
Jörg M. Schlager, BSc.

From Aerial Images to Virtual Driving Environments

to achieve the university degree of

MASTER'S THESIS

                                        Master's degree programme: Telematics

submitted to

Graz University of Technology

Ass.Prof. Dipl.-Ing. Dr.techn. Friedrich Fraundorfer

    Diplom-Ingenieur

Supervisor

Graz, February 2017



AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used other 

than the declared sources/resources, and that I have explicitly indicated all ma-

terial which has been quoted either literally or by content from the sources used. 

The text document uploaded to TUGRAZonline is identical to the present master‘s 

thesis dissertation.

Date Signature



Access Restriction

This thesis has been commissioned and funded by AVL List GmbH (hereinafter AVL).
It contains descriptions of algorithms, methods and software implementation details
which are not indented for the general public. According to the contract for services
between the author and AVL, access to this document thus has to be restricted.

Acknowledgments

Special thanks go to the team and management of AVL’s skill area ”DV - Vehicle”.
Not only have I had the pleasure of working in this department for the past eight years,
but this collaboration and the support from my colleagues also created an opportunity
for writing a master’s thesis at a junction point of academic and industrial research.

In this context, my adviser at AVL, Dr. Rupert Scheucher, deserves particular
mention for his part in defining the topic for this thesis as well as his continuous
assistance and encouragement. In addition, I would also like to acknowledge Mr.
Georg Knoll, Dr. Jürgen Holzinger and Mr. Thomas Schlömicher, as they all provided
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Abstract

The use of simulation tools as part of a modern vehicle development process often
relies on the availability of realistic virtual driving environments. We present a multi-
step workflow for modeling such virtual landscapes based on publicly available data
sources.

At the heart of the proposed system, the semantic segmentation of orthographic
aerial images is predicted by a convolutional neural network. We evaluate two different
network architectures using a newly generated ground truth data set and show that
the well-known VGG16-network produces excellent results for our application. A
significant improvement of those results is furthermore achieved by means of a fully
integrated, conditional random field.

The segmented images are then used as foundation for the refinement of Open-
StreetMap roads. We parameterize our model in terms of the location of each way-
point and the corresponding road width and aim to align this data with the original
aerial images. Moreover, we analyze the current state of the art and demonstrate that
our newly developed algorithm, based on nonlinear optimization and with a stronger
focus on road topographies, can provide even better results. In addition, the same
optimization tools can be exploited to create smooth road surfaces from low resolution
digital terrain models.

Finally, the proposed methods are applied to create a three-dimensional visual-
ization of a virtual landscape. We conclude this example by showing that a vehicle
simulation can successfully be conducted in this environment, thus establishing the
suitability of the proposed workflow for the task at hand.

Keywords: Virtual Environment, Vehicle Simulation, Aerial Image, Neuronal Net-
work, Convolutional Neuronal Network, CNN, Semantic Segmentation, CRF, Non-
linear Optimization, NLO, Visualization, Render Engine
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Kurzfassung

Realistische virtuelle Umgebungen sind eine grundlegende Voraussetzung um die
Entwicklung von Fahrzeugen und Steuergeräten durch Simulationsmodelle zu un-
terstützen. Wir präsentieren einen mehrstufigen Prozess für die Erzeugung geeigneter
Landschaften aus frei verfügbaren Datenquellen.

Kern der vorgestellten Methode ist die semantische Segmentierung von Luftbildern
mittels faltender neuronaler Netzwerke. Wir evaluieren zwei verschiedene Architek-
turen anhand eines neu erstellten Referenzdatensatzes und zeigen, dass das bekannte
VGG16-Netzwerk auch in diesem Anwendungsfall exzellente Ergebnisse generiert. Ei-
ne weitere signifikante Verbesserung ist durch ein voll in das neuronale Netzwerk
integriertes Conditional Random Field möglich.

Die segmentierten Luftbilder dienen im nächsten Schritt als Grundlage für die
Optimierung von bestehenden OpenStreetMap Kartendaten und die Abschätzung
der jeweiligen Straßenbreite. Dazu analysieren wir den aktuellen Stand der Technik
und demonstrieren, dass ein neu entwickelter Algorithmus basierend auf nichtlinearer
Optimierung unter starker Berücksichtigung der Straßentopographie qualitativ bes-
sere Ergebnisse liefert. Anhand von grob aufgelösten Geländemodellen können die
Kartendaten unter Verwendung derselben Optimierungswerkzeuge anschließend auch
dreidimensional ausgewertet werden.

Schlussendlich wird die Anwendung der genannten Methoden anhand eines kon-
kreten Beispiels bis hin zur vollständigen, dreidimensionalen Visualisierung einer
virtuellen Landschaft thematisiert. Die erfolgreiche Durchführung von Fahrzeugsi-
mulationen in dieser Umgebung dient als abschließender Beleg für die Eignung des
präsentierten Verfahrens.

Stichworte: Virtuelle Umgebung, Fahrzeugsimulation, Luftbild, Neuronales Netz-
werk, CNN, Semantische Segmentierung, CRF, Nichtlineare Optimierung, NLO, Vi-
sualisierung
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Source of original aerial image: basemap.at; License: CC-BY 3.0 AT.
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Chapter 1

Introduction

1.1 Virtual Roads for Vehicle Simulations

Front-loading vehicle development by the use of simulation tools is of vital importance
to the automotive industry, as it reduces the number of required prototypes and
the time-to-market for new products. In consequence, the evaluation of physical
components, new algorithms and embedded control units in a simulated environment
- which is known as X-in-the-loop (XiL) simulation - has become a widely accepted
procedure.

A common use case is the prediction of a vehicle’s performance and the impact
of modifications to vehicle components on a given virtual test track. Advanced ap-
plications may also include a driving simulator, where a human driver-in-the-loop
experiences all modifications to a (partially) simulated vehicle first hand. In this
context, not only the track but also the surroundings are of interest and have to be
visualized in real time. Recent emission regulations, complex new technology such
as advanced driver assistance systems (ADAS) and a restricted number of available
track test days all further add to the significance of providing detailed virtual driving
environments for real-time vehicle simulations.

While there are approaches focusing on the creation of purely procedural, fictional
road networks (Campos et al., 2015), modeling real roads has notable advantages for
many applications. Most importantly, a faithful recreation of existing road topogra-
phy facilitates correlations between simulation results and actual measurement data.
It is therefore beneficial for the initial parameterization and validation of simulation
models and it also increases the relevance of simulation results with respect to solving
real-life problems.

If the virtual environment is close to reality, a driving simulator may not only be
used to optimize the setup of race cars but it may also assist drivers in mastering new
tracks. Likewise, a modern engine testbed may be employed to predict the outcome of
real driving emissions (RDE) tests during early development stages. The automatic
creation of large-scale virtual driving environments, which mirror existing, real-world
roads, is therefore of practical relevance to today’s industry.
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1.2 Requirements for Virtual Roads

In the context of XiL simulations, we can identify three distinct groups of requirements
for virtual roads: In the first place, there are functional needs and specifications which
have to be met in order to create stable simulations. Secondly, application-specific
minimum standards for the reproduction quality of real-world environments have to be
observed. Last but not least, there also is a strong demand for real-time visualizations
of said environments.

Starting out with the functional requirements, virtual three-dimensional roads
have to exhibit certain topographic properties in order to be usable for the purpose of
vehicle simulations. A steady progression of the curvature over distance and a smooth
definition of both gradient and banking are key factors in ensuring numerically stable
simulations. This may be seen as an analogy to the construction of real roads, where
engineers aim to create a smooth ride for the comfort and safety of drivers. Applying
the same design principles - such as the use of clothoids for the transitions between
corners and straights - to virtual roads therefore not only increases the stability of
the simulation but also contributes to the generation of meaningful results.

In addition, any model which is to be executed on real-time systems must also meet
hard performance requirements. It is however difficult to quantify the limits exactly,
as the rate of simulation is usually adjustable and varies between applications. Based
on this author’s personal experience with a variety of vehicle dynamics packages1,2,3,
it is nonetheless assumed that any industrial grade simulation calls for the ability to
evaluate the road model at least 1.000 times per second per tire.

At this calculation rate, a vehicle traversing an urban area with an estimated
average velocity of 10 m/s would thus sample the virtual environment at centimeter-
level resolution. This renders any exact recreation of real-world, large-scale road
topographies impractical, as an enormous amount of data would have to be available
in-memory in order to be analyzed under hard real-time conditions. Therefore, a good
compromise between the contradictory demands for large open world scenarios and
accurate, detailed representations of real-world roads has to be achieved. The balance
may however be shifted in either direction, based on the application at hand. For
the simulation of a typical RDE test, it is sufficient to provide a low resolution road
network and terrain model which albeit has to enclose hundreds of square kilometers.
On the other end of the spectrum, the simulation of a permanent race track requires
a highly detailed model of a confined environment, as the exact locations of curbs
and potholes will influence the racing line and lap times.

Finally, virtual roads and their surroundings also have to be visualized. The
creation of interactive driving simulators is a very prominent usage example. Another
application is the visualization of abstract simulation results as a post-processing step.
While the physics simulation may be completely separated from the render engine,

1AVL List GmbH, 2016. AVL VSMTM. https://www.avl.com/-/avl-vsm-vehicle-simulation
2IPG Automotive GmbH, 2016. CarMaker R©. http://ipg.de/simulationsolutions/carmaker
3Mechanical Simulation, 2016. CarSim R©. https://www.carsim.com/products/carsim

https://www.avl.com/-/avl-vsm-vehicle-simulation
http://ipg.de/simulationsolutions/carmaker
https://www.carsim.com/products/carsim
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both components are connected by a shared definition of the virtual road. Any
suitable road data model therefore must also include the additional information which
is necessary for the generation of realistic three-dimensional landscapes, although
these may be rendered at a reduced level of detail (LOD).

1.3 Problem Statement and Background

All things considered, several state of the art applications for vehicle simulations
require virtual representations of real, existing roads which

1. steadily follow smooth trajectories,
2. can be evaluated on real-time systems,
3. strike a balance between world scale and resolution and
4. act as inputs to both simulation and visualization.

The creation of virtual driving environments, which fulfill these requirements, in-
volves two related tasks: First of all, measurement data has to be interpreted in order
to create a smooth, vectorized representation of an existing road network. Secondly,
a three-dimensional terrain and environment model, which seamlessly integrates the
road surfaces, has to be created for the purpose of adding context and realism to the
virtual scene. To these ends, the utilization of a wide variety of different data sources
and algorithms has been suggested.

1.3.1 Road Map Extraction

The analysis of aerial images is an obvious choice for the automatic replication of
road networks. Hinz and Baumgartner (2003) proposed a strategy involving the
exploitation of multiple views of the same scene and a digital surface model (DSM)
of moderate resolution in order to mitigate the influence of occlusions. In addition,
they used detailed knowledge about roads and their contexts in order to formulate
scale-dependent models for the extraction of urban road networks.

Clode et al. (2004) presented a method which automatically detects roads solely
from airborne laser scanning (ALS) data. Their method initially creates a digital
terrain model (DTM) from a point cloud of airborne light detection and ranging
(LIDAR) data. Roads are then extracted by analyzing the height and intensity vari-
ations of the measured point cloud with respect to the DTM. Finally, a set of filters
is applied in order to create a binary labeled image.

A combination of the previously mentioned schemes was suggested by Hu et al.
(2004). Their system fuses clues obtained from LIDAR data and high resolution
aerial images in order to detect grid roads in dense urban areas. The height in-
formation permits to eliminate uncertainties due to occlusions caused by high-rise
buildings, whereas the processing of aerial images provides contextual information on
the scene. This is exemplified by image classification methods, which are applied for
the detection of vehicles in order to distinguish parking lots from actual roads.
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Cao and Krumm (2009) proposed a method for the automatic extraction of road
network information solely from GPS traces. They created a routable road graph
by grouping individual GPS traces with the help of simulated potential energy wells.
This approach however only generates a single trajectory for each edge in the graph
and does not provide any further information on the topography of the roads. The
resulting road map’s level of detail therefore is comparable to community driven,
manual mapping efforts such as OpenStreetMap4. Mattyus et al. (2015) however
demonstrated that a coarse, graph-based road map can be efficiently refined and
augmented by exploiting aerial images. This process also results in detailed estimates
for the width of each road segment.

A full three-dimensional reconstruction of road surfaces with the help of mobile
laser scanning (MLS) is an interesting option whenever a faithful and detailed re-
production of the real word is of utmost importance. Yang et al. (2013) proposed
a method for delineating roads from large-scale point clouds which relies on the de-
tection and refinement of curb points. Their algorithm involves the partitioning of
a point cloud in consecutive cross sections in order to filter out candidates for curb
points. A refinement stage, which assumes a similar geometry of sequential cross
sections, considerably improves the results. This strategy was successfully applied for
the extraction of road boundaries in residential and downtown areas.

The above list of methods is by no means exhaustive. The topic of creating road
maps with added topographical information has been researched at great length, and
any combination of the given approaches may be used to achieve viable results.

1.3.2 Modeling the Environment

The generation of a three-dimensional, realistic virtual driving environment requires
not only a definition of the road network but also a depiction of the terrain and
scenery. Incidentally, the process of creating a suitable scene description is in many
ways similar to the extraction of road features from measured data. First of all, many
of the previously mentioned data sources - such as aerial images, digital elevation or
surface models and aerial or mobile laser scanning data - may also be used for the
recreation of buildings, forests and waterways.

The low spatial resolution of most publicly available data sources however makes
it extremely difficult to deduce the exact three-dimensional shape of scenery items
with an acceptable degree of accuracy. The camera position in a virtual driving
environment adds to the significance of this issue, as triangulated background objects
are often close to the near plane of the viewing frustum and implausible mesh surfaces
thereby are immediately noticeable.

The exact reconstruction of every building and plant alongside the road network
is however not absolutely necessary, as there is no direct correlation between the
visualization of the landscape and the simulation results. Therefore, it is perfectly
acceptable to model the environment using a procedural approach instead of per-

4Haklay and Weber, 2008. http://www.openstreetmap.org.

http://www.openstreetmap.org
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forming an accurate three-dimensional inference. To this end, buildings, vegetation
and soil types are stored using a small set of parameters each and the actual objects
are synthesized in real-time whenever they are visible from the current camera’s po-
sition. Depending on the application at hand, it may however still be advisable to
perform an exact reconstruction of important and recognizable landmarks such as
bridges, cathedrals or race control towers in order to increase the authenticity of the
procedurally generated landscape.

Surface Classification and Object Detection

One solution for the detection of different surface, soil and vegetation types is a
pixel-level classification of LIDAR data and aerial images. Charaniya et al. (2004)
provided such a method using manually implemented feature descriptors which are
based on both color and height variations. This approach produces labels for individ-
ual pixels while disregarding spatial connections. Kluckner et al. (2009) suggested to
use a more sophisticated but still compact feature representation which is based on
covariance descriptors for a small number of properties. In addition, these authors
proposed a two-stage algorithm for classification and semantic segmentation which
also considers the relationships between neighboring pixels. Hence, the features are
initially evaluated by random forest (RF) classifiers while the final labels are inferred
from a conditional random field (CRF). This method also was expanded to create
superpixel-based semantic segmentations (Kluckner et al., 2010).

Other methods for the detection of buildings and objects have also often been
based on a semantic segmentation of the measurement data. Müller and Zaum (2005)
exploited prior knowledge about the shape of man-made structures in order to de-
fine photometric and geometric features for the robust detection of buildings from
aerial images. More recently, Sampath and Shan (2010) presented a method for the
segmentation and reconstruction of polyhedral roofs from LIDAR data. In addition,
they also suggested the applicability of their approach for the reconstruction of whole
buildings, as they observed topographically consistent results (Sampath and Shan,
2010, p. 1566).

State of the art algorithms for solving classification and segmentation challenges
are however almost exclusively based on deep convolutional neural networks (CNNs)
(Krizhevsky et al., 2012; Everingham et al., 2015). Furthermore, Girshick et al. (2014)
demonstrated that a CNN which has been trained for a classification task might also
achieve up-to-date results for object detection. They also provided evidence that
it is possible to transfer the knowledge of a pre-trained CNN to a different domain
(Girshick et al., 2014, p. 581). Consequently, a classification network may be trained
on a large set of publicly available and thoroughly labeled auxiliary images while
the domain-specific fine-tuning of the weights is achieved using a small set of actual
orthographic aerial images.

In conclusion, semantic segmentation, classification and object detection are all
important tools for the extraction of information from measurement data. These
methods are therefore essential for the creation of a parameterized description of
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the virtual driving environment. Each topic has however been the focus of intensive
research over multiple decades, and a comprehensive comparison of all proposed al-
gorithms is clearly outside of the scope of this thesis. Nevertheless, we will analyze
selected state of the art approaches and evaluate their practical applicability to the
task at hand.

1.4 Constraints, Objectives and Delimitation

The availability of measurement data - or often lack thereof - is a key factor when
selecting a method for the creation of virtual driving environments. Many of the
algorithms described in the previous sections have been proven on small and carefully
chosen test data sets of extraordinary high quality. In practice, the acquisition of high-
resolution measurement data for a specific large-scale region of interest is however
often either difficult or expensive5. When data is supplied by third parties, the
licensing conditions regularly also prohibit the redistribution of substantial parts of
the data set and enforce severe restrictions for the release of any derivative works6.

The primary objective of this thesis therefore is to suggest a workflow for the
creation of virtual driving environments, which provides sophisticated results in the
absence of dedicated measurements and adapts well to large-scale, real-world prob-
lems. To this end, we propose to apply state of the art computer vision and machine
learning algorithms to publicly available data sources which are distributed under per-
missive licenses. Furthermore, we aim to prove the suitability of a single, integrated
pipeline for the extraction of both road networks and detailed scenery descriptions
from those same sources.

Consequently, data released under open government regulations is of particular
interest. The results of the Shuttle Radar Topography Mission (also see Van Zyl, 2001)
are a prime example, as the complete digital elevation model of the earth, sampled
at a 30 m interval, has recently been placed in the public domain7. Likewise, many
governments 8 have committed themselves to provide orthographic aerial images with
typical resolutions of 10-50 cm/pixel for unrestricted use as part of their open data
strategies.

In an attempt to further narrow down the scope of this work, we assume that a
semantic segmentation of said orthographic aerial images is an excellent foundation
for all further steps in the workflow. In addition, we will evaluate only segmentation
methods based on convolutional neural network architectures, as those have been
shown to consistently outperform other algorithms (Everingham et al., 2015, p. 126).

5At the time of writing, the Austrian government advertises ALS data with a resolution of 1 point
per m at a cost of 80 EUR per km2 (Land Steiermark, 2016b).

6Master Terms: Google Maps for Work. Intellectual Property Restrictions. https://www.google.

com/work/earthmaps/legal/emea/premium-maps-terms.html. Accessed 2016-03-16.
7United States Geological Survey, 2016. Shuttle Radar Topography Mission. http://srtm.usgs.gov
8By way of illustration: Stadt Wien und Österreichische Länder bzw. Ämter der Landesregierung,

2015. Schweizerische Eidgenossenschaft, 2016. New South Wales Government, 2016.

https://www.google.com/work/earthmaps/legal/emea/premium-maps-terms.html
https://www.google.com/work/earthmaps/legal/emea/premium-maps-terms.html
http://srtm.usgs.gov
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1.5 Outline of the Thesis

With these constraints and limitations in place, it is now possible to more precisely
identify the most important aspects of this thesis. Based on the brief survey of the
overall topic given in section 1.3, we can suggest an efficient and well-structured work-
flow for the creation of virtual driving environments. Figure 1.1 depicts the pipeline
of the proposed system and draws special attention to some of the key processes. It
also acts as a blueprint for the structure of this thesis, as the remaining chapters are
closely linked to the individual steps of this workflow. Each technical chapter thus
contains a separate, in-depth discussion of related work and an evaluation of selected
state of the art methods for a single, specific task.

Semantic 
segmentation (CNN)

Road map 
refinement (2D)

Aerial images

Road prior
(OSM)

Labeled pixels

2D road map

Terrain 
model

3D track refinement

3D tracks

Mesh and texture
generation

3D environment

Vehicle simulation

Visualization

Vehicle 
6 DOF

Driver
input

Inertial meas.

Figure 1.1: Overview of the proposed pipeline for the creation of virtual driving envi-
ronments from aerial images. The center column contains the key steps in descending
order.

Semantic Segmentation of Aerial Images. The main focus of this part is the
evaluation of several CNN-based methods for the per-pixel classification and semantic
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segmentation of orthographic aerial images. To this end, we discuss different network
architectures and demonstrate how a CRF can be used to improve classification accu-
racy. All experiments are conducted on a small set of manually labeled ground truth
orthophotos, which have been created specifically as part of this work.

Road Map Refinement. The suggested process for the creation of a topograph-
ically correct map of the road network consists of two consecutive stages. First of
all, the results of the semantic segmentation step are utilized to refine road priors
obtained from inertial measurements and OpenStreetMap data. For this purpose, a
probabilistic method based on the inference of road segment properties in a Markov
random field (MRF) is applied (Mattyus et al., 2015). We also formulate an alterna-
tive algorithm, which interprets the refinement as a nonlinear optimization problem,
and compare the results of both approaches.

The second and final stage extends the description of the road network’s topog-
raphy to three dimensions. A simple projection of the individual road segments onto
a three-dimensional terrain model is however insufficient, as a number of constraints
on the resulting surface have to be observed. Therefore, we once again treat this task
as a nonlinear optimization problem and define a set of associated cost functions to
describe the requirements.

Visualization and Practical Applications. At last, we aim to prove the suit-
ability of the proposed approach by solving real-world problems. Thus, the creation
of virtual driving environments by applying the previously described methods and
algorithms is demonstrated. The chapter includes the description of a method for the
construction of three-dimensional meshes from the previously extracted definitions.
Furthermore, the architectural details of a suitable, tile-based render engine are laid
out, although the procedural generation of vegetation and buildings is merely implied.

Conclusion. Finally, the thesis is concluded with a summary of the most impor-
tant findings. Moreover, we reflect on the limitations of the suggested approach and
provide ideas for further research.



Chapter 2

Semantic Segmentation of Aerial
Images

The first step towards the creation of virtual driving environments is - according to
the proposed workflow - the selection of a method for the automatic, per-pixel classi-
fication of orthographic aerial images in order to generate a semantic segmentation.
As result of the previously established constraints, we interpret this task as a machine
learning problem which has to be solved using neural networks. The opening pages
of this chapter therefore give an overview of related work and provide the theoretical
foundation for the subsequent experiments.

2.1 Background and Methodology

All background material in this section is presented in a progressive way, that is, each
new topic builds on previously explained principles. Initially, the task at hand is
defined and located in the wide field of machine learning. We then proceed to discuss
neural networks and their specific application to image classification. This section is
followed by an explanation on how these same classification networks can be adapted
to produce individual predictions for each pixel. Finally, we demonstrate that a CRF
can be utilized to efficiently model the relationships between neighboring pixels in
order to generate a refined semantic segmentation of an image.

2.1.1 Machine Learning

To solve a well-defined and computable problem, we usually formulate an algorithm
which produces the desired output from a given input. There are however cases when a
task is so complex that a manual implementation of a solution becomes impracticable.
A per-pixel classification of aerial images most certainly meets this criterion, as the
class of a single pixel depends not only on the local color property but also on yet
unknown features of a contextual area which may span the whole image.
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Therefore we aim to create a system which independently learns appropriate
heuristics in order to resolve the assignment. In this regard, a widely accepted,
formal definition of machine learning has been provided by Mitchell:

A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E. (Mitchell,
1997, p. 2)

In addition, programs which fit this description can be further classified into three
different groups according to the type of feedback which is available to them (see
Russell and Norvig, 2010, p. 694-695):

First of all, there are algorithms for unsupervised learning. In this case, the
desired output is not yet known and it is therefore impossible to provide any feedback
in order to guide the learning process. Programs of this class are however expected
to detect similarities in different input examples. Most commonly, such methods are
used to cluster homogenous instances based on automatically detected features. A
perfect example for the application of this pattern is the automatic grouping of similar
and related web documents. To this end, an algorithm has to learn which document
features can be used to optimize the intra-cluster similarities and the inter-cluster
distances.

