
Wei Yu

Machine Learning Applications in
Computer Vision

DOCTORAL THESIS

to achieve the university degree of

Doktorin der technischen Wissenschaften

submitted to

Graz University of Technology

Supervisor

Univ.-Prof. Dipl.-Ing. Dr. Thomas Pock

Univ.-Prof. Robert Sablatnig

Graz, Austria, April. 2017

To Xia, Kang, Shun and ShuoPeng.

The scientist is not a person who
gives the right answers, he’s one who
asks the right questions.

Claude Lvi-Strauss (1908 - 2009)

v

Abstract

Machine Learning (ML) is a branch of Artificial Intelligence (AI), that describes methods

to automate analytical model building. Related methods provide computers with the

ability to learn without the need of explicit programming, i.e. these methods learn

from and make predictions on data. Because of the ability to tackle problems involving

large-scale data, ML methods can be applied across many industrial applications,

like for instance, fraud detection, driving assistance, image classification and image

captioning. The first ML algorithm, the so-called perceptron algorithm, was introduced

in 1957 for the task of binary classification. Later it was generalized to the multi-layer

perceptron, which is the prototype of the neural network. ML algorithms, like e.g. Deep

Neural Network (DNN) or Support Vector Machines (SVMs), are based on large-scale

optimization problems, where the choice of the optimization method has an influence on

the training and consequently on the provided solution for the corresponding ML tasks,

which should not be underestimated.

The two main topics of this thesis are ML methods and large-scale optimization

techniques. Besides giving an overview on theoretical foundations, including topics like

optimization algorithms and inverse problems, this thesis reviews several classical and

popular ML problems including dimensionality reduction, multi-task learning, feature

selection, SVMs, matrix completion and matrix factorization. We compare the different

ML problems based on a large variety of first-order optimization algorithms, including

the Forward-backward Splitting Method (FBS), the Fast Iterative Shrinkage-thresholding

Algorithm (FISTA), the Optimal Subgradient Algorithm (OSGA), and the Primal-Dual

Algorithm (PDCP). We also present the Online PDCP which provides a faster empirical

convergence than PDCP. In the remaining part of the thesis, we apply ML methods to

three fundamental Computer Vision (CV) problems: Single-Image Inpainting, Shape from

Light Field (SfLF) and Light Field Super Resolution (LFSR).

Firstly, we present a diffusion model for image inpainting. The model is based on the

so-called trained Reaction-Diffusion Model (RDM), which can also be seen as a Recurrent

vii

viii

Neural Network (RNN). We train two diffusion models based on the Structural Similarity

Image Measure (SSIM) for two types of inpainting tasks. The first one is a generic model,

which aims to recover large regions of scattered pixels or to restore small connected regions

on images. The second model is referred to as a specific model, which aims to inpaint the

texture of a given image. Adequate inpainting results show that both inpainting models

can transform corrupted images to visually pleasing images.

Secondly, we use u-shaped Convolutional Neural Networks (CNNs) for the task of depth

estimation in the Light Field (LF) setting, which is referred to as Shape from Light Field.

We train our network on so-called Epipolar Plane Images (EPIs), rather than the entire

LF. As a result, our network is able to provide efficient and accurate reconstructions. We

demonstrate the superior performance of our network on synthetic and real-world data.

In addition, we present a comprehensive comparison to the state of the art.

Finally, we continue to the problem of LFSR. Here we extend the trained RDM to

perform 3D filtering in the LF setting, i.e. the trained models explore more than just one

single view. To be efficient, we only recover the high-resolution center view of a so-called

EPI volume. By comparing the results of our 3D RDM to the result of a correspond

2D RDM, we are able to show the benefit of our proposed approach.

Keywords. Machine Learning, Computer Vision, Neural Network, Reaction-diffusion

Model, First-order Method, Image Inpainting, Shape from Light Field, Light Field

Superresolution

Affidavit

I declare that I have authored this thesis independently, that I have not used other than

the declared sources/resources, and that I have explicitly indicated all material which has

been quoted either literally or by content from the sources used.

The text document uploaded to TUGRAZonline is identical to the present doctoral

thesis.

Date Signature

Acknowledgments

Pursuing my PhD at TU Graz enriched my life and provided me the great opportunity to

get acquainted with and learn from many outstanding and intelligent researchers. First

and foremost, I would like to express my sincere gratitude to my advisor Prof. Thomas

Pock for supervising my thesis and giving me the opportunity to attend a top Ph.D

program in the field of Machine Learning and Computer Vision. Without the continuous

support, the sagacious suggestions and the immense knowledge from Prof. Thomas Pock,

the completion of this study would not have been possible. Moreover, I would like to

thank Prof. Robert Sablatnig for acting as my second supervisor. Further, my work also

benefited from the encouraging teamwork environment and the positive atmosphere in the

institute of Computer Graphics and Vision. Our group meeting provided an opportunity

for cooperation and blending of each other's strengths. Thus, my sincere thanks also goes

to our group members. Especially, I would like to thank my co-worker, Stefan Heber, for

the help and the insight. Also I thank my friends in the institute, Jens Grubert, Jan Egger,

Horst Possegger, Pedro Boechat, Stefanie Zollmann, Tobias Langlotz, Markus Steinberger,

Yunjin Chen and so forth. Aside from work, I want to thank my schoolmate, Linke Li, for

all the information shared with me. Last but not the least, I want to thank my parents,

my brothers and my sisters for their selfless love.

xi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Dissertation Overview . 5

2 Mathematical Foundation 7

2.1 Notation and Conventions . 7

2.2 Matrix Calculus . 13

2.3 Inverse Problems in Digital Image Problems 14

2.4 Overview of Machine Learning . 17

2.4.1 Evolution of Machine Learning . 17

2.4.2 Classification of Machine Learning 17

2.4.3 Artificial Neural Networks . 19

2.5 Isotropic & Anisotropic Diffusion . 24

2.6 Fields of Experts . 25

2.7 Optimization Algorithms . 27

2.7.1 First-order Methods . 36

2.7.2 Second-order Methods . 44

3 Some Classical Machine Learning Algorithms 49

3.1 First-order Algorithms for Machine Learning 49

3.2 Experiments . 51

3.2.1 Dimensionality Reduction . 53

3.2.2 Linear SVM . 55

3.2.3 Kernel SVM . 58

3.2.4 Grouped Feature Selection . 64

3.2.5 Multi-Task Learning . 69

xiii

xiv

3.2.6 Matrix Completion and Matrix Factorization 76

3.3 Conclusion . 82

4 Machine Learning Applications in Computer Vision 85

4.1 Single View Image Processing . 85

4.1.1 Diffusion Models for Image Inpainting 87

4.1.1.1 Related Work . 87

4.1.1.2 Methodology . 89

4.1.1.3 Experiments . 98

4.2 Light Field Image Processing . 103

4.2.1 U-shaped Networks for Shape from Light Field 105

4.2.1.1 Related Work . 106

4.2.1.2 Methodology . 106

4.2.1.3 Experiments . 109

4.2.2 Light Field Superresolution . 113

4.2.2.1 Related Work . 115

4.2.2.2 Methodology . 115

4.2.2.3 Experiments . 123

5 Summary and Conclusion 127

5.1 Conclusion . 127

5.2 Direction to Future Work . 128

A List of Acronyms 129

B List of Publications 133

B.1 2014 . 133

B.2 2015 . 134

B.3 2016 . 135

B.4 2017 . 135

Bibliography 137

List of Figures

1.1 An example of an optical illusion. 2

1.2 Illustration of inverse problems. 2

2.1 Column major representation of a matrix. 8

2.2 Illustration of unit circles for different norms. 9

2.3 Illustration of a 2D convolution. 11

2.4 Illustration of image edge detection using convolution with the Laplacian

of Gaussian filter. 12

2.5 Illustration of Image Super Resolution. 15

2.6 Comparison between a biological neuron and an artificial neuron. 19

2.7 Illustration of common activation functions. 20

2.8 Illustration of single-layer and multilayer feedforward networks. 21

2.9 Illustration of the MNIST dataset. 22

2.10 A Neural Network for handwriting recognition. 22

2.11 Illustration of a 1D Convolutional Neural Network. 23

2.12 Illustration of convex and non-convex sets. 27

2.13 Illustration of convex and non-convex functions. 29

2.14 Illustration of the first-order condition of a convex function. 31

2.15 Illustration of a conjugate function. 33

3.1 Performance evaluation of the PDCP as well as the FISTA in the application

of dimensionality reduction. 55

3.2 Log-log plot of the error vs. the number of iterations in the experiment of

dimensionality reduction. 55

3.3 Classification in 3D: Applying PCA on the obtained sparse solutions to

reduce the dimensionality of three. 55

xv

xvi LIST OF FIGURES

3.4 Performance evaluation of the PDCP in the application of linear SVM. . . . 58

3.5 Performance evaluation of the FISTA in the application of linear SVM. . . 59

3.6 Log-log plot of the error vs. the number of iterations n in the experiment

of linear SVM. 59

3.7 Illustration of synthetic experiments for classification with kernel SVM. . . 60

3.8 Performance evaluation of the PDCP and the FISTA in the application of

kernel SVM. 63

3.9 Log-log plot of the error vs. the number of iterations n in the experiment

of kernel SVM. 64

3.10 Performance evaluation of the PDCP and the FISTA in the application of

grouped feature selection with the absolute loss. 68

3.11 Log-log plot of the error vs. the number of iterations in the experiment of

grouped feature selection with the absolute loss. 69

3.12 Performance evaluation of the PDCPand the FISTA in the application of

grouped feature selection with the hinge loss 70

3.13 Log-log plot of the error vs. the number of iterations in the experiment of

grouped feature selection with the hinge loss. 71

3.14 Performance evaluation of the PDCP and the FISTA in the application of

multi-task learning with the absolute loss. 73

3.15 Log-log plot of the error vs. the number of iterations in the experiment of

multi-task learning with the absolute loss. 74

3.16 Performance evaluation of the PDCP and the FISTA in the application of

multi-task learning with the ε-insensitive loss. 75

3.17 Log-log plot of the error vs. the number of iterations in the experiment of

multi-task learning with the ε-insensitive loss. 75

3.18 Performance evaluation of the PDCP and the FISTA in the application of

matrix completion. 80

3.19 Log-log plot of the error vs. the number of iterations in the experiment of

matrix completion. 81

3.20 Performance evaluation of the PDCP and the FISTA in the application of

matrix factorization. 81

3.21 Log-log plot of error vs. the number of iterations in the experiment of

matrix factorization. 82

4.1 Illustration of inverse problems. 86

4.2 A demonstration of the piecewise linear function ξti 95

4.3 Qualitative inpainting result for 80% and 90% random missing pixels. . . . 100

4.4 Qualitative results for inpainting a small connected image region. 101

4.5 Qualitative results for texture inpainting (leaf). 102

4.6 Qualitative results for texture inpainting (tiger). 103

4.7 Qualitative results for texture inpainting (wood). 104

LIST OF FIGURES xvii

4.8 Illustration of Light Field data. 105

4.9 Illustration of an u-shaped network architecture. 107

4.10 Illustration of the used data augmentation. 108

4.11 Comparison to state-of-the-art methods on the synthetic POV-Ray dataset. 110

4.12 Qualitative comparison for Light Fields from the Stanford Light Field Archive.112

4.13 Qualitative comparison for a Light Field captured with a plenoptic camera. 112

4.14 Illustration of Light Field Super Resolution. 113

4.15 Illustration of the notations and the dataset generation. 116

4.16 Illustration of the notation of a 3D kernel. 118

4.17 Illustration of the RNN. 120

4.18 Illustration of the results I. 121

4.19 Illustration of the results II. 122

4.20 Illustration of the results III. 122

4.21 Illustration of the real-world results. 125

List of Tables

2.1 Useful vector derivative formulas . 14

2.2 Comparison of different first-order optimization algorithms. 45

3.1 Overview of Machine Learning problems considered in this chapter. 52

4.1 Quantitative inpainting results for 80% and 90% random missing pixels. . . 99

4.2 Quantitative results for inpainting a small connected image region. 99

4.3 Quantitative results for various Shape from Light Field methods averaged

over 50 synthetic Light Fields. 111

4.4 Quantitative results for different super-resolution methods based on the

POV-Ray dataset. 124

xix

1
Introduction

Contents

1.1 Motivation . 1

1.2 Dissertation Overview . 5

1.1 Motivation

Computer vision is a fast growing field concerned with the development of mathematical

techniques and algorithms for understanding and interpreting digital images. Computer

vision applications span a large spectrum of abstraction levels, ranging from extracting

pointwise information (low-level vision) all the way to obtaining a semantic understanding

of the observed scene (high-level vision). The basic starting point for all computer vision

applications is the digital image, that can be acquired by different input devices and

techniques like digital cameras, image scanners, or line scanners, to name but a few. The

digital image is usually represented as a 2D matrix also called raster image, where each

element represents a measured intensity value.

Computer vision is an inverse discipline. When people observe the surrounding

3D world, the images projected on their retinas are only two-dimensional. Due to the

reduction of one dimension, a lot of information about the observed scene is lost, e.g.,

information about the distance to certain objects. Thus humans and animals only

observe incomplete measurements of the environment, but they are nevertheless able

to effortlessly navigate and interact with this environment, i.e. that they are able to

invert the image formation process. In most cases this inversion leads to a reasonable

interpretation of the scene. However, due to the incomplete measurements this inverse

problem might also lead to ambiguous results, consider for instance various optical

illusions. An example of such an optical illusion is shown in Figure 1.1, where the

illustrated 3D object can have both opposite meanings, “YES” or “NO”, by observing

1

2 Chapter 1. Introduction

Figure 1.1: An example of an optical illusion invented by the Swiss artist Markus Raetz. The
word “YES” slowly turns into “NO” by changing the viewpoints.

Physical System

Inverse Problem

Figure 1.2: Illustration of inverse problems. Given the output signal, an inverse problem is to
recovery the input signal.

it from different viewpoints. This is an example where the human visual system is not

able to correctly resolve the 3D structure of the scene. The general inverse problem in

the human visual system is to retrieve information about the 3D environment using

only the more limited information contained in the 2D image projected on the retina of

the eye. Likewise, this is the intrinsic difficulty arising in computer vision and digital

image processing, where researcher are trying to understand the fundamental nature of

the inverse problem for several decades. Two common inverse problems in computer

vision are illustrated in Figure 1.2 (image superresolution and depth estimation).

New understanding interleaved with massive engineering efforts and an explosion

of computational resources led to inspiring developments in many corresponding

applications, including image registration, image denoising, and image inpainting.

Although computer vision problems are tough, digital image processing becomes

prevalent more than ever and has quietly infiltrated into people’s daily lifes, which

is illustrated by a few examples. Smartphones nowadays naturally come with built-in

digital cameras, where the photo quality is close to professional stand alone digital

1.1. Motivation 3

cameras. After snapping a picture with their phones, users can edit and modify the

pictures right on the device. In digital cameras, face detection has become a mature

technology for tasks like auto focus, or removing the unwanted red-eye effect and so

forth [126, 157]. For security, fingerprints and the iris of the eye are used as a biometric

identification by door lock systems or governments [166, 173]. Indoor security cameras

with face recognition can send notifications when your children or elderly parents are

home and alert when it sees a stranger [180]. In industrial applications, digital image

processing is frequently used for quality control, i.e. finding defective manufactured

items [89, 112]. In astronomy, digital image processing is used to remove geometric and

photometric distortions in images [86, 87]. A last example is medical image processing,

which is a sub-field of digital image processing [5, 48, 96]. The InnerEye research project

of Microsoft for instance focuses on the automatic analysis of patients’ medical scans.

One achievement of the InnerEye research project is the automatic detection and

localization of the anatomy of the patient.

One reason for the success of digital image processing is the application of Machine

Learning (ML). ML develops as a scientific discipline in the late 1990s and the application

of ML has fast spread throughout computer science and beyond in the last decades. ML

benefits from increasingly cheaper and faster computational processing, large varieties of

available data on the Internet and more and more affordable data storage devices. For

a vision problem, rather than designing a specific model, ML allows to learn how to find

hidden patterns in the data and use them to automatically build models for the given

task. The learned models can generate predictions for the unseen data. This is because

large training sets contain adequate numbers of patterns that frequently occur in unseen

data. In contrast to statistical models, ML does not depend on the understanding of the

structure of the data and the profound theory of the distributions of the data. Ethem

Alpaydin summarized this in the following quote [6]

Machine learning is programming computers to optimize a performance

criterion using example data or past experience.

As one of the most promising and exciting technologies, ML attracts extensive

attention of giant companies. Nowadays many companies provide ML platforms

or frameworks that allow users to easily create ML models. Examples include

IBM’s ‘Watson Developer Cloud’ [Watson Developer Cloud], ‘Amazon Machine

Learning’ [Amazon Machine Learning], Microsoft’s ‘Azure Machine Learning’

[Azure Machine Learning], and Google’s ‘TensorFlow’ [TensorFlow].

The main reason that led to the prevalence of ML is that related algorithms allow to

learn from given experience when it is not clear for a human how to model or program

the corresponding behaviour. For example, Google’s self-driving cars depend on sensors

and software, without explicitly programming how to drive, those cars learn to navigate

through unseen and complicated scenarios on city streets by utilizing ML algorithms.

Facebook’s DeepFace is a facial recognition system of a nine-layer neural network involving

Reference:

 ()

Reference:

 ()

Reference:

Zhao, Wenyi and Chellappa, Rama and Phillips, P Jonathon and Rosenfeld, Azriel (2003)
Face recognition: A literature survey

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

Alpaydin, Ethem (2004)
Introduction to machine learning (adaptive computation and machine learning series)

Reference:

 ()
Watson Developer Cloud

Reference:

 ()
Amazon Machine Learning

Reference:

 ()
Azure Machine Learning

Reference:

 ()
TensorFlow

4 Chapter 1. Introduction

more than 120 million parameters. DeepFace achieved an accuracy of 97.35%, which is

closely approaching the human test result of 97.53%. The game of Go is an ancient and

complex game whose possible legal positions are way more than the atoms in the universe.

Google’s AlphaGo program beat Lee Sedol, a South Korean professional Go player of 9-dan

rank. Furthermore, the recommendations from Online Shopping website like Amazon or

eBay, or the movie recommendations from Netflix are further well known examples of

ML applications. Instead of investigating how to drive, how to conquer the game of Go,

how to predict the taste of every distinct human being, ML allows to learn from the

formal experiment and breaks records with stunning results. Thus for a complex problem,

learning to find a solution using ML is in many cases easier and more effective than seeking

for a possible analytical solution. But, unfortunately, ML does need expertise to guide

the process of learning. The process of creating a ML application consists of the following

steps: (i) preparing a training data set and a test data set, (ii) extracting features from the

raw data, (iii) selecting a suitable, possible an off-the-shelf, ML algorithm, (iv) formulating

a performance criterion, and (v) selecting a suitable optimization algorithm. All of those

steps are important to create a successful machine leaning application. First of all, the

availability of a suitable training data is absolutely essential. Moreover, the more training

data fed in a ML algorithm, the more accurate the solution could be. The tricky part

of ML is that the solution is optimised based on a training data set, but the goal is to

achieve a good result on a test data set, where it is assumed that the training data set

and the test data set share the same distribution and have similar patterns that can be

explored. The amount of training data for an application can be tremendous or even

infinite. Unfortunately, there exist no rule how to select the optimal amount of data

needed to train a specific model.

Feature extraction is another important step of a ML application. Unfortunately it

is also a creative “black art” [50]. There are basically two ways to approach the feature

extraction step: On the one hand, feature engineering [50, 71, 90, 106, 107] describes the

process of manually extracting features from the raw data by using domain knowledge

of the data. On the other hand, feature learning or representation learning [15, 45, 46]

integrates the learning of features into the ML model.

It stands to reason, that selecting the right ML algorithm is one key determining

success or failure of an application. Without any claim to completeness, ML algorithms

can be divided into categories like anomaly detection, multi-class classification, two-class

classification, and regression. Different methods can be compared based on sampling

methods (e.g. cross validation, random re-sampling), score functions (e.g. deviations,

recall), or overall comparisons (e.g. t-test). Moreover, diverse variations and ensemble

methods have been proposed in the literature, like for example bagging, boosting, or

stacking [24, 61, 62, 168].

In ML, almost all problems are formulated as optimization problems, where the goal is

to optimize an objective function. One part of the input includes the raw data samples or

the extracted features in the case of feature learning or feature engineering, respectively.

Reference:

Domingos, Pedro (2012)
A few useful things to know about machine learning

1.2. Dissertation Overview 5

The other part of the input are parameters used in the optimization algorithm, e.g. the

learning rate in the case of training a Neural Network (NN), or the number of nearest

neighbours in k-means. Tuning the various optimization parameters is crucial, especially

for non-convex ML models.

The optimization method is the final ingredient for an successful ML application. For

a convex problem, the convergence rate of an optimization algorithm determines the speed

of finding the solution. This is increasingly important since large scale ML is demanded

in the year of big data. However, for a non-convex problem, optimization algorithms only

assure local solutions, i.e. different initializations or optimization parameters will lead to

different solutions. However, research shows that if we drop the requirement of a convex

model, a descriptive model including non-convex terms can lead to improved performance

in different image processing problems (e.g. image denoising or image compression). IPiano

[125], for instance, is an optimization algorithm for solving such non-convex problems

which has a faster empirical convergence rate than the theoretical bound.

In this thesis, we first frame mathematical foundations of ML and optimization. Based

on that, we then further illustrate how to build up state-of-the-art ML applications for

digital image processing. More specifically, we will tackle tasks like inpainting, stereo

reconstruction, and super-resolution.

1.2 Dissertation Overview

Organizational Themes. This thesis focuses on applications for digital image

processing using ML and covers the following contributions:

First, we present a detailed analysis and evaluation of optimization methods for varying

ML applications (cf. Section 3.2). Secondly, we propose state of the art models for different

image processing applications, including image inpainting (cf. Section 4.1.1), Light Field

depth estimation (cf. Section 4.2.1) and Light Field superresolution (cf. Section 4.2.2).

Chapter Descriptions. Chapter 2 presents notations and basic mathematical

definitions utilized throughout the remaining parts of the thesis. The overview includes a

short introduction to the tensor calculus, inverse problems in digital image processing,

ML and optimization.

Chapter 3 investigates the relation between ML and optimization. Specifically, Chapter

3 compares several first-order optimization algorithms based on classic ML problems, like

dimensionality reduction, linear Support Vector Machine (SVM), kernel SVM, feature

selection, multi-task learning, matrix completion and matrix factorization.

After the primitive applications shown in Chapter 3, in Chapter 4, we first turn to

tackle the problem of image inpainting. We use a so-called diffusion model for single view

image processing. Here we illustrate how to learn parameterized linear filters and influence

functions. Secondly, we tackle the problems of Light Field (LF) depth estimation and LF

superresolution. We use deep learning techniques to estimate depth information in the

6 Chapter 1. Introduction

LF setting by leveraging LF dataset. The resulting method provides a good combination

between accuracy and efficiency. Finally, we use a 3D Reaction-Diffusion Model (RDM)

for Light Field Super Resolution (LFSR). Note, that this chapter comprises parts of the

publications [151, 176].

Chapter 5 summarizes the main points of the thesis and discusses future directions.

Reference:

 ()

2
Mathematical Foundation

Contents

2.1 Notation and Conventions . 7

2.2 Matrix Calculus . 13

2.3 Inverse Problems in Digital Image Problems 14

2.4 Overview of Machine Learning 17

2.5 Isotropic & Anisotropic Diffusion 24

2.6 Fields of Experts . 25

2.7 Optimization Algorithms . 27

2.1 Notation and Conventions

In this section we introduce the mathematical notations which are consistently used

throughout the thesis. Scalar values are represented by italic fonts, e.g. x. For representing

vectors, we use boldface lower case letters, e.g., v = [v1 v2 · · · vn]>. v is called a column

vector with n components, where vj denotes the jth component. In this thesis, if n

components are arranged in a horizontal array, as in

v> =
[
v1 v2 · · · vn

]
,

then v> is called a row vector. v = max {a,b} denotes the pointwise maximum of vectors

a and b, i.e.

vi = max {ai, bi} . (2.1)

Likewise, the element-wise minimum of two vectors a and b is v = min {a,b}. The space

of vectors with n components is depicted as, Rn, n ≥ 1. If we write x − c with x ∈ Rn,

7

8 Chapter 2. Mathematical Foundation

x11 x12

x21

x31

x22

x13 x14

x23

x32

x41 x42 x43 x44

x33 x34

x24

Figure 2.1: Column major representation of a matrix.

and c ∈ R, then the scalar c is broadcasted to all elements of x, i.e.



x1

...

xn


−



c
...

c


 .

The boldface upper case letters denote matrices,

X =




x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...

xm1 xm2 xm3 . . . xmn



.

The matrix X has m rows and n columns. The space of matrices with m rows and n

columns is denoted as Rm×n,m, n ≥ 1. In this thesis, we also use the column major vector

representation to represent a vector which traverses the matrix by columns. Therefore for

a matrix X ∈ Rm×n, the column-major vector of it is X(:) ∈ Rmn, cf. Figure 2.1.

We denote by I the identity matrix, unless otherwise stated. Given a matrix X ∈ Rm×n,

X> denotes the transpose matrix of X. Two subscript indices Xi,j represent the entry

at the ith row and the jth column. X∗j indicates the jth column of X and similarly Xi∗
indicates the ith row of X. We denote by X ·Y the Hadamard product between matrices

X and Y, unless otherwise stated. The Hadamard product also applies to vectors as a

special type of matrices, where there is only one row or one column.

A functional mapping between different spaces is given in upper case calligraphic

letters, e.g., F . ∇F denotes the gradient or subgradient of the function F . And we

denote by dom(F) the domain of a function F .

2.1. Notation and Conventions 9

0.5

1

2
inf

Figure 2.2: The figure depicts the contours of equal distance for the 1
2norm, 1-norm, 2-norm,

and infinity-norm.

The indicator function δ of a subset A of a set Rn is defined as,

δA(x) =

{
0 if x ∈ A,
+∞ if x /∈ A.

(2.2)

Vector Norm. A vector norm on Rn is a function ‖·‖, from Rn to R+ with the following

properties,

(i) ‖v‖ ≥ 0, ‖v‖ = 0 ⇐⇒ v = 0, ∀v ∈ Rn (positivity)

(ii) ‖av‖ = |a| ‖v‖ ∀a ∈ R,v ∈ Rn (scaling)

(iii) ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀v,w ∈ Rn (triangle inequality)

Common vector norms are

• ‖v‖1 = |v1|+ · · ·+ |vn| (1-norm)

• ‖v‖2 = (|v1|2 + · · ·+ |vn|2)
1
2 (2-norm)

• ‖v‖inf = max {|vi| | 1 ≤ i ≤ n} (infinity-norm)

Generally, the `p − norm, p ≥ 1 defined as

‖v‖p = (
∑
|vi|p)

1
p (2.3)

includes all the norms depicted above as special cases. The norm can induce a metric

which is frequently used to measure the error or loss of a model.

10 Chapter 2. Mathematical Foundation

Metric. Let S be a set. A metric is a function D : S×S → R if it satisfies the following

properties

(i) D(x,y) ≥ 0 , D(x,y) = 0 ⇐⇒ x = y ,∀ x, y ∈ Rn (non-negativity and identity)

(ii) D(x,y) = D(y,x) (symmetry)

(iii) D(x, z) ≤ D(x,y) +D(y, z) (triangle inequality)

A norm induces a metric by letting D(x,y) = ‖x− y‖.

Matrix Norm. For a matrix M ∈ Rm×n, its norm is a function ‖M‖ : Rm×n → R+

that meets the following properties,

(i) ‖M‖ ≥ 0, ‖M‖ = 0 ⇐⇒ M = 0, ∀M ∈ Rm×n (positivity)

(ii) ‖aM‖ = |a| ‖A‖, where a ∈ R (homogeneity)

(iii) ‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ Rm×n (triangle inequality)

Some matrix norms also satisfy the following additional properties,

(iv) ‖Mx‖ ≤ ‖M‖‖x‖ (sub-ordinance)

(v) ‖AB‖ ≤ ‖A‖‖B‖ (sub-multiplicativity)

It can be shown that the operator norm of a matrix M, can also be defined as,

‖M‖p = sup
x 6=0

‖Mx‖p
‖x‖p

= sup
‖x‖p=1

‖Mx‖p. (2.4)

Another important norm is the trace norm also called the nuclear norm,

‖M‖ = trace(
√

MTM) =

min{m,n}∑

i=1

σi, (2.5)

where σi are the singular values of M. The nuclear norm, also known as the Schatten

1-norm is the `1-norm of the vector of its singular values. Therefore, the sparsity to the

vector of singular values are demanded. That is to reduce the rank of the original matrix

M. The nuclear norm is widely leveraged as a convex relaxation of the low-rank matrix

[136, 138].

Inner Product. An inner product on the vector space Rn is a function that takes a

pair of vectors v,w ∈ Rn and outputs a real number. That is, 〈v,w〉 : Rn×Rn → R. The

inner product satisfies three axioms for all u,v,w ∈ Rn and scalars c, d ∈ R,

(i) 〈cu + dv,w〉 = c 〈u,w〉+ d 〈v,w〉 (bilinearity)

2.1. Notation and Conventions 11

10

1

10

9

10

17

10

25

10

33

10

41

10

49

10

57

10

2

101010

18

10

26

10

34

10

42

10

50

10

58

10

3

10
11

10

19
10

27

10

35

10

43

10

51

10

59

10

4

10

12

10 2010

28

10

36

10

44

10

52

10

60

10

5

10

13

10
21

10

29
10

37

10

45

10

53

10

61

10

6

10

14

10

22

10 3010

38

10

46

10

54

10

62

10

7

10

15

10

23

10
31

10

39
10

47

10

55

10

63

10

8

10

16

10

24

10

32

10 4010

48

10

56

10

64

-1

-1

-1

0

0

0

1

1

1

66

Figure 2.3: The left matrix represents the matrix I and the middle matrix represents the flipped
impulse response of K in both horizontal and vertical direction. The convolution M is shown on
the right.

(ii) 〈v,w〉 = 〈w,v〉 (symmetry)

(iii) 〈v,v〉 ≥ 0, 〈v,v〉 = 0 ⇐⇒ v = 0 (positivity)

The inner product produces an associated norm by taking the positive square root of the

inner production of the vector with itself,

‖v‖ =
√
〈v,v〉 . (2.6)

The most common inner product is the dot product,

〈v,w〉 = v ·w = v1w1 + v2w2 + · · ·+ vnwn =

n∑

i=1

viwi. (2.7)

The `2 norm is found by taking the square root of the inner product of v with itself,

‖v‖2 =
√

v · v . (2.8)

12 Chapter 2. Mathematical Foundation

(a) Source image

0

0

-1

0

0

0

-1

-2

-1

0

-1

-2

16

-2

-1

0

-1

-2

-1

0

0

0

-1

0

0

(b) LoG filter (c) Output image

Figure 2.4: Illustration of image edge detection using convolution with the Laplacian of Gaussian
filter.

2D Discrete Convolution. One of the most common operations used in digital image

processing and Convolutional Neural Networks (CNNs) is the 2D discrete convolution

which extends 1D convolution by convolving both horizontal and vertical directions.

Convolution reflects the information by getting the neighbour pixels involved in the

calculation. Convolution has many different effects, for instance, denoising, sharpening,

edge detection or feature extraction. Given an image I ∈ Rm×n and one finite impulse

response K ∈ R(2p+1)×(2q+1), the 2D discrete convolution of I and K, M = I ∗ K is

defined as,

Mi,j =

+p∑

a=−p

+q∑

b=−q
Ii−a,j−bKa,b (2.9)

Equation (2.9) shows that each element of M is the sum of element-wise multiplication

of the impulse response K with the matrix I. The full convolution is given by sliding the

impulse response over the matrix I (cf. Figure 2.3 for an illustration). In digital image

processing convolutional filtering plays an important role in many algorithms. Consider

for instance the task of detecting edges in images, that is illustrated in Figure 2.4.

Likewise, 3D convolution applies multi-channel 3D filters to multi-channel

3D images. Given one RGB-image I ∈ Rlx×ly×lz and one finite impulse response

K ∈ R(2o+1)×(2p+1)×(2q+1), the 3D discrete convolution of I and K, M = I ∗K is defined

as,

Mi,j,k =

+o∑

a=−o

+p∑

b=−p

+q∑

c=−q
Ii−a,j−b,k−cKa,b,c. (2.10)

Convolution is the most important operation of CNNs which are the core of most Machine

Learning (ML) systems today.

Smoothing non-smooth Functions. If a function has a uniquely defined first gradient

at every point in its domain, then it is referred to as a smooth function. Otherwise it is

a non-smooth function. Smoothing a non-smooth function [12, 35, 133] is an important

Reference:

 ()

2.2. Matrix Calculus 13

technique in optimization theory. In this section, we show the technique we used in this

thesis to smooth the absolute value function, the hinge loss and the insensitive loss. We

define the absolute value function F(x) = |x|. The smooth function of the absolute value

function is

F(x) =

{
x2

2θ + θ
2 |x| ≤ θ

|x| otherwise
(Huber loss)

where θ ∈ R+ is a parameter deciding the degree of the smoothness.

For the hinge loss, we follow the scheme in [35]. Let the hinge loss be F(x) =

max {x, 0}. We define the corresponding smooth function as

F(x) =





0 x < −θ
(x+θ)2

4θ |x| ≤ θ
x x > θ

.

Suppose the insensitive loss is defined as F(x) = max (|x| − h, 0) , h ∈ R+. Then the

smoothed surrogate is:

F(x) =





(x−h+θ)2

4θ h− θ < x < h+ θ

0 −h+ θ ≤ x ≤ h− θ
(−x−h+θ)2

4θ −h− θ < x < −h+ θ

|x| − h x ∈ [h+ θ,+∞] or [−∞,−h− θ]

where 0 < θ < h.

2.2 Matrix Calculus

In digital image processing, variables are usually defined as matrices or vector, i.e. that the

variables of objective functions (energy functions) are also defined as matrices or vectors.

There are rules to calculate various partial derivatives of a single function with respect to

multi-variables, that help to find the optimal points of a multi-variate function. In this

section, some useful formulas of matrix calculus are collected. They often appear and are

used in later derivations.

The Derivatives of Vector Functions. Let F be a function, F : Rn → Rm and

x = [x1 · · · xn]> and y = [y1 · · · ym]> with y = F(x). The derivative of F with respect

Reference:

Olivier Chapelle (2007)
Training a support vector machine in the primal

14 Chapter 2. Mathematical Foundation

F ∂F
∂x

Ax A>

x>A A
x>x 2x
x>Ax Ax + A>x

Table 2.1: Useful vector derivative formulas.

to vector x is a n×m matrix, given as

dF
dx

=




∂y1

∂x1

∂y2

∂x1
· · · ∂ym

∂x1
∂y1

∂x2

∂y2

∂x2
· · · ∂ym

∂x2
...

...
. . .

...
∂y1

∂xn
∂y2

∂xn
· · · ∂ym

∂xn



. (2.11)

Table 2.1 summarizes several frequently used vector derivative formulas.

The Chain Rule of Vector Functions. Let F and G be two functions, G(y) =

G(F(x)). The derivative of G with respect to x is,

∂G
∂x

=
∂F
∂x

∂G
∂y

. (2.12)

The Derivative of Scalar Functions of a Matrix. Given X ∈ Rm×n and a scalar

function F : y = F(X). The derivative of F with respect to the matrix X is defined as
∂F
∂X ∈ Rm×n,

∂F
∂X

=




∂y
∂x11

∂y
∂x12

· · · ∂y
∂x1n

∂y
∂x21

∂y
∂x22

· · · ∂y
∂x2n

...
...

. . .
...

∂y
∂xm1

∂y
∂xm2

· · · ∂y
∂xmn



. (2.13)

2.3 Inverse Problems in Digital Image Problems

To illustrate inverse vision problems, we considers the problem of Super Resolution (SR)

as an example. The central aim of SR is to generate a higher resolution image from one or

more lower resolution images. Figure 2.5 illustrates this problem, where a low-resolution

image is given and the object is to generate the corresponding high-resolution image. The

physical system (black box) is composed of two steps. First the image is captured (with

additive sensor noise) and secondly a down-sampling is applied. In mathematical terms

2.3. Inverse Problems in Digital Image Problems 15

(a) High-resolution image (b) Low-resolution image

(c) Bicubic upsampled (d) Superresolved image [152]

Figure 2.5: Illustration of Image Super Resolution. (a) shows the high-resolution image, (b)
shows the low-resolution image, (c) shows the Bicubic upsampled version and (d) shows the result
of the super-resolution method presented in [152].

this can be written as

I = D(H + N), (2.14)

where I and H denote the low-resolution image and the high-resolution image respectively.

As the names suggest the resolution of H is higher than the resolution of I. Moreover, we

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

16 Chapter 2. Mathematical Foundation

assume that H is obtained by a perfect camera. D is a down-sampling matrix and N is

the random noise arising e.g. during acquisition or transmission.

Suppose I,D and N are given, the object of SR is to recover the high-resolution image

H. In this way, Equation (2.14) defines a system of linear equations. Due to the fact, that

the resolution of H is higher than the resolution of I, one obtains an underdetermined

system. Hence there are multiple solutions for H, which means that the SR problem is

ill-defined. Moreover, we assumed that the noise N is known, which is usually not the

case. There are different ways to model image noise e.g. Gaussian noise, shot noise,

salt-and-pepper noise and so on. The problem of estimating or removing the noise N

from an image is called image denoising, which is one of oldest topics in digital image

processing. The down-sampling matrix D can be generated according to an interpolation

method. Some typical interpolation methods are Nearest-neighbor interpolation, bilinear

interpolation and Bicubic interpolation. In theory, D can be any reasonable matrix. It is

an NP-Hard problem to find a down-sampling matrix which can give an ideal H.

Now the question is how to recovery a reasonable high-resolution image H or how

to choose one which is appealing to the human visual system. In the 1960s, Tikhonov

proposed a regularization method to solve underdetermined systems. The regularization

method is based on the method of least squares. In order to constrain the ideal solution

with desirable properties, a regularization term is added to the sum of squared residuals.

In addition, the penalty on the noise matrix N is added by the constrains. Hence, the

Tikhonov regularization method is given as,

H∗ = arg min
H

‖DH− I‖22 + µ‖∇H‖22 (2.15)

where ∇ denotes the finite derivative operator and µ > 0 is a weighting parameter.

