, die Außenlufttemperaturen sind in dieser Jahreszeit im Tagesmittel naturgemäß am tiefsten. Eine geringe Außenlufttemperatur führt zu geringeren Leistungszahlen und zu geringeren Heizleistungen. Abbildung 2-15 stellt den Zusammenhang zwischen Außenlufttemperatur, der benötigten Heizleistung des Gebäudes und die Heizleistung der Wärmepumpe bei konstanter Drehzahl nach Rieberer (2015) her.

Außenlufttemperatur [°C]

Abbildung 2-15: Verlauf der benötigten Heizleistung des Gebäudes und der bereitgestellten Heizleistung der Wärmepumpe bei konstanter Drehzahl in Abhängigkeit der Außenlufttemperatur (Rieberer, 2015)

Um bei niedrigen Außenlufttemperaturen die erforderliche Heizleistung eines Gebäudes zu decken, kann eine zusätzliche Heizung oder eine leistungsstärkere Wärmepumpe installiert werden. Durch neue Regelungstechniken und drehzahlgeregelte Kompressoren können sehr gute Leistungszahlen für Wärmepumpen im Teillastbetrieb erreicht werden (Rieberer, 2015).

Der Wasserdampf in der Umgebungsluft stellt ein weiteres Problem dar. Das am Verdampfer auskondensierende Wasser kann bei niederen Oberflächentemperaturen zur Vereisung führen. Besonders kritisch ist der Außenlufttemperaturbereich zwischen ca. +2 °C und -7 °C wegen des hohen absoluten Feuchtigkeitsgehalts. Unter -7 °C ist wenig Wasserdampf vorhanden, sodass es keine nennenswerte Eisbildung gibt. (Cube und Steimle, 1984)

Durch Prozessumkehr wie in Abschnitt 2.4 erwähnt, erfolgt die Enteisung. Auf den SPF (siehe GI.2-4) hat der Enteisungsvorgang (Prozessumkehr von Heiz- auf Kühlbetrieb) negativen Einfluss.

3 DIE LUFT/LUFT-WÄRMEPUMPE AUF BURG RABENSTEIN

Dieses Kapitel beschreibt die Toshiba S-MMS Multisplit Luft/Luft-Wärmepumpe mit direkter Verdampfung und Kondensation auf Burg Rabenstein. Im Verlauf dieses Kapitels wird eine Übersicht über die gesamte installierte Heizleistung auf Burg Rabenstein gezeigt. Danach werden die Außen- und Innengeräte der Kältekreise AG3, AG8 und AG9 erläutert. Diese drei Kältekreise wurden im Rahmen der Masterarbeit von Gründhammer (2014) zur Bestimmung der Leistungszahl mit Messtechnik bestückt. Am Ende wird noch die installierte Messtechnik kurz erläutert.

3.1 Wärmepumpenkreise

Auf Burg Rabenstein wurden 11 Wärmepumpenkreise mit einer Gesamtheizleistung von 546 kW (bei 7 °C Außenluft- und 20 °C Raumlufttemperatur) zur Beheizung einer Nutzfläche von 2400 m² benötigt (Tockner, 2012). Die Bauweise der S-MMS Multisplit Luft/Luft-Wärmepumpe mit direkter Verdampfung und Kondensation erlaubt eine Kombination von mehreren Außengeräten und einer "beliebigen" Positionierung von Innengeräten – begrenzt durch die max. Anzahl an Innengeräten je Außengerät, der Leitungslänge und der zu überwindenden Höhendifferenz (Toshiba, 2005). Durch Umschalten eines 4-Wege-Ventiles ist auch ein Kühlbetrieb möglich. Dieser Betriebsmodus wird jedoch meist nur zum Abtauen der Verdampferflächen im Winter verwendet. Ein gleichzeitiger Heiz- und Kühlbetrieb ist nicht möglich.

Einen groben Überblick für die Gesamtnennheizleistung der Wärmepumpenanlage zeigt Tabelle 3-1.

Beheizte Nutzfläche	2400 m²
Anzahl der Außeneinheiten	11
Anzahl der Außengeräte	20
Anzahl der Innengeräte	72
Nennheizleistung aller Außengeräte bei	
20 °C Außenlufttemperatur und 7 °C	546,2 kW
Raumlufttemperatur	
Max. Kühlleistung aller Außengeräte bei	
27 °C Raumlufttemperatur und 35 °C	485,2 kW
Außenlufttemperatur	

Tabelle 3-1: Daten der Wärmepumpenanlage auf Burg Rabenstein (in Anlehnung an Tockner, 2012)

In einem Kältekreis sind 1 bis 2 Außengeräte durch zwei Kupfersammelleitungen (Kältemittelvorlauf und –rücklauf) mit den Innengeräten verbunden (Toshiba, 2005). Die Leistungsabgabe jedes Innengerätes wird durch Regelung des Kältemittelmassenstromes und des Luftvolumenstromes individuell bestimmt. Mit einem Außengerät können unterschiedliche Räumlichkeiten beheizt oder gekühlt werden.

Die Burg Rabenstein besteht aus drei großen Bereichen, dem Konferenz-, Nord- und Schlosstrakt. Die genannten Bereiche sind in Abbildung 3-1 zu sehen. Da im weiteren Verlauf dieser Arbeit nur die Wärmepumpenkreise AG3, AG8 und AG9 mit Messtechnik ausgestattet wurden, wird im Speziellem nur auf diese eingegangen.

Abbildung 3-1: Gebäudekomplex der Burg Rabenstein (Burg Rabenstein, 2016a)

Tabelle 3-2 zeigt für die Kältekreise AG3, AG8 und AG9 den Einsatzbereich auf Burg Rabenstein (vgl. dazu auch Abbildung 3-1) und die installierten Heizleistungen für die jeweiligen Außen- und Innengeräte. Nähere Details zu den Außengeräten sind in Kapitel 3.2 und den Innengeräten in Kapitel 3.3 zu finden.

Tabelle 3-2: Heizleistung der installierten Außen- und Innengeräte für die Wärmepumpenkreise AG3, AG8 und AG9 (in Anlehnung an Tockner, 2012)

Wärmepumpenkreis	Bereich	Nennleistung der Außengeräte bei 7 °C	Heizleistung der Innengeräte bei 20 °C Raumlufttemperatur $(= \dot{C}_{Zone,i})$
AG3	Rittersaal / Südtrakt	56,5 kW	56 kW
AG8	Rittinger Bar / Nordtrakt	76,5 kW	24 kW
	Gewölbe / Nordtrakt		48 kW
AG9	Concert Hall / Nordtrakt	76,5 kW	76 kW

3.2 Außengeräte

Die Außengeräte der S-MMS Multisplit Luft/Luft-Wärmepumpe können zu Einheiten (=Außengeräteeinheit) von 1 bis 4 Außengeräte zusammengefasst werden. Dabei übernimmt ein Außengerät (= "Header unit") die Kommunikation mit den anderen Außengerät(en) (= "Follower unit") sowie den Innengeräten. Die Regelung der Wärmepumpe erfolgt durch eine Vielzahl an Ventilen, Druck- und Temperatursensoren. In Abbildung 3-2 ist eine Außengeräteeinheit ("Header" und "Follower") erkennbar. Die Aufgabengebiete der markierten Sensoren werden in Kapitel 3.2.1 erklärt.

Die Modellbezeichnungen und technischen Daten für AG3, AG8 und AG9 sind aus Tabelle 3-3 zu entnehmen.

Tabelle 3-3: Modellbezeichnungen und Nennheizleistungen der verwendeten Außengeräte für AG3, AG8 und AG9 (Toshiba, 2005)

Wärmepumpenkreis	AG3	AG8 und AG9
Modellbezeichnung der Außengeräteeinheit	MMY-MAP1801HT8	MMY-MAP 2411HT8
Modellbezeichnung Außengerät	1 x MMY-MAP0801HT8 1 x MMY-MAP1001HT8	2 x MMY-MAP1201HT8
Nennheizleistung bei 7°C Außenlufttemperatur und 20°C Innenraumtemperatur	56,5 kW	76,5 kW
Leistungsaufnahme	14,37 kW	18,68 kW
COP (EER)	3,93	3,69

Ein Außengerät (siehe Abbildung 3-2) besteht aus folgenden wichtigen Komponenten: 2 Doppelrollkolbenkompressoren, ein 4-Wege-Ventil, Temperatur- und Drucksensoren, einen Ölabscheider und Öltank, 2 Wärmetauscher, Ventile, zwei PMV (Pulsmotorgesteuerte Ventile) Expansionsventile, einen Flüssigkeitstank (= Hochdrucksammler) zum Ausgleichen des unterschiedlichen Kältemittelvolumens bei unterschiedlichen Betriebspunkten und einen Niederdrucksammler (Accumulator) als Flüssigkeitsabscheider. Die Außengeräte sind über Kupfersammelleitungen mit den Innengeräten verbunden.

Indoor unit

Abbildung 3-2: Schematischer Aufbau der Toshiba Multi-Split Luft/Luft Wärmepumpe (in Anlehnung an Toshiba, 2005)

3.2.1 Regelungscharakteristik des Wärmepumpenkreislaufes

Das pulsgesteuerte Expansionsventil ist eine der wichtigsten Steuerkomponenten. Der Normalbetrieb der Luft/Luft Wärmepumpe findet im Heizmodus statt (siehe rot markierte Sensoren in Abbildung 3-2). Die Sensoren und deren Aufgabe sind in Tabelle 3-4 aufgezählt.

Tabelle 3-4: Sensoren, Ventile und deren Aufgabenbereich im Heizbetrieb (Toshiba, 2004)

Sensorbezeichnung	Aufgabengebiet
TD1, TD2	Kompressoraustrittstemperatur
TS1	Überhitzung nach dem Verdampfer
TE1	Temperatursensor zur Regelung des
1 🗆 1	Gebläses und der Enteisung
ТО	Außentemperatur
Low Prossuro Sonsor Ps	Messen des Niederdruck und Regelung der
	Überhitzung
4-way valve	Stellung im Heizbetrieb

Durch Einstellung des 4-Wege-Ventiles auf Heizbetrieb werden die beiden Gegenstromwärmetauscher des Außengerätes als Verdampfer verwendet. Das Expansionsventil regelt dabei die Überhitzung des Kältemittels, damit vollständig verdampftes Kältemittel in die Abhängigkeit Kompressoren eintritt. Das Expansionsventil wird dabei in der Kompressoraustrittstemperatur TD1 bzw. TD2, der Überhitzungstemperatur TS1 und des Niederdrucksensors Ps geregelt. (Toshiba, 2004)

Weitere Informationen zur Funktionsweise eines pulsmotorgesteuerten Expansionsventiles sind in Kapitel 2.3 und Kapitel 3.2.3 zu finden.

Die Regelung des Gebläses und damit des Luftmassenstromes erfolgt über den Außentemperatursensor TO. Bei gemessenen Temperaturen über 25 °C am Sensor TE1 für 5 Minuten schalten die Außengeräte ab. Treten jedoch Temperaturen an TE1 von -2 °C beim Start über einen Zeitraum von 25 Minuten bzw. für 55 Minuten im Normalbetrieb auf, wird der Enteisungsvorgang aktiviert und das 4-Wege-Ventil auf Kühlbetrieb gestellt. Die Gebläseregelung und Regelung der Kompressorfrequenz im Kühlbetrieb erfolgt mit Sensor Pd des "Header"-Außengerätes. (Das Gebläse am Innengerät wird deaktiviert, siehe dazu Abschnitt 3.3.1) (Toshiba, 2004)

Tabelle 3-5 beschreibt die wichtigsten Sensoren im Kühl- bzw. Enteisungsbetrieb (siehe auch blau markierte Sensoren in Abbildung 3-2).

2004)			
Sensorbezeichnung	Aufgabengebiet		
TL	Temperatur der Unterkühlung im Kühlbetrieb		
High Pressure Sensor Pd	Messen des Hochdruckes im Kühlbetrieb		
4-way valve	Stellung in Kühlbetrieb		

Tabelle 3-5: Sensoren, Ventile und deren Aufgabenbereich im Kühl- bzw. Enteisungsbetrieb (Toshiba,

Die beiden Wärmetauscher am Außengerät werden nun als Kondensatoren verwendet. Das Heißgas aus dem Kompressor tritt in den Wärmetauscher ein und diese werden innerhalb von 2 Minuten enteist. Die Stellung des pulsmotorgesteuerten Expansionsventiles regelt die Unterkühlung im Enteisungsbetrieb. Die Regelung erfolgt mithilfe der Unterkühlungstemperatur TL und dem Hochdrucksensor Pd. (Toshiba, 2004) Die hier angesprochene Unterkühlungsregelung (im Enteisungsbetrieb) vor dem Hochdrucksammler (bzw. Flüssigkeitstank) dient als Vordrosselung (siehe dazu auch Abschnitt 3.3.2 – Unterkühlung).

Tabelle 3-6 zeigt weitere Sensoren und deren Aufgabengebiet während des Betriebes der Wärmepumpe (siehe grün markierte Sensoren in Abbildung 3-2)

Sensorbezeichnung	Aufgabengebiet	
TK1, TK2, TK3, TK4	Kontrollieren den Ölstand im Kompressor	
High Pressure Sensor Pd	Kontrolle der Kompressorkapazität	

Tabelle 3-6: Sensoren und deren Aufgabengebiet während des Betriebes (Toshiba, 2004)

Die auf Burg Rabenstein installierte Wärmepumpe mit variablem Kältemittelmassenstrom verwendet je Außengerät zwei vollhermetische Doppelrollkolbenkompressoren. Die Drehzahl wird in Abhängigkeit der Kapazitätsanforderung der Innengeräte eingestellt. Je nach Leistungsanforderung werden die Kompressoren des "Header"-Außengerätes und gegebenenfalls die der "Follower"-Außengeräte aktiviert.

Ein Umformer wandelt je Außengerät, den Netzwechselstrom (230V, 50Hz) in Gleichstrom um. Ein Gleichstrom-Inverter wandelt anschließend den Gleichstrom je nach Leistungsanforderung in ein PWM-Signal (Pulsweitenmodulation) mit der richtigen Frequenz und Amplitude um. Der Kompressor wird durch einen bürstenlosen Gleichstrommotor stufenlos in einem Drehzahlband von 900 bis 9000 U/min betrieben. (Tockner, 2012)

Frequenz und Amplitude werden vom "Header"-Außengerät vorgegeben und falls notwendig, dem "Follower"-Gerät übermittelt. Durch wechselnden Betrieb der Kompressoren erfolgt eine Abnutzung. Der angetriebene Verdichter erzeuat gleichmäßigere damit ie nach Leistungsanforderung einen passenden variablen Kältemittelmassenstrom. Falls der Hochdrucksensor Pd einen Wert von 35 bar überschreitet, wird der Kompressor gestoppt. Weitere Informationen bzgl. der Funktionsweise der Doppelrollkolbenkompressoren sind in Kapitel 3.2.2 nachzulesen. (Toshiba, 2004)

Während des Kompressorbetriebes wird der Ölstand durch Messen der Sensortemperaturen TK1 bis TK4 kontrolliert. Wenn der Ölstand zwischen den Kompressoren eines Außengerätes bzw. der Außengeräte einer Außengeräteeinheit weit abweicht, wird der Ölstand durch eine Ölausgleichssteuerung mit den Ventilen SV3A bis SV3D angepasst. (Toshiba, 2004)

3.2.2 Funktionsweise der Doppelrollkolbenkompressoren

Doppelrollkolbenkompressoren zählen zu den Verdrängungsverdichtern. An der Antriebswelle sind zwei Kolben exzentrisch angebracht und gegenüber angeordnet (siehe Abbildung 3-3). Durch den Massenausgleich erfolgt ein ruhiger Lauf ohne Vibrationen. (Sobotta, 2015)

Abbildung 3-3:Rollkolben an der Antriebswelle (Sobotta, 2015)

Der Verdichtungsvorgang ist in Abbildung 3-4 zu sehen. Beim Verdichten wird der Rollbalken (1) durch die Exzenterwelle (2) angetrieben. Durch den federbelasteten Gleitdichtungsschieber (3) wird der Verdichtungsraum in einen Saug- und Druckraum unterteilt. Durch Ansaugen von gasförmigem Kältemittel (4) und das Abrollen des Rollbalkens (1) an den Wänden des Verdichterraumes wird das einströmende Gas auf höheren Druck verdichtet und anschließend durch eine Auslassöffnung in die Druckleitung entlassen. Manche Kompressoren reagieren empfindlich auf das Ansaugen von Flüssigkeitströpfchen und können durch Flüssigkeitsschläge zerstört werden. Deshalb wird ein Niederdrucksammler oder eine Überhitzung gepaart mit dem Flüssigkeitsabscheider (5) eingebaut und das Eindringen von Flüssigkeitströpfchen wird verhindert (Sobotta, 2015).

Abbildung 3-4: Verdichtungsvorgang eines Rollkolbenkompressors (Sobotta, 2015)

3.2.3 Funktionsweise eines pulsmotorgesteuertes Expansionsventil

In Abbildung 3-5 sind exemplarisch die Komponenten eines pulsmotorgesteuerten Expansionsventils des Herstellers Danfoss (2010) zu sehen. Flüssiges Kältemittel tritt nach dem Kondensator bzw. Hochdrucksammler in die Einlassöffnung des Expansionsventils ein. Durch Messung der Überhitzungstemperatur und der Sättigungstemperatur am Verdampferaustritt erfolgt die Regelung. Die Regelgröße ist dabei die Differenz von Überhitzungstemperatur und der Sättigungstemperatur. Je nach Regelgrößenwert verändert die Spule die Stellung des Permanentmagnetmotors und damit die Position des Nadelventils. Dies bedeutet gleichzeitig eine Änderung des Öffnungsquerschnitts. Bei kleinem Regelgrößenwert ist die Überhitzung zu gering und der Öffnungsquerschnitt muss verkleinert werden. Bei zu großem Regelgrößenwert ist die Überhitzung zu hoch und der Öffnungsquerschnitt muss vergrößert werden. Das Kältemittel strömt durch eine Verengung und wird dadurch auf Sättigungsdruck entspannt. Das entspannte Kältemittel verlässt das Expansionsventil durch die Auslassöffnung.

Abbildung 3-5: Pulsmotorgesteuertes Expansionsventil (in Anlehnung an Danfoss, 2010)

3.3 Innengeräte

In den Räumen der Burg Rabenstein werden verschiedene Innengeräte eingesetzt. Sie unterscheiden sich in Form, Art der Luftführung und dem Leistungsbereich. Der schematische Aufbau ist bei allen Innengeräten gleich und in Abbildung 3-6 zu sehen. Ein Innengerät besteht aus einem Wärmetauscher, einem Gebläse, dem pulsmotorgesteuerten Expansionsventil, aus Temperatursensoren und Kupferrohrleitungen. Eine Zusammenfassung der Funktion der einzelnen Sensoren ist in Tabelle 3-11 zu sehen.

Abbildung 3-6: Schematischer Aufbau der Innengeräte (Toshiba, 2005)

Im Gebäudekomplex der Burg Rabenstein sind unterschiedliche Innengeräte verbaut. In Tabelle 3-7 werden für den jeweiligen Wärmepumpenkreis der Modelltyp, die Anzahl der Innengeräte je Gebäudetrakt und die dazugehörigen installierten Gesamtnennheizleistungen der Innengeräte angeführt. Vergleiche dazu auch Tabelle 3-2.

Tabelle 3-7: Installierte Innengeräte für die Wärmepumpenkreise AG3, AG8 und AG	9 (Toshiba, 2005)
---	-------------------

	0			
Wärmepumpenkreise	AG3	AG8		AG9
Gebäudetrakt	Rittersaal	Rittinger Bar	Gewölbe	Concert Hall
MML-AP0241BH à 8 kW	7	3	6	6
MMU-AP0151MH à 5 kW	-	-	-	4
MMU-AP0121MH à 4 kW	-	-	-	2
Gesamtnennheizleistung	56 kW	24 kW	48 kW	76 kW
		72 k	W	

Truhengerät:

Die Truhengeräte werden an den Wänden montiert. Abbildung 3-7 zeigt eine schematische Darstellung eines Truhengerätes (vgl. dazu Abbildung 2-13). An der Unterseite wird Raumluft mittels Ventilator angesaugt (Air inlet) und durch einen Filter (Air Filter) von Dunst und Fremdkörperablagerungen gereinigt. Am Wärmetauscher (air heat exchanger) wird die angesaugte Luft erwärmt und an der Oberseite ausgeblasen (Air outlet flange). (Toshiba, 2004)

Die technischen Daten für das Truhengerät sind in Tabelle 3-8 angeführt.

Abbildung 3-7: Prinzipskizze eines Truhengerätes (Toshiba, 2004)

Tabelle 3-8:	Truhengerät MML-AP0241BH	(Toshiba	2005)
		(i oonibu	, 2000)

Modellbezeichnung	MML-AP0241BH	
Nennheizleistung [kW]	8	
Gebläseleistung [W]	70	
Gebläseluftstrom <i>V</i> _{air} low/mid/high [m³/h]	640/790/950	

4-Wegekassette:

4-Wegekassetten werden im Gegensatz zu den Truhengeräten an der Decke befestigt. Abbildung 3-8 zeigt eine schematische Darstellung einer 4-Wegekassette. Raumluft wird durch einen Ventilator angesaugt (Air inlet grille) und gleichzeitig durch einen Filter von Dunst und Fremdkörper gereinigt (Air Filter). Der Wärmetauscher erwärmt die Luft und diese wird an der Auslassöffnung ausgeblasen (Air outlet). (Toshiba, 2004)

Die technischen Daten für zwei unterschiedliche Modelle sind in Tabelle 3-9 ersichtlich.

Abbildung 3-8: Prinzipskizze einer 4-Wegekasette (Toshiba, 2004)

Modellbezeichnung	MMU-AP0121MH	MMU-AP0151MH		
Nennheizleistung [kW]	4	5		
Gebläseleistung [W]	60	60		
Gebläseluftstrom <i>V</i> _{air} low/mid/high [m ³ /h]	680/730/800	790/830/930		

|--|

3.3.1 Regelungscharakteristik der Innengeräte

Die verwendeten Innengeräte können im Heiz- oder Kühlbetrieb betrieben werden. Beim Heizbetrieb wird der Gegenstromwärmetauscher des Innengerätes als Kondensator betrieben. Gasförmiges Kältemittel tritt ein und wird im Wärmetauscher kondensiert.

Mit dem Sensor TC2 (TCJ als Kontrolle) wird im Heizbetrieb die Unterkühlung (Vordrosselung) und der Massenstrom durch das pulsmotorgesteuerte Expansionsventil gesteuert, siehe Abbildung 3-6 (Toshiba, 2004). Dadurch kann jedes Innengerät unabhängig voneinander geregelt werden. Die Unterkühlung des Innengerätes beim Heizbetrieb wird in Abschnitt 3.3.2 näher erklärt.

Zur Wärmeübertragung an den Wärmetauschern erfolgt die luftseitige Gebläseregelung durch die Temperatursensoren TC2 bzw. TCJ. Der höhere Temperaturwert von TC2 oder TCJ wird für die Regelung herangezogen. Die Gebläseregelung erfolgt in 5 unterschiedlichen Stufen, siehe dazu Tabelle 3-10. (Toshiba, 2004)

Kältemittelrücklauftemperatur an TC2 bzw. TCJ [°C]	Betriebsmodus	
unter 16 bis 26	OFF	
26 bis 28	LOW	
28 bis 30	MED	
30 bis 32	HIGH	
über 32	ULTRA HIGH	

Tabelle 3-10: Gebläsebetriebsmodus in Abhängigkeit der Kältemittelrücklauftemperatur (Toshiba, 2004)

Der Kühlbetrieb wird meist nur beim Abtauvorgang (Enteisung) verwendet. Dabei wird das Gebläse am Innengerät deaktiviert und der Wärmetauscher wird als Verdampfer verwendet. Zur Überhitzungsregelung während des Abtauvorganges wird der Temperatursensor TC1 (TCJ als Kontrolle) verwendet. (Toshiba, 2004)

In Tabelle 3-11 sind alle Sensoren und deren Aufgabengebiet nochmals zusammengefasst.