A second group of programs learns how to achieve an overall goal in a dynamic
environment by finding the optimal actions which lead towards success. This is called
reinforcement learning, because the feedback to the algorithm is provided by a
series of reinforcements, that is rewards or punishments which are based on certain
objectives. For instance, a program which learns how to play chess cannot be guided
by explicit feedback. Due to the vast number of possible states of the board, it is
not feasible to precisely determine the best possible next move. On the other hand,
it is obvious that decisive wins should be rewarded and devastating losses should be
punished. The program may therefore use this kind of feedback on the outcome of
the game in order to deduce which actions consistently yield good results in the long
run. (Mitchell, 1997, p. 367ff; Russell and Norvig, 2010, p. 830ff)

Finally, there are problems where a sufficient number of training examples, each
consisting of input quantities and the corresponding output data, are readily available.
In such a scenario, an algorithm can improve through direct, explicit feedback after
each execution. This process is called supervised learning, because the training
progress is observed and actively directed so that the system can learn from selected
examples. Furthermore, we can distinguish between two different types of super-
vised learning: Problems with continuous output spaces are called regression tasks,
whereas a discrete output space is characteristic of classification assignments.

A semantic segmentation of aerial images could be interpreted as a task which
consists of clustering similar pixels, thereby posing an unsupervised learning problem.
However, further processing of said images also requires the calculation of a single,
predefined label for each cluster in order to recreate different surface types. Therefore
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we reformulate the assignment as a supervised classification problem for individual
pixels, thus implicitly forming clusters of adjacent elements which are joined together
by the same label.

With this stipulation in place, it is now straightforward to describe the proposed
technique in terms of the previously given, formal definition of machine learning. A
suitable algorithm has to learn heuristics in order to fulfill classification tasks (T )
for individual pixels based on experience (E ) provided in the form of manually la-
beled aerial images. The performance (P) of this system can easily be measured
by the percentage of correctly labeled output pixels, although we will also use more
sophisticated indicators later on.

2.1.2 Neural Networks

Neural networks are applicable to a wide range of machine learning problems. They
are however especially useful for solving supervised classification tasks, as training
them by providing examples of input-output combinations leads to excellent results.
Furthermore, recent studies have pointed out the superiority of classification networks
over alternative algorithms such as decision trees (Everingham et al., 2015, p. 126;
Russakovsky et al., 2015, p.235). This section therefore briefly describes the funda-
mental principles of neural networks while also offering some insight into how these
networks actually learn to solve problems. A full discussion on these topics can be
found in Mitchell (1997, p. 81ff) and Russell and Norvig (2010, p. 727ff).

Historical Approaches

Modeled after the basic physiology of neurons and synapses inside a brain, artificial
neural networks are also formed by individual units (nodes) and their weighted con-
nections (links). Early work - dating back as far as 1943 - represented neurons as
elements which were either switched on or switched off (McCulloch and Pitts, 1943).
The transition to an activated state was the result of a stimulation caused by links
to other units. It was shown that logical operators could be implemented by such
primitive models, thereby enabling a network of suitable complexity to calculate the
result of any computable function. Since then, more fine-grained and realistic rep-
resentations for nodes have however been developed. (Russell and Norvig, 2010, p.
16)

A Mathematical Model for Neurons

Figure 2.1 visualizes a mathematical model for a single unit of a neural network. The
depicted node computes an output value by first calculating a linear combination
of real-valued inputs. Then, an activation function f maps this sum to the desired
output range. Linear transformations, sigmoid functions and hard thresholds are all
common choices for activation functions. As the type of the function f is also often
used to describe a specific model, this consequently leads to a designation as linear,
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Figure 2.1: Schematic of a model for a single neuron with an additional bias input.

sigmoid and thresholded unit. By adding an additional constant input (and the
associated bias weight), it is furthermore possible to translate an activation function
along the x-axis. The equation for the output value o is thus

o = f

(
n∑
i=0

xiwi

)
(2.1)

where xi references the input connections and wi describes the elements of the weight
vector ~w. Through the selection of a convenient activation function and by modifying
the elements of the weight vector, this model can be adapted to produce the desired
output from given input data.

Training Rules

Whenever suitable labeled examples are available, it is possible to automatically opti-
mize the weight parameters. This optimization process is the method which actually
enables a unit to learn from experience. We first analyze the training procedure for
thresholded units where the output is calculated as o = sgn (~w · ~x). Such nodes are
also called perceptrons and are used for many simple classification tasks. In the spe-
cial case of linearly separable examples, the weight optimization can be conducted
according to the perceptron training rule. To this end, the weights are randomly
initialized and iteratively updated whenever the calculated result for an example does
not match the desired target output t:

∆~w = η(t− o)~x
~w ← ~w + ∆~w

(2.2)

Thereby, η is a positive constant called the learning rate, which moderates the
influence of individual examples, and (t− o) is the output error. This algorithm has



From Aerial Images to Virtual Driving Environments 13

been proven to converge in a finite number of iterations, provided that the learning
rate is small enough. (Mitchell, 1997, p. 89)

The perceptron training rule however only covers a very specific case, as a unit may
well include a different activation function and linearly separable training examples
are not always available. For all these other scenarios, it is possible to apply the delta
rule instead, which leads towards a best-fit approximation for the weight vector.

We first derive this rule for a single linear unit where the output is given as
o = ~w · ~x. The basic idea is to find a weight vector so that the sum of the squared
error terms over all examples out of the training data set D is minimized (see Mitchell,
1997, p. 89ff):

E(~w) ≡ 1

2

∑
d∈D

(td − od)2 (2.3)

On the assumption that D remains constant during training, the elements of the
weight vector can be interpreted as axes of a multi-dimensional space. The resulting
error E(~w) may then be calculated for each point in this space, thus forming an error
surface as shown in figure 2.2.

w0

w1

E(w)

Figure 2.2: Error surface for a weight vector with two elements. The acceptable
values for the elements w0[−3,+7] and w1[+6,+16] form the hypothesis space.

Therefore, we can apply the gradient descent algorithm to minimize the total
error. To this end, the direction of the steepest gradient along the error surface is
computed by calculating the partial derivatives vector of the error E(~w) with respect
to the current values of the weight vector. By incrementally moving in the opposite
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direction of this gradient, the output error is ultimately minimized:

∇E(~w) ≡
[
δE

δw0

,
δE

δw1

, ...,
δE

δwn

]
∆~w = −η∇E(~w)

~w ← ~w + ∆~w

(2.4)

While η once again denotes the learning rate, this positive constant is now interpreted
as the step size of the algorithm and a negative sign is added to accommodate for the
direction of movement. The individual components of the gradient vector ∇E(~w), as
derived in Mitchell (1997, p. 92), are furthermore calculated as:

δE

δwi
=

δ

δwi

1

2

∑
d∈D

(td − od)2

=
1

2

∑
d∈D

δ

δwi
(td − od)2

=
1

2

∑
d∈D

2 (td − od)
δ

δwi
(td − od)

=
∑
d∈D

(td − od)
δ

δwi
(td − ~w · ~xd)

=
∑
d∈D

(td − od) (−xi,d)

(2.5)

By replacing the components of ∇E(~w) in equation 2.4 with equation 2.5, we fi-
nally deduce the simplified rule for weight updates in the case of linear units according
to the gradient descent algorithm:

∆wi = η
∑
d∈D

((td − od)xi,d (2.6)

Stochastic Gradient Descent

An alternative to the computationally expensive derivation of the surface’s gradient at
each step - which requires the calculation of the exact error over all training examples
- is the stochastic gradient descent (SGD) algorithm. In this case, the weights are
updated after each computation of the error for a single training example, thereby
transforming equation 2.6 into:

∆wi = η (t− o)xi (2.7)

When the learning rate η is chosen small enough, these incremental steps can be a
sufficient approximation of the true gradient descent (Mitchell, 1997, p. 94).

On a final note, the perceptron training rule 2.2 appears to be identical to the
weight update equation 2.7. Whereas the former is however only applicable to thresh-
olded units, it is possible to derive the delta update rule for all nodes with differen-
tiable activation functions.
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Multi-Layer, Feed-Forward Networks

While single units are still used for some basic classification tasks, a direct linear
connection between the inputs and outputs is not sufficient for modeling complex
relations. Therefore, intricate networks of nodes with non-linear activation functions
are necessary in order to solve sophisticated problems such as the semantic segmen-
tation of images. Figure 2.3 depicts a simplified structure that nonetheless contains
the basic building blocks of said networks. The individual units in this schematic are
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Figure 2.3: Schematic of a feed-forward multi-layer network with hidden units.

organized in several consecutive layers. As edge cycles are strictly prohibited, the
nodes and links form a directed acyclic graph (DAG). This specific architecture is
called a feed-forward network (also see Goodfellow et al., 2016, p. 168ff). Despite
of this simplification, the relation between the weights of the hidden units and the
multiple outputs of the network is no longer obvious.

Network Error and Loss Functions

In order to formulate a network training algorithm, we first have to deal with the fact
that networks may have many different outputs, all contributing to the total error.
One solution is to treat the individual outputs as components of an output vector.
This changes equation 2.3 to:

E(~w) ≡ 1

2

∑
d∈D

∑
k∈Outputs

(td,k − od,k)2 (2.8)

However, the calculation of an unweighted sum of the output errors may not be
a suitable performance measure for all tasks. Specifically, some errors may be more
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significant than others, depending on the application at hand. Considering a network
which labels e-mails as either spam or genuine content, it is evident that forwarding
unwanted messages is preferable to suppressing any of the few important personal
messages (Russell and Norvig, 2010, p. 710). Thus, the performance of two networks
which produce the same classification error according to equation 2.8 may be assessed
quite differently by actual users.

Therefore a more general approach to the calculation of the network error is some-
times needed. To that end, we may define a loss function with arbitrary character-
istics based on the network’s multiple outputs and their corresponding target values
for the computation of a single loss value. This scalar, which closely correlates with
the perceived performance of the network, then acts as a replacement for the objec-
tive error and has to be minimized during training. In order to be able to use this
strategy in conjunction with certain optimization algorithms, it is however necessary
to ensure that said loss function also is differentiable over its entire domain.

Training Feed-Forward Networks

Based on the previous sections, the minimization of a suitable loss function’s response
by adapting the SGD algorithm is an obvious choice for the training of feed-forward
networks. To this end, the outputs of all units in the network once again have to be
differentiable. Therefore, networks consisting of sigmoid units are very popular, as
these include a non-linear activation function which fulfills all requirements. Further-
more, the σ-function itself is not only bounded but also facilitates the calculation of
derivatives and thereby the computation of gradients:

σ (y) =
1

1 + e−y

δσ (y)

δy
= σ (y) (1− σ (y))

(2.9)

By using this relation, the SGD weight update step for a single sigmoid unit with a
quadratic loss function can be derived in a similar way to equations 2.5 and 2.6:

∆wi = η (o (1− o) (t− o))︸ ︷︷ ︸
error term δ

xi (2.10)

This equality directly applies to all output units of the network because the training
examples include the corresponding target values. However, the error term δ also has
to be independently computed for each hidden unit in order to update the matching
weights, and the target values for these nodes are not part of the training data set.

In order to find a method for calculating the yet unknown δ-terms, we first reflect
on the fact that the inputs of any unit in a feed-forward network are outputs of a
previous layer as visualized in figure 2.3. Equation 2.1 therefore leads to the assump-
tion that each input connection also forwards the output error of the preceding unit.
These errors are thus passed on and each of them is responsible for a certain fraction
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of the subsequent unit’s total output error (Russell and Norvig, 2010, p. 733). The
relative contributions of said errors thereby depend on the weight parameters which
are associated with each input connection.

This observation is very useful, as it can be reversed in order to calculate the
δ-terms for hidden units. To that end, we deduce that the output error (th − oh) of
any hidden unit is partly responsible for the error terms of all connected nodes in the
succeeding layers. Furthermore, the degree of correlation with said subsequent error
terms is proportional to the strength of the link between the nodes. This enables us
to intuitively formulate an equation for the error term δh of a hidden sigmoid node h
based on the error terms δk of all nodes connected to this hidden units’ output:

(th − oh) ≡
∑
k

wk,hδk

δh ← o (1− o)
∑
k

wk,hδk
(2.11)

Here, wk,h is the weight parameter of the unit k, which denotes the significance of the
output oh for the calculation of δk and thereby determines the connection strength
between both nodes. A comprehensive derivation of this update equation is presented
by Mitchell (1997, p. 101ff).

By using rule 2.11 to update the weights of hidden units, we can formulate an
incremental algorithm for training feed-forward networks based on the SGD method.
At first, the weights of the network are initialized with small random values. The
optimization then continues by repeating the same steps for each training example
until a termination condition defined in terms of the loss value is met:

1. The network is evaluated in forward direction to calculate the output values.
2. Error terms for the output layer are computed according to the delta rule.
3. These errors are then propagated throughout the network in reverse direction.

Therefore, the δ-terms are independently calculated for each hidden unit.
4. Finally, the weights of all units are updated based on the learning rate.

The dissemination of the output error starting from the final layer thus is the key
concept which enables us to efficiently optimize the weights of feed-forward neural
networks in an end-to-end training procedure. Hence, this method is called the
back-propagation algorithm (Rumelhart et al., 1986).

There are two common variations of this procedure: One approach is to accu-
mulate the gradients over consecutive examples before updating the weights, thereby
getting closer to a true gradient descent. A second alteration introduces an addi-
tional momentum α in order to update the weights, that is an unit’s ∆wi value for
the training example (n) also depends on the corresponding value during the previous
iteration (n− 1) (also see Mitchell, 1997, p.100):

∆wi(n) = ηδxi + α∆wi(n− 1) (2.12)



From Aerial Images to Virtual Driving Environments 18

In addition, the value of each weight may also be reduced by a certain - usually
quite small - factor after each iteration. This procedure is known as weight decay
and effectively adds a penalty for large weights, thus avoiding complex error surfaces
while favoring simpler hypotheses.

Over-Fitting and Cross Validation

Neural networks are however still susceptible to over-fitting. If the size of the
network in terms of individual units and weight parameters is large enough, the full
set of training examples can be memorized. This leads to excellent classification
results on the training data but poor performance in all other scenarios, because the
network is not forced to deduce universally valid rules from the provided examples.

It is therefore necessary to actively supervise the training phase to ensure that the
network will generalize well. A simple precaution, which helps in recognizing critical
advances, is to partition the collection of labeled examples in separate training and
validation sets. Furthermore, the performance of the network with respect to the
validation data has to be analyzed regularly during training. When the network’s
accuracy continues to improve on the training set, but results on the validation data
deteriorate, then this is a strong indication that over-fitting might have occurred.
However, it is still necessary to continue training for some iterations in order to be
sure that the abort has not been caused by a local minimum of the validation set
error (Mitchell, 1997, p. 111). (also see Russell and Norvig, 2010, p. 708-709)

A more sophisticated method for the prediction of an algorithm’s performance on
yet unseen test data - which also uses all of the available examples for training - is
cross validation. To this end, a labeled collection is split into an arbitrary number
of k partitions which facilitate a k -fold cross validation. With a small data set of
10 items, it is for instance possible to create 10 partitions of single items (k=10) or
5 item pairs (k=5). The training phase is then repeatedly executed, so that each
partition acts as a validation data set exactly once. The mean value computed from
all k individual validation errors is an estimate for the overall performance of the
network on unknown data. After the architecture has been validated in this way, all
of the examples may be used during a final training loop (Mitchell, 1997, p. 112).

Unfortunately, while the evaluation of neural networks is usually quite fast, the
process of training them using large example collections is comparatively slow. A
cross-validation approach only aggravates this issue, as the number of required re-
sources increases linearly with the number of generated partitions. It is therefore
this author’s opinion, that while such a procedure is theoretically superior to other
strategies, it is not applicable to the training of all deep neural networks.
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        Input              Convolutions          Inner Products, Predictions    Output (ArgMax)

Figure 2.4: Classification network architecture. The visualization demonstrates the
dimensions of the output data blobs for each layer.

2.1.3 Classification Networks

State of the art classification networks do not rely solely on sigmoid units. The
training rules from section 2.1.2 also apply to all other layer-based, feed forward net-
works as long as the derivatives of the loss and activation functions can be calculated.
Thus, many different layer types with tunable weight coefficients have been devel-
oped. Figure 2.4 visualizes a typical architecture of an image classification network
which employs some of those layers.

The input to this network is made up from the image’s preprocessed pixel data,
were each of the color components forms a separate, two-dimensional matrix. There-
fore, the binary large objects (data blobs) which pass through the network can be
described in terms of C ×W ×H, where C is the number of channels, W the width
and H the height of a matrix. The term bottom blob is often used to refer to any of
the input connections of a given layer. Likewise, the output of a layer is also known as
the top blob and the final layer of the network, which calculates the loss value, thus
is the top layer. The next sections contain a short overview of specialized computer
vision network layers.

Convolution Layer

A convolution kernel is a matrix of coefficients which is repeatedly shifted across and
multiplied with an input image to create an output image. Different convolution
kernels have long been used in image processing in order to apply certain effects or to
enhance images. Common applications include sharpening and blurring of pictures
as well as enhancing or detecting edges (see figure 2.5).

LeCun et al. (1998) first suggested to utilize these convolution kernels in order to
detect yet unknown features in the input data. A key insight is that the coefficients of
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Figure 2.5: Convolution. A 3× 3 normalized convolution kernel for edge detection.

a single convolution kernel can be trained in the same way as the coefficients of a single
neuron, that is using the back-propagation algorithm. The kernel’s coefficients and
thus the exact nature of the detected feature are thereby determined automatically
during the training stage. (LeCun et al., 1998)

A convolution layer usually contains multiple different kernels and each kernel is
responsible for detecting a single significant feature such as a vertical or horizontal
line, sharp edges or strong local variations in a single color channel. This feature
detection is the foundation of the classification process and thus is generally performed
early on. The number of weight coefficients for a convolution layer depends on the
number of different kernels and the size of each kernel, but it is independent from the
dimension of the input data. In order to combine local features and thereby detect
larger and more complex structures, multiple convolution layers with small kernels
are often stacked to form deeper networks.

By visualizing the weights of a convolution kernel after the training stage it is
also possible to generate an image which is prototypical for the feature this kernel
has adapted to. Images can also be generated from multiple consecutive convolu-
tional layers, thereby producing complex artworks which are representative of the
network’s knowledge. This technique is called inceptionism and has been implemented
in Google’s Deep Dream1 software (see Mordvintsev et al., 2015).

Pooling Layer

The pooling layer combines adjacent cells and thereby reduces the number of elements
of a data blob. Average pooling is a common variant which simply calculates and
promotes the average value of all inputs. A pooling layer is however also often applied
directly after a convolution layer in order to identify the highest probability value for
a given feature within a small region. This usage is called maximum pooling, and the
output thus is the maximum of all inputs.

1https://github.com/google/deepdream/blob/master/dream.ipynb/

https://github.com/google/deepdream/blob/master/dream.ipynb/
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Receptive Fields

As we progress from layer to layer, the dimensions of the data blobs may change
significantly. In order to describe the relationship between the input and output
dimensions of a layer or network, two terms are frequently used: The receptive
field of an output is composed of all inputs which affect its values. The stride on
the other hand gives the distance between two receptive fields for adjacent output
elements. Using these terms, we can calculate the output width of convolutional and
pooling layers from their respective input widths (see Jia et al., 2014):

Woutput =
Winput + 2 · paddinghorz −Wkernel

stridehorz
+ 1 (2.13)

A formula analogous to equation 2.13 is also used to calculate the height of the output,
and figure 2.6 demonstrates both relations.

Combined Layers
Receptive Field: 7x7

Stride: 4
Pad: 2

2x2
Out1x7x7 Input

2x2
Out

1x7x7 Input
4x4 Blob

Layer 1
Convolution
Kernel: 5x5
Stride: 2
Pad: 2

Layer 2
Max. Pooling

Kernel: 2
Stride: 2
Pad: 0

Figure 2.6: Receptive field and stride. Top row: Consecutive application of convolu-
tion and max pooling layers. The 1 × 7 × 7 input blob is first padded by 2 pixels,
yielding a 1×11×11 data structure. A single 5×5 convolution kernel is then applied
16 times using a stride of 2 pixels which creates the temporary 1 × 4 × 4 data blob.
A max pooling layer further reduces the dimensions to the final 1 × 2 × 2 output
blob. Bottom row: Equivalent single-layer network - kernel size, padding and stride
all influence the receptive field.

Inner Product Layer

An inner product is a fully connected layer, that is all inputs i are directly connected
to all outputs o. The receptive field for each output thus encompasses all inputs.
Furthermore, the width and height of the output blob are always 1. Thus, the number
of required weight coefficients equals Ci ·Wi ·Hi ·Co. As a result, inner product layers
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can contain a huge number of coefficients and are often only used at the final stages
of a classification network in order to combine independent features into probability
predictions for predefined output classes. After successful training, an inner product
layer may for example contain weight coefficients which correctly associate the learned
features ”furry”, ”sharp ears” and ”vertical pupils” with the predefined output class
”cat”. A common approach is to use an inner product in order to create a network
with a real-valued output vector with T elements, where each element predicts the
probability for a single, predefined class.

SoftMax Layer

To train such a classification network, it is necessary to normalize the T predicted
output probabilities. The SoftMax function is used for this purpose, as it transforms
a vector of real valued inputs into a new vector of the same size, whose values add
up to a total sum of 1. This function can therefore be used to calculate the desired
probability distribution p̂ based on the unnormalized input values ~x and the additional
weight vector ~w (see Jia et al., 2014). The normalized probability p for the j-th class
under the condition of ~x is thereby given as:

p(t = j|~x) =
exjwj∑T−1
i=0 e

xiwi

(2.14)

ArgMax Layer

In order to solve a multinominal classification problem for T classes, the final output
of the algorithm however has to be an index t within the range of [0, 1, ..., T−2, T−1].
The index t is determined by the ArgMax function which returns the index of the
element with the highest probability.

2.1.4 Classification Benchmarks and State of the Art

The performance of image classification networks is typically assessed using one of
several well-known ground truth data sets. One example of such an annotated col-
lection is the ImageNet database (Deng et al., 2009), which is the foundation for the
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). Russakovsky et al.
(2015) provide a retrospective on the history and progress of this competition. The an-
nually held PASCAL Visual Object Classes (VOC) (Everingham et al., 2015) contest
is another widely accepted benchmark for the evaluation of classification networks.

Two important measures for comparing the success of a network are the top-
1 and the top-5 error rates: The top-1 error is the fraction of images where the
label predicted by the ArgMax function differs from the ground truth data, i.e. the
network returns a wrong classification result. In a similar way, the top-5 error rate
is the fraction of samples where the 5 most likely classes according to the network’s
prediction do not contain the correct label.
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AlexNet

Krizhevsky et al. (2012) first trained a network named AlexNet, which consists of
stacked convolutional layers, for the ILVSRC 2010 and ILVSRC 2012 challenges.
In order to prevent over-fitting, this network also includes dropout units, which
randomly disable neurons of the first two fully connected layers during training. This
additional improvement has been developed by Hinton et al. (2012), who suggest to
use a dropout factor of 50% for hidden layers and 20% for input layers.

In consequence, the AlexNet architecture significantly outperformed all other
ILSVRC 2012 entries with a top-5 error rate of 15.3%, while the runner-up in this
competition achieved a top-5 error of 26.2%. Due to this huge improvement in classi-
fication accuracy, AlexNet marks a turning point which popularized the use of CNN
networks for classification tasks and strongly influenced many newer approaches (Rus-
sakovsky et al., 2015, p. 232).

Visual Geometry Group (VGG) - Networks

Simonyan and Zisserman (2014) investigated the influence of the depth of a CNN on
its performance based on the classic network architecture of LeCun et al. (1998). They
concluded that deeper neural networks can result in considerably better classification
accuracy. To this end, they presented a homogenous architecture consisting of 16 to
19 layers with 3 × 3 convolution filter kernels and designated their most successful
networks as VGG-16 and VGG-19.

The VGG-19 network is the second-best entry in the ILSVRC 2014 classification
challenge with a top-5 error rate of 7.32% and the winner of the ILSVRC localization
challenge in the same year. This demonstrates the versatility of this homogenous
network architecture, which also has been proven to transfer well to other tasks and
data sets. (Simonyan and Zisserman, 2014)

GoogleNet

The GoogleNet architecture by Szegedy et al. (2015) is the winner of the ILSVRC
2014 classification challenge with a top-5 error rate of 6.67%. This entry not only
achieved an improvement in classification accuracy, it also has been designed for a
more efficient usage of computational resources. To this end, it is necessary
to limit the number of parameters of the 22 layers deep network. This is partly
possible due to multiple ”Inception” blocks, which use 1 × 1 convolutional filters in
order to reduce the dimensionality of data blobs. In addition, GoogleNet employs
average pooling layers at the top instead of the more common fully connected layers.
By these means, it is possible to increase the width and depth of the network while
keeping the computational requirements constant (Szegedy et al., 2015). Furthermore,
the comparatively small number of network parameters results in proportionally less
training and evaluation time.
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       Input              Convolution             Predictions    Upsampling
              Convolution             Convolution       Deconvolution        Output (ArgMax)

Upsampling

Figure 2.7: Segmentation network architecture. The visualization demonstrates the
dimensions of the output data blobs for each layer.