Equation (2.15) can also be interpreted with Bayesian statistics. Let us consider the

following version of the Bayes’ theorem,

Pr(H|I) =
Pr(I|H)Pr(H)

Pr(I)
(2.16)

where Pr(H) is called the prior probability, which corresponds to the prior known

information. The likelihood that the observation I can be explained by the high-resolution

image H is denoted as Pr(I|H), and is called conditional probability. Note that Pr(H)

and Pr(I|H) correspond to the regularization term and data term in Equation (2.15),

respectively. The conditional probability Pr(H|I) is equal to the marginal probability

Pr(H) multiplied by the conditional probability Pr(I|H) and divided by the marginal

probability Pr(I). The evidence is the available information given from an experiment or

survey. In Equation (2.16), the term Pr(I) is a normalizing constant when optimizing

Pr(H|I). Thus, we can write

Pr(H|I) ∝ Pr(I|H)Pr(H). (2.17)

2.4. Overview of Machine Learning 17

Next we take the logarithm of both sides and obtain

log Pr(H|I) ∝ log Pr(I|H) + log Pr(H). (2.18)

Equation (2.18) shows that log Pr(I|H) corresponds to ‖DH − I‖22 (data term) and

log Pr(H) corresponds to µ‖∇H‖22 (regularizer).

2.4 Overview of Machine Learning

ML allows to analyse high dimensional data. The advantage of ML is to automatically

detect patterns in the given data, and use those patterns to predict new or unseen data.

ML enables computers to make decisions for unseen situations without the dependence to

explicitly program.

2.4.1 Evolution of Machine Learning

ML originated from Artificial Intelligence in the 1950s. However, for several years, ML as

a statistical method, failed because of limited data. Until the mid-1980s, the endeavour

of the researchers generated a surge of interest in ML by the success of backpropagation.

In the 1990s ML began to flourish. It benefited from the methods and models of statistics

and probability theory and the rising availability of distribution of data on the Internet.

Nowadays, ML becomes one of the most important tools of our lifes which enables new

waves of intelligent applications and services. The availability of Graphics Processing

Units (GPUs) aids the achievement of ML. ML demands a massive amount of computing

power for training and GPUs allow to deal with the computation in parallel.

2.4.2 Classification of Machine Learning

A ML method falls into one of four categories. The first leading categories are supervised

learning and unsupervised learning. The other two categories are semisupervised learning

and reinforcement learning. For any ML algorithm, the purpose is to predict a desired

output given an input. The output can be a label in the classification or be a scalar in

regression.

Supervised Learning. Supervised ML is the most practical ML algorithm. Supervised

learning leverages not only the inputs but also the desired outputs assigned to the inputs.

The training set of supervised learning includes both the input and the desired results.

The training set corresponds to the knowledge which supervises the ML process.

Supervised learning can be divided into regression and classification. When the output

is a categorical variable from a finite set, the problem is regard as classification, for

instance, handwriting recognition or image segmentation. On the other side, when the

18 Chapter 2. Mathematical Foundation

output is a real variable, the problem is known as regression, for instance, Super Resolution

or disparity prediction.

Unsupervised Learning. Unsupervised learning is also called knowledge discovery. In

the training dataset, there are no outputs available. Unsupervised learning aims to find

the hidden patterns in the data. Clustering, dimensionality reduction and association

are classical problems of unsupervised learning. A clustering problem is to group the

data with the same inherent pattern and structure. Taking e-commerce for instance, the

requirement and hobbies of customers are used to cluster products into interesting and

non-interesting sets. Projecting high dimension data to a lower dimensional subspace is a

useful technique. The learnt lower dimensional subspace can better reflect the pattern of

the data. This is because some dimensions do not capture the intrinsic nature of the data,

consider for instance, the dimensions arising because of noise. Association is to investigate

the relation between different data. Unlike supervised learning, there is no correct answer.

Unsupervised learning is to model the distribution in the data and unveil the structure of

the data.

Semisupervised Learning. The problems of semisupervised learning [36, 114] are

in-between both supervised and unsupervised learning. That is, the training data is

partially labelled. In this case, in addition to unlabelled data, the training dataset has

some inputs with labels. In semisupervised learning, the labelled data can be treated

as constraints and semisupervised learning conducts unsupervised learning with those

constrains. In contrast, the distribution of data can be drawn from the unlabelled data

and semisupervised learning based on the distribution, conducts the supervised learning.

The object of semisupervised learning is to improve the performance of solely using

either supervised learning or unsupervised learning. The algorithems of semisupervised

learning include self training [110, 139, 174], generative models [63, 122], graph-based

algorithms [13, 132] and so forth.

Reinforcement Learning. Reinforcement learning is an inter-discipline involving

for instance Optimal Control, Reward System, Bounded Rationality, Machine Learning

and Operations Research. In reinforcement learning, there is no external supervisor,

i.e. training dataset, but the reward signals or punishment signals. The principle of

reinforcement learning is to maximises the accumulative reward in the long term.

Reinforcement learning aims to handle interactive problems which are impractical to

collect data set. Time plays an important role in reinforcement learning. Feedback

signals are delayed and affect the subsequent input data. This is referred to as a trial

and error process. Examples of reinforcement learning are playing chess, robot walking

and managing an investment portfolio.

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

2.4. Overview of Machine Learning 19

2.4.3 Artificial Neural Networks

 axon

synapse

dendrites

cell body

(a) Sketch of a biological neuron

cell body
∑

i
wixi + b ϕ

w3x3

w2x2

w1x1
dendrite

strength of synapse w1

axon from another neuron

x1

output axon

ϕ(∑
i
wixi + b)

(b) Artificial neuron

Figure 2.6: Comparison between a biological neuron and an artificial neuron.

As one of the most important ML algorithms, artificial Neural Network (NN)s, also

referred to as “neural networks”, are biologically-inspired by the human brain. The human

brain has roughly 100 billion neurons which are the basic building components of the

nervous system [80]. And each neuron connects to between 5,000 and 10,000 other neurons,

passing signals to each other via up to 1000 trillion synapses. The human brain normally

is considered as a vast parallel and complex system. Dendrites are the receivers of input

signals. And axons are in charge of sending the output signals. Axons branch out and

connect by synapses to dendrites of other neurons. While scientists are still investigating

how the brain develops and can be trained, artificial NNs are already designed in hardware

or simulated in software to deal with tasks of pattern recognition or perception. One

definition of a NN is given by Haykin

A NN is a massive parallel distributed processor made up of simple processing

units, which has a natural propensity for storing experimental knowledge and

making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a

learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to

store the acquired knowledge.

(Haykin [73])

Activation Functions. A synapse strength or synapse weight wi defines the

interaction between its axon and the next neurons. The signals xi travel from axons to

the dendrites of the other neurons. In artificial NNs, synaptic strengths are learned

Reference:

Herculano-Houzel, Suzana (2009)
The human brain in numbers: a linearly scaled-up primate brain

Reference:

Haykin, Simon (1998)
Neural Networks: A Comprehensive Foundation

20 Chapter 2. Mathematical Foundation

−10 0 10

0

1

v

ϕ
(v
)

(a) Heaviside function

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

v

ϕ
(v
)

a = 2
a = 1
a = 0.5

(b) Sigmoid function

−10 −5 0 5 10

−1

−0.5

0

0.5

1

v

ϕ
(v
)

(c) Hyperbolic tangent

−10 0 10

−1

0

1

v

ϕ
(v
)

(d) Rectified Linear Unit

Figure 2.7: Illustration of common activation functions. (a) shows the threshold or
Heaviside function, (b) shows the sigmoid function for different settings of the parameter a (cf.
Equation (2.19)), (c) shows the hyperbolic tangent and (d) illustrates the Rectified Linear Unit.

in a way such that the outputs of artificial NNs are as correct as possible. A neuron

sum up all input signals weighted by the respective synaptic weights in addition with a

bias b. An activation function ϕ applies to the summation before outputting the signal,

ϕ

(∑
i
wixi + b

)
. Figure 2.6b shows an example of a nonlinear model of a neuron with

three input signals. One common activation function ϕ is the threshold function which is

defined as

ϕ(v) =

{
1 v ≥ 0

0 v < 0
.

The threshold function, as shown in Figure 2.7a, is also referred to as the Heaviside

function. The Perceptron as the simplest NN just uses a threshold function as the

activation function. If the output is 1, it means the neuron fires, otherwise, it has a

negative output 0. A differentiable approximation of a threshold function is a sigmoid

function. The sigmoid function also ranges from 0 to 1, and is defined as

ϕ(v) =
1

1 + e−av
, (2.19)

2.4. Overview of Machine Learning 21

Input #1

Input #2

Input #3

Input #4

Output#1

Output#2

Output#3

Input
layer

Output
layer

(a) A single-layer feedforward networks

Input #1

Input #2

Input #3

Input #4

Output#1

Output#2

Hidden
layer#1

Hidden
layer#2Input

layer

Output
layer

(b) A multilayer feedforward networks

Figure 2.8: Illustration of single-layer and multilayer feedforward networks. (a) depicts a
single-layer feedforward network which only has an input layer and an output layer. (b) shows a
multilayer feedforward network with two hidden layers.

where a > 0 is a scalar to control the slope. Examples are shown in Figure 2.7b. The

sigmoid function was frequently used and is currently out of favour. One reason is that

the output of a sigmoid function is not zero-centered which slows down the training. The

second reason is the sigmoid function is not robust to the initialization because of its

saturation effect. When the output is either 0 or 1, the gradient is zero and the NN is

hard to learn. To overcome the nonzero-centered problem, the sigmoid function is replaced

by the hyperbolic tangent function

ϕ(v) =
2

1 + e−2v
− 1.

Figure 2.7c shows that the range of the hyperbolic tangent function is [−1, 1]. The other

increasing popular activation function is the Rectified Linear Unit (ReLU) as shown in

Figure 2.7d. To some extent, the ReLU overcomes the problem of saturation. In addition,

the ReLU is less time consuming, i.e. the calculation is more efficient.

Single-layer and Multilayer Feedforward Networks. According to the number

of hidden layers, NNs fall into two categories, single-layer and multilayer feedforward

networks as shown in Figure 2.8. Every NN has one input layer and one output layer.

The hidden layers are composed of hidden neurons or hidden units, which are not involved

in the input or output layers. The hidden layers increase the complexity of NNs and

enable NNs to accomplish more difficult tasks. The structure of a NN mainly depends

on the problem to be solved. Take handwriting recognition for instance [MNIST]. This

is a classification problem where there are ten digital numbers. The size of each training

sample in the MNIST dataset is 28×28. And it can be formulated as a vector with length

784. Thus each component of the vector is one input signal. The output signal can be

arranged to be a vector of length 10, indicating the probability of each class (i.e. digit).

Example images for this NN are illustrated in Figure 2.9. The network in Figure 2.10 is

Reference:

 ()
MNIST

22 Chapter 2. Mathematical Foundation

Figure 2.9: Illustration of the MNIST dataset. The figure shows 20 images of size 28×28.

Input #1

Input #2
...

Input #783

Input #784

Output#1
...

Output#10

Hidden
layer#1

Hidden
layer#2Input

layer

Output
layer

Figure 2.10: A Neural Network for handwriting recognition.

referred to as a 784-8-5-10 network because it has 784 input signals, 2 hidden layers with

8 neurons in the first hidden layer and 5 neurons in the second hidden layer and 10 output

neurons.

The examples of NNs shown above are fully connected networks such that every neuron

in each layer is connected to every other neuron in the next layer. A network is called

partially connected if any synaptic connections are absent in the network.

Recurrent Neural Network. In feedforward neural networks, data streams flow

unidirectionally from an input layer through hidden layers to an output layer. No data

stream forms cycles in the feedforward NN topology. But the human brain is a network

of neurons with feedback connections. In the light of the biological structure, Recurrent

Neural Networks (RNNs) attract a lot of attention especially for solving ML problems.

RNNs are similar to feedforward neural networks in the sense that they map inputs to

outputs, with or without supervision. But to make RNNs biologically more plausible and

adaptive, RNNs allow any neuron connect to any other, even to itself. This introduces

the concept of time in RNNs. There are discrete RNNs over discrete time steps and

continuous RNNs over a continuous time t.

2.4. Overview of Machine Learning 23

Convolutional Neural Networks. In the late 1980s, Yann LeCun et al.[98, 99] propose

a special type of multi-layer NNs, where weights are shared across layers. To share the

weights, they conduct convolutions, which is the key operation in the CNN architecture.

CNNs consist of one or more convolutional layers, where the different layers are connected

such that layer l is the input for layer l + 1. The convolutional layer l can be seen as the

convolution result from layer l − 1 and is the input of layer l + 1. CNNs are inspired by

the visual cortex of monkeys [84] and have a sparse solution by sharing weights. The

cells in the visual cortex play a role as convolution filters, to detect lines for instance.

CNNs are partially connected which are efficient for processing images. We take a simple

example of a 1D CNN with only one convolutional layer. As shown in Figure 2.11, this is

Input #1

Input #2

Input #3

Input #4

Input #5

Input #6

Input #7

Input #8

Input #9

Input #10

Output#1

Output#2

Output#3

Output#4

Output#5

Output#6

Output#7

Output#8

w1

w1

w1

w1

w1

w1

w1

w1

w2

w2

w2

w2

w2

w2

w2

w2

w3

w3

w3

w3

w3

w3

w3

w3

convolutional
layer

Figure 2.11: Illustration of a 1D Convolutional Neural Network. The input signal is 1D ∈ R10.
The convolutional layer is the convolution result of the input signal with a 1D filter ∈ R3.

a partially connected network and shares a filter f = [w1, w2, w3] . The filter can be used

to extract the structure of the input signals. For a fully connected network with the same

size 10-8, there are 80 weights. Thus, CNNs can provide a practical solution especially

for high-resolution images in which complex fully connected networks suffer from the big

data.

Reference:

 ()

Reference:

Hubel, David H and Wiesel, Torsten N (1968)
Receptive fields and functional architecture of monkey striate cortex

24 Chapter 2. Mathematical Foundation

2.5 Isotropic & Anisotropic Diffusion

Diffusion describes the process of density changes. In isotropic diffusion, the propagation

of diffusion in each direction is the same. Let U : Rn × t → R be a function where Rn is

the spacial domain and t is the time domain. The isotropic diffusion is defined as

∂U
∂t

= div (d∇U) = d∇2U , (2.20)

where d is called a diffusion coefficient and div is the divergence operator. The most simple

example of isotropic diffusion is the heat equation,

∂U
∂t

= k∇2U , (2.21)

where k is a positive constant called the thermal diffusivity and ∇2 denotes the Laplace

operator. Suppose the space domain is one dimensional (x ∈ R), then Equation (2.21)

becomes
∂U
∂t

= k
∂2U
∂x2

, (2.22)

which measures the thermal conductivity given a specific material. The larger the thermal

diffusivity k is the better a material will conduct heat. Let the initial condition be U (x, 0) ,

then the solution of Equation (2.22) is given as

U (x, t) =

∫ ∞

−∞
U (s, 0)Ht (x− s) ds, (2.23)

where Ht is a Gaussian kernel

Ht =
1

4πkt
e−x

2/4kt, t > 0.

Equation (2.23) is the spatial convolution of function U (s, 0) and Ht(x). Likewise the 2D

heat equation undergoes a 2D convolution of the initial 2D signal with a Gaussian filter.

In image processing this is the famous Gaussian denoising. It is well-known that the

Gaussian denoising blurs the image and cannot preserve edges well. To avoid blurring the

image edges one could use anisotropic diffusion where diffusion coefficients along different

directions are adjusted based on e.g. the image content, leading to

∂U
∂t

= div (D∇U) , (2.24)

2.6. Fields of Experts 25

where D : (Rn × t)→ R(n×n) is called the diffusion tensor. Take a 3D example, D can be

D(x, y, z, t) =



Uxx(x, y, z, t) Uxy(x, y, z, t) Uxz(x, y, z, t)
Uyx(x, y, z, t) Uyy(x, y, z, t) Uyz(x, y, z, t)
Uzx(x, y, z, t) Uzy(x, y, z, t) Uzz(x, y, z, t)


 .

Perona-Malik equations often used in image denoising, defines D(x, y, z, t) as

D(x, y, z, t) = e−(‖∇U‖/k)2




1 1 1

1 1 1

1 1 1




or

D(x, y, z, t) =
1

1 +
(
‖∇U‖
k

)2




1 1 1

1 1 1

1 1 1




where k is a constant controlling the sensitivity to edges. A large ∇U , that will occur for

instance at edges or corners, will lead to a small D(x, y, z, t).

2.6 Fields of Experts

The Fields of Experts (FoE) [140, 142] is a high-order Markov random filed and is

successfully used in many applications of image processing, for instance, image denoising

and image inpainting. The FoE is an adaptation of the Product of Experts (PoE)

[82, 83] model. A PoE normalizes the product of a number of single component models,

also called experts. In PoE, experts usually are defined on a low-dimensional subspace.

Consider for example the 2D image processing, where a 1D subspace is frequently used.

Let an image patch x be a vector of length n, x ∈ Rn. Suppose that there are m experts

whose distributions are defined on w>j x, j = 1, · · · ,m. The basis vector, wj ∈ Rn defines

the projection onto the subspace. We denote by the function Φ the jth expert and αj are

the associated parameters, then the PoE is given as

P(x) =
1

Z(Θ)

m∏

j=1

Φ
(
w>j x;αj

)
, (2.25)

where Θ = {θ1, · · · ,θm} with θj =
{
αj ,w

>
j

}
and Z(Θ) =

∫ m∏
j=1

Φ
(
w>j x;αj

)
dx is the

normalization. Since wj and x are the same size, it is reasonable to apply PoE to the

small patches rather than a whole image. FoE is proposed to solve this problem. FoE

is able to deal with any arbitrary image size. In FoE the basic components are pixels in

an image and wj is considered as a linear filter. Without loss of generality let x(k) be a

vectorized square image patch centered at xk among all pixels k = 1, · · · , n, then the FoE

Reference:

 ()

Reference:

 ()

26 Chapter 2. Mathematical Foundation

is given as

P(x) =
1

Z(Θ)
exp (−EFoE (x,Θ)) with EFoE (x,Θ) = −

n∑

i=1

m∑

j=1

log Φj

(
w>j x(i);αj

)
.

(2.26)

w>j x(i) can be considered as the ith pixel of the convolution of wj and the image x.

Equation (2.26) can be simplified to

P(x) =
1

Z(Θ)

n∏

i=1

m∏

j=1

Φj

(
w>j x(i);αj

)
. (2.27)

Motivated by the property of natural images which have heavy-tailed marginal

distributions, Roth and Black suggest two experts: (i) a Student t-distribution, and (ii) a

less heavy-tailed expert based on the `1 norm. A Student t-distribution has the following

formulation,

Φstu

(
w>stux(i);αstu

)
=

(
1 +

1

2

(
w>stux(i)

)2
)−αstu

. (2.28)

The Student t-distribution has been successfully used in the PoE for patch-based problems.

For the less heavy-tailed expert, Roth and Black leveraged the “smooth” penalty function

[37] which results in

Φht

(
w>htx(i);α1, α2

)
= e−α1

√
α2+(w>htjx(i))

2

. (2.29)

Image Denoising using FoE Roth and Black tried to recovery a denoised image x

which maximizes the following posterior probability given the observed image y, which is

corrupted by Gaussian noise with zero mean and known standard deviation σ.

P(x|y) ∝ P(y|x) · P(x). (2.30)

Roth and Black formulate the likelihood as

P(y|x) ∝
∏

i

e−
1

2σ2 (yi−xi)2

, (2.31)

among all pixels i = 1, · · · , n. Calculating the gradient ascent on the logarithm of the

posterior probability allows to simplify the calculation. Hence, one gets

∂ logP(y|x)

∂x
=

1

σ2
(y − x). (2.32)

Reference:

Charbonnier, Pierre and Blanc-Féraud, Laure and Aubert, Gilles and Barlaud, Michel (1997)
Deterministic edge-preserving regularization in computed imaging

2.7. Optimization Algorithms 27

(a) 2D convex set (b) 3D convex set

x2

x1

(c) 2D non-convex set

Figure 2.12: Illustration of convex and non-convex sets. (a) and (b) show convex sets in 2D and
3D respectively. (c) is an example of non-convex set. Note that the line segment that joins x1 and
x2 is not entirely included in the set.

In addition, the gradient of the logarithm prior probability leads to.

∂ logP(x)

∂x
=

m∑

j=1

Jj ∗ψj (Jj ∗ x) (2.33)

where Jj ∗ x denotes the convolution of x with filter Ji, Jj is obtained by rotating Jj 180

degrees and ψj (y) =
∂Φj(y;αj)

∂y . Based on the aforementioned gradients, the final gradient

ascent denoising algorithm of FoE leads to

∂x

∂t
=

m∑

j=1

Jj ∗ψj (Jj ∗ x) +
λ

σ2
(y − x), (2.34)

where λ is a weight parameter.

2.7 Optimization Algorithms

Convex Sets. Most ML problems can be formulated as large-scale optimization

problems. Hence optimization is of crucial importance in ML. In practice, current

problems of ML often involve a massive and complex data set. Thus, efficiency of the

optimization algorithm is highly demanded. In addition, ML problems are usually

cast as non-convex optimization problems which increases the challenges. This section

briefly describes the differences between convex and non-convex optimization. Further,

we review important definitions and theories, which are the foundation of many

state-of-the-art optimization algorithms.

28 Chapter 2. Mathematical Foundation

Convex and non-convex sets are both defined by the categories of curvature. Convex

means that the curvature expands outwards, and non-convex means the a curvature is

bending inwards. A convex set C is a region such that any line segment between any two

points in C also lies in C. In mathematical terms this means that, for any x1,x2 ∈ C and

any θ ∈ R with 0 ≤ θ ≤ 1, the follow holds,

θx1 + (1− θ)x2 ∈ C. (2.35)

A set is non-convex if for any pair of points lying in the set, there exists at least one

corresponding line segment, which is not entirely in the set. A non-convex set is also

sometimes referred to as a concave set. Some typical examples of convex and non-convex

sets are shown in Figure 2.12.

Convex Optimization. Convex optimization is a subfield of optimization that

considers the problems of minimizing convex functions over convex sets. A convex

optimization problem has the following form

minimize F0(x)

subject to Fi(x) ≤ bi, i = 1, · · · ,m,
and Hi(x) = 0, i = 1, · · · , p,

(2.36)

where the functions F0, · · · ,Fm : Rn → R are convex functions, the functions H0, · · · ,Hp :

Rn → R are affine functions. Affine functions are expressed in the standard form

Hi(x) = ai
>x + bi, (2.37)

where ai is a vector and bi is a scalar. In the literature, F0 is referred to as the objective

function, the energy function or the cost function.

Convex Functions. Convex functions satisfy the following constrains,

Fi(αx + βy) ≤ αFi(x) + βFi(y)

for all x,y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0 and the domain of F is a

convex set. Plug the constraint α+ β = 1 in the equation and get,

Fi(αx + (1− α)y) ≤ αFi(x) + (1− α)Fi(y).

This means the line segment between (x,F(x)) and (y,F(y)) is above the graph of F , cf.

Figure 2.13a for an illustration.

Optimization problems that violate one or more conditions of the problem in

Equation (2.36) are called non-convex problem (cf. Figure 2.13b for an illustration).

2.7. Optimization Algorithms 29

(x,F(x))

(y,F(y))

(a) Convex function (b) Non-convex function

Figure 2.13: Illustration of convex and non-convex functions. (a) shows a convex function in
1D , and (b) shows a non-convex function of two variables.

The feasible set X of the convex optimization problem in Eqn. (2.36) is given as

X := {x ∈ Rn : Fi(x) ≤ bi, i = 1, · · · ,m, Hi(x) = 0, i = 1, · · · , p} . (2.38)

Usually the object of an optimization problem is to seek minimizers which define the

so-called optimal set Xopt. The optimal set is a subset of the feasible set and it meets the

following additional condition,

Xopt = arg minF0(x). (2.39)

A vector x is referred to as an optimal solution if x ∈ Xopt. If the optimization problem is

infeasible, then the optimal set is empty. This can be due to the fact that the feasible set

is empty or the optimal solution is only attained in the limit. Take min
x
e−x for instance,

the optimal value 0 is only achieved in the limit x→ +∞.

A vector z is called local optimal if there is a scaler r ≥ 0 such that z is optimal for

the following optimization problem

minimize F0(x)

subject to Fi(x) ≤ bi, i = 1, · · · ,m,
and Hi(x) = 0, i = 1, · · · , p
and ‖z− x‖2 ≤ r.

(2.40)

A local optimal solution is only optimal for nearby elements in the feasible set which may

not be the optimal value of the original optimization problem. An optimal solutions of the

original optimization problem is denoted as a global optimum. In convex optimization, a

local optimal solution is also the global optimal solution. But in non-convex optimization,

30 Chapter 2. Mathematical Foundation

a local optimal solution is not necessarily global optimal.

Convex optimization is a well studied field since the 1940s and has a rigorous

mathematical foundation. Convex optimization problems can be solved efficiently up

to a large size, say, millions of variables or constraints, because of their property that

any local optimal solution is also global optimal. However, convex optimization only

makes up a small section of all optimization problems. Left are non-convex optimization

problems from economic to scientific field. Non-convex optimization problems are usually

way harder to solve than convex ones if at all. There exist only a few non-convex

optimization problems that can be solved exactly and attain a global solution [72].

The Lagrange Dual Function. Let x ∈ Rn and suppose that the feasible set of the

following minimization problem is nonempty,

minimize F0(x)

subject to Fi(x) ≤ 0, i = 1, · · · ,m,
and Hi(x) = 0, i = 1, · · · , p,

(2.41)

by integrating the constraints in Equation (2.41) into the objective function, the

Lagrangian L : Rn × Rm × Rp → R is defined as

L(x,λ,v) = F0 (x) +
m∑

i=1

λiFi(x) +

p∑

i=1

viHi(x). (2.42)

where λi is the ith component of λ and is refer to as the Lagrange multiplier for the ith

inequality constraint Fi(x) ≤ 0. Likewise, vi is the Lagrange multiplier of the ith equality

constraint Hi(x) = 0. In Equation (2.42), the vectors λ and v are referred to as dual

variables or Lagrange multiplier vectors.

Given a Lagrangian L, the Lagrange dual function D : Rm × Rp → R is a function of

the dual variables and is given as,

D(λ,v) = inf
x∈Rn

{
F0 (x) +

m∑

i=1

λiFi(x) +

p∑

i=1

viHi(x)

}
, (2.43)

which is a concave function because it is the pointwise infimum of affine functions. The

optimal value F̂0 is equal or larger than D(λ,v), ∀λ < 0, ∀v, i.e. D(λ,v) ≤ F̂0. See [23]

for a proof. Hence, a lower bound on F̂0 is given by D(λ,v) when ∀λ < 0, ∀v. Among

different combinations of (λ,v), the following Lagrange dual problem results in the best

lower bound of F0(x),

maximize D(λ,v)

subject to λ < 0.
(2.44)

We denote by (λ̂, v̂) an optimal solution of the Equation (2.44). The best lower bound on

Reference:

Hansen, Eldon and Walster, G William (2003)
Global optimization using interval analysis: revised and expanded

Reference:

Boyd, Stephen and Vandenberghe, Lieven (2004)
Convex Optimization

2.7. Optimization Algorithms 31

(x,F(x))

F(x) +∇F (x)>(y − x)

x

y

Figure 2.14: Illustration of the first-order condition of a convex function. If F is convex and
differentiable, then F(x) +∇F(x)>(y − x) ≤ F(y) for all x, y in the domain of F .

F̂0 is hence given as the optimal value of the Lagrange dual problem, d̂ = D(λ̂, v̂). Also

note that weak duality states that d̂ ≤ F̂0 and strong duality states that d̂ = F̂0, i.e. the

optimal duality gap F̂0 − d̂ is zero. Strong duality does not always hold. One important

sufficient condition in convex optimization for strong duality to hold is Slater’s condition.

Slater’s condition implies that strong duality holds when there exists an x lying in the

relative interior of the feasible set and Fi(x) < 0, i = 1, · · · ,m.

Verifying Convexity of a Function. In addition to verifying the definition of a convex

function, there are other more convenient methods for this task. In the following, we briefly

outline some of those methods.

First-order condition: Let a function F : Rn → R be differentiable. F is referred to as a

convex function if and only if the domain of F is convex and for all x,y in the

domain of F , the following equation holds

F(x) +∇F(x)>(y − x) ≤ F(y),

where

∇F(x) =
[
∂F(x)
∂x1

∂F(x)
∂x2

· · · ∂F(x)
∂xn

]

is the gradient of F(x). Figure 2.14 illustrates this important condition, which

also shows that for a convex function F one can extract global information, in

terms of a global underestimator from the local neighbourhood of x.

Second-order condition: Let a function F : Rn → R be twice differentiable with convex

32 Chapter 2. Mathematical Foundation

domain. F is convex if and only if the Hessian ∇2F(x) is positive semidefinite

for all x in the domain of F , where ∇2F(x) is a symmetric n× n matrix whose

components are the second-order partial derivatives of F ,

[
∇2F(x)

]
i,j

=
∂2F(x)

∂xi∂xj
, with i, j = 1, · · · , n.

Composition with scalar functions: Let G : Rn → R and H : R → R be two functions,

and F(x) = H(G(x)). Then F is convex if

(i) G is convex and H is nondecreasing and convex,

(ii) G is concave and H is nonincreasing and convex.

Operations that preserve convexity: F is convex if it is obtained by operations that can

preserve convexity, like for example:

(i) Non-negative weighted sum: If all Fi are convex, then the function F =∑
i
αiFi, αi > 0 is convex.

(ii) Composition with affine functions: If F is convex, then the function F(Ax+

b) is convex.

(iii) Pointwise maximum: The function F(x) = max {F1(x), · · · ,Fm(x)} is

convex if F1(x), · · · ,Fm(x) are convex functions.

Although there are principles for verifying convexity, it may not be an easy problem

even for polynomials of degree four. In the conference of complexity theory for numerical

optimization 2012, N. Z. Shor asked the question [127],

“Given a degree-4 polynomial in n variables, what is the complexity of

determining whether this polynomial describes a convex function?”

A degree-4 polynomial, like for instance, 6x4 − xy − yz + 8y2x, does not seem to be very

complex. However, Ahmadi et al. [3] showed the somehow surprising result, that it is an

NP-hard problem which cannot be solved in polynomial time.

Conjugate Function. The conjugate function is defined as the pointwise supremum

over the difference of a linear function with a given function. Let F : Rn → R be a given

function. Then the conjugate function of F denoted as F∗ : Rn → R, is defined as,

F∗(y) = sup
x∈dom(F)

{〈x,y〉 − F(x)} . (2.45)

Given an arbitrary function F , the conjugate function F∗ is closed and convex because

it is the pointwise supremum over affine functions. Figure 2.15 illustrates a 1D conjugate

function.

Reference:

Pardalos, Panos M and Vavasis, Stephen A (1992)
Open questions in complexity theory for numerical optimization

Reference:

Ahmadi, Amir Ali and Olshevsky, Alex and Parrilo, Pablo A and Tsitsiklis, John N (2013)
NP-hardness of deciding convexity of quartic polynomials and related problems

2.7. Optimization Algorithms 33

Figure 2.15: An illustration of a conjugate function.

The Conjugate of the Hinge Loss. Let us consider the hinge loss

F(z) = ‖max {0, 1− z}‖1 as an example. The hinge loss is a loss function used for

maximum-margin classifiers in Support Vector Machines (SVMs). We simplify the

definition of the hinge loss to

F(z) = ‖max {0, z}‖1, with z ∈ Rn.

The corresponding convex conjugate is,

F∗(y) =

{
0 y ∈ A
+∞ y /∈ A

where A =
{
y ∈ RN : ∀yi ∈ [0, 1]

}
and yi is the ith component of y. Further we let

z = 1 − Kx, x ∈ Rd and K ∈ Rn×d. Because of F(z) = max
y
{〈z,y〉 − F∗(y)}, by

substituting z with 1−Kx, it attains,

F(1−Kx) = max
y
{〈1−Kx,y〉 − F∗(y)} .

34 Chapter 2. Mathematical Foundation

The Conjugate of the `1-norm Consider the absolute loss function L(z) = ‖z‖1, z ∈
Rn, as another example. Its convex conjugate is,

L∗(y) =

{
0 y ∈ A
+∞ y /∈ A

where A = {y ∈ Rn : ∀yi ∈ [−1, 1]}, yi is the ith component of y. Thus, one obtains

L(z) = max
y
{〈z,y〉 − L∗(y)} .

If we let z = Kx− l,K ∈ Rn×d,x ∈ Rd, l ∈ Rn, then we have

L(Kx− l) = max
y
{〈Kx− l,y〉 − L∗(y)} .

Therefore, F(x) = ‖Kx− l‖1 can be rewritten as,

F(x) = max
y
{〈Kx− l,y〉 − L∗(y)} = max

y
{〈Kx,y〉 − 〈l,y〉 − L∗(y)} .

Hence in the saddle-point model, we can let F∗(x) = 〈l,y〉 + L∗(y), which is frequently

used in Chapter 3.

Proximal Operator. Given a proper convex function G : Rn → R, the proximal

operator of G with parameter τ > 0 is defined by

proxτG(v) = (I + τ∇G)−1(v) = arg min
x

{
τG(x) +

1

2
‖x− v‖22

}
. (2.46)

Since the Euclidean norm is strongly convex, proxτG(v) is unique. The proximal operator

is frequently used in optimization algorithms.

The Proximal Mapping of the Infinity Norm. Let x ∈ Rn be a vector, the infinity

norm of x is,

G(x) = max
i
|xi| , i = 1, · · · , n.

The Proximal Mapping of the infinity norm G at x̃ is given as,

x = ProxλG(x̃) = arg min
z

{
1

2
‖z− x̃‖22 + λG(z)

}
,

where λ is a scalar. This means that x should be close to x̃ but maintain an infinity norm

G(x) as small as possible. To calculate ProxλG(x̃), we propose the following propositions.

2.7. Optimization Algorithms 35

Proposition i Suppose that G(x) = ω, then there is

xi = (ProxλG(x̃))i =

{
x̃i x̃i ≤ ω
ω x̃i > ω.

Proposition ii If we randomly change the signs of x̃i, G(x) does not change however the

signs of x should be changed accordingly. Also if the order of components of x̃ changes

(e.g., exchanging x̃i and x̃j), the resultant x should change in the same order.

So we need to know G(x) to calculate the proximal mapping of the infinity norm G at

x̃. To this end, first we consider the constrained optimization problem,

ProxλG(x̃) = arg min
z

{
1

2
‖z− x̃‖22 + λG(z)

}

subject to G(ProxλG(x̃)) = m, where m ∈ {|x̃i| , i ∈ {1, · · · , n}} .
(2.47)

Next, we sort |x̃| in descending order. The new vector is denoted by c̃. According to the

Proposition ii, Equation (2.47) is equal to solve the following problem,

c = ProxλG(x̃) = arg min
z

{
1

2
‖z− c̃‖22 + λG(z)

}

subject to G(c) = m, where m ∈ {c̃i, i ∈ {1, · · · , n}} .
(2.48)

Now we compare two circumstances G(c) = c̃k, k ∈ {1, · · · , n− 1} and G(c) = c̃k+1.

According to the Proposition i, the following equations hold.

1
2‖z− c̃‖22 + λG(z)

G(c) = c̃k E(k) = 1
2

k∑
i=1

(c̃i − c̃k)2 + λc̃k

G(c) = c̃k+1 E(k + 1) = 1
2

k+1∑
i=1

(c̃i − c̃k+1)2 + λc̃k+1

By algebra, it is easy to show that if E(k) ≤ E(k + 1), then there is E(k + 1) ≤ E(k + 2).

This leads to the following lemma.

Lemma The solution of m in Equation (2.48) is

m = max
k

{
c̃k|2λ < 2

i<k∑

i=1

c̃i + (k − 2, 0) (−c̃k − c̃k+1)− 2c̃k+1, k ≥ 1

}
. (2.49)

This shows that m is the largest c̃k which satisfies the inequality in Equation (2.49). In

the second step, we calculate the exact G(x). There are two cases. One is G(x) should

36 Chapter 2. Mathematical Foundation

be larger and the other is G(x) should be smaller. Suppose that m = c̃j . We calculate

u = λ−
i<j∑
i=1

c̃i + (j − 1)c̃j and define d,

d =





−u j = 1

−u
k u > 0, j > 1

−u
l u ≤ 0, j > 1

where l is the cardinality of I = {i| |x̃i| > m}. We define m̂ = m+ d, then

xi =

{
sign(x̃i)m̂ |x̃i| > m̂

x̃i otherwise
.

2.7.1 First-order Methods

Convex optimization falls into two categories, smooth optimization and non-smooth

optimization. Optimizing a non-smooth convex function is much harder than the smooth

one [91] because a random subgradient may not be a descent direction. Some researchers

[11, 54, 147] choose to divide an objective function into two sub-functions. Among those

algorithms, a substantial amount of literature [11, 146, 147] assumes that at least one

of the sub-functions must be smooth. If an optimization algorithm only uses first-order

derivatives of the objective function to determine the search direction of each iteration,

then it is referred to as a first-order optimization algorithm. In the following, we

introduce several first-order optimization algorithms that are commonly used in ML.

Duchi and Singer [54] proposed an algorithm for online and batch learning based on the

forward-backward splitting method, which is called Forward-backward Splitting Method

(FBS). This method aims to solve a convex optimization problem that involves a sum of

two convex bounded functions:

min
x
E(x), with E(x) = F(x) + G(x),

where E denotes the objective function. By convention, F(x) usually denotes a loss

function and G(x) denotes a regularization term. FBS consists of two steps: an explicit

step for ∇F and an implicit step by applying a resolvent mapping of ∇G. Duchi and Singer

[54] proved that the convergence rate of FBS in a batch setting is O(1/
√
n) in terms of

the error of energy under a fairly general assumption that the subgradients of F and G
are bounded. And the sizes of time steps are decided by this assumption.

Beck and Teboulle [11] proposed a method which is an accelerated gradient method

with convergence rate O(1/n2) in terms of the error of the energy. The so-called Fast

Iterative Shrinkage-thresholding Algorithm (FISTA) still aims to solve a convex problem

with a sum of two convex functions. However, it requires that F is a C1,1 smooth

Reference:

Karmitsa, Napsu and Bagirov, Adil and Makela, Marko M (2009)
Empirical and theoretical comparisons of several nonsmooth minimization methods and software

Reference:

 ()

2.7. Optimization Algorithms 37

convex function, that is, continuously differentiable with Lipschitz continuous gradient.