Sensorbezeichnung	Aufgabengebiet	
TC1	Regelung der Überhitzung im Kühlbetrieb	
TC2	Regelung der Unterkühlung im Heizbetrieb Regelung des Gebläsebetriebsmodus	
TCJ	Regelung der Überhitzung im Kühlbetrieb Regelung der Unterkühlung im Heizbetrieb Regelung des Gebläsebetriebsmodus	
ТА	Gebläseansaugtemperatur	

Tabelle 3-11: Sensoren und deren Aufgabengebiet am Innengerät (Toshiba, 2004)

Um ein Auskühlen der Räume während des Abtauvorganges zu vermeiden, müssen die Temperaturen an TC2 und TCJ höher als die Temperatur TA (Temperatur an der Unterseite des Innengerätes) sein, siehe auch Abbildung 3-6.

3.3.2 Unterkühlung (Vordrosselung) am Innengerät im Heizbetrieb:

Mithilfe der Unterkühlung kann eine höhere Enthalpiedifferenz und damit eine höhere Wärmleistung am Wärmetauscher übertragen werden. Zudem liegt das Kühlmittel nach der Unterkühlung sicher in flüssiger Form vor. Eine zu große Unterkühlung kann jedoch eine höhere Kondensationstemperatur hervorrufen und hat damit einen negativen Einfluss auf die Leistungszahl einer Wärmepumpe.

Für die Wärmepumpe auf Burg Rabenstein können zwei unterschiedliche Grenzfälle für die Unterkühlung nach GI.3-1 und GI.3-2 definiert werden.

$$\Delta T_{sub 2} = t_{2 sat 1}(p_2) - t_{2 herechnet}(h_3, p_2)$$
GI.3-1

$$\Delta T_{sub,3} = t_{3,sat,l}(p_3) - t_3$$
 GI.3-2

 $\Delta T_{sub,2}$ beschreibt den ersten Grenzfall der Unterkühlung, siehe GI.3-1. Dabei wird angenommen, dass in den Kupferrohrleitungen kein Druckverlust auftritt und die Druckdifferenz zwischen Hochdruck (p2 beim Kompressoraustritt) und der Druck nachdem Kondensator (p3) durch das PMV (pulsmotorgesteuertes Expansionsventil) abgebaut wird. Die Sättigungstemperatur $t_{2,sat,l}$ wird aus dem gemessenen Austrittsdruck (p2) am Kompressor bestimmt. Der Wert $t_{2,berechnet}$ wäre die Unterkühlung ohne Druckverluste und berechnet sich aus dem Hochdruck (p2) und der Enthalpie bei Messpunkt 3 (t3, p3). Bei $\Delta T_{sub,3}$ erfolgt der gesamte Druckabbau durch Verluste in den Kupferrohrleitungen. Das PMV baut bei diesem zweiten Grenzfall keinen Druck ab. $\Delta T_{sub,3}$ wird aus der Sättigungstemperatur $t_{3,sat,l}$ bei gemessenem Druck nach dem Kondensator (p3) minus der gemessenen Temperatur nach dem Kondensator (t3) berechnet, siehe GI.3-2.

Die reale Unterkühlung wird zwischen den beiden Grenzfällen $\Delta T_{sub,2}$ und $\Delta T_{sub,3}$ liegen. Die genannten Sättigungstemperaturen und Drücke sind in Abbildung 3-9 zu sehen.

Abbildung 3-9: Schema der Unterkühlung am Innengerät

3.3.3 Leistungsanforderung der Innengeräte

Die Toshiba S-MMS Multisplit Wärmepumpe kann durch mehrere Fernbedienungen angesteuert werden. Dadurch können verschiedene Räumlichkeiten auf unterschiedliche Raumsolltemperaturen mit einem Außengerät bzw. einer Außengeräteeinheit beheizt werden.

Die Leistungsanforderung wird aus der benötigten Heizlast je nach Raumsolltemperatur bestimmt. Durch eine Regellogik am Außengerät werden Kondensationsdruck und Temperatur und damit die Kompressorleistung bestimmt. (Böhm, 2014)

Die genaue Regellogik ist leider nicht bekannt.

3.4 Temperaturabhängigkeit der Leistungszahl

Luft als Wärmequelle und deren tages- und jahreszeitabhängiger Temperaturverlauf ist der größte Nachteil von Luft/Luft-Wärmepumpen. Dabei entsteht ein Zielkonflikt, die höchste Heizleistung wird bei kalten Außenlufttemperaturen benötigt (vgl. Abbildung 2-15). Die folgenden Abbildungen beschreiben exemplarisch die Außengeräteeinheit MMY-MAP 2411HT8 von AG8 bzw. AG9.

In Abbildung 3-10 ist der COP je nach Teillastfaktor *L* (= part load) in Abhängigkeit von der Außenlufttemperatur zu sehen. Der Teillastfaktor *L* wird durch Formel GI.3-3 berechnet. Dabei entspricht \dot{Q}_h der abgegebenen Heizleistung der vermessenen Wärmepumpen AG3, AG8 und AG9. Aus dem Herstellerkennfeld (siehe Anhang A1) von Toshiba (o.J.) wird die maximale Heizleistung \dot{Q}_{100} in Abhängigkeit der Außenlufttemperatur eingesetzt. Durch Division ist die Teillast des momentan betrachteten Punktes bzw. Bereiches berechenbar. Die besten Leistungszahlen sind bei einer Teillast von 40 bzw. 50 % möglich. Bei 30 % Teillast ist ab 7 °C Außenlufttemperatur keine merkliche COP-Verbesserung zu erwarten.

Bis zum Abschluss dieser Arbeit war nicht bekannt, nach welchen Kriterien (Norm, Messaufbau, Innengeräte) das Datenblatt erstellt wurde.

Abbildung 3-10: COP für unterschiedliche Teillasten in Abhängigkeit von der Außenlufttemperatur (Toshiba, o.J.)

3.5 Messtechnische Ausstattung

Auf Burg Rabenstein wurden im Rahmen der Masterarbeit von Gründhammer (2014) mehrere Kältekreise S-MMS Luft/Luft-Wärmepumpe mit Druck- und Temperatursensoren sowie einem Massenstrommessgerät ausgestattet. Die gemessenen Daten werden ausfallssicher gespeichert. Die folgenden Erläuterungen für dieses Kapitel wurden aus Gründhammer (2014) entnommen.

3.5.1 Messpunkte

Die Kältekreise AG3, AG8 und AG9 wurden am Außengerät mit Messtechnik bestückt. Abbildung 3-11 zeigt dabei die Außengeräteeinheit des AG8 und die dazugehörigen Messpunkte.

Für die Messpunkte 1 bis 3 wurden jeweils Druck- und Temperatursensoren und zusätzlich noch ein Massenstrommessgerät verbaut. Die Messpunkte wurden so gewählt, damit die Nutzleistung im Heiz- wie auch im Abtaubetrieb bestimmt werden kann.

Messpunkt 1 wurde nur für den Wärmepumpenkreis AG8 verbaut, damit kann aus den Messdaten zusätzlich der isentrope Wirkungsgrad (siehe GI.2-9) berechnet werden. Mit den installierten Druck- und Temperatursensoren wird der Zustand am Kompressoreintritt gemessen. Dies entspricht im Heiz- sowie im Kühlbetrieb dem Verdampferaustrittszustand. Im Heizbetrieb werden bei Messpunkt 2 Druck und Temperatur am Kompressoraustritt gemessen. Im Kühlbetrieb wird der Verdampferaustrittszustand gemessen. Am Messpunkt 3 werden Druck, Temperatur und der Kältemittelmassenstrom gemessen. Dies entspricht im Heiz- und Kühlbetrieb dem
Kondensatoraustrittszustand. Zusätzlich sind noch luftseitige Temperatursensoren im Wärmetauscher des Außengerätes angebracht. Damit kann die luftseitige Temperaturänderung berechnet werden.

Abbildung 3-11: Messschema am Außengerät AG8 im Heizbetrieb (in Anlehnung an Gründhammer, 2014)

In Abbildung 3-12 sind beispielhaft die Messpunkte im Heizbetrieb im T/h-Diagramm mithilfe von EES (2015) erstellt worden. Für ein T/h-Diagramm im Kühlbetrieb sei auf die Masterarbeit von Gründhammer (2014) verwiesen.

Abbildung 3-12: Messpunkte im Heizbetrieb, dargestellt im T/h-Diagramm

3.5.2 Messgeräte

Der Kältemittelmassenstrom wird laut Gründhammer (2014) auf der Flüssigseite durch das Coriolis-Durchflussmessgerät der Firma ABB am Messpunkt 3 bestimmt. Im Massenstrommessgerät ist bereits ein Temperatursensor verbaut, deshalb musste kein zusätzlicher Temperaturfühler eingebaut werden.

Alle Drucksensoren der Fa. Vega arbeiten nach dem kapazitiven Prinzip und liefern ein Ausgangssignal von 4 bis 20 mA. Als druckführender Anschluss wurde ein Kupferrohr direkt in den Kältekreis eingelötet. Zur Messung der Kompressoraustrittstemperatur (Messpunkt 2) wurden nass eingebaute Pt100 Fühler eingelötet. Diese geben ein Ausgangssignal von 4 bis 20 mA aus.

Mithilfe des Thermoelementes Typ K am Wärmetauscher bzw. am Kompressoreintritt können die luftseitigen Ansaug- und Ausblastemperaturen bzw. Kompressoreintrittstemperaturen gemessen werden.

Die aufgenommene elektrische Leistung wird mithilfe von elektronischen Drehstromzählern der Firma Eltako aufgezeichnet. Die Wirkenergie wird anhand der Differenzströme am Ein- und Ausgang berechnet und anschließend aufsummiert. Das Ausgangssignal ist ein Impuls, wobei 1000 Impulse eine Kilowattstunde ergeben.

Für weitere Details zur Kalibrierung, zu Messunsicherheiten und dem Einbau, wird auf die Masterarbeit von Gründhammer (2014) verwiesen.

3.5.3 Messdatenaufzeichnung

Um die gemessenen Daten ausfallssicher zu speichern, wurde ein Messsystem der Firma Gantner Instruments verbaut. Durch ein serielles Bussystem kommunizieren mehrere Messmodule der Produktserie Q.series mit dem Controller Q.gate. Das Zusammenspiel zwischen Anwender und Controller erfolgt durch die grafische Programmierebene test.commander. Es können dadurch bereits Rechenoperationen hinterlegt werden. Die Spannungsversorgung erfolgt mit 24 V DC. Mittels eines Ethernetanschlusses können die Daten ausgelesen werden. (Gründhammer, 2014)

Für das verbaute Messsystem auf Burg Rabenstein wurden Kalibrierkurven und die Umrechnung des Ausgangsignals auf die gewünschten Werte als Rechenoperationen hinterlegt. Die Messdaten werden sekündlich geloggt und anschließend am Q.gate – Controller angeschlossenen USB – Stick gespeichert. Am USB – Stick werden auch die Zählerstände der Drehstromzähler gespeichert, um bei einem Stromausfall die Zählerstände wieder zu laden. (Gründhammer, 2014)

Der Messdatenzugriff erfolgt derzeit durch die Ethernet-Schnittstelle via FTP. Die Messdaten werden Vorort auf den Testo-Server der Burg Rabenstein gesichert. Die Daten können Vorort bzw. über Fernzugriff durch eine Remotedesktop-Verbindung betrachtet und ausgewertet werden.

Für nähere Details wird auf die Masterarbeit von Gründhammer (2014) verwiesen.

4 MESSUNG UND AUSWERTUNG

Für die Bestimmung der Effizienz der Toshiba Luft/Luft-Wärmepumpe wurde, wie in Kapitel 3 erläutert, ein Messsystem installiert. In diesem Kapitel wird zuerst der Ausgangszustand der Wärmepumpenanlage vor Beginn dieser Arbeit beschrieben, danach erfolgt eine Überprüfung der Drehstromzähler an den Außengeräten. Anschließend folgen noch Messdaten zur Vermessung der Innengeräte und am Ende dieses Kapitels werden einige stationäre Messpunkte analysiert.

4.1 Bestandsaufnahme für die Wärmepumpenkreise AG3, AG8 und AG9

Bereits im Rahmen vorhergehender Masterarbeiten wurden Messdaten ausgewertet. Die folgenden Daten und Erkenntnisse wurden alle aus der Masterarbeit von Gründhammer (2014) entnommen.

In Abbildung 4-1 und Abbildung 4-2 ist ein 5-Tages-Raumtemperaturprofil über einem Zeitraum vom 20.02. bis 24.02.2014 für den Nordtrakt dargestellt. Die Raumlufttemperatur wurde dazu auf 15 °C abgesenkt. Beginnend mit 17,5 °C wird die Raumluftsolltemperatur jeweils um Mitternacht um 2,5 K Schritte bis auf 25 °C erhöht und danach wieder auf 22,5 °C gesenkt. Die dabei ermittelten stündlichen COP-Werte (bzw. SPF-Werte) werden in weiterer Folge als Stundenmittelwerte bezeichnet und lagen unter den Herstellerangaben von Toshiba (o.J.).

Die Außenlufttemperatur lag zwischen 0 und 8 °C, die Raumlufttemperatur für die Rittinger Bar (AG8) lag bei 17 °C bis 28 °C (siehe Abbildung 4-1 bzw. Abbildung 4-2). Der Raumlufttemperatursensor in der Rittinger Bar ist direkt über einer Auslassöffnung eines Innengerätes platziert, deshalb folgt die Raumlufttemperatur nicht optimal der Solltemperatur. Bei 17 °C Raumlufttemperatur wurde 7,5 kW Heizleistung benötigt. Bei 26 °C Raumlufttemperatur dann 25 kW Heizleistung. Die Stundenmittelwerte bzw. der stündliche COP lag am ersten Tag fast durchgehend unter 2. Klar ersichtlich ist auch der Einfluss der Außenlufttemperatur. Bei höheren Außenlufttemperaturen liegt der stündliche COP etwas höher. Die insgesamt niedrigen COP-Werte wurden auf hohe Kondensationstemperaturen zurückgeführt. Durchschnittlich wurde ein Temperaturhub (siehe GI.4-1) von 50 K überwunden.

$$\Delta T_{lift} = t_{cond} - t_{evap}$$
 GI.4-1

Der Temperaturhub ΔT_{lift} wird aus der Differenz der Kondensationstemperatur t_{cond} (bzw. t2") minus Verdampfungstemperatur t_{evap} (bzw. t1") berechnet.

Ein höherer Temperaturhub erfordert eine höhere Kompressorleistung und wirkt sich damit effizienzmindernd auf den COP (Coefficient of Performance) aus.

(Gründhammer, 2014)

Wie kurz zuvor erwähnt, könnte eine zu hohe Kondensationstemperatur die Leistungszahl (COP) senken. Ein Grund für eine zu hohe Kondensationstemperatur wäre z.B. eine Überfüllung der Anlage, dies konnte jedoch ausgeschlossen werden. Während Volumenstrommessungen am Innengerät wurde ein Luftkurzschluss zwischen Innengerät und Abdeckung festgestellt, siehe Abbildung 4-3 und Abbildung 4-4. Dies wurde in der Masterarbeit von Gründhammer (2014) als wesentlicher Grund für die erhöhte Kondensationstemperatur und eine damit verbundene niedrige Effizienz im Vergleich zu den Herstellerangaben genannt.

Abbildung 4-3: Innengerät mit Abdeckung (links) und ein Innengerät ohne Abdeckungen (rechts) (Gründhammer, 2014)

Abbildung 4-4: Schematische Darstellung der Innengeräte ohne (links) und mit Abdeckung (rechts) (Gründhammer, 2014)

Für weitere Details zu den Messdaten sei auf die Masterarbeit von Gründhammer (2014) verwiesen.

4.2 Erste Optimierungsmaßnahmen

Wegen des Luftkurzschlusses wurde an den Truheninnengeräten eine Luftleitvorrichtung angebracht. Das Schema ist in Abbildung 4-5 erkenntlich. In der Rittinger Bar (AG8) geschah die Anpassung durch Schaumstofflippen (siehe Abbildung 4-6) und im Gewölbe (AG8) durch verklebte Kunststoffplatten (siehe Abbildung 4-7, links). Im Bereich der Concert Hall (AG9) konnte eine Anpassung aufgrund der baulichen Situation nicht durchgeführt werden. Auch im Rittersaal (AG3) wurde nur ein Innengerät adaptiert (siehe Abbildung 4-7, rechts).

Abbildung 4-5: Schema der Luftleitvorrichtung (in Anlehnung an Gründhammer, 2014)

Abbildung 4-6: Luftleitvorrichtung durch Schaumstofflippen für AG8 in der Rittinger Bar

Abbildung 4-7: Luftleitvorrichtung für AG8 im Gewölbe (links) und AG3 im Rittersaal (rechts)

4.3 Messungen nach Adaptierung der Innengeräte

Im Rahmen dieser Arbeit wurde eine erste Messreihe im Zeitraum vom 24.11.2015 bis 28.11.2015 ausgewertet. Dabei wurde eine Raumluftsolltemperatur von 24 °C im Rittersaal (AG3), der Rittinger Bar und dem Gewölbe (AG8) sowie der Concert Hall/Galerie (AG9) eingestellt.

AG3:

Im Rittersaal (AG3) wurden nicht alle Innengeräte mit einer Luftleitvorrichtung adaptiert. In 4-8 sind die Stundenmittelwerte der Heizleistung, der Ansaug- bzw. Abbildung Außenlufttemperatur und der Raumlufttemperatur abgebildet. Der Unterschied zwischen der gemessenen Ansaugtemperatur (toutdoor,in) am Außengerät und der Außenlufttemperatur (tambient) während der 96 Stunden kann auf die Positionierung der Außengeräte zurückgeführt werden. Die Außenlufttemperatur (tambient) wurde aus den Daten der Wetterstation in Frohnleiten entnommen. Die Differenz zwischen tambient und toutdoor in betrug bei Stunde 5, 3,9 K. Die ersten 17 h (1. Aktivierung der Wärmepumpe) sind durch niedrige Ansaugtemperaturen (toutdoor,in) und Außenlufttemperaturen (tambient) am Außengerät gekennzeichnet. Die Ansaugtemperatur (toutdoor,in) lag zwischen -6,8 °C und -4,6 °C. Die Raumlufttemperatur (troom,Rittersaal) betrug am Beginn ca. 11 °C und stieg bis zum ersten Abschalten nach Stunde 17 auf ca. 20 °C. Die Heizleistung (\dot{Q}_h) schwankte zwischen ca. 32 bis ca. 37 kW und der COP-Stundenmittelwert lag zwischen 2,38 und 2,95. Zwischen Stunde 18 und 24 war die Wärmepumpe deaktiviert. Ab Stunde 25 (2. Aktivierung der Wärmepumpe) in Abbildung 4-8 stiegen die COP-Stundenmittelwerte wegen höherer Ansaug- bzw. Außenlufttemperaturen. Das große Luftvolumen des Rittersaales in Relation zur installierten Nennheizleistung von 56,5 kW bewirkt eine langsame Beheizung. Erst ab Stunde 49 in Abbildung 4-8 (3. Aktivierung der Wärmepumpe) wurde die eingestellte Raumluftsolltemperatur von 24 °C erreicht. Zwischen Stunde 42 und 48 sowie Stunde 66 bis 68, war die Wärmepumpe abermals außer Betrieb. Da bei AG3 keine Sensoren am Kompressoreintritt (Sauggastemperatur) vorhanden sind, kann keine Auswertung der Kompressoreffizienz erfolgen.

Abbildung 4-8: Stundenmittelwerte im Zeitraum von 4 Tagen für AG3

<u>AG8:</u>

Der Wärmepumpenkreis AG8 wurde seit den letzten Messungen im Jahre 2014 mit Luftleitvorrichtungen in der Rittinger Bar und dem Gewölbe versehen. In Abbildung 4-9 sind die aktuellen Messdaten zu sehen. Insgesamt wurde der Wärmepumpenkreis 4-mal aktiviert. Die Ansaugtemperatur (toutdoor,in) betrug in den ersten 17 h zwischen -7,4 °C und -5,4 °C und lag durchgehend unter der Außentemperatur (tambient) der Wetterstation Frohnleiten. Die Differenz zwischen tambient und toutdoor, in betrug z.B. bei Stunde 5, 4,4 K. Die Heizleistung (\dot{Q}_h) betrug zu Beginn 42,6 kW und verringerte sich kontinuierlich bis auf ca. 22 kW am Ende der ersten 17 h. Wie auch bei AG3 war die Wärmepumpe von Stunde 18 bis 24, 42 bis 48 und 66 bis 68 außer Betrieb. Die Raumlufttemperatur der Rittinger Bar (troom, Rittinger Bar) und dem Gewölbe (troom,Gewölbe) betrug vor Heizbeginn 11 °C. Bei der Geräteauswahl im Nordtrakt wurde auf eine schnelle Beheizung Bedacht genommen. Dadurch können Veranstaltungen kurzfristig stattfinden. Die Überdimensionierung zeigen Tabelle 4-1 und Tabelle 4-2. Deshalb war ab Stunde 14 die eingestellte Raumluftsolltemperatur von 24 °C bereits erreicht. Bei jeder Aktivierung (vom Einschalten bis zum Abschalten) der Wärmepumpe konnte eine sinkende Heizleistung (\dot{Q}_h) wegen bereits erwärmter Raumluft festgestellt werden. Der COP-Stundenmittelwert lag zwischen ca. 2,7 am Beginn der ersten 17 h und verringerte sich auf ca. 2,1 bis 2,2. Beim dritten Aktivierungsvorgang war ab Stunde 53 die gewünschte Raumluftsolltemperatur erreicht. Ab diesem Zeitpunkt (beim 3. Aktivierungsvorgang) konnten größere Differenzen zwischen den COP-Stundenmittelwerten bemerkt werden. Der Raumluftsensor in der Rittinger Bar (troom,Rittinger Bar) ist direkt über einem Innengerät platziert, daher sind große Unterschiede von "Raumluft"- zur Solltemperatur in Abbildung 4-9 ersichtlich.

Eine Verbesserung der COP-Stundenmittelwerte konnte nach Adaptierung der Innengeräte mit Luftleitvorrichtungen nicht festgestellt werden. Weitere Auswertungen und Untersuchungen erfolgen in den folgenden Kapiteln.

Tabelle 4-1: Normheizlast nach DIN EN 12831 und installierte Heizleistung bei einzelner Beheizung der Zonen für AG8 (in Anlehnung an Tockner, 2012)

	Gewölbe	Rittinger Bar
Gerechnete Normheizlast in kW bei -12 °C	9,9	8,4
Installierte Heizleistung in kW bei 7 °C	48	24
Überdimensionierung der installierten Heizleistungen in %	485	286

Tabelle 4-2: Normheizlast nach DIN EN 12831 und installierte Heizleistung bei gemeinsamer Beheizung der Zonen für AG8 (in Anlehnung an Tockner, 2012)

	Gewölbe	Rittinger Bar
Gerechnete Normheizlast in kW bei -12 °C	5,9	2,7
Installierte Heizleistung in kW bei 7 °C	48	24
Überdimensionierung der installierten Heizleistungen in %	814	888

AG8 Stundenmittelwerte: 24.11.2015-28.11.2015

Abbildung 4-9: Stundenmittelwerte im Zeitraum von 4 Tagen für AG8

<u>AG9:</u>

Die Concert Hall (AG9) wurde noch nicht mit Luftleitvorrichtungen ausgestattet. Die ausgewerteten Messdaten für einen Zeitraum von 4 Tagen sind in Abbildung 4-10 dargestellt. Die Ansaugtemperatur (toutdoor,in) für die ersten 17 h lag zwischen -7,4 °C und -5,4 °C auf niedrigem Niveau. Die Heizleistung (\dot{Q}_h) beträgt am Anfang der ersten 17 h ca. 42 kW und sinkt, wie auch bei AG8, auf 13 kW ab. Die eingestellte Raumluftsolltemperatur von 24 °C war beim 1. Aktivierungsvorgang bereits ab Stunde 2 erreicht. Der COP-Stundenmittelwert lag am Anfang der ersten 17 h bei 2,5 und sank am Ende der ersten 17 h auf ca. 1,7 ab. Da in der Concert Hall (AG9) keine Umbauarbeiten durchgeführt wurden, wird im weiteren Verlauf dieser Arbeit keine Auswertung durchgeführt.