2.1.5 From Classification to Semantic Segmentation

A semantic segmentation network - as shown in figure 2.7 - differs from a classification
network as it calculates a separate class for each pixel of the input image. Thus, a
huge annotated data set which contains correct labels for all pixels of all examples is
required to train such a deep neural network from start to finish. Many large, publicly
available ground truth data collections are however only annotated with a single label
per image which describes the class of the most prominent foreground object.

Long et al. (2014) therefore suggest to modify the proven classification network
architectures described in section 2.1.4 and adapt only the final layers to generate the
desired output. The main advantage of this approach is that the convolution layers
- which are responsible for the feature detection - can be trained using the simpler
classification network. When the classification results are satisfactory, the optimized
parameters are then passed on to the segmentation network. Thus, the knowledge of
the classification network - which has been obtained during the training on a huge
ground truth collection - is reused in order to create a semantic segmentation. In
addition, the parameters of the remaining layers can be trained on much smaller
example data sets, which may even be created specifically for a given task.

Net Surgery

In order to create a separate prediction for each pixel of an image, the first step is
to convert all fully connected layers into convolution layers. The parameters of each
convolution layer have to be chosen so that the number of weight coefficients remains
unchanged when compared to the initial layer type. This makes it possible to reuse
the weights of the inner product layers and transplant them to the new convolution
layers. Each convolution kernel thereby inherits the complete knowledge on how to
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convert individual feature representations into class labels. This method is known as
net surgery and has - according to the examples provided with Caffe (see Jia et al.,
2014) - first been suggested by Rowland Depp.

By replacing the inner product layers, the output dimensions of the new segmen-
tation network are changed. While a fully connected layer always produces an output
blob in the form of C × 1 × 1, the output size of a convolution layer depends on
both this layer’s parameters and the input dimensions (as shown in equation 2.13).
In addition, the number of weight coefficients is now independent from the image
dimensions. As a result, the new network - which is now a fully convolutional
network (FCN) - can be used to segment inputs of arbitrary size, as larger input
images merely increase the width and height of the prediction blob.

The exact relationship between the input image’s dimensions and the number of
returned predictions however varies with the architecture of the classification net-
work. The two key factors are once again the size of the receptive field for a single
output pixel and the stride between two adjacent outputs, which both depend on the
parameters of all previous convolution and pooling layers:

Wprediction =
Winput −Wreceptive

stridehorz
+ 1 (2.15)

When a net surgery is performed on a classification network, the resulting total
stride is often of considerable magnitude. As demonstrated by equation 2.15, the
number of predictions and thus the resolution of the output blob will therefore be
much smaller than the size of the input image. Using numbers taken from real
applications, we can provide a meaningful example: A network with a receptive field
of 224×224 pixels and an effective stride of 32 pixels will convert a 512×512 pixel input
image into a 9 × 9 blob of class predictions. To provide a prediction for each input
pixel, it is thus necessary to add additional layers in order to increase the dimensions
of the network’s output so that the size of the input image can be matched.

Deconvolution Layer

The preferred way of increasing a data blob’s resolution is through the use of decon-
volution layers. Recalling section 2.1.3, a convolution multiplies an input image with
a given kernel to achieve a certain effect or detect a specific feature. A deconvolution
on the other hand reverses this process in order to partially recover an original input
image from an output blob and known kernel coefficients. Thus, a deconvolution
layer uses the same parameters as a convolution layer: It is defined by the number
of different kernels, their sizes and respective weight coefficients and the stride. As a
result, the formula for the output dimensions of a deconvolution layer can be directly
derived from equation 2.13:

Woutput = (Winput − 1) · stridehorz − 2 · paddinghorz +Wkernel (2.16)

When the stride parameter is chosen greater than 1, a deconvolution layer may thus
be used to create an output data blob whose dimensions are larger than the input
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dimensions. This layer is therefore commonly used to upsample the class predictions
for an image in order to increase the resolution of the semantic segmentation.

Fuse Layer

The upsampling process however is not able to restore finer details and results in
blurred shapes without sharp edges. Long et al. (2014) therefore suggest to also use
information from earlier layers with a lower overall stride and fuse it with the output
of the deconvolution layers. This results in more detailed class predictions.

Multinominal Logistic Loss Layer

A semantic segmentation network calculates the most likely class for each pixel sep-
arately. In order to use the previously described training procedures, it is therefore
necessary to combine multiple probability distributions into a single loss value. We
thus aim to create a loss function for training multiple labels at the same time.

When N is the total number of pixels, and ~t is an integer vector which contains
the correct label for each pixel, then p̂n,tn is the probability that pixel n is assigned
the correct label tn. Summing up the individual logistic loss values and normalizing
over the number of elements yields the formula for the multinominal logistic loss
(see Jia et al., 2014):

E = − 1

N

N−1∑
n=0

log(p̂n,tn) (2.17)

Inclusion over Union

The multinominal logistic loss value is useful for guiding the training of the network.
In order to evaluate a network’s performance, other measures are however frequently
used. The inclusion over union (IoU) value provides an accessible assessment of
segmentation quality (see Everingham et al., 2015, p. 104ff). To that end, the
segmentation results are first evaluated separately for each class. The formula for
calculating the class-specific IoU-value reflects on the fact that both the number
of correct classifications and the number of false positives influence the perceived
performance:

IoUc =

∑N
n (tn = c) ∧ (pn = c)∑N
n (tn = c) ∨ (pn = c)

(2.18)

The quality of the segmentation for a given class c thus equals the number of cor-
rectly classified pixels out of the total N = W × H samples (where the predicted
label pn equals the ground truth label tn) divided by the number of samples where
either the ground truth label or the predicted pixel label equals c. Therefore, this
formula punishes both false positives and false negatives and yields a result which
is independent of the number of evaluated pixels per class. This approach enables
us to compare the segmentation performance for unevenly distributed labels, where
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(a) Ground truth (b) Prediction (c) Accuracy 
32/36 = 0.89

(d) IoU foreground
3/7 = 0.43

(e) IoU background
29/33 = 0.88

(f) Mean IoU
0.65

3/7 + 29/33
2

Figure 2.8: IoU for uneven class distributions. The top row uses the ground truth
data (a) and the network’s predictions (b) to calculate an accuracy value (c). The
bottom row visualizes the calculation of a mean IoU value (d-f) for the same data
set.

the number of correctly classified pixels would be vastly misleading: When we con-
sider a segmentation problem for 2 different classes as visualized in figure 2.8, the
high accuracy with respect to the large number of background pixels overshadows the
performance relating to the fewer foreground pixels. In real world scenarios however,
we are especially interested in the detection of said foreground objects. Thus, the
overall accuracy value is not representative of the network’s perceived segmentation
quality and the mean IoU value is a much better way to evaluate the segmentation
performance.

Segmentation Performance

Long et al. (2014) also analyzed the performance of several segmentation networks
based on the classification architectures described in section 2.1.4 using the data pro-
vided by the PASCAL VOC 2011 segmentation challenge. They reported that the
VGG-16 network with an output stride of 32 pixel (designated as FCN-32s) was able
to achieve state of the art segmentation results at a mean IoU value of 59.4% despite
of a simplified training procedure which used a fixed learning rate. By reducing the
output stride of the VGG-16 network to 8 pixel (FCN-8s), it was furthermore possible
to increase the segmentation accuracy to a mean IoU value of 62.7%, which clearly
outperformed all previous VOC 2011 entries. Surprisingly, the modified GoogleNet
was not able to match these values even though both networks achieved similar clas-
sification results. (Long et al., 2014, p. 5)
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2.1.6 Conditional Random Fields for Refinement

A FCN computes a semantic segmentation without taking the spatial relationships
between pixels into account. The prediction for each pixel is computed solely based
on the respective receptive field and thus independently from all other pixels. It is
however often possible to increase the reliability of the prediction by considering the
classes of other, nearby pixels.

A single pixel which is entirely surrounded by a lot of other pixels with a high
probability for a given class is very likely a part of the same object, thus a member of
the same class regardless of any local features which may lead to a different prediction.
In addition, pixels which share many features are also often members of the same class,
even when there is a significant distance between them.

These two observations can be exploited in order to refine the prediction of the
FCN. To this end, a conditional random field (CRF), that is a field of random variables
where each variable may take on any of the predefined class identifiers, can be created.
In order to find a solution to the segmentation problem, we furthermore define the
energy of this CRF as the sum of several independent error potentials: Specifically,
this energy should increase with any deviation from the initial prediction as well as
with any violation of the aforementioned observations. The iterative minimization of
the field’s energy thus results in a global optimization of the semantic segmentation.
With the additional introduction of weight factors for each of the potentials, we can
furthermore control the exact composition of the total energy and thus the relative
importance of each rule. (see Krähenbühl and Koltun, 2012)

A Fully Connected CRF Model

Krähenbühl and Koltun (2012) have presented an efficient model for a fully connected
CRF, that is a CRF where each random variable is connected not only to it’s im-
mediate neighbors but also to all other random variables spanning the entire image.
They define the energy E(x) for their CRF x as the sum of unary and pairwise error
potentials:

E(x) =
∑
i

ψu(xi)︸ ︷︷ ︸
unary potentials

+
∑
i<j

ψp(xi, xj)︸ ︷︷ ︸
pairwise potentials

(2.19)

The unary potentials are based on a label compatibility function ψu which com-
putes an error energy term out of the prediction of the FCN and the current assign-
ment of each random variable. For T different predefined classes, this compatibility
function can thus easily be implemented as T × T matrix where the predicted class
determines the row index and the assigned class is used as column index. In order
to favor the initially predicted class over all other options, the matrix is initialized
with negative coefficients on the main diagonal. Furthermore, this simple implemen-
tation also enables us to optimize all coefficients of the compatibility matrix during
a separate training state.
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Likewise, each of the pairwise potentials ψp in equation 2.19 is partly the result
of a label compatibility function µ between the two random variables. In addition,
this function is also multiplied with the sum of weighted Gaussian kernels defined in
an arbitrary feature space f:

ψp(xi, xj) = µ(xi, xj)
K∑
m

w(m)k(m)(fi, fj)︸ ︷︷ ︸
k(fi,fj)

(2.20)

The CRF model by Krähenbühl and Koltun (2012) uses two such kernels to model
the observations from section 2.1.6:

k(fi, fj) = w(1) exp

(
−|pi − pj|

2

2θ2α
− |Ii − Ij|

2

2θ2β

)
︸ ︷︷ ︸

appearance kernel

+w(2) exp

(
−|pi − pj|

2

2θ2γ

)
︸ ︷︷ ︸

smoothness kernel

(2.21)

Thereby, p designates the position of a pixel whereas I denotes the pixel’s color vector.
θα, θβ and θγ are parameters which control the shape of the Gaussian kernels and
thus the relative influence of similarity and proximity. In consequence, the appearance
kernel models the fact that nearby pixels with similar features are more likely to be of
the same class while the smoothness kernel removes small isolated regions. Similar to
the unary potentials, all parameters of the binary potentials can be optimized during
a separate training stage.

Krähenbühl and Koltun (2012) also implemented a mean field approximation to
the CRF distribution, which normally requires an iterative message passing algorithm
with a quadratic complexity to propagate the assignments of all random variables.
They were however able to demonstrate that the message passing step for their specific
model could also be implemented by Gaussian filters in feature space, which results
in a linear complexity. This key observation enables us to efficiently use conditional
random fields for the refinement of semantic segmentations.

Implementation as Recurrent Neural Network

The previously described CRF refinement procedure already significantly improves
segmentation results. Zheng et al. (2015) have however demonstrated that an ad-
ditional performance boost can be achieved by fully integrating the separate post-
processing step into the neural network. To this end, they have extended the FCN-8s
architecture with additional CRF refinement layers which implement Krähenbühl and
Koltun’s method. Thereby the class inference is performed by evaluating several lay-
ers iteratively, thus forming a recurrent neural network (RNN). Using this approach
it is possible to perform an end-to-end training which optimizes both the weights of
the FCN and the parameters of the CRF refinement stage at the same time. This
strategy has been proven to be highly successful with a mean IoU value of 75.0% on
the PASCAL VOC 2011 data set, which marks the current state of the art for this
semantic segmentation benchmark. (Zheng et al., 2015)
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2.2 Training and Validation Data

In order to evaluate and compare the previously described segmentation and refine-
ment methods and to assess their appropriateness for the creation of virtual driving
environments, it is necessary to use a validation data set which is representative of
the actual problem. Existing, large annotated image collections (e.g. ImageNET,
COCO, PASCAL VOC) are however hardly suitable for this purpose.

First of all, the photographs in these collections have been captured at different
angles, focal lengths and resolutions. In accordance with the constraints set forth in
section 1.4, the input to the segmentation stage however only consists of orthographic
aerial images. Such images have already been preprocessed to correct for viewpoint
changes, yielding an almost constant resolution and a similar perspective for all im-
ages. As a result, a classification network which operates on these preprocessed images
may not require as many layers to reliably detect objects.

More importantly however, the available, annotated data sets do not contain
suitable label classes for the reconstruction of the virtual environment. The recreation
of a landscape requires the detection of surfaces such as fields, grass and boulders
which normally are classified as background areas. In addition, some scenes may
contain rare and particular objects such as tire walls, curbs and aprons, which are
not part of any reference data collection.

For these reasons, the generation of a custom ground truth data set, specifically
designed for evaluating the semantic segmentation quality of orthographic aerial im-
ages, is an integral part of this thesis.

2.2.1 A Projection for Aerial Images

The Web Map Tile Service (WMTS) standard - as developed by the Open Geospatial
Consortium - is a broadly adopted specification for providing a map consisting of
orthographic aerial images to the public. This standard defines both a tile-based
coordinate system for different map layers and zoom levels as well as an interface for
accessing the data234.

In order to create a map using the WMTS standard, it is necessary to convert
geodetic coordinates, which describe the location of a point on the ellipsoidal surface
of the earth, to Cartesian coordinates defined on a rectangular grid. The EPSG3857
projection - also known as pseudo-spherical Mercator projection - is widely used for
this purpose:

x = r · φ
y = r · ln (arctan(π/4 + λ/2))

(2.22)

Here, r is the equatorial radius of the earth. Throughout this thesis, φ is used to
denote the longitude whereas λ symbolizes the latitude of a geodetic coordinate pair.

2OpenGIS Web Map Tile Service Implementation Standard (Masó et al., 2010).
3OGC Web Map Tile Service (WMTS) Simple Profile (Masó, 2014).
4OWS-6 DSS Engineering Report - SOAP/XML and REST in WMTS (Pomakis, 2009).
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Figure 2.9: WMTS coordinate system. From left to right: EPSG3857 projection,
constrained at 85.0511◦ North/South; WMTS zoom level 1 (2x2 tiles); WMTS zoom
level 2 (4x4 tiles).

It has to be noted that the EPSG3857 projection given in equation 2.22 results in
significant position and scale errors and is thus not an official, recognized geodetic
system. Due to it’s simplicity, it is nonetheless a foundation of many popular web-
based map services5 (also see Klokan Technologies; Petr Pridal, 2015).

When the acceptable range of λ is restricted, it is furthermore possible to ef-
fortlessly create an uniform grid with the origin at the center of four equally sized
quadrants. In this case, both the width and the height of the projected region equal
the circumference of the earth:

xmax = ymax = ± (r · π)

ymax = ± (r · ln (tan(π/4 + λmax/2)))

λmax = ± (−π/4 + 2 · arctan(eπ)) = ±85.0511◦
(2.23)

While this limitation obviously prevents the mapping of the polar regions, it also
facilitates the creation of a scheme for partitioning the Cartesian EPSG3857 space into
equally sized, quadratic bitmap tiles. To that end, the WMTS standard introduces
the concept of zoom levels as shown in figure 2.9.

The projected region is thereby divided into a grid of 2n by 2n tiles, where n
represents the zoom level. The origin of this grid is however located in the top left
corner, that is it is different from the origin of the EPSG3857 projection. In addition,
the direction of the y-axis has been inverted in order to resemble the coordinate
system commonly used by pixel images. As a result, the location of a tile in the
world coordinate system - specified by row and column index - can be treated in the
same way as the location of a single pixel within a tile, thus enabling efficient bitmap
operations spanning multiple tiles.

5WGS 84 / Pseudo-Mercator - Spherical Mercator, Google Maps, OpenStreetMap, Bing, ArcGIS,
ESRI - EPSG:3857 (Klokan Technologies; Petr Pridal, Tomas Pohanka and Radim Kacer,
2015).
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2.2.2 Image Resolution

In order to calculate the resolution of a single pixel in an aerial image distributed
over WMTS, it is necessary to specify both the zoom level and the pixel dimensions
of a tile. At zoom level 19, the earth’s equator - with a radius of 6378.137 km and
a circumference of 40075.017 km - spans 219 or 524288 tiles. With an assumed tile
width of 256 pixel, this yields a horizontal resolution of approximately 30 cm/pixel.
As a result of the chosen projection, this resolution however also increases significantly
depending on the latitude of a given point.

In the context of this work, all segmentation algorithms are trained and evaluated
using WMTS map tiles provided by basemap.at6. This source supplies tiles covering
the whole of Austria which are stitched together in order to create large, seamless
input images. These images are captured at a latitude of approximately 47◦N and
their actual resolution thus equals roughly 20 cm/pixel.

2.2.3 Surface and Object Classification

As we aim to create a virtual driving environment based on real landscapes, it is
necessary to create a vectorized map from these aerial images. Such a map is built
upon abstract representations of concrete objects, where each object is a member of
a predefined object class. While digital maps contain hundreds of different object
classes7, it is extremely difficult to distinguish all of these solely based on aerial
images. Thus, the number of recognized, different map features has to be limited.

Kluckner et al. (2010) classify pixels into five different groups: buildings, streets,
grass, trees and water. While it is possible to reliably assign pixels to one of these
clearly delimited classes, the resulting map is not detailed enough for the reconstruc-
tion of a landscape. We propose to shift the balance slightly towards a more detailed
- but also sometimes ambiguous - representation by creating a segmentation for a
larger total of 38 different pixel classes. To this end, we define 14 classes for differ-
ent terrain and vegetation categories, 6 classes for buildings, 10 classes for transport
routes and finally 8 classes specifically designed for the segmentation of race tracks.
A full list of all 38 pixel classes is given in appendix section A.1.

2.2.4 Ground Truth Data Sets

Based on these pixel classes, a set of 16 aerial images (WMTS zoom level 17, 1024×
1024 pixels) has been manually annotated. Figure 2.10 presents a result of this
work. Although each of the carefully chosen images is representative of multiple pixel
classes, some classes are only contained within a single bitmap. It is thus not feasible
to randomly assign the annotated images to training and validation data sets, as this
would result in very different distributions of the pixel classes.

6basemap.at (Stadt Wien und Österreichische Länder bzw. Ämter der Landesregierung, 2015)
7Haklay and Weber, 2008. http://www.openstreetmap.org.

http://www.basemap.at
http://www.openstreetmap.org
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As a solution to this problem, each larger aerial image is therefore first divided
into 4× 4 tiles (WMTS zoom level 19, 256× 256 pixels). These smaller tiles are then
partitioned into 4 groups according to the schematic also given in figure 2.10. This
process is repeated for all of the original annotated images and yields a total of 256
different, annotated ground truth tiles, where each tile is part of one of four groups.

After an evaluation of the pixel class distribution in the four groups, the tiles in
group 2 have been selected as validation data set whereas the tiles in the remaining
three groups are used as training data. Thus, 75% of the tiles are available for training
while 25% of the tiles are exclusively held back for the validation of the algorithms. A
detailed analysis of the pixel class distribution over both data sets is given in appendix
section A.3.

To increase the variability and the overall amount of available ground truth data,
each of the tiles in both groups is furthermore mirrored and rotated in 90◦ steps.
Initial experiments have shown that this measure significantly improves the learning
abilities of all evaluated algorithms. As a result, a final number of 1536 training and
512 validation tiles is used for all experiments.

Figure 2.10: Examples of ground truth data (I). Freeway intersection, Styria, Austria.
From left to right: Original aerial imagea, manually created segmentation, partition-
ing into training and validation data sets. See appendix A.2 for further examples.
aDatenquelle / Source of images: basemap.at; License: CC-BY 3.0 AT.

http://www.basemap.at
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2.3 Segmentation Experiment

2.3.1 Deep Learning with Caffe

This thesis aims to evaluate a practical application of neural networks. To this end,
we utilize the excellent deep learning framework Caffe. A particular advantage of
this system is that the architecture of a network is stored in a human-readable text
format, thereby facilitating experiments without the need for recompilation of the
program. In addition, Caffe also includes a number of different solvers amongst
which is also an implementation of the SGD algorithm. Furthermore, the framework
contains optimized GPU implementations for most performance critical computations
which provide a considerable speedup when compared to their CPU equivalents. All
these features enable us to concentrate on the definition of the network architecture
and the actual training procedure rather than spending resources on implementation
details. (also see Jia et al., 2014)

Most importantly however, Caffe is already very widely used for classification
tasks. As a result, many specialized neural network layers are readily available, and
there is a significant amount of academic work which uses them. This framework
is thus not only very popular in the industry, it also drives many state of the art
approaches for image classification and segmentation.

2.3.2 Network Architectures

Since Long et al. have proven that VGG-16 based systems achieve excellent results in
the PASCAL VOC semantic segmentation tests, these networks have been the archi-
tecture of choice for many segmentation tasks. In order to adapt such a network to
a custom problem with a different list of predefined classes, it is however necessary
to modify the top layers and train them on the appropriate ground truth data set.
This change to the final layers could also affect the relative performance of different
network architectures. For this reason, we analyze the semantic segmentation perfor-
mance of both VGG-16 and GoogLeNet based networks with respect to the task at
hand.

For each architecture, a Caffe reference implementation8 of the original classifi-
cation network is used as the starting point. At first, the top layers are replaced
according to section 2.1.5 and the weights are transplanted with the help of IPython9

scripts in order to form a FCN. Moreover, input padding and deconvolution layers
are added as necessary to create networks which produce a separate prediction for
each input pixel. In addition, the number of output channels and thus the number of
predicted classes is changed in order to match the custom ground truth data set.

These modifications yield networks with an output stride of 32 pixel before the up-
sampling layers, which are thus hereinafter referenced as GoogLeNet-32s and VGG16-
32s. The predictions produced by said networks are however somewhat blurry and

8see the Caffe model zoo: https://github.com/BVLC/caffe/wiki/Model-Zoo
9“IPython: a System for Interactive Scientific Computing” (Pérez and Granger, 2007).

https://github.com/BVLC/caffe/wiki/Model-Zoo
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lack the necessary details for the reconstruction of the roads and environment. By fus-
ing the features detected by the penultimate convolution layer with these predictions
as described by Long et al., finer details can however be added and the output stride
is reduced to 16 pixel. The resulting networks are therefore known as GoogLeNet-16s
and VGG16-16s. This procedure can be repeated once more and a full listing (in
Caffe style) of the final networks with a stride of 8 pixel is available in appendix B.

Our networks differ from the examples provided by Long et al. as we decided to
eliminate zero-padding for the input layers. This change becomes possible due
to the fact that we aim to segment a continuous, spherical surface. Therefore, any
padding can be replaced by an increase of the input dimensions, thus using pixels
from neighboring image tiles instead of padding the image borders with zeroes. Due
to limited computational resources we were not able to compare the best possible
results for both approaches. Initial tests over 10.000 training iterations however have
proven that the networks without zero-padding learn significantly faster while the
computational requirements increase only marginally. Furthermore, this technique
enables us to seamlessly stitch together the segmentation results of neighboring tiles
later on.

2.3.3 Supervised Training

The training of both evaluated network architectures has been organized in several
consecutive stages as suggested by Long et al. To this end, we first adapt the clas-
sification networks to the new ground truth data and train them with an output
stride of 32 pixel. Once the results do not improve any further, we add the previ-
ously mentioned additional layers which reduce the stride to 16 pixel and perform an
end-to-end training on these new networks. Finally, we start out from the fully initial-
ized 16s-networks, once again add the necessary fusion layers and train the resulting
8s-networks end-to-end.

There is however one important difference: While Long et al. mainly focused on
the detection of a few large structures spanning entire images, we have to detect many
comparatively small objects covering only a few pixels. This is a direct result of the
scale of the areal images, which is close to 20 cm / pixel. Thus, the cross section of
a secondary road with a width of 4 meters is only 20 pixels wide. As a result, the
computational effort is significantly shifted from the training of the 32s-networks to
the fine-tuning of the 8s-networks.