For this reason, before using FISTA to solve a problem with a non-smooth loss function

F , smoothing techniques need to be applied. Hence FISTA may not achieve an optimal

solution of the original problem. Moreover, smoothing techniques always results in a

piecewise smooth function. This recasts the loss function as a sum of piecewise smooth

functions. Thus, FISTA becomes more time consuming to calculate the gradient of a

smoothed loss function.

Neumaier [120] proposed a fast subgradient algorithm with optimal complexity named

Optimal Subgradient Algorithm (OSGA). OSGA is proposed to solve a convex function

without knowing global information, e.g., the Lipschitz constant. When the objective

function is not strongly convex, the convergence rate for non-smooth convex functions

is O(1/
√
n) w.r.t. the error of the energy. If the strong convexity is fulfilled, then the

convergence rate can be O(1/n). For smooth convex functions, OSGA converges with rate

O(1/n2). The convergence rate is O(1/en) if E is a smooth, strongly convex function.

Ahookhosh [4] applied OSGA to large-scale inverse problems including image restoration,

`22-`22 problem and sparse optimization `22-`1. Ahookhosh [4] reported experimental results

for the aforementioned linear inverse problems and showed that OSGA is more competitive

than other state-of-the-art optimization algorithms, like e.g. Nesterov’s algorithms.

Another important category of first-order optimization algorithms are primal-dual

algorithms [31, 58, 172, 179]. Chambolle and Pock [31] proposed a Primal-Dual Algorithm

(PDCP) with a convergence rate of O (1/n) for the primal-dual gap. And if convex

models have more smoothness structures, the variations of PDCP have faster convergence

rates
(
O
(
1/n2

)
, O (1/en)

)
. This optimization algorithm is applied to several imaging

problems, for instance, image denoising or image deconvolution. Yang et al. [172] proposed

a primal-dual algorithm with the rate O (1/n) for the primal-dual gap and applied the

proposed algorithm to ML tasks, such as grouped feature selection and multi-task learning.

For a primal-dual algorithm, it is still the same in essence if the ways to iterate the primal

and the dual variable are exchanged. Therefore, the algorithm of Chambolle and Pock

[31] and the algorithm of Yang et al. [172] are identical. However, PDCP is more general

in the following aspects. The time step size of PDCP is
√

2 times larger and enables time

steps for both the primal and the dual variables. Thus, we can use different ratios between

primal and dual variables which leads to a different performance.

Forward-backward Splitting Method. The FBS was independently introduced in

[102] and [129] in 1979. The principle of this method is to divide an overall convex function

E into two suitable subfunctions, for instance, F and G such that E = F +G. Its iteration

consists of two steps, a forward gradient step on F , that is a convex function having a

Lipschitz continuous gradient, and a backward step on G, that is a lower semicontinuous

convex function [10, 39]. The forward-backward splitting method is widely used in various

areas of research.

Reference:

Lions, P. L. and Mercier, B. (1979)
Splitting algorithms for the sum of two nonlinear operators

Reference:

Gregory B. Passty (1979)
Ergodic convergence to a zero of the sum of monotone operators in Hilbert space

Reference:

 ()

38 Chapter 2. Mathematical Foundation

Duchi and Singer [54] proposed an algorithm named FBS using forward-backward

splitting. They proved the convergence rates for an arbitrary convex function under a

fairly general assumption that the gradients of F and G are bounded. FBS is proposed to

solve a convex minimization problem such as the sum of two convex functions.

minimize F (x) + G(x),

subject to x ∈ C
(2.50)

where both F(x) and G(x) are convex functions that are bounded from below, and C is

a convex set. This fits FBS for the following prevalent ML problems where F(x) is an

empirical loss and G(x) is a regularization term, e.g., `p norm. FBS in a batch setting can

be summarized as below,

• Initialization: x0

• Iterations n ≥ 1: Update x̂n and xn as follows

{
x̂n = xn−1 − τn∇F(xn−1)

xn = (I + τn+1∇G)−1x̂n
(2.51)

where τn = c√
n

and c is an arbitrary constant.

In Equation (2.51), xn is the proximal mapping of the convex function, i.e. τn+1G at

position x̂n,

xn = arg min
x∈C

{
τn+1G(x) +

1

2
‖x− x̂n‖22

}
. (2.52)

Therefore, in the first step of FBS, it conducts a subgradient step with respect to the

function F . And in the second step, based on the result of the first step, it calculates the

proximal mapping of the convex function τn+1G at x̂n.

The convergence rate of FBS was proven to be O(1/
√
n) [54]. For a problem with a

non-smooth loss function F , it is tricky to set the value of the constant c. In some cases, c

not only depends on the upper bound of the distance from the initial point to the optimal

set but also depends on the Lipschitz constants of the gradients of F and G. However, for

a non-smooth function, estimating the Lipschitz constant usually underestimates the time

step size. A large step size leads to a fast convergence in practice, but it is also prone to

diverge, due to occurring fluctuation.

Fast Iterative Shrinkage-thresholding Algorithm. The Iterative

Shrinkage-thresholding Algorithm (ISTA) is considered as an adaption of the gradient

descent algorithm and is frequently used in linear inverse problems of digital image

processing, for instance, total variation based image restoration. Beck and Teboulle [11]

proposed the FISTA which owns a fast global rate of convergence of O(1/n2) and keeps

Reference:

Duchi, John and Singer, Yoram (2009)
Efficient Online and Batch Learning Using Forward Backward Splitting

Reference:

Beck, Amir and Teboulle, Marc (2009)
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

2.7. Optimization Algorithms 39

the simplicity of ISTA in computation. FISTA aims to deal with problems formulated as

minimize {F(x) + G(x)}

where F ,G are convex functions and F must have a Lipschitz continuous gradient. Let L

be the Lipschitz constant of ∇F . Then the algorithm of FISTA is summarized as,

• Initialization: L, x0, x0 = x0, τ0 = 1

• Iterations n ≥ 1: Update xn,xn as follows,





xn = (I + 1
L∇G)−1(xn−1 − 1

L∇F(xn−1))

τn =
1+
√

1+4(τn−1)2

2

xn = xn + (τ
n−1−1
τn)(xn − xn−1)

(2.53)

In the case of a non-computable L, FISTA uses a backtracking stepsize rule which

introduces a new energy,

QL(x,y) = F(y) + 〈x− y,∇F(y)〉+
L

2
‖x− y‖2 + G(x), (2.54)

that admits an unique minimizer

pL(y) = arg min
x

{QL(x,y)} . (2.55)

By letting the gradient w.r.t. x of the right hand side of Equation (2.55) be zero, we

obtain

∇F(y) + L(x− y) +∇G(x) = 0,

which further leads to

x = (I +
1

L
∇G)−1(y − 1

L
∇F(y)).

If we set y = xn−1, we obtain

xn = pL(xn−1), (2.56)

which is the basic step of FISTA of Equation (2.53). FISTA with backtracking is

summarized in the following algorithm,

40 Chapter 2. Mathematical Foundation

• Initialization: L0 > 0, η > 1, x0, x0 = x0, τ0 = 1

• Iterations n ≥ 1: Update xn,xn as follows,

Find the smallest nonnegative integers(power) in such that with L = ηi
n
Ln−1

E(pL(xn−1)) ≤ QL(pL(xn−1),xn−1)

and define Ln = ηi
n
Ln−1,





xn = (I + 1
Ln∇G)−1(xn−1 − 1

Ln∇F(xn−1))

τn =
1+
√

1+4(τn−1)2

2

xn = xn + (τ
n−1−1
τn)(xn − xn−1)

(2.57)

Note that, in Equation (2.57), xn can be simplified to xn = pLn(xn−1), which shows that

xn is a minimizer of
{
QLn(x,x)n−1

}
(cf. Equation (2.55)) and thus an upper bound of

E .

Optimal Subgradient Algorithm. Neumaier [120] proposed an Optimal Subgradient

Algorithm, i.e. a first-order algorithm with optimal complexity [119], O(1/
√
n) for

Lipschitz continuous nonsmooth optimization problems and O(1/n2) for smooth

optimization problems with Lipschitz continuous gradient. OSGA is a simple algorithm

in the sense that only the values of the target functions and corresponding subgradients

are required in the case of non-strongly convex functions. In the case of strong convex

optimization, a strong convexity parameter is needed. The algorithm is to solve the

following problem,

minimize F(x)

subject to x ∈ C

where C is a convex set and F(x) : C → Rn is a proper and convex function.

The principle of OSGA [120] is to monotonically decrease the upper bound of the error

Fn − F̂ where Fn is the function value at the nth iteration and F̂ is the optimal value

F̂ = min
x∈C
F(x). OSGA defines proper linear relaxations

F(z) ≥ γ + 〈y, z〉 , ∀z ∈ C, (2.58)

where y is in the dual space of C. One example which makes Equation (2.58) hold is,

γ = F(x)− 〈∇F(x),x〉 and y = ∇F(x).

In addition, OSGA defines a continuously differentiable strong convex function Q : C → R

Reference:

"Neumaier ("2016")
"OSGA: a fast subgradient algorithm with optimal complexity"

Reference:

"Nemirovsky (1983)
"Problem complexity and method efficiency in optimization"

Reference:

"Neumaier ("2016")
"OSGA: a fast subgradient algorithm with optimal complexity"

2.7. Optimization Algorithms 41

with a unit strong convexity parameter,

Q(z) ≥ Q(x) + 〈∇Q(x), z− x〉+
1

2
‖z− x‖22, ∀ x, z ∈ C. (2.59)

For instance, Q can be given as,

Q(z) = q +
1

2
‖z− x‖22, (2.60)

where q =

{
q > 0

∣∣∣∣∣ inf
x∈C
Q(x)

}
and x ∈ C. Based on the above definitions, OSGA defines

Eγ,y(x) = −γ + 〈x, z〉
Q(x)

, with x ∈ C. (2.61)

OSGA needs to simply calculate the following variables,

E(γ,y) = sup
x
Eγ,y(x) (2.62)

and

U(γ,y) = arg sup Eγ,y(x). (2.63)

Neumaier [120] showed that for arbitrary γ ∈ R and y, the following holds

γ + 〈y, z〉 ≥ −E(γ,y)Q(z), ∀ z ∈ C. (2.64)

If we let γn = γ −F(xn), E(γn,y) ≤ η, then there is

0 ≤ F(xn)− F̂ ≤ ηQ(x̂). (2.65)

Based on the above equations, we can summarize OSGA for solving a non-strongly

convex function as follows:

Reference:

"Neumaier ("2016")
"OSGA: a fast subgradient algorithm with optimal complexity"

42 Chapter 2. Mathematical Foundation

• Initialization: αmax ∈ (0, 1), 0 < k′ ≤ k, x0 ∈ C
y = ∇F(x0); γ = F(x0)−

〈
y,x0

〉

γ0 = γ −F(x0); u = U(γ0,y); η = E(γ0,y)

α = αmax

• Iterations n ≥ 1: Update xn as follows,





x = xn−1 + α(u− xn−1)

y = y + α(∇F(x)− y)

γ = γ + α(F(x)− 〈∇F (x),x〉 − γ)

x′
n−1

= arg min
z∈{x,xn−1}

F(z)

γ′
n−1

= γ −F(x′
n−1

)

u′ = U(γ′
n−1

,y)

x′ = xn−1 + α(u′ − xn−1)

choose xn−1 with F(xn−1) ≤ min(F(x′n−1),F(x′))

γn = γ −F(xn−1)

u = U(γn,y)

η = E(γn,y)

xn = xn−1

update the parameters by Equation (2.67).

(2.66)

The update scheme of the global tuning parameters is:

• Initialization: q ∈ (0, e−k], αmax ∈ (0, 1), 0 < k′ ≤ k
• input: α, η, γ, y, η, u

• output: α, η, γ, y, u





R = η−η
qαη

if R < 1

α = αe−k

else

α = min(αek
′(R−1), αmax)

end

α = α

if η < η,

γ = γ; y = y; η = η; u = u

end.

(2.67)

2.7. Optimization Algorithms 43

Primal-dual Algorithm. Chambolle and Pock [31] proposed a primal-dual algorithm

(hereinafter referred as PDCP) and applied it to several imaging problems.

Given a continuous linear operator K : X → Y with an induced norm

‖K‖ = max {‖Kx‖2 : x ∈ X, ‖x‖2 ≤ 1} ,

where X,Y are two finite dimensional real vector spaces. Further given G and F∗,
both are proper convex, lower-semicontinuous functions PDCP aims to solve the generic

saddle-point problem

min
x∈X

max
y∈Y
{〈Kx,y〉+ G(x)−F∗(y)} . (2.68)

By convention x is called a primal variable and y is called a dual variable. The

corresponding primal form of (2.68) is

minimize
x∈X

F (Kx) +G(x). (2.69)

To introduce the dual variables y, one could use the Lagrange formalism, e.g.,

applicable when the function represents hard constraints. Or one could calculate the

convex conjugate, F(Kx) = max
y
〈Kx,y〉 − F ∗(y).

PDCP iteratively maximizes w.r.t. the dual variables and minimizes w.r.t. the primal

variables. The condition for convergence of PDCP is τσ‖K‖2 ≤ 1. We summarize PDCP

as follows.

• Initialization: τσ‖K‖2 ≤ 1, θ ∈ [0, 1], (x0, y0) ∈ X × Y , x0 = x0, λ ∈ R
• Iterations n ≥ 1: Update xn, yn, xn as follows,





yn = (I + σ∇F∗)−1(yn−1 + σKxn−1)

xn = (I + τ∇G)−1(xn−1 − τK>yn)

xn = xn + θ(xn − xn−1)

(2.70)

The PDCP calculates the proximal operator of σF∗ followed by the proximal operator of

τG. Then PDCP makes its scheme semi-implicit by letting xn = xn + θ(xn − xn−1). This

operation makes one more step in the direction of xn − xn−1 scaled by θ.

Heuristics for the Primal Dual Algorithm. Although the convergence criteria of

the PDCP is τσ‖K‖2 ≤ 1, it is still an unsolved problem how to choose τ and σ to achieve

the best performance. Let (x̂, ŷ) be the saddle point. Chambolle and Pock [31] showed

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

44 Chapter 2. Mathematical Foundation

that the following holds

[〈KxN , ŷ〉 − F∗(ŷ) + G(xN)]− [〈Kx̂,yN 〉 − F∗(yN) + G(x̂)]

≤ 1

N

(
‖ŷ − y0‖2

2σ
+
‖x̂− x0‖2

2τ

)
,

(2.71)

where xN = 1
N (

N∑
n=1

xn), yN = 1
N (

N∑
n=1

yn). The LHS of Equation (2.71) is called the

primal-dual gap and the RHS of Equation (2.71) is the obtained upper bound. Chambolle

and Pock [31] observed that the primal dual gap is non-negative because

[〈KxN , ŷ〉 − F∗(ŷ) + G(xN)] ≥ [〈Kx̂, ŷ〉 − F∗(ŷ) + G(x̂)] ≥
[〈Kx̂,yN 〉 − F∗(yN) + G(x̂)] .

(2.72)

Thus if (xN ,yN) is a saddle point, the RHS of Equation (2.71) equals zero which attains

the minimal value. To minimize the upper bound of the primal-dual gap, we substitute

τ = 1
‖K‖2σ into the RHS of Equation (2.71) and get

1

N

(
‖ŷ − y0‖2

2σ
+
‖x̂− x0‖2‖K‖2σ

2

)
, (2.73)

which is a convex function of the variable σ. We take the derivative w.r.t. σ, and set it to

zero, which leads to

σ =
‖ŷ − y0‖
‖x̂− x0‖‖K‖ .

Thus we can conclude that 1
N

(
‖ŷ−y0‖2

2σ + ‖x̂−x0‖2
2τ

)
reaches its minimum when

√
τ
σ =

‖x̂−x0‖
‖ŷ−y0‖ . Inspired by this, we observe that the convergence condition [31] τσ ≤ 1

‖K‖2 can be

relaxed in order to accelerate the algorithm. We refer to the resulting scheme as Online

PDCP. Although we do not prove its convergence theoretically, we can show that Online

PDCP converges empirically. We will show in Chapter 3 that Online PDCP can converge

faster than PDCP. The difference between PDCP and online PDCP is that online PDCP

starts with a larger step size (τσ > 1
‖K‖2) and decreases it according to a certain rule.

One important use of online PDCP is the case where it is hard to compute ‖K‖. Online

PDCP leverages the following scheme:





L̃n+1 =
〈K(xn−xn−1),yn+1−yn〉
‖xn−xn−1‖‖yn+1−yn‖

Ln+1 = max
{
Ln, L̃n+1

}

τn+1 = a
Ln+1 , σ

n+2 = 1
aLn+1

. (2.74)

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

2.7. Optimization Algorithms 45

Choosing a proper L is the main concern of online PDCP. Chambolle and Pock

[31] proved the convergence for the case L = ‖K‖, which is an upper bound of Ln

in Equation (2.74). As shown in Equation (2.74), we let Ln+1 = max
{
Ln, L̃n+1

}
. If

Ln < L̃n+1, we increase Ln+1 to L̃n+1. A small Ln leads to large step sizes τ and σ.

Online PDCP may take a risky initial step because of a large step sizes. An inappropriate

large step sizes may lead to divergence. As a consequence, the new Ln+1 calculated in the

next step is tend to be large such that for instance, a large L̃ may be close to ‖K‖. When

L̃ equals ‖K‖, online PDCP becomes PDCP. To balance the two different situations, we

choose to smoothly increase L until we attain a suitable one. Therefore, we increase L to

an appropriate degree rather than choose the maximum between Ln and L̃n+1. There exits

different ways for increasing L. In this thesis, we let Ln+1 =
(Ln+κmax{Ln,L̃n+1})

1+κ , κ > 0.

We set κ = 0.618 for all experiments in this thesis.

Summary of the First-order Optimization Algorithms. In this section, we

introduced four first-order optimization algorithms. FBS [54] and FISTA [11] aim to

solve a convex problem which is a sum of two convex functions. Neumaier [120] proposes

a fast subgradient algorithm with optimal complexity for minimizing a convex function.

Chambolle and Pock [31] propose a primal-dual algorithm and applied it to several

imaging problems. Suppose the objective function is E which can be divided into two

sub-functions E = F + G, we can summarize the four solvers as shown in Table 2.2. Each

solver can achieve the convergence rate under the property of F ,G, E given by each row

in Table 2.2. Note that when extra conditions of the functions hold, this might lead to a

faster convergence rate.

Solver Convergence rate F G E
FBS O(1/

√
n) convex convex -

FISTA O(1/n2) C1,1 convex -

OSGA O(1/
√
n) - - convex

PDCP O (1/n) convex convex -

Table 2.2: Comparison of different first-order optimization algorithms.

2.7.2 Second-order Methods

Limited-memory BFGS. Limited-memory BFGS (L-BFGS) is a quasi-Newton

method that is proposed based on the Broyden-Fletcher-Goldfarb-Shanno algorithm

(BFGS). Before reviewing quasi-Newton methods, we briefly introduce Newton’s method.

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

Reference:

Duchi, John and Singer, Yoram (2009)
Efficient Online and Batch Learning Using Forward Backward Splitting

Reference:

Beck, Amir and Teboulle, Marc (2009)
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

Reference:

"Neumaier ("2016")
"OSGA: a fast subgradient algorithm with optimal complexity"

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

46 Chapter 2. Mathematical Foundation

Define the function to be minimized as E(x), x ∈ Rd. The quadratic Taylor expansion of

E(x) at x +∇x is

E(x +∇x) ≈ E(x) +∇E(x)> (∇x) +
1

2
(∇x)>H(x) (∇x) (2.75)

where ∇E(x) and H(x) is the gradient and Hessian of E at the point x. Equation (2.75)

holds when ∇x → 0. Newton’s method chooses ∇x to minimize the quadratic

approximation of E(x +∇x) whose gradient with respect to ∇x is

∂E(x +∇x)

∂∇x
= ∇E(x) + H(x) (∇x) .

By letting ∂E(x+∇x)
∂∇x = 0, it attains the direction

∇x = −H−1∇E(x). (2.76)

The rate of convergence of Newton’s method is quadratic under certain conditions, but

solving Equation (2.76) needs O
(
d3
)

operations. It is increasingly common to have

hundreds of millions of parameters in machine-learning based computer vision problems

and this limits the applications of the Newton’s method.

Quasi-Newton Methods were proposed to approximate the inverse of the Hessian

matrix implicitly. Let the direction at the nth iteration be,

dn = −Pn∇E(xn). (2.77)

If Pn is a symmetric positive definite matrix, i.e. (dn)>∇E(xn) < 0, the first-order Taylor

expansion shows that dn is a descent direction. If Pn is the identity matrix, this leads

to the steepest descent method. In BFGS, besides demanding Pn to be a symmetric

positive definite matrix, it also demands the secant condition which requires Pn to share

the properties of a Hessian matrix. The secant equation is as follows,

Pn
(
∇E(xn)−∇E(xn−1)

)
= xn − xn−1. (2.78)

To uniquely calculate Pn, BFGS demands the update close to the one from the last

iteration,

min
Pn
‖Pn −Pn−1‖2. (2.79)

Let

yn = ∇E(xn+1)−∇E(xn),

and

sn = xn+1 − xn.

2.7. Optimization Algorithms 47

The solution of the above minimization problem of BFGS is

Pn =
(
I− ρn−1sn−1

(
yn−1

)>)
Pn−1

(
I− ρn−1yn−1

(
sn−1

)>)
+ ρn−1sn−1

(
sj−1

)>
,

(2.80)

where ρn−1 =
((

yn−1
)>

sn−1
)−1

. Equation (2.80) decrease the operations from O
(
d3
)

in

Newton’s method to O
(
d2
)
. BFGS is usually summarized as follows:

• Initialization: x0, P0

• Iterations n ≥ 1: Update xn as follows





dn−1 = −Pn−1∇E(xn−1)

tn−1 = LineSearch
{
xn−1, E

}

xn = xn−1 + tn−1dn−1

Compute Pn from Equation (2.80).

(2.81)

Nevertheless when d is very large, O
(
d2
)

is still time and space consuming. L-BFGS

is proposed to use only the past m iteration to approximate the inverse Hessian without

storing the entire approximated inverse Hessian Pn. This leads to O (md) which is efficient

when m� d holds. The calculation of the descent direction dn is

• Initialization: q = γn∇E(xn) with γn =
((

sn−1
)>

yn−1
)((

yn−1
)>

yn−1
)−1

• Iterations i = n− 1, n− 2, · · · , n−m, Update q as follows

{
αi = ρi

(
si
)>

q

q = q−αiyi (2.82)

• Iterations i = n−m,n− (m− 1), · · · , n− 1, Update r as follows

{
β = ρi

(
yi
)>

r

r = r− si (αn − β)
(2.83)

• Output: dn = −r.

Although some problems in ML are non-convex, L-BFGS is one of the most successful and

popular solvers used in practice because of its efficiency. L-BFGS guarantees to converge

to a local minimum when solving a non-convex problem.

3
Some Classical Machine Learning Algorithms

Contents

3.1 First-order Algorithms for Machine Learning 49

3.2 Experiments . 51

3.3 Conclusion . 82

3.1 First-order Algorithms for Machine Learning

Optimization plays an important role in Machine Learning (ML) because most ML

problems can be cast as optimization problems. The most common structure of

optimization problems in ML is a sum of a loss function and a regularization term. The

loss function measures the difference between the ground truth and the prediction.

For example, the well-known square loss is commonly used in regression problems and

the hinge loss is an example for the purpose of maximum margin classification. The

regularization term or short regularizer usually involves a specific norm. For instance,

group lasso is an variation of the lasso for feature selection. It can lead to a sparse

solution within a group. In addition, practical applications of ML frequently involve a

massive and complex data set. This poses a challenge for solving ML problems. The

performance of an optimization algorithm can be evaluated based on efficiency, accuracy

and generalization [16]. A large number of papers present dedicated optimization

algorithms for specific ML problems. Nevertheless, little attention has been devoted

to compare the performance of a solver on different ML problems. Therefore, in this

chapter we present a comprehensive comparison of some state-of-the-art first-order

optimization algorithms for convex optimization problems in ML. The first-order

optimization algorithms include the Forward-backward Splitting Method (FBS) [54], the

Fast Iterative Shrinkage-thresholding Algorithm (FISTA) [11], the Optimal Subgradient

Algorithm (OSGA) [120] and the Primal-Dual Algorithm (PDCP) [31]. This chapter

49

Reference:

Bennett, Kristin P. and Parrado-Hernández, Emilio (2006)
The Interplay of Optimization and Machine Learning Research

Reference:

Duchi, John and Singer, Yoram (2009)
Efficient Online and Batch Learning Using Forward Backward Splitting

Reference:

Beck, Amir and Teboulle, Marc (2009)
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

Reference:

"Neumaier ("2016")
"OSGA: a fast subgradient algorithm with optimal complexity"

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

50 Chapter 3. Some Classical Machine Learning Algorithms

tackles several smooth and non-smooth ML problems that include a loss function plus a

regularizer. We present tasks within dimensionality reduction via compressive sensing,

Support Vector Machines (SVMs), group lasso regularizer for grouped feature selection,

L1,∞ regularization for multi-task learning, trace norm regularization for max-margin

matrix completion and matrix factorization.

ML problems in this chapter can be formulated as a convex minimization problem

consisting of a loss function F(x) and a regularizer G(x). We define the energy

E(x) = F(x) + λG(x), (3.1)

where λ is a parameter controlling the tradeoff between a good generalization performance

and over-fitting. The loss function calculates the disparity between the prediction of a

solution and the ground truth. For example, the well known square loss is for the purpose

of regression problems. It is defined as,

F`22(x) = ‖Kx− y‖22, (3.2)

where y represents the vector of true values and Kx is a vector of predictions. Take

the hinge loss as another example. Hinge loss is for the purpose of maximum margin

classification. Suppose there is a binary classification problem with labels l ∈ {±1}.
Then, the hinge loss is given as,

Fhinge(x) = max
{

0, 1− l(s>x)
}
, (3.3)

where s is the feature of a sample belonging to the label l and x is the weight vector. The

last example is ε-insensitive loss as defined below,

Fε(x) = max
{

0,
∣∣∣s>x− l

∣∣∣− ε
}
, (3.4)

where ε controls the range of the acceptable error.

The regularizer usually uses a vector norm. For example, in the case of lasso [154], it

is defined as,

G1(x) = ‖x‖1. (3.5)

The `1 regularizer plays an important role in compressed sensing [29, 51]. Group lasso

[177] is an extension of the lasso for feature selection. It can lead to a sparse solution

within a group. The definition of a group lasso is,

G1,2(x) =
∑

i

√
li ‖xi‖2, (3.6)

where xi is the ith group within x and li is the length of xi. Take the trace norm as the

last example. The trace norm is the Schatten p-norm with p = 1. Recently the trace norm

3.2. Experiments 51

has been in wide use because the trace norm is a convex relaxation of the rank function

[136]. Let X ∈ Rm×n be a matrix. The definition of the trace norm is,

Gtrace(X) = trace(
√

X∗X) =

min{m,n}∑

i=1

σi (3.7)

where σi denote the singular values of X.

Most of the above mentioned examples lead to non-smooth problems. In general it is

more challenging to optimize non-smooth functions than smooth functions. FBS can solve

a wide range of convex functions. Nevertheless, it is hard to estimate upper bounds for

subgradients of specific convex functions. FISTA [11] enjoys a faster convergence rate of

O
(
1/n2

)
when solving smooth problems involving a C1,1 smooth convex function F(x)

with Lipschitz continuous gradient L, i.e.

‖∇F(x)−∇F(y)‖ ≤ L‖x− y‖, ∀ x, y. (3.8)

Clearly, a non-smooth loss function does not fulfill this requirement. Thus, when using

FISTA to solve a ML problem with a non-smooth loss function, it is necessary to apply

smoothing techniques to the loss function. Therefore, one cannot guarantee that the

solution provided by FISTA coincides with the optimum of the original non-smooth

problem. As a matter of fact, the energy of FISTA’s solution may be not equal to a

potentially minimal energy. OSGA [120] and the PDCP [31, 172] can handle non-smooth

functions. Nevertheless, calculating closed form solutions of proximal mappings for

constrained problems in OSGA may be expensive. In order to use PDCP, we have to

connect the given problem into a saddle-point formulation.

In what follows, we will evaluate different state-of-the-art first-order algorithms (FBS

[54], FISTA [11], OSGA [120] and PDCP [31]) on various ML problems. The first two

problems we will consider are dimensionality reduction via compressive sensing and kernel

SVM. We will further consider non-smooth convex optimization problems chosen from

[172] which include lasso regularization for grouped features, L1,∞ regularization for

multi-task learning and trace norm regularization for matrix factorization and matrix

completion. Table 3.2 provides an overview of all considered ML problems in this chapter.

3.2 Experiments

In the following sections, we first give the definitions of the loss function F and the

regularizer G for each ML problem. The key equations for first-order optimization

algorithms include the gradient (subgradient for a non-smooth function) of the loss

function F , the regularizer G and the proximal operator for F∗ and G. For clarification,

we do not repeat key equations. In FBS, we will illustrate how to define the subgradient

of a non-smooth loss function. For FISTA, first if the loss function is non-smooth, we will

Reference:

Duchi, John and Singer, Yoram (2009)
Efficient Online and Batch Learning Using Forward Backward Splitting

Reference:

Beck, Amir and Teboulle, Marc (2009)
A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems

Reference:

"Neumaier ("2016")
"OSGA: a fast subgradient algorithm with optimal complexity"

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

Reference:

Yang, Tianbao and Jin, Rong and Mahdavi, Mehrdad and Zhu, Shenghuo (2012)
An Efficient Primal-Dual Prox Method for Non-Smooth Optimization

52 Chapter 3. Some Classical Machine Learning Algorithms

ML problem Ref. F G
Dimensionality
Reduction1

[65] square `2,1

Linear SVM2 [130] hinge x>Qx

Kernel SVM2 [35] hinge x>Hx

Kernel SVM2 - x>Ĥx −∑xi + δ(x)

Feature Selection3 [171] absolute loss group lasso

Multi-Task Learning1 [172] ε-insensitive L1,∞

Matrix Factorization4 [172] hinge trace norm

Matrix Completion4 [172] absolute loss trace norm

Table 3.1: Overview of Machine Learning (ML) problems considered in this chapter.

describe how to smooth a non-smooth loss function. Next we will show how to derive the

gradient of the smoothed loss function. In OSGA, we will use the same scheme as in FBS

and FISTA to calculate the subgradient or gradient of F . Thus we do not repeat those

equations again. Subsequently, we will present how to formulate a primal problem to a

primal dual problem. In light of those key equations, it is easy to derive all necessary

equations in every first-order solver for solving ML problems in this chapter.

Furthermore, we will demonstrate results for the different ML problem listed in

Table 3.1. In order to provide a convincing comparison, we draw the comparison among

solvers with the best-performance parameters which we could achieve. Within a solver,

we compare the performance of its parameters with different values. For example, the

constant c of Equation (2.51) in FBS is the initial time step size which is hard to choose

for an arbitrary non-smooth problem. The other tricky problem is how to select the

optimal smoothness parameter when smoothing a non-smooth loss function. We use a

smoothness parameter θ to decide the degree of smoothness. We infer that the most

suitable smoothness parameter should be related to the objective function. Since the loss

function depends on the training data set, we conclude that the training data set also has

an impact on the optimal smoothness parameter. In PDCP, we define the ratio between

the step sizes of the primal variable and the dual variable, a =
√
τ/σ . In conclusion,

we test the influences of c for FBS, θ for FISTA and a for PDCP. We show figures

comparing the performance with different values of a and θ. We use the same proximal

mappings and parameter settings according to Ahookhosh [4] where OSGA achieves

good performance compared with other solvers. Given a ML problem, we evaluate the

1MNIST is available at http://yann.lecun.com/exdb/mnist/.
2‘svmguide1’ is available at http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.
3MEMset Donar is available at http://genes.mit.edu/burgelab/maxent/ssdata/.
4‘100K MovieLens’ is available at http://www.grouplens.org/node/12.

3.2. Experiments 53

performance of a solver by the running time to converge to an optimal solution. The

solver having the best performance means it can reach the optimal solution in the least

running time. By choosing the overall best-performance parameter for each solver, we

draw a figure to compare FBS, FISTA, OSGA and PDCP. We denote by ê the minimal

energy. We plot log(en − ê) versus log n where n is the number of iterations. Note that

in FISTA, no matter the loss function is smoothed or not, we use the non-smoothed loss

function to calculate e.

We initialize the primal variable and the dual variable to a null vector. In the last

three experiments, we divide the Loss function F by the number of samples and examine

λ = 10−3 and λ = 10−5 separately. All algorithms were implemented in Matlab and

executed on a 2.66 GHz CPU, running a 64 Bit Windows system.

3.2.1 Dimensionality Reduction

Dimensionality reduction is an important topic in ML. It aims to extract a low-dimensional

structure from a high-dimensional data without incurring significant information loss. For

more detailed information we refer to Fodor [60], Van der Maaten et al. [156] and Burges

[27]. Gao et al. [65] present a semi-supervised dimensionality reduction algorithm named

CS-PCA inspired by compressive sensing. In this section, we choose CS-PCA as the

first experiment and show how to solve this problem using the first-order optimization

algorithms.

We cast CS-PCA as an optimization problem and solve it by FISTA, OSGA and

PDCP. We employ the MNIST database5 consisting of 60k images of handwritten digits

from number 0 to 9. Every grayscaled image has a resolution of 28×28. Because MNIST

has 10 digits, we have 10 classes. We randomly take 100 images per digit as the training

data set and take 50 images per digit as the test data set. We turn each digital image into

the corresponding column-major vector representation, which corresponds to an element

in the high-dimensional space Rk. Since the size of each image is 28×28, we have k = 282.

Suppose there are ntrn training samples sitrn ∈ Rk, i = 1, · · · ,ntrn and ntst test samples

sitst ∈ Rk, i = 1, · · · , ntst. First, CS-PCA builds a representation matrix based on the

training dataset,

Ψ =
[
s1

trn, · · · , sntrn
trn

]
∈ Rk×ntrn . (3.9)

According to compressive sensing, random projection from a high dimension space to

a low dimension space preserves the distances between the points. CS-PCA applies a

random matrix Φ ∈ Rd×k to Ψ and to each test sample, d � k. The new representation

matrix is denoted by K = ΦΨ and the test samples become si = Φsitst. Let x be the

primal variable associated with the ith test sample si. CS-PCA aims to find a sparse

5The data set is available at http://yann.lecun.com/exdb/mnist/.

54 Chapter 3. Some Classical Machine Learning Algorithms

solution of Equation (3.10) to represent each new sample si,

minimize
x

1

2
‖Kx− si‖22 + λ‖x‖`2/`1 . (3.10)

We define F(x) = 1
2‖Kx− si‖22 and G(x) = ‖x‖`2/`1 =

∑
indg

‖xindg‖2 where xindg is the

sub-vector x corresponding to the 10 classes. Equation (3.10) is an unconstrained convex

minimization problem. We solve the above equation for each test sample si, i = 1, · · · ,ntst

and denote by x̂i the optimal solution of Equation (3.10). Thus x̂i is the sparse solution

of si. The last step is to apply PCA on the obtained sparse solutions x̂i to reduce the

dimensionality. In what follows, we will illustrate how to solve Equation (3.10). The final

result is shown in Figure 3.3.

FISTA for Dimensionality Reduction. In this case, F(x) = 1
2‖Kx− si‖22 is

continuously differentiable. Its gradient is,

∇F = K>(Kx− si), (3.11)

and the Lipschitz constant of ∇F is ‖K>K‖.

PDCP for Dimensionality Reduction. Let the dual variable be y ∈ Rn. According

to the convex conjugate, F(x) can be defined as,

F(x) = max
y

〈
Kx− si,y

〉
− 1

2
‖y‖22. (3.12)

Thus,the conjugate function F∗ of F is, F∗(x) =
〈
si,y

〉
+ 1

2‖y‖
2
2. Hence we update xn,yn

as follows, 



yn =
(
yn−1 + σ(Kxn−1 − si)

)
1

1+σ

x̃n = xn−1 − τK∗yn

xnindg
= max

{
‖x̃nindg

‖2 − τλ, 0
} x̃nindg

‖x̃nindg
‖2

(3.13)

Comparison of Dimensionality Reduction. Let ê be the minimal energy of

E(x) = F(x) + λG(x). (3.14)

In this experiment ê is attained by running PDCP (with a = 11) 1e4 times. The running

times per iteration of PDCP, OSGA and FISTA are 4.16×10−4, 6.25×10−4 and 5.00×10−4

seconds, respectively. In addition, the loss function is smooth. Thus we only demonstrate

the influence of different values of a =
√
τ/σ , which is the square root of the ratio of

the step size of the primal variables to the step size of the dual variables in PDCP. From

Figure 3.1, we can observe that FISTA is as fast as PDCP when approaching to the error

3.2. Experiments 55

10−12 10−9 10−6 10−3

0

200

400

600

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 1) PDCP(a = 1
3) PDCP(a = 1

7) FISTA

(a)

10−12 10−9 10−6 10−3

0

0.1

0.2

0.3

Error Tolerance

T
im

e(
se
co
n
d
)

PDCP(a = 1) PDCP(a = 1
3) PDCP(a = 1

7) FISTA

(b)

Figure 3.1: Performance evaluation of the PDCP with different values of a as well as the FISTA
in the application of dimensionality reduction. (a) refers to the number of iterations and (b) refers
to CPU times (sec) to drop the error (en − ê) below the error tolerance 10−12, 10−9, 10−6 and
10−3.

Number of Iterations

10
0

10
1

10
2

10
3

10
4

en
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

FISTA
OSGA
PDCP (a=1)
PDCP (a= 1

3
)

Online PDCP (a= 1
3
)

O(1/n2)

−20
−10

0
10

20
30

−30

−20

−10

0

10

20
−20

−10

0

10

20

30

Figure 3.2: Log-log plot of the error en− ê to
the number of iterations n in the experiment
of dimensionality reduction.

Figure 3.3: Classification in 3D: Applying
PCA on the obtained sparse solutions to
reduce the dimensionality of three.

tolerance 10−3. But PDCP, especially with a = 1
3 , is faster to reach the smaller error

tolerance, for instance, 10−12.

Figure 3.2 illustrates the performance of FISTA, OSGA, PDCP and Online PDCP.

It shows that FISTA is the fastest algorithm in the first 5 iterations. However it falls

behind in the later iterations and the PDCP method is fastest to converge towards 10−15.