Abbildung 4-10: Stundenmittelwerte im Zeitraum von 4 Tagen für AG9

Erkenntnisse aus der Bestandsaufnahme:

Die erste Messreihe wurde teils bei niedrigen Außenlufttemperaturen gestartet. Alle drei Wärmepumpenkreise (AG3, AG8 und AG9) hatten am Beginn des jeweiligen Aktivierungsvorganges hohe Teillastfaktoren (bezogen auf die jeweilige Ansaug- bzw. Außenlufttemperatur). Der Teillastfaktor (siehe Gl.3-3) betrug bei Stunde 1 56,6 % für AG8 (vgl. Abbildung 4-9) und AG9 (vgl. Abbildung 4-10). Für die 1. Stunde konnte bei AG3 eine Teillast von 73,4 % berechnet werden (vgl. Abbildung 4-8). Im Rittersaal wurde erst nach dem dritten Aktivierungsvorgang die eingestellte Raumluftsolltemperatur von 24 °C erreicht. In der Rittinger Bar, dem Gewölbe und der Concert Hall wurde bereits nach wenigen Stunden die Raumluftsolltemperatur erreicht. Ein Grund für die schnelle Beheizung liegt an der Überdimensionierung von AG8 und AG9. Je länger die Messreihe andauerte und je näher die aktuelle Raumtemperatur an der Solltemperatur lag, umso größere Unterschiede konnten zwischen den einzelnen COP-Stundenmittelwerten festgestellt werden. Zudem sank die Teillast gegen Ende der Messreihe bei AG8 und AG9 im Vergleich zu AG3 sehr stark ab. Bei Stunde 41 betrug die Teillast für AG3 74 % und liegt sehr nahe am Wert von Stunde 1. Für AG8 betrug die Teillast bei Stunde 41 nur mehr 21,8 % und für AG9 12,6 %.

Da die Adaptierungen der Innengeräte mit Luftleitvorrichtungen an AG8 keine merkliche COP-Verbesserung erbrachte, wurden weitere Untersuchungen angestellt. Folgende Punkte sollen dabei abgeklärt werden:

- Überprüfung der Leistungsmessung der Drehstromzähler
- Vermessung der Innengeräte
 - Ausschluss eines Luftkurzschlusses
 - Luftvolumenstrommessung
 - Ansaug- und Ausblastemperatur an den Innengeräten und Vergleich mit den Kondensationstemperaturen
- Auswertung stationärer Messpunkte
 - Vergleich der Effizienz (COP) bei unterschiedlichen Teillasten

4.4 Überprüfung der elektrischen Leistungsmessung bei AG8

Die Installation der Luftleitvorrichtung sollte theoretisch die Kondensationstemperatur senken. Nach ersten Messungen konnte jedoch keine signifikante COP-Erhöhung festgestellt werden. Laut GI.2-3 würde eine falsche bzw. zu hohe elektrische Leistungsmessung den COP senken, deshalb erfolgt eine Überprüfung der Drehstromzähler. Dazu wurden Messungen an den Anschlussklemmen von AG8 vorgenommen. Die nötigen Messungen wurden mit dem Netzanalysegerät Fluke 434 (Fluke Industrial B.V., 2006) durchgeführt.

AG8 wurde am 09.12.2015 im Testbetrieb bei 100 % "Heat-Mode" betrieben. Die gesamte Außengeräteeinheit ("Header" und "Follower") war aktiviert (zwei Kompressoren je Außengerät). Mit einem Netzanalysegerät konnte jedoch nur das "Header"-Außengerät vermessen werden. Zur Vermessung beider Außengeräte wären zwei Netzanalysegeräte erforderlich. Die installierten Drehstromzähler des Messsystems bestimmen die Leistung am Messpunkt, siehe Abbildung 4-11. Zur Überprüfung der Drehstromzähler wurden deshalb die Stromzangen des Netzanalysegerätes am "Header"-Gerät (siehe Messpunkt in Abbildung 4-11 und Abbildung 4-12, links) angebracht. Am Messpunkt könnten zusätzliche Verbraucher oder auch Verluste z.B. am Inverter, die Leistungszahl bzw. Wirkungsgrade am Kompressor senken.

Abbildung 4-11: Schema für die elektrische Leistungsmessung am Außengerät der Toshiba Wärmepumpe

Abbildung 4-12: Leistungsmessung an den Anschlussklemmen mittels Netzanalysegerät Fluke 434

In Abbildung 4-13 werden nun die Messdaten am Messpunkt des Netzanalysegerätes mit jenen der Drehstromzähler verglichen. Der Drehstromzähler zeichnet nur die Wirkleistung auf. An den Anschlussklemmen wurde ein $\cos \varphi = 1$ gemessen, d.h. die Wirkleistung entspricht der Scheinleistung. Für einen besseren Vergleich der Daten, wurde aus den Rohmessdaten des Drehstromzählers ein gleitender Mittelwert über 30 Sekunden gebildet. Die elektrischen Leistungsverläufe in Abbildung 4-13 sind nahezu gleich. Die Unterschiede sind auf Messunsicherheiten zurückzuführen.

Leiter L1 versorgt neben den Kompressoren, auch das Gebläse am Wärmetauscher des Außengerätes mit Leistung. Berechnet wurde die Gebläseleistung aus der Leistungsdifferenz von Leiter L1 und den gemittelten Leistungen von Leiter L2 und L3 nach GI.4-2. Die Berechnung ist nur eine Abschätzung, da die Leiter während des Betriebes unterschiedlich belastet werden können.

$$P_{Fan} = P_{L1} - \frac{P_{L2} + P_{L3}}{2}$$
GI.4-2

Wie in Abbildung 4-13 ersichtlich, benötigt das Gebläse beim Starten des Heizbetriebes und beim Abtauvorgang die höchste Leistung, nämlich ca. 500 bis 600 W. Ansonsten lag der Leistungsbedarf des Gebläses zwischen 200 und 300 W. Das Gebläse benötigt durchschnittlich 270 W.

Für eine Außengeräteeinheit ("Header" und "Follower") werden damit durchschnittlich 0,54 kW Leistung über einen Zeitraum von 30 Minuten benötigt. Anzumerken sei noch, dass die Wärmepumpe mit Volllast betrieben wurde und bei geringerer Teillast, eine geringere Gebläseleistung benötigt wird.

Bei der Überprüfung der Drehstromzähler konnte kein Defekt festgestellt werden. Dennoch könnten parasitäre Verbraucher mitgemessen werden.

4.5 Vermessung der Innengeräte

Weder die Adaptierung der Innengeräte bei AG8, noch die Überprüfung der elektrischen Leistungsmessung konnten bisher Aufschluss über die niedrige Effizienz geben. Deshalb wurden Volumenstrom- und Temperaturmessungen an einem Innengerät der Rittinger Bar durchgeführt. Außerdem wurden noch Berechnungen für die erforderliche luftseitige Temperaturspreizung in Abhängigkeit der übertragenen Leistung angestellt.

4.5.1 Abschätzung des Luftvolumenstromes

Gemessen wurde beim Innengerät am Eingang in die Rittinger Bar. An unterschiedlichen Messpositionen wurde mit dem Flügelradanemometer testo 410i (Testo AG, 2015, siehe Anhang A4) die Luftgeschwindigkeit gemessen. Es soll der Einfluss der Abdeckung auf den Luftvolumenstrom betrachtet werden. Ein zu großer Widerstand der Abdeckung könnte den Volumenstrom senken und dadurch die Kondensationstemperatur unnötig heben. Damit würde die Leistungszahl (COP) negativ beeinflusst. Die Messung erfolgt deshalb einmal mit und einmal ohne Abdeckung. Durch Multiplikation der Luftgeschwindigkeit mit der Rechteckfläche (775 mm x 145 mm) am Austritt des Truheninnengerätes wurde der Luftvolumenstrom berechnet. Die Messung mit einem Flügelradanemometer an einzelnen Messpunkten ist sehr ungenau, zudem könnten auch unterschiedliche Betriebspunkte die Messergebnisse beeinflussen. Hier soll nur eine Abschätzung erfolgen, ob der Luftvolumenstrom des Herstellers im Modus "high", laut Tabelle 3-8, 950 m³/h mit und ohne Abdeckung erreicht wird bzw. ob durch die Abdeckung der Luftvolumenstrom gesenkt wird.

Messung am Innengerät ohne Abdeckung

Die Messung der Geschwindigkeit wurde an unterschiedlichen Positionen vorgenommen. Die erste Messung fand nur an Messpunkt 1 (siehe Abbildung 4-14 und Abbildung 4-15) statt. Die zweite Messung wurde an den Messpunkten 1, 2 und 3 (siehe Abbildung 4-14) durchgeführt.

Abbildung 4-14: Messpunkte am Truheninnengerät ohne Abdeckungen

Flügelradanemometer testo 410i

Abbildung 4-15: Messpunkt 1 des Flügelradanemometers am Truheninnengerät ohne Abdeckungen

Die Ergebnisse der ersten Messung an Messpunkt 1 sind in Tabelle 4-3 dargestellt. Die gemittelte Geschwindigkeit von 2,97 m/s ergab bei einem Rechteckquerschnitt von 0,11 m² einen Volumenstrom von 1204 m³/h.

Tabelle 4-3: Ergebnisse der	Volumenstrommessung ar	n Messpunkt 1	ohne Abdeckungen
Tabolio To: Ergobillooo aol	relationed entitleeee ang a		onnio / waaoonangon

	Rechteckquerschnitt	Mittlere Geschwindigkeit	Mittlerer Volumenstrom
Messposition 1	0,11 m²	2,97 m/s	1204,1 m³/h

Die Luftgeschwindigkeit der zweiten Messung wurde an mehreren unterschiedlichen Positionen über die Länge gemessen (vgl. auch Abbildung 4-14). Aus den Geschwindigkeiten der einzelnen Messpositionen wurde eine mittlere Geschwindigkeit von 3,22 m/s gebildet. Diese mittlere Geschwindigkeit multipliziert mit dem Rechteckquerschnitt ergab einen Volumenstrom von 1302 m³/h (siehe Tabelle 4-4).

	Geschwindigkeit der einzelnen Messpostionen	Mittlere Geschwindigkeit	Rechteck- querschnitt	Mittlerer Volumenstrom
Messposition 1	3,15 m/s			
Messposition 2	2,68 m/s	3,22 m/s	0,11 m²	1301,7 m³/h
Messposition 3	3,82 m/s			

Toballa 1 1: Ergobaiago dor	Valumanatrommaaaunaan	on mohroron Ma	aganunktan ahn	Abdookung
	volumensuommessunden	an memeren we	ESSDUNKLEN ONNE	e Abueckunu

Beide Messungen lassen den Schluss zu, dass der erforderliche Volumenstrom von 950 m³/h beim Betrieb ohne Abdeckungen erreicht wird.

Messung am Innengerät mit Abdeckung

Für die Messung der Innengeräte mit Abdeckungen wurde an drei verschiedenen Punkten gemessen. Dabei wurde das Messgerät zwischen Innengerät und Abdeckung platziert (siehe Abbildung 4-17, rechts). Über Messpunkt 1 befindet sich direkt eine Querstrebe der Abdeckung (siehe Abbildung 4-16 und Abbildung 4-17, links) und verursacht dabei einen Luftwiderstand. Bei Messpunkt 2 und 3 kann die Luft mit geringerem Widerstand durch die Lüftungsschlitze der Abdeckung austreten.

Abbildung 4-16: Messpunkte im Truheninnengerät mit Abdeckungen

Abbildung 4-17: Messpunkt 1 (links) und Messpunkt 2 (mitte) sowie das Schema (rechts, in Anlehnung an Gründhammer (2014)) des Flügelradanemometers am Truheninnengerät mit Abdeckungen

An Messpunkt 1 liegt wegen der Querstrebe der Abdeckung eine geringere punktuelle Luftgeschwindigkeit vor. Diese betrug nur 1,7 m/s. An Messstelle 2 und 3 wurden jedoch lokale Geschwindigkeiten von 2,83 und 3,26 m/s gemessen. Der Widerstand der Abdeckung bewirkte eine Angleichung der gemessenen lokalen Luftgeschwindigkeiten. Die punktuelle Luftgeschwindigkeit an Messpunkt 1 wird bei der Auswertung nicht berücksichtigt, da die Fläche der Querstrebe sehr gering im Vergleich zur restlichen ist. Die mittlere Geschwindigkeit wird aus Messpunkt 2 und 3 gebildet und beträgt 3,04 m/s (siehe Tabelle 4-5). Nach Multiplikation mit der Rechteckfläche ergab dies einen mittleren Volumenstrom von 1231 m³/h (siehe Tabelle 4-6).

Tabelle 4-5: Zwischenergebnisse der Volumenstrommessungen an mehreren Messpunkten mit

Abdeckung				
	Mittlere Geschwindigkeit der Messpositionen	Mittlere Geschwindigkeit		
Messposition 1	1,7 m/s	-		
Messposition 2	2,83 m/s	2 04 m/s		
Messposition 3	3,25 m/s	3,04 11/5		

Tabelle 4-6: Ergebnisse der Volumenstrommessungen an mehreren Messpunkten mit Abdeckung

Q	Q		
Mittlere Geschwindigkeit	Rechteckquerschnitt	Mittlerer Volumenstrom	
3,04 m/s	0,11 m ²	1230,8 m³/h	

Auch bei Messungen des Truheninnengerätes mit Abdeckung wurde der geforderte Luftvolumenstrom von 950 m³/h erreicht. Dies lässt den Schluss zu, dass die Abdeckungen keinen negativen Einfluss auf den Luftvolumenstrom und damit auf die Wärmeübertragung am Wärmetauscher haben.

4.5.2 Luftseitige Temperaturspreizung in Abhängigkeit der übertragenen Leistung

Verschiedene Typen von Innengeräten wurden in die Wärmepumpenkreise AG3, AG8 und AG9 verbaut (siehe Abschnitt 3.3). Im weiteren Verlauf dieser Arbeit wird nur AG8 näher betrachtet. Für diesen Kältekreis wurden ausschließlich Truheninnengeräte eingebaut. In der Rittinger Bar (AG8) wurde dazu an einem Innengerät die Ansaug- und Ausblasöffnung (tindoor,in und tindoor,out) mit Sensoren bestückt, siehe Abbildung 4-18 und Abbildung 4-19. Damit kann die Luftleitvorrichtung auf Effektivität (ob noch ein Luftkurzschluss zwischen Ansaug- und Auslassöffnung auftritt und damit die Ansaugtemperatur künstlich erhöht wird, vgl. Abbildung 4-4 und Abbildung 4-5) überprüft werden. Ein Sensor in der Mitte der Rittinger Bar (troom,center) und einer seitlich (troom,regulation) an der Fernbedienung der Toshiba Wärmepumpe vervollständigen die Temperatursensoren. Mit troom,regulation an der Fernbedienung der Toshiba Wärmepumpe (siehe Abbildung 4-21) wird die Temperaturregelung überprüft und mit troom,center (siehe Abbildung 4-20) erfolgt die Messung der Raumtemperatur in der Mitte der Rittinger Bar.

Abbildung 4-18: Schematische Darstellung der installierten Temperatursensoren am Innengerät der Rittinger Bar

Temperatursensoren an den Abdeckungen der Innengeräte

Abbildung 4-19: Temperatursensor tindoor,in an der Ansaug- (links) und tindoor,out an der Ausblasöffnung der Abdeckungen (rechts)

Abbildung 4-20: Temperatursensor troom,center in der Raummitte der Rittinger Bar

Abbildung 4-21: Temperatursensor troom, regulation an der Fernbedienung der Toshiba Wärmepumpe

In Abbildung 4-22 sind die gemessenen Temperaturen am Innengerät vom 21.12.2015 zu sehen. Die Raumlufttemperatur in der Mitte der Bar (troom,center) lag vor Heizbeginn bei 12 °C. An der Fernbedienung wurde eine Raumluftsolltemperatur von 24 °C eingestellt. Im gesamten Verlauf lag die Ansaugtemperatur (tindoor,in) am Innengerät unter der Raumlufttemperatur in der Mitte der Rittinger Bar (troom,center) bzw. der Regelungstemperatur troom,regulation an der Fernbedienung. Bei einem Luftkurzschluss (siehe Abbildung 4-4) würde sich die Ansaugtemperatur (tindoor,in) künstlich erhöhen und wäre höher als die Raumlufttemperatur (troom.center). Dies lässt den Schluss zu, dass ein Luftkurzschluss ausgeschlossen werden kann. Die Temperaturverläufe von tindoor.in, troom.center und troom.regulation zeigen die Temperaturschichtung im Raum, Auch ein Regelungsfehler ist nicht zu bemerken. Über den gesamten Zeitraum nähert sich die Temperatur troom, reulation an der Fernbedienung der eingestellten Raumluftsolltemperatur troom, set von 24 °C an. Je näher troom, regulation an der Solltemperatur liegt, desto weniger Heizleistung ist erforderlich. Dies kann auch am Verlauf der Ausblastemperatur (tindoor,out) ab ca. 17:10 beobachtet werden. Ab 17:10 änderte sich die Ausblastemperatur viel rapider als im Vergleichszeitraum von 08:00 bis 17:10, wo die Ausblastemperatur immer über 40 °C lag (ausgenommen sind die Abtauzyklen). Die Ausblastemperatur steht im direkten Zusammenhang mit der übertragbaren Heizleistung am Innengerät, vgl. dazu auch Gl.2-9 und Gl.2-10. Ab 17:10 wurden die höchsten Ausblastemperaturen immer nach dem Abtauzyklus (= Enteisung) gemessen.

Abbildung 4-22: Temperaturverläufe des Innengerätes am 21.12.2015 von 07:12:00 bis 21:55:36 in der Rittinger Bar (AG8)

Auffällig ist die hohe Ausblastemperatur (tindoor,out) am Innengerät. Diese erhöhte sich mit ansteigender Ansaugtemperatur (tindoor,in) bzw. Raumtemperatur (troom,center) von anfänglichen 46 °C um 08:15 auf teilweise 48,9 °C um 10:01. Die verbauten Truheninnengeräte des Typs MML-AP0241BH können laut Datenblatt von Toshiba (2005) eine Heizleistung von 8 kW bei einem Luftvolumenstrom von 950 m³/h übertragen. Folgend wird für die Leistungsübertragung eine luftseitige Temperaturspreizung berechnet.

Durch Umformen von Gl.2-11 kann die erforderliche Temperaturspreizung ΔT_{air} berechnet werden, siehe dazu Gl.4-3. Die Temperaturspreizung ist nach Gl.4-4 definiert.

$$\Delta T_{air} = \frac{\dot{Q}}{\dot{m}_{air} \cdot cp_{air}} = \frac{\dot{Q}}{\rho_{air} \cdot \dot{V}_{air} \cdot cp_{air}}$$
GI.4-3

$$\Delta T_{air} = t_{indoor,out} - t_{indoor,in}$$
Gl.4-4

Für cp_{air} und ρ_{air} wurde mithilfe von EES (2015) Werte für 20 °C bzw. 50 °C angenommen, die in Tabelle 4-7 zu sehen sind. Damit ist eine luftseitige Temperaturspreizung für das Truheninnengerät von ca. $\Delta T_{air} = 25 K$ notwendig um 8 kW Heizleistung zu übertragen.

Tabelle 4-7: Ergebnisse für die luftseitige Temperaturpreizung der Truheninnengeräte Typ MML-AP0241BH

Q	<i>V</i> _{air}	$ ho_{air}$	ср _{аіr}	ΔT_{air}
8 kW	950 m³/h	1,2 kg/m³	1,0 kJ/(kgK)	25,4 K

Die gemessene luftseitige Temperaturspreizung (deltaT_air) am Innengerät der Rittinger Bar ist in Abbildung 4-23 dargestellt. Am 21.12.2015 um 08:15 lag für die luftseitige Temperaturspreizung zwischen Ansaug- und Ausblastemperatur (siehe GI.4-4) ein Maximalwert von 29 K vor. In Bereich A war die Raumluftsolltemperatur von 24 °C (troom,set in Abbildung 4-22)

noch nicht erreicht. Die Temperaturspreizung liegt für Bereich A generell über 25 K (Abtauzyklus ausgenommen) um an einem Innengerät eine Heizleistung von 8 kW (bei Nennzustand) zu übertragen (in der Rittinger Bar sind 3 Innengeräte mit 8 kW Heizleistung verbaut, vgl. nochmals Tabelle 3-7). Für Bereich B wurde eine geringere Heizleistung benötigt, da troom,set bereits erreicht wurde. Dies kann auch an der Temperaturspreizung beobachtet werden. Eine Temperaturspreizung von 25 K wurde nur nach dem Abtauzyklus erreicht, danach war weniger Heizleistung erforderlich und die Temperaturspreizung sank sowie auch die Ausblastemperatur. Die Kondensationstemperatur (tcond) hängt mit der Ausblastemperatur (tindoor,out) am Innengerät zusammen. Die Verläufe stimmen gut überein.

Abbildung 4-23: Temperaturspreizung der Innengeräte am 21.12.2015 im Zeitraum von 07:12:00 bis 21:55:00 in der Rittinger Bar (AG8)

Zum Vergleich wurde die Temperaturspreizung für die 4-Wegekassette MMU-AP0151MH berechnet, die in der Concert Hall (AG9) installiert wurde. Dieser Wert soll nur als Vergleich dienen, welche Temperaturspreizungen andere installierte Innengeräte benötigen. Es wurden dieselben Annahmen wie in Tabelle 4-7 getroffen. Die Ergebnisse sind in Tabelle 4-8 zu sehen

Tabelle 4-8: Ergebnisse für die luftseitige Tem	peraturpreizung der 4-Wegekassette Typ
	51MU

MINIO-AFU ISTINIA				
Ż	V _{air}	$ ho_{air}$	ср _{аіг}	ΔT_{air}
5 kW	930 m³/h	1,2 kg/m ³	1,0 kJ/(kgK)	16,2 K

Die Temperaturspreizung für die 4-Wegekassette liegt unter dem Truheninnengerät, vergleiche Tabelle 4-7 und Tabelle 4-8. Der Einfluss einer geringeren Temperaturspreizung auf die Kondensationstemperatur muss zukünftig noch näher untersucht werden.

4.5.3 Erkenntnisse durch Vermessung der Innengeräte

Die Luftvolumenstrommessung mit und ohne Abdeckung (siehe Abbildung 4-4) ergab, dass die Herstellerangaben von 950 m³/h bei der Gebläsestufe "high" erreicht wurden. Da die Messungen sehr ungenau waren, konnte keine Berechnung auf die tatsächliche Reduktion des Luftvolumenstromes infolge der Abdeckungen getroffen werden. Jedoch wurden die Herstellerangaben übertroffen und es wird in weiterer Folge vom Luftvolumenstrom des Herstellers ausgegangen.

Während der Messung von Temperaturen in der Rittinger Bar konnte kein Regelungsfehler der Wärmepumpe festgestellt werden. Je geringer die Differenz von Soll- zu Raumlufttemperatur wurde, desto unregelmäßiger wurde das gemessene Innengerät betrieben. Auffallend war die konstante Temperaturspreizung am Beginn der Messung vom 21.12.2015, siehe Bereich A in Abbildung 4-23. Die Ausblastemperatur stieg mit der Ansaugtemperatur. Aus Berechnung folgte, dass zum Übertragen von 8 kW Heizleistung (Volllast) und einem Luftvolumenstrom von 950 m³/h eine luftseitige Temperaturspreizung von 25,4 K zwischen Ansaug- und Ausblastemperatur erforderlich ist. Daher resultieren beim Vollastbetrieb und 24 °C Raumtemperaturen hohe Ausblastemperaturen und bedingen dadurch eine hohe Kondensationstemperatur, welche negativen Einfluss auf die Effizienz haben könnte. Nach Erreichen der Raumluftsolltemperatur von 24 °C, wurden die höchsten Ausblastemperaturen immer nach dem Abtauvorgang gemessen, siehe Bereich B in Abbildung 4-23.

Die Innengeräte werden pro Raum in "Header"- und "Follower"-Geräte unterteilt. Dabei übernimmt das "Header"-Innengerät den Großteil der Betriebszeiten, die "Follower"-Innengeräte werden bei hohem Heizwärmebedarf aktiviert. Am Anfang, wenn die Raumluftsolltemperatur noch nicht erreicht wurde, liegt meist ein hoher Heizwärmebedarf vor und alle Innengeräte waren in Betrieb. Beim Erreichen der Raumluftsolltemperatur wurde jedoch meist nur das "Header"-Innengerät benötigt.

4.6 Analyse von Messdaten bei Wärmepumpenkreis AG8

Die hohe Kondensationstemperatur wird für die Leistungsübertragung am Innengerät benötigt. Dadurch kann die Leistungszahl (COP) sinken. In diesem Kapitel sollen aus den unterschiedlichen Langzeitversuchen für AG8, Messdaten genauer analysiert und etwaige Optimierungspotentiale gefunden werden. Es werden Temperatur- und Leistungsverläufe der Wärmepumpe dargestellt. Anschließend erfolgt für unterschiedliche stationäre Betriebspunkte eine nähere Untersuchung. Es wurden Messdaten bzgl. Temperaturhub, Verdichtungsverhältnis, Teillast und dem isentropen Wirkungsgrad ausgewertet. Für einen Vergleich der unterschiedlichen Messpunkte wird ein T/h-Diagramm erstellt.

Nach den ersten Messungen vom 24.11. bis 28.11.2015 (siehe Abbildung 4-9) und am 09.12.2015 wurden die Wärmepumpenkreise AG3, AG8 und AG9 neu gefüllt. Bei AG8 wurden 35 kg Kältemittel abgesaugt und anschließend mit 42 kg neu befüllt (E-Mail Verkehr mit Fa. Air-Cond).

4.6.1 Ausgewählte Messreihe der Toshiba Luft/Luft-Wärmepumpe

Neue Messungen wurden nach der Neufüllung von AG8 am 21.12.2015 bis 24.12.2015 durchgeführt. Die Rittinger Bar und das Gewölbe wurden auf eine Raumluftsolltemperatur von 24 °C beheizt und mit Temperatursensoren an den Abdeckungen bestückt.

An je einem Innengerät der Rittinger Bar und dem Gewölbe wurden Temperatursensoren installiert. Dadurch konnte in der Rittinger Bar die Ansaug- und Ausblastemperatur (siehe tindoor, in und tindoor, out in Abbildung 4-19) gemessen werden. Zusätzlich wurde noch ein Sensor in der Raummitte der Rittinger Bar (troom, center in Abbildung 4-20) für die Messung der Raumtemperatur

platziert. Ein weiterer Temperatursensor wurde an der Fernbedienung der Toshiba-Wärmepumpe befestigt, um die Temperaturregelung zu überprüfen (siehe troom, regulation in Abbildung 4-21). Eine schematische Darstellung für die Rittinger Bar ist in Abbildung 4-18 erkenntlich

Im Gewölbe wurde an einem Innengerät nur die Ausblastemperatur (tindoor,out in Abbildung 4-24) gemessen. Die Raumtemperatur des Gewölbes wurde seitlich in der Nähe der Fernbedienung gemessen (troom,sideward in Abbildung 4-24). Die Messdaten wurden im 2-Minuten-Intervall mittels ELPRO Datenlogger aufgezeichnet. Siehe dazu Abbildung 4-24.

Fernbedienung der Toshiba Wärmepumpe

Die ausgewerteten Messdaten des Versuches am 21.12.2015 von 08:09:47 bis 20:07:58 sind in Abbildung 4-25 als Stundenmittelwerte zu erkennen. Bei der Heizleistung (\dot{Q}_h) ist ein sinkender Trend beim Erreichen der Solltemperatur erkennbar, vergleiche dazu auch Abbildung 4-9. Wegen der Überdimensionierung wurde die Solltemperatur nach 4 Stunden erreicht. Die luftseitige Ansaugtemperatur am Außengerät (toutdoor.in) lag zu Beginn bei durchschnittlichen 1 °C und veränderte sich während der 12 h kaum. Der COP-Stundenmittelwert variierte zwischen 2,39 am Beginn und sank von Stunde 1 bis Stunde 6 bis auf 2,17 ab. Die Luft an der Ausblasöffnung des Innengerätes des Gewölbes zirkulierte in der Nähe des Temperatursensors (troom,sideward,Gewölbe), deshalb weicht die Raumlufttemperatur vom Temperatursollwert von 24 °C ab. In der Rittinger Bar entspricht die Raumtemperatur (troom,center,Rittinger Bar) der Solltemperatur von 24 °C.

Stundenmittelwerte AG8: 21.12.2015; 08:09:47 bis 20:07:58

Abbildung 4-26 zeigt für die ersten 6 Stunden (vgl. Abbildung 4-25 Stundenmittelwerte 1 bis 6) die abgegebene Heizleistung, die dafür benötigte elektrische Leistung des Kompressors und den Kältemittelmassenstrom als 10 sekündliche, gleitende Mittelwerte. Die Heizleistungsspitzen (\dot{Q}_h) jeweils nach einem Abtauzyklus entstehen beim Anfahren der Wärmepumpe z.B. beim Umschalten des 4-Wege-Ventiles. Die benötigte Heizleistung war zu Beginn am Größten und wurde geringer, je näher die Raumtemperatur an der Raumluftsolltemperatur von 24 °C lag. Die Verläufe des Kältemittelmassenstromes und der Heizleistung ähneln sehr und unterscheiden sich nur durch einen Faktor. Bei ca. 59 kW Heizleistung lag der Massenstrom bei ca. 0,25 kg/s und die elektrische Leistung bei 21,6 kW.

Abbildung 4-25: Stundenmittelwerte von AG8 am 21.12.2015 für 12 Stunden

Abbildung 4-26: Leistungsverläufe von AG8 für 6h der Toshiba Luft/Luft-Wärmepumpe am 21.12.2015

Die gemessenen Temperaturen sind in Abbildung 4-27 ersichtlich. Im Zeitraum von ca. 08:10 bis 08:32 wurde an Messstelle 2 (nach dem Kompressor) eine Temperatur (t2) zwischen ca. 95 bis 98 °C erreicht. Nach dem ersten Abtauzyklus verringerte sich die Kompressoraustrittstemperatur (t2) im Zeitraum von ca. 08:38 bis 12:38, diese lag dennoch auf sehr hohem Niveau bei ca. 85 °C bis 95 °C (ausgenommen Abtauzyklen). Die Kondensationstemperatur (tcond) lag im Zeitraum von ca. 08:10 bis 12:38 im Bereich von 50 °C und schwankte zwischen einem Maximalwert von ca. 53 °C und einem Minimalwert von ca. 46 °C, wenn die Abtauzyklen nicht betrachtet werden. Die Ausblastemperaturen am Innengerät der Rittinger Bar (tindoor,out,Rittinger Bar) und dem Gewölbe (tindoor,out,Gewölbe) bestimmen den Verlauf der Kondensationstemperatur (tcond). Jenes Innengerät, welches die meiste Leistung benötigt, hat die höchste Ausblastemperatur und bestimmt die Kondensationstemperatur. Dies ist in Abbildung 4-27 im Zeitraum von 10:45 bis 11:35 zu sehen.

Während des Heizbetriebes erhöhte sich die Ansaugtemperatur (bis auf die Abtauzyklen) in der Rittinger Bar (tindoor,in,Rittinger Bar) von anfangs 16,2 °C auf 21,5 °C. Ab ca. 12:44 war die eingestellte Raumsolltemperatur von 24 °C erreicht. Dies war auch in den Verläufen von t2 und tcond aufgrund starker Schwankungen feststellbar. Ab diesem Zeitpunkt wurde die Wärmepumpe vermehrt im instationären Betriebsbereich betrieben und die stationären Phasen wurden zeitlich kürzer.

Abbildung 4-27: Temperaturverläufe von AG8 für 6h der Toshiba Luft/Luft-Wärmepumpe am 21.12.2015

Der COP-Verlauf ergibt sich aus Heizleistung dividiert durch elektrische Leistung und ist in Abbildung 4-28 erkennbar. Nach jedem Abtauvorgang wurden COP-Spitzen erreicht. Grund dafür ist der Anfahrvorgang der Wärmepumpe bzw. ein Umschalten des 4-Wege-Ventiles. Im stationären Betriebsbereich, siehe Bereich A in Abbildung 4-28, sind durchschnittlich höhere COP-Werte als im Bereich B feststellbar. Bei Bereich B war bereits die eingestellte Raumluftsolltemperatur von 24 °C erreicht und der COP änderte sich viel stärker als in Bereich A.

Abbildung 4-28 COP-Verläufe von AG8 für 6h der Toshiba Luft/Luft-Wärmepumpe am 21.12.2015

4.6.2 Stationärer Betrieb während der Langzeitversuche

In diesem Abschnitt werden die Messdaten bei stationären Zuständen genauer untersucht und am Ende verglichen. Insgesamt werden 3 verschiedene Messpunkte bei unterschiedlichen Bedingungen betrachtet. Am Anfang wurde ein stationärer Punkt beim Beheizen von Gewölbe und Rittinger Bar betrachtet. Danach wird nur das Gewölbe beheizt. Der Einfluss unterschiedlicher Teillasten wurde genauer untersucht. Schlussendlich soll noch der Einfluss der Abdeckung auf den Wärmeübergang am Innengerät geklärt werden. Dazu wurden in der Rittinger Bar die Abdeckungen über den Innengeräten entfernt (vgl. Abbildung 4-3) und dann beheizt. Die Messergebnisse wurden dann mit anderen Messpunkten verglichen.

a.) Stationäre Betriebspunkte für Gewölbe und Rittinger Bar mit abgedeckten Innengeräten

Am 21.12.2015 wurde ein stationärer Messpunkt zwischen 09:00:00 bis 09:32:00 aus den Messdaten ausgewählt. Die Leistungsmessdaten und der COP-Verlauf sind als 10 sekündliche, gleitende Mittelwerte dargestellt. Die Temperatur- und Druckverläufe wurden nicht gemittelt und entsprechen den gemessenen Rohdaten.

Die nahezu stationären Messdaten sind als Leistungsverläufe über 32 Minuten in Abbildung 4-29 zu sehen. Es ist ein gleichmäßiger Heizleistung- (\dot{Q}_h) sowie elektrischer Leistungsverlauf (Pel) erkennbar. Die abgegebene Heizleistung (\dot{Q}_h) betrug durchschnittlich 43,75 kW, was einem Teillastfaktor (*L*) von 61,2 % bei entsprechender Ansaugtemperatur am Außengerät (toutdoor,in) entspricht. Die dafür benötigte elektrische Leistung (Pel) ergab im Mittel 16,36 kW. Der berechnete COP betrug 2,67.

AG8 Leistungen: stationärer Betrieb von Rittinger Bar und Gewölbe am 21.12.2015; 09:00:00 bis

Abbildung 4-29: AG8-Leistungsverlauf und Kältemittelmassenstrom am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der Rittinger Bar und dem Gewölbe

In Abbildung 4-30 ist der Temperaturverlauf für dasselbe Zeitfenster dargestellt. Die Verläufe sind über einen relativ langen Zeitraum von 32 Minuten nahezu konstant. Die Ansaugtemperatur (toutdoor,in) betrug 1,39 °C. Bei diesem Betriebspunkt trat ein hoher Temperaturhub von 58,8 K auf, siehe GI.4-1. Die Verdampfungstemperatur (tevap) betrug -10,24 °C und die Kondensationstemperatur (tcond) 48,52 °C. Im Vergleich zur Kondensationstemperatur (tcond) lag die durchschnittliche Ausblastemperatur (tindoor,out) an den Innengeräten (Rittinger Bar und Gewölbe) bei 45,87 °C. Bei einer Ansaugtemperatur am Innengerät (tindoor,in) von durchschnittlichen 19,19 °C wurde eine luftseitige Temperaturspreizung von 26,68 K erreicht. Damit wurde die Temperaturspreizung von mindestens 25 K erreicht, um am Innengerät 8 kW Heizleistung bei 950 m³/h Luftvolumenstrom zu übertragen. Siehe dazu nochmals Abschnitt 4.5.2

Die gemessene Kompressoraustrittstemperatur (t2) ergab durchschnittlich 93,45 °C. Auffallend war, dass teilweise die kältemittelseitige Kompressoreintrittstemperatur (t1) über der luftseitigen Ansaugtemperatur (toutdoor,in) am Verdampfer lag. Dies ist jedoch aus Prozessgründen nicht möglich. Die Temperatur beim Kompressoreintritt wird an Messpunkt 1 (siehe Abbildung 3-11) mit einem Anlegefühler gemessen. Eventuelle Wärmeeinträge des Kompressors könnten zu höheren Temperaturen führen. Gemittelt über den Zeitraum lag die Kompressoreintrittstemperatur (t0) jedoch unter der Ansaugtemperatur (t0).

AG8 Temperaturen: stationärer Betrieb von Rittinger Bar und Gewölbe am 21.12.2015; 09:00:00 bis 09:32:00

Abbildung 4-30: AG8-Temperaturverläufe am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der Rittinger Bar und dem Gewölbe

Abbildung 4-31 zeigt die unterschiedlichen Druckverläufe für den Hoch- (p2) und Niederdruck (p1) bzw. dem Druck nach dem Kondensator am Innengerät (p3). Alle drei Verläufe sind ziemlich konstant. Der Hoch- bzw. Kondensationsdruck (p2) lag bei 29,6 bar und der Nieder- bzw. Verdampfungsdruck (p1) ergab einen Wert von 5,7 bar.

Durch Division von Hochdruck (p2) durch Niederdruck (p1) entspricht dies einem Verdichtungsverhältnis (π) von 5,2, siehe GI.4-5.

$$\pi = \frac{p_2}{p_1}$$
GI.4-5

Durch Vordrosselung bzw. Regelung der Unterkühlung am Innengerät oder auch durch Rohrreibungsverluste kann ein Druckunterschied zwischen Hochdruck (p2) und dem Druck nach dem Kondensator am Innengerät (p3) entstehen (siehe Abschnitt 3.3.2).

AG8 Druck: stationärer Betrieb von Rittinger Bar und Gewölbe am 21.12.2015; 09:00:00 bis 09:32:00

Abbildung 4-31: AG8-Druckverlauf am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der Rittinger Bar und dem Gewölbe

In Abbildung 4-32 ist der COP-Verlauf zu sehen. Durchschnittlich ergab sich, wie bereits erwähnt, ein Wert von 2,67.

Abbildung 4-32: AG8-COP-Verlauf am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der Rittinger Bar und dem Gewölbe

Der nahezu stationäre Betriebsbereich am 21.12.2015 im Zeitfenster von 09:00:00 bis 09:32:00 wurde mithilfe von EES (2015) als T/h-Diagramm in Abbildung 4-33 dargestellt. In Grün ist der Kältemittelkreis abgebildet. Die Quellentemperaturen am Außengerät wurden in Blau und die Senkentemperaturen am Innengerät in Rot dargestellt. Ein Maß für die Effizienz des Kondensators ist die sogenannte Pinch-Point Temperatur $\Delta T_{PP-COND}$. Sie wurde in EES (2015) berechnet und lag bei 10,49 K. Alle anderen gemittelten Messdaten sind in der Legende in Abbildung 4-33 zu sehen.

Abbildung 4-33: T/h-Diagramm am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der Rittinger Bar und dem Gewölbe (AG8)

Aus den gemittelten Messdaten können weitere Auswertungen bzgl. Temperaturhub, Verdichtungsverhältnis, Teillastfaktor und Kompressoreffizienz erfolgen. Die Ergebnisse sind in Tabelle 4-9 zu sehen.

Die wichtigste Temperaturdifferenz am Verdampfer ist die Differenz zwischen luftseitiger Ansaugtemperatur am Außengerät (toutdoor,in) und der kältemittelseitigen Verdampfungstemperatur (tevap), siehe GI.4-5.

$$\Delta T_{max,evap} = t_{outdoor,in} - t_{evap}$$
Gl.4-6

Tabelle 4-9: AG8-Weitere Messauswertungen am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der Rittinger Bar und dem Gewölbe

Bezeichnung	Formelzeichen	Wert
Temperaturhub (siehe Gl.4-1)	ΔT_{lift}	58,8 K
Verdichtungsverhältnis (siehe GI.4-5)	π	5,2
Teillastfaktor (siehe Gl.3-3)	L	61,2 %
Isentroper Gesamtwirkungsgrad (siehe GI.2-5)	$\eta_{is,overall}$	57,1 %
Isentroper Wirkungsgrad (siehe GI.2-6)	η_{is}	76,2 %
"Mechanischer" Wirkungsgrad (siehe Gl.2-7)	η_m	75 %
Temperaturdifferenz am Verdampfer (siehe GI.4-6)	$\Delta T_{max,evap}$	11,6 K

Die Berechnungen für diesen Betriebspunkt ergaben einen isentropen Gesamtwirkungsgrad von 57,1 %, einen "mechanischen" Wirkungsgrad von 75 % sowie einen isentropen Wirkungsgrad von 76,2 %. Der geringe isentrope Wirkungsgrad kann auf das hohe Druckverhältnis zurückgeführt werden und der geringe "mechanische" Wirkungsgrad auf eventuelle Verluste beim Inverter bzw. zusätzlich mitgemessene elektrische Verbraucher.

Zusätzlich wurden noch theoretische Überlegungen bzgl. möglich erreichbarerer COP-Werte angestellt und diese mit den Werten aus dem Datenblatt von Toshiba (o.J.) verglichen.

Zunächst soll für diesen Betriebspunkt ein möglicher Effizienzwert berechnet werden, ohne dass mechanische Einflüsse wie z.B. Lagerreibung oder Inverterverluste die Effizienz schmälern. Der hier berechnete Wert wird in weiterer Folge als innere Effizienz COP_i bezeichnet und stellt den Effizienzwert bei $\eta m = 1$ dar. Dafür wird die Leistung laut GI.4-7 berechnet und in weiterer Folge als innere Leistung P_i genannt. Vergleiche dazu auch Abbildung 4-33.

$$P_i = \dot{m}_{ref} \cdot (h_2 - h_1) \tag{GI.4-7}$$

Die innere Effizienz COP_i wird nach GI.4-8 berechnet und ergibt sich aus Heizleistung dividiert durch innerer Leistung.

$$COP_i = \frac{Q_h}{P_i}$$
GI.4-8

Die berechneten Werte für die innere Effizienz sind in Tabelle 4-10 ersichtlich.

Zusätzlich wurden noch theoretische Überlegungen angestellt, welche COP-Werte bei isentroper Verdichtung von Punkt 1 nach 2s möglich wären, siehe Abbildung 4-33. Dieser berechnete Effizienzwert wird in weiterer Folge als Effizienz bei isentroper Verdichtung *COP*_{is} genannt. Zuerst muss nach GI.4-9 die isentrope Verdichterleistung berechnet werden.

$$P_{is} = \dot{m}_{ref} \cdot (h_{2s} - h_1)$$
 GI.4-9

Bei isentroper Verdichtung wird die Heizleistung geringer (vgl. Abbildung 4-33), deshalb soll die Heizleistung bei isentroper Verdichtung laut Gl.4-10 ermittelt werden.

$$Q_{h,is} = \dot{m}_{ref} \cdot (h_{2s} - h_3)$$
 Gl.4-10

Durch Division der Ergebnisse von Gl.4-10 und Gl.4-9, wird laut Gl.4-11 die Effizienz bei isentroper Verdichtung COP_{is} ermittelt.

$$COP_{is} = \frac{Q_{h,is}}{P_{is}}$$
GI.4-11

Die berechneten Werte für die Effizienz bei isentroper Verdichtung sind in Tabelle 4-10 dargestellt.

Als Vergleich sollen nun Effizienzwerte nach dem Toshiba (o.J.) Datenblatt berechnet werden. Diese werden dann anschließend mit der inneren Effizienz, aber auch mit der Effizienz bei isentroper Verdichtung ins Verhältnis gesetzt und verglichen.

Aus dem Toshiba (o.J.) Datenblatt (siehe auch Anhang A1) wird durch Interpolation je nach Teillastfaktor und Außenlufttemperatur, die elektrische Leistung ermittelt. Dabei wird einmal die elektrische Leistung bei Verdichtung beim Realprozess $P_{Toshiba,20\,^{\circ}C}$ berechnet. Bei dem theoretischen Fall, dass die Verdichtung isentrop erfolgt, muss erneut die elektrische Leistung $P_{is,Toshiba,20\,^{\circ}C}$ laut Datenblatt ermittelt werden, da sich der Teillastfaktor bei Q_h nach $Q_{h,is}$ geringfügig ändert. Die bisher berechneten Werte gelten nur für eine Raumtemperatur von 20 °C. Bei Abweichung der Raumtemperatur, welche im direkten Zusammenhang mit der Kondensationstemperatur, eine Erhöhung der elektrischen Leistung um 2 % erfolgen. Dies wird durch Gl. 4-12 und Gl.4-13 berücksichtigt.

$$P_{Toshiba,x \,^{\circ}C} = P_{Toshiba,20 \,^{\circ}C} \cdot (1 + (x - 20) \cdot 0,02)$$
GI.4-12

$$P_{is,Toshiba,x \circ C} = P_{is,Toshiba,20 \circ C} \cdot (1 + (x - 20) \cdot 0,02)$$
 GI.4-13

Im Laufe dieser Arbeit wurde eine Raumluftsolltemperatur von 24 °C eingestellt, deshalb wird die elektrische Leistung des Datenblattes um 8% erhöht. Anschließend können die Effizienzwerte laut Toshiba Datenblatt nach GI.4-14 und GI.4-15 ermittelt werden. Alle Werte werden in Tabelle 4-10 zusammengefasst und berechnet.

$$COP_{Toshiba,x \,^{\circ}C} = \frac{Q_h}{P_{Toshiba,x \,^{\circ}C}}$$
GI.4-14

$$COP_{is,Toshiba,x \circ C} = \frac{Q_{h,is}}{P_{is,Toshiba,x \circ C}}$$
GI.4-15

Tabelle 4-10: AG8-Vergleich der Effizienzwerte von Messdaten und Datenblatt zum Betriebspunkt am 21.12.2015 von 09:00:00 bis 09:32:00

Bezeichnung	Formelzeichen	Wert
Innere Leistung (siehe GI.4-7)	P_i	12,27 kW
Innere Effizienz (siehe Gl.4-8)	COP _i	3,56
Leistung bei isentroper Verdichtung (siehe GI.4-9)	P_{is}	9,34 kW
Heizleistung bei isentroper Verdichtung (siehe GI.4-10)	$Q_{h,is}$	40,8 kW
Effizienz bei isentroper Verdichtung (siehe Gl.4-11)	COP _{is}	4,37
Elektrische Leistung laut Datenblatt bei 20 °C Raumlufttemperatur	P _{Toshiba,20 °C}	8,36 kW
Elektrische Leistung nach Korrektur laut Kulterer (2007) auf 24 °C Raumlufttemperatur (siehe Gl.4-12)	P _{Toshiba,24 °C}	9,03 kW
Elektrische Leistung bei isentroper Verdichtung nach Korrektur laut Kulterer (2007) auf 24 °C Raumlufttemperatur (siehe Gl.4-13)	$P_{is,Toshiba,24^\circ C^\circ C}$	8,23 kW
Effizienz laut Datenblatt bei 24 °C Raumlufttemperatur (siehe Gl.4-14)	COP _{Toshiba,24°C}	4,85
Effizienz laut Datenblatt bei isentroper Verdichtung bei 24 °C Raumlufttemperatur (siehe GI.4-15)	COP _{is,Toshiba,24°C}	4,96
Verhältnis von gemessener Effizienz und Effizienz laut Datenblatt	COP _h COP _{Toshiba,24 °C}	55,17 %
Verhältnis von innerer Effizienz und Effizienz laut Datenblatt	COP _i COP _{Toshiba,24 °C}	73,57 %
Verhältnis von gemessener Effizienz bei isentroper Verdichtung und Effizienz laut Datenblatt	COP _{is} COP _{is,Toshiba,24 °C}	88,1 %
Verhältnis von gemessener elektrischer Leistung und elektrischer Leistung laut Datenblatt	$\frac{P_{el}}{P_{Toshiba,20^{\circ}C}}$	195,73 %

Bei Betrachtung der Ergebnisse in Tabelle 4-10 konnten folgende Aussagen getätigt werden:

- Bedingt durch den Prozess ist ein maximaler *COP_i* von 3,56 möglich. Damit wurde ein Verhältnis von gemessener innerer Effizienz und Effizienz laut Datenblatt von 73,57 % erreicht. D.h., bedingt durch den Prozess, können die Angaben laut Toshiba (o.J.) Datenblatt nicht erreicht werden.
- Das Effizienzverhältnis bei isentroper Verdichtung von Messdaten und Datenblatt liegt bei 88,1 % und damit sehr nahe an den Angaben des Datenblattes. Jedoch war bis zum Abschluss dieser Arbeit nicht bekannt, nach welchen Kriterien bzw. Normen das Datenblatt erstellt wurde.

Bei der Überprüfung der elektrischen Leistungsmessung (siehe Kapitel 4.4) wurde bei einem Außengerät eine Gebläseleistung von durchschnittlichen 270 W pro Außengerät berechnet, jedoch bei Volllast. Hier soll nur veranschaulicht werden, wieviel Einfluss die Gebläseleistung auf den gemessenen COP hat. Siehe dazu Tabelle 4-11. Theoretisch wäre damit ein COPohne,Fan von 2,77 möglich. Der isentrope Gesamtwirkungsgrad $\eta_{is,overall,ohne\,Fan}$ erhöhte sich auf 59,1 %. Die Gebläseleistung hat sehr wenig Einfluss, eine Steigerung von 3,4 % ist zu beobachten.

Tabelle 4-11: AG8-Effizienzwerte ohne Leistung der Wärmetauschergebläse am Außengerät am 21.12.2015 im Zeitraum von 09:00:00 bis 09:32:00 beim Beheizen von Rittinger Bar und Gewölbe

Heizleistung _{Q_h}	Gemessene elektische Leistung Pel	Gebläseleistung für 2 Außengeräte (=Außengeräteeinheit) PFan	Gemessene elektrische Leistung ohne Gebläse (Fan) Pel,ohne Fan	COP ohne Gebläse COPohne,Fan
43,75 kW	16,36 kW	2 x 0,27 kW	15,82 kW	2,77
Isentroper Gesamtwirkungsgrad (siehe GI.2-9) $\eta_{is,overall} = \frac{P_{is}}{P_{el}}$		Isentroper Gesamtwirkungsgrad ohne Gebläse (siehe Gl.2-9) $\eta_{is,overall,ohne\ Fan} = rac{P_{is}}{P_{el,ohne\ Fan}}$	Steigerung vom isentropen Gesamtwirkungsgrad $\frac{\eta_{is,overall}}{\eta_{is,overall,ohne Fan}}$	
57,11	1 %	59,1 %	3,4 %	

Die Abschätzung erfolgte mit einer Gebläseleistung, die im Volllastbetrieb gemessen wurde. Bei einem Betriebspunkt mit geringerer Teillast würde ein größerer Einfluss auf den COP bemerkbar sein, sofern die Gebläseleistung auch bei geringeren Teillasten konstant bleibt.

b.) Stationäre Betriebspunkte beim Betrieb von Gewölbe mit abgedeckten Innengeräten

Für diesen stationären Betriebspunkt wird nur das Gewölbe beheizt. Beim ausgewählten Zeitraum von 11:25:00 bis 11:50:00 am 25.01.2016 war die gewünschte Raumluftsolltemperatur von 24°C noch nicht erreicht.

Wiederum wurde für den Leistungsverlauf ein 10 sekündlicher, gleitender Mittelwert gebildet und dieser in Abbildung 4-34 dargestellt. Da nur das Gewölbe beheizt wurde, wurde auch weniger Heizleistung benötigt. Die Leistung verläuft annähernd konstant. Es wird eine durchschnittliche Heizleistung (\dot{Q}_h) von 33,65 kW während dieser 25 Minuten abgegeben. Die elektrische Leistung (Pel) ergab einen Wert von 13,64 kW. Dies ergab einen durchschnittlichen COP von 2,47.

Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes

Der Temperaturverlauf in Abbildung 4-35 wurde aus den Rohdaten dargestellt. Die luftseitige Ansaugtemperatur (toutdoor,in) am Außengerät betrug 0,34 °C und die kältemittelseitige Verdampfungstemperatur (tevap) ergab -10,37 °C. Am Kompressoraustritt trat eine hohe Temperatur (t2) von durchschnittlich 90,21 °C auf und das Kältemittel kondensierte anschließend bei 46,1 °C (tcond). Bei diesem stationären Betriebspunkt war ein Temperaturhub von 56,5 K notwendig. Wiederum ist beim Anlegefühler eine teilweise höhere kältemittelseitige Kompressoreintrittstemperatur (t1) als luftseitige Ansaugtemperatur (toutdoor,in) am Verdampfer des Außengerätes zu beobachten. Dieser Fehler könnte durch einen Wärmestrom vom Kompressor in Richtung Anlegefühler entstehen.

Abbildung 4-35: AG8-Temperaturverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes

Der Verdichter hob den Nieder- bzw. Verdampfungsdruck (p1) von 5,65 bar auf einen Hoch- bzw. Kondensationsdruck (p2) von 27,97 bar. Bei diesem Druckverhältnis (π) von 4,94 wurde ein isentroper Gesamtwirkungsgrad von 53,44 % berechnet.

Die am 25.01.2016 von 11:25:00 bis 11:50:00 gemittelten Messdaten wurden mithilfe von EES (2015) in einem T/h-Diagramm dargestellt, siehe Abbildung 4-36. Grün zeigt den Kältemittelkreislauf, blau markiert die Quellentemperaturen und rot die Senkentemperaturen. Die Temperaturdifferenz am Pinch-Point $\Delta T_{PP-COND}$ betrug 10,55 K. Die Werte der Messdaten sind als Legende in Abbildung 4-36 zu sehen und weitere Messdatenauswertungen können aus Tabelle 4-12 entnommen werden.

Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes (AG8)

Tabelle 4-12: AG8-Weitere Messauswertungen am 25.01.2016 von 11:25:00 bis 11:50:00 beim Be	eheizen
des Gewölbes	

Bezeichnung	Formelzeichen	Wert
Temperaturhub (siehe Gl.4-1)	ΔT_{lift}	56,5 K
Verdichtungsverhältnis (siehe GI.4-5)	π	4,95
Teillastfaktor (siehe Gl.3-3)	L	48,1 %
Isentroper Gesamtwirkungsgrad (siehe GI.2-5)	$\eta_{is,overall}$	53,4 %
Isentroper Wirkungsgrad (siehe GI.2-6)	η_{is}	79,3 %
"Mechanischer" Wirkungsgrad (siehe Gl.2-7)	η_m	67,4 %
Temperaturdifferenz am Verdampfer (siehe GI.4-6)	$\Delta T_{max,evap}$	10,7 K

Bei einem Teillastfaktor von 48,1 % wurde ein isentroper Gesamtwirkungsgrad von 53,4 % berechnet. Dieser setzt sich aus dem isentropen Wirkungsgrad von 79,3 % und dem "mechanischen" Wirkungsgrad von 67,4 % zusammen.

Der mechanische Wirkungsgrad betrug am 21.12.2015 75 %, bei einem Teillastfaktor von 61,2 %. Am 25.01.2016 wurde bei einem Teillastfaktor von 48,2 %, ein mechanischer Wirkungsgrad von 67,4 % berechnet. Dies könnte auf einen höheren Leistungsverbrauch des Inverters bei geringerer Teillast hindeuten. Beim Vergleich des isentropen Wirkungsgrades vom 21.12.2015 und 25.01.2016, steigerte sich dieser von 76,2 % auf 79,3 %, da sich das Verdichtungsverhältnis von 5,2 auf 4,95 verringerte. Vergleiche dazu Tabelle 4-9 und Tabelle 4-12.

In Tabelle 4-13 ist ein Vergleich Messwerten und möglichen Effizienzwerten laut Datenblatt ersichtlich.

Tabelle 4-15. AGO-Vergleich der Einzienzweite von messualen und Dalenblatt am 25.01.2010 von					
11:25:00 bis 11:50:00 beim Beheizen des Gewölbes					
Bezeichnung Formelzeichen Wert					
Innere Leistung (siehe GI.4-7)	P_i	9,19 kW			
Innere Effizienz (siehe GI.4-8)	COP _i	3,66			
Leistung bei isentroper Verdichtung (siehe GI.4-9)	P_{is}	7,29 kW			

Taballa 4 12: AC9 Varalaiah dar Effizianzwarta adatan und Datanblatt am 25.01.2016 van

Leistung bei isentroper Verdichtung (siehe GI.4-9)	P_{is}	7,29 kW
Heizleistung bei isentroper Verdichtung	0	31 7 k\\/
(siehe Gl.4-10)	Yn,is	51,7 KW
Effizienz bei isentroper Verdichtung (siehe Gl.4-11)	COP _{is}	4,36
Elektrische Leistung laut Datenblatt bei 20 °C	D	6 00 KM
Raumlufttemperatur	Г Toshiba,20 °С	0,09 KW
Elektrische Leistung nach Korrektur laut Kulterer	ת	6 59 WM
(2007) auf 24 °C Raumlufttemperatur (siehe Gl.4-12)	₽ Toshiba,24 °C	0,50 KW
Elektrische Leistung bei isentroper Verdichtung nach		
Korrektur laut Kulterer (2007) auf 24 °C	P _{is,Toshiba,24 °C °C}	6,18 kW
Raumlufttemperatur (siehe Gl.4-13)		
Effizienz laut Datenblatt bei 24 °C	COD	F 11
Raumlufttemperatur (siehe GI.4-14)	COP _{Toshiba,24} °C	5,11
Effizienz laut Datenblatt bei isentroper Verdichtung	COD	F 10
bei 24 °C Raumlufttemperatur (siehe GI.4-15)	COP _{is,Toshiba,24} °C	5,15
Verhältnis von gemessener Effizienz und Effizienz	COP_h	
laut Datenblatt	COP _{Toshiba,24°C}	48,26 %
Verhältnis von innerer Effizienz und Effizienz laut	COP _i	74 50 0/
Datenblatt	COP _{Toshiba,24°C}	71,58 %
Verhältnis von gemessener Effizienz bei isentroper	COP _{is}	04.0.0/
Verdichtung und Effizienz laut Datenblatt	COP _{is,Toshiba,24°C}	84,8 %
Verhältnis von gemessener elektrischer Leistung	P _{el}	000 77 0/
und elektrischer Leistung laut Datenblatt	P _{Toshiba,20°C}	223,11 %

Die Ergebnisse in Tabelle 4-13 lassen folgende Schlüsse zu:

- Auch bei diesem Betriebspunkt können aus Prozessgründen die Effizienzwerte des Datenblattes nicht erreicht werden. Das Verhältnis von innerer Effizienz durch Effizienz laut Datenblatt ergab 71,58 %
- Das Verhältnis der gemessenen Effizienz bei isentroper Verdichtung durch Effizienz laut Datenblatt lag bei 84,8 %.
- Beim Vergleich der Messdaten konnte bei geringerer Teillast auch ein geringerer mechanischer Wirkungsgrad festgestellt werden, weitere Ausführungen siehe Abschnitt 4.6.3
- c.) Stationärer Betriebspunkt beim Beheizen der Rittinger Bar ohne abgedeckter Innengeräte

Ein etwaiger Widerstand der Abdeckungen könnte den Luftvolumenstrom am Innengerät verringern und damit den Wärmeübergang am Truheninnengerät verschlechtern. Beim Betriebspunkt am 10.02.2016 wurde nur die Rittinger Bar ohne Abdeckung (vgl. Abbildung 4-3) für 8 Minuten beheizt. Hier soll hauptsächlich die sogenannte Pinch-Point Temperatur ΔTPP-COND betrachtet und mit anderen Werten verglichen werden.

Die Rittinger Bar benötigte eine durchschnittliche Heizleistung (\dot{Q}_h) von 14,36 kW bei einer elektrischen Leistungsaufnahme (Pel) von 5,53 kW. Dies ergab einen Teillastfaktor von 19,76 % bei einer Ansaugtemperatur (toutdoor,in) von 2,68 °C und einen COP von 2,6. Ein Temperaturhub von 52,61 K und ein Druckverhältnis (π) von 4,25 ergaben einen isentropen Gesamtwirkungsgrad von 51,11 %. Am Kompressor trat das Kältmittel mit einer Temperatur (t2) von 90,42 °C und einem Hoch- bzw. Kondensationsdruck (p2) von 29,31 bar aus. Anschließend kondensierte das Kältemittel bei einer Temperatur (tcond) von 48,09 °C. Der Nieder- bzw. Verdampfungsdruck (p1) lag bei 6,89 bar, bei einer Verdampfungstemperatur (tevap) von -4,52 °C.

Alle über den Zeitraum gemittelten Messdaten sind im T/h-Diagramm in Abbildung 4-37 dargestellt bzw. in der Legende angeführt.

Ein etwaiger Einfluss der Abdeckungen konnte nicht festgestellt werden. Beim Pinch-Point lag ΔTPP-COND bei 10,12 K und ist ähnlich hoch wie bei den anderen Messpunkten, vergleiche dazu Abbildung 4-33 und Abbildung 4-36. Der Wärmepumpenkreislauf ist in Abbildung 4-37 in Grün eingezeichnet. Blau beschreibt die Quellentemperatur und rot die Senkentemperaturen. Wiederum sei bemerkt, dass die kältemittelseitige Kompressoreintrittstemperatur (t1) nicht über der luftseitigen Ansaugtemperatur (toutdoor,in) am Verdampfer des Außengerätes liegen kann.

Abbildung 4-37: T/h-Diagramm am 10.02.2016 von 08.00:00 bis 08:08:00 beim Beheizen der Rittinger Bar (AG8)

Zusätzlich wurden noch weitere Berechnungen durchgeführt und die Messdaten mit den Effizienzwerten des Herstellers verglichen. Die Ergebnisse sind in Tabelle 4-14 und Tabelle 4-15 dargestellt. Da hier nur die Pinch-Point Temperatur betrachtet wurde, wird auf die Diskussion der Messergebnisse verzichtet.

Tabelle 4-14: AG8-Weitere Messauswertungen zum Betriebspunkt am 10.02.2	2016 von 08:00:00 bis
08:08:00 beim Beheizen der Rittinger Bar	

Bezeichnung	Formelzeichen	Wert
Temperaturhub (siehe Gl.4-1)	ΔT_{lift}	52,6 K
Verdichtungsverhältnis (siehe Gl.4-5)	π	4,25
Teillastfaktor (siehe Gl.3-3)	L	19,8 %
Isentroper Gesamtwirkungsgrad (siehe GI.2-5)	$\eta_{is,overall}$	51,1 %
Isentroper Wirkungsgrad (siehe GI.2-6)	η_{is}	76,6 %
"Mechanischer" Wirkungsgrad (siehe GI.2-7)	η_m	66,7 %
Temperaturdifferenz am Verdampfer (siehe GI.4-6)	$\Delta T_{max,evap}$	7,2 K

10.02.2010 V01 08.00.00 DIS 08.00.00 Delin	Deneizen der Kitting	
Bezeichnung	Formelzeichen	Wert
Innere Leistung (siehe Gl.4-7)	P_i	3,69 kW
Innere Effizienz (siehe Gl.4-8)	COP _i	3,89
Leistung bei isentroper Verdichtung (siehe GI.4-9)	P_{is}	2,82 kW
Heizleistung bei isentroper Verdichtung (siehe Gl.4-10)	$Q_{h,is}$	13,5 kW
Effizienz bei isentroper Verdichtung (siehe Gl.4-11)	COP _{is}	4,78
Elektrische Leistung laut Datenblatt bei 20 °C Raumlufttemperatur	P _{Toshiba,20 °C}	2,96 kW
Elektrische Leistung nach Korrektur laut Kulterer (2007) auf 24 °C Raumlufttemperatur (siehe Gl.4-12)	P _{Toshiba,24 °C}	3,2 kW
Elektrische Leistung bei isentroper Verdichtung nach Korrektur laut Kulterer (2007) auf 24 °C Raumlufttemperatur (siehe GI.4-13)	P _{is,Toshiba,24°C°C}	3,1 kW
Effizienz laut Datenblatt bei 24 °C Raumlufttemperatur (siehe Gl.4-14)	COP _{Toshiba,24°C}	4,5
Effizienz laut Datenblatt bei isentroper Verdichtung bei 24 °C Raumlufttemperatur (siehe GI.4-15)	COP _{is,Toshiba,24°C}	4,41
Verhältnis von gemessener Effizienz und Effizienz laut Datenblatt	COP _h COP _{Toshiba,24 °C}	57,7 %
Verhältnis von innerer Effizienz und Effizienz laut Datenblatt	COP _i COP _{Toshiba,24 °C}	86,6 %
Verhältnis von gemessener Effizienz bei isentroper Verdichtung und Effizienz laut Datenblatt	$\frac{COP_{is}}{COP_{is,Toshiba,24}\circ C}$	106,26 %
Verhältnis von gemessener elektrischer Leistung und elektrischer Leistung laut Datenblatt	$\frac{P_{el}}{P_{Toshiba,20^{\circ}C}}$	187 %

Tabelle 4-15: AG8- Vergleich der Effizienzwerte von Messdaten und Datenblatt zum Betriebspunkt10.02.2016 von 08:00:00 bis 08:08:00 beim Beheizen der Rittinger Bar

4.6.3 Auswirkung einer geringeren Teillast auf die Wirkungsgrade

Die Auswertung einzelner stationärer Messpunkte in Abschnitt 4.6.2 ergab, dass verschiedene Wirkungsgrade von der Teillast L und dem Verdichtungsverhältnis π abhängig sind. Hier werden 7 stationäre Messpunkte verglichen. Am Ende erfolgt eine Abschätzung des möglichen isentropen Gesamtwirkungsgrades, um die Effizienzwerte laut Toshiba (o.J.) Datenblatt zu erreichen.

Die Messergebnisse für sieben Messpunkte bei AG8 sind in Tabelle 4-16 und in Abbildung 4-38 in Abhängigkeit des Verdichtungsverhältnisses dargestellt.

Dotum/Do	uar daa	21.12.	21.12.	21.12.	21.12.	21.12.	25.01.	21.12.
		2015	2015	2015	2015	2015	2016	2015
Stationaren Mi	esspunktes	16min	26min	33min	41min	42min	25min	32min
Verdichtungs- verhältnis	π	4,436	4,54	4,58	4,74	4,889	4,947	5,212
Teillast	L [%]	40,41	47,02	39,71	49,74	57,98	48,06	61,24
Isentroper Gesamtwirkun gs- grad	ηis,overall [%]	53,21	51,24	51,37	54,57	56,65	53,44	57,11
lsentroper Wirkungsgrad	ηis [%]	80,96	78,59	82,9	83,55	80,98	79,26	76,15
Mechanischer Wirkungsgrad	ηm [%]	65,72	65,19	61,95	65,31	69,95	67,42	75
COP _{is} COP _{is,Toshiba,24°C}	[%]	91,37	92,3	93,6	88,8	89,1	84,8	88

Tabelle 4-16: Messergebnisse zu sieben verschiedenen Messpunkten von AG8

Abbildung 4-38: Wirkungsgrade in Abhängigkeit der Teillast bei AG8

Dabei können folgende Aussagen (siehe Tabelle 4-16 und Abbildung 4-38) getroffen werden:

- Verdichtungsverhältnis $\pi \uparrow \rightarrow$ isentroper Wirkungsgrad $\eta_{is} \downarrow$
- Verdichtungsverhältnis π und Teillast L $\uparrow \rightarrow$ mechanischer Wirkungsgrad $\eta_{m\uparrow}$
- Isentroper Gesamtwirkungsgrad η is,overall \approx konstant über π
- Isentroper Gesamtwirkungsgrad nis,overall < 60 %
- Das Effizienzverhältnis von Messdaten und Datenblatt bei isentroper Verdichtung liegt zwischen 84,8 % bei π = 4,947 und 93,6 % bei π = 4,58

Die Auswirkung der Teillast (L) ist vor allem beim "mechanischen" Wirkungsgrad (nm) bemerkbar. sinkendem Teillastfaktor Ermittlung Dieser fällt mit ab. Zur des isentropen Gesamtwirkungsgrades laut GI.2-5, müsste die für die Wärmepumpe relevante elektrische Leistung gemessen werden. Die dafür verwendeten Drehstromzähler messen in Abbildung 4-11 am Messpunkt. Dadurch könnten auch interne Verluste wie z.B. des Inverters oder zusätzliche elektrische Verbraucher mitgemessen werden. Deswegen sollten weitere Messungen am Kompressor vorgenommen werden. Der isentrope Gesamtwirkungsgrad (nis,overall) lag für diese 7 Messpunkte immer unter 60 %. Der höchste Wert für nis,overall von 57 % wurde bei einem Teillastfaktor von 61% erreicht. Bei allen Messpunkten erreichte der Effizienzwert bei isentroper Verdichtung COPis beinahe die Effizienz des Toshiba (o.J.) Datenblattes COPis, Toshiba, 24 °C. Es könnte sein, dass die Angaben des Toshiba (o.J.) für Werte bei isentroper Verdichtung ermittelt wurden. Jedoch war bis zum Ende dieser Arbeit nicht zu eruieren, nach welcher Norm bzw. mit welchen Innengeräten das Datenblatt erstellt wurde.

Als Vergleich soll eine Abschätzung des isentropen Gesamtwirkungsgrades (ηis,overall) erfolgen um die angegebenen Werte laut Toshiba (o.J.) erreichen zu können, siehe auch Anhang A1. Dazu wurden folgende Annahmen getroffen bzw. aus den Messdaten abgeleitet:

- Fixe Kondensationstemperatur tcond = 48,32 °C
- Fixe Werte f
 ür Überhitzung ΔTsup = 6,4 K; Unterk
 ühlung ΔTsub = 9,93 K; ΔTevap,max = 9,16 K
- \dot{Q}_h und die Außenlufttemperatur tambient wurden dem Datenblatt entnommen
- *P_{el,Toshiba,20 °C}* wurde aus dem Datenblatt entnommen und laut Kulterer (2007) nach GI.4-11 auf eine Raumtemperatur von troom = 24 °C korrigiert
- Verdichtungsverhältnis $\pi = f(tambient, tcond)$ wird berechnet
- \dot{m}_{ref} , t2 und η is,overall werden berechnet

Durch diese Annahmen konnte mithilfe von EES (2015) der isentrope Gesamtwirkungsgrad bei unterschiedlichen Außenlufttemperaturen und Teillasten ermittelt werden. Bei Volllast und bei Teillasten von 80 bis 90 %, wurden Werte für $\eta_{is,overall} \leq 1$ berechnet. Für Teillasten L \leq 70 % liegt $\eta_{is,overall}$ teilweise über 100 % um die gewünschten Effizienzwerte COPToshiba,24 °C zu erreichen.

Die Ergebnisse sind in Abbildung 4-39 dargestellt.

Abbildung 4-39: Isentroper Gesamtwirkungsgradabschätzung laut Datenblatt für AG8

Zur Erreichung der Angaben laut Toshiba (o.J.) Datenblatt, muss z.B. bei Teillastfaktoren $L \le 70 \%$, $\eta_{is,overall} \ge 1$ sein, siehe Abbildung 4-39. Die Grenzkurve $\eta_{is,overall} = 1$ entspricht dabei dem idealen Wärmepumpenkreislauf bei isentroper Verdichtung. Die Abschätzung des isentropen Wirkungsgrades erfolgte ohne Kenntnis der Norm, welches Innengerät bzw. welcher Messaufbau für die Erstellung des Datenblattes verwendet wurde. Deswegen wurden Werte für $\eta_{is,overall} > 1$ berechnet die in der Realität nicht möglich sind.

Das Innengerät kann dabei folgende Parameter zum Positiven, aber auch zum Negativen beeinflussen, die zur Erstellung des Datenblattes relevant wären

- Die übertragbare Leistung und der Luftvolumenstrom der verschiedenen Innengeräte, beeinflussen dabei die erforderliche Temperaturspreizung die zwischen Ansaug- und Ausblastemperatur vorliegen muss
- Eine geringere Temperaturspreizung würde die Ausblastemperatur und die Kondensationstemperatur senken
- Eine geringere Pinch-Point Temperatur ΔTPP-COND würde die Ausblastemperatur und die Kondensationstemperatur sinken.

Beim Vergleich der Messdaten mit dem Datenblatt, sind bei nis, overall doch größere Unterschiede bemerkbar. Bei den betrachteten Messdaten in Abbildung 4-38 lag das Verdichtungsverhältnis zwischen 4,4 bis 5,6. Der isentrope Gesamtwirkungsgrad lag generell unter 60 %. Wie bereits erwähnt, wurden bei den getroffenen Annahmen für die Abschätzung des isentropen Weiters Gesamtwirkungsgrades Werte **N**is,overall ≥ 1 berechnet. sind keine Kältemittelkreislaufparameter bekannt, die für die Erstellung des Datenblattes verwendet wurden. Daher ist ein Vergleich mit den vorliegenden Messdaten problematisch. Wichtig für weitere Betrachtungen ist es, Informationen über die Erstellung des Datenblattes in Bezug auf Innengeräte, Kondensations- und Verdampfungstemperatur usw. zu erhalten.

5 THERMISCHE GEBÄUDESIMULATION

Mit dem bereits bestehenden Gebäudemodell von Tockner (2012) bzw. dem Wärmpumpenmodell von Böhm (2014) sollen Heizstrategien in Bezug auf Effizienz, möglichst geringen Energieverbrauch und Behaglichkeit in Trnsys (Trnsys, 2012) für 1 Jahr simuliert werden. Zuerst werden die vorhandenen Modelle und eventuelle Anpassungen erläutert und am Ende erfolgt die Simulation der unterschiedlichen Strategien.

5.1 Gebäude- und Wärmepumpenmodell

Das Gebäudemodell wurde von Tockner (2012) übernommen und im Zuge der Masterarbeit von Böhm (2014) mit einem Wärmepumpenmodell erweitert. Nachfolgend wurden für das Gebäudebzw. Wärmepumpenmodell folgende Einstellungen getroffen.

5.1.1 Gebäudemodell

Das verwendete Gebäudemodell wurde von Tockner (2012) im Programm Google SketchUp (SketchUp, 2010) für sieben Gebäudezonen modelliert und anschließend in Trnsys simuliert. Die folgenden Informationen wurden aus Tockner (2012) übernommen.

In Abbildung 5-1 ist der Nordtrakt als Geometriemodell abgebildet. Der Keller bzw. das Gewölbe wurde an der Südseite in drei Segmente unterteilt, um für unterschiedliche Erdreichtiefen Temperaturverläufe des ungestörten Erdreiches zu simulieren. Im Erdgeschoss sind an der Südseite größere Glasflächen vorhanden. Alle anderen Fenster weisen geringere Glasflächen auf.

Abbildung 5-1: Südansicht (links) und Nordansicht (rechts) des simulierten Nordtraktes (in Anlehnung an Tockner, 2012)

Die Wandaufbauten im Nordtrakt weisen teils unterschiedliche Wandstärken auf. Diese wurden über die Höhe gemittelt. Zur Berechnung des U-Wertes wurde ein innerer Wärmeübergangskoeffizient $\propto_i = 7,7 \frac{W}{m^{2} \cdot K}$ und ein äußerer Wärmeübergangskoeffizient $\propto_a = 7,7 \frac{W}{m^{2} \cdot K}$ verwendet. Stoffdaten für unterschiedliche Materialien wie z.B. Sandstein wurden der Trnsys-Datenbank entnommen.

Der für die Simulation verwendete Klimadatensatz der Wetterstation Frohnleiten von ZAMG (2011) wies eine Jahresmitteltemperatur von 9,7 °C auf.

Für die Simulation der unterschiedlichen Heizstrategien wurde die Infiltrationsrate mit 0,1 h⁻¹ eingestellt. Der Luftaustausch zwischen den einzelnen thermischen Zonen wurde deaktiviert. In der Rittinger Bar bzw. dem Gewölbe wird 3-mal am Tag eine mechanische Lüftung mit Wärmerückgewinnung aktiviert. Alle internen Lasten wurden deaktiviert.

Für weitere Spezifikationen des Gebäudemodells sei auf die Diplomarbeit von Tockner (2012) verwiesen.

5.1.2 Wärmepumpenmodell

Im Rahmen der Masterarbeit von Böhm (2014) wurde zu dem bestehenden Gebäudemodell noch ein Wärmepumpenmodell basierend auf den Herstellerdaten von Toshiba (o.J.) implementiert.

Ein Schema des Wärmepumpenmodells ist in Abbildung 5-2 erkennbar.

Abbildung 5-2: Schema des Gebäude- und Wärmepumpenmodells (in Anlehnung an Böhm, 2014)

Für eine gewünschte Raumsolltemperatur je Zone und einer Außenlufttemperatur (t_{amb}), benötigt das Gebäudemodell eine Heizleistung ($\dot{Q}_{demand,zone,i}$). Wenn die aktuelle Raumtemperatur ($t_{actual,zone,i}$) die Solltemperatur noch nicht erreicht hat, wird im Wärmepumpenmodell die Teillast L je Zone ermittelt (siehe Gl.3-3 und Anhang A1). Dabei entspricht $\dot{C}_{zone,i}$ der maximalen installierten Heizleistung der Innengeräte für die jeweilige Zone, siehe dazu Tabelle 3-2. Die Heizleistung ($\dot{Q}_{h,zone,i}$) wird je nach Zone an das Gebäudemodell geliefert. Aus dem Wärmepumpenmodell wird auch noch die elektrische Leistung ($P_{el,zone,i}$) mittels Polynomfunktion ermittelt. Diese kann in der Masterarbeit von Böhm (2014) nachgeschlagen werden. Falls die

aktuelle Raumtemperatur ($t_{actual,zone,i}$) die gewünschte Solltemperatur überschreitet, wird das Wärmepumpenmodell deaktiviert und keine Heizleistung ($\dot{Q}_{h,zone,i}$) an das Gebäudemodell geliefert. Zusätzliche Informationen sind im Anhang A3 zu sehen.

Weitere Details zum Wärmepumpenmodell sind in der Masterarbeit von Böhm (2014) zu finden.

5.1.3 Anpassung des Wärmepumpenmodells an eine Messreihe

Das Wärmepumpenmodell spiegelt die Herstellerdaten wieder, jedoch wurde bei Messungen beinahe das Doppelte der elektrischen Leistung gegenüber dem Datenblatt benötigt. Für diesen Unterschied könnten eventuell mitgemessene Inverterverluste oder auch zusätzliche elektrische Verbraucher schuld sein.

In Tabelle 5-1 und in Abbildung 5-3 ist ein Vergleich zwischen Simulations- und Messergebnissen für eine 96 h Messreihe im Dezember ohne Anpassung zu sehen. Wegen des komplexen Wandaufbaus und hoher Speichermassen, die nicht der Realität entsprechen, wurde beim Simulieren von AG8 um 52 % mehr Heizenergie (Qh) als bei der Messung berechnet. Für AG9 stimmt die Heizenergie (Qh) von Simulation und Messdaten gut überein. Die im Simulationsmodell berechnete elektrische Arbeit (Wel) entsprechen den Herstellerdaten. Damit wären laut Datenblatt, SPF-Werte größer 4 möglich, siehe Tabelle 5-1.

rabelle e ni vergielen ven eintalaalene and meesengebilleee ver der / inpaceang				
Wärmepumpenkreis	Qh,96h [kWh]	Wel,96h [kWh]	SPF96h [-]	
AG8 Simulation	2078	488	4,26	
AG8 Messdaten	1371	609	2,25	
AG9 Simulation	1545	348	4,44	
AG9 Messdaten	1408	616	2,29	

Tabelle 5-1: Vergleich von Simulations- und Messergebnisse vor der Anpassung

Abbildung 5-3: Vergleich der Messreihe mit der Simulation ohne Korrektur

Es wurden höhere elektrische Leistungen gemessen, als im Datenblatt angegeben. Deswegen soll das vorhandene Wärmepumpenmodell (siehe Abschnitt 5.1.2) angepasst werden.

Die elektrische Leistung im Wärmepumpenmodell kann durch folgende Parameter angepasst werden.

a.) Änderung der aktuellen Raumtemperatur

Die Abdeckungen an den Innengeräten verursachten einen Luftkurzschluss und damit eine höhere Ansaugtemperatur. Dieser Effekt könnte durch eine Erhöhung der aktuellen Raumtemperatur Rechnung getragen werden (Böhm, 2014). Laut Kulterer (2007) wird bei höherer Raumtemperatur um 1 bis 2 %/K mehr elektrische Leistung benötigt. Dadurch wird der COP gesenkt.

Da Luftleitvorrichtungen einen Luftkurzschluss verhindern und die hohe Kondensationstemperatur für die Leistungsübertragung am Innengerät benötigt wird, kann diese Anpassung nicht vorgenommen werden.

b.) Änderung der Wärmeeinbringung

Eine zweite Möglichkeit wäre, die Art der Wärmeübertragung zu ändern. Die Wärmeübertragung an den Innengeräten erfolgt durch erzwungene Konvektion. Durch den Luftkurzschluss an den Innengeräten erfolgte die Wärmeübertragung teilweise auch radiativ. (Böhm, 2014)

Jedoch würden diese Anpassungen zu keinem zielführenden Ergebnis führen, da durch die installierten Luftleiteinrichtungen die Wärmeübertragung konvektiv erfolgt.

c.) Anpassung der elektrischen Leistung durch Korrekturfaktor

Die bisher verwendeten Annahmen von Böhm (2014) sind hier nicht anwendbar (Unterpunkte a & b). Deswegen wurde ein Korrekturfaktor aus der elektrischen Leistung der Messdaten, dividiert durch die elektrische Leistung des Datenblattes gebildet, siehe GI.5-1.

$$K = \frac{P_{el}}{P_{Toshiba,20\,^{\circ}C}} \qquad \qquad \text{GI.5-1}$$

Aus 6 stationären Messpunkten wurde ein mittlerer Korrekturfaktor K = 1,9 berechnet und die elektrische Leistung bzw. die elektrische Arbeit der Simulation mit diesem Faktor multipliziert. Damit sollte Pel gemäß Simulation, den Messdaten nahe kommen.

Abbildung 5-4 zeigt für AG8 den Vergleich der Stundenmittelwerte der Simulation mit den Messdaten. Bei doch ähnlichen Außenlufttemperaturen (tambient Sim und toutdoor,in meas) bei Stunde 1 bis 4, übersteigt die Heizleistung gemäß Simulation ($\dot{Q}_{h\ sim}$), die Heizleistung gemäß Messdaten ($\dot{Q}_{h\ meas}$). Der "simulierte" Wandaufbau des Gewölbes ist sehr komplex und weist vermutlich zu hohe Speichermassen auf. Zudem ist die genaue Regelungscharakteristik der Luft/Luft-Wärmepumpe nicht bekannt. Ab Stunde 5 passte sich der Heizleistungsverlauf der Simulation den Messdaten an. Auch die elektrische Leistung der Simulation (Pel Sim) lag zwischen Stunde 1 und 4 deutlich über der elektrischen Leistung der Messung (Pel meas). Ab Stunde 5 wurde eine gute Übereinstimmung von Simulation und Messdaten erreicht. Die ersten 3 Stunden lagen die COP-Stundenmittelwerte der Simulation (COP Sim) deutlich unter den Messdaten (COP meas). Ab Stunde 4 lagen diese auf ähnlichem Niveau. Diese großen Unterschiede können, wie bereits erwähnt, auf eine unbekannte Regelungscharakteristik zurückgeführt werden.

AG8: Stundenmittelwertvergleich

Abbildung 5-4: Stundenmittelwertvergleich der Messung mit der Simulation für AG8

Für einen Vergleich über 96 h wurde ein SPF-Vergleich zwischen Messung und angepasster Simulation vorgenommen. Dabei wurden gute Übereinstimmungen beim SPF erreicht. Bei AG8 liegt jedoch der simulierte Energieverbrauch 52 % über jenen der Messung. Dies sollte durch einen korrigierten Wandaufbau bzw. geringere Speichermassen in Zukunft angepasst werden. Bei AG9 liegen die Simulationsergebnisse 10 % über jenen der Messergebnisse. Siehe Tabelle 5-2.

		<u> </u>	
Wärmepumpenkreis	Qh,96h [kWh]	Wel,96h [kWh]	SPF96h [-]
AG8 Simulation	2078	926	2,24
AG8 Messdaten	1371	609	2,25
AG9 Simulation	1545	661	2,34
AG8 Messdaten	1408	616	2,29

Tabelle 5-2: Vergleich von Simulations- und Messergebnisse nach der Anpassung von Pel

5.2 Simulation von Heizstrategien

Nach Anpassung des Wärmepumpenmodells sollen unter Bedacht auf Effizienz, möglichst geringen Energieverbrauch und Behaglichkeit die Heizstrategien von Tockner (2012) überprüft werden.

Dazu wurde ein fiktiver Veranstaltungskalender für 9 Veranstaltungen übers Jahr erstellt und in Tabelle 5-3 abgebildet. Die Temperatur zwischen den Veranstaltungen (Absenktemperatur) wurde auf 10, 14 oder 18 °C gesetzt, bei einer Vorheizdauer zwischen 12, 24, 26 und 48 Stunden vor einem "Event". Die Vorheiztemperatur (Temperatur zum Aufheizen der Räume vor einem "Event") und die Raumluftsolltemperatur wurden auf 22 °C eingestellt. Insgesamt ergaben sich 12 Simulationen (3 Absenktemperaturen x 4 Vorheizdauer).

1. Veranstaltung	03.01.
2. Veranstaltung	28.03.
3. Veranstaltung	15.06.
4. Veranstaltung	10.11.
5. Veranstaltung	11.11.
6. Veranstaltung	17.11.
7. Veranstaltung	09.12.
8. Veranstaltung	13.12.
9. Veranstaltung	16.12.

Tabelle 5-3: Fiktiver Veranstaltungskalender für den Nordtrakt auf Burg Rabenstein

Dabei wurde – wie bei Tockner (2012) – festgestellt, dass aufgrund der geringen Gebäudeauslastung, die Absenktemperatur den jährlichen Heizwärmebedarf (HWB) massiv beeinflusst. Je geringer die Absenktempertur, desto geringer der HWB. In Tabelle 5-4 ist der HWB der unterschiedlichen Simulationen erkenntlich. Auch wurde der spezifische HWB aus der Gebäudefläche von 337,5 m² (Tockner, 2012) berechnet. Für einen möglichst geringen HWB und damit auch geringen Energieverbrauch der Wärmepumpe ist eine möglichst geringe Absenktemperatur zu bevorzugen.

Tabelle 5-4: Jährlicher Heizwärmebedarf (HWB) des Nordtraktes (AG8 und AG9) bei verschiedenen Absenktemperaturen und Vorheizdauer

tpreheat = 22 °C; troom,set = 22 °C		Vorheizdauer			
Absenktemperatur		12 h	24 h	36 h	48 h
10.00	HWB [kWh/a]	33727	35705	37394	38973
10 C	spez. HWB [kWh/(m²a)]	99,9	105,8	110,8	115,5
14 %	HWB [kWh/a]	57662	58841	59930	60962
14 0	spez. HWB [kWh/(m²a)]	170,8	174,3	177,6	180,6
19.00	HWB [kWh/a]	90067	90640	91144	91623
10 C	spez. HWB [kWh/(m²a)]	266,9	268,6	270,1	271,5

Jedoch wirkt sich eine geringere Absenktemperatur negativ auf die thermische Behaglichkeit aus.

Die thermische Behaglichkeit ist ein subjektives Empfinden und hängt laut Rieberer (2014) von mehreren Faktoren ab:

- Persönliche Faktoren: Bekleidung, Aktivität
- Räumliche Faktoren: Strahlungstemperatur, Temperatur der Umschließungsflächen
- Raumlufttechnische Faktoren: Lufttemperatur, Luftfeuchte

Die thermische Behaglichkeit wird nach EN ISO 7730 dargestellt (siehe Abbildung 5-5). Auf der Abszisse (x-Achse) wird Außenlufttemperatur und auf der Ordinate (y-Achse) wird die operative Raumtemperatur aufgetragen. Die operative bzw. "empfundene" Raumtemperatur wird nach GI.5-2 berechnet.

$$t_{op} = \frac{\alpha_k \cdot t_L + \alpha_s \cdot t_U}{\alpha_k + \alpha_s}$$
GI.5-2

Aus der Lufttemperatur tL, der Temperatur der Umschließungsflächen tU sowie den Wärmeübergangszahlen für Konvektion \propto_k und Strahlung \propto_s bildet sich die operative Raumtemperatur top.

Als Außenlufttemperatur wird der mittlere Tageswert verwendet.

Abbildung 5-5: Behaglichkeitsdiagramm nach EN ISO 7730 (EN ISO 7730)

Nach EN ISO 7730 erfolgt die Einteilung in drei Kategorien, die einen unterschiedlichen Prozentsatz an unzufriedenen Personen (PPD) erwarten lassen; siehe Tabelle 5-5

Tabelle 5-5: Behaglichkeitsbere	eiche nach EN ISO 7730 (2006)
Kategorie	PPD
A	< 6
В	< 10
С	< 15

Liegt die operative Raumtemperatur top in Abbildung 5-5 zwischen den beiden blauen Linien, dann ist dies der optimale Bereich mit den wenigsten unzufriedenen Personen (Kategorie A). Innerhalb der gelben Linien (Kategorie B) liegt der Übergangsbereich. Kategorie C weist die meisten Unzufriedenen innerhalb der roten Linien auf. Zudem ist ein Unterschied bei der operativen Raumtemperatur der einzelnen Kategorien zwischen Winter und Sommer in Abbildung 5-5 zu erkennen. Zwischen operativer Raumtemperatur und Außenlufttemperatur sollte der Unterschied nicht zu groß sein.

Die operative Raumtemperatur für die 12 Simulationen wurde bei Veranstaltungsbeginn am 03.01. bei einer Tagesmitteltemperatur von -4,31 °C mittels Trnsys bestimmt und in Tabelle 5-6 abgebildet. Die berechneten operativen Raumtemperaturen wurden entsprechend der Kategorien A, B, C gemäß EN ISO 7730 eingefärbt (siehe Tabelle 5-5). Dabei ist zu beobachten, je geringer die Absenktemperatur, desto länger die Vorheizdauer, um einen behaglichen Zustand zu erreichen. In der Rittinger Bar war die Behaglichkeit nach Kategorie A laut EN ISO 7730 bei einer Absenktemperatur von 10 °C und 24 h Vorheizdauer erreicht. Für das Gewölbe konnte aufgrund hoher Speichermassen und einer Absenktemperatur von 10 °C nur Kategorie C erreicht. Erst bei einer Absenktemperatur von 14 °C und 48 h Vorheizdauer wird zumindest Kategorie B erreicht. In der Concert Hall wurde bei einer Absenktemperatur von 10 °C, nach 36 h Kategorie B erreicht.

tpreheat = 22 °C; troom,set = 22 °C		Vorheizdauer			
Absenktemp	Zone	12 h	24 h	36 h	48 h
	Rittinger Bar (AG8)	20,45	21,16	21,80	22,57
10 °C	Gewölbe (AG8)	17,39	18,24	19,12	19,85
	Concert Hall (AG9)	18,52	19,96	20,50	20,82
	Rittinger Bar (AG8)	21,04	21,68	22,34	22,80
14 °C	Gewölbe (AG8)	18,32	19,06	19,71	20,34
	Concert Hall (AG9)	19,90	20,10	19,87	19,99
	Rittinger Bar (AG8)	21,77	22,40	22,66	22,79
18 °C	Gewölbe (AG8)	19,30	19,84	20,24	20,47
	Concert Hall (AG9)	19,93	19,62	20,82	20,53

Tabelle 5-6: Operative Raumtemperatur [°C] bei Veranstaltungsbeginn am 03.01.

Eine geringe Absenktemperatur verlängert die Vorheizdauer für einen behaglichen Zustand. Wie in Tabelle 5-7 zu sehen, verringert sich der jährliche SPF je länger die Vorheizdauer bzw. je höher die Absenktemperatur. Eine längere Vorheizdauer bei geringerer Absenktemperatur ist zu bevorzugen, da der HWB bzw. der elektrische Energieverbrauch bei höherer Absenktemperatur enorm steigen würde. Die Farben stellen für den jeweiligen Wärmepumpenkreis die Behaglichkeit nach EN ISO 7730 dar. Bei AG8 wurde die Färbung des Gewölbes verwendet, da dieses eine längere Vorheizdauer für einen behaglichen Zustand benötigt. Vergleiche dazu auch Tabelle 5-4.

tpreheat = 22 °C; troom,set = 22 °C		Vorheizdauer			
Absenktemp	Zone	12 h	24 h	36 h	48 h
10.00	AG8	2,74	2,74	2,72	2,72
10 0	AG9	2,89	2,87	2,85	2,84
14.00	AG8	2,78	2,77	2,76	2,75
14 0	AG9	2,81	2,80	2,79	2,78
10 %	AG8	2,66	2,66	2,66	2,66
18 0	AG9	2,66	2,66	2,65	2,65

Tabelle 5-7: Jährlicher SPF für AG8 und AG9 der unterschiedlichen Simulationen

Zur Verbesserung der Behaglichkeit wurden einige Einstellungen geändert bzw. der Realität angepasst. Da ein geringer HWB zu bevorzugen ist, sollte eine möglichst geringe Absenktemperatur verwendet werden. In der Concert Hall steht ein Konzertflügel und große Temperaturschwankungen sollten vermieden werden. Deshalb wurde in der Concert Hall eine Mindestabsenktemperatur von 16 °C festgelegt. Für die Rittinger Bar und dem Gewölbe blieb die Absenktemperatur bei 10 °C. Um die Behaglichkeit zu verbessern, wurde die Vorheiztemperatur (tpreheat) im Gewölbe (AG8) und der Concert Hall (AG9) erhöht und eine Stunde vor Veranstaltungsbeginn auf die gewünschte Solltemperatur abgesenkt, siehe Tabelle 5-8. In der Rittinger Bar (AG8) war bei einer Absenktemperatur von 10 °C und 24 h Vorheizdauer laut Tabelle 5-6 ein behaglicher Zustand vorhanden, deswegen wurden die Einstellungen bzgl. Absenktemperatur nicht verändert.

Vier neue Simulationen wurden für die Rittinger Bar, dem Gewölbe und der Concert Hall für 12, 24, 36 und 48 h Vorheizdauer durchgeführt. Die Einstellungen für die Vorheiztemperatur, Raumluftsolltemperatur und der Absenktemperaturen sind in Tabelle 5-8 zusammengefasst.

	Absenktemperatur	10 °C
	Vorheiztemperatur tpreheat	22 °C
Rittinger Bar	Änderung von tpreheat auf troom,set	1 h
	vor Veranstaltungsbeginn	
	Raumsolltemperatur troom,set	22 °C
	Absenktemperatur	10 °C
	Vorheiztemperatur tpreheat	26 °C
Gewölbe	Änderung von tpreheat auf troom,set vor Veranstaltungsbeginn	1 h
	Raumsolltemperatur troom,set	22 °C
	Absenktemperatur	16 °C
	Vorheiztemperatur tpreheat	24°C
Concert Hall	Änderung von tpreheat auf troom,set vor Veranstaltungsbeginn	1 h
	Raumsolltemperatur troom,set	22 °C

Tabelle 5-8:	Einstellung der	Vorheiztemperaturer	für bessere	Behaglichkeit
1 400110 0 0.	Emotonang aor	vornoizioniporataron		Donaghonitoit

Aufgrund der höheren Vorheiztemperatur im Gewölbe und der Concert Hall bzw. der höheren Mindestabsenktemperatur in der Concert Hall (AG9), stieg der HWB. Vergleiche dazu Tabelle 5-9 und Tabelle 5-4.

	Tabelle e el time bel filean	geter / tooornitten	iperatar acert	oraciancee	
troom,set = 22 °C Vorheizdauer (mit Vorheiztemperatur t		r tpreheat)			
Abs	enktemperatur	12 h	24 h	36 h	48 h
AG8: 10 °C	HWB [kWh/a]	8524	10219	11733	13050
AG0. 10 C	spez. HWB [kWh/(m ² a)]	51,5	61,8	70,9	78,9
AC0: 16 °C	HWB [kWh/a]	42669	42914	43108	43348
AG9. 10 C	spez. HWB [kWh/(m ² a)]	247,9	249,4	250,5	251,9
accomt	HWB [kWh/a]	51193	53133	54842	56398
yesam	spez. HWB [kWh/(m ² a)]	151,7	157,4	162,5	167,1

Tabelle 5-9: HWB bei niedrigster Absenktemperatur des Nordtraktes

Wegen höherer Vorheiztemperaturen im Gewölbe und der Concert Hall, konnte die Behaglichkeit nach EN ISO 7730 verbessert werden, siehe Tabelle 5-10. Im Gewölbe konnte bei einer Absenktemperatur von 10 °C und 48 h Vorheizdauer Kategorie B erreicht werden. Wegen eines Konzertflügels wurde die Mindestabsenktemperatur in der Concert Hall auf 16 °C eingestellt. Ein behaglicher Zustand nach Kategorie B war nach 24 h Vorheizdauer erreicht. Eine Stunde vor Veranstaltungsbeginn wurde die Vorheiztemperatur auf die Raumluftsolltemperatur eingestellt damit sich in den Räumen die gewünschte Raumluftsolltemperatur für dem "Event" einstellt. Effektiv wurde die Wärmepumpe damit für die jeweilige Vorheizdauer plus 1 h vor "Event"-Beginn aktiviert. In der Rittinger Bar wurde – trotz gleichbleibender Einstellung der Absenktemperatur von 10 °C – ein behaglicher Zustand der Kategorie A nach 12 h Vorheizdauer erreicht. Dabei entspricht die Vorheiztemperatur auch gleichzeitig der Raumluftsolltemperatur. Damit wird die Rittinger Bar effektiv 13 h vor Veranstaltungsbeginn beheizt (bei 12 h Vorheizdauer und Änderung von tpreheat auf troom,set, 1 h vor Veranstalungsbeginn). In der Rittinger Bar war bereits nach 12 h Vorheizdauer ein behaglicher Zustand der Kategorie A erreicht wurde, vergleiche dazu Tabelle 5-10 und Tabelle 5-6.

Tabelle 5-10: Operative Raumtemperatur [°C] bei Veranstaltungsbeginn am 03.01.

troom,set = 22 °C				Vorheiz	zdauer	
Absenktemp	tpreheat	Zone	12 h	24 h	36 h	48 h
10 °C	22 °C	Rittinger Bar (AG8)	21,69	21,60	21,74	22,22
10 °C	26 °C	Gewölbe (AG8)	17,85	18,87	19,40	20,05
16 °C	24 °C	Concert Hall (AG9)	19,62	20,27	20,38	20,52

Bei einer höheren Mindestabsenktemperatur der Concert Hall (AG9), kann teilweise auch in den Frühlings- und Sommermonaten ein HWB bestehen. Damit können auch höhere SPF-Werte für AG9 erreicht werden, vergleiche dazu Abschnitt 2.5. Der SPF für AG9 änderte sich kaum, bei unterschiedlicher Vorheizdauer. Der jährliche SPF von AG8 sank. Ein möglicher Grund ist die höhere Vorheiztemperatur für das Gewölbe als in der Concert Hall. Der simulierte SPF stieg bei AG8 mit längerer Vorheizdauer. Vergleiche dazu Tabelle 5-7 und Tabelle 5-11.

troom,set = 22 °C				Vorheiz	dauer	
Absenktemp	tpreheat	Zone	12 h	24 h	36 h	48 h
10 °C	22 bzw. 26 °C	AG8	2,32	2,37	2,37	2,40
16 °C	24	AG9	3,02	2,99	2,97	2,95

Tabelle 5-11: Jährlicher SPF für AG8 und AG9 der unterschiedlichen Simulationen

5.3 Ergebnisse zur Simulation von Heizstrategien

Es wurden unterschiedliche Heizstrategien mittels Simulation untersucht. Dabei wurden Absenktemperaturen und Vorheizdauer variiert. Bei einer geringen Anzahl an Veranstaltungen sinkt der jährliche Heizwärmebedarf bei geringeren Absenktemperaturen sehr stark. Dadurch wird aber für einen behaglichen Zustand nach EN ISO 7730 eine längere Vorheizdauer benötigt. Bei einer längeren Vorheizdauer stieg für AG8 der SPF, bei AG9 fiel dieser. Insgesamt ist eine geringe Absenktemperatur zu bevorzugen, da bei höherer Absenktemperatur viel mehr Heizenergie und damit elektrische Arbeit benötigt wird.

6 FAZIT UND AUSBLICK

Für die Beheizung von denkmalgeschützten Gebäuden, wie Burg Rabenstein, stellen Luft/Luft-Wärmepumpen eine umweltschonende Alternative dar. Der modulare Aufbau der Wärmepumpe, bestehend aus mehreren Außengeräten und beliebig platzierbaren Innengeräten, schont die Bausubstanz der Burg.

Bereits in vorhergehenden Arbeiten wurde dazu an drei der insgesamt 11 Wärmepumpenkreise ein Messsystem zur Bestimmung der Effizienz installiert. Erste Messungen ergaben, dass die COP-Werte unter den Herstellerangaben liegen. Damals wurde wegen der Abdeckung am Innengerät ein Luftkurzschluss zwischen Ansaug- und Ausblasöffnung gemessen. Dies wurde als möglicher Grund für die hohe Kondensationstemperatur und damit für die mäßigen Leistungszahlen (COP) genannt.

Seitdem wurden Luftleitvorrichtungen zum Vermeiden des Luftkurzschlusses in der Rittinger Bar und im Gewölbe (AG8) angebracht. Erste Messungen ergaben, dass keine signifikante COP-Erhöhung vorlag. Eine falsche Messung der elektrischen Leistung würde den COP senken, deswegen wurden die Drehstromzähler an den Netzanschlussklemmen mit einem Netzanalysegerät überprüft. Damit konnte ein Fehler der Drehstromzähler ausgeschlossen werden. An diesem Messpunkt könnten jedoch zusätzliche elektrische Verbraucher oder Verluste am Inverter des Kompressors mitgemessen werden und dadurch den COP senken.

Der nächste Ansatz war, die Luftleitvorrichtung auf Effektivität zu überprüfen. Dazu wurde ein Innengerät der Rittinger Bar an der Ansaug- und Ausblasöffnung mit Temperatursensoren bestückt. Zusätzlich wurde auch noch ein Sensor an der Fernbedienung der Wärmepumpe platziert, um die Temperaturregelung zu kontrollieren. Es wurde kein Fehler an der Luftleitvorrichtung sowie an der Temperaturregelung gefunden. Dennoch wurden wieder hohe Kondensationstemperaturen gemessen. Dies könnte mehrere Ursachen haben. Es wurde vermutet, dass die Abdeckungen an den Innengeräten einen zu großem Widerstand erzeugen und dadurch den Luftvolumenstrom senken. Mithilfe eines Flügelradanemometers konnte der Luftvolumenstrom abgeschätzt werden. Ein Einfluss der Abdeckung am Truheninnengerät konnte Wegen dieser nicht nachgewiesen werden. Erkenntnis wurde eine luftseitige Temperaturspreizung am Truheninnengerät berechnet. Eine Leistungsübertragung von 8 kW an einem Innengerät, resultiert bei einem Luftvolumenstrom von 950 m3/h in eine luftseitige Temperaturspreizung von ca. 25 K. Aus dieser Erkenntnis lassen sich auch die hohen Kondensationstemperaturen erklären.

Eine zu hohe Kondensationstemperatur senkt die Leistungszahl, jedoch wurden noch einige stationäre Messpunkte während des Betriebes betrachtet, um weitere Optimierungspotentiale zu finden. Dabei wurde speziell das Teillastverhalten der Wärmepumpe untersucht. Der Einfluss der Teillast war vor allem am mechanischen Wirkungsgrad bemerkbar. Dieser sank mit sinkendem Teillastfaktor. Dies könnte auf eventuelle Verluste am Inverter hindeuten. Jedoch könnten ungewollt, zusätzliche Verbraucher mitgemessen werden. Dies beeinflusst den "mechanischen" Wirkungsgrad. Ein isentroper Gesamtwirkungsgrad < 60 % wurde berechnet. Eine zukünftige detaillierte Leistungsmessung nach dem Inverter wäre notwendig, um den tatsächlichen mechanischen Wirkungsgrad des Kompressors zu ermitteln und um etwaige parasitäre Leistungsverbraucher zu finden.

Bei der Abschätzung des isentropen Gesamtwirkungsgrades wurden Werte > 1 berechnet. Jedoch war bis zum Ende dieser Arbeit nicht bekannt, mit welchem Messaufbau, welche Norm oder auch mit welchem Innengerät die Datenblatterstellung erfolgte. Daher ist ein Vergleich sehr problematisch bzw. nicht zulässig. Für zukünftige Arbeiten sollte der Einfluss des verwendeten Innengerätes auf die Kondensationstemperatur näher betrachtet und weitere Informationen bzgl. Datenblatterstellung eingeholt werden. Ein Ansatz wäre, die Concert Hall/Galerie (AG9) nur mit den 4-Wegekassetten zu beheizen und den Einfluss einer geringeren Temperaturspreizung auf die Kondensationstemperatur genauer zu untersuchen.

Der zweite Teil dieser Arbeit befasste sich mit der Simulation von Heizstrategien über 1 Jahr. Diese sollten in Bezug auf Effizienz, möglichst geringen Energieverbrauch und Behaglichkeit betrachtet werden. Das Gebäude- und Wärmepumpenmodell wurde in vorigen Diplom- bzw. Masterarbeiten entwickelt. Für das Wärmepumpenmodell wurde das Kennfeld des Herstellers hinterlegt. Das Wärmepumpenmodell musste an die Messdaten angepasst werden. Dazu wurde ein Korrekturfaktor zwischen gemessener elektrischer Leistung und der Leistung laut Herstellerdatenblatt gebildet und dieser in der Auswertung berücksichtigt. Bei AG8 wurde wegen des komplexen Wandaufbaus und hoher Speichermassen, in der Simulation um 52 % mehr Heizwärmebedarf (HWB) als in der Messung benötigt. Zudem wurde beim Vergleich der Stundenmittelwerte von Simulation und Messdaten, Unterschiede aufgrund der unbekannten Regelungscharakteristik festgestellt. Jedoch wurde ein ähnlicher SPF erreicht. Bei AG9 liegt der HWB bei Messung und Simulation auf ähnlichem Niveau.

Zur Simulation von unterschiedlichen Heizstrategien in Trnsys über 1 Jahr, wurde ein fiktiver Kalender mit 9 Veranstaltungen erstellt. Je geringer die Temperatur (Absenktemperatur) zwischen den Veranstaltungen gewählt wurde, umso geringer war der jährliche Heizwärmebedarf. Demgegenüber stehen die Behaglichkeit und die Effizienz. Je geringer die Absenktemperatur, umso länger die Vorheizdauer und desto geringer der SPF. Jedoch sollte einem geringeren HWB mehr Beachtung geschenkt werden, da damit auch der elektrische Energiebedarf für die Wärmepumpe sinkt. Deswegen sind geringe Absenktemperaturen und eine längere Vorheizdauer für ein behagliches Raumklima nach EN ISO 7730 zu bevorzugen.

Auf Basis dieser Erkenntnis, wurden Simulationen für ein reales Szenario bei niedriger Absenktemperatur durchgeführt. Für die Rittinger Bar und dem Gewölbe wurde eine Absenktemperatur von 10 °C festgelegt. Die Vorheiz- und Solltemperatur wurde in der Rittinger Bar auf 22 °C eingestellt. Um die Behaglichkeit im Gewölbe zu steigern, wurde wegen großer Speichermassen die Vorheiztemperatur auf 26 °C eingestellt. Während der Veranstaltung betrug die Raumluftsolltemperatur 22 °C. In der Concert Hall sollten wegen des Konzertflügels große Temperaturschwankungen zwischen Absenktemperatur und Raumluftsolltemperatur vermieden werden. Deshalb wurde eine Mindestabsenktemperatur von 16 °C gewählt. Auch in der Concert Hall wurde eine höhere Vorheiztemperatur zur Steigerung der Behaglichkeit gewählt. Ein Wert von 24 °C wurde in der Simulation eingestellt, bei einer anschließenden Raumluftsolltemperatur von 22 °C. In der Rittinger Bar konnte nach 12 h Vorheizdauer ein behagliches Raumklima der Kategorie A nach EN ISO 7730 erreicht werden. Für das Gewölbe war 48 h Vorheizdauer für eine operative Raumtemperatur der Kategorie B notwendig. Die Concert Hall erreichte nach 24 h Vorheizdauer Kategorie B.

In Zukunft muss das Gebäudemodell im Bereich des Gewölbes und der Rittinger Bar (AG8) angepasst werden, um in etwa denselben HWB der Messung zu erreichen. Zusätzlich müsste im Wärmepumpenmodell noch der Faktor von gemessener elektrischer Leistung, zu Leistung gemäß Datenblatt sowie die Regelungscharakteristik der Wärmepumpe ins Wärmepumpenmodell implementiert werden.

LITERATURVERZEICHNIS

Baehr, Hans Dieter; Kabelac, Stephan (2012): Thermodynamik. Grundlagen und technische Anwendungen. 15., [überarb.] Aufl. Berlin: Springer Vieweg (Springer-Lehrbuch).

Böhm, Hans (2014): Modellierung und Analyse der Luft/Luft Wärmepumpe auf Burg Rabenstein. Masterarbeit. Institut für Wärmetechnik-Technische Universität Graz, Graz.

Burg Rabenstein (2016a). Burg Rabenstein Informations-, und Betriebs GmbH. Online verfügbar unter http://www.burg-rabenstein.at/fotogalerie/#iLightbox[gallery-1]/3 (05.04.2016).

Burg Rabenstein (2016b). Burg Rabenstein Informations-, und Betriebs GmbH. Online verfügbar unter http://www.burg-rabenstein.at/die-waermepumpenburg/der-markt/ (24.02.2016).

Cube, Hans L. von; Steimle, Fritz (1984): Wärmepumpen. Grundlagen u. Praxis. 2., überarb. u. erw. Aufl. Düsseldorf: VDI-Verl.

Danfoss (2010): Danfoss Saginomiya Electronic Expansion Valves - Manual. Grodzisk Mazowiecki, Poland.

EES (2015): EES - Engineering Equation Solver, Academic Professional. Version V9.901. Madison, USA: F-Chart Software. Online verfügbar unter www.fchart.com/ees.

EN ISO 7730, 01.05.2006: Ergonomie der thermische Umgebung. Online verfügbar unter http://www.bdb.at/Service/NormenDetail?id=215156 (08.07.2016).

Fa. Air-Cond: E-Mail Kommunikation mit Christian Rumpl am 01.02.2016.

Fluke Industrial B.V. (2006): Netzanalysegerät Fluke 434. 7602 EA Almelo, Niederlande. Online verfügbar unter http://www.pewa.de/DATENBLATT/DBL_FL_FL434-5-MANUAL_DEUTSCH.PDF (19.07.2016).

Gründhammer, Martin (2014): Monitoring der Luft/Luft-Wärmepumpe auf Burg Rabenstein. Masterarbeit. Institut für Wärmetechnik-Technische Universität Graz, Graz.

Kulterer, Konstantin (2007): Energieeffizienz in Kältesystemen. In: *Beraterinformation klima:aktiv*. Online verfügbar unter

http://www.ztk.at/dl/Energieeffizienz_Kaeltesysteme_klima_aktiv.pdf (12.08.2016).

Recknagel, Hermann; Schramek, Ernst-Rudolf (Hg.) (2007): Taschenbuch für Heizung und Klimatechnik. Einschließlich Warmwasser- und Kältetechnik. 73. Aufl. München: Oldenbourg.

Rieberer, René (2014): Vorlesung zu "Heizungs, Lüftungs-, Klimatechnik"; LV.Nr.: 307.019. Institut für Wärmetechnik-Technische Universität Graz, Graz.

Rieberer, René (2015): Vorlesung zu "Wärmepumpentechnik"; LV.Nr.: 307.052. Institut für Wärmetechnik-Technische Universität Graz, Graz.

SketchUp (2010). Version 8.0.4811. Sunnyvale, USA: Trimble Navigation Ltd. Online verfügbar unter www.sketchup.com.

Sobotta, Stefan (2015): Praxis Wärmepumpe. Technik, Planung, Installation. 2. Aufl. s.l.: Beuth Verlag GmbH (Beuth Praxis).

Steiner, Helfried (2014): Lehrveranstaltungsskriptum zu "Höhere Strömungslehre und Wärmeübertragung; LV.Nr.: 321.106. Institut für Strömungslehre und Wärmeübertragung-Technische Universität Graz, Graz.

Testo AG (2015): Bedienungsanleitung - testo 410i. Lenzkirchen, Deutschland. Online verfügbar unter https://www.testo.at/resources/db/2a/4a429df66585/testo-SmartProbes-Bedienungsanleitung.pdf (18.07.2016).

Tockner, Andreas (2012): Beheizung einer Burg mittels Luft/Luft Wärmepumpe. Diplomarbeit. Institut für Wärmetechnik-Technische Universität Graz, Graz. Toshiba (o.J.): Technische Information - part load. Japan. Zur Verfügung gestellt von Fa. Air-Cond.

Toshiba (2004): S-MMS Service Manual. A03-009. Japan. Zur Verfügung gestellt von Fa. Air-Cond.

Toshiba (2005): S-MMS Engineering Data Book. Japan. Zur Verfügung gestellt von Fa. Air-Cond.

Trnsys (2012). Version 17.02.0004. Madision, USA: Thermal Energy System Specialists.

Webasto (2000): Schulungs-Handbuch Kälte-Klima. Karlsruhe. Online verfügbar unter http://www.sternzeit-107.de/downloads/Schulungs-Handbuch_Klima_D_9003161A_3002kb.pdf (04.04.2016).

ZAMG (2011): Wetterstation Frohnleiten. Zentralanstalt für Meteorologie und Geodynamik.

ZAMG (2016). Zentralanstalt für Meteorologie und Geodynamik. Online verfügbar unter https://www.zamg.ac.at/cms/de/klima/informationsportal-klimawandel/klimazukunft/alpenraum/lufttemperatur (24.02.2016).

ABKÜRZUNGS- UND FORMELVERZEICHNIS

Abkürzungsverzeichnis:

AG3	Außengeräteeinheit 3
AG8	Außengeräteeinheit 8
AG9	Außengeräteeinheit 9
COP	Coefficient of Performance (Leistungszahl)
GWP	Global Warming Potential (Treibhauspotential)
HWB	Heizwärmebedarf
ODP	Ozon Depletion Potential (Ozonabbaufaktor)
SPF	Seasonal Performance Factor (Jahresarbeitszahl

Formelzeichen:

A	Fläche (des Wärmetauschers)
COPh	COP der Messdaten
COPC,h	COP beim Carnot Prozess
COPi	COP für die innere Leistungs
COPis	COP bei isentroper Verdichtung
COPohne,Fan	COP ohne Gebläseleistung
COPPe,h	COP beim Perkins/Evans Vergleichsprozess
COPToshiba,20 °C	COP laut Toshiba Datenblatt bei 20 °C Raumtemp.
COPToshiba,24 °C	COP laut Toshiba Datenblatt nach Korrektur für 24 °C Raumtemp.
COPis,Toshiba,20 °C	COPis laut Toshiba Datenblatt bei 20 °C Raumtemp.
COPis,Toshiba,24 °C	COPis laut Toshiba Datenblatt nach Korrektur für 24 °C Raumtemp.
Cpair	Wärmekapazität der Luft
Ċ _{zone,i}	Max. Heizkapazität je Zone (im Nordtrakt)
h1	Enthalpie bei Kokmpressoreintritt
h2	Enthalpie bei Kompressoraustritt
h2s	Enthalpie bei isentroper Verdichtung am Kompressoraustritt
h3	Enthalpie nach dem Kondensator bzw. Innengerät
ht	Totale Enthalpie
Δ hair	Luftseitige Enthapiedifferenz am Wärmetauscher
K	Korrekturfaktor
L	Teillast (part load)
L _{zone,i}	Teillast je Zone in
\dot{m}_{air}	Luftmassenstrom
\dot{m}_{ref}	Kältemittelmassenstrom
p1	Nieder- bzw. Verdampfungsdruck
p2	Hoch- bzw. Kondensationsdruck
p3	Druck nachdem Kondensator bzw. Innengerät
Pel	Elektrische Leistung
Pel,ohne Fan	Elektrische Leistung ohne Gebläse
P _{el,zone,i}	Elektrische Leistung je Zone
PFan	Elektrische Leistung des Gebläses
Pi	Innere Leistung
Pis	Leistung bei isentroper Verdichtung
PL1,PL2,PL3	Elektrische Leistung der Leiter L1, L2, L3
PToshiba,20 °C	Elektrische Leistung laut Toshiba Datenblatt bei 20 °C Raumtemp.
DTachiba 24.90	Elektrische Leistung laut Toshiba Datenblatt nach Korrektur für 24 °C
Ploshiba,24 °C	Raumtemp.

Pis,Toshiba,20 °C	Elektrische Leistung bei isentroper Verdichtung laut Toshiba Datenblatt bei 20 °C Raumtemp.
	Elektrische Leistung bei isentroper Verdichtung laut Toshiba Datenblatt
Pis,Toshiba,24 °C	nach Korrektur für 24 °C Raumtemp
\dot{Q}_{100}	Max. Heizleistung des Herstellers je Außenlufttemperatur
Q _{demand} zone i	Erforderliche Heizleistung je Zone
Qh	Heizenergie
	Heizleistung
$\dot{Q}_{h,is}$	Heizleistung bei isentroper Verdichtung
$\dot{Q}_{h,zone,i}$	Heizleistung der jeweiligen Zone
t1	Temperatur am Kompressoreintritt
t2	Temperatur am Kompressoraustritt
t2s	Temperatur am Kompressoraustritt bei isentroper Verdichtung
t3	Temperatur nach dem Kondensator bzw. Innengerät
t _{actual,zone,i}	Aktuelle Raumtemperatur je Zone
tamb	Außenlufttemperatur der Wetterstation Fronleiten
TC1	Temperatur am Eintritt ins Innengerät bzw. Kondensator
tcond	Kondensationstemperatur
tevap	Verdampfungstemperatur
tindoor,in	Ansaugtemperatur der Luft am Innengerät
tindoor,out	Ausblastemperatur der Luft am Innengerät
t_L	Lufttemperatur
t_{op}	Operative Raumtemperatur
toutdoor,in	Ansaugtemperatur der Luft am Außengerät
toutdoor,out	Ausblastemperatur der Luft am Außengerät
tpreheat	Vorheiztemperatur
troom,set	Raumluftsolltemperatur
t_U	Temperatur der Umschließungsflächen
U	Warmedurchgangskoeffizient
V _{air}	Luftvolumenstrom
W	Stromungsgeschwindigkeit
VVel	Elektrische Arbeit
α_k	Warmeduchgangszahl für Konvektion
α_s	Varmedurchgangszahl für Strahlung
ΔI_a	Luftsoitige Temperaturspreizung am Wärmetauscher
ΔI_{air}	Tomporaturdifforonz am Wärmotauschorointritt
	Max, Temperaturdifferenz am Verdampfer
	Temperaturbub zwischen Kondensationstemperatur und
ΔTlift	Verdampfungstemperatur
ΔT_{log}	Logarithmische Temperaturdifferenz
	Temperaturdifferenz am Pinch-Point
ΔT_{mih}	Unterkühlung am Kondensator
ΔT_{sup}	Überhitzung am Verdampfer
sup n:_	Isentroper Wirkungsgrad
nia anarrali	Isentroper Gesamtwirkungsgrad
nis and the new rest of the ne	Isentroper Gesamtwirkungsgrad ohne Gebläse
n '11s,overall,ohne Fan	Mechanischer Wirkungsgrad ohne Geblase
<u>'/т</u>	Verdichtungsverhältnis
11	voraiontangovornattino

ABBILDUNGSVERZEICHNIS

Abbildung 2-1: Carnot Prozess (Rieberer, 2015)
Abbildung 2-2: Perkins/Evans – Kreisprozess (Rieberer, 2015)
Abbildung 2-3: Komponenten des Perkins/Evans-Vergleichprozesses (in Anlehnung an Rieberer.
2015)
Abbildung 2-4: Komponenten einer Wärmenumpe im realen Betrieb (Webasto 2000) 5
Abbildung 2-5: t/h- Diagramm einer Wärmenumne im realen Betrieb (Webasto 2000)
Abbildung 2-6: T/b Diagramm für P/10A (EES, 2015)
Abbildung 2.7: Schematische Derstellung des Verdichtungsvergeng im t/h Diagramm (in
Abbildung 2-7. Schemalische Dalstellung des Verdichtungsvorgang im VII – Diagrammi (m
Ahlehildurg an Rieberer, 2015)
Abbildung 2-8: Charakteristik einer Drossel mit konstantem Querschnitt (in Aniennung an
Rieberer, 2015)
Abbildung 2-9: Temperaturverlaufe eines Warmetauschers in Abhangigkeit der Lange (Steiner,
2014)
Abbildung 2-10: Schematische Darstellung des Außengerätes
Abbildung 2-11: Außengerät der Toshiba Luft/Luft-Wärmepumpe
Abbildung 2-12: Schematische Darstellung des Innengerätes
Abbildung 2-13: Truheninnengerät der Toshiba Luft/Luft-Wärmepumpe
Abbildung 2-14: Wärmepumpenkreis und Temperaturverläufe für den Verdampfer und
Kondensator im T/h-Diagramm (EES, 2015)14
Abbildung 2-15: Verlauf der benötigten Heizleistung des Gebäudes und der bereitgestellten
Heizleistung der Wärmepumpe bei konstanter Drehzahl in Abhängigkeit der Außenlufttemperatur
(Rieberer, 2015)
Abbildung 3-1: Gebäudekomplex der Burg Rabenstein (Burg Rabenstein, 2016a)
Abbildung 3-2. Schematischer Aufbau der Toshiba Multi-Split Luft/Luft Wärmepumpe (in
Anlehnung an Toshiba 2005)
Abbildung 3-3: Rollkolben an der Antriebswelle (Sobotta, 2015) 22
Abbildung 3-4: Verdichtungsvorgang eines Rollkolbenkompressors (Sobotta, 2015) 22
Abbildung 3-4. Verdichtungsvorgang eines Kolikolbenkompressors (5000tta, 2013)
Abbildung 3-5. Fulsmotorgestedenes Expansionsventil (in Amerinang an Damoss, 2010)25
Abbildung 2-7: Drinzingkizza singe Trubangerätes (Teshiba, 2003)
Abbildung 2-9: Prinzipskizze eines Trunengerales (Toshiba, 2004)
Abbildung 3-0. Phinzipskizze einer 4-wegekäselle (Toshiba, 2004)
Abbildung 3-9: Schema der Unterkunlung am Innengeral
Abbildung 3-10: COP für unterschiedliche Teillasten in Abhängigkeit von der Außenlufttemperatur
(1 oshiba, o.J.)
Abbildung 3-11: Messschema am Außengerat AG8 im Heizbetrieb (in Anlehnung an
Gründhammer, 2014)
Abbildung 3-12: Messpunkte im Heizbetrieb, dargestellt im T/h-Diagramm
Abbildung 4-1: Leistungs- und COP – Verlauf des 5 Tages Raumluftprofiles für AG8
(Gründhammer, 2014)
Abbildung 4-2: Temperatur- und COP-Verlauf des 5 Tages Raumluftprofiles für AG8
(Gründhammer, 2014)
Abbildung 4-3: Innengerät mit Abdeckung (links) und ein Innengerät ohne Abdeckungen (rechts)
(Gründhammer. 2014)
Abbildung 4-4: Schematische Darstellung der Innengeräte ohne (links) und mit Abdeckung
(rechts) (Gründhammer, 2014)
Abbildung 4-5: Schema der Luftleitvorrichtung (in Anlehnung an Gründhammer 2014) 36
Abbildung 4-6: Luftleitvorrichtung durch Schaumstofflippen für AG8 in der Rittinger Bar 36
Abbildung 4-7: Luftleitvorrichtung für AG8 im Gewölbe (links) und AG3 im Rittersaal (rechts) 37
Abbildung 4-8: Stundenmittelwerte im Zeitraum von 4 Tagen für AG3
Abhildung $4-0$. Stundenmittelwerte im Zeitraum von 4 Tagen für AG9
Abbildung 4 10: Stundenmittelworte im Zeitraum von 4 Tagen für ACO
Abbildung 4-10. Stulluerinnilleiwerte im Zeitlaum von 4 Tägen für AGS
Abbilluung 4-11. Schema für die elektrische Leistungsmessung am Ausengerat der Toshiba
vvarmepumpe

Abbildung 4-12: Leistungsmessung an den Anschlussklemmen mittels Netzanalysegerät Fluke
434
Abbildung 4-13: Uberprüfung der Leistungsmessung am Drehstromzähler von AG8
Abbildung 4-14: Messpunkte am Truheninnengerät ohne Abdeckungen
Abbildung 4-15: Messpunkt 1 des Flügelradanemometers am Truheninnengerät ohne
Abdeckungen
Abbildung 4-16: Messpunkte im Truheninnengerät mit Abdeckungen
Abbildung 4-17: Messpunkt 1 (links) und Messpunkt 2 (mitte) sowie das Schema (rechts, in
Anlehnung an Grundhammer (2014)) des Flugelradanemometers am Truheninnengerat mit
Abdeckungen
Abbildung 4-18: Schematische Darstellung der Installierten Temperatursensoren am Innengerat
Abbildung 4-19: Temperatursensor tindoor in an der Apsaug- (links) und tindoor out an der
Ausplasöffnung der Abdeckungen (rechts)
Abbildung 4-20: Temperatursensor troom center in der Raummitte der Rittinger Bar 48
Abbildung 4-20. Temperatursensor troom regulation an der Fernhedienung der Toshiba
Wärmenumne
Abbildung 4-22: Temperaturverläufe des Innengerätes am 21 12 2015 von 07:12:00 bis 21:55:36
in der Rittinger Bar (AG8)
Abbildung 4-23: Temperaturspreizung der Innengeräte am 21 12 2015 im Zeitraum von 07:12:00
bis 21:55:00 in der Rittinger Bar (AG8)
Abbildung 4-24 [•] Messtechnik und Temperatursensoren im Gewölbe von AG8
Abbildung 4-25: Stundenmittelwerte von AG8 am 21 12 2015 für 12 Stunden 53
Abbildung 4-26: Leistungsverläufe von AG8 für 6h der Toshiba Luft/Luft-Wärmepumpe am
21.12.2015
Abbildung 4-27: Temperaturverläufe von AG8 für 6h der Toshiba Luft/Luft-Wärmepumpe am
21.12.2015
Abbildung 4-28 COP-Verläufe von AG8 für 6h der Toshiba Luft/Luft-Wärmepumpe am 21.12.2015
Abbildung 4-29: AG8-Leistungsverlauf und Kältemittelmassenstrom am 21.12.2015 von 09:00:00
bis 09:32:00 beim Beheizen der Rittinger Bar und dem Gewölbe
Abbildung 4-30: AG8-Temperaturverläufe am 21.12.2015 von 09:00:00 bis 09:32:00 beim
Beheizen der Rittinger Bar und dem Gewölbe58
Abbildung 4-31: AG8-Druckverlauf am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der
Rittinger Bar und dem Gewölbe59
Abbildung 4-32: AG8-COP-Verlauf am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der
Rittinger Bar und dem Gewölbe59
Abbildung 4-33: T/h-Diagramm am 21.12.2015 von 09:00:00 bis 09:32:00 beim Beheizen der
Dittinger Der und dem Cowälke (ACO)
Rittinger Bar und dem Gewolde (AG8)
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes Abbildung 4-35: AG8-Temperaturverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes (AG8) Abbildung 4-37: T/h-Diagramm am 10.02.2016 von 08.00:00 bis 08:08:00 beim Beheizen der Rittinger Bar (AG8) Abbildung 4-38: Wirkungsgrade in Abhängigkeit der Teillast bei AG8 Abbildung 4-39: Isentroper Gesamtwirkungsgradabschätzung laut Datenblatt für AG8 72 Abbildung 5-1: Südansicht (links) und Nordansicht (rechts) des simulierten Nordtraktes (in Anlehnung an Tockner, 2012)
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes 64 Abbildung 4-35: AG8-Temperaturverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim 64 Beheizen des Gewölbes 65 Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des 65 Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 08.00:00 bis 08:08:00 beim Beheizen des 66 Abbildung 4-37: T/h-Diagramm am 10.02.2016 von 08.00:00 bis 08:08:00 beim Beheizen der 68 Abbildung 4-38: Wirkungsgrade in Abhängigkeit der Teillast bei AG8 70 Abbildung 4-39: Isentroper Gesamtwirkungsgradabschätzung laut Datenblatt für AG8 72 Abbildung 5-1: Südansicht (links) und Nordansicht (rechts) des simulierten Nordtraktes (in 73 Abbildung 5-2: Schema des Gebäude- und Wärmepumpenmodells (in Anlehnung an Böhm, 74
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 60 Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 64 Abbildung 4-35: AG8-Temperaturverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim 64 Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des 65 Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 08.00:00 bis 08:08:00 beim Beheizen des 66 Abbildung 4-37: T/h-Diagramm am 10.02.2016 von 08.00:00 bis 08:08:00 beim Beheizen der 68 Abbildung 4-38: Wirkungsgrade in Abhängigkeit der Teillast bei AG8 70 Abbildung 4-39: Isentroper Gesamtwirkungsgradabschätzung laut Datenblatt für AG8 72 Abbildung 5-1: Südansicht (links) und Nordansicht (rechts) des simulierten Nordtraktes (in 73 Abbildung 5-2: Schema des Gebäude- und Wärmepumpenmodells (in Anlehnung an Böhm, 74 Abbildung 5-3: Vorreleich der Messreiho mit der Simulation abno Korroltur 74
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 60 Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 64 Abbildung 4-35: AG8-Temperaturverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim 64 Beheizen des Gewölbes. 65 Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des 66 Gewölbes (AG8). 66 Abbildung 4-37: T/h-Diagramm am 10.02.2016 von 08.00:00 bis 08:08:00 beim Beheizen der 68 Abbildung 4-38: Wirkungsgrade in Abhängigkeit der Teillast bei AG8 70 Abbildung 4-39: Isentroper Gesamtwirkungsgradabschätzung laut Datenblatt für AG8 72 Abbildung 5-1: Südansicht (links) und Nordansicht (rechts) des simulierten Nordtraktes (in 73 Abbildung 5-2: Schema des Gebäude- und Wärmepumpenmodells (in Anlehnung an Böhm, 2014). 74 Abbildung 5-3: Vergleich der Messreihe mit der Simulation ohne Korrektur. 75 Abbildung 5-3: Vergleich der Messreihe mit der Simulation ohne Korrektur. 75
Abbildung 4-34: AG8-Leistungs- und Massenstromverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des Gewölbes 64 Abbildung 4-35: AG8-Temperaturverlauf am 25.01.2016 von 11:25:00 bis 11:50:00 beim 64 Beheizen des Gewölbes 65 Abbildung 4-36: T/h-Diagramm am 25.01.2016 von 11:25:00 bis 11:50:00 beim Beheizen des 66 Gewölbes (AG8) 66 Abbildung 4-37: T/h-Diagramm am 10.02.2016 von 08.00:00 bis 08:08:00 beim Beheizen der 68 Abbildung 4-38: Wirkungsgrade in Abhängigkeit der Teillast bei AG8 70 Abbildung 5-1: Südansicht (links) und Nordansicht (rechts) des simulierten Nordtraktes (in 71 Anlehnung an Tockner, 2012) 73 Abbildung 5-3: Vergleich der Messreihe mit der Simulation ohne Korrektur. 75 Abbildung 5-3: Vergleich der Messreihe mit der Simulation ohne Korrektur. 75 Abbildung 5-4: Stundenmittelwertvergleich der Messung mit der Simulation für AG8 77 Abbildung 5-5: Behaglichkeitsdiagramm nach EN ISO 7730 (EN ISO 7730) 79

TABELLENVERZEICHNIS

Tabelle 2-1: Eigenschaften von R410A (Rieberer, 2015).....7 Tabelle 2-2: Einflussparameter auf die Verdampfungs- und Kondensationstemperatur (Webasto, Tabelle 3-1: Daten der Wärmepumpenanlage auf Burg Rabenstein (in Anlehnung an Tockner, Tabelle 3-2: Heizleistung der installierten Außen- und Innengeräte für die Wärmepumpenkreise Tabelle 3-3: Modellbezeichnungen und Nennheizleistungen der verwendeten Außengeräte für Tabelle 3-4: Sensoren, Ventile und deren Aufgabenbereich im Heizbetrieb (Toshiba, 2004)....20 Tabelle 3-5: Sensoren, Ventile und deren Aufgabenbereich im Kühl- bzw. Enteisungsbetrieb Tabelle 3-6: Sensoren und deren Aufgabengebiet während des Betriebes (Toshiba, 2004)...., 21 Tabelle 3-7: Installierte Innengeräte für die Wärmepumpenkreise AG3, AG8 und AG9 (Toshiba, Tabelle 3-8: Truhengerät MML-AP0241BH (Toshiba, 2005)......25 Tabelle 3-9: 4 Wegekassetten MMU-AP0121MH und MMU-AP0151MH (Toshiba, 2005)26 Tabelle 3-10: Gebläsebetriebsmodus in Abhängigkeit der Kältemittelrücklauftemperatur (Toshiba, Tabelle 3-11: Sensoren und deren Aufgabengebiet am Innengerät (Toshiba, 2004)26 Tabelle 4-1: Normheizlast nach DIN EN 12831 und installierte Heizleistung bei einzelner Tabelle 4-2: Normheizlast nach DIN EN 12831 und installierte Heizleistung bei gemeinsamer Tabelle 4-3: Ergebnisse der Volumenstrommessung an Messpunkt 1 ohne Abdeckungen 44 Tabelle 4-4: Ergebnisse der Volumenstrommessungen an mehreren Messpunkten ohne Tabelle 4-5: Zwischenergebnisse der Volumenstrommessungen an mehreren Messpunkten mit Tabelle 4-6: Ergebnisse der Volumenstrommessungen an mehreren Messpunkten mit Tabelle 4-7: Ergebnisse für die luftseitige Temperaturpreizung der Truheninnengeräte Typ MML-Tabelle 4-8: Ergebnisse für die luftseitige Temperaturpreizung der 4-Wegekassette Typ MMU-Tabelle 4-9: AG8-Weitere Messauswertungen am 21.12.2015 von 09:00:00 bis 09:32:00 beim Tabelle 4-10: AG8-Vergleich der Effizienzwerte von Messdaten und Datenblatt zum Tabelle 4-11: AG8-Effizienzwerte ohne Leistung der Wärmetauschergebläse am Außengerät am 21.12.2015 im Zeitraum von 09:00:00 bis 09:32:00 beim Beheizen von Rittinger Bar und Gewölbe Tabelle 4-12: AG8-Weitere Messauswertungen am 25.01.2016 von 11:25:00 bis 11:50:00 beim Tabelle 4-13: AG8-Vergleich der Effizienzwerte von Messdaten und Datenblatt am 25.01.2016 Tabelle 4-14: AG8-Weitere Messauswertungen zum Betriebspunkt am 10.02.2016 von 08:00:00 bis 08:08:00 beim Beheizen der Rittinger Bar......68 Tabelle 4-15: AG8- Vergleich der Effizienzwerte von Messdaten und Datenblatt zum Tabelle 5-2: Vergleich von Simulations- und Messergebnisse nach der Anpassung von Pel....77

Tabelle 5-3: Fiktiver Veranstaltungskalender für den Nordtrakt auf Burg Rabenstein	. 78
Tabelle 5-4: Jährlicher Heizwärmebedarf (HWB) des Nordtraktes (AG8 und AG9)	bei
verschiedenen Absenktemperaturen und Vorheizdauer	. 78
Tabelle 5-5: Behaglichkeitsbereiche nach EN ISO 7730 (2006)	. 79
Tabelle 5-6: Operative Raumtemperatur [°C] bei Veranstaltungsbeginn am 03.01	. 80
Tabelle 5-7: Jährlicher SPF für AG8 und AG9 der unterschiedlichen Simulationen	. 80
Tabelle 5-8: Einstellung der Vorheiztemperaturen für bessere Behaglichkeit	. 81
Tabelle 5-9: HWB bei niedrigster Absenktemperatur des Nordtraktes	. 81
Tabelle 5-10: Operative Raumtemperatur [°C] bei Veranstaltungsbeginn am 03.01	. 81
Tabelle 5-11: Jährlicher SPF für AG8 und AG9 der unterschiedlichen Simulationen	. 82

ANHANG A1 Datenblatt des Wärmepumpe MMY-MAP2411HT8

Das Datenblatt wurde nach Toshiba (o.J.) dargestellt.

Outdoor Unit	Outdoor Unit	Compressor + Outdoor Fan								
Dry-Bulb	100% Heating	100%	90%	80%	70%	60%	50%	40%	30%	100%
	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity	Capacity
[°C]	[kW]									
15	76,5	16,37	13,21	10,99	9,05	7,38	5,99	4,87	4,03	16,37
11	76,5	17,65	14,15	11,71	9,57	7,74	6,2	4,97	4,04	17,65
7	76,5	18,79	15,01	12,37	10,06	8,07	6,42	5,08	4,07	18,79
1	71,1	19,11	15,23	12,52	10,15	8,11	6,4	5,03	3,99	19,11
-5	61,2	17,75	14,18	11,68	9,48	7,6	6,02	4,75	3,79	17,75
-10	52	15,96	12,81	10,59	8,63	6,96	5,56	4,43	3,58	15,96

A2 Berechnung der Stoffwerte

Zur Berechnung der Enthalpie (h in kJ/(kgK)) des Kältemittels wurde in EES ein Polynom erstellt.

Bei Berechnung von h_2 im überhitzten Bereich wurde nachstehende Gleichung und Koeffizienten für einen Temperaturbereich zwischen -30 °C bis 65 °C laut Gründhammer (2014) verwendet.

$$\begin{split} h_{2} &= c_{1} + c_{2} \cdot T + c_{3} \cdot T^{2} + c_{4} \cdot T^{3} + c_{5} \cdot T^{4} + c_{6} \cdot T^{5} + c_{7} \cdot T^{6} + c_{8} \cdot p + c_{9} \cdot p^{2} + c_{10} \cdot p^{3} + c_{11} \cdot p^{4} \\ &+ c_{12} \cdot p^{5} + c_{13} \cdot p^{6} + c_{14} \cdot T \cdot p + \\ &+ c_{15} \cdot T \cdot p^{2} + c_{16} \cdot T \cdot p^{3} + c_{17} \cdot T \cdot p^{4} + c_{18} \cdot T \cdot p^{5} + c_{19} \cdot T^{2} \cdot p + c_{20} \cdot T^{2} \cdot p^{2} + \\ &c_{21} \cdot T^{2} \cdot p^{3} + c_{22} \cdot T^{2} \cdot p^{4} + c_{23} \cdot T^{2} \cdot p^{5} + \\ &+ c_{24} \cdot T^{3} \cdot p + c_{25} \cdot T^{3} \cdot p^{2} + c_{26} \cdot T^{3} \cdot p^{3} + c_{27} \cdot T^{3} \cdot p^{4} + c_{28} \cdot T^{3} \cdot p^{5} + c_{29} \cdot T^{4} \cdot p + \\ &c_{30} \cdot T^{4} \cdot p^{2} + c_{31} \cdot T^{4} \cdot p^{3} + c_{32} \cdot T^{4} \cdot p^{4} + \\ &+ c_{33} \cdot T^{4} \cdot p^{5} + c_{34} \cdot T^{5} \cdot p + c_{35} \cdot T^{5} \cdot p^{2} + c_{36} \cdot T^{5} \cdot p^{3} + c_{37} \cdot T^{5} \cdot p^{4} + c_{38} \cdot T^{5} \cdot p^{5} \end{split}$$

$$c1 = 302,8504$$
 $c20 = -0,00006679231$ $c2 = 0,7808663$ $c21 = -0,000007798678$ $c3 = 0,001121319$ $c22 = -0,00000004274094$ $c4 = -0,00001003223$ $c23 = -2,275491E-10$ $c5 = -0,0000001005027$ $c24 = 0,0000056985$ $c6 = 0,00000003598267$ $c25 = 0,00000006713676$ $c8 = -2,28101$ $c27 = 5,015674E-10$ $c9 = -0,03019055$ $c28 = -1,135323E-12$ $c10 = -0,002360073$ $c29 = -0,000000004306754$ $c12 = -0,00000167151$ $c31 = 9,597602E-11$ $c13 = -0,00000009940849$ $c32 = -3,191782E-12$ $c14 = 0,02194875$ $c33 = 1,823269E-14$ $c15 = 0,001836422$ $c34 = 4,963524E-10$ $c16 = 0,00009871016$ $c35 = -2,048692E-12$ $c17 = 0,00001632856$ $c36 = -7,114937E-14$ $c18 = 0,0000004551664$ $c37 = 5,098228E-15$ $c19 = -0,0001262668$ $c38 = -4,114176E-17$

Für die gesättigte Flüssigkeit im Temperaturbereich von -40 °C bis 70 °C gilt laut Gründhammer (2014) für h_3 folgende Formel.

$$h_3 = c_1 + c_2 \cdot T + c_3 \cdot T^2 + c_4 \cdot T^3 + c_5 \cdot T^4 + c_6 \cdot T^5 + c_7 \cdot T^6$$

mit:

c1 = 58,28195	c5 = -0,000008277519
c2 = 1,532294	c6 = -0,0000001368254
c3 = 0,003215564	c7 = 0,00000000405753
c4 = 0,00004459763	

A3 Trnsys Kennfelddaten

Die Regelung des Wärmepumpenmodells mit Herstellerkennfeld erfolgt durch einen Differential Controller von Trnsys. Dieser überprüft, ob die Raumsolltemperatur bereits erreicht wurde. Aktiviert wird der Differential Controller, wenn die aktuelle Raumtemperatur kleiner als die Solltemperatur ist ($t_{actual,zone,i} < t_{room,set}$). Folgende Einstellungen wurden für Type 2b getroffen, um ein On/Off Signal für das Wärmepumpenmodell zu erhalten.

Name	Value	Unit
Upper input temperature Th	Aktuelle Raumlufttemp je Zone	string
Lower input temperature TI	-	°C
Monitoring temperature Tin	-	°C
Input control funktion	-	-
Upper dead band dT	2°C für oberen Totpunkt eingestellt	ΔΤ
Lower dead band dT	-	ΔT

Das Output Signal des Differential Controller ist entweder 1 oder 0 und wurde als Control Signal bezeichnet. Dieses Control Signal wird dann als Eingangssignal für das Wärmepumpenmodell verwendet. Auch die Außenlufttemperatur (tamb), die aktuelle Raumlufttemperatur ($t_{actual,zone,i}$) und die erforderlich Heizleistung ($\dot{Q}_{demand,zone,i}$) werden dem Wärmepumpenmodell übergeben. Wenn der Differential Controller ein Output Signal von 1 ausgibt, wird das programmierte Wärmepumpenmodell mit folgenden Parametern aktiv.

Als Input Signale für das Wärmepumpenmodell sind folgende Parameter ausschlaggebend

Name	Value	Unit
Control signal	Signal des Differential Controller	-
Ambient temperature	Außenlufttemperatur	°C
Actual temperature zone,i	Aktuelle Raumlufttemperatur je Zone	٥°C
Heating demand zone,i	Erforderliche Heizleistung je Zone	kJ/hr

Name	Value	Unit
Maximum heating capacity	Max. Heizkapazität der jeweiligen	k l/br
Outdoor unit	Außengeräteeinheit (76,5 kW)	80/11
Defrost losses	Abtauverluste (wurden mit 5%	
	angegeben)	-
Number of zones	Anzahl der Zonen je	
	Außengeräteeinheit	-
Minimum heating capacity	Minimale Heizkapazität (30 % von	8/
Outdoor unit	76,5 kW)	70
Installed heating capacity	Installierte Heizkapazität je Zone	k l/br
zone,i	(siehe Tabelle 3-2)	KJ/11
Floor space zone,i	Fläche je Zone	m²

Für das Wärmepumpenmodell können folgende Parameter eingegeben werden.

Das programmierte Wärmepumpenmodell berechnet die Teillast pro Zone (Lzone,i). Damit kann die simulierte elektrische Leistung laut Datenblatt berechnet werden. Für weitere Details sei auf die Masterarbeit von Böhm (2014) verwiesen.

Nachdem die Berechnungen erfolgten, werden folgende Outputs für die Simulation bereitgestellt.

Name	Value	Unit
Overall heating power	Gesamte Heizleistung	kJ/hr
Overall electric power	Gesamte elektrische Leistung	kJ/hr
Coefficient of performance	COP	-
Qheat_max	Maximale Heizleistung	kJ/hr
Qheat_min	Minimale Heizleistung	kJ/hr
Part load factor	Teillastfaktor	%
Heating power zone,i	Heizleistung je Zone	kJ/hr

A4 Testo 410i-Technische Daten

Mithilfe des Flügelradanemometers testo 410i konnte eine Volumenstrommessung erfolgen. Die technischen Daten laut Testo AG (2015) sind hier angeführt.

0.2.2. 10310 4101	
Eigenschaft	Werte
Messbereich	0,4 30 m/s / 80 5.900 fpm -20 60 °C / -4 140 °F
Genauigkeit ± 1 Digit	±(0.2 m/s + 2% v. Mw.) (0,4 20 m/s) '±(40 fpm + 2% v. Mw.) (80 4.000 fpm) ±0.5 °C / ±0.9°F
Auflösung	0.1 °C / 0.1 °F 0.1 m/s / 1 fpm
Messrate	1/sek
Wählbare Messeinheiten	°C, °F, m/s, fpm, m³/h, cfm, l/s
Lagertemperatur	-20°C 60°C / -4 140 °F
Betriebstemperatur	-20 °C + 50 °C / -4 122 °F
Batterietyp	3 Microzellen AAA
Batterie-Standzeit	200 h
Abmessung	154mm x 43mm x 21mm 40mm Flügelrad Durchmesser
Richtlinien, Normen und Prüfungen	EG-Richtlinie: 2014/30/EU
Garantie	Dauer: 2 Jahre Garantiebedingungen: siehe Internetseite www.testo.com/warranty

9.2.2. Testo 410i