All training steps are performed with a fixed learning rate of 1e−10, with a high
momentum of 0.99 and a small weight decay factor of 0.0005. These extreme values
are necessary as we decided to solve the network using the SGD algorithm without
gradient accumulation, once again following the recommendations of Long et al. Each
of the 1536 different ground truth examples therefore should have only a minimal
influence on the network weights in order to gradually approach an optimal solution.

Figure 2.11 shows the progress of the 6 different FCN segmentation networks dur-
ing the training stage. The performance of each network is evaluated on the validation
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(b) VGG16-32s
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(c) GoogLeNet-16s

20 40 60 80
0

20

40

# of iterations ·103

av
g.

lo
ss
·1

03

75

80

85

90

ac
cu

ra
cy

[%
]

(d) VGG16-16s
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(e) GoogLeNet-8s
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(f) VGG16-8s
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Figure 2.11: Training of 6 different fully convolutional segmentation networks.
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data set after each 1000 iterations. Even though the loss value may be still decreasing
with each iteration, the training has to be stopped once the validation results do not
improve any further in order to prevent over-fitting. Table 2.1 shows the iteration of
the final, best-performing snapshot for each network and the corresponding per-pixel
segmentation accuracy.

Snapshot Time/Image [s]
Network Iteration Training Validation Accuracy [%]

GoogLeNet-32s 100000 0.476 0.169 83.0182
GoogLeNet-16s 50000 0.335 0.157 86.0416
GoogLeNet-8s 69000 0.319 0.156 87.3965
VGG16-32s 30000 1.483 0.411 82.8169
VGG16-16s 30000 1.484 0.412 87.5606
VGG16-8s 50000 1.483 0.410 89.4082

Table 2.1: Segmentation speed and accuracy of different neural networks.

Furthermore, table 2.1 also lists the average duration for the semantic segmentation
of a single image tile with 256 × 256 pixels. All timings have been obtained using
a customized Caffe executable on a Dell M6800 notebook with a Core i7 4800-MQ
CPU and a NVIDIA Quadro K3100M GPU (768 CUDA cores @705MHz, compute
capability 3.0, 4GB DDR5 RAM). While this setup is far from a high-end configura-
tion, it still provides results which enable us to compare the relative computational
efficiency of the analyzed networks.

The reverse calculation of the weight update deltas using the back-propagation
algorithm is only required during the training stage which results in significantly
shorter validation times, as is to be expected. In addition, the GoogLeNet derivatives
consistently require less computational resources than the VGG-16 based networks.
This behavior is easily explained by the fact that GoogLeNet has been designed with
efficiency in mind. As a result, GoogLeNet-8s only requires approximately 5% of the
weight parameters of the VGG-16-8s network.

This enhanced throughput however also comes at a cost: While the accuracy of
the GoogLeNet-32s is able to match the performance of the corresponding VGG16-32s
network, the reduced number of weight parameters in the convolutional layers makes
it difficult to reliable detect finer structures as the output stride of the networks is
gradually decreased. At a stride of 8 pixel, this difference of the relative segmentation
accuracy is already very pronounced and amounts to more than 2 percentage points.

2.3.4 Discussion of Results

As has been explained in section 2.1.5, the per-pixel accuracy is however only a
first estimate for the true quality of the segmentation performance. Therefore, we
also present a full evaluation of the segmentation results of GoogLeNet and VGG16
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by providing additional visual examples, comparing the respective IoU values and
analyzing the confusion matrices.

(a) Aerial image (b) GoogLeNet-32s (c) GoogLeNet-16s (d) GoogLeNet-8s

(e) Ground truth (f) VGG16-32s (g) VGG16-16s (h) VGG16-8s

Figure 2.12: Examples of segmentation results for networks with different stride.

Figure 2.12 visualizes the effects of a decreased output stride. We deliberately use
an image tile with many narrow sections and sharp, straight edges in order to clearly
work out the benefits of using features from deeper layers to increase the output
resolution. Initially, both GoogLeNet-32s and VGG16-32s produce blurry, blob-like
regions. The detection of narrow stripes and sharp edges and thus the quality of the
segmentation is however improved considerably by appending additional fusion layers
to both networks. This visual confirmation also proves the results of table 2.1 and
the detailed analysis in the next sections will therefore only cover the best performing
networks, that is GoogLeNet-8s and VGG16-8s.

Pseudocolor Images

Through the use of pseudocolor images, the segmentation errors for a larger 1024 ×
1024 pixel region are visually compared in figure 2.13. The original aerial image is
first converted to a greyscale representation and a color is then imbued on all regions
which are not correctly classified. Although the performance of GoogleNet-8s and
VGG16-8s at first appears to be quite similar, there are some notable differences with
respect to both training and validation tiles.

Tiles which were used during training are segmented with excellent accuracy by
both networks. There are however some narrow, colored stripes at the borders of all re-
gions which denote that these pixels were wrongly classified. These miss-classifications
could be a result of the manually generated ground truth data. Even though extreme
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(a) Aerial image (b) GoogLeNet-8s error

(c) Ground truth (d) VGG16-8s error

Figure 2.13: Examples of segmentation errors. Darker regions in the ground truth
image have also been used during training, whereas lighter regions are exclusively
used for the evaluation of the network.
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care has been taken in creating the data set, the exact border between neighboring
regions is sometimes disputable - especially when we think of borders between objects
such macadam roads and the surrounding gravel and grass patches. Nevertheless, the
colored stripes appear to be slightly wider for GoogleNet-8s, thereby indicating an
inferior edge detection performance.

More interestingly however, there are pronounced differences between the seg-
mentation results for the 4 evaluation tiles. Specifically, the GoogleNet-8s network
apparently often succeeds to detect a region’s border but then fails to assign the cor-
rect label. While this observation is also sometimes true for VGG16-8s, the latter
network nonetheless achieves better overall results.

Inclusion over Union

In order to further analyze the cause for the wrongly assigned labels which affect
the segmentation quality, we first calculate the class specific and mean IoU values
for the evaluation data set as described in section 2.1.5. A comprehensive list of the
results for all 38 classes is available in appendix C. GoogleNet-8s achieves a mean IoU
value of 61.20% and is clearly outperformed by VGG16-8s, which obtains a score of
64.66%. These overall results are in line with the per-pixel accuracy ratings, but a
closer look on the class-specific performance reveals some peculiarities as visualized
in figure 2.14.

Notably, both networks produce excellent results with IoU values of more than
75.00% for approximately half of the classes. We can therefore conclude that these
classes have strong, unique and unambiguous features and are clearly marked in
both training and evaluation data sets which makes it easy to detect them. The
’gravel’ class is a perfect example, as it is used exclusively for the run-off areas of
racetracks, always has a light yellow color with a homogenous texture and usually
exhibits pronounced borders.

The next group - which makes up for about a quarter of the classes - is responsible
for a large share of the performance difference between the two networks. This block
contains classes which can be detected by adequately trained neural networks, as is
demonstrated by the VGG16-8s system. Although a fraction of the training data
may still be ambiguous, we thus gather that the provided examples and the distance
between feature vectors are in principle sufficient to arrive at a correct judgment.
Despite of this, GoogLeNet-8s obtains far lower IoU values and the class-specific dif-
ference amounts to more than 17 percentage points as exemplified by the results for
’lawn’ and ’industrial’ buildings. We therefore conclude that the measured
overall performance gap between the networks is truly representative for
the segmentation quality and that the VGG16 architecture indeed outper-
forms GoogLeNet for our specific application.

At the low end of the spectrum, approximately 25% of the classes are notoriously
difficult to detect and both networks fail to achieve IoU values of more than 45%. A
prime example of this is the ’water’ class, which has been used during training but
unfortunately is not part of the evaluation data set (see appendix A.3 for a full list
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Figure 2.14: Segmentation performance of GoogLeNet-8s and VGG16-8s.
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of the class distributions). Thus, the IoU value for this class drops to 0.00% as soon
as a network incorrectly labels a single pixel of the evaluation data as water. The
low rating for the ’pool’ class on the other hand is very likely caused by insufficient
training examples, as there are many different pool types and the evaluation set
therefore contains pools with previously unknown feature vectors.

Upon closer inspection, there is however another possible reason for some poor
results: The bottom half in figure 2.14 also contains quite similar pairs of classes such
as cartways and macadam roads, sheds and detached houses or shrubs and orchards.
We therefore suspect that both networks are confused by ambiguous feature vectors or
- as it is also often difficult to manually pick the correct class from the aforementioned
pairs - by incorrect ground truth data.

Confusion Matrices

Figure 2.15 presents the confusion matrix for GoogLeNet-8s. The network’s perfor-
mance is a result of both the percentage of correctly labeled ground-truth pixels (as
shown on the main diagonal) and the number of wrong classifications (visualized by
all other fields). Thus, each row adds up to 100 percent. The color scale has been
chosen to exaggerate any differences from the expected results so that a 10% share of
false positives is already clearly visible as bright orange field.

As has been suggested by the IoU values, there are some pairs of classes with high
confusion levels. Most notably, 20.29% of sheds are classified as detached houses and
likewise, 21.60% of detached houses are labeled as sheds. In addition, a significant
fraction of industrial and agricultural buildings are also denominated as sheds. We
can therefore conclude that these classes share many features and that it is difficult
for GoogLeNet to distinguish them using just aerial images.

Furthermore, there is a second large group of miss-classifications, which also has
been visible in the pseudocolor images: Many border regions of larger patches are
incorrectly labeled as grassland, dirt or even paved surfaces. This indicates failures
to precisely separate the objects such as roads from the surrounding terrain. This
phenomenon is at least partially the result of the output stride of 8 pixel, which blurs
the exact shape of objects. However, some of these errors may be unavoidable, as the
manually created ground truth data set also includes flawed boundaries.

Finally, figure 2.16 shows the confusion matrix for the best-performing network
VGG16-8s which features slightly lower overall error levels. Specifically, this network
is less likely to confuse objects with grassland, dirt or paved surfaces than GoogLeNet-
8s and therefore more often succeeds in detecting the correct patch boundaries. There
is however still room for improvement in this area, and the correct labeling of different
but similar building types remains an unsolved problem.

For these reasons, we will use the fully trained VGG16-8s network as foundation
for all further experiments, as we aim to advance the segmentation performance by
adding additional refinement steps.
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Figure 2.15: Confusion matrix for GoogLeNet-8s network.
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Figure 2.16: Confusion matrix for VGG16-8s network.
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Figure 2.17: Adding additional CRF layers to an existing segmentation network.

2.4 CRF Refinement

A CRF is a state of the art method for refining a semantic segmentation. Summarizing
section 2.1.6, we aim to exploit the fact that nearby pixels are of the same class if
and only if they share many features. This observation enables us to improve the
segmentation results at disputed object boundaries. In addition, we find that some
classes are more likely to occur next to each other, which allows us to eliminate certain
ambiguities. For these reasons, a CRF refinement is ideally suited to address both
previously recognized deficiencies of the VGG16-8s semantic segmentation network.

Figure 2.17 visualizes the process of extending a regular FCN with additional
refinement layers. This approach has the advantage that the optimization of the
CRF kernel parameters can be conducted in the same way as the optimization of all
other network parameters. Thus, we can also use the Caffe configuration and ground
truth data described previously in order to perform an end-to-end training of the
modified VGG16-8s+CRF network.

Our experiment is therefore based on the implementation of a CRF as RNN by
Zheng et al. Departing slightly from their work, we choose to apply the crop layer
only after the labels have been inferred. This modification enables us to obtain
better overall segmentation results as the cropped regions are also calculated using
valid input pixels due to the elimination of zero-padding (see section 2.3.2) and thus
contribute meaningful information for the inference process.
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2.4.1 Estimation of Mean-Field Parameters

While some parameters of the CRF are optimized during the training, others always
keep their initial value. Most notably, the normalization parameters θα and θβ in
equation 2.21, which govern the shape of the appearance kernel, fall under the latter
category. Furthermore, the θγ parameter, which is used to change the extend of
the smoothness kernel, is also kept constant. It is thus very important to provide
good estimates for these fixed parameters. In addition, we also aim to initialize the
relative weights w(1) for the appearance kernel and w(2) for the smoothness kernel
with suitable values before starting the actual training of the neural network.

Following the process described by Krähenbühl and Koltun, we use their stan-
dalone DenseCRF tool to optimize the values for the fixed parameters iteratively.
To this end, we extract the class predictions of the VGG16-8s network for a larger,
1024 × 1024 pixel tile by dropping the final ArgMax layer. While this piece of in-
formation is not sufficient to actually learn a full label compatibility function, the
predictions can still be used as input to a CRF with varying parameter values. The
refinement performance is then assessed using the per-pixel accuracy value of the
segmentation after several mean-field iterations. In order to optimize the CRF pa-
rameters, we first disable the smoothness kernel by setting w(2) = 0. The values for
w(1), θα and θβ are then found using a grid search algorithm. Finally, we estimate
the ideal parameters for the smoothness kernel.

Parameter Set w(1) θα θβ w(2) θγ Acc. [%]

Krähenbühl and Koltun (2012)1 - 61.00 11.00 1.00 1.00 –
Krähenbühl and Koltun (2012)2 10.0 80.00 13.00 3.00 3.00 88.73
Zheng et al. (2015, p. 4ff)2 5.00 160.00 3.00 3.00 3.00 90.51

Our Estimation 5.20 13.50 11.00 1.50 1.75 90.51

1 values taken from the original paper
2 as extracted from the source code examples provided by the authors

Table 2.2: Initial weights and CRF kernel parameters vs. segmentation accuracy.

Table 2.2 lists the results of our parameter estimation procedure as well as other
values for the fixed parameters, which have been successfully used for the refinement of
different data sets. The accuracy for each configuration has been measured using our
full validation set, after 10 mean-field iterations and without any additional training.

Remarkably, two of these very different parameter sets obtain the exact same
overall improvement of segmentation accuracy, albeit their performance for individ-
ual images out of our 512 piece validation collection varies widely. The third set
however causes a deterioration of results, that is the accuracy is actually worse than
for a segmentation without additional refinement. We therefore conclude that it is
necessary to hit an application specific sweet spot for the kernel weight w(1) in order
to perform a successful refinement. This observation is also backed by the results of
our grid search for the appearance kernel’s parameters.
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In addition, we argue that the value for parameter θα, which controls the effect of
long range connections, can be chosen from a wide range without significantly affecting
the segmentation accuracy. This finding contradicts previous work by Krähenbühl and
Koltun and Zheng et al. However, the scale and content of the segmented orthographic
aerial images is rather different when compared to their examples. While larger
structures such as industrial buildings may also span hundreds of pixels, many other
objects in our case have a diameter of less than 15 pixels. Thus, our grid search
returns an optimum for θα of only 13.5 pixels, which is only a fraction of the value
used in other experiments.

In conclusion, the per-pixel accuracy of the semantic segmentation can be im-
proved from 89.41% to 90.51% without any further training by simply applying the
results of a straightforward CRF parameter estimation process.

2.4.2 Supervised Training

The separate optimization of the parameter matrix for the label compatibility func-
tion and the fine-tuning of the kernel weight matrices are the next logical steps to
further improve the segmentation performance. As suggested by Zheng et al., we at-
tempt to learn these parameters using the regular Caffe SGD solver and our complete
training data set. To this end, the learning rate and weight decay factors for all layer
parameters of the original VGG16-8s network have been set to 0. A constant overall
learning rate, which is fixed at 1e−9, thus only affects the mean-field parameters. The
weight decay has furthermore also been disabled for the kernel weights w(1) and w(2),
as a normalization of these parameters quickly causes a deterioration of segmentation
results.

(a) Label compatibility training
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Figure 2.18: Training of CRF label compatibility function and kernel weights. Weight
updates have been disabled for all other layers.
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Figures 2.18a and 2.18b visualize the training progress for two independent ex-
periments, each starting out from the original VGG16-8s network with an appended
refinement layer and CRF kernel parameters as estimated previously. The network
clearly adapts to the training data in both cases, but unfortunately not only the loss
value but also the accuracy on the validation data set quickly decreases. Many other
attempts to improve the segmentation performance of VGG16-8s+CRF by an end-
to-end training procedure with various different learning rates and layer parameters
have unfortunately also failed.

Despite of this, we conclude that a well-trained CRF would be ideally suited
to boost the segmentation performance based on the rapidly decreasing loss values.
The custom ground truth data collection however does not include enough training
examples which prevents us from fully exploring the possibilities. Therefore, we can
only analyze the refinement results of a CRF network without further training, which
nonetheless scores significantly higher than VGG16-8s in most categories.

Mean-field Iterations Time/Image [s]
Network Training Validation Training Validation Accuracy [%]

VGG16-8s - - 1.483 0.410 89.4082
VGG16-8s+CRF 5 5 2.943 1.215 90.4967
VGG16-8s+CRF 5 10 2.943 2.169 90.5078

Table 2.3: Segmentation performance of neural networks. Number of mean-field
iterations versus segmentation speed and accuracy.

2.4.3 Discussion of Results

Zheng et al. have suggested to train the RNN over 5 iterations while the actual
segmentation should be performed over 10 iterations. According to their experiments,
this setup prevents vanishing gradients during the training stage while also improving
the final results slightly (Zheng et al., 2015, p. 9). Table 2.3 therefore also presents a
comparison of the segmentation speed and accuracy for 5 and 10 mean-field iterations.
Unfortunately, the RNN implementation has not been optimized for the GPU, which
is clearly visible from the validation time per image. The available data nonetheless
reveals that the refinement duration increases almost linearly with the number of
mean-field iterations. Nonetheless, we will use a RNN with 10 iterations for all
further evaluations due to the slightly better segmentation accuracy.

Pseudocolor Images and Stitching Errors

As can be seen in figure 2.19a, the CRF succeeds in optimizing the objects boundaries
even though it has not been trained properly. The colored border regions which
visualize classification errors are significantly smaller due to the additional refinement
layer.



From Aerial Images to Virtual Driving Environments 49

(a) Segmentation errors (b) Stitching errors

Figure 2.19: Examples of segmentation results.

This improvement however also come at a cost for our application. Although we
aim to segment a large area, the segmentation has to be executed separately for each
of the many small WMTS image tiles due to limited computational resources. Later
on, these segmented tiles are stitched together in order to form a continuous surface.
The original FCN networks use a single, moving filter of fixed dimensions in order
to label the input data and thus create a segmentation which is steady across tile
boundaries.

The label inference algorithm on the other hand may completely change the anno-
tation of a large region based on all other predictions which are part of the same image
tile. Depending on the input data and CRF parameters, this can lead to noticeable
segmentation borders at the tile boundaries. The problem is exaggerated by the use
of more aggressive CRF parameters, that is increased values for the appearance kernel
parameters w(1) and θα. Figure 2.19b visualizes this effect for an extreme parameter
set. Additional post-processing steps are however always necessary to mitigate the
issue.

Inclusion over Union

As a result of the refinement, the mean IoU value for the segmentation changes from
64.66% to 67.71% (see appendix C for a complete list of all scores). This major
advancement is - somewhat unexpectedly - caused by the CRF smoothness kernel,
which succeeds in eliminating the few, isolated and wrongly labeled instances of the
water class from the results.

Thus, it is no longer necessary to consider the corresponding, class-specific IoU
value for the calculation of the mean IoU score, which therefore improves dramati-
cally. The perceived difference in segmentation quality is however not even close to 3
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Figure 2.20: IoU change with CRF layer after 10 mean-field iterations.
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percentage points, as the original VGG16-8s network would already have achieved a
mean IoU value of 66.41% if we were to ignore the water category in the first place.

Figure 2.20 therefore also indicates the differences between all other original, class-
specific IoU values and the results of the CRF inference. Although there is a con-
siderable improvement in most categories, some numbers actually deteriorate as a
direct result of the refinement process. Upon closer inspection we conclude that this
mainly affects classes which regularly exhibit heterogeneous textures. Curbs and open
grandstands are prime examples, as a single instance of these classes is usually made
up from many small, adjacent patches with different colors. The CRF detects this
dissimilarity between neighboring pixels and therefore wrongly infers that the region
in question must contain multiple objects of different classes.

Confusion Matrix

Finally, figure 2.21 presents the confusion matrix for the network with integrated CRF
refinement as calculated over the validation data set. The improved edge detection
performance is visible as reduced confusion between objects and their surroundings.
In addition, there are some minor advances regarding ambiguous object classes when
compared to figure 2.16. This final confusion matrix for a CRF enhanced network
however also indicates that the initial attempt to unambiguously detect our 38 prede-
fined classes has been over-ambitious given the current state of the art. In particular,
there still remain some bright spots at the intersections of different building categories
as well as for other similar object types.

Supplementary experiments have therefore shown that a separate post-processing
step, which reduces the number of different vegetation and building classes, dramat-
ically improves the overall performance values. Dropping just 6 classes by merging
them with other, similar categories boosts the per-pixel accuracy from 90.50% to
92.16% while the mean IoU value at the same time increases from 67.59% to 73.60%.
We expect that these numbers could be even higher if we were to fully repeat the
complete training procedure with the goal of labeling only the remaining 32 classes.
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Figure 2.21: Confusion matrix for VGG16-8s-CRF network with 10 mean-field itera-
tions.
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2.5 Summary

The realized experiments prove that it is possible to achieve state of the art semantic
segmentation results for orthographic aerial images by training a VGG16-based neural
network using the Caffe deep learning framework. A fully integrated CRF refinement
layer, which is implemented as RNN, can furthermore be employed to improve the
segmentation of boundary regions considerably.

Unfortunately however, our small, purpose-built ground truth data collection is
not sufficient for automatically optimizing all CRF parameters. We argue that this
deficiency is at least partly caused by the fact that the collection of aerial images has
been annotated using a comparatively high number of 38 different, pre-defined classes.
Our research retrospectively indicates that even with an additional refinement stage,
some ambiguities between those classes can not be fully resolved.

However, an exact discrimination of different building and vegetation classes is
not even necessary for our application as long as the road information is extracted
faithfully. The run-time performance of our algorithms and the quality of the segmen-
tation results are furthermore and by all means adequate for commercial applications
on end user systems. Thus, the VGG16-8s+CRF segmentation network described in
this chapter is more than capable of providing the input data for the next steps in
our workflow and thereby is a viable tool for transforming aerial images into virtual
roads.



Chapter 3

Road Map Refinement

The computation of a road network map based on segmented aerial images is an
important part within the proposed workflow for creating virtual roads. To this end,
the OpenDRIVE R© specification, which details a file format for virtual driving envi-
ronments, recommends to define each road segment based on annotations alongside a
single reference line (Dupuis, Marius, 2015, p. 28). Although we will be using a sim-
pler description format in order to stay compatible with various real-time platforms,
we still aim to create an annotated, graph-based road map in a similar way.

Miao et al. (2013) suggested a pipeline for the extraction of road center lines and
intersection information from aerial images. According to their method, a binary
semantic segmentation is performed at first and features are extracted from each
proposed road segment. This information is then used to fill any holes in the original
segmentation based on similarities of the road texture. Finally, multivariate adaptive
regression splines (MARS) are utilized to extract a smooth description of each road
segment from the segmentation. According to the authors, their approach works
well for images with a resolution of approximately 1 meter per pixel (Miao et al.,
2013, p. 584). While this method would indeed perfectly harmonize with our already
established process, it unfortunately fails to provide an estimate for the road width.

There are however also some other complications which prevent us from directly
using the previously generated segmentation results in the first place. Most impor-
tantly, a road network may contain segments which are invisible from our airborne
point of view. These occlusions can be caused by underground roads or overpasses
as well as by nearby tall trees and buildings. A network map built solely upon aerial
images would thus almost inadvertently contain interrupted roads and disconnected
road fragments. In addition, similar defects would also be caused by any small patch
of wrongly classified pixels. Even a failure to correctly label a few pixels in the road
shoulder region could have severe consequences, as an unsteady road boundary always
causes an unsteady vehicle trajectory when the driver aims to stay in the middle of
the lane. Thus, such a road segment would be hardly enjoyable for human or artificial
drivers alike.

For these reasons, it is necessary to treat the task at hand as an optimization
problem. Our overall objective therefore is to create a consistent road network con-
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taining realistic, smooth trajectories based on the previously generated segmentation
results. To this end, we however also have to rely on additional data sources which
enable us to determine the initial condition for the optimization and to solve defects
caused by occlusions. This auxiliary data can be obtained from publicly accessible
GPS traces or mapping services. Although the spacial resolution and accuracy of
this data is inadequate for the creation of virtual driving environments, it is still an
excellent foundation for the optimization process. Thus, the original assignment of
creating a map from segmented aerial images can be transferred into a problem of
refining an existing map while annotating all road segments with additional shape
information and using the semantic segmentation as a secondary condition.