In practice convergence rates are much better than the theoretical convergence rates. In

Figure 3.3, we show the 3D visualization result of CS-PCA solved by PDCP.

56 Chapter 3. Some Classical Machine Learning Algorithms

3.2.2 Linear SVM

Support Vector Machines (SVMs) are very popular ML models for classification and

regression analysis. In this section we consider the problem of soft margin SVM. As

one type of linear SVM, soft margin SVM is a supervised ML algorithm which provides

simplicity and efficiency. The data set we use is a non-linear separable data set called

‘svmguide1’6 with 2 classes. This dataset has 3089 training samples and 4e3 test samples

and each sample has 4 features. Pele et al. [130] propose an efficient and highly expressive

non-linear feature map method. This method embeds single features and pairs of features

into a vector space. This involves discretization and interpolation of individual feature

values and feature pairs. Pele et al. [130] map the training set into a new feature space

and show the efficiency and accuracy of a linear SVM trained on the rebuilt training sets.

In this experiment, we use the non-linear feature map method [130] and assign the value

of each feature into 8 bins. Then we train a soft margin SVM on the new feature space.

For simplicity, the offset is absorbed into the primal variable, so we do not introduce an

additional parameter.

Suppose there are ntrn training samples si ∈ Rd belonging to the label li, i = 1, · · · , ntrn.

The soft margin SVM aims to output weights x ∈ Rd whose linear combination predicts

the label of si,

minimize
x,ξ

1

2
x>Qx + p

ntrn∑

i=1

ξi

subject to 1− ξi − li(si>x) ≤ 0, ξi ≥ 0, ∀i ∈ {1, · · · ,ntrn}
(3.15)

where Q ∈ Rd×d is a diagonal matrix. The first d − 1 elements down the main diagonal

of Q are one and the last element is zero which corresponds to the offset. The parameter

p ∈ R+ is a tradeoff parameter usually chosen by grid search [34] or cross-validation.

Ben-Hur and Weston [14] show that similar decision boundaries of linear SVMs can be

obtained using different combinations of SVM parameters. De Bie et al. [49] propose

a convex way to optimize p for the soft margin SVM and in [44] the authors present a

methodology to select parameters for SVM regression. A small p makes constraints easily

to be ignored and leads to a large margin. A soft margin SVM becomes a hard margin

SVM when p approaches +∞. Since our object is to verify the performance of solvers, we

do not employ a systematic method to calculate the parameter p. Therefore we simply set

p = 0.1. To formulate an unconstrained problem, we move the linear constraints into the

energy function,

minimize
x

p

ntrn∑

i=1

max
{

0, 1− lix>si
}

+
1

2
x>Qx. (3.16)

6The data set is available at http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/.

Reference:

Ofir Pele and Ben Taskar and Amir Globerson and Michael Werman (2013)
The Pairwise Piecewise-Linear Embedding for Efficient Non-Linear Classification

Reference:

Vladimir Cherkassky and Yunqian Ma (2004)
Practical selection of svm parameters and noise estimation for svm regression

3.2. Experiments 57

Let F and G be,

F(x) = p

ntrn∑

i=1

max
{

0, 1− lix>si
}

and G(x) =
1

2
x>Qx. (3.17)

Note that we can also write F {x} =
ntrn∑
i=1

max
{

0, 1− lix>si
}

and G(x) = 1
2λx>Qx with

λ = 1
p . Next we show the iteration equations of PDCP. Note we omit the equations of

FISTA since they are the same as in Section 3.2.4. The reason that we do not use the dual

form is that the dual form of the soft margin SVM is an optimization problem with a box

and an affine constrain. The affine constrain is introduced to take the offset into account.

There is no ‘simple’ solution of the proximal mapping to a domain satisfying the box and

affine constrain at the same time.

PDCP for Linear SVM By introducing Lagrange multipliers y and z, Equation (3.15)

can be written as,

min
x,ξ

max
y,z

{
1

2
x>Qx + p

ntrn∑

i=1

ξi +

ntrn∑

i=1

yi

[
1− ξi − li(si>x)

]
−

ntrn∑

i=1

ziξi

}
, (3.18)

with dual variables yi ≥ 0 and zi ≥ 0. We take the gradient of (3.18) with respect to ξ.

Then we get p−yi−zi = 0, i = 1, · · · ,ntrn. The equation can be simplified by substituting

p = yi + zi into Equation (3.18), leading to

min
x

max
y

{
1

2
x>Qx +

ntrn∑

i=1

yi

[
1− li(si>x)

]}
, (3.19)

where {yi | 0 ≤ yi ≤ p, i = 1, · · · , ntrn}. Let the set be P = {y ∈ Rntrn : ∀yi ∈ [0, p]} and

K =
[
−l1s1 · · · −lntrnsntrn

]>
. The loss function can be formulated as,

F (x) = max
y
{〈Kx + 1,y〉 − δP (y)} . (3.20)

Thus we have

F ∗(y) = −
ntrn∑

i=1

yi + δP (y). (3.21)

The iteration equations of xn,yn can be concluded as:





yn =
[
yn−1 + σ(Kxn−1 + 1)

]
P

x̃n = xn−1 − τK>yn

xn = Ax̃n
(3.22)

58 Chapter 3. Some Classical Machine Learning Algorithms

10−6 10−4 10−2

0

0.5

1

1.5

·104

Error Tolerance

N
u
m
b
er

o
f
It
er
a
ti
o
n
s

PDCP(a = 3) PDCP(a = 1) PDCP(a = 1
3)

(a)

10−6 10−4 10−2

0

50

100

150

200

Error Tolerance

T
im

e(
se
co
n
d
)

PDCP(a = 3) PDCP(a = 1) PDCP(a = 1
3)

(b)

Figure 3.4: Performance evaluation of the PDCP with different values of a in the application of
linear SVM. (a) refers to the number of iterations and (b) refers to CPU times (sec) to drop the
error (en − ê) below the error tolerance 10−2, 10−4 and 10−6 within a maximum number of 5e5
iterations.

where A = diag
(

p
p+τ , · · · ,

p
p+τ , 1

)
.

Comparison of Linear SVM. In the experiment of linear SVM, ê is selected by running

PDCP (a = 11) 5e5 times. The running times per iteration of PDCP , OSGA and FISTA

are 11.14 × 10−3, 12.14 × 10−3 and 21.54 × 10−3 seconds, respectively. Figure 3.4 shows

that PDCP with a = 1
3 takes more time to drop the error below 10−2. Nevertheless PDCP

with a = 1
3 takes less time to drop the error below 10−6.

Figure 3.5 shows the performance of FISTA with different values of the smoothness

parameter. We can observe that FISTA has the best performance when the smoothness

parameter equals 5 × 10−7. We can see FISTA is faster to converge within the error

tolerance 10−2 with ε = 0.005. Whereas FISTA with ε = 0.005 fails to drop the error below

10−4. By comparing Figure 3.4 and Figure 3.5, FISTA becomes very slow to converge to

the optimal solution.

Figure 3.6 shows FISTA has the best performance until around the 10th iteration.

From about the 100th iteration to the 800th iteration, OSGA reaches the minimal values.

In the later iterations, PDCP outperforms the others and converges to the optimal solution

ê. We also observe that FISTA and OSGA cannot reach the optimal solution within 5e5

iterations. Figure 3.6 shows that the empirical convergence rate of PDCP is better than

O(1/n2) although the theoretical convergence rate of PDCP is O(1/n). We test the SVM

solved by PDCP (a = 11) on the test data set with 4000 samples and the resulting accuracy

is 0.8627.

3.2. Experiments 59

10−6 10−4 10−2

0

1

2

3

4

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

FISTA(θ = 5e−9) FISTA(θ = 5e−8) FISTA(θ = 5e−7)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(a)

10−6 10−4 10−2

0

200

400

600

800

1,000

Error Tolerance

T
im

e(
se
co
n
d
)

FISTA(θ = 5e−9) FISTA(θ = 5e−8) FISTA(θ = 5e−7)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(b)

Figure 3.5: Performance evaluation of the FISTA with different values of the smoothness
parameter θ in the application of linear SVM. (a) refers to the number of iterations and (b)
refers to the CPU times (sec) to drop the error (en− ê) below the error tolerance. The empty bars
indicate that the algorithm failed to drop the error below the error tolerance within a maximum
number of 5e5 iterations.

Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

10
6

en
−
ê

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

FISTA
OSGA
PDCP (a=11)
PDCP (a= 1

3
)

Online PDCP (a= 1
3
)

O(1/n2)

Figure 3.6: Log-log plot of the error en − ê to the number of iterations n in the experiment of
linear SVM.

3.2.3 Kernel SVM

Kernel SVM is a popular tool for the classification of a non-linear separable data set. In

this section, we train a classifier with the kernel trick. We show how to solve the dual form

60 Chapter 3. Some Classical Machine Learning Algorithms

of this primal problem [35] by FISTA and PDCP. Since this dual form is a constrained

optimization problem, we use OSGA to solve the original primal problem. We choose

Gaussian radial basis functions K(x,v) = exp
{
−‖x−v‖

2

2ρ2

}
as the kernel function and ρ is

the bandwidth parameter to determine the effective dimensionality of the high-dimensional

space. We propose a method to set ρ according to the training set. Suppose there are ntrn

training samples. We define a variable generated by the training data set

ν(i,j)(ρ) = exp

{
−‖si − sj‖2

2ρ2

}
, i ∈ {1, · · · ,ntrn} , j ∈ {1, · · · ,ntrn} , i 6= j. (3.23)

si−sj is a pair of samples in a training data set and there are npair = 1
2ntrn(ntrn − 1) pairs.

Similar to PCA, we set the value of ρ such that the variance of ν can reach its maximum.

The principle of the proposed method is to make full use of the training samples. We show

that this method can select a reasonable value for the width parameter ρ of the Gaussian

kernel in synthetic and real-world experiments. If we randomly choose the value of ρ,

SVMs leads to a good classification if and only if the value of ρ is proper, for instance, a

small ρ leads to overfitting. The variance of ν(i,j)(ρ) is,

Var(ν) = 1
npair

∑

i 6=j

(
exp

(
−‖si−sj‖

2

2ρ2

)
− ν̄
)2

and ν̄ = 1
npair

∑

i 6=j
exp

(
−‖si−sj‖

2

2ρ2

)
(3.24)

is the arithmetic mean of ν. The variance Var can be seen as a function of ρ. The graph

of the function Var of argument ρ roughly is a “bell-curve” shape. On the left side of

the optimal ρ, the gradients of Var are positive. By contrast, on the right side of the

optimal ρ, the gradient of Var are negative. Thus we use a bisection method to calculate

the optimal ρ. The gradient of ρ is,

8
npairρ3


∑

i 6=j
‖si − sj‖2 exp

(
−‖si−sj‖

2

ρ2

)
−

1
npair

∑

i 6=j
‖si − sj‖2 exp

(
−‖si−sj‖

2

2ρ2

)∑

i 6=j
exp

(
−‖si−sj‖

2

2ρ2

)

 .

(3.25)

In the following, we show the classification result of the synthetic experiments using a

bandwidth calculated by this method.

Instead of using x as the primal variable in Equation (3.15), we introduce the primal

variable according to Chapelle [35]. Suppose there is a reproducing kernel Hilbert spaces

H. In this case, we rewrite Equation (3.15) as,

minimize
Q∈H

1

2
‖Q‖2H + q

ntrn∑

i=1

max {0, 1− liQ(si)} . (3.26)

Reference:

Olivier Chapelle (2007)
Training a support vector machine in the primal

3.2. Experiments 61

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

100 150 200 250 300

220

240

260

280

300

320

340

360

380

400

420

440

85 90 95 100 105 110 115 120
80

85

90

95

100

105

110

115

120

Figure 3.7: Illustration of synthetic experiments for classification with kernel SVM.

Because the subgradient evaluated at the optimal solution vanishes, the form of a solution

we seek can be defined as,

Q̂∗(x) =

ntrn∑

i=1

βiK(si,x), (3.27)

where β ∈ Rntrn is referred to as the new primal variable. Therefore we can write

Equation (3.15) with respect to the new primal variable β,

1

2
β>Hβ + q

ntrn∑

i=1

max
{

0, 1− liH>.iβ
}
, (3.28)

where H.i is the ith column of H and Hi,j = K(si, sj). Generally, when ρ approaches to

plus infinity, H approaches to be a matrix whose elements are all one. Whereas when ρ

approaches to zero, H becomes to be an identity matrix. Now we define

F (β) = q

ntrn∑

i=1

max
{

0, 1− liH>.iβ
}

and G(β) =
1

2
β>Hβ. (3.29)

We let q = 1 in our experiment.

Although the primal variable β has a different meaning compared with the primal

variable x in the linear SVM, both use the hinge loss. However, in this primal form there

is no offset. Thus we can use the dual form to avoid using the non-smooth hinge loss in

the primal form. We proceed by showing how to solve the kernel SVM in dual form using

FISTA.

FISTA for Kernel SVM. Since F(β) is a hinge loss, we introduce the dual variable

y by its conjugate,

F(β) = qmax
y

ntrn∑

i=1

{〈
yi, 1− liH.i

>β
〉
−F∗(y)

}
(3.30)

62 Chapter 3. Some Classical Machine Learning Algorithms

where

F∗(y) =

{
0 y ∈ P
+∞ y /∈ P

(3.31)

is a indicator function and P = {y ∈ Rntrn | ∀yi ∈ [0, 1]}. By KKT condition, we have

β = ` · y, ` =
[
l1, · · · , lntrn ,

]
. Thus, the dual form is:

max
y

(
1

2
− q) (` · y)>H (` · y) + q

ntrn∑

i=1

yi −F∗(y). (3.32)

By reversing the sign, we attain

min
y

(q − 1

2
) (` · y)>H (` · y)− q

ntrn∑

i=1

yi + F∗(y). (3.33)

By changing the variable y of Equation (3.33) to x for uniformity, we further obtain

min
x

(q − 1

2
) (` · x)>H (` · x)− q

ntrn∑

i=1

xi + F∗(x). (3.34)

For the simplicity of calculating the resolvent of ∂G, in the dual form we let

Fdual(x) = (q − 1

2
) (` · x)>H (` · x) (3.35)

and

Gdual(x) = −q
ntrn∑

i=1

xi + F∗(x). (3.36)

Because F∗ is an indicator function, we can further let δ(x) = F∗(x). Thus Equation (3.34)

becomes

min
x

(q − 1

2
) (` · x)>H (` · x)− q

ntrn∑

i=1

xi + δ(x). (3.37)

We write (` · x)>H (` · x) as x>Ĥx where Ĥ = H · (``>). Thus we have the conjugate of

Fdual(x) = (q − 1

2
)x>Ĥx. (3.38)

The gradient of the loss function is ∇Fdual(x) = 2(q − 1
2)Ĥx. And the Lipschitz

constant of ∇F(x) is 2(q − 1
2)‖Ĥ‖. Note that no matter what value of ρ is, H always

is an approximate positive semidefinite matrix which means H has very small negative

eigenvalues. Therefore, q > 1
2 can make this model be an approximate convex model.

3.2. Experiments 63

10−8 10−5 10−2

0

1

2

3

4

5

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 7) PDCP(a = 3) PDCP(a = 1)

PDCP(a = 1
3) PDCP(a = 1

7) FISTA

(a)

10−8 10−5 10−2

0

2,000

4,000

Error Tolerance

T
im

e(
se
co
n
d
)

PDCP(a = 7) PDCP(a = 3) PDCP(a = 1)

PDCP(a = 1
3) PDCP(a = 1

7) FISTA

(b)

Figure 3.8: Performance evaluation of the PDCP with different values of a and the FISTA in the
application of kernel SVM. The (a) refers to the number of iterations and (b) refers to CPU times
(sec) to drop the error (en − ê) below the error tolerance 10−2, 10−5 and 10−8 within a maximum
number of 5e3 iterations.

PDCP for Kernel SVM. Now we continue to demonstrate the involved equations for

PDCP. The conjugate of Equation (3.38) and its gradient are

F∗dual(x) =
x>Ĥ−1x

4p− 2
and ∇F∗dual(x) =

Ĥ−1x

2p− 1
. (3.39)

Thus, the primal-dual model is,

min
x

max
y

{
〈x,y〉 − y>Ĥ−1y

4p− 2
− q

ntrn∑

i=1

xi + δ(x)

}
. (3.40)

The PDCP algorithm for the given task can then be summarized as

{
yn = (I + σĤ−1

2p−1)−1(yn−1 + σxn−1)

xn =
[
xn−1 − τyn + τq

]
P
.

(3.41)

To calculate (I + σĤ−1

2q−1)−1, we use the Woodbury matrix identity [169], i.e.

(I + σĤ−1

2q−1)−1 = (2q−1)
σ Ĥ− (2q−1)

σ Ĥ
(
I + (2q−1)

σ Ĥ
)−1

(2q−1)
σ Ĥ (3.42)

to avoid calculating the inverse matrix of Ĥ.

64 Chapter 3. Some Classical Machine Learning Algorithms

Number of Iterations

10
0

10
2

10
4

10
6

10
8

e
n
−
ê

10
-15

10
-10

10
-5

10
0

10
5

10
10

FISTA-dual
OSGA
PDCP (a= 1

3
)

Online PDCP
O(1/n2)

Figure 3.9: Log-log plot of the error en − ê to the number of iterations n in the experiment of
kernel SVM.

Comparison of Kernel SVM. We select ê by running PDCP (a=1
3) 2e4 times. The

running times per iteration of PDCP, OSGA and FISTA are 0.1009, 0.3000 and 0.1052

seconds, respectively. We compare the performances of PDCP and FISTA in Figure 3.8.

In Figure 3.9, we can see that the convergence rate of FISTA coincides with its theoretical

rate after the 100th iteration. PDCP and Online PDCP converging with a much better rate

outperform FISTA and OSGA in the later iterations. We test the kernel SVM solved by

PC CP (a=1
3) running 2e4 times on the test data set with 4000 samples and the accuracy

is 0.906309.

3.2.4 Grouped Feature Selection

High-dimensional regression and classification are challenges in the field of science. The

group lasso [177], used as a regularizer, yields a solution with grouped sparsity when solving

a problem of high-dimensional regression and classification. Following the experimental

setting of Yang et al. [171], we conduct experiments of high-dimensional classification.

In this experiment, we use the so-called MEMset Donar dataset7. Each sample in this

dataset consists of a feature described by a sequence of {A,C,G, T} of length 7. The

training set consists of replicated 8415 true and 179438 false donor sites, and the testing

set has replicated 4208 true and 89717 false donor sites. We use dummy variables to encode

each original feature of the samples. We generate group features with up to three-way

interactions between the 7 positions. When each element itself is treated as a group,

from the original feature sequence we can get 7 groups; when two-way interactions is

considered, there are 7×6
2 = 21 combinations; similarly for three-way interactions, we can

draw 7×6×5
3×2 = 35 combinations. This results in g groups where g = 63. Because each

7The data set is available at http://genes.mit.edu/burgelab/maxent/ssdata/.

3.2. Experiments 65

original feature is expressed as one of {A,C,G, T}, for the first 7 groups, each group is

decoded as a 4-digit number, 1000, 0100, 0010, 0001. Likewise for one of 21 groups of

two-way interactions, it is decoded by a 16-digit number, for example 0000 0000 0000 0001.

A 64-digit number expresses each group of three-way interaction. Therefore the primal

variable is formulated as x =
[
x>1 ,x

>
2 , · · · ,x>g

]
where the number of attributes is d =

2604 = 7 × 4 + 21 × 16 + 35 × 64. We denotes by dindg ∈ {4, 16, 64} the length of each

group.

Two non-smooth loss functions are examined in this experiment, namely absolute loss

and hinge loss. Suppose there are ntrn training samples. The primal variable is x ∈ Rd,
where d is the dimension of the attribute space. The absolute loss is defined as:

F(x) =

ntrn∑

i=1

∣∣∣si>x− li
∣∣∣ (3.43)

where si is the feature of the ith sample and li is the label of the ith sample. The hinge

loss is:

F(x) =

ntrn∑

i=1

max(0, 1− lix>si). (3.44)

The group lasso is defined as follows

G(x) =

g∑

indg=1

√
dindg ‖xindg‖2, (3.45)

where indg is the index of groups.

FBS for Grouped Feature Selection. In this section, we demonstrate the equation

of the subgradient of the loss function used in FBS. Calculus leads to the subgradient of

the absolute loss as follows,

∇F =
∑

i∈P1

si −
∑

i∈P2

si, (3.46)

where sets P1, P2 are defined as P1 =
{
i | si>x− li > 0

}
and P2 =

{
i | si>x− li < 0

}
.

The subgradient of the hinge loss with respect to x is,

∇F =
∑

i∈P3

−lisi, (3.47)

where the set P3 is defined as P3 =
{
i | 1− lix>si > 0

}
.

FISTA for Grouped Feature Selection. Since the absolute loss and the hinge loss

are both non-smooth. We apply smoothing techniques to the absolute loss and the hinge

loss before using FISTA. We denote by θ the smoothness parameter. The absolute loss

66 Chapter 3. Some Classical Machine Learning Algorithms

and the hinge loss compute the sum of all samples. This leads to the absolute loss,

Fabs(x) =

ntrn∑

i=1

Fi(x) with Fi(x) =

{
(si
>x−li)2

2θ + θ
2

∣∣si>x− li
∣∣ ≤ θ

∣∣si>x− li
∣∣ otherwise

. (3.48)

Thus the corresponding gradient is as follows,

∇Fabs(x) =

ntrn∑

i=1

∇Fi(x) where ∇Fi(x) =





si
>x−li
θ si

∣∣si>x− li
∣∣ ≤ θ

si si
>x− li > θ

−si si
>x− li < −θ

. (3.49)

Likewise, the hinge loss is,

Fhinge(x) =

ntrn∑

i=1

Fi(x) with Fi(x) =





0 1− lix>si < −θ
(1−lix>si+θ)2

4θ

∣∣1− lix>si
∣∣ ≤ θ

1− lix>si 1− lix>si > θ

. (3.50)

The gradient ∇Fhinge(x) results as

∇Fhinge(x) =

ntrn∑

i=1

∇Fi(x) where ∇Fi(x) =





0 1− lix>si < −θ
−li(1−lix>si+θ)

2θ si
∣∣1− lix>si

∣∣ ≤ θ
−lisi 1− lix>si > θ

.

(3.51)

The smoothing techniques lead to piecewise smooth functions for both of the absolute

loss and the hinge loss. It is easy to derive the subgradient functions ∇F . However, the

Lipschitz constants of ∇F for absolute loss and hinge loss are not computable. For this

reason, we use FISTA with backtracking.

PDCP for Grouped Feature Selection using Absolute Loss. Suppose that the

absolute loss is defined as:

F(x) = ‖Kx− `‖1, (3.52)

where K =
[
s1 · · · sntrn

]>
, and ` = [l1 · · · lntrn]>. We introduce the dual variable y ∈

Rntrn by the conjugate function,

F∗(y) = 〈`,y〉+ δP (y) where δP (y) =

{
0 y ∈ P
+∞ y /∈ P

(3.53)

and the set P = {y ∈ Rntrn : ∀yi ∈ [−1, 1]} . This leads to the following loss function,

F(x) = max
y
{〈Kx− `,y〉 − δP (y)} . (3.54)

3.2. Experiments 67

The scheme of PDCP reads,





yn =
[
yn−1 + σ(Kxn−1 − `)

]
P

x̃n = xn−1 − τK>yn

xnindg
= max

{
‖x̃nindg

‖2 −
√
dindg τλ, 0

}
x̃ng

‖x̃nindg
‖2

(3.55)

where xindg and x̃indg are the indg
th group of x and x̃, indg = 1, · · · , g.

PDCP for Grouped Feature Selection using Hinge Loss. We define the hinge

loss with the matrix Kh:

F(x) =

ntrn∑

i=1

max(0, 1− lix>si) = ‖max(0, 1 + Khx)‖1, (3.56)

where Kh =
[
−l1s1 · · · −lntrnsntrn

]>
. Let the dual variable be y ∈ Rntrn and a set P be

P = {y ∈ Rntrn : ∀yi ∈ [0, 1]} . The convex conjugate is

F∗(y) = −
ntrn∑

i=1

yi + δP (y). (3.57)

The loss function is summarized as,

F(x) = max
y
{〈Khx + 1,y〉 − δP (y)} . (3.58)

Therefore, the iteration equations of xn,yn are,





yn =
[
yn−1 + σ(Khx

n−1 + 1)
]
P

x̃n = xn−1 − τK∗hyn
xnindg

= max
{
‖x̃nindg

‖2 −
√
dindg τλ, 0

}
x̃ng

‖x̃nindg
‖2
.

(3.59)

Comparison of Grouped Feature Selection. Now we summarize our experimental

findings. We test two different loss functions: absolute loss and hinge loss with group lasso

as a regularizer for the case λ = 10−3 and λ = 10−5. In all the cases, the optimal solution

ê is chosen by running Online PDCP 105 times. For the absolute loss, the running time

per iteration of PDCP is 1.76× 10−2 seconds; the running time per iteration of FISTA is

6.40 × 10−2; and the running time per iteration of OSGA is 4.40 × 10−2. For the hinge

loss, the running time per iteration of PDCP is 1.64 × 10−2 seconds; the running time

per iteration of FISTA is 4.33 × 10−2; and the running time per iteration of OSGA is

3.30× 10−2. Next, we summarize the results for absolute loss and hinge loss separately.

First we consider the result using absolute loss. Figure 3.10 shows the performances of

PDCP with different values of a and FISTA with different values of smoothness parameter

68 Chapter 3. Some Classical Machine Learning Algorithms

10−8 10−5 10−2

0

1

2

3

·104

Error Tolerance

N
u
m
b
er

of
ti
m
ea
ti
on

s

PDCP(a = 1
11) PDCP(a = 1

15) PDCP(a = 1
19)

(a)

10−8 10−5 10−2

0

2

4

6

·104

Error Tolerance
N
u
m
b
er

of
It
er
at
io
n
s

FISTA(θ = 5e−7) FISTA(θ = 5e−6) FISTA(θ = 5e−5)

FISTA(θ = 5e−4) FISTA(θ = 5e−3) FISTA(θ = 5e−2)

FISTA(θ = 5e−1)

(b)

10−8 10−5 10−2

0

2

4

6

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 1
3) PDCP(a = 1

7) PDCP(a = 1
11)

(c)

10−6 10−4 10−2

0

1

2

3

4

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

FISTA(θ = 5e−9) FISTA(θ = 5e−8) FISTA(θ = 5e−7)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(d)

Figure 3.10: Performance evaluation of the PDCP with different values of a ((a) and (c)) and
the FISTA with different values of θ ((b) and (d)) in the application of grouped feature selection
with the absolute loss when λ = 10−3 ((a) and (b)) and λ = 10−5 ((c) and (d)). The figures show
the needed number of iterations (y axis) to drop the error below a certain error tolerance (x axis)
within a maximum number of 1e5 iterations.

3.2. Experiments 69

Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

10
6

e
n
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=0.5)
FISTA (θ = 5× 10−5)
OSGA
PDCP (a= 1

19
)

Online PDCP (a= 1
19
)

O(1/n2)

(a)

Number of Iterations

e
n
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=1)
FISTA (θ = 5× 10−5)
OSGA
PDCP (a= 1

3
)

Online PDCP (a= 1
3
)

O(1/n2)

(b)

Figure 3.11: Log-log plot of error en − ê to the number of iterations n in the experiment of
grouped feature selection with the absolute loss. (a) shows results for λ = 10−3 and (b) shows
results for λ = 10−5.

θ. In Figure 3.10b and Figure 3.10d, the vacancies of bars indicate that the algorithms fail

to drop the error below the error tolerance within a maximum number of 1e5 iterations.

From Figure 3.10 we can see that the number of iterations of PDCP is much less than

FISTA. As shown in Figure 3.11, OSGA is better than FISTA and FBS from the 100th to

1000th iteration. Whereas in the later iterations, PDCP outperforms OSGA, FISTA and

FBS. FBS achieves a convergence rate of O(1/
√
n). We observe fluctuations of FISTA

since it is not a monotone algorithm. Within 106 iterations only PDCP begin to converge.

The empirical convergence rate of PDCP is better than its theoretical convergence rate.

Finally we evaluate the grouped feature selection using hinge loss. Figure 3.12 shows

the performances of PDCP with different values of a and FISTA with different values of

smoothness parameter θ. In Figure 3.12b and Figure 3.12d, the vacancies of bars indicate

that the algorithms fail to drop the error below the error tolerance within a maximum

number of 1e5 iterations.

From Figure 3.13 we can see that the running time of PDCP is much less than

FISTA. We can see OSGA is similar to and slightly better than FBS in Figure 3.13a

and Figure 3.13b respectively. The convergence rate of PDCP again is more better than

its theory convergence rate.

3.2.5 Multi-Task Learning

Multi-task learning is to learn several similar and related tasks at the same time, using

the commonality among the tasks. In this experiment, we conduct supervised machine

learn to classify digits. We use the MNIST dataset8 and we choose 50 training samples for

8The data set is available at http://yann.lecun.com/exdb/mnist/.

70 Chapter 3. Some Classical Machine Learning Algorithms

10−8 10−5 10−2

0

0.2

0.4

0.6

0.8

1

·105

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 1
11) PDCP(a = 1

15) PDCP(a = 1
19)

(a)

10−6 10−4 10−2

0

1

2

3

4

·104

Error Tolerance
N
u
m
b
er

of
It
er
at
io
n
s

FISTA(θ = 5e−9) FISTA(θ = 5e−8) FISTA(θ = 5e−7)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(b)

10−8 10−5 10−2

0

2

4

6

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 3) PDCP(a = 1) PDCP(a = 1
3)

(c)

10−6 10−4 10−2

0

1

2

3

4

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

FISTA(θ = 5e−9) FISTA(θ = 5e−8) FISTA(θ = 5e−7)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(d)

Figure 3.12: Performance evaluation of PDCP with different values of a ((a) and (c)) and FISTA
with different values of θ ((b) and (d)) in the application of grouped feature selection with the
hinge loss when λ = 10−3 ((a) and (b)) and λ = 10−5 ((c) and (d)). The figures show the needed
number of iterations (y axis) to drop the error below a certain error tolerance (x axis) within a
maximum number of 1e5 iterations.

3.2. Experiments 71

Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

10
6

e
n
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=10)
FISTA (θ = 5× 10−6)
OSGA
PDCP (a= 1

19
)

Online PDCP (a= 1
19
)

O(1/n2)

(a)

Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

10
6

e
n
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=10)
FISTA (θ = 5× 10−4)
OSGA
PDCP (a=1)
Online PDCP (a=1)
O(1/n2)

(b)

Figure 3.13: Log-log plot of the error en − ê to the number of iterations n in the experiment of
grouped feature selection with the hinge loss. (a) shows the results for λ = 10−3 and (b) shows
the results for λ = 10−5.

each task. The dimensionality of each sample is reduced to 12 using Principal Component

Analysis (PCA). Each feature of samples is denoted by si ∈ Rd, i = 1, · · · , 100. For each

feature of samples, we use li to denote its category, either digit li = 0 or digit li = 1, and

use ki to denote the task where ki = 1 denotes the task of assigning 0 to a vector of feature

and ki = 2 denotes the task of assigning 1 to a vector of feature. The loss functions of this

experiment are the absolute loss and the ε-insensitive loss with ε = 0.01. The regularizer

is L1,∞ norm. Suppose there are ntrn training samples and m tasks. The absolute loss is,

Fabs(X) =

ntrn∑

i=1

∣∣∣si>X.ki − li
∣∣∣ , (3.60)

and ε-insensitive loss is,

Fε(X) =

ntrn∑

i=1

max
(∣∣∣si>X.ki − li

∣∣∣− ε, 0
)

(3.61)

where X = [X.1,X.2, · · · ,X.m] ∈ Rd×m and X.i is the ith column of the matrix X. The

L1,∞ norm is defined as a regularizer on the primal variable X,

G (X) = ‖X‖1,∞ =

d∑

i=1

‖Xi.‖∞ =

d∑

i=1

max
1≤j≤m

|Xi,j | . (3.62)

For simplicity, we reformulate the above equations. We transform X to a vector x in

72 Chapter 3. Some Classical Machine Learning Algorithms

column-major vector representation. Then we create a sparse matrix K ∈ Rntrn×(d×m),

K =




K1 0 0

0
. . . 0

0 0 Km︸ ︷︷ ︸
d×m columns








ntrn rows

where the rows of Ki, i = 1, · · · ,m are samples related to the task i. For example, in

the task one of identifying digit 0, we select all of the samples of digit 0 and assign each

sample to one row of K1. Since we have 50 samples of digit 0, the row of K1 is 50.

Therefore the absolute loss function can be written as:

Fabs(x) = ‖Kx− `‖1 (3.63)

and ` is the label of the corresponding examples ` ∈ Rntrn . We already introduce how

to solve absolution loss function in the experiment of feature selection. So in the next

sections, we concentrate on the ε-insensitive loss function. The ε-insensitive loss can be

written as:

Fε(x) = ‖max {|Kx− `| − ε, 0}‖1. (3.64)

FBS for Multi-Task Learning. The subgradient of the ε-insensitive loss F(x) with

respect to x is

∇Fε(x) =
∑

i∈P1

K>i. −
∑

j∈P2

K>j.

where

P1 = {j ∈ R : Kj.x− lj > ε, j = 1, · · · , ntrn} (3.65)

and

P2 = {j ∈ R : Kj.x− lj < −ε, j = 1, · · · , ntrn} . (3.66)

FISTA for Multi-Task Learning. We describe how to smooth the ε-insensitive loss.

First we make a reasonable assumption that ε ≥ θ. Then we rewrite

Fε(x) = ‖max {|Kx− `| − ε, 0}‖1 (3.67)

=

i=ntrn∑

i=1

|max {|Ki.x− `| − ε, 0}| (3.68)

=

i=ntrn∑

i=1

Fi(x) (3.69)

where

Fi(x) = |max {|Ki.x− `| − ε, 0}| .

3.2. Experiments 73

10−4 10−2 10−1

0

0.5

1

1.5

·104

Error Tolerance

N
u
m
b
er

of
it
er
at
io
n
s

PDCP(a = 1
13) PDCP(a = 1

16) PDCP(a = 1
19)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(a)

10−3 10−2 10−1

0

2,000

4,000

6,000

8,000

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 1
13) PDCP(a = 1

16) PDCP(a = 1
19)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(b)

Figure 3.14: Performance evaluation of the PDCP with different values of a and the FISTA with
different values of θ when λ = 10−3 (a) and λ = 10−5 (b) in the application of multi-task learning
with the absolute loss. The figures show the needed number of iterations (y axis) to drop the error
below a certain error tolerance (x axis) within a maximum number of 1e6 iterations.

We smooth each subfunction Fi as

Fi(x) =





0 −ε+ θ ≤ ri ≤ ε− θ
1
4ε(ri − ε+ θ)2 ε− θ < ri < ε+ θ
1
4ε(−ri − ε+ θ)2 −ε− θ < ri < −ε+ θ

|ri| − ε otherwise

(3.70)

where ri = Ki.x− `. This leads to the following gradient of Fi,

∇Fi(x) =





0 −ε+ θ ≤ ri ≤ ε− θ
1
2ε(ri − ε+ θ)Ki. ε− θ < ri < ε+ θ

− 1
2ε(−ri − ε+ θ)Ki. −ε− θ < ri < −ε+ θ

Ki. ri ≥ ε+ θ

−Ki. ri ≤ −ε− θ

.

PDCP for Multi-Task Learning. Suppose the dual variable is y ∈ R2×ntrn which is

composed of two vectors y1 ∈ Rntrn and y2 ∈ Rntrn . We define a set

P =
{
y ∈ R2×ntrn : ∀y1

i , y
2
i ≥ 0, y1

i + y2
i ≤ 1

}
. (3.71)

74 Chapter 3. Some Classical Machine Learning Algorithms

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Iterations

10
-20

10
-15

10
-10

10
-5

10
0

10
5

en
−

ê

FBS (c=1)
FISTA (θ=0.0005)
OSGA
PDCP (a = 1

19)
Online PDCP (a = 1

19)
O(1/n2)

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Iterations

10
-20

10
-15

10
-10

10
-5

10
0

10
5

en
−

ê

FBS (c=1)
FISTA (θ=0.0005)
OSGA
PDCP (a = 1

19)
Online PDCP (a = 1

19)
O(1/n2)

(b)

Figure 3.15: Log-log plot of the error en − ê to the number of iterations n in the experiment of
multi-task learning with the absolute loss. (a) shows results for λ = 10−3 and (b) shows results
for λ = 10−5.

Then the convex conjugate of the ε-Insensitive loss (cf. Equation (3.64)) is

F∗(y) = 〈`ε + ε,y〉+ δP (y) (3.72)

where `ε =
[
`;−`

]
and Kε ∈ R2×ntrn×(d×m),Kε =

[
K

−K

]
.

By introducing the dual variable y, F can be defined as

Fε(x) = max
y
{〈Kεx− `ε − ε,y〉 − δP (y)} . (3.73)

Thus, we update xn,yn,xn as follows,





yn+1 = [yn + σ(Kεx
n − `ε − ε)]P

x̃ = xn − τK∗εyn+1

xn+1 = arg min
xn+1

{
1
2‖xn+1 − x̃‖22 + τλG(xn+1)

} . (3.74)

We can calculate the proximal mapping of the infinity norm by the proximal mapping of

the convex conjugate of the infinity norm [53]. But here we suggest a direct method to

calculate it. The proposed method is more efficient in this experiment. Refer to Section 2.7

for the calculation of xn+1.

Comparison of Multi-Task Learning. Now we compare the two loss functions:

absolute loss and ε-Insensitive loss combined with L1,∞ norm as a regularizer for the

case λ = 10−3 and λ = 10−5. In all the cases, the optimal solution ê is chosen by

running Online PDCP. For the absolute loss, the running time per iteration of PDCP is

3.2. Experiments 75

10−4 10−2 10−1

0

0.2

0.4

0.6

0.8

1

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 1
13) PDCP(a = 1

16) PDCP(a = 1
19)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(a)

10−4 10−2 10−1

0

0.5

1

·104

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 1
13) PDCP(a = 1

16) PDCP(a = 1
19)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(b)

Figure 3.16: Performance evaluation of the PDCP with different values of a and the FISTA with
different values of θ when λ = 10−3 (a) and λ = 10−5 (b) in the application of multi-task learning
with the ε-insensitive loss. The figures show the needed number of iterations (y axis) to drop the
error below a certain error tolerance (x axis) within a maximum number of 1e6 iterations.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Iterations

10
-15

10
-10

10
-5

10
0

en
−

ê

FBS (c=1)
FISTA (θ=0.0005)
OSGA
PDCP (a = 1

19)
Online PDCP (a = 1

19)
O(1/n2)

(a)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Number of Iterations

10
-15

10
-10

10
-5

10
0

en
−

ê

FBS (c=1)
FISTA (θ=0.0005)
OSGA
PDCP (a = 1

19)
Online PDCP (a = 1

19)
O(1/n2)

(b)

Figure 3.17: Log-log plot of the error en − ê to the number of iterations n in the experiment of
multi-task learning with the ε-insensitive loss. (a) shows the results for λ = 10−3 and (b) shows
the results for λ = 10−5.

0.33 × 10−3 seconds; the running time per iteration of FISTA is 0.68 × 10−3; and the

running time per iteration of OSGA is 0.36 × 10−3. For the insensitive loss, the running

time per iteration of PDCP is 0.62 × 10−3 seconds; the running time per iteration of

FISTA is 0.80× 10−3; and the running time per iteration of OSGA is 0.34× 10−3. Next,

76 Chapter 3. Some Classical Machine Learning Algorithms

we analyse the results for absolute loss and insensitive loss separately.

First, let us consider multi-task learning with absolute loss. From Figure 3.14 we can

observe that it is less time consuming to decrease the error below 10−1. However it takes

more time to reach an error tolerance of 10−2 especially for FISTA using θ = 5 × 10−6.

The overall comparison are shown in Figure 3.15.

Next we consider multi-task learning with ε-insensitive loss. From Figure 3.16 we see

that it needs more time to reach an error tolerance of 10−4 than 10−2 especially for FISTA

using θ = 5× 10−6. However FISTA using θ = 5× 10−3 is the most efficient to reach the

error below 10−4. Figure 3.17 depicts the comparison for much smaller error tolerance.

3.2.6 Matrix Completion and Matrix Factorization

In this section, we conduct two unsupervised ML tasks: matrix completion and matrix

factorization. The goal of matrix completion is to recover a full matrix X ∈ Rm×n from

partially observed matrix S. The energy is composed of a loss function measuring the

difference between X and S on the observed entries and a trace norm regularizer on X,

assuming that X is low rank. Matrix factorization is also known as matrix decomposition.

Seeking a low-dimensional factorization is equal to seeking a low-rank matrix [149]. So

we use the trace norm regularizer for matrix completion and matrix factorization, and

use the absolute loss for matrix completion and the hinge loss for Max-Margin matrix

factorization. We evaluate on the 100K MovieLens data set9 which contains one hundred

thousand samples from 943 users on 1682 movies.

The absolute loss is defined as

F(X) =
∑

(i,j)

|PΩ (Xi,j − Si,j)| where PΩ (Xi,j) =

{
Xi,j (i, j) ∈ Ω

0 otherwise
(3.75)

and Ω is the set of indexes of observed index pairs.

For max-margin matrix factorization, suppose there are nr distinct ratings. Then we

introduce nr − 1 thresholds θr (r = 1, · · · , nr − 1) to measure the hinge loss between the

predicted value Xi,j and the ground truth Si,j [138]. This leads the hinge loss to

F(X) =
∑

(i,j)

nr−1∑

r=1

max (0, 1− PΩ(T ri,j (θr −Xi,j))) where T ri,j =

{
1 r ≥ Si,j
−1 r < Si,j

. (3.76)

In addition, we define a function

Fr(X) =
∑

(i,j)

max
{

0, 1− PΩ(T ri,j (θr −Xi,j))
}

(3.77)

9The data set is available at http://www.grouplens.org/node/12.

Reference:

Nathan Srebro and Jason D. M. Rennie and Tommi S. Jaakola (2005)
Maximum-Margin Matrix Factorization

Reference:

Rennie, Jasson D. M. and Srebro, Nathan (2005)
Fast maximum margin matrix factorization for collaborative prediction

3.2. Experiments 77

such that

F(X) =

nr−1∑

r=1

Fr(X).

We define the trace norm regularizer as,

G(X) = trace(
√

X∗X) =

min(m,n)∑

i=1

σi (3.78)

where σi denote the singular values of X. To calculate the subgradient of G(X), we leverage

the following method [8, 163].

∂G(X) = UrVr
∗ (3.79)

where singular value decomposition X = UΣV∗, Σ is a diagonal matrix whose diagonal

elements are {σi}, r is the rank of X and Ar means the restriction of A to the first r

columns. We also need the following lemma presented in [28] for further the upcoming

derivation

Dλ (X) = arg min
W

{
1

2
‖W − S‖2F + λG(W)

}
= UDλ (Σ) V∗, (3.80)

where Dλ (Σ) = diag
(
[σi − λ]+

)
, [x]+ = max (x, 0) and S = UΣV∗.

FBS for Matrix Completion and Matrix Factorization. We define the subgradient

of the absolute loss evaluated at Xi,j as below:

∇F(Xi,j) =





1 (i, j) ∈ Ω and Xi,j − Si,j > 0

−1 (i, j) ∈ Ω and Xi,j − Si,j < 0

0 otherwise

. (3.81)

The subgradient of the hinge loss at the point Xi,j is defined as

(∇F(X))i,j =

nr−1∑

r=1

(∇Fr(X))i,j (3.82)

where

(∇Fr(X))i,j =

{
T ri,j (i, j) ∈ Ω and 1− T ri,j(θr −Xi,j) > 0

0 otherwise
.

FISTA for Matrix Completion and Matrix Factorization. In this section, we

show the equations of the smoothed loss with the corresponding gradient evaluated at the

Reference:

 ()

Reference:

Cai, Jian-Feng and Candès, Emmanuel J. and Shen, Zuowei (2010)
A Singular Value Thresholding Algorithm for Matrix Completion

78 Chapter 3. Some Classical Machine Learning Algorithms

component Xi,j . The smoothed absolute loss and its gradient are

(F(X))i,j =

{
(Xi,j−Si,j)2

2ε + ε
2 |Xi,j − Si,j | ≤ ε

|Xi,j − Si,j | otherwise
(3.83)

and

(∇F(X))i,j =





PΩ(
Xi,j−Si,j

ε) |Xi,j − Si,j | ≤ ε
PΩ(1) Xi,j − Si,j > ε

PΩ(−1) Xi,j − Si,j < −ε.
(3.84)

We provide the equations of the smoothed hinge loss,

(Fr(X))i,j =





0 χ < −ε
(χ+ε)2

4ε |χ| ≤ ε
χ χ > ε

(3.85)

where χ = 1− T ri,j(θr −Xi,j).

And its gradient at Xi,j is as follows

(∇Fr(X))i,j =





0 χ < −ε
PΩ(

(χ+ε)T ri,j
2ε) |χ| ≤ ε

PΩ(T ri,j) χ > ε

χ = 1− T ri,j(θr −Xi,j). (3.86)

PDCP for Matrix Completion. First we will illustrate the equations involved with

matrix completion. Formulate X and S to the vectors x, s ∈ Rm×n respectively in

column-major vector representation. We define the dual variable y ∈ Rm×n and the

set P = {y ∈ Rm×n : ∀yi ∈ [−1, 1]} where yi is the ith component of y. By introducing

the dual variable, the loss function becomes

F(x) = ‖K(x− s)‖1 = max
y
{〈Kx−Ks,y〉 − δP (y)} (3.87)

where K ∈ R(m×n)×(m×n) is a diagonal matrix

Km(j−1)+i,m(j−1)+i =

{
1 (i, j) ∈ Ω

0 otherwise
, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

The convex conjugate function is

F∗(y) = 〈Ks,y〉+ δP (y). (3.88)

3.2. Experiments 79

We can conclude the iteration equations of PD CD for matrix completion as follows:





yn =
[
yn−1 + σ(K(xn−1 − s))

]
P

x̃n = xn−1 − τK∗yn
x̃n = X̃n(:)

X̃n = UΣV∗

Dτλ (Σ) = diag
(
[σi − τλ]+

)

xn = UDτλ (Σ) V∗

. (3.89)

PDCP for Matrix Factorization. Next we will illustrate the equations involved

with matrix factorization. Formulate X and Tr to x, tr ∈ Rm×n in column-major

vector representation. We define yr ∈ Rm×n, r = 1, · · · ,nr − 1 and the set

H = {yr ∈ Rm×n : ∀yri ∈ [0, 1]} where yri is the ith component of yr. Let the dual

variable be

y =
[
y1, · · · , ynr−1

]>
.

We define the set P =
{
y ∈ R(nr−1)×(m×n) : ∀yr ∈ H

}
. Then, the loss function becomes

F(x) =

nr−1∑

r=1

max
yr
{〈Krx,yr〉 − 〈Q(θrt

r − 1),yr〉} − δH(y) (3.90)

where Kr and Q ∈ R(m×n)×(m×n) are diagonal matrices

Kr
m(j−1)+i,m(j−1)+i =

{
Ti,j (i, j) ∈ Ω

0 otherwise

and

Qm(j−1)+i,m(j−1)+i =

{
1 (i, j) ∈ Ω

0 otherwise
.

After simplification, we obtain, F(x) = max
y
{〈Kx,y〉 − 〈q,y〉 − δP (y)} where

K =
[
K1 · · · Knr−1

]>
and

q =
[
Q(θ1t

1 − 1), · · · , Q(θnr−1t
nr−1 − 1)

]>
.

Therefore

F∗(y) = 〈q,y〉+ δP (y).

The iteration equations of PDCP algorithm for Max-Margin matrix factorization can

80 Chapter 3. Some Classical Machine Learning Algorithms

10−6 10−4 10−2

0

200

400

600

800

1,000

1,200

Error Tolerance

N
u
m
b
er

of
ti
m
ea
ti
on

s

PDCP(a = 3) PDCP(a = 1) PDCP(a = 1
3)

FISTA(θ = 5e−7) FISTA(θ = 5e−6) FISTA(θ = 5e−5)

FISTA(θ = 5e−4) FISTA(θ = 5e−3) FISTA(θ = 5e−2)

(a)

10−6 10−4 10−2

0

500

1,000

1,500

Error Tolerance

N
u
m
b
er

of
It
er
at
io
n
s

PDCP(a = 19) PDCP(a = 15) PDCP(a = 11)

FISTA(θ = 5e−3) FISTA(θ = 5e−2)

(b)

Figure 3.18: Performance evaluation of the PDCP with different values of a and the FISTA with
different values of θ when λ = 10−3 (a) and λ = 10−5 (b) in the application of matrix completion.
The figures show the needed number of iterations (y axis) to drop the error below a certain error
tolerance (x axis) within a maximum number of 8000 iterations.

be written as, 



yn =
[
yn−1 + σ(Kxn−1 − q)

]
P

x̃n = xn−1 − τK>yn

x̃n = X̃n(:)

X̃n = UΣV∗

Dτλ (Σ) = diag
(
[σi − τλ]+

)

xn+1 = UDτλ (Σ)V ∗

. (3.91)

Comparison of Matrix Completion and Matrix Factorization. The optimal value

ê is chosen by running Online PDCP 8000 times. For matrix completion, the running times

per iteration of PDCP, FISTA and OSGA are 3.47, 10.42 and 5.80 seconds. For matrix

factorization, the running times per iteration of PDCP, FISTA and OSGA are 4.69, 11.11

and 4.48 seconds. Next we will show the comparison of matrix completion.

We continue with the comparison on the task of matrix completion. From Figure 3.18

FISTA we can see that can failed to decrease to a lower tolerance. For example, on

Figure 3.18a, the error of FISTA with θ = 5 × 10−7 cannot decrease below 10−6 within

8000 iterations. On Figure 3.18b FISTA fails for the error tolerance 10−4 and 10−6.

As shown in Figure 3.19a, FISTA decreases fast at the first 100 iterations. But PDCP

outperforms FISTA at the end with a convergence rate even better than O(1/n2).

Next we present the results for the task of matrix factorization. In Figure 3.20a, the

error of FISTA with θ = 5× 10−2 cannot decrease below 10−5 within 8000 iterations. On

3.2. Experiments 81

Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

e
n
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=500000)
FISTA (θ = 5× 10−5)
OSGA
PDCP (a= 1

3
)

Online PDCP(a= 1
3
)

O(1/n2)

(a)
Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

e
n
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=500000)
FISTA (θ=0.005)
OSGA
PDCP (a=19)
Online PDCP (a=19)
O(1/n2)

(b)

Figure 3.19: Log-log plot of the error en − ê to the number of iterations n in the experiment of
matrix completion. (a) shows the results for λ = 10−3 and (b) shows the results for λ = 10−5.

10−5 10−3 10−1

0

200

400

600

Error Tolerance

N
u
m
b
er

o
f
It
er
at
io
n
s

PDCP(a = 7) PDCP(a = 3) PDCP(a = 1)

FISTA(θ = 5e−7) FISTA(θ = 5e−6) FISTA(θ = 5e−5)

FISTA(θ = 5e−4) FISTA(θ = 5e−3) FISTA(θ = 5e−2)

(a)

10−3 10−2 10−1

0

500

1,000

1,500

2,000

Error Tolerance

N
u
m
b
er

of
ti
m
ea
ti
on

s

PDCP(a = 19) PDCP(a = 15) PDCP(a = 11)

FISTA(θ = 5e−6) FISTA(θ = 5e−5) FISTA(θ = 5e−4)

FISTA(θ = 5e−3)

(b)

Figure 3.20: Performance evaluation of the PDCP with different values of a and the FISTA
with different values of θ when λ = 10−3 (a) and λ = 10−5 (b) in the application of matrix
factorization. The figures show the needed number of iterations (y axis) to drop the error below
the error tolerance (x axis) within a maximum number of 8000 iterations.

Figure 3.20b, FISTA with θ = 5× 10−4 can decrease the error below 10−3.

82 Chapter 3. Some Classical Machine Learning Algorithms

Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

e
n
−
ê

10
-20

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=500000)
FISTA (θ = 5× 10−6)
OSGA
PDCP (a=1)
Online PDCP (a=1)
O(1/n2)

(a)

Number of Iterations

10
0

10
1

10
2

10
3

10
4

10
5

e
n
−
ê

10
-15

10
-10

10
-5

10
0

10
5

FBS (c=750000)
FISTA (θ=0.005)
OSGA
PDCP (a=19)
Online PDCP (a=19)
O(1/n2)

(b)

Figure 3.21: Log-log plot of error the en − ê to the number of iterations n in the experiment of
matrix factorization. (a) shows the results for λ = 10−3 and (b) shows the results for λ = 10−5.

As shown in Figure 3.21a, FISTA decreases fast at the first 1000 when λ = 10−3 and at

the first 100 iterations when λ = 10−5, separately. But PDCP outperforms FISTA in the

later iterations with a convergence rate even better than O(1/n2), which appears again in

Figure 3.21b.

3.3 Conclusion

In this section, we described how to solve several benchmark problems of ML algorithms

by using first-order optimization algorithms. To make the comparison as convincing as

possible, if there is a tuning parameter involved, we chose the value of the tuning parameter

giving best performance. We showed the influence of the ratio between the step sizes of the

primal variable and the dual variable in PDCP. In addition, because FISTA cannot solve

a non-smooth loss function, we used smoothing techniques before using FISTA. Thus, we

studied the impact of the smoothness parameter θ on FISTA. Our experiments reveal

that in a reasonable domain, FISTA with the bigger smoothness parameter converges fast

at the beginning although it is hard to converge to the optimal solution. Thus we infer

that a better strategy would be to descrease the value of the smoothness parameter with

increasing number of iterations. However the selection of the parameter is always a tricky

and difficult subject.

We draw log-log graphs to make an overall comparison for FBS, FISTA, OSGA,

PDCP. During the different ranges of iterations, optimization algorithms have different

performances. For example, sometimes FISTA is faster at the first few iterations but

attains a lower empirical connvergency rate in the long run compared to e.g. PDCP. In

the experiments for dimensionality reduction composed by a smooth loss function and

a non-smooth regularizer, PDCP is faster to reach the optimal solution. Whereas in the

3.3. Conclusion 83

experiment of linear SVM composed by a non-smooth loss function and smooth regularizer,

FISTA and OSGA do not converge within 5× 105 iterations. However, PDCP converges

with a convergence rate better than O(1/n2). When loss function and regularizer are both

smooth as in kernel SVM, FISTA achieves its theoretical convergence rate of O(1/n2).

Surprisingly, PDCP still reaches an empirical convergence rate better than O(1/n2). For

the rest remaining experiments where loss functions and regularizers are both non-smooth,

FBS shows a convergence rate O(1/
√
n). We may not get the optimal values by FISTA

since we use the smoothing techniques. In the experiment of Multi-Task Learning, OSGA

has a better performance than FBS and FISTA. Although theoretical convergence rate

of PDCP is O(1/n), PDCP has a much better practical convergence rate which is better

than O(1/n2) and can converge in almost all ML problems. In all experiments, Online

PDCP is better than or equal to PDCP. In summary, the primal dual algorithm [31] has

the best performance with a fast empirical convergence rate in all problems concerned in

this section and experiments show that PDCP is an efficient and robust solver for a ML

problems.

Reference:

Chambolle, Antonin and Pock, Thomas (2011)
A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging

4
Machine Learning Applications in Computer Vision

Contents

4.1 Single View Image Processing . 85

4.2 Light Field Image Processing . 103

4.1 Single View Image Processing

2D single image processing is one historical and important topic in Computer Vision.

Supervised machine learning techniques have been widely adapted to solve such problems

and have made encouraging progress. In this section, we first present a brief overview of

the trained Reaction-Diffusion Model (RDM) proposed in [43] which has been successfully

applied several problems of digital image processing, for instance, Gaussian denoising,

JPEG deblocking and image inpainting.

Trained Reaction-diffusion Model. Let Ω ⊂ R2 be the image domain and consider

an image as a mapping U : Ω× [0,∞)→ R, U = U(x, t), where t > 0 denotes the stage or

the time. Then a general anisotropic diffusion model is given as

∂tU = div(Γ(U)∇U) , (4.1)

with the original image F : Ω → R as the initial state, i.e. U(x, 0) = F(x), and with

reflecting boundary conditions, i.e. ∂nU = 0 on the image boundary ∂Ω, where n denotes

the normal to ∂Ω. Note that in Equation (4.1) ∇ is taken w.r.t. the spatial variables x

and Γ(U) denotes the diffusion tensor, which is a positive definite symmetric matrix. In

the case of isotropic diffusion Γ(U) can be replaced by a positive scalar-valued diffusion

coefficient also called diffusivity.

In [43], we modified Equation (4.1) in the following way: (i) we generalized the ∇

85

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

86 Chapter 4. Machine Learning Applications in Computer Vision

Kt
1 φ1

Kt
2 φ2

Kt
nk
φnk

...

−Kt
1
>

−Kt
2
>

−Kt
nk

>

φt
1(K

t
1ut−1)

φt
2(K

t
2ut−1)

φt
nk
(Kt

nk
ut−1)

...

u
t−
1

∑

-K t
1
>
φ t
1 (K t

1u
t−1)

-Kt
2
>
φt

2(K
t
2ut−1)

-K
t
n k

> φ
t
n k
(K

t
n k
u t−1

)

A Reaction Term

−

ut−1

ut

Figure 4.1: Illustration of the structure of the convolutional network presented by the proposed
trained RDM.

operator to a set of filters represented by Kt
i, (ii) we equipped each filter with its own

diffusion coefficient represented by so-called influence functions φti : Rd → Rd, and (iii) we

added a reaction term ψ : Rd × Rd → Rd, which basically yields a non homogeneous

diffusion equation. Finally, we proposed the following diffusion model in the discrete

setting

ut = ut−1 −
nk∑

i=1

Kt
i
>
φti(K

t
iut−1)− ψ(ut−1,F) , (4.2)

where ut ∈ Rd denotes the vectorized representation of an image at stage t, nk denotes

the number of filters, F ∈ Rd is the vectorized corrupted input image, and Kt
i ∈ Rd×d is a

sparse matrix representing a convolution operation with the kernel kti (i.e. Kt
iu = kti ∗u).

The reaction term changes for different applications, like Gaussian denoising, or JPEG

deblocking. Note that the influence functions φti(·) and filters Kt
i vary for different stages t.

Equation (4.52) is one gradient descent step of Fields of Experts (FoE) [142] using trained

parameters. In the training, the energy is formulated by the similarity of the ground truth

and the output ut. Thus the output of each gradient descent step should always be close

Reference:

Roth, Stefan and Black, Michael J (2009)
Fields of experts

4.1. Single View Image Processing 87

to the unique ground truth. The principle of measuring the similarity between the ground

truth and the output ut includes Peak Signal to Noise Ratio (PSNR), Structural Similarity

Image Measure (SSIM). The proposed trained RDM is one specific type of convolutional

networks which are popular models in the field of computer vision and pattern recognition.

Figure 4.1 shows in the convolutional network, there are two convolutional layers which

are associated with constrains. One constrain is that the corresponding kernels in the

first and the second convolutional layers are opposite. The second constrain is that the

activation functions of the second convolutional layer are set to identity functions.

In the next section we present a trained diffusion model for image inpainting based on

the the proposed trained RDM [43]. The principle of the measurement we adopted is the

SSIM. The proposed diffusion model uses several parametrized linear filters and influence

functions. Those parameters are learned in a loss based approach, where we first perform

a greedy training before conducting a joint training to further improve the performance.

4.1.1 Diffusion Models for Image Inpainting

Image inpainting is a fundamental problem in Computer Vision (CV) with great practical

importance. Given an image with lost, deteriorated or simply unknown regions, the task of

image inpainting is to convincingly fill-up those unknown image regions. Hence, the main

goal is to produce natural-looking and visually pleasant images. In this section we will

modify the diffusion model proposed in [43] for the task of image inpainting. Contrary to

[43], where a PSNR based training is used, we propose a training based on the SSIM [158],

which seems to be more suitable for the task of image inpainting. In the experimental

section we will present generic models, that are trained based on a complete dataset,

and specific models, that are trained on the uncorrupted image regions of the image

to be inpainted. We will provide a detailed evaluation on the TUM-image inpainting

database [155, url], which will show that the proposed method is able to achieve superior

performance compared to state-of-the-art inpainting methods, and is highly efficient at

the same time. Further we will show that although our method falls into the category of

Partial Differential Equation (PDE) based methods it is also capable to perform texture

inpainting to a certain extend.

4.1.1.1 Related Work

Inpainting applications can be roughly divided into two classes. First, there are inpainting

applications where one considers the task of reconstructing a set of small connected image

regions. Example applications include the restoration of old photos, damaged videos [93],

or artwork [123], and the removal of logos, superimposed text, or other unwanted objects

in images, to name but a few. The second class of inpainting applications considers the

task of restoring large regions of scattered pixels. Inpainting methods belonging to this

class are closely related to image compression methods [41, 64, 104]. Galić et al. [64] for

instance proposed a method for image compression based on edge-enhancing diffusion. Liu

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

Reference:

Wang, Zhou and Bovik, Alan C and Sheikh, Hamid R and Simoncelli, Eero P (2004)
Image quality assessment: from error visibility to structural similarity

Reference:

 ()

Reference:

Kokaram, Anil C and Morris, Robin D and Fitzgerald, William J and Rayner, Peter JW (1995)
Interpolation of missing data in image sequences

Reference:

Nikolaidis, Nikos and Pitas, Ioannis (2001)
Digital image processing in painting restoration and archiving

Reference:

 ()

Reference:

Galic, Irena and Weickert, Joachim and Welk, Martin and Bruhn, Andrés and Belyaev, Alexander and Seidel, Hans-Peter (2008)
Image compression with anisotropic diffusion

88 Chapter 4. Machine Learning Applications in Computer Vision

et al. [104] proposed a framework for image compression, where the main idea is to extract

edge-based assistant information in the encoding step and use this information to guide

the inpainting in the decoding step.

Proposed inpainting methods in the literature tend to fall into one of the following

categories. First, there are exemplar-based or patch-based methods [30, 47, 170], that

try to fill the inpainting regions by propagating information from the remaining parts of

the image at the patch-level. Thus those methods reconstruct the corrupted regions by

sampling and copying uncorrupted patches taken from the same image (or from a certain

dictionary). Those methods are usually based on the self-similarity principle, i.e. one

assumes that images include a lot of repetitions of local information. It is not surprising,

that the main idea of patch-based methods can be traced back to texture synthesis

techniques [55]. Due to their non-local property, patch-based methods are well suited to

inpaint large connected image regions with texture, but they are unable to handle densely

scattered inpainting domains. The second category of inpainting methods involves either

variational principles or is PDE based, noticeable examples include [17, 32, 33, 57, 113].

Those methods have been successfully used to smoothly inpaint small image regions. A

common drawback of PDE based methods is their inability to properly reconstruct image

texture, which is clearly visible when trying to reconstruct large inpainting domains.

However, PDE based methods remain applicable in compression-like applications, i.e.

inpainting task based on sparse data. Masnou and Morel [113] for example proposed an

inpainting model based on variational principles, where they interpolated the inpainting

regions by extending the isophotes, which are lines of constant intensities. Bertalmio et al.

[17] proposed a PDE based inpainting method, that is inspired by the methodology of art

conservators, where a transport process is interlinked with an anisotropic diffusion process.

The overall idea is to fill the inpainting region such that the isophote lines are completed. In

[32] authors extended the Rudin Osher Fatemi (ROF) image denoising model [143] to image

inpainting, i.e. their variational model is based on the Total Variation (TV) and produces

inpainting result with smallest possible isophotes. In a subsequent paper [33] a curvature

driven diffusion equation was introduced to realize the connectivity principle. Esedoglu

and Shen [57] proposed the so-called Mumford Shah Euler model. This model combines

the celebrated Mumford Shah segmentation model [117] with Euler’s elastica curve model.

Besides the aforementioned two categories of inpainting methods, authors also proposed

methods that attempt to combine the advantages of PDE based and patch-based methods

[18, 25, 47, 70, 94]. Bugeau et al. [25] for instance proposed a framework that combines

patch-based methods with PDE based methods by enforce coherence among neighboring

pixels. In [100, 140, 141] authors investigated image statistics from natural images for

the task of image inpainting. Roth and Black [140] for example proposed a framework

to learn generic, expressive image priors that capture the statistics of natural scenes.

The so-called FoE [142] uses continuous heavy-tailed potential functions and learns the

parameters of experts by contrastive divergence learning in high-order Markov Random

Field (MRF) models. In [145], Schmidt et al. modified the FoE model by using Gaussian

Reference:

Liu, Dong and Sun, Xiaoyan and Wu, Feng and Li, Shipeng and Zhang, Ya-Qin (2007)
Image compression with edge-based inpainting

Reference:

 ()

Reference:

Efros, A.A. and Leung, T.K. (1999)
Texture synthesis by non-parametric sampling

Reference:

 ()

Reference:

Masnou, S. and Morel, J.-M. (1998)
Level lines based disocclusion

Reference:

Bertalmio, Marcelo and Sapiro, Guillermo and Caselles, Vincent and Ballester, Coloma (2000)
Image inpainting

Reference:

Chan, Tony F and Shen, Jianhong (2001)
Local inpainting models and TV inpainting

Reference:

Rudin, L. I. and Osher, S. and Fatemi, E. (1992)
Nonlinear total variation based noise removal algorithms

Reference:

Chan, Tony F and Shen, Jianhong (2001)
Nontexture inpainting by curvature-driven diffusions

Reference:

Esedoglu, Selim and Shen,Jianhong (2002)
Digital inpainting based on the Mumford-Shah-Euler image model

Reference:

Mumford, David and Shah, Jayant (1989)
Optimal approximations by piecewise smooth functions and associated variational problems

Reference:

 ()

Reference:

Bugeau, Aurélie and Bertalmío, Marcelo and Caselles, Vicent and Sapiro, Guillermo (2010)
A comprehensive framework for image inpainting

Reference:

 ()

Reference:

Roth, S. and Black, M.J. (2005)
Fields of Experts: a framework for learning image priors

Reference:

Roth, Stefan and Black, Michael J (2009)
Fields of experts

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

4.1. Single View Image Processing 89

scale mixtures as potential functions. In [43], Chen et al. simplified the diffusion coefficients

and then generalized the conventional nonlinear RDM by using learned filters and influence

functions. They showed that the resulting energy functional of the proposed diffusion

model is a generalization of the FoE model [142]. They trained models for Gaussian

denoising and JPEG deblocking. Both models achieved a superior performance compared

to the state-of-the-art and are highly efficient as well.

4.1.1.2 Methodology

Diffusion Model for Image Inpainting. For the inpainting task tackled in this thesis,

the given gray-valued images u are assumed to be noisefree. Let ut : Rn → Rn be a family

of vectorized gray-valued images It ∈ Rh×w, where n = hw and t denotes the stage or

time. Hence the proposed method only updates the gray-values inside the unknown or

missing image regions A ⊂ Ω. Unlike Gaussian denoising or JPEG deblocking discussed

in [43], a challenge of image inpainting is that it has no available reaction term within the

inpainting domain. Hence the proposed model relies on the information at the boundary

of the inpainting domain ∂A and on the learned information from uncorrupted parts of the

image (i.e. Ac), or from a given set of images. Thus the main idea of the proposed model

is to propagate the known information from outside the inpainting region in a meaningful

way in order to reconstruct the values inside the unknown image regions. For this purpose

we define the following diffusion model

ut = ut−1 −m ·
nk∑

i=1

Kt
i
>
φti(K

t
iut−1) , (4.3)

where · denotes the Hadamard product (i.e. pointwise multiplication), and m ∈ Rn is a

vectorized mask indicating the inpainting domain A, i.e.

mj =

{
1 j ∈ A ,
0 otherwise ,

(4.4)

where mj denotes the value at the jth position of the vector m. The influence functions

φti : Rn → Rn are formulated as linear combinations of triangular-shaped basis functions,

φti(v)j = ξti(vj), j ∈ {1, . . . , n} (4.5)

where ξti : R → R is a piecewise linear function using the efficient technique of slice

transform [79]. The other option is Gaussian basis functions which can provide a smooth

solution. Although it is sensible to the initialization when triangular-shaped basis

functions use slice transform, it can provide competitive results with fast calculation in

the cases of image inpainting and image denoising. The output value of the influence

function φti at the jth position only related to the jth component of the input variable.

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

Reference:

Roth, Stefan and Black, Michael J (2009)
Fields of experts

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

Reference:

Hel-Or, Yacov and Shaked, Doron (2008)
A discriminative approach for wavelet denoising

90 Chapter 4. Machine Learning Applications in Computer Vision

The main reason for using those simple basis functions is to reduce the computational

complexity.

The iterative process in Equation (4.3) can be summarized as follows: (i) filter the

current image ut−1 with the kernel kti for 1 6 i 6 nk, (ii) calculate the output of the

influence function φti(·) and filter the result with the kernel k
t
i

1 for 1 6 i 6 nk, where k
t
i

is obtained by rotating kti by 180 degrees, (iii) sum up the nk results and calculate the

Hadamard product with the mask m, and (iv) update ut−1 with the obtained result.

Equation (4.3) can also be obtained by considering the gradient of the following energy

functional

E(u) =

nk∑

i=1

ρti(K
t
iu) + λD (mc · u,mc · f) , (4.6)

where mc = 1 −m, λ is a positive weighting factor, and ρti : Rn → R are functions for

which we assume that
∂ρti(v)
∂v = φti(v). The data term D(·, ·) in Equation (4.6) enforces

that u is close to the observed data f outside the inpainting domain. A common data term

based on the `2-norm is D(v1,v2) = ‖v1 − v2‖22. If we let λ → +∞ in Equation (4.6),

then the values outside the inpainting domain will not change (i.e. uj = fj if mj = 0).

Thus in this case Equation (4.6) can be rewritten as

E(u) =

nk∑

i=1

ρti
(
Kt
i (m · u + mc · f)

)
. (4.7)

By calculating the gradient of E(u) w.r.t. u one obtains the subgradient in Equation (4.3),

which shows that (4.3) can be interpreted as a simple gradient descent step.

Dataset. We will consider two types of trained diffusion models. First, we present

generic models, that are learned on an entire dataset. The generic models are used to

restore large regions of scattered pixels (e.g. 80% and 90% random missing pixels), and to

inpaint small connected image regions. The second type of models are specifically learned

for inpainting a certain image, i.e. those models are trained based on the uncorrupted

parts of the given image. We will show that those specific models are able to learn the

texture of a given image. Thus they are applicable for the task of texture inpainting.

For the generic models, the training dataset includes 400 images of size 180 × 180 as

in [43]. The test dataset is the TUM-image inpainting database [url], which includes 17

images of size 640× 480. For the specific models, we use 5 training images with different

training masks. The experiments show that with small training datasets, the trained

diffusion models can still provide good results. We assume the reason is that the training

inpainting domain and the testing inpainting domain share many similarities which are

learned in the training.

1Kt
i
>
φti(K

t
iut−1) can be rewritten as k

t
i ∗ φti(Kt

iut−1).

Reference:

Chen, Yunjin and Yu, Wei and Pock, Thomas (2015)
On learning optimized reaction diffusion processes for effective image restoration

Reference:

 ()
The TUM-Image Inpainting Database

4.1. Single View Image Processing 91

Network Training. In this section we outline the learning approach. We propose a

SSIM based learning approach to estimate the parameters Θt =
{
kti, φ

t
i

}
on the right-hand

side of Equation (4.3) for all stages 1 6 t 6 T . We start with a greedy training, where we

optimize the parameters at the stage t and then use the optimal parameters to calculate

the inpainted image ut. After that we optimize the parameters of the next stage, till we

reach the maximum number of stages T . The result of the greedy training is used as an

initialization for the following joint training, where we train all stages simultaneously. Let

{f j ,gj ,mj}ntrn
j=1 denote the ntrn training samples, where f j is the jth corrupted image with

unknown values at the inpainting regions indicated by the mask mj , and gj is the jth

ground truth image. Then the greedy training minimizes

L(Θt) =

ntrn∑

j=1

`(ujt ,g
j) , (4.8)

for each stage 1 6 t 6 T . The loss function `(ujt ,g
j) is defined based on the SSIM

[158], which has already been used for image denoising [95, 137], where it has shown its

superiority over PSNR [158]. SSIM assesses the luminance, the contrast, and the structure

of two images I1 : Ω→ R2 and I2 : Ω→ R2 on the patch level. In this context the SSIM

index of two image patches p1 and p2 is calculated as follows

SSIM(p1,p2) =
(2µ1µ2 + c1)(2σ12 + c2)

(µ2
1 + µ2

2 + c1)(σ2
1 + σ2

2 + c2)
, (4.9)

where cj is a predefined constant, µj and σ2
j denote the average and the variance of the

image patch pj , j ∈ {1, 2}, and σ12 is the covariance of the two patches. The final image

measure, denoted as S(I1, I2), is obtained as the mean SSIM index of all image patches.

Note that S(I1, I2) attains its maximum of 1 only if I1 = I2. We use the default parameter

settings for calculating SSIM index [158]. Thus the SSIM index can be written as

SSIM(ujt ,g
j) =

S1(ujt ,g
j) · S2(ujt ,g

j)

S3(ujt ,g
j) · S4(ujt ,g

j)
, (4.10)

where

S1(ujt ,g
j) = 2(Ggj) · (Gujt) + c1,

S2(ujt ,g
j) = 2G(gj · ujt)− (Ggj) · (Gujt) + c2,

S3(ujt ,g
j) = (Ggj) · (Ggj) + (Gujt) · (Gujt) + c1,

S4(ujt ,g
j) = G(ujt · ujt)− (Gujt) · (Gujt) + G(gj · gj)− (Ggj) · (Ggj) + c2,

(4.11)

are four functions, Rn → Rn, G is a matrix to implement the operation of the convolution

with a Gaussian kernel and c1, c2 are two constants. Thus the SSIM between ujt and gj

Reference:

Wang, Zhou and Bovik, Alan C and Sheikh, Hamid R and Simoncelli, Eero P (2004)
Image quality assessment: from error visibility to structural similarity

Reference:

 ()

Reference:

Wang, Zhou and Bovik, Alan C and Sheikh, Hamid R and Simoncelli, Eero P (2004)
Image quality assessment: from error visibility to structural similarity

Reference:

Wang, Zhou and Bovik, Alan C and Sheikh, Hamid R and Simoncelli, Eero P (2004)
Image quality assessment: from error visibility to structural similarity

92 Chapter 4. Machine Learning Applications in Computer Vision

is

S(ujt ,g
j) =

1

n

n∑

i=1

SSIM(ujt ,g
j)i (4.12)

=
1

n
1>SSIM(ujt ,g

j) (4.13)

where 1 is a vector whose entries are all 1. For more details about Equation (4.10) we

refer the reader to [158]. Because SSIM reaches the maximum value when two images are

the same, we define the loss function in Equation (4.8) as

`(ujt ,g
j) = 1− S(ujt ,g

j) , (4.14)

and minimize the resulting energy. For optimization we use the L-BFGS algorithm [105],

which is a batch-based optimization algorithm. Using L-BFGS we need to specify the

loss function (cf. (4.8)) and the according gradient. The gradient of Equation (4.8) is

obtained by applying the chain rule, i.e.

∂L(Θt)

∂Θt
=

ntrn∑

j=1

∂`
(
ujt ,g

j
)

∂Θt
=

ntrn∑

j=1

∂ujt
∂Θt

∂`
(
ujt ,g

j
)

∂ujt
, (4.15)

where ujt is defined in Equation (4.3). After the greedy training we continue with the

joint training, where we learn the parameters of all stages simultaneously. We seek to

minimize the loss of the last stage. Thus the energy functional for the joint training can

be formulated as

L(Θ1, . . . ,ΘT) =

ntrn∑

j=1

`(ujT ,g
j) , (4.16)

where, similar as in (4.18), we use the chain rule to obtain the gradient for the jth training

sample as

∂`(ujT ,g
j)

∂Θt
=
∂ujt
∂Θt

∂ujt+1

∂ujt
· · · ∂`(u

j
T ,g

j)

∂ujT
for 1 6 t 6 T . (4.17)

Derivation of Greedy Training. The gradient of Equation (4.8) is obtained by

applying the chain rule, i.e.

∂L(Θt)

∂Θt
=

ntrn∑

j=1

∂`(ujt ,g
j)

∂Θt
=

ntrn∑

j=1

∂ujt
∂Θt

∂`(ujt ,g
j)

∂ujt
, (4.18)

where ujt is defined in Equation (4.3). In the following section we will present the

calculation of
∂`(ujt ,g

j)

∂ujt
, followed by the calculation of

∂ujt
∂Θt

. For simplicity, we set the

Reference:

Wang, Zhou and Bovik, Alan C and Sheikh, Hamid R and Simoncelli, Eero P (2004)
Image quality assessment: from error visibility to structural similarity

Reference:

Liu, Dong C and Nocedal, Jorge (1989)
On the limited memory BFGS method for large scale optimization

4.1. Single View Image Processing 93

number of samples to ntrn = 1. It is easy to generalize to the case ntrn > 1 by adding up

all samples.