In this chapter we will therefore analyze two different methods for accomplishing
this task based on OpenStreetMap1 data. A state of the art approach by Mattyus
et al. uses a combination of different strategies including superpixel classification
and edge detection in order to solve the problem by means of inference in a Markov
Random Field (MRF) (Mattyus et al., 2015). We will evaluate the applicability of
this method using our own test data set and juxtapose the results with those obtained
from a straightforward, nonlinear optimization experiment. In addition, we will use
the same optimization framework to extend the refined road map to three dimensions
by exploiting a DTM.

3.1 Background and Methodology

3.1.1 Map Projections

In order to execute the experiments, it is necessary to define a common frame of
reference for the original map data and the segmented aerial images. Auxiliary data
sources such as terrain models also have to be converted to this same coordinate
system. Moreover, the subsequent registration of inertial measurements will enable us
to validate our simulation results by comparing them to actual on-road measurements.

The WMTS map projection described in section 2.2.1 is however hardly suitable
for these tasks, as the scale of the map varies depending on the geodetic latitude λ.
Starting out at λ = 45◦N and moving only 10 km further towards the north pole,
the scale difference between those two points already amounts to 0.15%. Thus, using
this projection, it is not possible to compare the trajectories of real and simulated
vehicles in large scale environments with the necessary accuracy.

Consequently, we aim to find a different map projection for converting geodetic
road map data into an uniform, rectangular grid which exhibits a constant scale
alongside its reference meridian. This projection also has to be conformal, that is the
relative local angles about every point on the map have to be shown correctly so that
any shape information is preserved (see Snyder, 1987, p. 4).

The most widely accepted implementation of such a projection is the Universal
Transverse Mercator (UTM) system as depicted in figure 3.1, which is used for large-

1http://www.openstreetmap.org (Haklay and Weber, 2008)

http://www.openstreetmap.org
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(a) UTM zonesa (also see Snyder, 1987, p. 62)
aThis image is in the public domain in the United States because

it is a work prepared by an officer or employee of the United
States Government as part of that person’s official duties under
the terms of Title 17, Chapter 1, Section 105 of the US Code.

(b) UTM map projection

Figure 3.1: Universal Transverse Mercator (UTM) system.

scale maps of the entire world (Snyder, 1987, p. 57). To this end, the surface of
the earth is divided into 120 regular zones, where each zone covers a 6◦ wide band
of either the northern or southern hemisphere. This approach requires 60 different,
elliptic projection cylinders to cover the whole of the earth, and a single cylinder for
a single band is visualized in figure 3.1b.

The scale of the center meridian of the underlying transverse Mercator projection
is thereby fixed at 0.9996 and thus the projection cylinder intersects the surface of
the earth twice. This method mitigates the longitudinal scale variations within the
zone, as the projection error is now more equally spread across the entire zone at the
expense of a slightly inaccurate scale at the center meridian (Snyder, 1987, p. 57ff).

In order to calculate the projected Cartesian coordinates, it is thus necessary
to map geodetic coordinates onto an elliptic cylinder of arbitrary scale. This task is
however not trivial, and it is therefore usually solved by a set of series approximations
converging at the desired solution (Snyder, 1987, p. 61). The coefficients of the series
vary based on the reference ellipsoid which is used to describe the earth. An extensive
list of pre-calculated coefficients for many different reference ellipsoids, accurate down
to 10−6 meters for points within 1000 km of the center meridian of a zone, is however
publicly available (see Office of Geomatics, 2014). This level of accuracy is more than
sufficient for all practical purposes, and the examples presented in this chapter will
therefore use the UTM projection in order to provide a common reference frame for
all data sources.
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(a) Aerial image (b) Ground truth

Figure 3.2: Central region of the validation data set. The OSM database does not
include matching entries for light gray paths which are therefore excluded from evalu-
ation. Orange paths are not visible in the aerial image as a result of natural occlusion,
but they should be evaluated nonetheless.

3.1.2 Validation Data

The evaluation of the two road map refinement approaches will be conducted using a
specialized ground truth data set. To this end, the original orthographic aerial images
have been slightly enlarged to a scale of 13 cm / pixel - which is exactly the scale
Mattyus et al. used and thus enables us to immediately apply their method without
further modifications. Out of this overall data set, a 4096 × 4096 pixel region (0.28
km2) has been manually labeled and will be used for validation. Figure 3.2 visualizes
the central region of this validation data set.

The validation region has been carefully chosen so that it contains many diverse
race track sections, secondary and primary roads and crossings in close proximity,
which will enable us to predict an algorithms performance with respect to the ap-
plication at hand. In order to achieve this goal using a rectangular region, it was
however necessary to accept a tiny overlap with the original data set used for CNN
training. Thus, 3.5% percent of the data points have already been used as examples
for the segmentation network and will therefore be excluded from the evaluation in
order to avoid a bias towards our method.

Furthermore, the OSM database does not contain valid seed data for some minor
roads and footpaths. These paths will also be excluded from the analysis as demon-
strated in figure 3.2b. With the help of additional GPS traces, an optimization of
said paths would however become possible using either of the proposed methods.
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3.2 Refinement by Inference

Mattyus et al. have proposed an efficient method for enhancing freely available road
maps by using a contextual model. Their algorithm returns only topographically
correct roads and also provides estimations for the width of each road segment (see
Mattyus et al., 2015). In this section, we will therefore present a compact overview
of this method, discuss possible shortcomings and enhancements and finally evaluate
the refinement results on our custom validation data set.

3.2.1 Markov Random Fields

The authors suggest a road map refinement algorithm which is based on inference in
a Markov Random Field (MRF). Prince (2012) defines a MRF as a graphical model
which ties together individual observations to form a solution that makes global sense.
Thereby, a MRF is composed of

1. a set of sites which often correspond to physical or image locations
2. a set of random variables associated with each site
3. a set of neighbors (other sites) which are connected to each site

In addition, random variables which are not directly connected to each other have to
be conditionally independent in order to form a valid MRF (also see Prince, 2012,
p. 218). Cost functions - known as potentials - are then used to describe the joint
probability of a specific distribution of random variable states for a connected subset
of sites. Consequently, the overall energy of a MRF can be defined as sum of these
potentials. The process of inference in a MRF thus computes a distribution of states
which minimizes the field’s energy2. (Prince, 2012, pp. 227-283)

In order to solve the road map refinement problem, Mattyus et al. present a MRF
which directly uses the offset of each pixel with respect to the original OSM data
and the width of each road segment as random variables (Mattyus et al., 2015, p. 1).
Pairwise potentials between neighboring segments are used to ensure the smoothness
of the inferred road surface. In addition, the authors also suggest to include a wide
range of other, image-based potentials, which will be briefly described over the next
paragraphs.

3.2.2 Image-based Features

Superpixel Segmentation and Random Forest Classification

The most significant potential for the refinement of road maps can be derived from
a semantic segmentation of aerial images. In this context, a classification of image

2While this may sound similar to the description of a CRF in section 2.1.6, there is a fundamental
difference: A CRF models the conditional probability P (Y |X) i.e. it is conditioned on an input
X and thus is only designed to handle straightforward prediction tasks. A MRF on the other
hand models the joint probability P (X,Y ) which allows for a wider range of applications. (see
Lafferty et al., 2001, p. 286)
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(a) Superpixel segmentation (b) Road classifier (c) Context classifier

Figure 3.3: Random forest classification of superpixels. Each binary classifier predicts
the probability for a given label on a scale from 0% (black) to 100% (white).

pixels by a CNN with an integrated CRF as described in chapter 2 is the state of
the art method, which however is computationally expensive. Mattyus et al. suggest
to create a much simpler binary segmentation by labeling pixels as either road or
context with the help of a superpixel-based random forest classifier. This method is
orders of magnitude faster than the CNN approach, but the quality of the resulting
segmentation is also significantly worse.

Nonetheless, superpixels and random forest classifiers have been successfully used
for the segmentation of aerial images. Kluckner et al. achieved an accuracy of 95.3%
for the detection of road segments by using this method with an additional CRF
refinement step (Kluckner et al., 2010). Mattyus et al. however do not directly apply
any costly post-processing, but they instead compensate for imprecise superpixel
boundaries by introducing other image-based features.

Moreover, Mattyus et al. make use of even faster simple linear iterative clus-
tering (SLIC) superpixels, which further increases the performance difference when
compared to the CNN approach. The SLIC method is an alteration of the k-means
algorithm, and thereby also clusters observations so that each observation belongs
to the cluster with the nearest mean value. The number of calculations is however
optimized by restricting the search space for each pixel’s cluster to a region which
is proportional to the desired - and parameterized - superpixel size. (Achanta et al.,
2012)

Figure 3.3a visualizes the results of the SLIC algorithm on our custom validation
data set. Using this data, two separate random forest classifiers are trained in order
to calculate the probability for an input being either a road or a context pixel (see
figures 3.3b and 3.3c). To this end, Mattyus et al. use the random tree implementation
provided by OpenCV3. The final cost function is then implemented by adding up the
probabilities for all non-road pixels within the proposed road segment and likewise the
sum of all road pixel probabilities within a fixed context region next to the proposed
road segment. (Mattyus et al., 2015, p.2)

3http://opencv.org/ (Bradski, 2000)

http://opencv.org/
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Edge Detection

A superpixel segmentation without additional post-processing is however not sufficient
to detect the exact boundaries of objects. For this reason, Mattyus et al. argue that
the borders of the detected road segments should also align with visible edges of
the aerial image. This observation is always true for primary roads with visible lane
markers, but even for secondary roads there often is a clearly visible boundary between
the road surface and the surrounding environment. Thus, the distance to the nearest
image edge can be used as an additional feature for the road width estimation (see
Mattyus et al., 2015, p. 4).

Overlapping Potentials

Furthermore, Mattyus et al. propose the inclusion of potentials in order to avoid
overlapping road segments. They implement this feature as a hard constraint, and
any two roads which are located close to each other and whose orientation is within
20 degrees must not overlap. (Mattyus et al., 2015, p. 5)

Additional Features

Mattyus et al. also suggest to exploit three other features in order to enhance the
stability of the refinement algorithm. According to their research, the homogeneity
of the road surface and appearance differences with respect to the contextual regions
can be used to correct errors when the road classifier produces unreliable results.
However, with a fully trained road classifier, these features result in a comparatively
minor, combined IoU improvement of just over 0.5 percentage points on average (see
Mattyus et al., 2015, p. 4).

In addition, the authors also propose to implement an object detector for cars in
order to determine the most likely direction of the road based on the car orientation
(Mattyus et al., 2015, p. 4). Such a feature however requires high resolution aerial
images and could still cause incorrect results when applied to race tracks, because
the orientation of a race car is not necessarily aligned with the direction of the road
center line.

For these reasons, we decided to apply the refinement method by using only the
classification, edge detection and overlap potentials. The relative weights of these
enabled features have been retrieved from the original work by Mattyus et al. and are
based on their Bavaria data set.

3.2.3 Evaluation of Results

Mattyus et al. obtained their results by using an image edge detector component which
has been optimized for real-time performance and produces state of the art results
(see Dollár and Zitnick, 2013). Unfortunately, the license terms for this specific edge
detector explicitly prohibit any commercial use and any reproduction of the associated
documentation, which makes it impractical to employ this method for our application.
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(a) Canny edge detection (b) Visualization of results (c) IoU (Douglas-Peucker)

Figure 3.4: Refinement results using our Canny edge detection method.

Consequently, we created a custom edge detector based on the well-known work
by Canny as implemented in the OpenCV package (see Canny, 1986). This custom
edge detector applies the Canny algorithm multiple times with different thresholds,
and merges the outputs to create an image as visualized in figure 3.4a. Our algorithm
is significantly slower than the method proposed by Dollár and Zitnick, but the results
are even better as demonstrated in table 3.1.

Polygon Algorithm
Edge Detector Douglas-Peucker [%] Smooth Roads [%]

Dollár and Zitnick 76.5161 76.8237
Canny 76.7887 77.2340

Table 3.1: IoU inference vs. ground truth on custom validation set.

In addition, we found that the calculation of the IoU value based on the refined
rectangle segments as proposed by Mattyus et al. does not yield the best possible
results with respect to our validation data set. The authors calculate the final road
surface polygon by using the Douglas-Peucker algorithm on the detected rectangle
segments. However, in our experiments, this results in an unnecessarily high number
of errors as shown in figure 3.4c, which uses the color red to highlight false positives
and blue to visualize false negatives.

For this reason, table 3.1 also includes the refinement results for a different method
of expanding the rectangle segments into polygons. This algorithm estimates the
corner points of the road surface polygons by averaging the orientation and width of
neighboring rectangle segments. Thus, we are able to create smoother roads which
result in fewer false positives and a better overall IoU value.

Mattyus et al. have published a maximum IoU score of 77.6% for their method.
This value has been obtained on their aerial KITTI data set and is relative to the
best achievable score with respect to their model hypothesis (Mattyus et al., 2015,
p.4). In conclusion, we were able to reproduce this excellent refinement result on our
custom validation data set even though it was not possible to use all of the suggested
feature potentials.
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3.3 Refinement by Nonlinear Optimization

Using the refinement method proposed by Mattyus et al., we find that the mean offset
error of the road center lines as computed over our validation data set is just 0.847m.
Therefore, we conclude that the OSM data is already an excellent prior for the real
road center lines. This observation however also gives rise to the idea that state of
the art results can be achieved without a global inference of all roads in the network.

Thus, we propose an alternative algorithm for the refinement of road maps, which
is based on the formulation of a nonlinear optimization problem. For this reason,
we briefly present an overview of the theoretical foundations of our method before
analyzing the associated cost functions and the obtained refinement results in greater
detail.

3.3.1 Nonlinear Least-Square Optimization Problems

Our goal is to formulate a model for the road surface which is based on parameters
that can be optimized in order to closely match our observations and additional
secondary constraints. The overall approach is therefore quite similar to the MRF
method proposed by Mattyus et al. However, we interpret the task at hand as a
prototypical example of a straightforward data fitting problem. Consequently, we
also aim to find a parameter vector ~x for our model which minimizes the error with
respect to the measured data points by means of a nonlinear optimization algorithm.

An optimization problem is based on a set of one or more cost functions. Each cost
function thereby describes one aspect of the quality of the fit with respect to a subset
of the given parameter vector ~x as well as some of the observations and constraints.
In a typical application, there are at least as many instances of a cost function as
there are data points, because each cost function instance is responsible for analyzing
the fitting quality for one measured data point. A single output of a cost function
instance - which is also known as residual - is thus only representative for a small
part of the overall model fitting error. The total error for a given parameter vector ~x
is then calculated as the sum of all squared residuals. In order to optimize the model
parameters, we thus have to find the minimum value for this sum of squares, hence
we are dealing with a least-square optimization problem.

This task becomes a nonlinear optimization problem when a single cost function
or constraint exhibits nonlinear behavior. In such a case, it is no longer possible to
compute the global optimum solution, because there is no obvious connection between
the residual for a cost function and the associated parameter values:

All methods for non-linear optimization are iterative: From a starting
point ~x0 the method produces a series of vectors ~x1, ~x2, ... which (hope-
fully) converges to ~x, a local minimizer for the given function. (Madsen
et al., 2004, p. 6)

We are especially interested in algorithms where the calculation of the second
derivative of the cost functions is not necessary. One example of this class is the
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Gauss–Newton method, which is based on a linear approximation to the components
of the cost function in the neighborhood of ~x. Consequently, the problem can be solved
by employing the Jacobian matrix, which contains the first-order partial derivatives
of the cost function in this neighborhood. This procedure is rarely used directly and
without alterations, but it is the foundation of some very efficient methods for the
solution of nonlinear least squares problems. (Madsen et al., 2004, p. 20)

In practice, we will therefore use the Levenberg-Marquardt algorithm to solve
our system, which extends the classical Gauss–Newton method through the introduc-
tion of an additional damping parameter. This damping parameter influences both
the step size and the step direction, thereby producing either a short step in the
direction of the gradient descent or - during the final iterations, when the current
position is already close to the local minimum - a quadratic convergence behavior.
(Madsen et al., 2004, pp. 24-29) (also see Press et al., 1992, p. 671ff)

In addition, we will make use of a loss function which reduces the importance
of large residuals for the fit. This step is necessary to prevent a small number of
outliers, that is objective errors in the measured data points, from heavily influencing
the overall results. Consequently, a loss function improves the robustness of our
algorithm. To this end, only the smaller residuals will be actually squared while the
function should approximate a more linear behavior for large residuals. One example
of such a function is the Cauchy loss as defined by Agarwal and Mierle (Agarwal and
Mierle, 2016):

ρ(z) = ln(1 + z) (3.1)

For practical applications, Agarwal and Mierle however also introduce an addi-
tional scaling parameter C to set the threshold between outliers and valid measure-
ment data, which yields the equation for the squared residuals ρ̂(r2):

ρ̂(r2) = C2ρ

(( r
C

)2)
(3.2)

As explained in chapter 2.3, we however do not aim to implement all the evaluated
methods ourselves. Thus, we will use the excellent nonlinear least squares package
CERES to build or model, formulate the constraints and solve the problem with the
Levenberg-Marquardt algorithm. The CERES framework has one additional property
which greatly facilitates this procedure: It is not necessary to explicitly implement the
first order derivatives of our cost functions, because CERES supports two automatic
ways of calculating the Jacobian matrices. For unsteady functions, the partial first
order derivatives can be calculated numerically. For steady cost functions, CERES
however also supports automatic differentiation by using the standard differentiation
rules on the mathematical operations which form the cost function based on the func-
tions actual source code (Agarwal and Mierle, 2016). By exploiting these features, we
can fully concentrate on devising the cost functions which best describe our problem
without thinking about possible mathematical implications.
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3.3.2 Problem Formulation

Our method is partially based on the work by Mattyus et al. as it also aims to create a
map of a road network by refining existing OSM data. This data is in our experience
already quite close to the optimum solution and thus makes for an excellent initial
condition which enables us to utilize a local optimization method in the first place.
While Mattyus et al. however calculate the width and offset per road segment, our
model of the road map graph is parameterized in terms of node properties. More
precisely, our model estimates the offset and width at each position which joins two
adjacent road segments and in a direction which is normal to the trajectory of the
associated path.

Figure 3.5: Road graph refinement. OSM data is shown as white polyline, the opti-
mized road surface area is enclosed by smoothly connected orange quads.

This design requires slightly more complicated calculations, but it also inherently
ensures topographically correct, smooth road surfaces: As we are optimizing only
node parameters, the properties at the end point of one segment and the start point
of the next segment are calculated simultaneously and adjacent segments thus always
maintain a smooth connection. As a result, the offset and width may however be
different at the start and end of a single road segment and the segments consequently
have the shape of arbitrary quads. Figure 3.5 visualizes this effect by showing the
state of the model at the end of the nonlinear optimization process.

Classification Errors

Similar to Mattyus et al., we also use a semantic segmentation of aerial images to
define our primary cost function for the detection of road segments. There are how-
ever some fundamental differences between the two approaches: Our method directly
uses the output of the CNN+CRF network described in section 2.4 to compute the
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residuals. This network already infers the exact boundaries of segmented objects by
using a fully integrated CRF, and thus it is not necessary to add a separate post
processing step or an additional edge detector component. Furthermore, the CRF
annotates each pixel with the most likely class out of the 38 different pre-defined
labels while the information about the original relative probabilities of the classes is
ultimately discarded.

Despite of these differences, our cost function for the computation of classification
errors is still heavily influenced by the work of Mattyus et al. Most notably, we also use
one instance of the cost function per road segment and we analyze both the segment
itself and the contextual region to compute residuals. To this end, our cost function
is based on two adjacent nodes and thus receives the offset and width at each node in
the form of four independent parameters. This enables us to calculate the resulting
arbitrary road segment quad which spans the distance between the two nodes.

Subsequently, we define four different regions based on this geometry: Two trape-
zoids are located immediately outside of the left and right border of the original quad.
These areas both have a fixed width of 16 pixels (1.25 meters) and form the contex-
tual region for the road segment. In addition, two other trapezoids are located just
inside of the quad’s right and left border. In our implementation, these areas also
have a fixed width of 16 pixels and mark the outer regions of the actual road segment.
Figure 3.5 visualizes contextual areas in blue and boundary regions in red.

Label False Pos. [%] False Neg. [%]

cartway, road, racetrack, pitlane 100.0 0.0
apron 0.0 0.0
paved, parking 0.0 20.0
buildings, vegetation, other 0.0 100.0

Table 3.2: Class-specific cost factors for mapping classification errors to residuals.

The actual residuals are then calculated as weighted sums of all classification errors
in the context and boundary regions. To this end, table 3.2 details the conversion
factors from labels to error terms. Thereby, false positives denote pixels which are
classified as road surface, but are currently located in one of the two contextual
regions. False negatives on the other hand are pixels which are classified as non-road,
but are at the moment located within the boundary regions of the road surface. The
distinction between road and non-road is however not always unambiguous: Some
classes like paved surfaces, parking lots and aprons may or may not be part of an
actual road surface. For this reason, the conversion factors for these classes have been
manually chosen based on this author’s experience. As a result, these cost factors are
significantly lower than for classes with definitive mappings.

Furthermore, all classification errors are also weighted based on their actual dis-
tance from the border of the road segment quad as visualized in figure 3.6. This
additional function has been instigated because misclassified pixels which are just a



From Aerial Images to Virtual Driving Environments 66

−3 −2 −1 0 1 2 3

0

50

100

Distance from Road Edge [m]

W
ei

gh
t

[%
]

Figure 3.6: Distance-specific cost for classification errors.

few centimeters away from the estimated perimeter should not cause severe alter-
ations. On the other hand however, classification errors which are located far from
the segment’s border should have greater influence on the optimization results.

The product of the classification error cost c according to table 3.2 and the distance
factor d is then calculated for each pixel p within the four significant regions of the road
segment. These terms are summed up and normalized based on the total number of
evaluated pixels. In addition, we introduce a global weight factor wc which determines
the relative importance of the classification error cost function in the context of our
model. This finally yields the complete equation for the residuals rc:

rc =
wc∑
p d(p)

·
∑
p

c(p) · d(p) (3.3)

Equation 3.3 is evaluated separately for context and road boundary regions, that is
twice per road segment. This creates a total of 2 · (n− 1) residuals for a path with n
nodes. The cost function for the computation of residuals from classification errors is
however not differentiable. Therefore, we have to rely on the numeric differentiation
method in order to perform a nonlinear optimization.

Additional Cost Functions

While the calculation of classification errors is a substantial part of our model, we
also implement three other, albeit much simpler, cost functions. These favor the cre-
ation of smooth realistic road surfaces by computing residuals for certain undesirable
properties.

First and foremost, we identify the magnitude of the orientation difference between
two road segments as such an adverse feature. Consequently, our model prefers the
creation of topographies with larger corner radii whenever possible. In addition, this
also corrects irregular variations of the original path by distributing isolated curvature
peaks across multiple connected segments.

To this end, we have to perform a numerically stable calculation of the angle θ
between two adjacent road segments v1 and v2. The classical formula based on the
inverse cosine of the dot product however requires the normalization of the input
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vectors, which is computationally expensive due to two separate square root function
calls. For this reason, we derive equation 3.8 to compute θ in a more efficient way.
This leads to a speed-up of more than 25% without loosing any significant digits (also
see Kahan, 2006, p. 46):

tan(θ) =
sin(θ)

cos(θ)
(3.4)

θ = atan2(sin(θ), cos(θ)) (3.5)

||v1 × v2|| = ||v1|| ||v2|| sin(θ) (3.6)

v1 · v2 = ||v1|| ||v2|| cos(θ) (3.7)

ra = wa · θ = wa · atan2(||v1 × v2||, v1 · v2) (3.8)

The resulting angle is then also multiplied by a global weight factor wa to yield the
desired residual ra. Equation 3.8 is evaluated for any two connected road segments
and a path made up from n nodes thus produces a total number of n− 2 residuals.

Finally, we also define two cost functions for the difference between the width and
offset variables of two connected nodes in order to punish strong variations of these
properties within a single road segment. The functions are directly derived from the
parameters of our model and evaluated once per road segment:

rw = ww · (widthn − widthn−1) (3.9)

ro = wo · (offsetn − offsetn−1) (3.10)

Two separate, global scaling factors ww and wo furthermore determine the relative
importance of width and offset variations for solving the system.

3.3.3 Experiments and Results

A model which is built using the previously described cost functions can create state
of the art refinement results for OSM data straight away. However, our initial exper-
iments have shown that an insufficient spatial resolution of roads in the OSM data,

(a) Original OSM data (b) Interpolated OSM data

Figure 3.7: Road graph interpolation. Refinement results using NLO.
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as is demonstrated in figure 3.7a, often prevents us from utilizing our cost functions
to their full potential. For this reason, we modify the original OSM data by first
performing a linear interpolation of all paths so that the average distance between
two connected nodes is reduced down to 2 meters. All of our results in this section
have been obtained from using such an interpolated data set, and an example output
of the entire algorithm is visualized in figure 3.7b.