Partial Derivative of the Loss w.r.t. ut. In this section, we will calculate the

partial derivative of the loss `(ut,g) w.r.t. ut. We omit the argument gj in Sn(ujt ,g
j), n ∈

{1, 2, 3, 4} for clarity. In the derivation, the following rules are used,

∂ [Si(ut) · Sj(ut)]
∂ut

=
∂Si(ut)
∂ut

diag(Sj(ut)) +
∂Sj(ut)
∂ut

diag(Si(ut)) (4.19)

and

∂
[
Si(ut) · S−1

j (ut)
]

∂ut
=
∂Si(ut)
∂ut

diag(S−1
j (ut))−

∂Sj(ut)
∂ut

diag(Si(ut) · S−2
j (ut)), (4.20)

where diag(v) , v ∈ Rn is an operation to generate a diagonal matrix, i.e.

diag(v) =




v1 0 · · · 0

0 v2 · · · 0
...

...
. . .

...

0 0 · · · vn




(4.21)

and S−1
j (ut) and S−2

j (ut) specify element-wise exponential. According to matrix calculus,

the following equations hold,

∂S1(ut)

∂ut
= 2G>diag(Gg)

∂S2(ut)

∂ut
= 2diag(g)G> −GTdiag(Gg)

∂S3(ut)

∂ut
= 2G>diag(Gut)

∂S4(ut)

∂ut
= 2diag(ut)G

> − 2G>diag(Gut).

(4.22)

Because G represents a Gaussian kernel having the same deviation along each direction,

the Gaussian kernel is rotationally symmetrical. Thus we have

G> = G. (4.23)

94 Chapter 4. Machine Learning Applications in Computer Vision

Then by combining (4.22), (4.19) and (4.20), we attain

∂SSIM(ut)

∂ut
= G(2diag(Gg · S2 · S−1

3 · S−1
4)

− diag(Gg · S1 · S−1
3 · S−1

4)

− 2diag(Gut · S1 · S2 · S−2
3 · S−1

4)

+ 2diag(Gut · S1 · S2 · S−1
3 · S−2

4))

+ 2diag(g)Gdiag(S1 · S−1
3 · S−1

4)

− 2diag(ut)Gdiag(·S1 · S2 · S−1
3 S−2

4)

(4.24)

Note in Equation (4.24) we shorten Sj(ut) to Sj , j ∈ {1, 2, 3, 4} for clearness. Therefore,

the partial derivative of the loss w.r.t. ut is

∂`(ut,g
j)

∂ut
= −∂S(ut,g)

∂ut
= − 1

n

∂SSIM(ut,g)

∂ut︸ ︷︷ ︸
Equation (4.24)

1. (4.25)

Partial Derivative of ut w.r.t. the Parameters Θt =
{
kti, φ

t
i

}
. In this section, we

will illustrate the calculation of the partial derivative of ut w.r.t. the kernel kti and w.r.t.

the influence function φti.

The kernel kti is the combination of DCT basises with zero-mean. Let the size of kti be

z× z and the number of DCT basises be λ = z2 − 1. The kernel kti is formulated as

kti =
λ∑

j=1

αitj bj or Kt
i =

λ∑

j=1

αitj Bj (4.26)

where bj and Bj denote the DCT basises (e.g., Bjg = bj ∗ g) and i = 1, · · · , nk is the

number of kernels we used. Note at each stage t, we have nk different kernels. Refer to

Equation (4.3). Now it is clear the object is to learn the coefficients of αitj , j = 1, · · · , λ
for the ith kernel at stage t. Let αit =

[
αit1 · · · αitλ

]>
be a column vector.

By Equation (4.3), we obtain

∂ut
∂αit

= −
∂
{

m ·Kt
i
>
φti(K

t
iut−1)

}

∂αit

= −
∂
{
Kt
i
>
φti(K

t
iut−1)

}

∂αit
diag(m).

(4.27)

4.1. Single View Image Processing 95

q0 q1 q2 q3 q4 q5 q6

p2
p1
p3
p0

p4

p5

p6

Figure 4.2: A demonstration of the piecewise linear function ξti .

By substituting Equation (4.26) into Equation (4.27), we have

∂
{
Kt
i
>
φti(K

t
iut−1)

}

∂αit
=



φti(K

t
iut−1)>B1

...

φti(K
t
iut−1)>Bλ




︸ ︷︷ ︸
Rλ×n

+




u>t−1B
>
1

...

u>t−1B
>
λ




︸ ︷︷ ︸
Rλ×n

∂φti(K
t
iut−1)

∂(Kt
iut−1)︸ ︷︷ ︸

Rn×n

Kt
i︸︷︷︸

Rn×n

.
(4.28)

Note
∂φti(K

t
iut−1)

∂(Kt
iut−1)

is a diagonal matrix because the output value of the influence function

φti at the jth position only relates with the input value at the jth position as shown in

Equation (4.5). By substituting Equation (4.28) in to Equation (4.27), we can calculate
∂ut
∂αit

.

Because we freely adjust the influence function φti and the kernel Kt
i simultaneously,

we add a constrain to the coefficients of αitj , j = 1, · · · , λ,

‖αit‖2 = 1. (4.29)

For this reason we introduce parameters

αit =
cit

‖cit‖2
, (4.30)

where cit ∈ Rλ. It is easy to get

dαit

dcit
=

1

‖cit‖2

(
I− c

itcit
>

‖cit‖22

)
, (4.31)

where I ∈ Rλ×λ is the identity matrix. Therefore, the partial derivative of ut w.r.t. the

96 Chapter 4. Machine Learning Applications in Computer Vision

kernel is

∂ut
∂cit

=−
{

1

‖cit‖2
(I− c

itcit
>

‖cit‖22
)

}







φti(K

t
iut−1)>B1

...

φti(K
t
iut−1)>Bλ


+




u>t−1B
>
1

...

u>t−1B
>
λ


 ∂φ

t
i(K

t
iut−1)

∂(Kt
iut−1)

Kt
i





diag(m)

(4.32)

In the following, we calculate the partial derivative of ut w.r.t. the influence function

φti. First we will illustrate how the influence function is formulated and next we will

calculate the partial derivative. Suppose v = Kt
iut−1 ∈ Rn, φti(v) is formulated as

φti(v)j = ξti(vj), j ∈ {1, · · · , n} . (4.33)

To represent ξti , we use the technique of slice transform [79]. In this way ξti : R→ R is

a continuous piecewise linear function, e.g., as shown in Figure 4.2. Let the domain of ξti
be [a, b). The interval is divided into Υ bins, (e.g., Υ = 6 in Figure 4.2), which generates

a vector q = [q0, · · · , qΥ]> and a = q0, b = qΥ. The function ξti is parameterised by the

vector pt
i = [p0, · · · , pΥ]>. Thus the partial derivative of ut w.r.t. the influence function

φti is denoted as

∂ut
∂φti(K

t
iut−1)

=
∂ut
∂pti

= −∂φ
t
i(K

t
iut−1)

∂pti
Kt
idiag(m)

= −∂φ
t
i(v)

∂pti
Kt
idiag(m).

(4.34)

Now we illustrate how to calculate
∂φti(v)

∂pti
.

As in [79], we define the following functions,

π(x) = b if x ∈ [qb−1, qb) (4.35)

and

r(x) =
x− qπ(x)−1

qπ(x) − qπ(x)−1
(4.36)

where x ∈ R. Thus the scaler x can be written as a linear combination of qπ(x) and qπ(x)−1

x = r(x)qπ(x) + (1− r(x))qπ(x)−1. (4.37)

Reference:

Hel-Or, Yacov and Shaked, Doron (2008)
A discriminative approach for wavelet denoising

Reference:

Hel-Or, Yacov and Shaked, Doron (2008)
A discriminative approach for wavelet denoising

4.1. Single View Image Processing 97

Equation (4.37) can be formulated as

x = Cq(x)q (4.38)

where Cq(x) ∈ RΥ+1 is a row vector

Cq(x) = [0, · · · , 0, 1− r(x), r(x)︸︷︷︸
at the π(x)th entry

, 0, · · · , 0]. (4.39)

Therefore, we have

ξti(x) = Cq(x)p (4.40)

and it is easy to get
∂ξti(x)

∂p
= Cq(x)>. (4.41)

Now we return to our context and finally get

∂φti(v)

∂pti
=
[
∂φti(v)

1

∂pti
· · · ∂φti(v)

n

∂pti

]

=
[
∂ξti (v1)

∂pti
· · · ∂ξti (vn)

∂pti

]

=
[
Cq(v1)> · · · Cq(vn)>

]
. (4.42)

By plugging (4.42) into (4.34), we get the final result

∂ut
∂φti(K

t
iut−1)

= −
[
Cq(v1)> · · · Cq(vn)>

]
Kt
idiag(m). (4.43)

Note that to command the smoothness of p and to avoid overfitting, there are many

techniques in the field of computer vision and machine learning, e.g., using regularizer,

dropping out, enlarging the training database and so on.

Derivation of Joint Training. In the joint training, we use the parameters Θt ={
kti, φ

t
i

}
, t = 1, · · · , T trained from the greedy training as initialization and we optimise

the parameters of all stages simultaneously. The energy functional for the joint training

can be formulated as

L(Θ1, . . . ,ΘT) =

K∑

j=1

`(ujT ,g
j). (4.44)

By the chain rule, we get the gradient for the jth training sample as

∂`(ujT ,g
j)

∂Θt
=
∂ujt
∂Θt

∂ujt+1

∂ujt
· · · ∂`(u

j
T ,g

j)

∂ujT
for 1 6 t 6 T . (4.45)

98 Chapter 4. Machine Learning Applications in Computer Vision

In Equation (4.45),
∂`(ujT ,g

j)

∂ujT
can be calculated from Equation (4.25) and

∂ujt
∂Θt

can be

calculated from Equation (4.32). In this section, we mainly illustrate the calculation of
∂ujt+1

∂ujt
. By applying the chain rule to Equation (4.3), we obtain

∂ujt

∂ujt−1

= I− (

Nk∑

i=1

Kt
i
>∂φ(Kt

iut−1)

∂(Kt
iut−1)

Kt
i)diag(m), (4.46)

where I ∈ RN×N is an identity matrix. It is straightforward to obtain
∂ujt+1

∂ujt
from

∂ujt
∂ujt−1

.

To optimize the involved parameters in Equation (4.3) we use L-BFGS2 [105], which

minimizes the energy by iteratively approximating the inverse Hessian matrix.

4.1.1.3 Experiments

In this section, we demonstrate the results of generic models which are trained on an

entire dataset and specific models which are learned for inpainting a certain image. When

trying to evaluate inpainting algorithms one recognizes that there exists no well-defined

ground truth. This is apparent when considering inpainting problems involving large

image regions, where multiple natural-looking solutions might exist. However, in order to

provide a quantitative evaluation for inpainting methods authors mainly use predefined

ground truth images and compare their methods based on the PSNR or similar measures.

Within this thesis we follow this type of evaluation, and we will present a comprehensive

comparison to state-of-the-art inpainting methods based on the TUM-image inpainting

database [155, url] using the following three measures: PSNR, SSIM [158], and Gradient

Similarity Image Measure (GSIM) [103]. On the website of [url], the authors suggested

four state-of-the-art inpainting algorithms for comparison [25, 67, 81, 170]. Algorithms

[25, 81, 170] cannot be used for compression type inpainting tasks. Therefore, we will

compare in this case to Laplacian, and TV inpainting [67], to the learned MRF prior

proposed by Chen et al. [42], to the learned pairwise MRF model, and to the FoE model

with Gaussian scale mixtures as experts, both proposed by Schmidt et al. [145]. For the

remaining experiments we will compare to all aforementioned algorithms if a ground truth

is available.

For all experiments we first conduct a greedy training, where L-BFGS runs for 200

iterations in each stage. Afterwards we jointly train the parameters of all stages. The

filters kti are initialized with the Discrete Cosine Transform (DCT) bases, and the influence

functions are initialized as φti(x) = 0.01x. The joint training is then initialized with the

result of the greedy training. We mainly investigate two types of initialization of the

inpainting regions. The first one is random initialization which randomly generates gray

values in the unknown inpainting regions. The second one is initialization with linear

2Used solver: http://www.cs.toronto.edu/~liam/software.shtml

Reference:

Liu, Dong C and Nocedal, Jorge (1989)
On the limited memory BFGS method for large scale optimization

Reference:

 ()

Reference:

Wang, Zhou and Bovik, Alan C and Sheikh, Hamid R and Simoncelli, Eero P (2004)
Image quality assessment: from error visibility to structural similarity

Reference:

Liu, Anmin and Lin, Weisi and Narwaria, Manish (2012)
Image quality assessment based on gradient similarity

Reference:

 ()
The TUM-Image Inpainting Database

Reference:

 ()

Reference:

 ()

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

http://www.cs.toronto.edu/~liam/software.shtml

4.1. Single View Image Processing 99

Laplacian TV [67] Chen [42] Schmidt
MRF [145]

Schmidt
FoE [145]

TD

80
%

PSNR 21.5998 20.8886 22.5123 21.4210 21.8630 22.6301
SSIM 0.7864 0.7376 0.8185 0.7781 0.8028 0.8267
GSIM 0.7417 0.7041 0.7947 0.7451 0.7844 0.8048

90
%

PSNR 20.0751 19.0507 20.4899 19.7449 20.1043 20.6663
SSIM 0.6689 0.5710 0.7094 0.6519 0.6905 0.7287
GSIM 0.6636 0.6029 0.7119 0.6562 0.7106 0.7409

Table 4.1: Quantitative inpainting results for 80% and 90% random missing pixels.

Laplacian TV [67] Chen [42] Schmidt
MRF [145]

Schmidt
FoE [145]

Bugeau [25] Herling [81] Xu [170] TD

PSNR 35.1529 34.2324 35.5031 34.7119 35.1434 33.5746 33.1427 35.3308 35.9084
SSIM 0.9902 0.9884 0.9907 0.9897 0.9905 0.9880 0.9864 0.9900 0.9915
GSIM 0.9910 0.9898 0.9910 0.9909 0.9920 0.9917 0.9915 0.9919 0.9925

Table 4.2: Quantitative results for inpainting a small connected image region.

diffusion which conducts linear diffusion on the inpainting regions. We formulate the

problem of linear diffusion as a system of linear equations and solve it by calculating the

inverse of a matrix. We use the random initialization for inpainting of 80% and 90%

random missing pixels because of its efficiency and good performance. For inpainting

small connected regions, we use the initialization with linear diffusion because it provides

better inpainted results. Thus for specific inpainting demonstrated in the supplementary

material, we first conduct linear diffusion to generate the input images of the trained

diffusion models. In the following we will use the short notation TD to denote the obtained

trained diffusion model.

Inpainting of 80% and 90% random missing pixels. For this experiment we train

two generic diffusion models, where we use 30 stages with 48 filters. In the case of

80% missing pixels we use a kernel size of 7 × 7. Inpainting of 90% random missing

pixels is a more challenging problem, thus we allow the model to explore more available

information by increasing the kernel size to 11 × 11. The parameters of the trained

diffusion models are optimized in the joint training using 100 iterations of L-BFGS. We

evaluate the results based on the TUM-image inpainting database [url]. Table 4.1 provides

quantitative results in terms of the mean PSNR, SSIM, and GSIM. We observe that the

proposed diffusion model achieves excellent results and is able to outperform the competing

methods. Figure 4.3 provides corresponding qualitative results, where we also observe

clearly visible qualitative improvements.

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Bugeau, Aurélie and Bertalmío, Marcelo and Caselles, Vicent and Sapiro, Guillermo (2010)
A comprehensive framework for image inpainting

Reference:

Herling, Jan and Broll, Wolfgang (2012)
Pixmix: A real-time approach to high-quality diminished reality

Reference:

Xu, Zongben and Sun, Jian (2010)
Image inpainting by patch propagation using patch sparsity

Reference:

 ()
The TUM-Image Inpainting Database

100 Chapter 4. Machine Learning Applications in Computer Vision

clean image mask 80% Chen [42] TD

clean Laplacian TV [67] Chen [42] Schmidt
MRF [145]

Schmidt
FoE [145]

TD

clean image mask 90% Chen [42] TD

clean Laplacian TV [67] Chen [42] Schmidt

MRF [145]
Schmidt
FoE [145]

TD

Figure 4.3: Qualitative inpainting result for 80% and 90% random missing pixels. The closeup
views clearly show the advantage of the proposed trained diffusion (TD) model.

Inpainting of small regions. In this experiment, we train a 30-stage generic diffusion

model with 24 filters of size 5 × 5. For the training, we randomly generate several small

regions, where each region occupies about 300 connected pixels. Quantitative result for

this experiment are provided in Table 4.2, where the proposed model achieves superior

results compared to state-of-the-art methods. The table shows the mean PSNR, SSIM,

and GSIM values for inpainting the images of the TUM-image inpainting database [url],

where the inpainting region is defined by the mask shown in Figure 4.4. Closeup views are

also presented in Figure 4.4, where we observe that the proposed method better preserves

the image edges than the other PDE based image inpainting methods. The methods by

Bugeau et al. [25] and Herling and Broll [81] introduce visual artifacts, e.g. at the tire of

the bike (bottom left in the closeup views). The result of the method by Xu and Sun [170]

has less visual artifacts, but it also introduces some noise. The proposed TD model on

the other hand provides a convincing result with less artifacts.

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

 ()
The TUM-Image Inpainting Database

Reference:

Bugeau, Aurélie and Bertalmío, Marcelo and Caselles, Vicent and Sapiro, Guillermo (2010)
A comprehensive framework for image inpainting

Reference:

Herling, Jan and Broll, Wolfgang (2012)
Pixmix: A real-time approach to high-quality diminished reality

Reference:

Xu, Zongben and Sun, Jian (2010)
Image inpainting by patch propagation using patch sparsity

4.1. Single View Image Processing 101

clean image testing mask from [url] Chen [42] TD

clean image Laplacian TV [67] Chen [42] Schmidt MRF [145]

Schmidt FoE [145] Bugeau [25] Herling [81] Xu [170] TD

Figure 4.4: Qualitative results for inpainting a small connected image region.

Inpainting of a specific texture. Now we present experiments for texture inpainting,

where we learn the specific texture within a single given image I. The task is to inpaint

a predefined image region within the same image (e.g. the blue regions indicated in

Figure 4.5). In order to train a specific diffusion model we generate K = 5 training

images f j , where pixels within in a mask m (Figure 4.5 indicates the training mask in

green) are generated by linear diffusion. Thus we obtain the training set {f j ,gj ,mj}Kj=1

(cf. Section 4.1.1.2), where gj = I and mj = m for 1 6 j 6 K. Based on this training

set we learn a diffusion model. We first conduct a greedy training optimized by L-BFGS

[105] running for 200 iterations in each stage. Next we jointly train the parameters of

all stages. Because of the smoothness assumption and the local property of PDE based

image inpainting methods, those type of methods are in general not well suited for the

task of texture inpainting. Exemplar based image inpainting methods on the other hand

are non-local and have achieved good performance for texture inpainting [25, 81, 170].

Anyhow, our experiments show that the proposed TD model is also able to perform

texture inpainting even with small training datasets. The TD inpainting results and

the exemplar based results are like two of a kind. We assume the reason is that there

are many similarities between the training inpaiting domain and the testing inpainting

domain.

Reference:

 ()
The TUM-Image Inpainting Database

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Bugeau, Aurélie and Bertalmío, Marcelo and Caselles, Vicent and Sapiro, Guillermo (2010)
A comprehensive framework for image inpainting

Reference:

Herling, Jan and Broll, Wolfgang (2012)
Pixmix: A real-time approach to high-quality diminished reality

Reference:

Xu, Zongben and Sun, Jian (2010)
Image inpainting by patch propagation using patch sparsity

Reference:

Liu, Dong C and Nocedal, Jorge (1989)
On the limited memory BFGS method for large scale optimization

Reference:

 ()

102 Chapter 4. Machine Learning Applications in Computer Vision

original image mask TD

clean image Laplacian TV [67] Chen [42]

Schmidt MRF [145] Schmidt FoE [145] exemplar based TD

Figure 4.5: Qualitative results for texture inpainting. The image shows a closeup view of a leaf,
where the inpainting regions are highlighted in blue in the mask at the top. The closeup views
clearly show that the trained diffusion (TD) model is able to produce a natural-looking result, that
is close to the result obtained with an exemplar based method. Other PDE based methods fail on
this inpainting task.

Now, we continue to show the results of specific inpainting and associated

experimental settings. Figure 4.5 provides some qualitative inpainting results. The size

of the leaf-texture image is 500 × 625, see Figure 4.5. We generate many inpainting

regions and the size of each inpainting region is about 800 pixels. In this experiment,

we train a 15 stages model with 24 kernels with size of 19 × 19. In the joint training,

the parameters of the model are optimized using 100 iterations of L-BFGS. In the

tiger experiment illustrated in Figure 4.6, the test inpainting domain is the fence in

the foreground of a 854 × 761 image. And the training inpaining regions are randomly

generated regions and each inpainting region occupies around 1000 pixels. We train a

15 stages model with 24 kernels of size 19 × 19. In the joint training, the models is also

optimized using 100 iterations of L-BFGS. From Figure 4.6, we can observe the result of

our method is quite promising. The last experiment conducts on the wood image. As

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

4.2. Light Field Image Processing 103

original image mask TD

clean image Laplacian TV [67] Chen [42]

Schmidt MRF [145] Schmidt FoE [145] exemplar based TD

Figure 4.6: Qualitative results for texture inpainting. The image shows a tiger behind a fence,
where the inpainting region is the fence in the foreground highlighted in blue in the mask at the
top. The closeup views clearly show that the trained diffusion (TD) model is able to produce a
natural-looking result, that is close to the result obtained with an exemplar based method.

shown in Figure 4.7, the size of image of wood is 640 × 480. Each inpainting region we

generated occupies about 200 pixels. The trained model is 10 stage and have 24 kernels

of size 13 × 13. The number of iteration of L-BFGS running is 100. Figure 4.7 shows

that our method provides a piece of united wood after inpainting.

4.2 Light Field Image Processing

A Light Field (LF) [69, 101] is a 4D function that provides in addition to the spatial

information, that corresponds to the information of a traditional 2D image, also

directional information. The additional directional information includes information

about the geometry of the observed scene, and thus gave rise to interesting applications,

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

 ()

104 Chapter 4. Machine Learning Applications in Computer Vision

original image mask TD

clean image Laplacian TV [67] Chen [42]

Schmidt MRF [145] Schmidt FoE [145] exemplar based TD

Figure 4.7: Qualitative results for texture inpainting. The image shows wood planks, where
we inpaint the space between neighboring planks highlighted in blue in the mask at the top.
The closeup views clearly show that the trained diffusion (TD) model is able to produce a
natural-looking result, that is close to the result obtained with an exemplar based method.

like for instance digital re-focusing [85, 121], digital viewpoint manipulation [121], or

depth estimation [68, 76, 78, 88, 152, 159]. All of these tasks are basically impossible

to realize given a single traditional 2D image, that only provides the spatial intensity

information.

A LF is commonly described using the so-called two-plane parametrization. This type

of parametrization defines a ray by the intersection points of two parallel planes. Those

planes are referred to as image plane Ω ⊆ R2 and lens plane Π ⊆ R2. Thus in mathematical

Reference:

Getreuer, Pascal (2012)
Total Variation Inpainting using Split Bregman

Reference:

Chen, Yunjin and Ranftl, René and Pock, Thomas (2014)
Insights into analysis operator learning: From patch-based sparse models to higher order MRFs

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

Schmidt, Uwe and Gao, Qi and Roth, Stefan (2010)
A generative perspective on MRFs in low-level vision

Reference:

 ()

Reference:

Ng, Ren (2006)
Digital Light Field Photography

Reference:

 ()

4.2. Light Field Image Processing 105

x

y

x

ξ

η

y

(a) LF

x

y

x

ξ

η

y

(b) ground truth

x

y

x

ξ

η

y

(c) proposed

Figure 4.8: Illustration of Light Field data. Figure 4.8a shows a sub-aperture image with vertical
and horizontal EPIs. The EPIs correspond to the positions indicated with dashed lines in the
sub-aperture image. Figure 4.8b shows the corresponding color-coded ground truth disparity field.
Figure 4.8c shows the result of the proposed model.

terms the LF is given as

L : Ω×Π→ R, (p,q) 7→ L(p,q) , (4.47)

where p = (x, y)> ∈ Ω and q = (ξ, η)> ∈ Π represent the spatial and directional

coordinates.

There are different ways of visualizing the 4D LF. In this thesis we use the so-called

Epipolar Plane Image (EPI) representation. In terms of Equation (4.49) an EPI is

obtained by holding one spatial and one directional coordinate constant. For instance by

choosing a certain y and a certain η we restrict the 4D LF to the 2D function

Σy,η : R2 → R, (x, ξ) 7→ L(x, y, ξ, η) , (4.48)

that defines a horizontal EPI. In a similar way one can also define vertical EPIs. The EPI

representation can be considered as a 2D slice through the 4D LF, and it illustrates the

linear characteristic of the LF space. See Figure 4.8a for an illustration.

4.2.1 U-shaped Networks for Shape from Light Field

This section presents a novel technique for Shape from Light Field (SfLF), that utilizes

deep learning strategies. Our model is based on a fully convolutional network, that involves

two symmetric parts, an encoding and a decoding part, leading to a u-shaped network

architecture. By leveraging a recently proposed LF dataset, we are able to effectively

train our model using supervised training. To process an entire LF we split the LF

data into the corresponding EPI representation and predict each EPI separately. This

strategy provides good reconstruction results combined with a fast prediction time. In

the experimental section we compare our method to the state of the art. The method

performs well in terms of depth accuracy, and is able to outperform competing methods

106 Chapter 4. Machine Learning Applications in Computer Vision

in terms of prediction time by a large margin.

4.2.1.1 Related Work

One of the most important research topics in LF image processing is the development

of efficient and reliable shape extraction methods. Those methods are the foundation of

various applications, like for instance digital refocusing [85, 121], image segmentation [162],

or super-resolution [19, 160], to name but a few. The main focus of research regarding

SfLF lies on developing methods to accurately reconstruct the observed scene at depth

discontinuities or occlusion boundaries. For this purpose various approaches have been

proposed, including specialized multi-view stereo techniques [38, 78] and methods based

on an EPI analysis [68, 159]. Wanner and Goldluecke [68, 159] used for example the

2D structure tensor to measure the direction of each position in the vertical and horizontal

EPIs. The results are then fused using variational methods by incorporating additional

global visibility constraints. In [78] Heber et al. proposed a variational multi-view stereo

method based on a technique called Active Wavefront Sampling (AWS). Tao et al. [152]

proposed a fusion method that uses correspondence and defocus cues. Chen et al. [38]

introduced a bilateral consistency metric on the surface camera to indicate the probability

of occlusions, which was further used for LF stereo matching. Heber and Pock [76]

proposed a variational method, that shears the LF by applying a low-rank assumption,

where the depth information is provided by the amount of shearing. Jeon et al. [88]

proposed an algorithm for SfLF, that utilizes phase shift based subpixel displacements. In

[77] Heber and Pock presented a method for SfLF that applies a conventional Convolutional

Neural Network (CNN) in a sliding window fashion. Up to this point deep learning

techniques were barely used in LF image processing. Utilizing trained models for SfLF is

an interesting idea to address certain limitations of previous methods. On the one hand a

trained model has the ability to learn how to handle occlusion and aliasing artifacts, and

on the other hand a CNN also allows faster computation times.

The entire field of deep learning flourishes with innovations, one after another.

However, the exploration of 4D LF data by CNNs is still limited. In this section we

seize ideas presented in [77]. Furthermore this work also builds upon fully convolutional

networks [108] and up-convolution-based approaches [52, 108, 178], i.e. the proposed

network architecture consists of a contracting and an expanding path, that involve only

convolutional layers. The former path compresses the information and simultaneously

captures context, and the latter path extracts the information and upsamples it to the

original size. The expanding path is more or less symmetric to the contracting path,

yielding a u-shaped architecture, that can be trained in an end-to-end scheme.

4.2.1.2 Methodology

In this section we describe the methodology of the proposed approach. The success of

the proposed CNN depends on leveraging a set of recent improvements, that include

Reference:

 ()

Reference:

S. Wanner and C. Straehle and B. Goldluecke (2013)
Globally Consistent Multi-Label Assignment on the Ray Space of 4D Light Fields

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

 ()

Reference:

Stefan Heber and Rene Ranftl and Thomas Pock (2013)
Variational Shape from Light Field

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Chen, Can and Lin, Haiting and Yu, Zhan and Bing Kang, Sing and Yu, Jingyi (2014)
Light Field Stereo Matching Using Bilateral Statistics of Surface Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

J. Long and E. Shelhamer and T. Darrell (2015)
Fully convolutional networks for semantic segmentation

Reference:

 ()

4.2. Light Field Image Processing 107

64
0

1
1

3

64
0

1
1

16

64
0

1
1

16

32
0

1
1

32

32
0

1
1

32

16
0

1
1

64

16
0

1
1

64

80

1
1

64

80

1
1

64

16
0

1
1

64 64

16
0

1
1

64

32
0

1
1

32 32

32
0

1
1

32

64
0

1
1

16 16

64
0

1
1

16

64
0

1
1

Figure 4.9: Illustration of the proposed u-shaped network architecture. The encoding and
decoding parts of the network are highlighted in purple and green, respectively. The pinhole
connections are marked in blue.

up-convolutions [108], no explicit pooling [148], and the Adam optimization method [92].

The section starts with a short introduction to CNNs, followed by the description of the

used u-shaped network architecture. At the end of the section we provide details regarding

the network training and the leveraged dataset.

Network Architecture. In contrast to methods that use natural images we are not

able to exploit existing trained networks, i.e. we opt for designing our network entirely

from scratch. However, not relying on pre-trained networks also allows to better adapt the

network structure to the problem at hand. The proposed network is a fully convolutional

network consisting of a contracting part and an expanding part. The first part acts

as an encoder, that spatially compresses the image and thus reduces the input data to

an essential feature representation. The bottom part processes the essential features,

before the expanding part of the network decodes the simple feature representation to an

output disparity image. The encoding and decoding parts of the network are basically

symmetric leading to an u-shaped network architecture. An overview of the network

structure is depicted in Figure 4.9, where the encoding and decoding parts of the network

are highlighted in purple and green, respectively.

The u-shaped network uses down and up-convolutional layers for the encoding and

decoding part, respectively. A down-convolution layer is obtained by increasing the stride

of the convolution, i.e. it only computes a subset of all positions. This decreases the spatial

resolution of the following layer, and simultaneously increases the spatial support of all

subsequent layers. To increase the image resolution again we use so-called up-convolutional

layers. Those layers use fractional strides to increase the resolution. Note that in the

proposed u-shaped network we use the down and up-convolutional layers to decrease and

increase only the spatial direction of the given EPI.

The basic building block of the overall network is a convolutional layer followed by

a Rectified Linear Unit (ReLU) non-linearity [118], σ(x) = max(0,x). We combine two

Reference:

J. Long and E. Shelhamer and T. Darrell (2015)
Fully convolutional networks for semantic segmentation

Reference:

"J.T. Springenberg and A. Dosovitskiy and T. Brox and M. Riedmiller" ("2015")
"Striving for Simplicity: The All Convolutional Net"

Reference:

Diederik P. Kingma and Jimmy Ba (2014)
Adam: A Method for Stochastic Optimization

Reference:

 ()

108 Chapter 4. Machine Learning Applications in Computer Vision

original horizontal flip vertical flip horizontal and vertical flip

Figure 4.10: Illustration of the used data augmentation. The figure shows the original sample to
the top left. The different columns represent horizontally and vertically flipped samples, and the
different rows illustrate random brightness and color changes.

convolutional layers to one level. For the convolutional layers within one level, we use

padding to compensate for the kernel size. This ensures that the output of one level has the

same size as the input. In the first part of the network we use three of those levels, where we

use down-convolutional layers after each level to increase the spatial support of subsequent

layers. At each downsampling step we double the number of feature channels, except for

the last level. The bottom part of the network consists of another level, that processes the

compressed data. The decoding part of the network uses again three levels, but now we

utilize up-convolutional layers before each level. Hence we up-convolve the whole coarse

feature maps allowing to transfer high-level information to the fine prediction, and finally

increase the image resolution back to the original size. All the involved convolutions use

kernels of size 3 × 5, except for the down and up-convolutional layers that use 3 × 3

kernels. We also use so-called pinhole connections between the encoding and decoding

part of the network, i.e. we concatenate the input of each level in the decoding part with

the corresponding output feature map from the encoding path. We want to emphasis

that the network structure involves only convolutional layers, i.e. we are not using any

fully connected layers nor any pooling operations. A main advantage of avoiding fully

connected layers is the ability to process EPIs of arbitrary resolutions.

Dataset. In order to train the proposed u-shape network a large amount of labeled

training data is needed. Fortunately, we were allowed to use the synthetic dataset proposed

in [77]. This dataset was generated using POV-Ray [POV-Ray] and comes with highly

accurate ground truth depth fields. Moreover the dataset also provides a random scene

generator that allows to generate the desired amount of LFs. We render 200 LFs with a

spatial resolution of 640 × 480 and a directional resolution of 11 × 11, out of which 150

are used to generate training data and 50 are used for testing.

Data Augmentation. Data augmentation [56, 97] is a common way to combat

overfitting and to improve the generalization of the trained model. It basically allows

the model to become invariant to certain predefined image deformations. We perform

excessive data augmentation, including brightness changes, color changes, and additive

Gaussian noise. We also flip the EPIs horizontally and vertically, where each flipping

results in a sign change of the disparity map. Our augmentation procedure results

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

 ()
POV-Ray

Reference:

 ()

4.2. Light Field Image Processing 109

in 8 times the original amount of image pairs. Although they are heavily correlated

they allow to increase the robustness of the trained model. Figure 4.10 provides some

augmentation examples.

Network Training. While Neural Networks (NNs) learned with back-propagation have

been around for several decades [144], only recently the computational power and data

has been available to fully exploit this training technique [97]. In order to train the

proposed u-shaped network we use the tensorflow framework [2], where we use Adam [92]

as the optimization method to minimize the `1 loss. Out of the 150 rendered LFs used for

training we extract 20e3 EPIs. The extracted samples are then increased eightfold using

data augmentation. To monitor overfitting we use a test set of 10e3 samples. In deep

networks with many convolutional layers a good initialization of the weights is extremely

important. Ideally the weights in the network should be initialized such that each feature

map has approximately unit variance. This can be achieved by drawing the initial weights

of a given node from a Gaussian distribution with standard deviation
√

2/n , where n

denotes the number of incoming nodes [75]. After initializing the weights as suggested in

[75] we train our model for 400 epochs, where we use a mini-batch size of 28 samples.

4.2.1.3 Experiments

We have performed an extensive analysis of our proposed model. We conducted synthetic

and real world experiments. For the synthetic evaluation we used a recently presented LF

dataset [77], where all LF scenes within the dataset have a directional resolution of 11×11,

and a spatial resolution of 640×480. For the real world evaluation we used a LF captured

with a Lytro camera as well as LFs from the Stanford Light Field Archive (SLFA). The

used Lytro data provides a spatial resolution of 328× 328 and a directional resolution of

7 × 7. LFs within the SLFA are captured using a multi-camera array [167] and contain

289 views on a 17× 17 grid. We trained a u-shaped network based on the description in

Section 4.2.1.2, where we use the same model for all the presented experiments. To obtain

the final result we predict the horizontal and vertical EPIs and take the pointwise average

of the two predictions.

We compare our model against the following state-of-the-art SfLF methods

[76, 77, 88, 152, 159]. The method by Wanner and Goldluecke [159] analyzes the

EPIs using the 2D structure tensor, before combining the obtained information

using a variational framework. Tao et al. [152] proposed a fusion method that uses

correspondence and defocus cues. Both local cues are combined to a global depth

estimate by using a MRF model. Heber and Pock [76] proposed a variational multi-view

stereo model based on low rank minimization. This model includes a matching term

based on Robust Principal Component Analysis (RPCA), that can be interpreted as an

all vs. all matching term. Jeon et al. [88] proposed an algorithm for SfLF, that utilizes

phase shift based subpixel displacements. Besides the use of the phase shift theorem the

Reference:

Rumelhart, David E. and Hinton, Geoffrey E. and Williams, Ronald J. (1988)
Neurocomputing: Foundations of Research

Reference:

Alex Krizhevsky and Sutskever, Ilya and Geoffrey E. Hinton (2012)
ImageNet Classification with Deep Convolutional Neural Networks

Reference:

Martín Abadi and Ashish Agarwal and Paul Barham and Eugene Brevdo and Zhifeng Chen and Craig Citro and Greg S. Corrado and Andy Davis and Jeffrey Dean and Matthieu Devin and Sanjay Ghemawat and Ian Goodfellow and Andrew Harp and Geoffrey Irving and Michael Isard and Yangqing Jia and Rafal Jozefowicz and Lukasz Kaiser and Manjunath Kudlur and Josh Levenberg and Dan Mané and Rajat Monga and Sherry Moore and Derek Murray and Chris Olah and Mike Schuster and Jonathon Shlens and Benoit Steiner and Ilya Sutskever and Kunal Talwar and Paul Tucker and Vincent Vanhoucke and Vijay Vasudevan and Fernanda Viégas and Oriol Vinyals and Pete Warden and Martin Wattenberg and Martin Wicke and Yuan Yu and Xiaoqiang Zheng (2015)
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems

Reference:

Diederik P. Kingma and Jimmy Ba (2014)
Adam: A Method for Stochastic Optimization

Reference:

Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun (2015)
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Reference:

Kaiming He and Xiangyu Zhang and Shaoqing Ren and Jian Sun (2015)
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

Wilburn, Bennett and Joshi, Neel and Vaish, Vaibhav and Talvala, Eino-Ville and Antunez, Emilio and Barth, Adam and Adams, Andrew and Horowitz, Mark and Levoy, Marc (2005)
High Performance Imaging Using Large Camera Arrays

Reference:

 ()

Reference:

S. Wanner and B. Goldluecke (2012)
Globally Consistent Depth Labeling of 4D Lightfields

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

110 Chapter 4. Machine Learning Applications in Computer Vision

Wanner [159] Tao [152] Heber [76] Jeon [88]
Heber [77]

(CNN)
proposed

RMSE 3.91 2.33 2.50 2.49 1.87 0.80
MAE 2.94 1.06 0.79 0.75 1.13 0.35
0.5% 22.00 16.32 8.47 9.64 17.96 7.34
0.2% 35.22 28.48 13.20 16.46 31.61 14.76
Time 3min 18s 23min 4s 4min 44s 2h 12min 30s 35s 2s
GPU 3 7 3 7 3 3

Table 4.3: Quantitative results for various Shape from Light Field methods averaged over
50 synthetic Light Fields. The table provides the Root Mean Squared Error, Mean Absolute
Error, the percentage of pixels with a relative disparity error larger than 0.2% and 0.5%, and the
computational time of the method.

algorithm is quite straightforward. They first calculate various cost volumes, that are

processed using edge-preserving filtering, before extracting a disparity map based on

the winner-takes-all strategy. To correct the obtained disparity map in weak textured

regions they proceed with a multi-label optimization using graph cuts. At the end

they refine the discrete disparity map to a continuous one using an iterative refinement

scheme. In [77] Heber and Pock presented the first attempt to predict depth information

for given LF data by utilizing deep learning strategies. Their network was trained in

a sliding window setup to predict for each imaged scene point the orientation of the

corresponding 2D hyperplane in the domain of the LF. This corresponds to estimating

the line orientations in the horizontal and vertical EPIs simultaneously. They also use a

4D regularization step to overcome prediction errors in textureless or uniform regions,

where they use a confidence measure to gauge the reliability of the estimate. This

additional regularization step is not used in the following comparison, because such a

post processing step can also be applied to the prediction of the proposed model. The

method of Heber and Pock [77] works well but has drawbacks due to the sliding window

scheme. First, the per-patch nature disallows to account for global output properties, and

second, it leads to higher computational costs compared to the proposed approach. In

what follows we will first provide some synthetic evaluations before presenting qualitative

real world results.