Weight Factors
Feature Set 1 Set 2

Classification wc 10.0 10.0
Road Segment Orientation wa 1.0 20.0
Width Variation ww 0.2 10.0
Offset Variation wo 0.2 0.0

Table 3.3: Refinement weights for nonlinear optimization.

In addition, we also found that the quality of the refinement results mainly de-
pends on the application-specific relative weights of the four cost functions. Table 3.3
details two different sets of weight coefficients, which were manually selected based on
a limited number of supervised experiments: The first set focuses on the classification
error cost and thus features comparatively lower weights for the smoothness residuals.
These weights are however significantly increased for the second set of optimization
parameters, which consequently favors smoothness over classification accuracy. An
automatic search for these parameter values could definitely lead to even better re-
finement results, but any such experiment would also require a much larger ground
truth data set and a cross-validation approach to detect over-fitting issues.

Weights Max. Iterations IoU Avg. Width σ2

Set 1
1× 20 80.09% 0.378m
1× 40 80.19% 0.370m
2× 20 80.40% 0.410m

Set 2
1× 20 65.97% 0.091m
1× 40 65.89% 0.084m
2× 20 66.38% 0.069m

Set 1+2 20 + 20 80.32% 0.179m

Table 3.4: Refinement Results for nonlinear optimization on validation data set.

Table 3.4 lists the refinement results for our algorithm and both parameter sets
in terms of the corresponding IoU values. Moreover, we also publish the average
variance σ2 of the refined road segments’ width as a measure for the smoothness of
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the obtained road boundaries:

σ2 =

∑
(X − µ)2

N
(3.11)

The IoU values for parameter set 1 thereby confirm our initial assumption that
a nonlinear optimization can be used to create state of the art road map refinement
results. However, the smoothness of the optimized road boundaries is not quite
acceptable for our application, and it even degrades with the number of optimization
iterations. Parameter set 2 on the other hand creates a very smooth road network at
the expense of the IoU values. While both properties continue to improve slightly due
to added iterations and multiple consecutive executions, it is obvious that the relative
influence of the semantic segmentation is not sufficient to reach high IoU values.

As a result of these observations, we suggest that the quality of the refinement
can be improved by a two-step algorithm: During the first run, we optimize the road
map to closely match the semantic segmentation by applying the weight coefficients
from set 1 for 20 iterations. Subsequently, we use this data as initial condition for
a second run of another 20 iterations, but this time we set the weights according to
parameter set 2. This approach enables us to strike a good balance between accurate
results and an acceptable smoothness of the refined road segments: An IoU value of
80.32% after 40 iterations exceeds our reference value of 77.23% significantly, while
the average variance of the road width for a given path is less than 0.18 meters or 1.4
pixels.

Supplementary experiments have shown that any further increase of the maximum
number of iterations only has comparatively minor effects: A total of 80 iterations,
split equally across the two runs, results in an IoU value of 80.31% and a corresponding
road width variation of 0.17 meters. We therefore conclude that 20 iterations per pass
are already sufficient to achieve excellent results. In order to speed up the calculations,
it could even be advisable to relax the convergence criteria slightly.

Performance Comparison

Using our method, we are able to optimize the OSM road data in an area of 7.81 km2

within 37 minutes. During this time, our algorithm refines the positions of 17714
nodes by analyzing the pre-calculated semantic segmentation for 400 million pixels.
By comparison, the method proposed by Mattyus et al. solves the same problem in
less than a third of the time, so our approach is significantly slower. However, the
results of our method are more suitable for the generation of virtual road networks,
as the smoothness of the resulting road surface is inherently enforced.
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Figure 3.8: Example output of our algorithm: A road graph for a region of 0.26
km2 after the NLO-based refinement. All connections between road segments are
preserved.
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3.4 Three-dimensional Road Maps

In order to create real world driving scenarios, we also have to ensure that the sim-
ulated driving resistance is calculated based on a realistic DEM. To this end, we
enhance our refined, two-dimensional road network by also adding annotations for
the elevation of each node. We thereby aim to seamlessly integrate the resulting,
three-dimensional road surfaces with the surrounding terrain while also ensuring a
smooth height profile alongside each path in the network.

Due to the lack of high resolution measurement data, we propose to create the re-
quired annotations by exploiting publicly available terrain and elevation models which
are defined as uniform grids in the UTM coordinate system. The SRTM project4 pro-
vides a complete digital elevation model of the earth, sampled at a 30 m interval, but
local governments often distribute data of higher quality. Our experiments in this
section will thus be conducted using a DTM published by Land Steiermark5, which is
available for UTM zone 33N at a grid resolution of 10 meters. Thus, we can directly
perform a bilinear interpolation or a cubic convolution interpolation (see Keys, 1981)
on this grid to smoothly sample the elevation data.

3.4.1 Problem Formulation

As a result of the comparatively low resolution of the available DTM, the interpo-
lated values may however still be flawed. Road elevations next to steep faces and
height annotations for bridges and tunnels are both unreliable. Consequently, a post-
processing step is required to detect and filter these deficiencies in order to create a
smooth road gradient. For this reason, we introduce two contradicting measures for
the refined road profiles: We assess the deviation ∆h from the original DTM as well
as the energy of the resulting road gradient (tan(αn)) and aim to achieve a balance
between those two qualities. To this end, we introduce equations 3.12 and 3.13 in
order to calculate the normalized error terms Eh and ERG for each path with N nodes.

Eh =
1

N

N∑
n=1

∆h,n
2 (3.12) ERG =

1

N

N∑
n=1

(tan(αn))2 (3.13)

While the energy of the road gradient can be reduced efficiently by calculating a
moving average of the elevation profile, this simplistic method also causes significant
alterations of the absolute height data. For this reason, we propose a different method
for optimizing the road profile by reusing the nonlinear optimization framework de-
scribed in section 3.3.1. To this end, we perform a model-based optimization of the
road gradient’s energy which also takes the original DTM values into account. Fur-
thermore, we demonstrate that our approach can also be used to correct measurement
errors in the DTM data with the help of a suitable loss function.

4United States Geological Survey, 2016. Shuttle Radar Topography Mission. http://srtm.usgs.gov
5Digitales Geländemodell - 10m - Steiermark (Land Steiermark, 2016a)

http://srtm.usgs.gov
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3.4.2 Optimization Method

As described previously, a model for a nonlinear least squares optimization problem
is made up from a set of weighted functions which each calculate the cost of an
undesirable property. Our method is based on defining costs for both the road gradient
and the distance between the road surface and the elevation model. Consequently,
the proposed model is parameterized in terms of the absolute height h of the road
center points, and we use the original values of the DTM as initial condition.

Road Gradient Cost

The trajectory for real roads is chosen so that steep gradients are avoided whenever
possible - even if this requires the construction of bypasses, bridges or tunnels. For
this reason, it is safe to assume that the gradient of our refined trajectory also should
be minimal and we thus identify the absolute value of the road gradient itself as an
adverse property. This gradient is calculated as the quotient of the height difference
between the segment’s end points (rise) and the length of the segment as projected
in the XY plane (run). Furthermore, the residual rg is calculated separately for each
road segment by multiplying this value with a weight factor wg:

gradient = tanα =
rise

run
(3.14)

rg = wg · gradient (3.15)

Road Gradient Variation Cost

In addition, we also define a cost function for the difference between the road gradients
of two connected segments in order to punish strong road gradient variations regard-
less of the length of the involved segments and thus ensure a smooth road profile.
Once more, we introduce an additional weight factor wv in order to set the relative
importance of this property and calculate the residuals for any pair of connected
segments:

rv = wv · (gradientn − gradientn−1) (3.16)

Elevation Difference Cost

Moreover, the scaled difference between the current parameterization hn of the model
and the original DTM elevation data hDTM is used to implement a final cost function,
which is evaluated for each node of the path.

re = we ·∆h,n = we · (hn − hDTM) (3.17)

In this case however, we also have to deal with errors in the DTM data. For this
reason, we also add a Cauchy loss function with a normalization value of 0.5 in order
to reduce the influence of larger residuals.
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3.4.3 Experiments and Results

We assess the algorithms twice by applying both a bilinear and a cubic convolution in-
terpolation on the DTM data and calculating the previously defined quality measures
for each refinement method. The results are moreover also compared to an improved
elevation model, which has been manually modified to correct for some obvious errors
in the original data set such as missing bridges. The scores for the NLO algorithm
are thereby obtained by using empirically determined cost function weights as listed
in table 3.5.

Feature Weight Factor

Road Gradient Cost wg 1.2
Road Gradient Variation Cost wv 12.0
Elevation Difference Cost we 0.2

Table 3.5: Refinement weights for nonlinear optimization of road height.

Selected results are given in numerical form in table 3.6. Without additional
smoothing, the evaluation of the DTM with a bilinear interpolation results in an
average road gradient energy of 36.208 · 10−4. As is to be expected, this quantity can
be improved considerably by applying moving average filters with large window sizes,
which however also cause significant deviations from the original DTM data.

Interpolation Smoothing (Filter Size) ERG [·10−4]
Eh [m2]

DTM DTMcorr.

Bilinear

None 36.208 0.000 0.120
Moving Avg. (11) 28.371 0.009 0.088
Moving Avg. (35) 23.765 0.089 0.047
Moving Avg. (67) 23.322 0.203 0.109
NLO 22.447 0.121 0.001

Cubic Conv.

None 39.542 0.000 0.136
Moving Avg. (11) 29.641 0.012 0.096
Moving Avg. (35) 23.798 0.112 0.051
Moving Avg. (67) 23.289 0.229 0.113
NLO 22.814 0.093 0.028

Table 3.6: Refinement results for road height estimation.

When we further analyze the results for the moving average filters and compare
them to the manually corrected DTM, we find that a window size of 35 samples is a
good compromise for both interpolation algorithms: At this size, errors in the DTM
are partially corrected due to the clearly visible smoothing effect while the absolute
height difference is hardly noticeable. Our NLO-based method however con-
sistently outperforms the moving average filters by a significant margin: The
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energy of the road gradient is reduced to an absolute minimum while the elevation
values are kept close to the DTM. In addition, the introduction of a loss function
enables us to efficiently correct minor errors in the data set, as unrealistic road gra-
dients are automatically corrected by isolated modifications to the elevation model.
These findings are also visualized in figure 3.9.
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(b) Refinement quality (cubic convolution interpolation)
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Figure 3.9: Graphical evaluation of refinement quality. Road gradient energy ERG [-]
vs. squared height error Eh [m2]. An ideal compromise between these two properties
would have to be located in the lower left corner of each plot.
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The practical applicability of our method is finally demonstrated by a visualization
of the interpolated and optimized road heights at the Red Bull Ring circuit. Both
the correction of a major error in the published DTM (figure 3.10a) and the reduced
noise in the road gradient signal (figure 3.10b) are thereby clearly visible.
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Figure 3.10: Road height and gradient over projected distance.

3.5 Summary

This chapter has established that a nonlinear optimization framework can be used
to generate state of the art refinement results for road networks based on a semantic
segmentation of aerial images. In addition, the same set of tools can also be exploited
to create smooth, three-dimensional road surfaces which are based on existing terrain
models. Moreover, these models can be textured using both the orthographic aerial
images or the corresponding semantic segmentation, as all these data sources have
been converted to the same, UTM-based coordinate system and thus are already
aligned with each other.

There are however still some limitations which will have to be addressed in future
works. For once, our implementation of the road map refinement is not yet able to
detect individual road lanes and thus fails to create reliable information for crossings
and other irregular road sections. In addition, the algorithm would have to be im-
proved in order to fully support the detection of tunnels and overpasses. Finally, the
low resolution of the evaluated terrain models unfortunately prevents us from calcu-
lating the banking of road surfaces, which makes it difficult to perform a correlation
between vehicle simulations and actual, on-road measurements. Despite of these is-
sues, the data collected so far already enables us to create virtual, three-dimensional
driving environments as will be demonstrated in the next chapter.



Chapter 4

Visualization and Practical
Applications

Several outputs of the earlier pipeline stages have to be combined in order to form
virtual driving environments which enable us to implement dynamic vehicle simu-
lations and visualize their results. This chapter primarily describes the generation
of three-dimensional meshes based on the previously extracted road and terrain de-
scriptions and includes step-by-step instructions for this process. The resulting assets
could be used with any visualization tool, but all screenshots hereinafter have been
created using the AVLViewer program, which is bundled with several AVL software
products. The features and architecture of this render engine will however only be
discussed briefly, as the core of this application has been developed by third parties
some years prior to this thesis.

4.1 Render Engine

The AVLViewer is built upon the Object-Oriented Graphics Rendering Engine OGRE1.
It has been originally developed as a tool for AVL’s vehicle simulation model VSM2

in order to allow for a visual analysis of simulation results. To this end, it supports
the visualization of arbitrary roads by computing a generic landscape based on a
three-dimensional definition of a reference line.

Each road definition is thereby expanded into a point cloud and a two-dimensional
Constraint Delaunay Triangulation (CDT) is calculated from this data (see Shewchuk,
2002) (also see Ruppert, 1993; Chew, 1993). The enclosing terrain is generated
in a way which minimizes the vertical tension between the road vertices and their
surroundings. Moreover, procedurally created objects such as curbs and lane markings
can be added to the scene. An example output of this algorithm is presented in figure
4.1. The resulting meshes are perfectly aligned with the original road definition
and therefore can be used for real-time visualizations as well as the post-processing of

1The OGRE Team, 2016. O-O Graphics Rendering Engine (OGRE). http://www.ogre3d.org/
2AVL List GmbH, 2016. AVL VSMTM. https://www.avl.com/-/avl-vsm-vehicle-simulation

http://www.ogre3d.org/
https://www.avl.com/-/avl-vsm-vehicle-simulation
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Figure 4.1: AVLViewer screenshot. Generic landscape.

simulation results. In order to provide for these applications, the AVLViewer program
contains a wide range of purpose-built features, including specialized presentation
elements for many properties of the simulated vehicle.

The underlying render engine has been gradually improved over time and currently
supports vertex and pixel shaders as well as multiple light sources and camera effects.
These features are however mainly used for the visualization of highly detailed car
models, while the procedurally created landscapes still lack visual appeal.

4.2 Mesh Generation

The most pressing issue with respect to the automatic environment generation is
however a lack of scalability, as the generic terrain is created as one single mesh.
We aim to address this particular shortcoming by offering a new, tile-based mesh
synthesis algorithm based on aerial images and a DTM as an alternative to the existing
landscape generation method.

The entire scene is thereby split into smaller quadratic tiles, each spanning an
area of 480 × 480 meters. This size has been chosen so that the resulting image
resolution for a standard texture size of 2048 × 2048 pixels is a good match for the
aerial photographs. Contrary to the original method, our mesh generation algorithm
thus does not create the terrain based on the road descriptions, but rather intends to
produce road meshes which are compatible with these predefined terrain tiles.

During the first phase of the mesh generation, all road definitions are therefore
expanded into two-dimensional polygons, which are then intersected with and sub-
tracted from the quadratic tile areas. This process often results in a significant number
of independent track and terrain objects for a single tile, as each tile can contain mul-
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tiple road segments and the terrain thus may be split several times. For this reason,
it is necessary to compute all polygon operations in a numerically stable way, and we
use the NetTopologySuite3 to this end.

Each terrain polygon is furthermore rasterized at a resolution of 10 meters. The ex-
act location of points which are not part of the object’s boundary is moreover slightly
randomized in order to avoid visual artifacts. We once more use the NetTopology-
Suite in order to triangulate the resulting two-dimensional point cloud, as this package
also contains algorithms for the calculation of a CDT based on Shewchuk’s method.
Likewise, a two-dimensional CDT is computed independently for each of the obtained
road polygons.

In order to expand the resulting polygons into three-dimensional meshes, the
z-coordinates have to be determined in a consistent way for both terrain and road
objects. To this end, two different data sources have to be evaluated: For all locations
which are covered by or very close to a road surface polygon, the interpolated height
of the refined road’s optimized definition is being used. This also affects inner vertices
of terrain objects, as long as they are within a predefined distance from a neighboring
road polygon. The z-coordinate for all other vertices is however directly determined
by a bilinear interpolation of the original DTM.

In addition, all meshes have to be generated in a way which avoids visible artifacts
both at the tile borders and at the boundaries between road surfaces and the terrain
objects. The normal vectors for boundary vertices thus have to be manually calculated
based on the DTM and the road definitions in order to enable consistent lighting across
the entire scene. Moreover, aerial images and prefabricated high resolution textures
may also span multiple objects and the integrity of the generated UV coordinates
therefore has to be ensured.

4.3 Application Example

The next sections provide step-by-step instructions for the generation and utilization
of a virtual driving environment. We cover a region of approximately 20 km2 enclosing
the Red Bull Ring race track and provide visual examples for all intermediate results
of the suggested workflow. The region’s location in the Austrian mountains suits this
example perfectly, as it enables us to demonstrate the full potential of the terrain
generation system.

4.3.1 Generation of a Virtual Driving Environment

As a necessary prerequisite for our approach, aerial images have to be retrieved from
OpenGIS compatible data sources so that they can be stored in a local WMTS
database. In addition, a suitable terrain model and priors for the location of road

3NetTopologySuite - Team, 2016. NetTopologySuite: A .NET GIS solution that is fast and reliable
for the .NET platform. https://www.nuget.org/packages/NetTopologySuite/

https://www.nuget.org/packages/NetTopologySuite/
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segments have to be provided. This example once more uses data from basemap.at4,
Land Steiermark5 and the OpenStreetMap6 project.

Semantic Segmentation

The semantic segmentation of aerial images has been described in detail in chapter
2. In order to ensure seamless results, each original 256 × 256 pixel WMTS tile is
padded with a 97-pixel wide margin made up from the pixels of neighboring tiles.
The output of this process is visualized in figure 4.2a, which shows a projection of
the semantic segmentation on the shaded DTM surface.

Road Map Refinement

Likewise, the refined road network is displayed as an additional layer on top of the
original aerial images in figure 4.2b. The refinement method described in chapter 3
has however been slightly altered for this example in order to create even smoother
road networks. To this end, an additional optimization step has been added which
further reduces the energy of the roads’ curvature by applying a model-based filtering
similar to the process described in section 3.4. Moreover, the algorithm for refining the
coordinates of road intersections has been modified, as high level roads should have
more influence on their exact location than secondary paths. These two enhancements
not only improved the visual appearance of the refined road network, but also resulted
in a minor increase of the overall IoU value from 80.32% to 80.69% as measured on
our validation data set.

Constrained Delaunay Triangulation

Figure 4.2c presents the CDT for this scenario, which has been calculated as described
in section 4.2. In this case however, only the main parts of the race track have been
subtracted from the terrain tiles, as the various foot paths and service roads will not
be used by the actual vehicle simulation. The resulting tile boundaries are clearly
visible as irregularities of the triangulated road surface.

Texture Generation and UV Mapping

The calculation of textures from the aerial images is a resource intensive process, as
the data has to be reprojected from the WMTS tiles to the UTM coordinate system.
This task cannot be solved by a simple matrix transformation, but requires a lot of
computations which have to be executed independently for each pixel. As such, our
experiments have shown that the texture projection for an area of 1 km2 takes up to
40 seconds, which is more than twice of the time required by all other steps of the
mesh generation process combined.

4Stadt Wien und Österreichische Länder bzw. Ämter der Landesregierung, 2015
5Digitales Geländemodell - 10m - Steiermark. (Land Steiermark, 2016a).
6Haklay and Weber, 2008

http://www.basemap.at
http://data.steiermark.at/
http://www.openstreetmap.org
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(a) Semantic segmentation

(b) Road map refinement

(c) Constrained Delaunay Triangulation (CDT)

Figure 4.2: Application example part I.
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(a) Texture generation and UV mapping

(b) Shaded terrain model

(c) Virtual driving environment

Figure 4.3: Application example part II.
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Figure 4.3a demonstrates the transition between aerial images and prefabricated
high resolution textures which are used for the road surface. The blending is achieved
by using alpha maps in combination with a second set of UV coordinates, which is
oriented alongside the road surface and spans multiple tiles.

Shaded Terrain Model

A shaded terrain model for our scenario is presented in figure 4.3b. The boundaries
between the individual tiles are not visible at all, as the normal vectors have been
calculated consistently across the entire scene. However, a distinction between road
surfaces and the surrounding terrain is clearly noticeable. This is a result of two dif-
ferent calculation procedures for the normal vectors: The road normals are calculated
based on the gradient and banking of the road definition, while the terrain normals
are taken straight out of the DTM. Consequently, road meshes appear as smooth
surfaces in this demonstration, whereas the normal vectors of the enclosing terrain
vary significantly and thus convey a certain degree of roughness.

Virtual Driving Environment

Figure 4.3c visualizes the finished virtual driving environment. To this end, aerial
images and high resolution textures are mapped onto the shaded terrain. The scene
also contains additional objects such as lane markings and curbs, which have been
procedurally generated based on the road definition.

4.3.2 Simulation Results

At last, a vehicle simulation is conducted in the previously generated virtual driv-
ing environment to provide conclusive evidence for the suitability of the proposed
workflow and the topographically correct extraction of road surfaces. For this rea-
son, we import the road definition into the simulation software AVL VSM 4.17. This
application contains a range of tools for the generation and post-processing of track
descriptions as well as for the computation of ideal racing lines. However, we deliber-
ately do not use any of those features, as we intend to analyze the simulation results
for the raw, unmodified road center lines as extracted from the semantic segmentation
and the DTM.

To this end, a generic vehicle parameterization for sport cars, which is distributed
as part of the AVL VSM installation, is furthermore used. Figure 4.4 presents the
simulation results for one complete lap with this car at the virtual Red Bull Ring
race track. The velocity and lateral acceleration signals thereby perfectly fit our ex-
pectations, as the influence of the individual corners of the circuit is clearly visible.
Moreover, the shape of the vehicle speed signal is different for the full load accelera-
tions towards the second and third corner of the track, which indicates that the road
gradient is correctly evaluated during the simulation of this mountain course.

7AVL List GmbH, 2016. AVL VSMTM. https://www.avl.com/-/avl-vsm-vehicle-simulation

https://www.avl.com/-/avl-vsm-vehicle-simulation
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Figure 4.4: Simulation results.

A full comparison of the simulation results and actual, on-road measurements has
however not been carried out yet, as this would not only require a perfectly matched
parameterization for the simulated vehicle, but also an exact reproduction of the
racing line within the boundaries set by the extracted road surfaces.8

Despite of this limitation, the application example presented herein successfully
proves that the extracted road definitions are of sufficient quality to support the
vehicle development process by facilitating the creation of realistic virtual driving
environments. Figure 4.5 finally demonstrates the visualization of the obtained sim-
ulation results by means of the previously described render engine.

Figure 4.5: Visualization of simulation results.

8Existing data which fits these requirements is unfortunately subject to confidentiality agreements
which prevent the use as part of this work, and the creation of a new reference data set clearly
exceeds the scope of this thesis.



Chapter 5

Conclusion

This thesis suggested a workflow for the creation of large, virtual driving environments
based on aerial images and other, publicly available, data sources. To this end, a
semantic segmentation of orthographic pictures, computed by a purpose-built FCN,
has been used to refine and annotate existing road maps. The obtained refinement
results improve upon the state of the art when evaluated against a new ground truth
data set that has been generated as part of this work.

Moreover, a topographically correct, three-dimensional description of road net-
works has been calculated based on a low resolution DTM and by means of a nonlin-
ear optimization algorithm. The resulting surfaces are a suitable input for real-time
vehicle simulations. In addition, the alignment between aerial images, extracted road
definitions and the DTM facilitates the visualization of simulation results as part of
a virtual landscape.

5.1 Interpretation of Results

These findings verify the central hypothesis that a FCN-based, semantic segmentation
of aerial images is an adequate first step in a workflow for creating realistic virtual
worlds. A procedural generation of driving environments based on the predefined
pixel classes is definitely possible, and the use of nonlinear optimization tools enables
the extraction of road surfaces while striking an optimum balance between accuracy
and smoothness.

The algorithms which are described in this work have been implemented as set
of independent command line tools and are already used successfully for commercial
applications. For this reason, we conclude that the proposed workflow is highly
suitable for the generation of virtual driving environments, and that the primary
objective of this thesis thus has been accomplished.
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5.2 Limitations

Due to the limited availability of ground truth data, the results of both the segmen-
tation and road map refinement stages do not have much significance in a global
context. Even though the performance measures for both methods exceed the respec-
tive state of the art when tested against the custom validation data sets, additional
experiments would have to be conducted in order to reach a final verdict.

Furthermore, complicated road segments such as overpasses, tunnels and elaborate
intersections have been dealt with only in a superficial and ultimately inadequate way.
The detection of these structures could without a doubt be improved by exploiting the
terrain model in earlier stages of the workflow. In addition, the suggested process for
the generation of three-dimensional meshes from geometry definitions by using a CDT
currently does not support multi-level intersections at all and thus would have to be
enhanced as well. Such complicated structures are however comparatively rare and as
such, they do not have any significant impact on the quality of the overall refinement
results presented herein. Thus, it may be more efficient to resolve any remaining
ambiguities with respect to the elevation model during a manual post-processing step
whenever necessary.

5.3 Outlook and Future Work

This thesis only scratched the surface of many related, worthwhile topics. As such,
there is a wide range of ideas for rewarding subsequent work. First and foremost, the
integration of inertial measurement data into the workflow is of particular interest, as
the exact shape of road surfaces could also be inferred from such sources. Moreover,
this would enable exact correlations with on-road vehicle measurements, as roughness
and banking signals could be incorporated in the virtual model based on the IMU
data and additional ride height sensors. In addition, the road map refinement itself
could be enhanced to detected multiple road lanes, which would be beneficial for
ADAS development.

Furthermore, the scalability of the real-time visualization should be improved.
The current process already supports the generation of LOD meshes, which helps
to increase the render performance. However, the third-party render engine itself
prevents us from loading meshes and textures in background threads, which is a
severe obstacle for the visualization of larger virtual landscapes. Once this issue
is resolved, the visualization of landscapes covering hundreds of square kilometers
should become possible.

Finally, the procedural generation of animated environments should be addressed.
The existing render engine is however showing its advancing age, as the underlying
object model is outdated and many features have to be configured on a low level. For
these reasons, it may be advisable to recreate the entire visualization module using
a modern game engine while also relying on prefabricated assets to create a cutting
edge experience for interactive driving simulators.
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basemap.at – Verwaltungsgrundkarte Österreichs. URL: http://www.basemap.
at/. Accessed: 2015-11-04.

The OGRE Team (2016). O-O Graphics Rendering Engine (OGRE). URL: http:
//www.ogre3d.org/. Accessed: 2016-12-31.

United States Geological Survey (2016). Shuttle Radar Topography Mission. URL:
http://srtm.usgs.gov/. Accessed: 2016-03-15.

http://http://earth-info.nga.mil/GandG/publications/NGA_SIG_0012_2_0_0_UTMUPS/NGA.SIG.0012_2.0.0_UTMUPS.pdf
http://http://earth-info.nga.mil/GandG/publications/NGA_SIG_0012_2_0_0_UTMUPS/NGA.SIG.0012_2.0.0_UTMUPS.pdf
http://http://earth-info.nga.mil/GandG/publications/NGA_SIG_0012_2_0_0_UTMUPS/NGA.SIG.0012_2.0.0_UTMUPS.pdf
http://portal.opengeospatial.org/files/?artifact_id=33269
https://opendata.swiss/en/dataset/luftbildstreifen-swisstopo
https://opendata.swiss/en/dataset/luftbildstreifen-swisstopo
http://www.basemap.at/
http://www.basemap.at/
http://www.ogre3d.org/
http://www.ogre3d.org/
http://srtm.usgs.gov/


Appendix A

Ground Truth Data

A.1 Pixel Classes

The tables in this section list all the pixel classes which have been defined as part
of this thesis to facilitate a detailed semantic segmentation of orthographic aerial
images. The first column of each table indicates the position of a color in the palette
when storing the classification results as indexed bitmaps.

# Color Class Description

0 #FFFFFF snow snow covered terrain
1 #ACE6A1 grassland grassland, meadows
2 #73E65C lawn grass courts, public parks, cultivated

turf and lawn
3 #26990F shrub shrubs, bushes, ornamental plants
4 #1C730B tree leaf trees, conifers, dense forests
5 #73610B orchard plantations, orchards, vineyards
6 #99820F field cultivated (plowed) fields
7 #C0A313 dirt dirt, soil, earth
8 #E6DAA1 debris coarse gravel, boulders
9 #E6E6E6 rock rocks and mountains

10 #A1DAE6 paved cobbled areas, concrete, tamped earth
11 #13A3C0 parking parking lots
12 #5C7EE6 pool swimming pools
13 #174AE6 river rivers and streams
14 #133EC0 water natural pools, lakes, oceans

Table A.1: Pixel classes for various terrains.
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# Color Class Description

15 #E65C5C shed sheds, annexes, garage buildings
16 #E61717 detached detached houses, family homes
17 #C01313 residential multi-story commercial and residential

buildings, town houses
18 #990F0F highrise highrise buildings
19 #E65CC3 agricultural stables, storage silos
20 #C01394 industrial factories, hangars and other

man-made structures

Table A.2: Pixel classes for buildings.

# Color Class Description

21 #99540F railroad rails and embankments
22 #733F0B cartway narrow farm and forest roads
23 #B3B3B3 sidewalk for pedestrians and/or cyclists
24 #999999 macadam gravel and macadam roads
25 #808080 driveway private, paved driveways
26 #666666 secondary paved secondary roads, optional lane

and side markings
27 #4C4C4C avenue multi-lane inner city streets
28 #333333 highway one lane per direction, compulsory

lane and side markings
29 #E67E17 freeway multi-lane, limited access roads
30 #E6A15C ramp single lane, oneway access ramps

Table A.3: Pixel classes for transportation.

# Color Class Description

31 #A15CE6 curbs curbs next to track corners
32 #7E17E6 pitlane pit lanes and proving grounds
33 #540F99 track main circuit, wide race track
34 #2A074C barrier tyre barriers (acting as track borders)
35 #0B6173 apron paved aprons and run-off areas
36 #730B59 grandstand grandstands next to the track
37 #E6C317 gravel used for sand and/or gravel traps

Table A.4: Auxiliary pixel classes for race tracks.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.1: Examples of labeled ground truth data (II). The first column contains
the original aerial imagesa, the second column the manually created segmentation.
An overlay of both images is shown in the third column. Top row (a-c): Section of the
Red Bull Ring race track. Middle row (d-f): City center of Graz, Austria. Bottom
row (g-i): Rural area, Styria, Austria.
aDatenquelle / Source of images: basemap.at; License: CC-BY 3.0 AT.

http://www.basemap.at
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A.2 Ground Truth Images

Figure A.1 shows additional examples of labeled ground truth images. 16 such images
- each with a size of 1024 × 1024 pixels (or approximately 208 × 208 meters) - were
created manually. In addition, each of these larger images has been divided into 16
tiles, resulting in a total number of 256 ground truth tiles with a size of 256 × 256
pixels.

A.3 Distribution of Pixel Classes

These original 256 ground truth tiles have been partitioned into separate training
and validation image sets according to a 3:1 ratio. The number of tiles was however
not sufficient to achieve equal distributions of the 38 pixel classes in both data sets.
Table A.5 and diagram A.2 therefore give the exact spread of pixel classes which was
used during the training and validation stages.

Class Train. [%] Val. [%] Class Train. [%] Val. [%]

snow 2.37 4.22 agricultural 0.35 0.52
grassland 26.35 20.67 industrial 1.40 0.68
lawn 2.08 2.71 railroad 0.23 0.32
shrub 1.06 1.18 cartway 0.55 0.46
tree 14.75 21.10 sidewalk 0.41 0.70
orchard 0.93 0.43 macadam 0.34 0.28
field 18.55 15.12 driveway 0.23 0.53
dirt 2.50 2.39 secondary 1.89 2.13
debris 0.72 1.18 avenue 0.90 2.58
rock 4.83 4.25 highway 1.20 1.57
paved 2.62 1.92 freeway 1.01 0.79
parking 4.28 4.79 ramp 0.56 0.13
pool 0.02 0.02 curbs 0.05 0.05
river 0.12 0.32 pitlane 1.96 1.15
water 0.14 0.00 track 1.43 1.80
shed 0.55 0.43 barrier 0.11 0.19
detached 0.46 0.63 apron 0.19 0.17
residential 2.43 1.91 grandstand 0.15 0.16
highrise 0.44 0.06 gravel 1.88 2.47

Table A.5: Pixel class distribution.
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Figure A.2: Distribution of pixel classes for training and validation data.



Appendix B

Network Architecture

The next sections detail the final architecture of the semantic segmentation networks
analyzed in section 2.3 by means of the Caffe network description format.

B.1 VGG16-8s

1 name : ”FCN”
input : ”data”
input dim : 1
input dim : 3
input dim : 450

6 input dim : 450
l ay e r {name : ” conv1 1 ” type : ”Convolution ” bottom : ”data” top : ” conv1 1 ”

convolut ion param {num output : 64 pad : 0 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 1 1 ” type : ”ReLU” bottom : ” conv1 1 ” top : ” conv1 1 ”}
l a y e r {name : ” conv1 2 ” type : ”Convolution ” bottom : ” conv1 1 ” top : ” conv1 2 ”

11 convolut ion param {num output : 64 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 1 2 ” type : ”ReLU” bottom : ” conv1 2 ” top : ” conv1 2 ”}
l a y e r {name : ” pool1 ” type : ”Pool ing ” bottom : ” conv1 2 ” top : ” pool1 ”

pool ing param {pool : MAX k e r n e l s i z e : 2 s t r i d e : 2}}
l a y e r {name : ” conv2 1 ” type : ”Convolution ” bottom : ” pool1 ” top : ” conv2 1 ”

16 convolut ion param {num output : 128 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 2 1 ” type : ”ReLU” bottom : ” conv2 1 ” top : ” conv2 1 ”}
l a y e r {name : ” conv2 2 ” type : ”Convolution ” bottom : ” conv2 1 ” top : ” conv2 2 ”

convolut ion param {num output : 128 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 2 2 ” type : ”ReLU” bottom : ” conv2 2 ” top : ” conv2 2 ”}

21 l a y e r {name : ” pool2 ” type : ”Pool ing ” bottom : ” conv2 2 ” top : ” pool2 ”
pool ing param {pool : MAX k e r n e l s i z e : 2 s t r i d e : 2}}

l a y e r {name : ” conv3 1 ” type : ”Convolution ” bottom : ” pool2 ” top : ” conv3 1 ”
convolut ion param {num output : 256 pad : 1 k e r n e l s i z e : 3}}

l a y e r {name : ” r e l u 3 1 ” type : ”ReLU” bottom : ” conv3 1 ” top : ” conv3 1 ”}
26 l a y e r {name : ” conv3 2 ” type : ”Convolution ” bottom : ” conv3 1 ” top : ” conv3 2 ”

convolut ion param {num output : 256 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 3 2 ” type : ”ReLU” bottom : ” conv3 2 ” top : ” conv3 2 ”}
l a y e r {name : ” conv3 3 ” type : ”Convolution ” bottom : ” conv3 2 ” top : ” conv3 3 ”

convolut ion param {num output : 256 pad : 1 k e r n e l s i z e : 3}}
31 l a y e r {name : ” r e l u 3 3 ” type : ”ReLU” bottom : ” conv3 3 ” top : ” conv3 3 ”}

l a y e r {name : ” pool3 ” type : ”Pool ing ” bottom : ” conv3 3 ” top : ” pool3 ”
pool ing param {pool : MAX k e r n e l s i z e : 2 s t r i d e : 2}}

l a y e r {name : ” conv4 1 ” type : ”Convolution ” bottom : ” pool3 ” top : ” conv4 1 ”
convolut ion param {num output : 512 pad : 1 k e r n e l s i z e : 3}}

36 l a y e r {name : ” r e l u 4 1 ” type : ”ReLU” bottom : ” conv4 1 ” top : ” conv4 1 ”}
l a y e r {name : ” conv4 2 ” type : ”Convolution ” bottom : ” conv4 1 ” top : ” conv4 2 ”

convolut ion param {num output : 512 pad : 1 k e r n e l s i z e : 3}}
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l a y e r {name : ” r e l u 4 2 ” type : ”ReLU” bottom : ” conv4 2 ” top : ” conv4 2 ”}
l a y e r {name : ” conv4 3 ” type : ”Convolution ” bottom : ” conv4 2 ” top : ” conv4 3 ”

41 convolut ion param {num output : 512 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 4 3 ” type : ”ReLU” bottom : ” conv4 3 ” top : ” conv4 3 ”}
l a y e r {name : ” pool4 ” type : ”Pool ing ” bottom : ” conv4 3 ” top : ” pool4 ”

pool ing param {pool : MAX k e r n e l s i z e : 2 s t r i d e : 2}}
l a y e r {name : ” conv5 1 ” type : ”Convolution ” bottom : ” pool4 ” top : ” conv5 1 ”

46 convolut ion param {num output : 512 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 5 1 ” type : ”ReLU” bottom : ” conv5 1 ” top : ” conv5 1 ”}
l a y e r {name : ” conv5 2 ” type : ”Convolution ” bottom : ” conv5 1 ” top : ” conv5 2 ”

convolut ion param {num output : 512 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” r e l u 5 2 ” type : ”ReLU” bottom : ” conv5 2 ” top : ” conv5 2 ”}

51 l a y e r {name : ” conv5 3 ” type : ”Convolution ” bottom : ” conv5 2 ” top : ” conv5 3 ”
convolut ion param {num output : 512 pad : 1 k e r n e l s i z e : 3}}

l a y e r {name : ” r e l u 5 3 ” type : ”ReLU” bottom : ” conv5 3 ” top : ” conv5 3 ”}
l a y e r {name : ” pool5 ” type : ”Pool ing ” bottom : ” conv5 3 ” top : ” pool5 ”

pool ing param {pool : MAX k e r n e l s i z e : 2 s t r i d e : 2}}
56 l a y e r {name : ” fc6−conv” type : ”Convolution ” bottom : ” pool5 ” top : ” f c 6 ”

convolut ion param {num output : 4096 k e r n e l s i z e : 7}}
l a y e r {name : ” r e l u6 ” type : ”ReLU” bottom : ” f c6 ” top : ” f c 6 ”}
l a y e r {name : ”drop6” type : ”Dropout” bottom : ” f c6 ” top : ” f c 6 ”

dropout param{ dropou t ra t i o : 0 .5}}
61 l a y e r {name : ” fc7−conv” type : ”Convolution ” bottom : ” f c6 ” top : ” f c 7 ”

convolut ion param {num output : 4096 k e r n e l s i z e : 1}}
l a y e r {name : ” r e l u7 ” type : ”ReLU” bottom : ” f c7 ” top : ” f c 7 ”}
l a y e r {name : ”drop7” type : ”Dropout” bottom : ” f c7 ” top : ” f c 7 ”

dropout param{ dropou t ra t i o : 0 .5}}
66 l a y e r {name : ” score37 ” type : ”Convolution ” bottom : ” f c7 ” top : ” score37 ”

convolut ion param {num output : 38 k e r n e l s i z e : 1}}
l a y e r {name : ” upscore2 ” type : ”Deconvolut ion ” bottom : ” score37 ” top : ” upscore2 ”

convolut ion param {num output : 38 k e r n e l s i z e : 4 s t r i d e : 2}}
l a y e r {name : ” score−pool4 ” type : ”Convolution ” bottom : ” pool4 ” top : ” score−pool4 ”

71 convolut ion param {num output : 38 k e r n e l s i z e : 1}}
l a y e r { type : ’Crop ’ name : ’ crop ’

bottom : ’ score−pool4 ’ bottom : ’ upscore2 ’ top : ’ score−pool4c ’}
l a y e r {name : ” fu s e ” type : ” E l tw i se ” bottom : ” upscore2 ” bottom : ” score−pool4c ”

top : ” score−fu sed ” e l twi se param { opera t i on : SUM}}
76 l a y e r {name : ”us−fused−16” type : ”Deconvolut ion ” bottom : ” score−fu sed ” top : ” s co r e4 ”

convolut ion param {num output : 38 k e r n e l s i z e : 4 s t r i d e : 2}}
l a y e r {name : ” score−p3” type : ”Convolution ” bottom : ” pool3 ” top : ” score−p3”

convolut ion param {num output : 38 k e r n e l s i z e : 1}}
l a y e r { type : ’Crop ’ name : ’ crop ’ bottom : ’ score−p3 ’ bottom : ’ score4 ’ top : ’ score−p3c ’}

81 l a y e r {name : ” fu s e ” type : ” E l tw i se ” bottom : ” s co r e4 ” bottom : ” score−p3c”
top : ” score− f i n a l ” e l twi se param { opera t i on : SUM}}

l a y e r {name : ”upsample” type : ”Deconvolut ion ” bottom : ” score− f i n a l ” top : ” b i g s c o r e ”
convolut ion param {num output : 38 k e r n e l s i z e : 16 s t r i d e : 8}}

l a y e r {name : ’ crop ’ type : ’ CenterCrop ’ bottom : ’ b ig s co re ’ top : ’ score ’
86 transform param { c r o p s i z e : 256}}

Network/vgg16–8s.prototxt
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B.2 GoogLeNet-8s

name : ”GoogleNet”
input : ”data”
input shape {dim : 1 dim : 3 dim : 450 dim : 450}

4 l a y e r {name : ”c1 /7 x7 s2 ” type : ”Convolution ” bottom : ”data” top : ” c1 /7 x7 s2 ”
convolut ion param {num output : 64 pad : 3 k e r n e l s i z e : 7 s t r i d e : 2}}

l a y e r {name : ”c1/ r e l u 7x7 ” type : ”ReLU” bottom : ”c1 /7 x7 s2 ” top : ” c1 /7 x7 s2 ”}
l a y e r {name : ” pool1 /3 x3 s2 ” type : ”Pool ing ” bottom : ”c1 /7 x7 s2 ” top : ” pool1 /3 x3 s2 ”

pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 2}}
9 l a y e r {name : ” pool1 /norm1” type : ”LRN” bottom : ” pool1 /3 x3 s2 ” top : ” pool1 /norm1”

lrn param { l o c a l s i z e : 5 alpha : 0 .0001 beta : 0 .75}}
l a y e r {name : ”c2 /3 x3 red ” type : ”Convolution ” bottom : ” pool1 /norm1” top : ” c2 /3 x3 red ”

convolut ion param {num output : 64 k e r n e l s i z e : 1}}
l a y e r {name : ”c2/ r e l u 3x3 r ed ” type : ”ReLU” bottom : ”c2 /3 x3 red ” top : ” c2 /3 x3 red ”}

14 l a y e r {name : ”c2 /3x3” type : ”Convolution ” bottom : ”c2 /3 x3 red ” top : ” c2 /3x3”
convolut ion param {num output : 192 pad : 1 k e r n e l s i z e : 3}}

l a y e r {name : ”c2/ r e l u 3x3 ” type : ”ReLU” bottom : ”c2 /3x3” top : ” c2 /3x3”}
l a y e r {name : ”c2/norm2” type : ”LRN” bottom : ”c2 /3x3” top : ” c2/norm2”

lrn param { l o c a l s i z e : 5 alpha : 0 .0001 beta : 0 .75}}
19 l a y e r {name : ” pool2 /3 x3 s2 ” type : ”Pool ing ” bottom : ”c2/norm2” top : ” pool2 /3 x3 s2 ”

pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 2}}
l a y e r {name : ” i3a /1x1” type : ”Convolution ” bottom : ” pool2 /3 x3 s2 ” top : ” i 3a /1x1”

convolut ion param {num output : 64 k e r n e l s i z e : 1}}
l a y e r {name : ” i3a / r e l u 1x1 ” type : ”ReLU” bottom : ” i3a /1x1” top : ” i 3a /1x1”}

24 l a y e r {name : ” i3a /3 x3 red ” type : ”Convolution ” bottom : ” pool2 /3 x3 s2 ”
top : ” i 3a /3 x3 red ” convolut ion param {num output : 96 k e r n e l s i z e : 1}}

l a y e r {name : ” i3a / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i3a /3 x3 red ” top : ” i 3a /3 x3 red ”}
l a y e r {name : ” i3a /3x3” type : ”Convolution ” bottom : ” i3a /3 x3 red ” top : ” i 3a /3x3”

convolut ion param {num output : 128 pad : 1 k e r n e l s i z e : 3}}
29 l a y e r {name : ” i3a / r e l u 3x3 ” type : ”ReLU” bottom : ” i3a /3x3” top : ” i 3a /3x3”}

l a y e r {name : ” i3a /5 x5 red ” type : ”Convolution ” bottom : ” pool2 /3 x3 s2 ” top :
” i 3a /5 x5 red ” convolut ion param {num output : 16 k e r n e l s i z e : 1}}

l a y e r {name : ” i3a / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i3a /5 x5 red ” top : ” i 3a /5 x5 red ”}
l a y e r {name : ” i3a /5x5” type : ”Convolution ” bottom : ” i3a /5 x5 red ” top : ” i 3a /5x5”

34 convolut ion param {num output : 32 pad : 2 k e r n e l s i z e : 5}}
l a y e r {name : ” i3a / r e l u 5x5 ” type : ”ReLU” bottom : ” i3a /5x5” top : ” i 3a /5x5”}
l a y e r {name : ” i3a / pool ” type : ”Pool ing ” bottom : ” pool2 /3 x3 s2 ” top : ” i 3a / pool ”

pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}
l a y e r {name : ” i3a / pro j ” type : ”Convolution ” bottom : ” i3a / pool ” top : ” i 3a / pro j ”

39 convolut ion param {num output : 32 k e r n e l s i z e : 1}}
l a y e r {name : ” i3a / r e l u p r o j ” type : ”ReLU” bottom : ” i3a / pro j ” top : ” i 3a / pro j ”}
l a y e r {name : ” i3a /output ” type : ”Concat”

bottom : ” i3a /1x1” bottom : ” i3a /3x3” bottom : ” i3a /5x5” bottom : ” i3a / pro j ”
top : ” i 3a /output ”}

44 l a y e r {name : ” i3b /1x1” type : ”Convolution ” bottom : ” i3a /output ” top : ” i3b /1x1”
convolut ion param {num output : 128 k e r n e l s i z e : 1}}

l a y e r {name : ” i3b / r e l u 1x1 ” type : ”ReLU” bottom : ” i3b /1x1” top : ” i3b /1x1”}
l a y e r {name : ” i3b /3 x3 red ” type : ”Convolution ” bottom : ” i3a /output ” top : ” i3b /3 x3 red ”

convolut ion param {num output : 128 k e r n e l s i z e : 1}}
49 l a y e r {name : ” i3b / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i3b /3 x3 red ” top : ” i3b /3 x3 red ”}

l a y e r {name : ” i3b /3x3” type : ”Convolution ” bottom : ” i3b /3 x3 red ” top : ” i3b /3x3”
convolut ion param {num output : 192 pad : 1 k e r n e l s i z e : 3}}

l a y e r {name : ” i3b / r e l u 3x3 ” type : ”ReLU” bottom : ” i3b /3x3” top : ” i3b /3x3”}
l a y e r {name : ” i3b /5 x5 red ” type : ”Convolution ” bottom : ” i3a /output ” top : ” i3b /5 x5 red ”

54 convolut ion param {num output : 32 k e r n e l s i z e : 1}}
l a y e r {name : ” i3b / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i3b /5 x5 red ” top : ” i3b /5 x5 red ”}
l a y e r {name : ” i3b /5x5” type : ”Convolution ” bottom : ” i3b /5 x5 red ” top : ” i3b /5x5”

convolut ion param {num output : 96 pad : 2 k e r n e l s i z e : 5}}
l a y e r {name : ” i3b / r e l u 5x5 ” type : ”ReLU” bottom : ” i3b /5x5” top : ” i3b /5x5”}

59 l a y e r {name : ” i3b / pool ” type : ”Pool ing ” bottom : ” i3a /output ” top : ” i3b / pool ”
pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}

l a y e r {name : ” i3b / pro j ” type : ”Convolution ” bottom : ” i3b / pool ” top : ” i3b / pro j ”
convolut ion param {num output : 64 k e r n e l s i z e : 1}}

l a y e r {name : ” i3b / r e l u p r o j ” type : ”ReLU” bottom : ” i3b / pro j ” top : ” i3b / pro j ”}
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64 l a y e r {name : ” i3b /output” type : ”Concat”
bottom : ” i3b /1x1” bottom : ” i3b /3x3” bottom : ” i3b /5x5” bottom : ” i3b / pro j ”
top : ” i3b /output”}

l a y e r {name : ” pool3 /3 x3 s2 ” type : ”Pool ing ” bottom : ” i3b /output” top : ” pool3 /3 x3 s2 ”
pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 2}}

69 l a y e r {name : ” i4a /1x1” type : ”Convolution ” bottom : ” pool3 /3 x3 s2 ” top : ” i 4a /1x1”
convolut ion param {num output : 192 k e r n e l s i z e : 1}}

l a y e r {name : ” i4a / r e l u 1x1 ” type : ”ReLU” bottom : ” i4a /1x1” top : ” i 4a /1x1”}
l a y e r {name : ” i4a /3 x3 red ” type : ”Convolution ” bottom : ” pool3 /3 x3 s2 ”

top : ” i 4a /3 x3 red ” convolut ion param {num output : 96 k e r n e l s i z e : 1}}
74 l a y e r {name : ” i4a / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i4a /3 x3 red ” top : ” i 4a /3 x3 red ”}

l a y e r {name : ” i4a /3x3” type : ”Convolution ” bottom : ” i4a /3 x3 red ” top : ” i 4a /3x3”
convolut ion param {num output : 208 pad : 1 k e r n e l s i z e : 3}}

l a y e r {name : ” i4a / r e l u 3x3 ” type : ”ReLU” bottom : ” i4a /3x3” top : ” i 4a /3x3”}
l a y e r {name : ” i4a /5 x5 red ” type : ”Convolution ” bottom : ” pool3 /3 x3 s2 ”

79 top : ” i 4a /5 x5 red ” convolut ion param {num output : 16 k e r n e l s i z e : 1}}
l a y e r {name : ” i4a / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i4a /5 x5 red ” top : ” i 4a /5 x5 red ”}
l a y e r {name : ” i4a /5x5” type : ”Convolution ” bottom : ” i4a /5 x5 red ” top : ” i 4a /5x5”

convolut ion param {num output : 48 pad : 2 k e r n e l s i z e : 5}}
l a y e r {name : ” i4a / r e l u 5x5 ” type : ”ReLU” bottom : ” i4a /5x5” top : ” i 4a /5x5”}

84 l a y e r {name : ” i4a / pool ” type : ”Pool ing ” bottom : ” pool3 /3 x3 s2 ” top : ” i 4a / pool ”
pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}

l a y e r {name : ” i4a / pro j ” type : ”Convolution ” bottom : ” i4a / pool ” top : ” i 4a / pro j ”
convolut ion param {num output : 64 k e r n e l s i z e : 1}}

l a y e r {name : ” i4a / r e l u p r o j ” type : ”ReLU” bottom : ” i4a / pro j ” top : ” i 4a / pro j ”}
89 l a y e r {name : ” i4a /output ” type : ”Concat”

bottom : ” i4a /1x1” bottom : ” i4a /3x3” bottom : ” i4a /5x5” bottom : ” i4a / pro j ”
top : ” i 4a /output ”}

l a y e r {name : ” i4b /1x1” type : ”Convolution ” bottom : ” i4a /output ” top : ” i4b /1x1”
convolut ion param {num output : 160 k e r n e l s i z e : 1}}

94 l a y e r {name : ” i4b / r e l u 1x1 ” type : ”ReLU” bottom : ” i4b /1x1” top : ” i4b /1x1”}
l a y e r {name : ” i4b /3 x3 red ” type : ”Convolution ” bottom : ” i4a /output ” top : ” i4b /3 x3 red ”

convolut ion param {num output : 112 k e r n e l s i z e : 1}}
l a y e r {name : ” i4b / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i4b /3 x3 red ” top : ” i4b /3 x3 red ”}
l a y e r {name : ” i4b /3x3” type : ”Convolution ” bottom : ” i4b /3 x3 red ” top : ” i4b /3x3”

99 convolut ion param {num output : 224 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” i4b / r e l u 3x3 ” type : ”ReLU” bottom : ” i4b /3x3” top : ” i4b /3x3”}
l a y e r {name : ” i4b /5 x5 red ” type : ”Convolution ” bottom : ” i4a /output ” top : ” i4b /5 x5 red ”

convolut ion param {num output : 24 k e r n e l s i z e : 1}}
l a y e r {name : ” i4b / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i4b /5 x5 red ” top : ” i4b /5 x5 red ”}

104 l a y e r {name : ” i4b /5x5” type : ”Convolution ” bottom : ” i4b /5 x5 red ” top : ” i4b /5x5”
convolut ion param {num output : 64 pad : 2 k e r n e l s i z e : 5}}

l a y e r {name : ” i4b / r e l u 5x5 ” type : ”ReLU” bottom : ” i4b /5x5” top : ” i4b /5x5”}
l a y e r {name : ” i4b / pool ” type : ”Pool ing ” bottom : ” i4a /output ” top : ” i4b / pool ”

pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}
109 l a y e r {name : ” i4b / pro j ” type : ”Convolution ” bottom : ” i4b / pool ” top : ” i4b / pro j ”

convolut ion param {num output : 64 k e r n e l s i z e : 1}}
l a y e r {name : ” i4b / r e l u p r o j ” type : ”ReLU” bottom : ” i4b / pro j ” top : ” i4b / pro j ”}
l a y e r {name : ” i4b /output” type : ”Concat”

bottom : ” i4b /1x1” bottom : ” i4b /3x3” bottom : ” i4b /5x5” bottom : ” i4b / pro j ”
114 top : ” i4b /output”}

l a y e r {name : ” i 4 c /1x1” type : ”Convolution ” bottom : ” i4b /output” top : ” i 4 c /1x1”
convolut ion param {num output : 128 k e r n e l s i z e : 1}}

l a y e r {name : ” i 4 c / r e l u 1x1 ” type : ”ReLU” bottom : ” i 4 c /1x1” top : ” i 4 c /1x1”}
l a y e r {name : ” i 4 c /3 x3 red ” type : ”Convolution ” bottom : ” i4b /output” top : ” i 4 c /3 x3 red ”

119 convolut ion param {num output : 128 k e r n e l s i z e : 1}}
l a y e r {name : ” i 4 c / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i 4 c /3 x3 red ” top : ” i 4 c /3 x3 red ”}
l a y e r {name : ” i 4 c /3x3” type : ”Convolution ” bottom : ” i 4 c /3 x3 red ” top : ” i 4 c /3x3”

convolut ion param {num output : 256 pad : 1 k e r n e l s i z e : 3}}
l a y e r {name : ” i 4 c / r e l u 3x3 ” type : ”ReLU” bottom : ” i 4 c /3x3” top : ” i 4 c /3x3”}

124 l a y e r {name : ” i 4 c /5 x5 red ” type : ”Convolution ” bottom : ” i4b /output” top : ” i 4 c /5 x5 red ”
convolut ion param {num output : 24 k e r n e l s i z e : 1}}

l a y e r {name : ” i 4 c / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i 4 c /5 x5 red ” top : ” i 4 c /5 x5 red ”}
l a y e r {name : ” i 4 c /5x5” type : ”Convolution ” bottom : ” i 4 c /5 x5 red ” top : ” i 4 c /5x5”

convolut ion param {num output : 64 pad : 2 k e r n e l s i z e : 5}}
129 l a y e r {name : ” i 4 c / r e l u 5x5 ” type : ”ReLU” bottom : ” i 4 c /5x5” top : ” i 4 c /5x5”}
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l a y e r {name : ” i 4 c / pool ” type : ”Pool ing ” bottom : ” i4b /output” top : ” i 4 c / pool ”
pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}

l a y e r {name : ” i 4 c / pro j ” type : ”Convolution ” bottom : ” i 4 c / pool ” top : ” i 4 c / pro j ”
convolut ion param {num output : 64 k e r n e l s i z e : 1}}

134 l a y e r {name : ” i 4 c / r e l u p r o j ” type : ”ReLU” bottom : ” i 4 c / pro j ” top : ” i 4 c / pro j ”}
l a y e r {name : ” i 4 c /output ” type : ”Concat”

bottom : ” i 4 c /1x1” bottom : ” i 4 c /3x3” bottom : ” i 4 c /5x5” bottom : ” i 4 c / pro j ”
top : ” i 4 c /output”}

l a y e r {name : ” i4d /1x1” type : ”Convolution ” bottom : ” i 4 c /output ” top : ” i4d /1x1”
139 convolut ion param {num output : 112 k e r n e l s i z e : 1}}

l a y e r {name : ” i4d / r e l u 1x1 ” type : ”ReLU” bottom : ” i4d /1x1” top : ” i4d /1x1”}
l a y e r {name : ” i4d /3 x3 red ” type : ”Convolution ” bottom : ” i 4 c /output” top : ” i4d /3 x3 red ”

convolut ion param {num output : 144 k e r n e l s i z e : 1}}
l a y e r {name : ” i4d / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i4d /3 x3 red ” top : ” i4d /3 x3 red ”}

144 l a y e r {name : ” i4d /3x3” type : ”Convolution ” bottom : ” i4d /3 x3 red ” top : ” i4d /3x3”
convolut ion param {num output : 288 pad : 1 k e r n e l s i z e : 3}}

l a y e r {name : ” i4d / r e l u 3x3 ” type : ”ReLU” bottom : ” i4d /3x3” top : ” i4d /3x3”}
l a y e r {name : ” i4d /5 x5 red ” type : ”Convolution ” bottom : ” i 4 c /output” top : ” i4d /5 x5 red ”

convolut ion param {num output : 32 k e r n e l s i z e : 1}}
149 l a y e r {name : ” i4d / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i4d /5 x5 red ” top : ” i4d /5 x5 red ”}

l a y e r {name : ” i4d /5x5” type : ”Convolution ” bottom : ” i4d /5 x5 red ” top : ” i4d /5x5”
convolut ion param {num output : 64 pad : 2 k e r n e l s i z e : 5}}

l a y e r {name : ” i4d / r e l u 5x5 ” type : ”ReLU” bottom : ” i4d /5x5” top : ” i4d /5x5”}
l a y e r {name : ” i4d / pool ” type : ”Pool ing ” bottom : ” i 4 c /output ” top : ” i4d / pool ”

154 pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}
l a y e r {name : ” i4d / pro j ” type : ”Convolution ” bottom : ” i4d / pool ” top : ” i4d / pro j ”

convolut ion param {num output : 64 k e r n e l s i z e : 1}}
l a y e r {name : ” i4d / r e l u p r o j ” type : ”ReLU” bottom : ” i4d / pro j ” top : ” i4d / pro j ”}
l a y e r {name : ” i4d /output” type : ”Concat”

159 bottom : ” i4d /1x1” bottom : ” i4d /3x3” bottom : ” i4d /5x5” bottom : ” i4d / pro j ”
top : ” i4d /output”}

l a y e r {name : ” i 4 e /1x1” type : ”Convolution ” bottom : ” i4d /output” top : ” i 4 e /1x1”
convolut ion param {num output : 256 k e r n e l s i z e : 1}}

l a y e r {name : ” i 4 e / r e l u 1x1 ” type : ”ReLU” bottom : ” i 4 e /1x1” top : ” i 4 e /1x1”}
164 l a y e r {name : ” i 4 e /3 x3 red ” type : ”Convolution ” bottom : ” i4d /output” top : ” i 4 e /3 x3 red ”

convolut ion param {num output : 160 k e r n e l s i z e : 1}}
l a y e r {name : ” i 4 e / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i 4 e /3 x3 red ” top : ” i 4 e /3 x3 red ”}
l a y e r {name : ” i 4 e /3x3” type : ”Convolution ” bottom : ” i 4 e /3 x3 red ” top : ” i 4 e /3x3”

convolut ion param {num output : 320 pad : 1 k e r n e l s i z e : 3}}
169 l a y e r {name : ” i 4 e / r e l u 3x3 ” type : ”ReLU” bottom : ” i 4 e /3x3” top : ” i 4 e /3x3”}

l a y e r {name : ” i 4 e /5 x5 red ” type : ”Convolution ” bottom : ” i4d /output” top : ” i 4 e /5 x5 red ”
convolut ion param {num output : 32 k e r n e l s i z e : 1}}

l a y e r {name : ” i 4 e / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i 4 e /5 x5 red ” top : ” i 4 e /5 x5 red ”}
l a y e r {name : ” i 4 e /5x5” type : ”Convolution ” bottom : ” i 4 e /5 x5 red ” top : ” i 4 e /5x5”

174 convolut ion param {num output : 128 pad : 2 k e r n e l s i z e : 5}}
l a y e r {name : ” i 4 e / r e l u 5x5 ” type : ”ReLU” bottom : ” i 4 e /5x5” top : ” i 4 e /5x5”}
l a y e r {name : ” i 4 e / pool ” type : ”Pool ing ” bottom : ” i4d /output” top : ” i 4 e / pool ”

pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}
l a y e r {name : ” i 4 e / pro j ” type : ”Convolution ” bottom : ” i 4 e / pool ” top : ” i 4 e / pro j ”

179 convolut ion param {num output : 128 k e r n e l s i z e : 1}}
l a y e r {name : ” i 4 e / r e l u p r o j ” type : ”ReLU” bottom : ” i 4 e / pro j ” top : ” i 4 e / pro j ”}
l a y e r {name : ” i 4 e /output ” type : ”Concat”

bottom : ” i 4 e /1x1” bottom : ” i 4 e /3x3” bottom : ” i 4 e /5x5” bottom : ” i 4 e / pro j ”
top : ” i 4 e /output”}

184 l a y e r {name : ” pool4 /3 x3 s2 ” type : ”Pool ing ” bottom : ” i 4 e /output” top : ” pool4 /3 x3 s2 ”
pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 2}}

l a y e r {name : ” i5a /1x1” type : ”Convolution ” bottom : ” pool4 /3 x3 s2 ” top : ” i 5a /1x1”
convolut ion param {num output : 256 k e r n e l s i z e : 1}}

l a y e r {name : ” i5a / r e l u 1x1 ” type : ”ReLU” bottom : ” i5a /1x1” top : ” i 5a /1x1”}
189 l a y e r {name : ” i5a /3 x3 red ” type : ”Convolution ” bottom : ” pool4 /3 x3 s2 ”

top : ” i 5a /3 x3 red ” convolut ion param {num output : 160 k e r n e l s i z e : 1}}
l a y e r {name : ” i5a / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i5a /3 x3 red ” top : ” i 5a /3 x3 red ”}
l a y e r {name : ” i5a /3x3” type : ”Convolution ” bottom : ” i5a /3 x3 red ” top : ” i 5a /3x3”

convolut ion param {num output : 320 pad : 1 k e r n e l s i z e : 3}}
194 l a y e r {name : ” i5a / r e l u 3x3 ” type : ”ReLU” bottom : ” i5a /3x3” top : ” i 5a /3x3”}

l a y e r {name : ” i5a /5 x5 red ” type : ”Convolution ” bottom : ” pool4 /3 x3 s2 ”
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top : ” i 5a /5 x5 red ” convolut ion param {num output : 32 k e r n e l s i z e : 1}}
l a y e r {name : ” i5a / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i5a /5 x5 red ” top : ” i 5a /5 x5 red ”}
l a y e r {name : ” i5a /5x5” type : ”Convolution ” bottom : ” i5a /5 x5 red ” top : ” i 5a /5x5”

199 convolut ion param {num output : 128 pad : 2 k e r n e l s i z e : 5}}
l a y e r {name : ” i5a / r e l u 5x5 ” type : ”ReLU” bottom : ” i5a /5x5” top : ” i 5a /5x5”}
l a y e r {name : ” i5a / pool ” type : ”Pool ing ” bottom : ” pool4 /3 x3 s2 ” top : ” i 5a / pool ”

pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}
l a y e r {name : ” i5a / pro j ” type : ”Convolution ” bottom : ” i5a / pool ” top : ” i 5a / pro j ”

204 convolut ion param {num output : 128 k e r n e l s i z e : 1}}
l a y e r {name : ” i5a / r e l u p r o j ” type : ”ReLU” bottom : ” i5a / pro j ” top : ” i 5a / pro j ”}
l a y e r {name : ” i5a /output ” type : ”Concat” bottom : ” i5a /1x1” bottom : ” i5a /3x3”

bottom : ” i5a /5x5” bottom : ” i5a / pro j ” top : ” i 5a /output”}
l a y e r {name : ” i5b /1x1” type : ”Convolution ” bottom : ” i5a /output ” top : ” i5b /1x1”

209 convolut ion param {num output : 384 k e r n e l s i z e : 1}}
l a y e r {name : ” i5b / r e l u 1x1 ” type : ”ReLU” bottom : ” i5b /1x1” top : ” i5b /1x1”}
l a y e r {name : ” i5b /3 x3 red ” type : ”Convolution ” bottom : ” i5a /output ” top : ” i5b /3 x3 red ”

convolut ion param {num output : 192 k e r n e l s i z e : 1}}
l a y e r {name : ” i5b / r e l u 3x3 r ed ” type : ”ReLU” bottom : ” i5b /3 x3 red ” top : ” i5b /3 x3 red ”}

214 l a y e r {name : ” i5b /3x3” type : ”Convolution ” bottom : ” i5b /3 x3 red ” top : ” i5b /3x3”
convolut ion param {num output : 384 pad : 1 k e r n e l s i z e : 3}}

l a y e r {name : ” i5b / r e l u 3x3 ” type : ”ReLU” bottom : ” i5b /3x3” top : ” i5b /3x3”}
l a y e r {name : ” i5b /5 x5 red ” type : ”Convolution ” bottom : ” i5a /output ” top : ” i5b /5 x5 red ”

convolut ion param {num output : 48 k e r n e l s i z e : 1}}
219 l a y e r {name : ” i5b / r e l u 5x5 r ed ” type : ”ReLU” bottom : ” i5b /5 x5 red ” top : ” i5b /5 x5 red ”}

l a y e r {name : ” i5b /5x5” type : ”Convolution ” bottom : ” i5b /5 x5 red ” top : ” i5b /5x5”
convolut ion param {num output : 128 pad : 2 k e r n e l s i z e : 5}}

l a y e r {name : ” i5b / r e l u 5x5 ” type : ”ReLU” bottom : ” i5b /5x5” top : ” i5b /5x5”}
l a y e r {name : ” i5b / pool ” type : ”Pool ing ” bottom : ” i5a /output ” top : ” i5b / pool ”

224 pool ing param {pool : MAX k e r n e l s i z e : 3 s t r i d e : 1 pad : 1}}
l a y e r {name : ” i5b / pro j ” type : ”Convolution ” bottom : ” i5b / pool ” top : ” i5b / pro j ”

convolut ion param {num output : 128 k e r n e l s i z e : 1}}
l a y e r {name : ” i5b / r e l u p r o j ” type : ”ReLU” bottom : ” i5b / pro j ” top : ” i5b / pro j ”}
l a y e r {name : ” i5b /output” type : ”Concat” bottom : ” i5b /1x1” bottom : ” i5b /3x3”

229 bottom : ” i5b /5x5” bottom : ” i5b / pro j ” top : ” i5b /output”}
l a y e r {name : ” score37 ” type : ”Convolution ” bottom : ” i5b /output” top : ” sco re37 ”

convolut ion param {num output : 38 k e r n e l s i z e : 1 s t r i d e : 1 pad : 0}}
l a y e r {name : ” upscore2 ” type : ”Deconvolut ion ” bottom : ” score37 ” top : ” upscore2 ”

convolut ion param {num output : 38 k e r n e l s i z e : 4 s t r i d e : 2 pad : 1}}
234 l a y e r {name : ” score−p3” type : ”Convolution ” bottom : ” pool3 /3 x3 s2 ” top : ” score−p3”

convolut ion param {num output : 38 k e r n e l s i z e : 1}}
l a y e r {name : ” fu s e ” type : ” E l tw i se ” bottom : ” upscore2 ” bottom : ” score−p3”

top : ” score−fu sed ” e l twi se param { opera t i on : SUM}}
l a y e r {name : ”us−fused−16” type : ”Deconvolut ion ” bottom : ” score−fu sed ” top : ” s co r e3 ”

239 convolut ion param {num output : 38 k e r n e l s i z e : 4 s t r i d e : 2 pad : 1}}
l a y e r {name : ” score−p2” type : ”Convolution ” bottom : ” pool2 /3 x3 s2 ” top : ” score−p2”

convolut ion param {num output : 38 k e r n e l s i z e : 1}}
l a y e r {name : ” fu s e ” type : ” E l tw i se ” bottom : ” s co r e3 ” bottom : ” score−p2”

top : ” score− f i n a l ” e l twi se param { opera t i on : SUM}}
244 l a y e r {name : ”upsample” type : ”Deconvolut ion ” bottom : ” score− f i n a l ” top : ” b i g s c o r e ”

convolut ion param {num output : 38 k e r n e l s i z e : 16 s t r i d e : 8}}
l a y e r {name : ’ crop ’ type : ’ CenterCrop ’ bottom : ’ b ig s co re ’ top : ’ score ’

transform param { c r o p s i z e : 256}}

Network/googlenet–8s.prototxt



Appendix C

Segmentation Results

Class Goog- VGG16 VGG16 Class Goog- VGG16 VGG16
LeNet +CRF LeNet +CRF

snow 96.11 96.89 97.51 agricultural 30.62 38.31 40.77
grassland 74.49 80.32 81.51 industrial 43.27 58.91 62.43
lawn 40.50 57.95 59.75 railroad 87.50 93.48 94.40
shrub 39.51 41.49 42.20 cartway 27.42 42.88 45.88
tree 92.39 92.53 92.74 sidewalk 43.44 52.91 56.36
orchard 1.14 2.14 2.46 macadam 34.19 34.83 40.40
field 91.89 94.93 95.63 driveway 35.44 48.13 54.49
dirt 58.80 59.37 61.83 secondary 59.17 60.85 63.32
debris 73.55 75.73 78.56 avenue 85.99 88.72 91.59
rock 88.93 91.43 92.10 highway 76.73 78.81 81.05
paved 43.67 56.29 58.66 freeway 89.33 93.68 93.22
parking 81.68 83.35 83.42 ramp 76.99 86.47 85.42
pool 28.70 25.92 24.86 curbs 49.03 57.08 51.98
river 80.79 80.67 80.52 pitlane 64.48 74.55 73.47
water 0.00 0.00 — track 83.94 85.00 86.17
shed 20.44 16.95 16.55 barrier 52.44 64.49 67.54
detached 41.54 35.57 35.85 apron 71.44 56.77 56.29
residential 81.06 82.54 84.51 grandstand 94.34 91.05 88.47
highrise 87.14 78.73 84.78 gravel 97.56 97.29 98.52

mean IoU 61.20 64.66 67.71

Table C.1: Segmentation performance (IoU [%]) of networks with a stride of 8 pixels
as measured on the validation data set. VGG16+CRF contains an additional - albeit
untrained - CRF layer but is otherwise identical to VGG16.



Appendix D

Third Party Software

This thesis has been made possible by the availability of open source machine learning
and computer vision software. Table D.1 shows a non-exclusive list of third-party
software components which were used to create the tools that are a part of this work.

Software Version Url

Anaconda 2.7 https://www.continuum.io/downloads

Boost 1.56.0 http://www.boost.org/

Caffe customized uses code from:
- Caffe-future https://github.com/longjon/caffe

- Windows port https://github.com/willyd/caffe

- CRFasRNN https://github.com/torrvision/crfasrnn.git

Ceres 1.11.0 http://ceres-solver.org/

CUDA 7.5 http://www.nvidia.com

CUDNN 3.0 http://www.nvidia.com

DenseCRF - http://graphics.stanford.edu/projects/drf/

Eigen b30b87236a1b http://eigen.tuxfamily.org

gflags 9db828953a https://github.com/gflags/gflags.git

glib 2.42.2 http://www.gtk.org/

glog f46e0745a8 https://github.com/google/glog.git

HDF5 1.8.16 http://hdf5.net/

IPython - https://ipython.org/

LevelDB 915d663292 https://github.com/google/leveldb

LMDB 58ad1dd757 https://github.com/LMDB/lmdb.git

OpenBLAS 0.2.14 http://www.openblas.net/

OpenCV 2.4.9 & 3.1.0 http://opencv.org/

protobuf 2.6.1 https://github.com/google/protobuf

snappy 1.1.1.8 https://snappy.angeloflogic.com/

Table D.1: Third party software components.

https://www.continuum.io/downloads
http://www.boost.org/
https://github.com/longjon/caffe
https://github.com/willyd/caffe
https://github.com/torrvision/crfasrnn.git
http://ceres-solver.org/
http://www.nvidia.com
http://www.nvidia.com
http://graphics.stanford.edu/projects/drf/
http://eigen.tuxfamily.org
https://github.com/gflags/gflags.git
http://www.gtk.org/
https://github.com/google/glog.git
http://hdf5.net/
https://ipython.org/
https://github.com/google/leveldb
https://github.com/LMDB/lmdb.git
http://www.openblas.net/
http://opencv.org/
https://github.com/google/protobuf
https://snappy.angeloflogic.com/
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