Synthetic Evaluation. We start with the synthetic evaluation. Figure 4.11 provides a

comparison of different state-of-the-art methods. Note that for all methods that rely on

precomputed cost volumes [88, 152, 159], the number of labels is set to 200. Moreover we

also set the necessary known disparity range for those methods based on the ground truth

data. We can see that, despite the complexity of the scene, our model is able to predict

accurate disparity results, that are on par with the competing methods. When comparing

the results of the proposed model to the predictions obtained by the conventional CNN

Reference:

S. Wanner and B. Goldluecke (2012)
Globally Consistent Depth Labeling of 4D Lightfields

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

 ()

4.2. Light Field Image Processing 111

LF ground truth Wanner [159] Tao [152]

Heber [76] Jeon [88] Heber [77] (CNN) proposed

Figure 4.11: Comparison to state-of-the-art methods on the synthetic POV-Ray dataset.
The figure shows the center view of the LF, the color-coded ground truth, the results for five
state-of-the-art SfLF methods [76, 77, 88, 152, 159], followed by the result of the proposed method.

used in [77], we see that the proposed model provides better results in textureless regions.

Also note that the proposed model is barely effected by depth discontinuities. Quantitative

results in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE)

are presented in Table 4.3. The table also shows the percentage of pixels with a relative

disparity error larger than 0.2% and 0.5%. Besides the various disparity errors the table

also provides the computation times for estimating a disparity map for one sub-aperture

view of the LF. Moreover we also indication if a GPU implementation was used or not.

The presented results represent the average over the 50 LFs used for testing. We observe

that the proposed model was able to accurately learn the characteristics of this dataset.

Furthermore, we also see that the proposed method is significantly better than all the

competing methods in terms of the computation time. The presented method takes about

15 seconds to compute the disparity field for the entire LF (i.e. 121 views).

Real World Evaluation. We continue with the real world evaluation. Figure 4.12

provides a qualitative comparison to the methods by Tao et al. [152], Heber and Pock

[76], and Jeon et al. [88]. To be able to compute results for the methods by Jeon et al.

[88] and Tao et al. [152] in a reasonable time, it was necessary to reduce the directional

resolution of the data to 11 × 11 and the number of labels to 75. The results show that

although the proposed model was not trained on this dataset, nor have we performed

Reference:

S. Wanner and B. Goldluecke (2012)
Globally Consistent Depth Labeling of 4D Lightfields

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

 ()

Reference:

Heber, Stefan and Pock, Thomas (2016)
Convolutional Networks for Shape From Light Field

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

112 Chapter 4. Machine Learning Applications in Computer Vision

22min 50s 6min 13s 2h 9min 42s 4s

32min 45s 8min 12s 2h 55min 34s 5s

31min 58s 8min 43s 2h 44min 40s 5s

36min 60s 9min 40s 3h 9min 1s 5s

LF Tao [152] Heber [76] Jeon [88] proposed

Figure 4.12: Qualitative comparison for Light Fields from the Stanford Light Field Archive. The
figure shows from left to right the center view of the LF, followed by the results for the methods
proposed by Tao et al. [152], Heber and Pock [76], and Jeon et al. [88]. The results to the right
correspond to the proposed method.

3min 10s 1min 8s 34min 32s 1s

LF Tao [152] Heber [76] Jeon [88] proposed

Figure 4.13: Qualitative comparison for a Light Field captured with a plenoptic camera. The
figure shows from left to right the center view of the Light Field, followed by the results for the
methods proposed by Tao et al. [152], Heber and Pock [76], and Jeon et al. [88]. The result to the
right corresponds to the proposed method.

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

Reference:

Michael W. Tao and Sunil Hadap and Jitendra Malik and Ravi Ramamoorthi (2013)
Depth from Combining Defocus and Correspondence Using light-Field Cameras

Reference:

Stefan Heber and Thomas Pock (2014)
Shape from Light Field meets Robust PCA

Reference:

H. G. Jeon and J. Park and G. Choe and J. Park and Y. Bok and Y. W. Tai and I. S. Kweon (2015)
Accurate depth map estimation from a lenslet light field camera

4.2. Light Field Image Processing 113

Super Resolution

Figure 4.14: Illustration of Light Field Super Resolution. The figure shows to the left a set of
low-resolution images, that are used as input, and to the right the high-resolution output image of
the center view (marked in red).

any fine-tuning for this dataset, it allows to predict depth maps that are on par with the

competing methods. However, the results are not perfect because the model produces

streaking artifacts in homogeneous background regions. The main benefit of the proposed

method is again the computational time of a few seconds. Also keep in mind that we

are not using any post-processing, the results shown in the figure are the raw network

predictions.

In Figure 4.13 we also present results for a LF captured with a Lytro camera. Note,

that the Lytro data includes a significant amount of noise and outliers, for which the

proposed u-shape network was not trained for. Nevertheless, the proposed model is able

to predict a reasonable disparity field with clear depth discontinuities.

4.2.2 Light Field Superresolution

In this section we consider the problem of multi-view super-resolution, where the task

is to reconstruct a high-resolution image based on a set of observed low-resolution input

images taken from the same scene but from different viewpoints. The observed images

are considered to be degraded observations of corresponding high-resolution ones. Thus

the considered super-resolution task is aimed at increasing an image’s apparent resolution,

where existing details in correlated images are used to enhance the image.

The pixel correspondence problem and the super-resolution problem are interrelated

in the sense that the result of one problem can help to solve the other one. Hence there

exist various super-resolution approaches that rely on a pre-computed solution of the

114 Chapter 4. Machine Learning Applications in Computer Vision

correspondence problem. The proposed method avoids a dependency on pre-computed

results by learning directly an end-to-end mapping between given low-resolution images

and the desired high-resolution reconstruction result. For this purpose we adapted

the RDM proposed in [40] and applied it to the target application of multi-view

super-resolution. The main idea of RDMs is to learn a non-linear regularizer via

supervised training.

We consider a special type of multi-view stereo data known as a LF. A LF is a densely

sampled set of images captured from a regular grid of viewpoints located on a common

2D plane. It should be emphasized that the key difference to the general multi-view stereo

setting is the dense and regular sampling of the viewpoints.

Recall that a 4D LF is commonly defined via the so-called two-plane parametrization.

Let Ω ⊆ R2 and Π ⊆ R2 be two parallel planes (Ω 6= Π), then the LF is defined as

L : Ω×Π→ R, (p,q) 7→ L(p,q) , (4.49)

where p = (x, y)> ∈ Ω and q = (ξ, η)> ∈ Π represent spatial and directional coordinates.

Note that Ω corresponds to the traditional image plane and Π is usually referred to as lens

or focal plane. By choosing a certain directional coordinate η we can restrict the 4D LF

to the 3D function

Ση : Ω×Πη → R, (x, y, ξ) 7→ L(x, y, ξ, η) , (4.50)

where Πη = { ξ | (ξ, η) ∈ Π}. Note that Equation (4.50) defines a so-called EPI volume [21],

which is an orthogonal 3D slice through the 4D LF.

There are different devices to capture LFs. The most promising device for this

task is a LF or plenoptic camera [Lytro, Raytrix]. LF cameras came into the spotlight

as interesting computational photography devices, that offer a new user experience for

consumers because of features like digital refocusing capabilities [Lytro], i.e. the ability

to adjust the focus settings after a single exposure. Moreover plenoptic cameras are also

used in industrial applications like automated optical inspections and visual surface

reconstruction [Raytrix]. A LF camera not only records spatial information, like a

conventional camera, but it also records directional information. In order to capture the

additional directional information a plenoptic camera leverages an array of micro-lenses

placed in front of the image sensor. This leads to a trade-off between the spatial and

the directional resolution, i.e. that angular samples being traded for spatial samples

[66, 131]. One way to compensate the resulting loss of spatial resolution is the use

of a higher resolution sensor (behind the micro-lens array), which obviously leads to

higher data rates, a higher computation effort, more storage requirements, and higher

costs. An attractive algorithmic solution to counteract the loss of spatial resolution,

and simultaneously avoid the burden of a massive growth in data size and processing

complexity is provided by various Light Field Super Resolution (LFSR) methods that

Reference:

Y. Chen and T. Pock (2016)
Trainable Nonlinear Reaction Diffusion: A Flexible Framework for Fast and Effective Image Restoration

Reference:

"Bolles ("1987")
"Epipolar-plane image analysis: An approach to determining structure from motion"

Reference:

 ()

Reference:

 ()
Lytro

Reference:

 ()
Raytrix

4.2. Light Field Image Processing 115

exploit the multi-view characteristic of the LF. Note that due to the fact that the

correspondence problem and the super-resolution problem are highly interlinked, the

proposed LFSR method has a high potential to improve various branches in the field of

LF image processing.

4.2.2.1 Related Work

Super-resolution methods can be divided on the one hand into single-view and multi-view

approaches, and on the other hand into learning based and variational approaches.

Although there are super-resolution approaches for temporal image sequences, there is a

paucity of super-resolution approaches that directly examine multi-view images. In this

work we consider the task of LFSR where the related work is further limited. To the best

of our knowledge, there exist only a few relevant publications.

Oberdoerster et al. [124] proposed a super-resolution approach for camera arrays

by a custom design of the image sensor pixels. Heber and Pock [76] proposed a

multi-view method for simultaneous depth estimation and superresolution based on

low-rank techniques. A variational Bayesian framework was proposed in [19, 20] for

restoration of high-resolution images from a LF given a predicted disparity map.

Yoon et al. [175] adopted CNNs for LFSR, where they super-resolve sub-aperture

images with the aid of neighboring sub-aperture images. Mitra and Veeraraghavan [115]

designed a Gaussian mixture model for LF denoising, superresolution etc.. Wanner and

Goldluecke [161] estimated disparity maps based on an EPI analysis and then applied

a variational method to generate high-resolution images in both spatial and angular

directions. Boominathan et al. [22] leveraged a hybrid imaging system, consisting of a

high-resolution traditional camera and a LF camera and used a patch-based method for

the task of LFSR.

Note that none of the above-mentioned methods tackled LFSR by using the entire

information provided in the LF. In this section we present a method that goes into this

direction. Our model is an adapted RDM [40], that is extended to train 3D convolutional

filters. This extension allows us to tackle the problem of multi-view super-resolution. More

specifically our model predicts a high-resolution image from the observed scene based on

a given low-resolution EPI volume.

4.2.2.2 Methodology

This section presents a learning based method for LFSR. We train a novel 3D RDM, which

can also be interpreted as a Recurrent Neural Network (RNN) (cf. Figure 4.17). The

high-level interpretation of LFSR is illustrated in Figure 4.14, where the high-resolution

image (shown on the right) is obtained by exploiting multiple low-resolution images (shown

on the left). The principle of the 3D RDM is to efficiently learn a 3D regularizer based on

supervised training.

116 Chapter 4. Machine Learning Applications in Computer Vision

g

f

L1η L2η L3η L4η L5η L6η L7η

L↑
1η L↑

2η L↑
3η L↑

4η L↑
5η L↑

6η L↑
7η

O1 O2 O3 O4 O5 O6

Σ↑
η

U

Ση

Figure 4.15: Illustration of the dataset generation. The figure shows the raw input on top and
the Bicubic upsampled input data at the bottom. Blue arrows indicate downsampling operations
and green arrows indicate upsampling operations.

Before presenting the proposed model we recall some background on RDMs and

introduce several notations that are used throughout the section. First recall that the

diffusion equation is a partial differential equation which describes the process of density

(e.g.image intensity) changes. Let U : Rn × t → R be a function where Rn is the spatial

domain and t is the time domain, then the diffusion equation is formulated as

∂U
∂t

= div (Γ∇U) , (4.51)

where div is the divergence operator, and Γ ∈ Rn×n is called the diffusion tensor. In the

case of isotropic diffusion, the diffusion tensor can be simplified as Γ = c I where c ∈ R
is called a diffusion coefficient, and I is the identity matrix. For anisotropic diffusion, the

diffusion tensor is given by a dense symmetric matrix. Note that for isotropic diffusion,

the propagation of diffusion in each direction is the same, cf. for instance the heat

equation, whereas anisotropic diffusion propagates differently along different directions,

cf. for example the Perona-Malik equation [165].

Chen and Pock [40] adapted Equation (4.51) to the following diffusion model in the

discrete setting

Ut = Ut−1 −
∑

i∈[nk]

kti
> ∗ φti(kti ∗ Ut−1) , (4.52)

where Ut denotes an image at stage t, nk
2 denotes the number of filters, kti denotes a kernel

2Notation: [nk] := {1, . . . , nk}

4.2. Light Field Image Processing 117

and φti denotes a function representing a diffusion tensor, cf. Γ in Equation (4.51). One

possible solution for 3D LFSR is to directly generalize the image Ut to an EPI volume and

the 2D kernels kti to their 3D counterparts. This would result in a model that outputs an

entire EPI volume. However, our experiments showed that for the problem of LFSR, such

a type of generalization is hard to train and generates undesired results. We assume that

one reason is the complexity of the problem due to an exponential growth of variables.

Moreover, due to the fact that the directional resolution in various LF capturing devices

is usually quite low, boundary problems are somehow unavoidable. No matter which

padding method is utilized, the large amount of errors from the convolution operation at

the boundary results in an intricate problem.

Due to the fact the straight-forward generalization did not lead to satisfying results,

we propose to split the complete training process into smaller sub-problems. Therefore the

proposed method super-resolves only the center of the given low-resolution EPI volume.

Note however that it is straightforward to adapt and train the proposed method to

super-resolve any predefined sub-aperture image.

Let Ση be an EPI volume sampled with a spatial resolution of m×n and a directional

resolution of d. Then the content of Ση can also be represented by listing the according

sub-aperture images {Lξη}ξ∈[d], where Lξη ∈ Rm×n denotes a sub-aperture image of

the LF, i.e. a 2D slice of the LF where ξ and η are held constant. We apply bicubic

spatial-upsampling to Ση ∈ Rm×n×d and we denote the upsampled EPI volume as Σ↑η ∈
Rmk×nk×d, where k ∈ N denotes the upsampling factor. Similar as before we can represent

Σ↑η as a list of upsampled sub-aperture images {L↑ξη}ξ∈[d], that define the input of the

proposed model. Compare Figure 4.15 for an illustration. Due to the fact that our model

aims to predict the center view of the given EPI volume we will use a simplified notation.

For this purpose we identify the upsampled sub-aperture images with the following list of

images {
O1, . . . ,Obd/2c,U,Odd/2e, . . . ,O(d−1)

}
(4.53)

as shown in Figure 4.15. Next we define the vectorized representation of Oj and U as

oj := vec(Oj) and u := vec(U), i.e. oj ,u ∈ Rmnk2
. Given the low-resolution image f and

the input images {oi,u}, we aim to generate a high-resolution image u, which is as close

as possible to the ground truth g. This is achieved by considering the model

E (u) = λD(u, f) +R(u) , (4.54)

where D and R denote the data term and the trained regularization term, respectively.

λ is a trained weighting parameter, that allows to balance the influence of the data term

w.r.t. the regularization. The learned RDM is obtained by considering the gradient of

the energy functional E in Equation (4.54), where the final model is obtained as a series

of gradient steps also called stages. For each stage, we learn the parameters of the model

such that the recovered high-resolution image is as close as possible to the given ground

truth.

118 Chapter 4. Machine Learning Applications in Computer Vision

κi1 κ
i
2 κ

i
3 κ

i
0 κ

i
4 κ

i
5 κ

i
6

κi

x

ξ

y

Figure 4.16: Illustration of the notation of a 3D kernel used within the trained regularizer (cf.
(4.59)).

In what follows we will first provide details about the data term and the learned

regularization term. Next we will describe the dataset used for supervised training. Finally

we will outline the training procedure.

Data term. The data term enforces that the solution u is close to the observation f .

For simplicity we use the squared `2 norm to model the data term in Equation (4.54).

The data term uses a downsampling operator D to compare a high-resolution image u to

a low-resolution observation f . Hence the data term can be written as

D(u) =
1

2
‖Du− f‖22 . (4.55)

Due to the fact that we make use of the squared `2 norm, D is differentiable and the

gradient is given as

∂D(u)

∂u
= D> (Du− f) . (4.56)

The gradient corresponds to the local reaction.

Regularization. Due to the fact that the given inverse problem is ill-posed, we make

use of a trained regularizer R to constrain the space of possible high-resolution images.

We formulate the regularizer as

R(U) =
∑

i∈[nk]

ρi(κ
i ∗Σ↑η) , (4.57)

where ∗ denotes the 3D convolution operator, nk is the number of penalty functions, ρi
is the ith penalty function and κi ∈ Rk1×k2×d is the ith 3D filter. Note that ρi and κi

are the parameters to be learned. Using the notation presented in Equation (4.53) we can

4.2. Light Field Image Processing 119

rewrite Equation (4.57) as

R(U) =
∑

i∈[nk]

ρi


κi0 ∗U +

∑

j∈[d−1]

κij ∗Oj


 , (4.58)

where κij denotes a 2D slice through the 3D kernel κi at a sampling position of the third

dimension (cf. Figure 4.16). More specifically, the kernel slices correspond to the images

in Equation (4.53) in the following order

{
κi1, . . . ,κ

i
bd/2c,κ

i
0,κ

i
dd/2e, . . . ,κ

i
d−1

}
. (4.59)

By rewriting the convolutions in Equation (4.58) using linear operators Ki, i ∈ {0}∪[d−1],

we obtain the final version of the regularizer as

R(u) =
∑

i∈[nk]

ρi


Ki

0u +
∑

j∈[d−1]

Ki
joj


 , (4.60)

where Ki
0u is equal to the 2D convolution κi0 ∗ U and so forth. The gradient of R(u)

w.r.t. u is then given as

∂R(u)

∂u
=
∑

i∈[nk]

Ki
0
>
φi


Ki

0u +
∑

j∈[d−1]

Ki
joj


 , (4.61)

where φi(x) := ∂ρi(x)
∂x . The functions φi are formulated as linear combinations of a

set of Radial Basis Functions (RBFs) whose values depend on the distance from the

origin. RBF methods [26, 59] and RBF networks [111, 128] have become crucial techniques

for approximating multidimensional scattered data. In this section, we make use of

so-called Gaussian RBFs, where we use nk different influence functions. By combining

Equation (4.56) and (4.61), we can summarize the proposed RDM as

∂u

∂t
= − λD> (Du− f)

−
∑

i∈[nk]

Ki
0
>
φi


Ki

0u +
∑

j∈[d−1]

Ki
joj


 .

(4.62)

By introducing the superscript t referring to different stages, we obtain

ut = ut−1 − λtD>
(
Dut−1 − f

)
(4.63)

−
∑

i∈[nk]

Kit
0
>
φti


Kit

0 ut−1 +
∑

j∈[d−1]

Kit
j oj


 .

120 Chapter 4. Machine Learning Applications in Computer Vision

κ1t ∗Σ↑tη φ
t
1

κ2t ∗Σ↑tη φ
t
2

κnkt ∗Σ↑tηφ
t
nk

...

−K1t
0
>

−K2t
0
>

−K
nkt
0

>

φt1(κ
1t ∗Σ↑tη)

φt2(κ
2t ∗Σ↑tη)

φtnk(κ
nkt ∗Σ↑tη)

...

u t−
1

∑

−K 1t
0
>
φ t
1 (κ 1t∗Σ ↑t

η)

−K2t
0
>
φt2(κ

2t ∗Σ↑tη)

−K
n k
t

0

> φ
t
n k
(κ
nt ∗Σ

↑t
η
)

Reaction Term

−

ut−1

ut

Figure 4.17: Illustration of the RNN interpretation of the proposed RDM.

For each stage t, we aim to learn the set of parameters Θt = {κit, φti, λt}. Note that the

overall model can be interpreted as a RNN as shown in Figure 4.17.

Dataset. In order to train the proposed model using supervised training, we first

leverage the synthetic dataset proposed in [77]. For our current purpose we use the

random scene generator to create 50 LFs with a spatial resolution of 480 × 639. For the

test dataset, we use another 50 LFs from the POV-Ray dataset [77] with the same spatial

resolution of 480 × 639. In addition, we also test on the HCI dataset [HCI Dataset]. For

the real-world experiment, we use 11 LFs as training dataset and 2 LFs as test dataset

from the SLFA [Stanford Light Field Archive]. The directional resolution of all LFs used

in this section is 7× 1.

We first use bicubic interpolation to downsample every sub-aperture image. The

low-resolution image f (cf. Equation (4.55)) is the downsampled sub-aperture image of the

center view. Next we generate the input images {oi,u} by upsampling the downsampled

sub-aperture images again using bicubic interpolation.

Training. In this section we outline the learning approach. We use a PSNR [40] based

learning approach and a SSIM [176] based learning approach separately to estimate the

parameters Θt = {κit, φti, λt} for all stages t ∈ [T]. We start with a greedy training,

where we learn the parameters at the stage t and then we use the optimal parameters to

super-resolve the sub-aperture image of the center view ut. Note that we do not update

4.2. Light Field Image Processing 121

High-resolution image Bicubic upsampled 2D RDM Our model

Figure 4.18: Illustration of the results I. From left to right, top to bottom, the figure shows the
original high-resolution image, the bicubic upsampled image, the upsampled image by 2D RDM
and the upsampled image by our trained model learned on PSNR.

oj , j ∈ [d−1]. We keep the original information of oj which is exploited by the 3D kernels

κit, i ∈ [nk]. We proceed by learning the parameters of the stage t + 1, till we reach

the maximum number of stages T . The result of the greedy training is used to initialize

the model for the following joint training, where we train all stages simultaneously. The

objective of the joint training is to only minimize the energy of stage T , which is associated

with the final output. Let {Σj
η,gj}j∈[ntrn] denote the ntrn training samples, where Σj

η is

the jth low-resolution EPI volume with the center image f j , and gj is the jth ground truth

high-resolution center image. Then the greedy training minimizes

L(Θt) =
∑

j∈[ntrn]

`j(Θt) , (4.64)

where `j(Θt) indicates the loss of the jth training sample measured either by PSNR or

by SSIM when using parameters Θt. For simplicity we will omit the superscripts for the

training samples in the following calculation. The PSNR loss of each sample is defined as

`(ut,g) =
1

2
‖ut − g‖22 , (4.65)

122 Chapter 4. Machine Learning Applications in Computer Vision

High-resolution image Bicubic upsampled Our model trained on PSNROur model trained on SSIM

Figure 4.19: Illustration of the results II. From left to right, top to bottom, the figure shows the
original high-resolution image, the bicubic upsampled image, and the upsampled images by our
trained model learned on PSNR and on SSIM.

High-resolution image 2D RDM
(PSNR:30.083 SSIM:0.980)

Our model trained on PSNR
(PSNR:30.487 SSIM:0.982)

Our model trained on SSIM
(PSNR:30.063 SSIM:0.979)

Figure 4.20: Illustration of the results III. From left to right, top to bottom, the figure shows
the original high-resolution image, the 2D RDM, and the upsampled images by our trained model
trained on PSNR and on SSIM.

4.2. Light Field Image Processing 123

and the SSIM loss of each sample is defined as

`(ut,g) = 1− S(ut,g) , (4.66)

where S(ut,g) denotes the SSIM measure of ut and g [158]. Because S(ut,g) reaches its

maximum of one only if ut = g, we reverse the sign of S(ut,g) to minimize the energy

`(ut,g). We will show in the experimental section that the RDM learned with SSIM loss

allows to reconstruct sharper high-resolution results than the one learned with the PSNR

based loss.

Recall Equation (4.63) which shows one step of gradient descent. To simplify notation

we define the 3D convolution between the 3D kernel κi and the bicubic upsampled EPI

volume Σ↑η as

st = Kit
0 ut−1 +

∑

j∈[d−1]

Kit
j oj . (4.67)

We will describe now how to calculate the gradient of ut w.r.t. Kit
j , j ∈ [d − 1]. All the

remaining gradients can be easily derived based on the work presented in [40, 43, 176].

According to Equation (4.63), we obtain

∂ut

∂Kit
j

=
∂
(
Kit
j oj

)

∂Kit
j

∂φti
(
st
)

∂st
Kit

0 . (4.68)

Note that Kit
j is represented by the coefficients of nb DCT basis kernels, i.e. Kit

j =∑
k∈[nb]

νijtk Bk
4. Let νijt = [νijt1 · · · νijtnbs]

>, then we have

∂
(
Kit
j oj

)

∂νijt
=




o>j B>1
...

o>j Bnb
>


 . (4.69)

By combining Equation (4.68) and (4.69) we obtain the gradient of ut w.r.t. the

parameters of the kernel Kit
j as

∂ut

∂νijt
=




o>j B>1
...

o>j Bnb
>



∂φti

(
st
)

∂st
Kit

0 . (4.70)

4Bkg = bk ∗ g, where bk is the kth DCT basis.

124 Chapter 4. Machine Learning Applications in Computer Vision

PSNR SSIM

Bicubic 2D RDM 3D RDM 3D RDM

PSNR 26.316 27.384 27.747 27.486
SSIM 0.883 0.925 0.933 0.933

Table 4.4: Quantitative results for different super-resolution methods based on the POV-Ray
dataset. The table proves on the one hand a comparison between 2D and 3D RDMs, and on the
other hand it also shows the difference between PSNR and SSIM based training.

4.2.2.3 Experiments

In all experiments we use a magnification factor of 3. In [40], Chen and Pock investigated

the influence of the model capacity including the number of training samples, filter size etc..

We stick to the model capacity where 2D RDM achieved the best result for super-resolution

[40]. We compare with the corresponding 2D RDM [40] with the same model capacity

except that we exploit the directional information. We use 48 influence functions combined

with 48 3D kernels of size 7 × 7 × 7. The weighting parameter λt is initialized to zero.

Following the work of [40], we initialize the kernels as the DCT basis kernels and the

influence function as c1
x

1+x2 , c1 ∈ R+, whose integral has the form of 1
2c1 log(1 + x2) +

c3, c3 ∈ R. For all the RDMs, we first conduct a greedy training with 5 stages followed

by a joint training.

Synthetic Experiment. We run Limited-memory BFGS (L-BFGS) with a fixed

number of 250 iterations in the greedy training and also with 250 iterations in the joint

training. First we conduct a comparison with the corresponding 2D RDM [40]. In

addition, we compare 3D RDMs based on the PSNR learning approach with the one

based on the SSIM learning approach. We train both the 2D RDM and the 3D RDMs

using the same model capacity and the same training dataset consisting of 50 LF images.

We test the trained 2D and 3D models on a test dataset consisting of 50 LF images and

we evaluated the results based on the PSNR and the SSIM. The average PSNR and SSIM

results are presented in Table 4.4. The PSNR based evaluation shows that the proposed

3D RDM is able to improve upon the 2D RDM. As a baseline we also list the result of

bicubic upsampling. We also observe that PSNR based training achieves better PSNR

than SSIM based training. The 3D RDMs are able to outperform the 2D RDM, but there

is no quantitative difference in SSIM between PSNR and SSIM based training in this case.

It was shown in [175], that methods based on pre-computed depth-maps [115, 161] perform

worse than bicubic upsampling. Because of this we did not incorporate those methods in

our evaluation.

Figure 4.18 provides qualitative results, where we compare our model to the baseline of

bicubic upsampling and to the 2D RDM. We can observe a clear qualitative improvement

4.2. Light Field Image Processing 125

High-resolution image
Bicubic upsampled

(PSNR:34.1166 SSIM:0.9603)
2D RDM

(PSNR:36.4078 SSIM:0.9729)
Our model

(PSNR:37.6604 SSIM:0.9761)

High-resolution image
Bicubic upsampled

(PSNR:32.9264 SSIM:0.9646)
2D RDM

(PSNR:35.8672 SSIM:0.9750)
Our model

(PSNR:36.5304 SSIM:0.9772)

Figure 4.21: Illustration of the real-world results. From left to right, top to bottom, the figure
shows the original high-resolution image, the bicubic upsampled image, the upsampled image by
2D RDM and the upsampled image by our trained model learned on SSIM. The close-up images
show that the proposed model can reconstruct a high-resolution scene preserving more details.

in the results provided by our model. When considering the close-up views, we recognize

that the 2D model is hallucinating additional details, that do not correspond to real scene

details. The 3D model on the other hand is able to reconstruct real details from the

observed scene.

Figure 4.19 compares the 3D RDM trained based on the PSNR measure with the one

based on the SSIM measure. Here we can observe that the 3D RDM trained based on the

SSIM provides slightly sharper results.

Next we show a result of the HCI LF dataset. Figure 4.20 shows the superresolved

images by the 2D RDM, the 3D RDM learned with PSNR loss and the 3D RDM learned

with SSIM loss. In this experiment, we apply the above-mentioned models to each channel

of the RGB images. The 3D RDM learned with PSNR reaches the highest PSNR value of

30.487. The PSNR value of the 2D RDM is on par with the 3D RDM learned with SSIM

loss. Although the SSIM values of the 2D RDM and 3D RDM are quite similar, we do

observe more details in the superresolved image provided by the 3D RDM learned with

SSIM loss (cf. scratches on the dices).

Real-world Experiment. We show real-world results from the SLFA, to demonstrate

the applicability of our method to real-world data. In the SLFA, there are 13 LFs and we

126 Chapter 4. Machine Learning Applications in Computer Vision

divided this dataset into a training and a test dataset including 11 and 2 LFs, respectively.

Note, that our trained 3D RDM has the same settings as the 2D RDM for single image

super-resolution in [6]. Since the 2D RDM in [6] was trained on real-world images and

achieved the best result without overfitting in this experiment, we compare with the

2D RDM published online3. The two LFs in the test dataset are called ’Chess’ and ’Lego

Bulldozer’. As shown by Figure 4.21, 3D RDM outperforms 2D RDM by a convincing

margin. And from the close-up images we can observe more details from the results of

3D RDM than the one of 2D RDM.

This section presented a 3D RDM for LFSR. The RDM can be seen as a RNN. If we

neglect the reaction term, then one stage of the RDM is composed of a convolutional layer

followed by a trainable non-linearity. The reason of super-resolution of one sub-aperture

image is that it provides better optimal solutions without using a large dataset in the

training. Thus, super-resolution of EPI volume can combine several such models to avoid

the curse of dimensionality in the training.

We investigated the use of 3D RDMs to restore a high-resolution image based on a set

of observed low-resolution sub-aperture images. Single image super-resolution approaches

rely on hallucinating additional information learned from the training set, whereas the

proposed LFSR approach allows to extract information from the different views in order

to reconstruct real details from the scene.

In our experimental section we demonstrated that the proposed 3D RDMs can

improve upon 2D RDMs. Our experimental results showed quantitative and qualitative

improvements based on synthetic and real-world datasets.

Finally it should be mentioned that the proposed model is applicable to a large range

of LF image processing problems like e.g. LF denoising or LF inpainting. Furthermore it

also provides an attractive opportunity for data size reduction for multi-view systems.

3http://www.icg.tugraz.at/Members/Chenyunjin/about-yunjin-chen

http://www.icg.tugraz.at/Members/Chenyunjin/about-yunjin-chen

5
Summary and Conclusion

5.1 Conclusion

In this thesis we studied Machine Learning (ML) methods for Computer Vision (CV)

problems. We first briefly reviewed the background of ML and CV. In the part of ML, we

introduced the evolution of ML and the Convolutional Neural Network (CNN), one of the

most important ML models. In the part of optimization, we reviewed first-order methods

and second-order methods, separately. We discussed the heuristics for the Primal-Dual

Algorithm (PDCP) and based on this, we presented the Online PDCP. In addition,

we described the Reaction-Diffusion Model (RDM) and the Fields of Experts (FoE). In

Section 4, we showed that the RDM, Recurrent Neural Network (RNN) and FoE share

common properties.

Some classical ML algorithms, e.g.SVMs, or dimension reduction, are able to tackle

large-scale real-world problems. Therefore, they are frequently used in different fields, from

medicine to industry. It is crucial to solve those ML problems in an efficient and accurate

way. We picked up several common ML problems, like dimensionality reduction, SVMs,

feature selection, multi-task learning, matrix completion and matrix factorization. We

illustrated how to solve the above-mentioned ML problems using first-order methods. We

presented a detailed derivation for each problem and provided a comprehensive comparison

among the first-order methods. Our results show the advantage to solve ML problems with

primal-dual models because PDCP can stably converge to the optimal solution. Moreover,

in some cases, PDCP even attains an empirical convergence rate which is better than

O(1/n2).

Section 4 of this thesis was devoted to the applications of ML to CV problems,

where we distinguished between single-view image processing and Light Field (LF)

image processing. In single-view image processing, we proposed a trained diffusion

model for image inpainting, where we learned the filters and influence functions based

on the Structural Similarity Image Measure (SSIM). The trained diffusion models

127

128 Chapter 5. Summary and Conclusion

were optimized by a greedy training followed by a joint training. We compared our

method with state-of-the-art inpainting methods for the task of inpainting 80% and 90%

random missing pixels and for the task of inpainting small connected image regions. The

comparison showed our method provides competitive performance. Next, we trained our

models to inpaint a specific texture. As a PDE based inpainting method, our models

surprisingly fulfill also this inpainting task.

In the LF processing, we first considered the problem of Shape from Light Field

(SfLF). We trained a novel u-shape CNN comprising an encoding and a decoding part.

By comparing to other methods, we showed that our method can predict depth with

a similar precision but more efficient. Then we demonstrated LF superresolution. We

trained a 3D RDM to recover high-resolution center views of the LF. We evaluated the

results provided by a 2D RDM and a 3D RDM. The evaluation showed that the 3D RDM

is superior to the 2D RDM.

5.2 Direction to Future Work

In this thesis, we discussed ML methods in CV with a strong focus on optimization

strategies. We also demonstrated several models applied to CV problems. Our models

are efficient and effective, but there are still interesting directions that can be explored

in future work. First, one could consider to use different second-order methods to train

or fine-tune a ML model. Second, regarding LF image processing we only used a 2D or

3D subspace of the entire 4D LF domain as input to our models. Hence one could consider

different strategies to utilize the entire 4D information of the LF, e.g. one could generalize

the presented RDM to 4D . Finally, one could also consider expanding our models to

so-called Hybrid Imaging Systems [22] consisting of a plenoptic camera and a traditional

camera.

A
List of Acronyms

AI Artificial Intelligence. vii

AWS Active Wavefront Sampling. 104

BFGS Broyden-Fletcher-Goldfarb-Shanno

algorithm. 44–46

CNN Convolutional Neural Network. viii, xvii, 12,

22, 23, 104, 105, 108, 109, 113, 125, 126

CV Computer Vision. vii, 85, 125, 126

DCT Discrete Cosine Transform. 96, 121

DNN Deep Neural Network. vii

EPI Epipolar Plane Image. viii, 103–108, 112, 113,

115, 119, 121, 123

FBS Forward-backward Splitting Method. vii,

36–38, 44, 47, 49–51, 63, 67, 70, 75, 80, 81

FISTA Fast Iterative Shrinkage-thresholding

Algorithm. vii, xvii, xviii, 36, 38, 39,

44, 47, 49–53, 55–59, 61–68, 70, 71, 73–75,

78–81

FoE Fields of Experts. 25, 26, 84, 86, 87, 96, 125

GPU Graphics Processing Unit. 17

GSIM Gradient Similarity Image Measure. 96–98

129

130 Acronyms

ISTA Iterative Shrinkage-thresholding Algorithm.

38

L-BFGS Limited-memory BFGS. 44, 46, 122

LF Light Field. viii, xix, xxi, 5, 6, 101–104,

106–113, 115, 118, 121–123, 125, 126

LFSR Light Field Super Resolution. vii, viii, 6,

112–114, 123

MAE Mean Absolute Error. 109

ML Machine Learning. vii, xxi, 3–5, 12, 17, 18,

22, 26, 35, 37, 46–51, 54, 74, 80, 81, 125, 126

MRF Markov Random Field. 86, 96, 107

NN Neural Network. xvii, 5, 18–22, 107

OSGA Optimal Subgradient Algorithm. vii, 36, 39,

40, 44, 47, 49–53, 56, 58, 62, 65, 67, 73, 78,

80, 81

PCA Principal Component Analysis. 69

PDCP Primal-Dual Algorithm. vii, xvii, xviii, 36,

37, 42–44, 47, 49–53, 55, 56, 58, 61, 62, 64–68,

71–73, 76–81, 125

PDE Partial Differential Equation. 85, 86, 98, 100

PoE Product of Experts. 25

PSNR Peak Signal to Noise Ratio. xxi, 85, 89, 96–98,

118–120, 122

RBF Radial Basis Function. 117

RDM Reaction-Diffusion Model. vii, viii, xxi, 6,

83–85, 87, 112–115, 117–120, 122, 123, 125,

126

ReLU Rectified Linear Unit. 21, 105

RMSE Root Mean Squared Error. 109

RNN Recurrent Neural Network. vii, xix, 114, 118,

125

RNNs Recurrent Neural Networks. 22

ROF Rudin Osher Fatemi. 86

RPCA Robust Principal Component Analysis. 107

Acronyms 131

SfLF Shape from Light Field. vii, xxi, 103, 104,

107–109, 126

SLFA Stanford Light Field Archive. xix, 107, 110

SR Super Resolution. xvii, 14–16, 18

SSIM Structural Similarity Image Measure. viii,

xxi, 85, 89, 90, 96–98, 118, 119, 122, 125

SVM Support Vector Machine. vii, 5, 33, 48

TV Total Variation. 86

B
List of Publications

My work at the Institute for Computer Graphics and Vision led to the following

peer-reviewed publications. For the sake of completeness of this Thesis, they are listed in

chronological order along with the respective abstracts.

B.1 2014

A Comparison of First-order Algorithms for Machine Learning

Yu Wei and Pock Thomas

In: Proceedings of The 38th Annual Workshop of the Austrian Association for Pattern

Recognition (OAGM), 2014

IST Austria

Abstract: Using an optimization algorithm to solve a machine learning problem is one

of mainstreams in the field of science. In this work, we demonstrate a comprehensive

comparison of some state-of-the-art first-order optimization algorithms for convex

optimization problems in machine learning. We concentrate on several smooth and

non-smooth machine learning problems with a loss function plus a regularizer. The overall

experimental results show the superiority of primal-dual algorithms in solving a machine

learning problem from the perspectives of the ease to construct, running time and accuracy.

133

134 Chapter B. List of Publications

B.2 2015

On learning optimized reaction diffusion processes for effective image

restoration

Yunjin Chen, Wei Yu and Thomas Pock

In: Proceedings of Conference on Computer Vision and Pattern Recognition (CVPR)

June 2015, Boston, USA

Abstract: For several decades, image restoration remains an active research topic in

low-level computer vision and hence new approaches are constantly emerging. However,

many recently proposed algorithms achieve state-of-the-art performance only at the

expense of very high computation time, which clearly limits their practical relevance. In

this work, we propose a simple but effective approach with both high computational

efficiency and high restoration quality. We extend conventional nonlinear reaction

diffusion models by several parametrized linear filters as well as several parametrized

influence functions. We propose to train the parameters of the filters and the influence

functions through a loss based approach. Experiments show that our trained nonlinear

reaction diffusion models largely benefit from the training of the parameters and finally

lead to the best reported performance on common test datasets for image restoration.

Due to their structural simplicity, our trained models are highly efficient and are also

well-suited for parallel computation on GPUs.

My responsibility: The influence functions can be formulated as basis functions, for

instance, Gaussian radial basis or triangular-shaped basis functions. For triangular-shaped basis

functions, we used the technique of slice transform to represent influence functions. It is space and time

consumable to calculate the gradient w.r.t. influence functions represented by triangular-shaped basis

functions. I used linear algebra to simplify this process. Thus, the time complexity reduced from O(kn)

to O(n), where n is the number of pixels in one image and k is the number of the bins shaping the

influence function. The time complexity when using Gaussian radial basis functions is O(dn) where d is

the number of Gaussian radial basis functions. This reduces the time of training and testing dramatically.

And the results in the application of image denoising is on par with the one trained by models using

Gaussian radial basis functions.

Learning Reaction-Diffusion Models for Image Inpainting

Wei Yu, Stefan Heber and Thomas Pock

In: 37th German Conference on Pattern Recognition, GCPR 2015

October 2015, Aachen, Germany

B.3. 2016 135

Abstract: In this paper we present a trained diffusion model for image inpainting

based on the structural similarity measure. The proposed diffusion model uses several

parametrized linear filters and influence functions. Those parameters are learned in a

loss based approach, where we first perform a greedy training before conducting a joint

training to further improve the inpainting performance. We provide a detailed comparison

to state-of-the-art inpainting algorithms based on the TUM-image inpainting database.

The experimental results show that the proposed diffusion model is efficient and achieves

superior performance. Moreover, we also demonstrate that the proposed method has a

texture preserving property, that makes it stand out from previous PDE based methods.

B.3 2016

U-shaped Networks for Shape from Light Field

Stefan Heber, Wei Yu and Thomas Pock

In: Proceedings of the British Machine Vision Conference (BMVC)

September 2016, York, UK

Abstract: This paper presents a novel technique for Shape from Light Field (SfLF),

that utilizes deep learning strategies. Our model is based on a fully convolutional network,

that involves two symmetric parts, an encoding and a decoding part, leading to a u-shaped

network architecture. By leveraging a recently proposed Light Field (LF) dataset, we are

able to effectively train our model using supervised training. To process an entire LF we

split the LF data into the corresponding Epipolar Plane Image (EPI) representation and

predict each EPI separately. This strategy provides good reconstruction results combined

with a fast prediction time. In the experimental section we compare our method to the

state of the art. The method performs well in terms of depth accuracy, and is able to

outperform competing methods in terms of prediction time by a large margin.

My responsibility: I performed some preliminary experiments that showed unsatisfactorily streaking

artefacts in 3D Light Field Super Resolution (LFSR). Because of this observation we changed our planes,

and started to tackle the task of shape estimation based on LF data. For this task the streaking artefacts

are not a big problem. I helped to implement the model using the tensorflow framework. I was monitoring

the training process and evaluated the models. The u-shaped models performed surprisingly well on this

task.

B.4 2017

Reaction-Diffusion Models for Light Field Super-Resolution

Wei Yu, Stefan Heber and Thomas Pock

Submitted to ICCV 2017

136 Chapter B. List of Publications

Abstract: This paper considers the problem of multi-view superresolution in the Light

Field (LF) setting. We introduce a novel Light Field Super Resolution (LFSR) method

that is based on Reaction-Diffusion Models (RDMs). The main idea of RDMs is to learn

a non-linear regularizer via supervised training. The proposed LFSR model allows to

reconstruct a high-resolution image given a set of observed low-resolution sub-aperture

images. More specifically the proposed method examines 3D subsets of a 4D LF called

Epipolar Plane Image (EPI) volumes and generates a highresolution image of the observed

scene. An important aspect of our model is the use of 3D convolutions, that allow to

propagate information from two spatial and one directional dimension of the LF. Our

experimental results show that the proposed method can achieve a far higher restoration

quality than competing methods. Furthermore our quantitative experiments demonstrate

a significant gain in PSNR.

BIBLIOGRAPHY 137

Bibliography

[url] The tum-image inpainting database. (page)

[2] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,

G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Software available

from tensorflow.org. (page)

[3] Ahmadi, A. A., Olshevsky, A., Parrilo, P. A., and Tsitsiklis, J. N. (2013). Np-hardness

of deciding convexity of quartic polynomials and related problems. Mathematical

Programming, 137(1-2):453–476. (page)

[4] Ahookhosh, M. (2014). Optimal subgradient algorithms with application to large-scale

linear inverse problems. Unpublished manuscript. (page)

[5] Alexander, D. C., Zikic, D., Zhang, J., Zhang, H., and Criminisi, A. (2014). Image

quality transfer via random forest regression: applications in diffusion mri. In MICCAI,

pages 225–232. Springer. (page)

[6] Alpaydin, E. (2004). Introduction to machine learning (adaptive computation and

machine learning series). (page)

[Amazon Machine Learning] Amazon Machine Learning. Amazon machine learning.

https://aws.amazon.com/machine-learning/. (page)

[8] Avron, H., Kale, S., Kasiviswanathan, S. P., and Sindhwani, V. (2012). Efficient

and practical stochastic subgradient descent for nuclear norm regularization. In ICML.

icml.cc / Omnipress. (page)

[Azure Machine Learning] Azure Machine Learning. Azure machine learning. https:

//azure.microsoft.com/en-us/services/machine-learning/. (page)

[10] Bauschke, H. and Combettes, Patrick, L. (2011). Convex Analysis and Monotone

Operator Theory in Hilbert Spaces. Springer. (page)

[11] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm

for linear inverse problems. SIAM J. Img. Sci., 2(1):183–202. (page)

[12] Beck, A. and Teboulle, M. (2012). Smoothing and first order methods: A unified

framework. SIAM Journal on Optimization, 22(2):557–580. (page)

https://aws.amazon.com/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/
https://azure.microsoft.com/en-us/services/machine-learning/

138

[13] Belkin, M., Niyogi, P., and Sindhwani, V. (2005). On manifold regularization. In

AISTATS. Citeseer. (page)

[14] Ben-Hur, A. and Weston, J. (2010). A user’s guide to support vector machines. In

Carugo, O. and Eisenhaber, F., editors, Data Mining Techniques for the Life Sciences,

volume 609 of Methods in Molecular Biology, pages 223–239. Humana Press. (page)

[15] Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review

and new perspectives. PAMI, 35(8):1798–1828. (page)

[16] Bennett, K. P. and Parrado-Hernández, E. (2006). The interplay of optimization and

machine learning research. J. Mach. Learn. Res., 7:1265–1281. (page)

[17] Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C. (2000). Image inpainting.

In Conference on Computer graphics and interactive techniques, pages 417–424. ACM

Press/Addison-Wesley Publishing Co. (page)

[18] Bertalmio, M., Vese, L., Sapiro, G., and Osher, S. (2003). Simultaneous structure and

texture image inpainting. In Computer Vision and Pattern Recognition, 2003, volume 2,

pages II–707–12 vol.2. (page)

[19] Bishop, T. E. and Favaro, P. (2012). The light field camera: Extended depth of field,

aliasing, and superresolution. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 34(5):972–986. (page)

[20] Bishop, T. E., Zanetti, S., and Favaro, P. (2009). Light field superresolution. In

Computational Photography (ICCP), 2009 IEEE International Conference on, pages

1–9. IEEE. (page)

[21] Bolles, R. C., Baker, H. H., and Marimont, D. H. (1987). Epipolar-plane image

analysis: An approach to determining structure from motion. International Journal of

Computer Vision, 1(1):7–55. (page)

[22] Boominathan, V., Mitra, K., and Veeraraghavan, A. (2014). Improving resolution and

depth-of-field of light field cameras using a hybrid imaging system. In Computational

Photography (ICCP), 2014 IEEE International Conference on, pages 1–10. IEEE.

(page)

[23] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press, New York, NY, USA. (page)

[24] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140. (page)

[25] Bugeau, A., Bertalmı́o, M., Caselles, V., and Sapiro, G. (2010). A comprehensive

framework for image inpainting. Image Processing, IEEE Transactions on,

19(10):2634–2645. (page)

BIBLIOGRAPHY 139

[26] Buhmann, M. D. (2003). Radial Basis Functions. Cambridge University Press, New

York, NY, USA. (page)

[27] Burges, C. J. C. (2010). Dimension reduction: A guided tour. Foundations and

Trends in Machine Learning, 2(4). (page)

[28] Cai, J.-F., Candès, E. J., and Shen, Z. (2010). A singular value thresholding algorithm

for matrix completion. SIAM J. on Optimization, 20(4):1956–1982. (page)

[29] Candes, E. J., Romberg, J. K., and Tao, T. (2006). Stable signal recovery from

incomplete and inaccurate measurements. Communications on pure and applied

mathematics, 59(8):1207–1223. (page)

[30] Caselles, V. (2011). Exemplar-based image inpainting and applications. SIAM News,

44(10):1–3. (page)

[31] Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex

problems with applications to imaging. Journal of Mathematical Imaging and Vision,

40(1):120–145. (page)

[32] Chan, T. F. and Shen, J. (2001a). Local inpainting models and TV inpainting. SIAM

J. Appl. Math., 62(3):1019–1043. (page)

[33] Chan, T. F. and Shen, J. (2001b). Nontexture inpainting by curvature-driven

diffusions. Journal of Visual Communication and Image Representation, 12(4):436–449.

(page)

[34] Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support vector machines.

ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27. (page)

[35] Chapelle, O. (2007). Training a support vector machine in the primal. Neural

Computation, 19:1155–1178. (page)

[36] Chapelle, O., Schölkopf, B., Zien, A., et al. (2006). Semi-supervised learning. (page)

[37] Charbonnier, P., Blanc-Féraud, L., Aubert, G., and Barlaud, M. (1997).

Deterministic edge-preserving regularization in computed imaging. IEEE Transactions

on image processing, 6(2):298–311. (page)

[38] Chen, C., Lin, H., Yu, Z., Bing Kang, S., and Yu, J. (2014a). Light field stereo

matching using bilateral statistics of surface cameras. (page)

[39] Chen, G. H.-G. and Rockafellar, R. T. (1997). Convergence rates in forward–backward

splitting. SIAM J. on Optimization, 7(2):421–444. (page)

140

[40] Chen, Y. and Pock, T. (2016). Trainable nonlinear reaction diffusion: A flexible

framework for fast and effective image restoration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PP(99):1–1. (page)

[41] Chen, Y., Ranftl, R., and Pock, T. (2014b). A bi-level view of inpainting-based image

compression. arXiv preprint arXiv:1401.4112. (page)

[42] Chen, Y., Ranftl, R., and Pock, T. (2014c). Insights into analysis operator learning:

From patch-based sparse models to higher order mrfs. Image Processing, IEEE

Transactions on, 23(3):1060–1072. (page)

[43] Chen, Y., Yu, W., and Pock, T. (2015). On learning optimized reaction diffusion

processes for effective image restoration. In CVPR, pages 5261–5269. (page)

[44] Cherkassky, V. and Ma, Y. (2004). Practical selection of svm parameters and noise

estimation for svm regression. Neural Networks, 17:113–126. (page)

[45] Coates, A. and Ng, A. Y. (2012). Learning feature representations with k-means. In

Neural Networks: Tricks of the Trade, pages 561–580. Springer. (page)

[46] Coates, A., Ng, A. Y., and Lee, H. (2011). An analysis of single-layer networks in

unsupervised feature learning. In International conference on artificial intelligence and

statistics, pages 215–223. (page)

[47] Criminisi, A., Pérez, P., and Toyama, K. (2004). Region filling and object

removal by exemplar-based image inpainting. Image Processing, IEEE Transactions

on, 13(9):1200–1212. (page)

[48] Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., and

Siddiqui, K. (2013). Regression forests for efficient anatomy detection and localization

in computed tomography scans. Medical image analysis, 17(8):1293–1303. (page)

[49] De Bie, T., Lanckriet, G. R. G., and Cristianini, N. (2003). Convex tuning of the soft

margin parameter. Technical Report UCB/CSD-03-1289, EECS Department, University

of California, Berkeley. (page)

[50] Domingos, P. (2012). A few useful things to know about machine learning. ACMCOM,

55(10):78–87. (page)

[51] Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information

Theory, 52:1289–1306. (page)

[52] Dosovitskiy, A., Springenberg, J. T., and Brox, T. (2015). Learning to generate

chairs with convolutional neural networks. In IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1538–1546.

(page)

BIBLIOGRAPHY 141

[53] Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). Efficient

projections onto the l1-ball for learning in high dimensions. In Proceedings of the

25th International Conference on Machine Learning, ICML ’08, pages 272–279, New

York, NY, USA. ACM. (page)

[54] Duchi, J. and Singer, Y. (2009). Efficient online and batch learning using forward

backward splitting. J. Mach. Learn. Res., 10:2899–2934. (page)

[55] Efros, A. and Leung, T. (1999). Texture synthesis by non-parametric sampling. In

Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference

on, volume 2, pages 1033–1038 vol.2. (page)

[56] Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map prediction from a single

image using a multi-scale deep network. In Ghahramani, Z., Welling, M., Cortes, C.,

Lawrence, N., and Weinberger, K., editors, Advances in Neural Information Processing

Systems 27, pages 2366–2374. Curran Associates, Inc. (page)

[57] Esedoglu, S. and Shen, J. (2002). Digital inpainting based on the

Mumford-Shah-Euler image model. European Journal of Applied Mathematics,

null:353–370. (page)

[58] Esser, E., Zhang, X., and Chan, T. F. (2010). A general framework for a class of first

order primal-dual algorithms for convex optimization in imaging science. SIAM J. Img.

Sci., 3(4):1015–1046. (page)

[59] Figueiredo, M. A. (2000). On gaussian radial basis function approximations:

Interpretation, extensions, and learning strategies. In Pattern Recognition, 2000.

Proceedings. 15th International Conference on, volume 2, pages 618–621. IEEE. (page)

[60] Fodor, I. (2002). A survey of dimension reduction techniques. (page)

[61] Freund, Y., Schapire, R., and Abe, N. (1999). A short introduction to boosting.

Journal-Japanese Society For Artificial Intelligence, 14(771-780):1612. (page)

[62] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of computer and system sciences,

55(1):119–139. (page)

[63] Fujino, A., Ueda, N., and Saito, K. (2005). A hybrid generative/discriminative

approach to semi-supervised classifier design. In Proceedings of the National Conference

on Artificial Intelligence, volume 20, page 764. Menlo Park, CA; Cambridge, MA;

London; AAAI Press; MIT Press; 1999. (page)

[64] Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., and Seidel, H.-P. (2008).

Image compression with anisotropic diffusion. Journal of Mathematical Imaging and

Vision, 31(2-3):255–269. (page)

142

[65] Gao, J., Shi, Q., and Caetano, T. S. (2012). Dimensionality reduction via compressive

sensing. Pattern Recogn. Lett., 33(9):1163–1170. (page)

[66] Georgeiv, T., Zheng, K. C., Curless, B., Salesin, D., Nayar, S., and Intwala, C.

(2006). Spatio-angular resolution tradeoff in integral photography. In In Eurographics

Symposium on Rendering, pages 263–272. (page)

[67] Getreuer, P. (2012). Total variation inpainting using split bregman. Image Processing

On Line, 2:147–157. (page)

[68] Goldluecke, B. and Wanner, S. (2013). The variational structure of disparity and

regularization of 4d light fields. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). (page)

[69] Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. (1996). The lumigraph.

In SIGGRAPH, pages 43–54. (page)

[70] Grossauer, H. (2004). A combined pde and texture synthesis approach to inpainting.

In Computer Vision-ECCV 2004, pages 214–224. Springer. (page)

[71] Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L. A. (2008). Feature extraction:

foundations and applications, volume 207. Springer. (page)

[72] Hansen, E. and Walster, G. W. (2003). Global optimization using interval analysis:

revised and expanded, volume 264. CRC Press. (page)

[73] Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 2nd edition. (page)

[HCI Dataset] HCI Dataset. HCI Dataset. https://hci.iwr.uni-heidelberg.de/hci/

softwares/light_field_analysis. (page)

[75] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. CoRR, abs/1502.01852. (page)

[76] Heber, S. and Pock, T. (2014). Shape from light field meets robust PCA. In

Proceedings of the 13th European Conference on Computer Vision. (page)

[77] Heber, S. and Pock, T. (2016). Convolutional networks for shape from light field. In

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (page)

[78] Heber, S., Ranftl, R., and Pock, T. (2013). Variational Shape from Light Field. In

International Conference on Energy Minimization Methods in Computer Vision and

Pattern Recognition. (page)

[79] Hel-Or, Y. and Shaked, D. (2008). A discriminative approach for wavelet denoising.

Image Processing, IEEE Transactions on, 17(4):443–457. (page)

https://hci.iwr.uni-heidelberg.de/hci/softwares/light_field_analysis
https://hci.iwr.uni-heidelberg.de/hci/softwares/light_field_analysis

BIBLIOGRAPHY 143

[80] Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up

primate brain. Frontiers in human neuroscience, 3:31. (page)

[81] Herling, J. and Broll, W. (2012). Pixmix: A real-time approach to high-quality

diminished reality. In Mixed and Augmented Reality (ISMAR), 2012 IEEE International

Symposium on, pages 141–150. IEEE. (page)

[82] Hinton, G. E. (1999). Products of experts. In Artificial Neural Networks, 1999.

ICANN 99. Ninth International Conference on (Conf. Publ. No. 470), volume 1, pages

1–6. IET. (page)

[83] Hinton, G. E. (2002). Training products of experts by minimizing contrastive

divergence. Neural computation, 14(8):1771–1800. (page)

[84] Hubel, D. H. and Wiesel, T. N. (1968). Receptive fields and functional architecture

of monkey striate cortex. The Journal of physiology, 195(1):215–243. (page)

[85] Isaksen, A., McMillan, L., and Gortler, S. J. (2000). Dynamically reparameterized

light fields. In SIGGRAPH, pages 297–306. (page)

[86] Jenkinson, J., Grigoryan, A., Hajinoroozi, M., Diaz Hernandez, R., Peregrina Barreto,

H., Ortiz Esquivel, A., Altamirano, L., and Chavushyan, V. (2014). Machine learning

and image processing in astronomy with sparse data sets. In Systems, Man and

Cybernetics (SMC), 2014 IEEE International Conference on, pages 200–203. IEEE.

(page)

[87] Jenkinson, J., Grigoryan, A. M., and Agaian, S. S. (2015). Enhancement of

galaxy images for improved classification. In IS&T/SPIE Electronic Imaging, pages

93990X–93990X. International Society for Optics and Photonics. (page)

[88] Jeon, H. G., Park, J., Choe, G., Park, J., Bok, Y., Tai, Y. W., and Kweon, I. S.

(2015). Accurate depth map estimation from a lenslet light field camera. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1547–1555.

(page)

[89] Jia, H., Murphey, Y. L., Shi, J., and Chang, T.-S. (2004). An intelligent real-time

vision system for surface defect detection. In PR, volume 3, pages 239–242. IEEE.

(page)

[90] Kaelbling, L. (2003). Jmlr special issue on variable and feature selection. (page)

[91] Karmitsa, N., Bagirov, A., and Makela, M. M. (2009). Empirical and theoretical

comparisons of several nonsmooth minimization methods and software. Technical

report, Technical Report 959, Turku Centre for Computer Science, Turku. (page)

144

[92] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization.

CoRR, abs/1412.6980. (page)

[93] Kokaram, A. C., Morris, R. D., Fitzgerald, W. J., and Rayner, P. J. (1995).

Interpolation of missing data in image sequences. Image Processing, IEEE Transactions

on, 4(11):1509–1519. (page)

[94] Komodakis, N. and Tziritas, G. (2007). Image completion using efficient belief

propagation via priority scheduling and dynamic pruning. Trans. Img. Proc.,

16(11):2649–2661. (page)

[95] Kong, X., Li, K., Yang, Q., Wenyin, L., and Yang, M.-H. (2013). A new image quality

metric for image auto-denoising. In Computer Vision (ICCV), 2013 IEEE International

Conference on, pages 2888–2895. IEEE. (page)

[96] Kontschieder, P., Fiterau, M., Criminisi, A., and Rota Bulo, S. (2015). Deep neural

decision forests. In ICCV, pages 1467–1475. (page)

[97] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification

with deep convolutional neural networks. In Pereira, F., Burges, C., Bottou, L., and

Weinberger, K., editors, Advances in Neural Information Processing Systems 25, pages

1097–1105. Curran Associates, Inc. (page)

[98] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition.

Neural Comput., 1(4):541–551. (page)

[99] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324. (page)

[100] Levin, A., Zomet, A., and Weiss, Y. (2003). Learning how to inpaint from global

image statistics. In Computer Vision, 2003. Proceedings. Ninth IEEE International

Conference on, pages 305–312 vol.1. (page)

[101] Levoy, M. and Hanrahan, P. (1996). Light field rendering. In Proceedings of the 23rd

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96,

pages 31–42, New York, NY, USA. ACM. (page)

[102] Lions, P. L. and Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear

operators. SIAM J. Numer. Anal., 16(6):964–979. (page)

[103] Liu, A., Lin, W., and Narwaria, M. (2012). Image quality assessment based on

gradient similarity. Image Processing, IEEE Transactions on, 21(4):1500–1512. (page)

[104] Liu, D., Sun, X., Wu, F., Li, S., and Zhang, Y.-Q. (2007). Image compression with

edge-based inpainting. Circuits and Systems for Video Technology, IEEE Transactions

on, 17(10):1273–1287. (page)

BIBLIOGRAPHY 145

[105] Liu, D. C. and Nocedal, J. (1989). On the limited memory bfgs method for large

scale optimization. Mathematical programming, 45(1-3):503–528. (page)

[106] Liu, H. and Motoda, H. (2007). Computational methods of feature selection. CRC

Press. (page)

[107] Liu, H. and Motoda, H. (2012). Feature selection for knowledge discovery and data

mining, volume 454. Springer Science & Business Media. (page)

[108] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for

semantic segmentation. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3431–3440. (page)

[Lytro] Lytro. Lytro. https://www.lytro.com/. (page)

[110] Maeireizo, B., Litman, D., and Hwa, R. (2004). Co-training for predicting emotions

with spoken dialogue data. In Proceedings of the ACL 2004 on Interactive poster and

demonstration sessions, page 28. Association for Computational Linguistics. (page)

[111] Mai-Duy, N. and Tran-Cong, T. (2003). Approximation of function and its

derivatives using radial basis function networks. Applied Mathematical Modelling,

27(3):197 – 220. (page)

[112] Malhi, A. and Gao, R. X. (2004). Pca-based feature selection scheme for machine

defect classification. Instrumentation and Measurement, IEEE Transactions on,

53(6):1517–1525. (page)

[113] Masnou, S. and Morel, J.-M. (1998). Level lines based disocclusion. In Image

Processing, 1998. ICIP 98. Proceedings. 1998 International Conference on, pages

259–263 vol.3. (page)

[114] Matthias, S. (2001). Learning with labeled and unlabeled data. Inst. Adapt. Neural

Comput. (page)

[115] Mitra, K. and Veeraraghavan, A. (2012). Light field denoising, light field

superresolution and stereo camera based refocussing using a gmm light field patch

prior. In 2012 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, pages 22–28. IEEE. (page)

[MNIST] MNIST. Mnist. http://yann.lecun.com/exdb/mnist/. (page)

[117] Mumford, D. and Shah, J. (1989). Optimal approximations by piecewise

smooth functions and associated variational problems. Comm. on Pure and Applied

Mathematics, 42(5):577–685. (page)

https://www.lytro.com/
http://yann.lecun.com/exdb/mnist/

146

[118] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted

boltzmann machines. In Fuernkranz, J. and Joachims, T., editors, Proceedings of

the 27th International Conference on Machine Learning (ICML-10), pages 807–814.

Omnipress. (page)

[119] Nemirovsky, A. and Yudin, D. (1983). Problem complexity and method efficiency

in optimization. Wiley-Interscience series in discrete mathematics. Wiley, Chichester,

New York. A Wiley-Interscience publication. (page)

[120] Neumaier, A. (2016). Osga: a fast subgradient algorithm with optimal complexity.

Mathematical Programming, 158(1):1–21. (page)

[121] Ng, R. (2006). Digital Light Field Photography. Phd thesis, Stanford University.

(page)

[122] Nigam, K., McCallum, A. K., Thrun, S., and Mitchell, T. (2000). Text classification

from labeled and unlabeled documents using em. Machine learning, 39(2-3):103–134.

(page)

[123] Nikolaidis, N. and Pitas, I. (2001). Digital image processing in painting restoration

and archiving. In Image Processing, 2001. Proceedings. 2001 International Conference

on, volume 1, pages 586–589. IEEE. (page)

[124] Oberdörster, A., Favaro, P., and Lensch, H. P. (2014). Anamorphic pixels for

multi-channel superresolution. In Computational Photography (ICCP), 2014 IEEE

International Conference on, pages 1–10. IEEE. (page)

[125] Ochs, P., Chen, Y., Brox, T., and Pock, T. (2014). ipiano: Inertial

proximal algorithm for nonconvex optimization. SIAM Journal on Imaging Sciences,

7(2):1388–1419. (page)

[126] Osuna, E., Freund, R., and Girosi, F. (1997). Training support vector machines: an

application to face detection. In CVPR, pages 130–136. IEEE. (page)

[127] Pardalos, P. M. and Vavasis, S. A. (1992). Open questions in complexity theory for

numerical optimization. Mathematical Programming, 57(1):337–339. (page)

[128] Park, J. and Sandberg, I. W. (1991). Universal approximation using

radial-basis-function networks. Neural Comput., 3(2):246–257. (page)

[129] Passty, G. B. (1979). Ergodic convergence to a zero of the sum of monotone operators

in hilbert space. 72. (page)

[130] Pele, O., Taskar, B., Globerson, A., and Werman, M. (2013). The pairwise

piecewise-linear embedding for efficient non-linear classification. In Dasgupta, S. and

Mcallester, D., editors, Proceedings of the 30th International Conference on Machine

BIBLIOGRAPHY 147

Learning (ICML-13), volume 28, pages 205–213. JMLR Workshop and Conference

Proceedings. (page)

[131] Perwass, C. and Wietzke, L. (2012). Single lens 3d-camera with extended

depth-of-field. In Proc. SPIE, volume 8291, pages 829108–829108–15. (page)

[132] Pham, T. P., Ng, H. T., and Lee, W. S. (2005). Word sense disambiguation

with semi-supervised learning. In Proceedings of the National Conference on Artificial

Intelligence, volume 20, page 1093. Menlo Park, CA; Cambridge, MA; London; AAAI

Press; MIT Press; 1999. (page)

[133] Pierucci, F., Harchaoui, Z., and Malick, J. (2014). A smoothing approach for

composite conditional gradient with nonsmooth loss. (page)

[POV-Ray] POV-Ray. Pov-ray. http://www.povray.org. (page)

[Raytrix] Raytrix. Raytrix. https://www.raytrix.de/. (page)

[136] Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions

of linear matrix equations via nuclear norm minimization. SIAM Rev., 52(3):471–501.

(page)

[137] Rehman, A. and Wang, Z. (2011). Ssim-based non-local means image denoising. In

Image Processing (ICIP), 2011 18th IEEE International Conference on, pages 217–220.

IEEE. (page)

[138] Rennie, J. D. M. and Srebro, N. (2005). Fast maximum margin matrix factorization

for collaborative prediction. In Proceedings of the 22nd international conference on

Machine learning, ICML ’05, pages 713–719, New York, NY, USA. ACM. (page)

[139] Rosenberg, C., Hebert, M., and Schneiderman, H. (2005). Semi-supervised

self-training of object detection models. (page)

[140] Roth, S. and Black, M. (2005). Fields of experts: a framework for learning

image priors. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, volume 2, pages 860–867 vol. 2. (page)

[141] Roth, S. and Black, M. (2007). Steerable random fields. In Computer Vision, 2007.

ICCV 2007. IEEE 11th International Conference on, pages 1–8. (page)

[142] Roth, S. and Black, M. J. (2009). Fields of experts. International Journal of

Computer Vision, 82(2):205–229. (page)

[143] Rudin, L. I., Osher, S., and Fatemi, E. (1992). Nonlinear total variation based noise

removal algorithms. Physica D: Nonlinear Phenomena, 60(1-4):259–268. (page)

http://www.povray.org
https://www.raytrix.de/

148

[144] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Neurocomputing:

Foundations of research. chapter Learning Representations by Back-propagating Errors,

pages 696–699. MIT Press, Cambridge, MA, USA. (page)

[145] Schmidt, U., Gao, Q., and Roth, S. (2010). A generative perspective on MRFs in

low-level vision. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE

Conference on, pages 1751–1758. IEEE. (page)

[146] Shalev-Shwartz, S. and Zhang, T. (2013). Accelerated proximal stochastic dual

coordinate ascent for regularized loss minimization. CoRR, abs/1309.2375. (page)

[147] Smola, A. J., Vishwanathan, S. V. N., and Le, Q. V. (2007). Bundle methods for

machine learning. In Platt, J. C., Koller, D., Singer, Y., and Roweis, S. T., editors,

NIPS. MIT Press. (page)

[148] Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). Striving for

simplicity: The all convolutional net. In ICLR (workshop track). (page)

[149] Srebro, N., Rennie, J. D. M., and Jaakola, T. S. (2005). Maximum-margin

matrix factorization. In Advances in Neural Information Processing Systems 17, pages

1329–1336. MIT Press. (page)

[Stanford Light Field Archive] Stanford Light Field Archive. Stanford Light Field

Archive. http://lightfield.stanford.edu/lfs.html. (page)

[151] Stefan Heber, W. Y. and Pock, T. (2016). U-shaped networks for shape from light

field. In Proc. British Machine Vision Conf. (page)

[152] Tao, M. W., Hadap, S., Malik, J., and Ramamoorthi, R. (2013). Depth from

combining defocus and correspondence using light-field cameras. In International

Conference on Computer Vision (ICCV). (page)

[TensorFlow] TensorFlow. Tensorflow. https://www.tensorflow.org/. (page)

[154] Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society, Series B, 58:267–288. (page)

[155] Tiefenbacher, P., Bogischef, V., Merget, D., and Rigoll, G. (2015). Subjective and

objective evaluation of image inpainting quality. In Proc. International Conference on

Image Processing, ICIP 2015, Qubec City, Canada. IEEE. to appear. (page)

[156] Van der Maaten, L. J. P., Postma, E. O., and van den Herik, H. J. (2008).

Dimensionality Reduction: A Comparative Review. (page)

[157] Viola, P. and Jones, M. (2001). Rapid object detection using a boosted cascade of

simple features. In Proceedings of Computer Vision and Pattern Recognition (CVPR),

volume 1, pages I–511. IEEE. (page)

http://lightfield.stanford.edu/lfs.html
https://www.tensorflow.org/

BIBLIOGRAPHY 149

[158] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality

assessment: from error visibility to structural similarity. Image Processing, IEEE

Transactions on, 13(4):600–612. (page)

[159] Wanner, S. and Goldluecke, B. (2012a). Globally consistent depth labeling of 4D

lightfields. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

(page)

[160] Wanner, S. and Goldluecke, B. (2012b). Spatial and angular variational

super-resolution of 4d light fields. In European Conference on Computer Vision (ECCV).

(page)

[161] Wanner, S. and Goldluecke, B. (2014). Variational light field analysis for disparity

estimation and super-resolution. IEEE transactions on pattern analysis and machine

intelligence, 36(3):606–619. (page)

[162] Wanner, S., Straehle, C., and Goldluecke, B. (2013). Globally consistent multi-label

assignment on the ray space of 4d light fields. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). (page)

[163] Watson, G. (1992). Characterization of the subdifferential of some matrix norms.

Linear Algebra and its Applications, 170(0):33 – 45. (page)

[Watson Developer Cloud] Watson Developer Cloud. Watson developer cloud. https:

//www.ibm.com/watson/developercloud/. (page)

[165] Wei, G. W. (1999). Generalized perona-malik equation for image restoration. IEEE

Signal processing letters, 6(7):165–167. (page)

[166] Weiss, S. M. and Kapouleas, I. (1990). An empirical comparison of pattern

recognition, neural nets and machine learning classification methods. Readings in

machine learning, pages 177–183. (page)

[167] Wilburn, B., Joshi, N., Vaish, V., Talvala, E.-V., Antunez, E., Barth, A., Adams,

A., Horowitz, M., and Levoy, M. (2005). High performance imaging using large camera

arrays. ACM Trans. Graph., 24(3):765–776. (page)

[168] Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2):241–259.

(page)

[169] WOODBURY, M. (1950). Inverting modified matrices. Technical report, Princeton

University. (page)

[170] Xu, Z. and Sun, J. (2010). Image inpainting by patch propagation using patch

sparsity. Image Processing, IEEE Transactions on, 19(5):1153–1165. (page)

https://www.ibm.com/watson/developercloud/
https://www.ibm.com/watson/developercloud/

150

[171] Yang, H., Xu, Z., King, I., and Lyu, M. R. (2010). Online learning for group lasso.

In ICML, pages 1191–1198. (page)

[172] Yang, T., Jin, R., Mahdavi, M., and Zhu, S. (2012). An efficient primal-dual prox

method for non-smooth optimization. CoRR, abs/1201.5283. (page)

[173] Yao, Y., Marcialis, G. L., Pontil, M., Frasconi, P., and Roli, F. (2003). Combining

flat and structured representations for fingerprint classification with recursive neural

networks and support vector machines. PR, 36(2):397–406. (page)

[174] Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised

methods. In Proceedings of the 33rd annual meeting on Association for Computational

Linguistics, pages 189–196. Association for Computational Linguistics. (page)

[175] Yoon, Y., Jeon, H. G., Yoo, D., Lee, J. Y., and Kweon, I. S. (2015). Learning a deep

convolutional network for light-field image super-resolution. In 2015 IEEE International

Conference on Computer Vision Workshop (ICCVW), pages 57–65. (page)

[176] Yu, W., Heber, S., and Pock, T. (2015). Learning reaction-diffusion models for image

inpainting. In Pattern Recognition - 37th German Conference, GCPR 2015, Aachen,

Germany, October 7-10, 2015, Proceedings, pages 356–367. (page)

[177] Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with

grouped variables. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 68(1):49–67. (page)

[178] Zeiler, M. D. and Fergus, R. (2014). Computer Vision – ECCV 2014: 13th European

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, chapter

Visualizing and Understanding Convolutional Networks, pages 818–833. Springer

International Publishing, Cham. (page)

[179] Zhang, X., Burger, M., and Osher, S. (2011). A unified primal-dual algorithm

framework based on bregman iteration. Journal of Scientific Computing, 46(1):20–46.

(page)

[180] Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A. (2003). Face recognition:

A literature survey. ACM computing surveys (CSUR), 35(4):399–458. (page)

	Introduction
	Motivation
	Dissertation Overview

	Mathematical Foundation
	Notation and Conventions
	Matrix Calculus
	Inverse Problems in Digital Image Problems
	Overview of Machine Learning
	Evolution of Machine Learning
	Classification of Machine Learning
	Artificial Neural Networks

	Isotropic & Anisotropic Diffusion
	Fields of Experts
	Optimization Algorithms
	First-order Methods
	Second-order Methods

	Some Classical Machine Learning Algorithms
	First-order Algorithms for Machine Learning
	Experiments
	Dimensionality Reduction
	Linear SVM
	Kernel SVM
	Grouped Feature Selection
	Multi-Task Learning
	Matrix Completion and Matrix Factorization

	Conclusion

	Machine Learning Applications in Computer Vision
	Single View Image Processing
	Diffusion Models for Image Inpainting
	Related Work
	Methodology
	Experiments

	Light Field Image Processing
	U-shaped Networks for Shape from Light Field
	Related Work
	Methodology
	Experiments

	Light Field Superresolution
	Related Work
	Methodology
	Experiments

	Summary and Conclusion
	Conclusion
	Direction to Future Work

	List of Acronyms
	List of Publications
	2014
	2015
	2016
	2017

	Bibliography

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	anm0:

