
Alexander Rech, BSc.

Design and Implementation of a Secure Embedded Client and

Gateway Application for Cloud Access Using Bluetooth Smart

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Supervisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Institute for Technical Informatics

Advisor

Ass.Prof. Dipl.-Ing. Dr.techn. Christian Steger

Dipl.-Ing. Manfred Jantscher, CISC Semiconductor GmbH

Graz, May 2017

Affidavit

I declare that I have authored this thesis independently, that I have not used other than
the declared sources/resources, and that I have explicitly indicated all material which
has been quoted either literally or by content from the sources used. The text document
uploaded to TUGRAZonline is identical to the present master’s thesis.

Date Signature

Abstract

The Internet of Things is continuously advancing. Over the last decades more and more
devices have been connected to the internet including PCs, handheld devices such as
smartphones or tablets, and above all, embedded devices of all kinds. However, since em-
bedded devices are usually constrained in terms of direct internet access other approaches
are needed to provide them with the possibility of back-end communication. To overcome
this problem, this thesis proposes the design and implementation of a secure embedded
device and furthermore introduces a corresponding smartphone-based gateway solution
which enables indirect communication between the constrained embedded client and the
cloud.

The technology used to transfer data between the embedded client and the gateway
is Bluetooth Low Energy (BLE). BLE is among the leading wireless communication stan-
dards and is especially useful for battery operated devices by reason of its power saving
design. BLE specifies several roles which can be carried out by a device. Each role comes
with certain requirements and restrictions and devices have to act in roles compatible to
each other to exchange data. Therefore the embedded client was designed in such a way
to maximize compatibility with other BLE devices by supporting multiple roles.

The application area of the developed prototype is the parking domain. It enables its
users to gain access to parking lots and garages without relying on the constant interaction
with a smartphone. To put it in other words, the user should no longer be involved in
the process of retrieving parking tickets nor should he have to pull out his smartphone
the moment he wants to access a parking space. This will enhance usability a lot. The
prototype is implemented as part of the COYERO access platform which is specialized
in providing their users with access to local infrastructures, services, and products via
smartphone apps. High-end security mechanisms are a crucial aspect of COYERO access
to overcome security faults when dealing with authentication and authorization. Hence,
this thesis shall also investigate and discuss ways to securely exchange data between the
embedded client and its communication participants.

i

Kurzfassung

Der Vormarsch des Internet of Things lässt sich über die letzten Jahrzehnte hinweg
beobachten. Neben PCs und Handhelds wie Smartphones und Tablets, verbinden sich
immer mehr Geräte mit dem Internet, darunter auch eingebettete Systeme verschieden-
ster Art. Da diese Gerätschaften jedoch oft nicht eigenständig Daten über das Inter-
net austauschen können, müssen andere Wege aufbereitet werden, um Kommunikation
zu Servern, bzw. zur Cloud zu ermöglichen. Um diesem Problem Abhilfe zu schaffen,
präsentiert diese Arbeit das Design und die Implementierung eines sicheren, eingebetteten
Gerätes und eines dazugehörigen Smartphone Gateways, welches zwischen dem eingebet-
teten Gerät und der Cloud vermittelt.

Die verwendete Technologie, welche die Kommunikation zwischen dem eingebetteten
Client und dem Gateway ermöglicht, ist Bluetooth Low Energy (BLE). BLE gehört zu
den führenden drahtlosen Kommunikationsstandards und ist vor allem aufgrund seiner
energiesparenden Art für batteriebetriebene Anwendungen vorteilhaft. Der BLE Stan-
dard legt diverse Rollen fest, die ein Gerät einnehmen kann. Jede Rolle hat gewisse
Anforderungen und Einschränkungen, die es zu beachten gilt, damit Geräte untereinander
Daten austauschen können. Diese Tatsache wurde beim Design des eingebetteten Clients
insofern berücksichtigt, als dass dieser verschiedene BLE Rollen unterstützt, um maximale
Kompatibilität zu anderen BLE Geräten zu gewährleisten.

Das Anwendungsgebiet des entwickelten Prototyps ist Smart Parking. Er zielt da-
rauf ab, seinen Benutzern Eintritt zu diversen Parkplätzen und Garagen zu verschaffen,
ohne dass diese Zeit mit Parktickets verlieren oder eine bestimmte Smartphone App griff-
bereit halten müssen. Dies kommt wiederum der Benutzerfreundlichkeit zugute. Der
Prototyp wurde als Teil der COYERO access Plattform implementiert, die darin spezial-
isiert ist, ihren Nutzern Zugang zu lokalen Infrastrukturen, Services und Produkten über
Smartphone Apps zu ermöglichen. Hohe Sicherheitsstandards für Authentifizierung und
Autorisierung sind dabei ein wichtiger Bestandteil von COYERO access. Deshalb liegt
ein großes Anliegen dieser Arbeit auch darin, den Datenaustausch zwischen eingebettetem
Client und seinen Kommunikationsteilnehmern vor betrügerischen Manipulationen abzu-
sichern.

ii

Acknowledgement

This master’s thesis was written in 2017 at the Institute for Technical Informatics at Graz
University of Technology in cooperation with CISC Semiconductor GmbH.

I would like to express my sincere gratitude to my supervisor Christian Steger who
made it possible to write the thesis in this sophisticated way.

My thanks also go to the members of CISC Semiconductor GmbH for their backing in
overcoming obstacles I faced during my research.

Last but not least, I would like to extend my heartfelt gratitude to my family and
friends, especially to my parents, for their unfailing support and trust throughout my
studies and life.

Graz, May 2017 Alexander Rech

iii

Contents

1 Introduction 1

2 Related Work 3
2.1 COYERO access . 4

2.1.1 COYERO access Features . 4
2.1.2 COYERO access Token Management 6
2.1.3 Communication Between COYERO Entities 7
2.1.4 Security . 10

2.2 Bluetooth Low Energy . 12
2.2.1 Bluetooth Low Energy Protocol Stack 12
2.2.2 Physical Layer . 12
2.2.3 Link Layer . 13
2.2.4 L2CAP . 14
2.2.5 SMP . 14
2.2.6 ATT and GATT . 15
2.2.7 GAP . 17

2.3 Scientific Methodologies . 18
2.3.1 Embedded Data Collection Based on BLE 18
2.3.2 BLE Gateway Approaches . 19
2.3.3 IPv6 over BLE . 21

2.4 Commercial Products . 23
2.5 Smart Parking Without Smartphone . 25
2.6 Related Work Conclusion . 25

3 Design 28
3.1 Use Case . 28
3.2 Requirements . 30
3.3 Architectural Description . 32
3.4 Hardware Selection . 33
3.5 Embedded Device as State Machine . 37
3.6 Android Gateway Application . 39

iv

4 Implementation 41
4.1 Development Environment – Embedded Client 41
4.2 Development Environment – Android . 43
4.3 Circuit and Wiring . 44
4.4 Software Structure . 48
4.5 Data Handling . 51
4.6 Data Encoding . 51

4.6.1 Type-Length-Value (TLV) . 51
4.6.2 ASN.1 DER-Encoding . 52

4.7 Program Flow . 54
4.7.1 Sequence Setup . 54
4.7.2 Sequence Authentication State . 55
4.7.3 Sequence Entitlement State . 57

4.8 Communication Between Client and Server 61

5 Evaluation 62
5.1 Measurements . 62
5.2 Comparison with Other Systems . 64

5.2.1 Communication . 65
5.2.2 Security Between BLE Devices and Gateway 66
5.2.3 Compatibility . 67
5.2.4 Setup . 67
5.2.5 Application Area . 68

6 Conclusion and Future Work 69
6.1 Resume . 69
6.2 Future Work . 70

6.2.1 Improved Authentication . 70
6.2.2 Relay Attack . 71
6.2.3 Additional Secure Hardware . 73

Bibliography 75

v

List of Figures

1.1 Communication Participants . 1

2.1 COYERO access Environment (Adapted from [CIS15]) 4
2.2 COYERO access Communication Sequence (Adapted from [CIS15]) 7
2.3 Login Procedure and Creation of an Authentication-Token [CIS15] 8
2.4 Creation of an Entitlement-Token [CIS15] 8
2.5 Redemption of an Entitlement-Token [CIS15] 9
2.6 Trust Relationship Between COYERO Entities 11
2.7 BLE Stack (Adapted from [GOP12]) . 12
2.8 BLE Physical Layer Frequency Channels [TCDD14] 13
2.9 GATT Heart Rate Service (Adapted from [TCDD14]) 16

3.1 Use Case Description . 29
3.2 Support of Multiple BLE Roles . 30
3.3 Extended COYERO access Architecture . 32
3.4 Overview Main Tasks . 33
3.5 Thunderboard React [Sil] . 34
3.6 CC2650 Dev. Board [Tex16b] . 35
3.7 CC2650 Sensor Kit [Tex15] . 35
3.8 Feather M0 Bluefruit LE [Ada16a] . 35
3.9 Bluegiga BLE112 Chip [Blu14a] . 36
3.10 Client-states . 37
3.11 BLE-states . 38

4.1 BLE112 Pinout [Blu14a] . 44
4.2 Prototype Board . 45
4.3 BLE112 Breakout board – TX pin (CH1) 46
4.4 BLE112 Breakout board – RX pin (CH2) 46
4.5 Electronic Schematic . 47
4.6 Class Diagram Embedded Client . 48
4.7 Class Diagram Android Gateway . 50
4.8 Sequence: Setup . 54
4.9 Sequence: Retrieval of Auth-Token . 56
4.10 Sequence: Retrieval of Entitlement-Token (Part 1) 58
4.11 Sequence: Retrieval of Entitlement-Token (Part 2) 59
4.12 Sequence: Redemption of Entitlement-Token 60

vi

5.1 SLOC of Prototype Implementation . 62

6.1 Improved Authentication Between EClient and Kiosk 71
6.2 Relay Attack Scenario . 72

vii

List of Tables

2.1 Structure of an Authentication-Token . 6
2.2 Structure of an Entitlement-Token . 7
2.3 Key Length Comparison Between RSA and ECC 11
2.4 Overview of Projects Discussed in Chapter 2 27

3.1 Development Boards Comparison . 33
3.2 Visual State Indication . 39

4.1 AndroidManifest – SDK version . 43
4.2 Pinout Table BLE112 (Adapted from [Blu14a]) 44

5.1 Time Measurement – Retrieve and Store Auth-Token 63
5.2 Time Measurement – Retrieve and Store Entitlement-Token 63
5.3 Time Measurement – Redeem Entitlement-Token 63
5.4 Measured Power Consumption . 64
5.5 Client/Gateway Setup of Different BLE Projects and Products 67

viii

List of Abbreviations

AES Advanced Encryption Standard

API Application Program Interface

ASN.1 Abstract Syntax Notation One

ATT Attribute Protocol

AUTH Authentication

BER Basic Encoding Rules

BLE Bluetooth Low Energy

CA Certificate Authority

CCCD Client Characteristic Configuration Descriptor

DER Distinguished Encoding Rules

ECC Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EClient Embedded Client

EEPROM Electrically Erasable Programmable Read Only Memory

GATT Generic Attribute Profile

GPIO General Purpose Input/Output

GUI Graphical User Interface

ix

HCI Host Controller Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IoT Internet of Things

ISM Industrial Scientific Medical

IFS Inter Frame Space

I2C Inter Integrated Circuit

JSON JavaScript Object Notation

L2CAP Logical Link Control and Adaption Protocol

MITM Man in the Middle

MCU Micro Control Unit

NFC Near Field Communication

OOB Out of Band

OSGi Open Services Gateway Initiative

PKI Public Key Infrastructure

QR Quick Response

REST Representational State Transfer

RFID Radio Frequency Identification

RNG Random Number Generator

RSA Rivest Shamir Adleman

RTLS Real Time Locating System

x

SIG Special Interest Group

SLOC Source Lines of Code

SMP Security Manager Protocol

SOC System on a Chip

STK Short Term Key

TDMA Time Division Multiple Access

TK Temporary Key

TLV Tag Length Value

TTL Transistor Transistor Logic

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

URL Uniform Resource Locator

UUID Universally Unique Identifier

VA Validation Authority

WSN Wireless Sensor Network

xi

Chapter 1

Introduction

This thesis proposes a way of providing back-end communication to an internet constrained
device by using Bluetooth Smart also known as Bluetooth Low Energy (BLE). Fig. 1.1
gives an overview of the setup of the communication participants. A smartphone-based
gateway is used to communicate with the embedded device over BLE. Consequently, the
request is forwarded to the cloud by using HTTP calls. Finally, the corresponding response
is processed and transferred back to the embedded device over BLE. The design and
implementation of the embedded client, referred to as EClient in this thesis, and the
corresponding gateway smartphone application is realized as part of the COYERO access
platform.

The application area of the developed prototype is smart parking and it aims to enhance
usability by minimizing interactions between the user, his mobile phone, and the EClient.
The user basically concentrates on reaching the parking lot while the EClient takes care
of providing access. Security goals like trusted authentication and authorization as well
as data integrity are ensured via cryptographic standards in order to thwart fraudulent
manipulations.

Figure 1.1: Communication Participants

Chapter 2 gives technical insights into the features and methodologies of the software
platform COYERO access. Among other things, it is specialized on providing personalized
and secure access to goods and services over BLE and NFC. In addition to its key features
chapter 2 will also discuss security relevant aspects taken into account during the design
phase of the embedded device. The second part of this chapter subsequently takes a closer
look at the wireless technology Bluetooth Low Energy, focusing on the BLE Protocol
Stack and how its layers work together in order to transfer data. Thanks to its power
saving features BLE offers great benefits for Internet of Things (IoT) applications. For
this reason, it is nowadays deployed in a large set of different applications. Therefore,

1

CHAPTER 1. INTRODUCTION 2

chapter 2 will additionally conduct a research on related work distinguishing between
commercial and scientific approaches. Projects which utilize BLE in a similar way as the
prototype developed in the course of this thesis will be examined. The focus will lie on
BLE’s multi-role behavior and on ways to provide internet constrained devices with the
possibility to talk to servers over the internet. Additionally, projects which are already
operating in the parking domain and offer their users smart parking without smartphone
will be discussed.

The third chapter contains design aspects of the EClient and the corresponding smart-
phone gateway implemented as part of the COYERO Client Android app. First of all,
the use case and requirements will be shown. Based on this information, the advantages
and disadvantages of several eligible MCUs and hardware modules are compared with one
another. The most suitable device will become the basis of the succeeding design discus-
sion which gives an overview on how the embedded client works in conjunction with its
gateway.

Chapter 4 gives a good insight into details regarding the implementation. First, in-
formation about the development environment including settings and used libraries will
be given. Second, a closer look will be taken at the circuit schematic of the EClient.
Afterwards, the focus of this chapter will lie on explaining the structure of the developed
program on EClient and gateway side. Additionally, different encoding schemata that
come into play during data transfer will be presented. Last but not least, the program
flow of the implemented program is shown and explained.

Subsequently, results and findings of chapters 3 and 4 will be discussed, compared, and
evaluated against other similar systems presented in chapter 2. Finally, the most important
aspects of this thesis will be summarized and remaining issues will be addressed before
proposing possible solutions.

Chapter 2

Related Work

Section 2.1 of this chapter describes the platform COYERO access, emphasizing on data
handling and its key features and security aspects. Subsequently, a detailed overview of
Bluetooth Low Energy will be provided in section 2.2.

In addition, this chapter is based on a research of projects and products that rely on the
same or similar technologies used to design and implement the EClient and the gateway
application. Embedded devices of all kinds are widely applied, most of the time without
even being perceived by people. However, those devices often still lack the ability to talk
to other devices over the internet. This happens either because they are distant from wide
area networks such as Wi-Fi and the deployment of these networks in a sparse environment
is difficult and expensive, or because the embedded devices do not have the possibility to
rely on power consuming wireless technologies. Wi-Fi, for instance, is widespread but its
large power requirements make it unsuitable for low-power applications.

An overview of several low power wireless standards as well as comparative experi-
mental studies between BLE and other low power wireless technologies can be found in
the literature [SC11, DHTS13, TMTG13]. The results showed that BLE is very energy
efficient and one of the wireless technologies most robust to obstacles. Hence, it is a good
candidate when power constrained embedded devices come into play. Its usage in the
embedded sector is increasing rapidly.

Data collection with smart devices in different environments is becoming more and
more important due to early danger detection [FMA+16] or for localization specific pur-
poses [CLH16], to name a few examples. In these cases usually a network of different
sensors capable of communicating amongst each other is deployed. In any case, devices
with two way communication capabilities, either connection based or not, are necessary
to forward signals over different paths. As a means of augmenting flexibility regarding the
data transfer itself, it would be advantageous if each device was able to initiate the actual
data transfer. To meet this requirement devices relying on BLE for data transmission
have to support multiple BLE roles. Therefore, particular emphasis is placed on projects
utilizing BLE in different roles to establish communication between several devices. See
subsection 2.3.1 for further details on this topic.

Regarding the question on how to connect BLE devices to the internet there are basi-
cally two different approaches. In several cases a gateway that passes messages between
embedded devices and the cloud is used. See subsection 2.3.2 for approaches discussed in
academic papers or section 2.4 to get further information on products already deployed

3

CHAPTER 2. RELATED WORK 4

commercially. Otherwise, there is the possibility of combining IPv6 and BLE, enabling
BLE devices to communicate directly with other devices over the internet. More details
on that aspect can be found in subsection 2.3.3.

Finally, section 2.5 names two already commercially deployed products with a use case
related to the one of the prototype discussed in this thesis. To put it in a nutshell: it is
all about smart parking without smartphone.

2.1 COYERO access

The software platform COYERO access is divided into three complementary parts:
COYERO Client, COYERO Kiosk, and COYERO Server. Together they provide ser-
vices for secure authentication, authorization, and accounting for applications of different
kinds.

Figure 2.1: COYERO access Environment (Adapted from [CIS15])

Among other things, COYERO access provides several tools in the form of software li-
braries. Those libraries can be embedded into smartphone apps, for instance, enabling
their users to gain access to local infrastructures, services, and products. Regarding the
communication technologies used, COYERO Client and Kiosk devices transfer data be-
tween each other over BLE or NFC. They can also communicate with the server infras-
tructure over HTTP. The server infrastructure itself is divided into a business logic part
responsible for application specific functionality and the COYERO Server module, which
monitors and manages the entire framework and acts as secure cloud service [CIS15].

2.1.1 COYERO access Features

The following part explains key features of the COYERO Client and Kiosk libraries and
the COYERO Server module [CIS15].

CHAPTER 2. RELATED WORK 5

Features of the Client/Kiosk Library

The COYERO Client library supports iOS and Android, while the COYERO Kiosk li-
brary supports Android and was also implemented for the OSGi (Open Services Gateway
initiative) platform. Both libraries use NFC and BLE to exchange data. Initial internet
access is an essential requirement for this. Additionally, the COYERO Kiosk and Client
libraries offer the following functions to the enclosing native applications through an API
layer tailored for communicating to the COYERO Server module:

• Authentication:
Devices using the COYERO Client and COYERO Kiosk libraries can prove their
identity to each other by using Authentication-Tokens generated and signed by the
COYERO Server. See subsection 2.1.2 for further details on Authentication-Tokens.

• Authorization:
Kiosk devices can authorize the access to goods and services for client devices by
redeeming their server signed Entitlement-Tokens. Refer to subsection 2.1.2 to gain
a better overview of Entitlement-Tokens.

• Device coupling:
Two devices can be coupled in case of close proximity using different communication
technologies like NFC or BLE.

• Transaction handling:
Connected devices can offer entitlements to or request entitlements from each other.
In this case a challenge-response based authentication method is used before further
data is exchanged between COYERO Client and Kiosk.

• Accounting:
If an entitlement was redeemed, a transaction log is created and propagated back
to the server once internet connectivity is available. This prevents duplicate trans-
actions and other fraudulent manipulations and assures non-repudiation for the re-
demption process.

Features of the Server Module

The COYERO Server module provides the entry point for external applications and man-
ages and monitors transactions between COYERO devices. Additionally, it operates in
constant interaction with the Business Logic which is an application server responsible
for providing COYERO Client and Kiosk devices with application specific functionality.
Communication with the COYERO Server module is triggered over a REST webservice
API in charge of the following services:

• User and Device Handling:
The COYERO Server supplies devices containing the COYERO Client or Kiosk
library with authentication. New users or devices have to register on the server
initially. Afterwards, devices can communicate directly with the COYERO Server
module using their server issued Authentication-Tokens. Subsection 2.1.3 explains
the registration procedure in more detail.

CHAPTER 2. RELATED WORK 6

• Entitlement Management:
The creation of Entitlement-Tokens is triggered by the Business Logic through
the REST webservice API. Consequently, these entitlements are distributed by the
COYERO Server to authenticated devices.

• Monitoring:
The COYERO Server maintains a transaction record database.

2.1.2 COYERO access Token Management

The COYERO access platform makes use of special data structures called tokens to handle
user authentication and authorization to access products and services.1 Each token has to
be signed by the COYERO Server in order to make later modification of data impossible.
For further details on security relevant information refer to subsection 2.1.4.

Authentication-Token

An Authentication-Token (Auth-Token) is an extended certificate which includes the pub-
lic key of a client. It is tied to a particular user account and device and signed by the
COYERO Server. An Auth-Token consists of all elements listed in table 2.1.

Element
Length
(Bytes)

Description

Version 2 Current Version of Auth-Token

Id 8 Identifier of Auth-Token

IssuerId 4 Issuer of Auth-Token

ServiceStart 8 Start of Validity Period of Auth-Token

ServiceEnd 8 End of Validity Period of Auth-Token

PublicKey 91 Public secp256r1-ECC-Key (with Header)

Properties 2
Information to Control and Restrict

Possible Use Cases for the Auth-Token

Signature 70-72 DER-Encoded Signature of Auth-Token

Table 2.1: Structure of an Authentication-Token

Entitlement-Token

An Entitlement-Token is issued and signed by the COYERO Server and bound to a specific
Auth-Token. Therefore, it is only valid when presented in combination with the related
user account and device. Entitlement-Tokens are divided into the following elements
illustrated in table 2.2.

1Information on tokens was taken from the internal documentation of CISC Semiconductor GmbH.

CHAPTER 2. RELATED WORK 7

Element
Length
(Bytes)

Description

Version 2 Current Version of Entitlement-Token

Id 8 Identifier of Entitlement-Token

IssuerId 4 Issuer of Entitlement-Token

AuthTokenId 8 Identifier of Corresponding Auth-Token

ApplicationId 4 Identifier of Application

ServiceId 4 Identifier of Product/Service

CommonDataAmount 4 Payment Related Data

ServiceStart 8 Start of Validity Period of Entitlement-Token

ServiceEnd 8 End of Validity Period of Entitlement-Token

Properties 2
Information to Control and Restrict

Possible Use Cases for the Entitlement-Token

ApplicationData 0-64 Application Specific Data Buffer

Signature 70-72 DER-Encoded Signature of Entitlement-Token

Table 2.2: Structure of an Entitlement-Token

2.1.3 Communication Between COYERO Entities

The communication between COYERO entities, including COYERO Client, COYERO
Kiosk, and COYERO Server, can be classified into the following three procedures (see fig.
2.2). They will be described on the following pages based on [CIS15].

Figure 2.2: COYERO access Communication Sequence (Adapted from [CIS15])

Creation of Authentication-Tokens

Before client-side applications are authorized to use the services provided by the COYERO
access platform, they have to gather a server issued Auth-Token by registering themselves
at the COYERO Server. Figure 2.3 explains how an Auth-Token is retrieved.

First of all, after generating an ECC key-pair, the client application needs to provide
login credentials to the Business Logic layer. In further consequence, a one-time registra-
tion code, also known as ticket, will be fetched by the Business Logic and sent back to the
client application. Consequently, this ticket is sent to the COYERO Server in combination
with the client device’s public key. Finally, the server issues and signs the Auth-Token
and sends it back to the client device.

CHAPTER 2. RELATED WORK 8

Figure 2.3: Login Procedure and Creation of an Authentication-Token [CIS15]

Creation of Entitlement-Tokens

After the login-process is finished an Authentication-Token is stored locally on the client
device and entitlements can be retrieved. The creation of Entitlement-Tokens can be trig-
gered directly by the Business Logic. In any case, the COYERO Server is responsible for
issuing, signing, and sending them to the client where they are stored for later redemption
(see figure 2.4).

Figure 2.4: Creation of an Entitlement-Token [CIS15]

CHAPTER 2. RELATED WORK 9

Redemption of Entitlement-Tokens

As soon as entitlements are available on the client device they can be redeemed at cor-
responding kiosk devices. A kiosk only accepts entitlements if their ApplicationID and
ServiceID correspond to its predefined filter criteria. According to figure 2.5 the COYERO
Client library and the COYERO Kiosk library perform an authentication procedure based
on their Authentication-Tokens using a challenge-response method. Afterwards, the kiosk
can check the received entitlements with the public key of the COYERO Server. If they
are valid they are redeemed offline or online depending on the use case. In addition, a
transaction log is generated and transmitted back to the server.

Figure 2.5: Redemption of an Entitlement-Token [CIS15]

CHAPTER 2. RELATED WORK 10

2.1.4 Security

This subsection gives an insight into the security aspects of COYERO access. In order
to provide security goals like data integrity and trusted authentication and authorization
COYERO’s security is based on Public Key Infrastructure (PKI) in combination with
ECDSA. These cryptographic concepts are explained in the following paragraphs.

Public Key Infrastructure

A Public Key Infrastructure (PKI) is a security infrastructure. Its services rely on public-
key concepts and its main goal is to ensure the identity of all communication participants.
Generally, a PKI provides a system with the following services (see [AC99] for further
information):

• Authentication
On one hand, PKI provides the service of data origin authentication. An entity’s
private key may be used for the signing process, binding its identity to the signed
data. On the other hand, also the service of entity authentication is offered. This
is useful to check if the entity that sent the signature was the actual signer. Hence,
the entity might be asked to sign an additional challenge which subsequently can be
verified with its public key by the other communication participant.

• Integrity
The signed data can be verified against the actual data to check if it was altered.

• Confidentiality
Confidentiality can be provided with public encryption algorithms for instance. Data
encrypted with the recipient’s public key can only be decrypted by the one possessing
the corresponding private key.

In case of COYERO access authentication and integrity is provided through server signed
tokens and a challenge-response protocol between COYERO Client and Kiosk devices.
However, confidentiality is not provided. This is due to the fact that tokens are only of
benefit if the challenge-response protocol involving the private key of the right owner is
passed. Therefore, as a means of speeding up data transmission, the actual data is not
encrypted.

Figure 2.6 describes the trust relationship between all COYERO entities. The
COYERO Server is a Certificate Authority (CA) responsible for issuing and signing
Authentication- and Entitlement-Tokens for COYERO Client and Kiosk devices. In con-
trast to the COYERO Server, Kiosk devices are Validation Authorities (VAs). They vali-
date the authentication and authorization of a client device based on its Authentication-
and/or Entitlement-Tokens. Last but not least, there is the self signed root CA. It is the
basis of trust for all COYERO Client and Kiosk devices since the signed data coming from
the COYERO Server can be verified with their pre-installed root certificate [CIS15].

CHAPTER 2. RELATED WORK 11

Figure 2.6: Trust Relationship Between COYERO Entities

ECDSA

COYERO access relies on the ECDSA algorithm for creating and verifying signatures. The
elliptic curve secp256r1 (aka prime256v1, NIST P-256 [TIB+09]) is used for this purpose.

According to the NIST Recommendation of 2016 this type of curve is recommended
at least until 2030. The major advantage of ECDSA lies in its cryptographic key length.
Table 2.3 lists the cryptographic key sizes of ECC and RSA required for the same level of
security [Blu16a]. It is expressly stated that RSA has to operate with significantly larger
keys. This, in consequence, impacts the speed of the corresponding algorithm and affects
memory requirements. In case of ECDSA this enables a quicker data transfer of keys and
certificates since smaller data packets can be passed.

RSA Key Length (Bits) 160 224 256 384

ECC Key Length (Bits) 1024 2048 3072 7680

Table 2.3: Key Length Comparison Between RSA and ECC

CHAPTER 2. RELATED WORK 12

2.2 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a short range wireless technology. Its specifications are
defined by the Bluetooth Special Interest Group (SIG). Compared to Bluetooth Classic it
is less power hungry and was especially designed for power constrained devices and control
and monitoring applications. All the information of this section was derived and adapted
from [GOP12, Blu10, TCDD14].

2.2.1 Bluetooth Low Energy Protocol Stack

The BLE protocol stack consists of a Host and a Controller part. Communication between
them is established over the Host Controller Interface (HCI). The Controller is composed
of the Physical and the Link Layer, while the Host comprises the following parts:

• Logical Link Control and Adaption Protocol (L2CAP)

• Attribute Protocol (ATT)

• Generic Attribute Profile (GATT)

• Security Manager Protocol (SMP)

• Generic Access Profile (GAP)

Figure 2.7: BLE Stack (Adapted from [GOP12])

Non-core profiles are features of the application layer which are not defined by the
Bluetooth specification. They run on top of the Host. Figure 2.7 gives an overview of the
BLE stack which will be described in the following paragraphs.

2.2.2 Physical Layer

BLE uses the 2.4 GHz ISM band for communication and divides it into 40 channels rang-
ing from 2.4000 GHz to 2.4835 GHz. All available BLE channels and their frequencies are
illustrated in figure 2.8. Channels 37, 38 and 39 are advertising channels responsible for

CHAPTER 2. RELATED WORK 13

device discovery mechanisms, connection establishment, and sending broadcasts. Further-
more, the frequencies of the three advertising channels were defined in a way to minimize
overlapping, with the commonly used IEEE 802.11 channels 1, 6 and 11. The remaining
37 channels (0-36) are data channels and responsible for bidirectional data transfer. They
are switched via an adaptive frequency hopping mechanism in order to mitigate issues
regarding signal interference and problems related to wireless propagation (e.g. multipath
fading).

Figure 2.8: BLE Physical Layer Frequency Channels [TCDD14]

2.2.3 Link Layer

The Link Layer defines the following device roles:

Advertiser and Scanner (No Connection Required):

A device sending advertising packets through the advertising channels is called advertiser.
In contrast, a scanner is a device scanning for advertising packets and receiving data
through advertising channels. Data packets are advertised in time intervals. Within
such an interval, called advertising event, the advertiser sequentially makes use of each
advertising channel for packet transmission. Furthermore, an advertising packet can be
classified according to three properties:

• Connectability: The scanner can or cannot initiate a connection upon receiving
an advertising packet.

• Scannability: A scanner can or cannot issue a scan request upon reception of such
an advertising packet.

• Directability: A directed packet contains only the Bluetooth addresses of the ad-
vertiser and the desired target scanner in its payload. No user data is allowed. All
advertising packets of this kind are therefore connectable. An undirected packet is
not targeted at any particular scanner and it can contain user data in its payload.

Master and Slave (Connection Required):

A master device listens for advertisements and transmits connection request messages,
while a slave accepts connection requests and follows the timings specified by the master.
A master can connect to multiple devices. In contrast, a slave can only be connected to

CHAPTER 2. RELATED WORK 14

one master at a time. After establishing a point to point connection between a master and
a slave, data can be transferred through the physical data channels. Consequently, the
physical channel is divided into non-overlapping time units, called connection events. A
frequency hopping algorithm is used to determine the data channel index (and frequency)
for each connection event. Within a connection event, all packets are transmitted using
the same frequency. Each connection event contains at least one packet sent by the master.
If the slave received the packet, it must send a packet back as a response. An Inter Frame
Space (IFS) of at least 150 µs must pass between the end of transmission of one packet
and the start of the next one. For a new connection event, master and slave use a new
data channel frequency provided by the frequency hopping algorithm.

Slaves are in sleep mode by default and wake up regularly to listen for possible packets
from the master. The master decides when the slaves listen and coordinates the chan-
nel access by utilizing a Time Division Multiple Access (TDMA) scheme. Additionally,
the master provides the slave with information required for the frequency hopping algo-
rithm which is transmitted during the connection request message and updated during
the connection. The following timing parameters have to be considered:

• Connection Interval: The time between two connection events is called connection
interval. The advantage of a long connection interval is energy saving since the device
can sleep most of the time between connection events. The disadvantage is that there
are less opportunities for data to be sent or received.

• Slave Latency: The number of connection events during which a slave does not
listen for the master is called slave latency. A reduction of the slave latency increases
the power consumption but also reduces the amount of time for data to be sent and
received.

• Supervision Timeout: The maximum time allowed between two data packets
before the connection is considered lost is defined as supervision timeout.

2.2.4 L2CAP

The L2CAP layer manages and controls data coming from the ATT, SMP and Link Layer.
It operates according to a best-effort approach. Mechanisms like retransmission or flow
control do not exist. Neither segmentation nor reassembly is required since the upper layer
protocols provide data packets that fit L2CAP’s maximum payload size of 23 bytes.

2.2.5 SMP

The Security Manager is both a protocol and a series of security algorithms designed to
provide the Bluetooth protocol stack with the ability to generate and exchange security
keys for BLE pairing. In further consequence, this allows the peers to communicate
securely over an encrypted link and trust the identity of the remote device. Additionally,
the Security Manager offers the possibility to hide the public Bluetooth address from a
medium to avoid being tracked by other devices.

Subsection 6.2.2 provides information on how the Security Manager could enhance the
security of the developed prototype.

CHAPTER 2. RELATED WORK 15

2.2.6 ATT and GATT

The Attribute Protocol (ATT) is a stateless protocol for discovering, reading, and mod-
ifying data on a peer device. Depending on the use case and the offered features of the
Bluetooth unit, a device can act as client or server. Data is always stored in form of
attributes on the server and can be accessed and modified by the client. An attribute
is an addressable piece of information that can contain relevant data. It consists of the
following elements:

• Handle: The Handle is a 16-bit long identifier to address and access an attribute
value.

• Type: The Type is a 128-bit long UUID that specifies which kind of data is con-
tained in the value of the attribute. For efficiency there also exist 16-bit and 32-bit
formats used for UUIDs that are defined in the Bluetooth specification.

• Permissions: The Permissions element is metadata that specifies which operations
can be executed on the attribute. It also incorporates security requirements.

• Value: The Value consists of the attribute’s data content.

When a client wants to read an attribute or write to it, it will be addressed by its handle.
Subsequently, the server will respond with the attribute value or an acknowledgement.

The Generic Attributes Profile (GATT) is built on top of ATT and uses it as its trans-
port protocol. GATT basically defines a framework for transferring data between devices
using concepts like services, characteristics and descriptors explained in the following
paragraphs:

Services

Attributes on a GATT server are grouped into services. Conceptually, a GATT service
could be compared to a class in object-oriented languages which breaks up data into logical
entities. Services are read only and cannot be modified by the client.

Characteristics

Characteristics are data containers and can be contained in a service. A characteristic
includes at least two attributes:

• Characteristic declaration: It provides metadata about the user data. Its value
field consists of the following elements:

– Properties: They describe which operations can be performed on this char-
acteristic, e.g. Read / Write / Notify / Indicate.

– Value Handle: It includes an attribute handle of the attribute that contains
the value of the characteristic.

– UUID: It contains the attribute type of the attribute which contains the value
of the characteristic.

CHAPTER 2. RELATED WORK 16

• Characteristic value: The Characteristic’s value field holds the actual user data
the client can read from or write to. Type and handle are the same as specified in
the value field of the characteristic declaration attribute.

Descriptor

Characteristics may include descriptors. One one hand, a client may read a descriptor
to get additional information about the characteristic and its value. On the other hand,
a client may also write to a descriptor in order to configure a specific characteristic.
Depending on its value field, notifications or indications can be switched on or off, for
example.

GATT Service Example [TCDD14]

The attribute structure discussed above will now be explained by means of an example.
Figure 2.9 illustrates a GATT service of a heart-rate-monitor. The attribute with handle
0x0021 contains the service declaration for the heart-rate service. Like all services it is
read only. Its value field specifies that it is a heart-rate service (HRS).

The attribute with handle 0x0024 incorporates the characteristic declaration. Its value
field consists of three elements: the properties field which is set to notify only, the value
handle specified as 0x0027, and a UUID which is the identifier for the heart-rate mea-
surement. In contrast, the attribute with handle 0x0027 contains the characteristic value
which contains the actual heart-rate measurement value. The UUID of this attribute is
the same as specified inside the value field of the characteristic declaration. Additionally,
the permissions field defines that neither read nor write operations are permitted.

Nevertheless, a client can obtain the value through notifications sent by the heart-
rate-device. This behavior is specified in the value field of the descriptor attribute with
handle 0x0028. In this case it is a Characteristic Configuration Descriptor (CCCD) which
is readable and writable. Its value field is set to 0x0001 indicating that notifications are
enabled.

Figure 2.9: GATT Heart Rate Service (Adapted from [TCDD14])

CHAPTER 2. RELATED WORK 17

2.2.7 GAP

The Generic Access Profile (GAP) is the highest level of the BLE stack and provides a
framework consisting of roles, modes, and procedures which allow BLE devices to discover
each other, broadcast data, establish secure connections, and perform other operations
according to the predefined standard.

Roles

The GAP roles define the system’s topology. Broadcaster and observer provide one direc-
tional communication, while peripheral and central roles are connection based and offer
two-way communication.

• Broadcaster and Observer:
A broadcaster only broadcasts data without requiring any confirmation or acknowl-
edgment. It does not support connections to other devices. Public sensors like
thermometers or humidity sensors that broadcast their sensor readings to any inter-
ested device are examples of a broadcaster. The observer role listens for advertising
packets coming from broadcasters. They read the data without actually connecting
to the device, like an alarm clock which displays the temperature data from a BLE
broadcaster.

• Peripheral and Central:
Similar to BLE broadcaster and observer roles, a peripheral sends advertising pack-
ets which may be received by a central device. Additionally, the central role is
designed for initiating and managing multiple connections, whereas the complemen-
tary peripheral role is utilized by devices that wait for others to connect to it. After
establishing a connection, further data can be transferred.

Modes and Procedures

Each role can be operated in different states, called modes or procedures. Depending
on the actual goal of a device it can choose between different modes which in further
consequence allow the other peer to perform a particular procedure. Among other things,
these roles deal with the following tasks:

• Discover devices: How does a peripheral advertise its presence?

• Connect to devices: How does a central select the peripheral to communicate
with?

• Broadcast data: How does a BLE device broadcast data to one or multiple ob-
servers?

CHAPTER 2. RELATED WORK 18

2.3 Scientific Methodologies

The following subsections show ideas and approaches discussed in several papers including
projects relying on multiple BLE roles or BLE gateways. Subsequently, there is also a part
about BLE over IPv6.

2.3.1 Embedded Data Collection Based on BLE

The hop distance strategy in wireless sensor networks (WSNs) impacts the energy con-
sumption of each device participating in the communication. Long-hop routing minimizes
reception cost. However, routing over many short hops minimizes the transmission energy
which increases with the communication distance. The optimal solution always depends
on the environment where the sensor nodes are applied. In some cases the best approach
might be a single hop solution, while in others a multi-hop solution is better suited. BLE
enabled devices can be used for both scenarios.

In order to cope with the requirements of multi-hop networks the communication
participants need to act as receiver and sender. To enable data transfer between nodes over
several different paths the BLE unit should support multiple BLE roles. See subsection
2.2.7 for further details on BLE roles. Depending on the actual use case, the amount of
data to be sent, and the available BLE roles, data can be transferred with or without an
established connection between nodes. Examples of a connectionless and a connection-
based BLE multi-hop network will be listed in the following paragraphs.

Connectionless BLE Multi-Hop WSN Approach

The first project, discussed in paper [CLH16] is about a WSN consisting of several devices,
each acting as BLE broadcaster and receiver. They operate together to gain locational
information of customers of a Taiwanese theme park in order to identify popular attractions
and walking patterns of visitors. In the course of this project, visitors are provided with
BLE bracelets that continuously broadcast data containing a unique ID. This information
is detected by one of several deployed Bluetooth beacons. In addition to collecting these
IDs, the BLE beacons forward the gathered information to other beacons until a dedicated
PC is reached where all data is stored and analyzed. In the same way as the BLE beacons
send data to the central PC, the PC which holds the information of each Bluetooth device
may address specific beacons in order to change some settings, like the scan interval, for
example. This request is sent again over the multi-hop network until it reaches the desired
device.

Since data has to be relayed through several nodes until the desired destination is
reached, all communication participants are being operated as BLE broadcaster and BLE
receiver. In the applied scenario no connection between the nodes is established, so data
that is transmitted further is embedded inside the advertisement packet. The packet has a
limit of 32 Bytes at a time. Because of this limitation, timing relevant data, for instance,
is only added when the data packet arrives at its destination. The BLE beacons consist
of a CC2541 unit, enabling those devices to utilize broadcaster and receiver role. Each
role remains active for five seconds before entering a 15 seconds long sleep mode to save
energy. With this setup the Bluetooth beacons equipped with two 3000mAh batteries last
for about 72 days according to this paper.

CHAPTER 2. RELATED WORK 19

Connection-Oriented BLE Multi-Hop WSN Approach

The second project is called Downhill and is presented in paper [FMA+16]. It basically
builds a Bluetooth Low Energy based multi-hop communication network using smart-
phones. The application area is early detection of landslides and slope failures. The
Downhill smartphone application collects data from the phone’s accelerometer and GPS
unit and sends it to a server across a BLE network. Each smartphone is positioned in
the range of another smartphone creating a wireless daisy chain. Data transmission is
triggered the moment ground movements are detected.

This approach makes use of BLE’s connection-based roles. The deployed smartphones
utilize BLE central role to send the sensory data to a nearby phone acting as a periph-
eral device. As soon as the data is received as peripheral, the corresponding phone will
additionally make use of BLE’s central role to forward the data packet to the next phone
in the chain. In this manner, the sensory data is propagated through the whole network
until one central point is reached which collects and evaluates the data sets.

2.3.2 BLE Gateway Approaches

One way to enable embedded BLE devices to communicate over the internet is to use
gateways. A gateway can transport data between two devices that would otherwise be
unable to communicate with each other. In that sense, a gateway acting in between
embedded BLE devices and servers has to support BLE and should have internet access.

One possible solution for providing connectivity to IoT devices is to provide a cus-
tom hardware gateway for each type of device. However, this approach seems unsuitable
since the development of new hardware requires a long time to market and would lead
to a massive deployment of new hardware in further consequence. Hence, companies like
Intel, Wind River and McAfee have collaborated to provide services and tools to help
IoT manufactures design dedicated multi-functional IoT hardware gateways that should
support any specific IoT application [Int14]. However, this still involves the deployment
of a new hardware ecosystem. Therefore, the gateway solution approaches described on
the following pages were chosen based on the fact that they use hardware which is already
widespread: smartphones.

Data Management in the Cloud for BLE Devices

The work illustrated by paper [TSPA16] presents a smartphone-based gateway solution
responsible for retrieving data from wearable sensors over BLE as well as storing it to a
central cloud storage in real-time. Data transmission from BLE devices to the gateway
application takes 128ms on average. According to the paper, an application area suited
for this real-time behavior is the healthcare domain. By constantly monitoring vital data
such as pulse rate or blood oxygen saturation and providing feedback mechanisms via
the Google Cloud Messaging (GCM) service the user always knows about his current
situation. Additionally, third parties like doctors can make more precise diagnoses and
carry out more appropriate treatments if they have access to these datasets. The service
architecture is composed of the following four elements:

CHAPTER 2. RELATED WORK 20

• Producers: Users who use BLE wearable sensors. These devices are responsible
for continuous measurements of any kind. Examples are measurements of body
temperature or pulse rate.

• Gateway (Front-End): The gateway part is implemented as an Android applica-
tion and it automatically collects data produced by sensors, processes it, and stores
it locally. Additionally, it monitors the measured values in order to notify the user
in case of an emergency. The data encoded as JSON string is automatically sent to
the back-end over HTTP on predefined time intervals or on demand. Moreover, the
gateway allows the registration of new users and configuration of sensors with user
dedicated rules. The process of adding new sensors is based on an XML scheme used
to identify the BLE attribute values of the sensors’ GATT characteristics. Further-
more, the smartphone gateway collects data from BLE devices based on this XML
schema. The description of the XML schema consists of different tags such as the
sensor-tag or device-tag used to identify the BLE devices and particular sensors that
are registered in the system. Other tags are responsible for identifying parameters
like measurement type, unit, or data format, for example.

• Server/Cloud (Back-End): The back-end is responsible for storing information
regarding user devices and sensors as well as rules and historical data. Data is stored
in JSON format based on the database MongoDB. Additionally, it features GCM
for delivering push notifications to the phone.

• Consumers: In this context consumers are people who want to access the collected
sensory data, e.g. medical personnel like doctors or the users themselves.

fabryq: Example of a Generic Gateway Approach

An even more generic gateway approach is shown by the project fabryq presented by paper
[MERH15]. It addresses the problem of increased complexity which arises when developing
systems responsible for establishing communication between embedded devices and servers
over gateways. Most of the time, different programming languages complicate, hamper,
and prolong the actual implementation. The fabryq architecture consists of three elements:

• Embedded Device: It provides sensory data over BLE.

• Gateway (Front-End): A smartphone (iOS based) acts as gateway as well as user
interface.

• Server/Cloud (Back-End): The server collects, stores, and provides data, and
manages commands, users, and devices.

A smartphones still acts as a middleman to connect devices supporting BLE to the inter-
net. However, fabryq tries to simplify the development process of applications by using a
protocol proxy programming model. Developers focus on writing application specific code
with the provided fabryq JavaScript API, which is executed on the server side. In fur-
ther consequence, the fabryq platform takes care of transferring data between embedded
devices, the smartphone gateway, and the server.

A developer first has to register his phone in the fabryq iOS application. Subsequently,
a scan for nearby BLE devices is initiated. The discovered entities can be selected and

CHAPTER 2. RELATED WORK 21

information about their GATT tables is retrieved to learn about which data can be read or
written to. Furthermore, either a new device type entry can be created on the server and
phone or it is recognized as a previously created device type. Consequently, a developer can
create an application by selecting his device and naming the new application. Code can be
written in a local text editor or via the fabryq web editor. Fabryq programming consists
primarily of issuing read and write requests to the content of the GATT attribute tables
and writing callbacks to handle the returned data. The applications can be launched and
controlled in a browser or on the fabryq iOS app using an agent interface. The application
itself is constantly running in the cloud.

BLE commands that should be performed on the BLE devices are queued on the server
by calls to the fabryq JavaScript API. The current implementation relies on constant
polling to retrieve command logs for the smartphone app or the actual command results.
If tasks are found on the server for the registered device of the user and the requested
device is connected to the phone, the command is forwarded to the embedded device and
the response is returned to the server over the gateway. To show data updates on the
phone’s display the API offers a method which triggers the server to send the phone an
URL which basically consists of a webpage illustrating sensor specific data.

A user who wants to use the services fabryq offers has to install the mobile application
and register his BLE devices. He then selects one of the available fabryc applications
(programmed by a developer) and chooses which of his devices should be used for it.
Depending on the selected application different use cases per device are possible.

2.3.3 IPv6 over BLE

Another possibility to connect BLE devices to the internet is to send IPv6 packets over
BLE. In this case each device possesses its own globally unique IPv6 address, thus be-
coming recognizable as a single device over the internet and enabling true end-to-end
connectivity between devices. Furthermore, no additional devices are needed to translate
between different protocols.

The mechanisms for enabling an IP network on a BLE link were formalized by the
Internet Engineering Task Force (IETF) and the BLE SIG. Finally, in October 2015, the
IETF released the RFC7668 standard which provides guidance on how to send IPv6 pack-
ets over BLE. The BLE link is similar to the IEEE 802.15.4 standard designed for resource
constrained low power embedded systems. Additionally, many of the mechanisms defined
for IPv6 over IEEE 802.15.4 can be applied to the transmission of IPv6 on BLE links.
Among other things, this standardization requires header compression, fragmentation, and
a reassembling process due to the smaller MTU size of BLE [NTS+15].

The flexibility of communicating over the IP layer is highly beneficial for supporting a
wide variety of applications. The following project is a representative example where the
end-to-end principle and the avoidance of an additional gateway device is advantageous:

CHAPTER 2. RELATED WORK 22

Real-Time Acoustic Data Streaming over IPv6 and BLE:

The paper [YKKK15] proposes a way of streaming MP3 audio files sampled at
22050Hz with an IP enabled BLE headset. The approach is based on 6lo BLE.
Additionally, the paper shows that it is also possible to provide continuous connec-
tivity even when the device moves between different adjacent networks. IP relies on
the end-to-end principle, hence session maintaining is possible. Finally, by using the
handoff technology responsible for transferring sessions between different channels of
a network, the BLE-IP based connection between streaming server and BLE headset
can be maintained. However, this approach only works if enough IPv6 access points
are available while the user with the BLE headset moves.

First open source implementations of communication stacks which fit all needs and re-
quirements of the RFC 7668 standard are being elaborated. An example developed in the
course of a thesis [Spo16] is the following:

IPv6 over Bluetooth Low Energy Using Contiki

Among other things, this thesis proposes the design of an IPv6 over BLE communi-
cation stack compliant to the RFC7668 standard. The stack fits the architecture of
the Contiki OS and was implemented for the TI CC2650 SensorTag. Additionally,
it is also shown that the communication stack developed in the course of this thesis
is interoperable with devices supporting the RFC7668 standard and provides BLE
nodes with network connectivity.

There are some challenges and problems which arise when dealing with IPv6 over BLE.
The primary challenge is the complexity of communicating at the IP layer which enforces
devices to run an IPv6 stack. In case of resource constrained embedded devices it may be
difficult to support a full IP stack, especially for those devices which benefit from offloading
work to more capable, less computationally and memory constrained devices. Sometimes
an additional device is needed anyway acting inter alia as a user interface. Moreover, an
IPv6 router/access point is required to enable IPv6 communication. The deployment of
IPv6 is ongoing but still not nation-wide and it is not supported in every country. To
estimate how widespread IPv6 actually is, Google is continuously measuring how many
Google users access Google services over IPv6.2 At the time of April 12, 2017, a total of
14,32% was measured.

2https://www.google.com/intl/en/ipv6/statistics.html (Accessed: 2017-04-12)

CHAPTER 2. RELATED WORK 23

2.4 Commercial Products

There is a wide range of commercially deployed applications relying on the technologies
discussed in section 2.3. A few of them will be discussed in the following paragraphs.

Wearable: Apple Watch

The Apple Watch features Wi-Fi and BLE functionality. Depending on the use case, one
of the two modules is applied to enable retrieving data over the internet. If a known
Wi-Fi network is in range the built-in Wi-Fi module enables direct internet connectivity.
However, in order to enable data transfer over the internet even if there is no Wi-Fi
network in range or to preserve energy, BLE is used. In this case an additional iOS device
is required as a bridge between the Apple Watch and the internet. To be more specific, an
iPhone or iPad with the corresponding iOS Version acts as gateway, retrieves data, and
sends it back to the Apple Watch [App17a].

The Apple Watch and the iPhone are paired over BLE using an OOB pairing method.
The watch displays an animated pattern which subsequently has to be captured by the
camera of the user’s iPhone. While doing so the pairing secret is exchanged. Once the
BLE session is established and link layer encryption is enabled, the Apple Watch and the
iPhone exchange an RSA 1280-bit key for encryption and ECDSA P-256 keys for creating
signatures to offer an additional layer of security. For a more detailed explanation of
security features please refer to [App17b].

Smarthome: Apple Homekit

Apple Homekit is a framework for communicating with home automation devices. iOS
devices with the Homekit app installed are able to discover, configure, and control com-
patible devices. Both WiFi and BLE devices can be certified as HomeKit accessory by
Apple. They have to support Apple’s Homekit Accessory Protocol (HAP) that runs on
top of the BLE or an HTTP/TCP/IP stack. On one hand, Homekit accessories may be
controlled directly by an iOS device over BLE or WiFi. On the other hand, there is also
the possibility of utilizing their services remotely. In this case an appleTV or iPad acts as
gateway to forward data to the designated BLE or WiFi enabled device [WA14] [MA16].

Among other things, Homekits security relies on ECC Ed25519 for authentication
between iOS devices as well as between iOS devices and accessories, and Secure Remote
Password (3072-bit) protocol for exchanging keys which in further consequence are used
to encrypt the session [App17b].

Gateway Solution: BluFi

BluFi is a Wi-Fi and BLE enabled gateway developed by Bluvision. Its BLE 4.1 chip
supports BLE dual mode. Therefore, it can act as peripheral and central device. According
to the BluFi specification sheet [Blu16b] it is able to handle multiple BLE connections at
the same time with central devices when acting as peripheral. Additionally it supports
multiple simultaneous BLE connections with peripherals when utilizing BLE central role.
The gateway consists of an ARM Cortex M4 and M3 processor, on both running a RTOS.

CHAPTER 2. RELATED WORK 24

Data collected over BLE is sent immediately to the Bluzone Cloud which enables real time
data monitoring. The BluFi gateway comes in a handy format of 50mm x 38mm x 38mm
and since it possesses an AC plug, it can be powered directly by a power socket. Regarding
security it supports AES-128 Link Layer encryption of BLE. Additionally, communication
from and to beacons is encrypted via RSA [Blu16b].

The initial setup and configuration can be done via the Bluzone App. BluFi is deployed
at the Miami International Airport as a means of monitoring environmental conditions
such as air conditioning temperature as well as other services like indoor navigation [Blu].

Real-Time Locating Service: Onyx Beacon

Onyx Beacon provides their customers with a Real Time Location Service (RTLS). The
applied architecture consists of the following three elements:

• BLE Beacon (Client): The Enterprise Beacon of Onyx is a BLE device which per-
manently sends BLE broadcasts in a range of about 70m [Onya]. First of all, each
asset that should be trackable has to be equipped with a BLE beacon. Furthermore,
an accurate location estimation requires an additional grid of zone beacons placed,
for instance, on walls and the ceiling. The more beacons are deployed, the more
accurately assets can be located [Onyb]. Each beacon can be powered by four AA
batteries which enable a continuous usage of the device of up to four years. Alter-
natively, the device can be powered over USB or a power plug. It has a waterproof
enclosure that makes it suitable also for outdoor applications. Security is provided in
form of AES-128 combined with Message Authentication Codes (MACs). Further-
more, it is possible to change the components of the beacon’s advertising packets
including UUID, major, and minor values [Onya].

• Tracko App (Gateway): The Tracko app, available for iOS and Android devices,
can be used to track the location of the user’s assets. The location of the assets
equipped with BLE beacons is crowdsourced, meaning that each device containing
the Tracko app autonomously scans for all available nearby beacons and reports
their location to the cloud. If no internet connection is available, location relevant
data is stored locally on the Android/iOS device and uploaded to the cloud as soon
as the internet connection has been re-restablished [Onyb].

• Tracko Cloud (Back-End): The Tracko Cloud is the central data collection point.
It provides the user with beacon related management services and analysis tools
[Onya].

CHAPTER 2. RELATED WORK 25

2.5 Smart Parking Without Smartphone

The application area of the EClient is smart parking. The less interaction between user
and smart devices is required, the better and the more seamlessly the technology will
be merged with the environment, improving usability. In this sense the EClient aims at
improving usability by eliminating the need to pull a parking ticket or use ones smartphone
to enter a parking lot. Hence, this section focuses on the explanation of smart parking
solutions with a similar use case, or in other words: smart parking without smartphone.
Both systems mentioned in the following use RFID technology. Specific information on
how their access protocols are implemented is not public.

However, the common data transfer mechanism of projects based on RFID technology
looks as follows. An RFID tag advertises object identifying data which a nearby RFID
tag reader may receive. Consequently, the reader forwards the data to the back-end
where different operations on a database are performed and application specific actions
are triggered [Jec15].

Telepass

The Telepass is an electronic device used for collecting toll on motorways in Italy but it
can also be used at some Italian car parks to gain access to the parking lot. The Telepass
device is a semi-passive RFID transponder unit that can be mounted at the top of the
vehicle’s windscreen. The moment the car approaches one of the electronic booths optical
procedures are used to recognize the type of the car and its numberplate. Subsequently,
the booth emits a signal that is recognized by the Telepass which in turn replies to the
request over a frequency of around 5,8 GHz. If the authentication process is successful,
the gate opens and the driver can pass [P. 04, TEL].

Evopark

Evopark is a parking solution becoming more and more popular in Germany. It features
parking at car parks and underground parking facilities. After an online registration
over the website or the Evopark app, the user receives an Evopark parking-card. The
card contains an RFID chip whose task it is to communicate with the MCUs of parking
lot gates. When the gate opens the start or end time of the current parking session is
recorded. To facilitate the search for a parking spot the corresponding smartphone app
shows available parking spaces in realtime and offers direct navigation to the drivers [evo].

2.6 Related Work Conclusion

Table 2.4 summarizes several design aspects of the projects discussed in sections 2.3,
2.4, and 2.5. It shows the communication participants and what role they have to fill.
Additionally, a rough survey of security relevant features is provided in summary form
and the use case of each project is listed.

The project discussed in this thesis offers an embedded smart parking client. It makes
the usage of smartphones obsolete when entering parking lots which support the COYERO
access platform. There already exist a few smart parking systems which do not rely on
the usage of smartphones. These, usually utilize RFID to transfer data wirelessly.

CHAPTER 2. RELATED WORK 26

However, since RFID tags often only listen and respond regardless of who requested
the signal, unauthorized access and modification of tag data is a major problem. Most
of the time, these devices -especially passive RFID tags- are computationally constrained
and also their memory is limited [Jec15].

In contrast, the EClient consists of a BLE chip and an additional dedicated MCU
which makes it possible to implement more complex programs. Unlike the alternative
RFID systems mentioned in section 2.5 the EClient in combination with COYERO access
is a more generic system. This is due to the fact that the combined system does not
only enable purchasing and redeeming parking entitlements, but also entitlements for
other application areas, e.g. get access to hotels, redeem food vouchers at drive-through-
restaurants, etc. A lot of different scenarios and use cases are possible.

A major advantage of using BLE is that it is compatible with smartphones. Direct in-
teraction between them and the embedded device is hereby possible. Another distinguish-
ing characteristic is that the smartphone the EClient is communicating with, acts as user
interface, among other things. This allows managing several settings and keeping track of
the user’s entitlements. Furthermore, BLE supports connectionless and connection-based
data transfer. Thanks to several security features on link layer level and the possibility to
enhance security also on application layer, an adequate level of security can be reached.

Speaking of security, the EClient provides security goals such as data-integrity and
authentication. In contrast to other commercially deployed distributed BLE systems,
data confidentiality is not provided. However, this is not necessarily a drawback since
challenge-response mechanisms are applied to provide means for authentication of the
communication participants. If the authentication process cannot be verified the connec-
tion is simply aborted. Therefore, the absence of an additional encryption layer implies
less computational effort and faster data transmission.

In BLE based wireless sensor networks it can be observed that in a few cases each BLE
device supports multiple BLE roles. This behavior is especially useful to enable each device
to initiate the communication to another device. This, in further consequence, raises the
compatibility of BLE devices among each other and makes it possible to transfer data
over multiple paths. Regarding the communication capabilities of the EClient, it also
takes advantage of multiple BLE roles for maximizing compatibility to other BLE devices.

The EClient does not have internet access on its own. Hence, it initially needs a
gateway device for retrieving relevant cloud data before being able to work autonomously.
The gateway application itself is implemented as part of the COYERO Client Android
application. Compared to other smartphone gateway applications, it has the disadvantage
of only supporting devices with an integrated COYERO library. The gateway smartphone
application acts as BLE central device. There are other gateway approaches which support
more BLE roles, but in this specific scenario it is not required by the COYERO platform.

See chapters 3 and 4 to get an insight into the design and implementation aspects of
the EClient and the gateway application. Results and findings will be evaluated in chapter
5 against projects of this chapter.

CHAPTER 2. RELATED WORK 27

P
ro

je
c
t

C
o
m

m
u

n
ic

a
ti

o
n

C
li
e
n
t

C
o
m

m
u

n
ic

a
ti

o
n

G
a
te

w
a
y

S
e
c
u

ri
ty

b
e
tw

e
e
n

C
li
e
n
t

a
n

d
G

a
te

w
a
y

U
se

C
a
se

D
ow

n
h

il
l

[F
M

A
+

16
]

B
L

E
P

er
ip

h
er

al
,

B
L

E
C

en
tr

al
B

L
E

C
en

tr
al

–
S

lo
p

e
E

rr
o
r

D
et

ec
ti

on

A
p

p
le

W
at

ch
[A

p
p

17
a
]

B
L

E
P

er
ip

h
er

al
B

L
E

C
en

tr
al

C
on

fi
d

en
ti

al
it

y,
In

te
gr

it
y,

A
u

th
en

ti
ca

ti
on

W
ea

ra
b

le
/S

m
ar

t
W

a
tc

h

A
p

p
le

H
o
m

ek
it

[M
A

1
6
]

–
B

L
E

C
en

tr
al

C
on

fi
d

en
ti

al
it

y,
In

te
gr

it
y,

A
u

th
en

ti
ca

ti
on

H
o
m

e
A

u
to

m
at

io
n

Io
T

C
lo

u
d

D
a
ta

M
an

a
ge

m
en

t[
T

S
P

A
1
6
]

–
B

L
E

C
en

tr
al

–
G

en
er

ic
G

a
te

w
ay

A
p

p

F
a
b

ry
q

[M
E

R
H

15
]

–
B

L
E

C
en

tr
al

–
G

en
er

ic
G

a
te

w
ay

A
p

p

B
lu

F
i

[B
lu

1
6b

]
–

B
L

E
P

er
ip

h
er

al
,

B
L

E
C

en
tr

al
C

on
fi

d
en

ti
al

it
y

G
en

er
ic

G
at

ew
ay

O
n
y
x

B
ea

co
n

[O
n
y
a
]

B
L

E
P

er
ip

h
er

al
B

L
E

C
en

tr
al

C
on

fi
d

en
ti

al
it

y,
A

u
th

en
ti

ca
ti

on
L

o
ca

ti
o
n

S
er

v
ic

e

B
L

E
b

ea
co

n
-b

as
ed

N
et

w
o
rk

[C
L

H
1
6
]

B
L

E
B

ro
ad

ca
st

er
,

B
L

E
R

ec
ei

v
er

B
L

E
C

en
tr

al
–

L
o
ca

ti
o
n

S
er

v
ic

e

T
el

ep
a
ss

[P
.

04
]

R
F

ID
T

ag
R

F
ID

R
ea

d
er

–
S

m
ar

t
P

ar
k
in

g

E
vo

p
ar

k
[e

v
o
]

R
F

ID
T

ag
R

F
ID

R
ea

d
er

–
S

m
ar

t
P

ar
k
in

g

P
ro

to
ty

p
e

o
f

th
is

th
es

is
B

L
E

P
er

ip
h

er
al

,
B

L
E

C
en

tr
al

B
L

E
C

en
tr

al
In

te
gr

it
y,

A
u

th
en

ti
ca

ti
on

,
A

u
th

or
iz

at
io

n
S

m
ar

t
P

ar
k
in

g

T
a
b

le
2.

4:
O

v
er

v
ie

w
of

P
ro

je
ct

s
D

is
cu

ss
ed

in
C

h
ap

te
r

2
3

3
E
n
tr
ie
s
m
a
rk
ed

a
s
“
–
”
a
re

N
/
A

o
r
n
o
t
m
en

ti
o
n
ed

in
th
e
co
rr
es
p
o
n
d
in
g
re
fe
re
n
ce
s.

Chapter 3

Design

The following chapter will provide essential information on the design aspects of the
EClient and the gateway application. First, the focus lies on the use case description,
paying special attention to how the embedded client functions as part of COYERO access.
In a second step several requirements are discussed. Subsequently, there is a part focusing
on the analysis of several hardware pieces in order to find an appropriate embedded device
that meets all requirements. Finally, a first concept for the prototype implementation will
be presented. For more details regarding the implementation refer to chapter 4.

3.1 Use Case

The application area of COYERO devices is diverse. The COYERO Client device, on
the one hand, acts as an interface for the user to purchase products or services in form of
entitlements. This could be a shopping application, a restaurant app, or an app responsible
for providing the user with access to infrastructures like buildings or parking lots. The
COYERO Kiosk device, on the other hand, belongs to the entity responsible for providing
the user of the client application with the actual item or service.

Regarding the topic of smart parking many mobile parking management apps already
offer gated, valet, or street parking. However, there are only few solutions which do not
depend on constant user-interaction with a mobile device. The embedded device designed
and implemented during this thesis addresses this shortcoming. Although the device
cannot connect to the internet itself and therefore occasionally needs a phone for synchro-
nization purpose, interactions with the phone can be limited. A parking entitlement valid
for a year, for example, would enable the embedded device to interact independently from
the phone after an initial synchronization with it for that period of time. This, in further
consequence, allows the user to get access to parking structures without any additional
interaction.

This parking use case is described by figure 3.1. In the following example scenario the
COYERO Client is implemented as a parking smartphone app used to purchase parking
permits of any kind. The EClient could be mounted directly in the car, whereas the kiosk
device could be in form of a smartphone carried by a parking guard or, in case of an
automated parking environment, be part of the control unit of the gate itself.

28

CHAPTER 3. DESIGN 29

In this sample scenario a user has purchased a long-time parking permit for a certain
gated parking lot and wants to park his car at the dedicated garage. The moment he
approaches his car and the EClient inside of the vehicle is in range of his smartphone,
a synchronization process between the two devices is triggered, involving the COYERO
Server. As soon as the car reaches the entrance of the garage, a corresponding kiosk device
is responsible for checking if the EClient is in possession of the right entitlement to enter
the parking lot. If the authentication of the device and the verification of the parking
permit are successful the gate will finally open.

Figure 3.1: Use Case Description1

The procedure of getting access to the parking lot is processed offline, meaning that
no further interaction between smartphone, COYERO Server, and EClient is required.
The user basically just has to concentrate on reaching the garage without wasting time on
pulling tickets or opening a specific app on his smartphone. The EClient takes care of the
rest. The usage of BLE fits the use case. Since BLE supports a communication range of
several meters, the entrance gate can be opened shortly before the car reaches the gate,
enabling a smoother entry process. Thanks to the supported range, actions like leaning
out of the car’s window to operate a parking machine would become a thing of the past.

1Icons made by Freepik from www.flaticon.com (Accessed: 2017-04-27)

CHAPTER 3. DESIGN 30

3.2 Requirements

All design aspects regarding the EClient and its gateway were selected in a way to fit the
use case description discussed in section 3.1 as well as the requirements of the COYERO
devices. Additionally, the COYERO Server had to be adapted in order to ensure compat-
ibility with the gateway.

EClient Requirements:

• The application area of the EClient is smart parking. Therefore, only “Non-
Consumable” Entitlement-Tokens should be stored on the EClient which are valid
for a certain time and redeemable frequently during that period. As long as
an Entitlement-Token is valid the EClient may function independently from the
COYERO Client, avoiding continuous usage of a mobile phone which in further
consequence would affect the usability in a negative way.

• Communication to COYERO Clients and COYERO Kiosks is established over BLE.
Since clients operate in BLE central and kiosks in BLE peripheral role, both roles
have to be supported by the EClient. With this setup it is basically possible to
communicate to all kinds of BLE devices (see figure 3.2). First of all, communication
with connection-oriented BLE devices operating in central or peripheral mode is
feasible and, moreover, data can be received by BLE broadcasters or sent to BLE
receivers via advertising packets without establishing a connection. For a further
explanation on BLE roles see subsection 2.2.7.

Figure 3.2: Support of Multiple BLE Roles

• The EClient should provide optical feedback depending on its current state, e.g. it
should be possible for the user to see if redeemable entitlements are already stored
on the device.

• Certain data packets like Auth-Tokens and Entitlement-Tokens have to be stored
locally. It should be possible to store at least 5 Entitlements (610-940 Bytes each)
and one Auth-Token (193-195 Bytes).

• A hardware reset mechanism that includes the deletion of stored data is required.
It should be triggered by pressing a button.

CHAPTER 3. DESIGN 31

• The device’s compatibility should be limited to precisely one COYERO Client user
device. The EClient should only accept Entitlement-Tokens from the specific client
device which was responsible for retrieving the EClient’s Auth-Token.

• There should be a mechanism to discard expired or about to expire Auth-Tokens
and to renew them.

• In order to check the validity period of tokens, the EClient needs to know the current
date and time.

• To avoid fraudulent data manipulation and to guarantee compatibility with the
current COYERO protocol, the embedded client needs to support cryptographic
primitives like ECDSA and SHA256.

• Offline mode: The moment tokens are on the device, it should work independently
from the smartphone gateway for the validity period of the tokens.

Gateway Requirements:

• The gateway should be an Android phone with BLE functionality. The code respon-
sible for acting in between EClient and server has to be implemented as part of the
COYERO Client library.

• The gateway should support BLE central role to remain fully compatible to
COYERO Kiosk devices, which should not be affected by any modifications.

• To support all necessary BLE features a minimum Android version of 5.0 is required.

COYERO Server Requirements:

• The provided server functionality has to be extended as a means of ensuring com-
patibility with the EClient and its gateway by providing calls responsible for the
retrieval of Auth- and Entitlement-Tokens.

CHAPTER 3. DESIGN 32

3.3 Architectural Description

To implement the use case described in section 3.1 the COYERO architecture, already
explained in section 2.1, had to be extended. The red areas in figure 3.3 mark where
additional features were added or where changes were applied:

• The embedded client is a secure BLE device capable of communicating to other
devices irrespective of their BLE role. It acts in between COYERO Client (BLE
central) and COYERO Kiosk (BLE peripheral).

• The COYERO Client library had to be extended in order to act as gateway for
transmitting data between EClient and COYERO Server while preserving the com-
patibility to kiosk devices. Additionally, the client application had to be changed
and updated in regard to its user interface.

• New methods on COYERO Server-side were implemented.

Figure 3.3: Extended COYERO access Architecture

From a more technical perspective and taking into account the just discussed extended
COYERO architecture, the use case described in section 3.1 would include the following
main tasks illustrated by figure 3.4. Users utilizing a COYERO Client application first
have to authenticate themselves. Subsequently, the COYERO Server issues a device bound
Auth-Token. Afterwards, users are allowed to buy digital vouchers for products and
services. For each voucher purchased a dedicated Entitlement-Token is issued by the
server. These entitlements can be sent by client devices to corresponding kiosk devices to
redeem them by involving again the server.

The lower part of the figure 3.4 involves the EClient which acts in between COYERO
Client, Kiosk, and Server. It basically talks to the server using a COYERO Client as
gateway and sends data to kiosk devices like any regular COYERO Client device.

CHAPTER 3. DESIGN 33

Figure 3.4: Overview Main Tasks

3.4 Hardware Selection

In the subsequent paragraphs different devices are analyzed in order to find the appropriate
hardware that meets all requirements listed in section 3.2. Several development boards will
be compared, including Silicon Labs’ Thunderboard React, Texas Instrument’s CC2650,
and Adafruit’s Feather M0 Bluefruit LE. Table 3.1 gives an overview on several specs of
these devices. Subsequently, distinctive features of each board will be listed. In addition,
the Bluetooth Low Energy module BLE112 from Bluegiga (see [Blu14a]) is named before
summarizing all findings.

Attributes
Thunderboard

React
[Sil]

CC2650
(Sensor Tag)

[Tex15] [Tex16b]

Feather M0
Bluefruit LE

[Ada16a]

CPU
ARM Cortex

M4
ARM Cortex

M3
ARM Cortex

M0+

Flash Memory 256 KB 128 KB 256 KB

BLE Version 4.2 4.2 4.1

Development
Environment

Simplicity
Studio

Code Composer
Studio

Arduino IDE

Table 3.1: Development Boards Comparison

CHAPTER 3. DESIGN 34

Thunderboard React [Sil]

• This board consists of a BGM111 BLE 4.2 module.

• The BGM111 module features a CRYPTO unit consisting of a cryptographic algo-
rithm accelerator and a random number generator. It supports the usage of the
following cryptographic primitives:

– SHA: SHA-1 and SHA-2 (SHA-224 and SHA-256)

– AES: 128bit or 256bit including ECB, CTR, CBC, PCBC, CFB, OFC, CBC-
MAC, GMAC, and CCM mode

– ECC: Available over both GF(P) and GF(2m) P-192, P-224, P-256, K-163,
K-233, B-163, and B-233

• Thunderboard React stores its cryptographic keys in flash. The exact location is
handled by the stack itself.

Figure 3.5: Thunderboard React [Sil]

CC2650 [Tex15], [Tex16b]

• It supports many wireless standards such as BLE (version 4.2), ZigBee, 6LoWPan,
and RF4CE. Additionally, it is available as development kit (figure 3.6) or as sensor
tag version (figure 3.7).

• TI-RTOS: It is Texas Instruments’ real-time operating system usable within TIs
Code Composer Studio with this board. It comes with networking stacks, power
management tools, memory management, inter processor communication, scheduler,
and device drivers, facilitating the development on the MCU.

• AES Cryptography unit: The AES-128 module of the CC2650 is implemented in
form of a co-processor and offers additional security features. It is able to detect key-
load and Advanced High-performance Bus errors and abort Direct Memory Access
operations, for instance. The AES keys are stored securely on the hardware in the
so-called key store module [Tex16a].
However, since cryptographic primitives become weaker over time and the key length
is an important security parameter, more and more companies encrypt their data
by using 256 bit keys. NIST, the computer security resource centre, claims AES-128
bit is secure for the next decades [Blu16a]. Furthermore, compared to AES 256, the
128 bit variant has the advantage of enabling a faster encryption process due to its
shorter key.

CHAPTER 3. DESIGN 35

Figure 3.6: CC2650 Dev.
Board [Tex16b]

Figure 3.7: CC2650 Sensor
Kit [Tex15]

Adafruit Feather M0 Bluefruit LE [Ada16a]

• This board supports the Arduino platform, which has a large community. Engineers,
hobbyists, and professionals create their projects with Arduino. Due to this, several
pre-existing Arduino software libraries facilitate the coding effort and safe time. Re-
garding software based cryptographic libraries micro-ecc [Mac16] features ECDSA,
while Cryptosuite [Kni10] offers SHA based hashing, for example.

• There is the possibility to connect a lithium polymer or lithium ion battery to the
JST jack and recharge it over USB. This in turn enables the device to last longer
than when using a conventional CR2032 coin cell battery.

• The device consists of an additional Nordic nrf51 BLE chip which can be controlled
via AT commands. Among other things, this enables controlling the BLE function-
ality of the on-board-chip and making use of the internal random number generator.
However, Nordics firmware version S110 in cooperation with Adafruit’s software
revision version 0.7.0 supports BLE peripheral role only.

Figure 3.8: Feather M0 Bluefruit LE [Ada16a]

CHAPTER 3. DESIGN 36

Bluegiga BLE112 Chip

The Bluegiga BLE112 is based on the TIs CC2540 chip. It integrates a BLE 4.0 module
and processing unit into one chip. Additionally, its AES encryption core features 128 bit
AES encryption and decryption. Furthermore, it also has hardware interfaces to connect to
different peripherals and sensors. BLE central and peripheral roles are supported [Blu14a].

The event based programming language BGScript is used to interact with the module.
On one hand, BGScript applications allow controlling the Bluegiga Bluetooth Smart mod-
ule without the need of any external MCU. On the other hand, if the amount of available
hardware interfaces, memory, or processing power limits the implementation of certain
applications directly on the on-board MCU, there is the possibility of making use of the
BGAPI protocol. It may be utilized by external devices to use features of the BLE112
module. In this case communication between the BLE112 module and the external device
is established over the physical UART and USB interfaces [Sil15].

Figure 3.9: Bluegiga BLE112 Chip [Blu14a]

Selection Conclusion

The Bluegiga BLE112 chip was chosen as Bluetooth unit for the EClient. Not only is the
chip operable as peripheral and central device, it also offers the possibility to be operated
via the provided Bluegiga BGAPI and the UART interface by an external device less
constrained in terms of computing power and memory.

The Feather M0 was picked as additional host device. One reason for this decision
was that the implemented code should remain as portable as possible. Since the Feather
M0 board is based on the widely spread Arduino platform, the code could be reused in
the same or at least in similar form on other comparable Arduino boards. Additionally,
thanks to Arduino’s popularity lots of software libraries of different kind exist, facilitating
the development of applications.

In order to control the BLE112 module from an Arduino based board like the Feather
M0 the BGLib Arduino library (see [Row14]) was included in the project which uses C-
wrappers to access specific functionalities of the BLE112. Communication between the
two devices is established over the Serial UART interface.

Another advantage of the Feather M0 pertains to its small physical dimensions of
2in x 0.9in allowing it to be embedded almost everywhere. The possibility to attach an
additional lithium polymer or lithium ion battery over the JST jack makes it even more
portable. Another advantage of this setup is that the Arduino platform, including its
compilers, is not subject to payment. In contrast, the Thunderboard React and the board
of TI need the IAR Embedded Workbench compiler which are not free of charge (as of
October 2016). Regarding the hardware of the Feather M0 board, its nRF51 chip offers

CHAPTER 3. DESIGN 37

a hardware number generator that could be used for creation of cryptographic keys or
nonces.

A downpoint of this setup is that the Feather M0 does not possess any internal secure
memory section out of the box. Therefore data has to be saved on the internal flash
memory. Additionally, there is no Arduino supported API to access the AES hardware
engine of the BLE112 chip which could be used to wrap cryptographic keys generated
in software. The possibility of extending the board with external secure hardware is
addressed in subsection 6.2.3. In case of the COYERO protocol, data structures to hash,
sign, and verify are small. Hence, the on-board Cortex M0+ processor of the Feather M0
is fast enough to handle cryptographic primitives in software without apparent delay.

With BLE version 4.1 BLE-multi-role behavior was introduced and added to the spec-
ification. It enables devices to act in different BLE roles at the same time [Blu10, Blu14b].
BLE chips that use a BLE 4.0 stack do not support this feature and even in newer BLE
units this functionality is not always supported. In case of the EClient the absence of this
particular feature represents no problem since the device does not have to communicate
to COYERO Clients and COYERO Kiosks at the same time. Additionally, since not all
BLE roles consume the same amount of energy, the simultaneous usage of different roles
and multiple ongoing connections would probably raise the power demands of the EClient.
A more detailed description on how the EClient utilizes different BLE roles can be found
in the following section.

3.5 Embedded Device as State Machine

This section illustrates all possible states and transitions of the EClient as a means of
getting a first overview of its behavior during program execution. As it was explained in
section 3.4 the EClient basically consists of two complementary components, the Feather
M0 board and the BLE112 module. While the Feather M0 acts as control unit and state
machine, the main tasks of the BLE112 module are executing different BLE commands
and forwarding their results and received responses back to the Feather M0.

Two different types of states are distinguished: Client-states and BLE-states. The
Client-states are used to tell which kind of token the EClient is ready to receive, distin-
guishing between Auth-Tokens and Entitlement-Tokens. The BLE-states, on the other
hand, provide a possibility of determining in which BLE role the device is currently being
operated. Figure 3.10 shows all Client-states and transitions, while figure 3.11 presents
all possible BLE-states and corresponding transitions.

Figure 3.10: Client-states

CHAPTER 3. DESIGN 38

The initial Client-state is always set to Authentication after booting and initializing
the hardware. If there is no valid ECC keypair or Auth-Token on the device the Client-
state is left unchanged, whereas the BLE-state is set to Advertising. This in turn makes
the EClient advertise its presence with dedicated advertising packets, indicating that it is
in need of an Auth-Token. Otherwise, if an Auth-Token and a valid keypair are already
stored locally, the Client-state is set to Entitlement. This would lead the device to send
another type of advertising packets than in Authentication state pointing out that it is
ready to receive Entitlement-Tokens.

Figure 3.11: BLE-states

Each time a central device connects to the EClient acting as BLE peripheral, the
BLE-state switches from Advertising to ConnectedPeripheral and data can be transferred
between the two devices. Two scenarios are thereby distinguished:

• An Auth-Token can be transferred while the Client-state is set to Authentication.
After receiving a valid Auth-Token it changes to Entitlement and the BLE-state is
set back to Advertising.

• Entitlements can be transferred if the EClient is being operated in Client-state En-
titlement. It only returns to state Authentication if the device has been reset or the
stored Auth-Token is about to expire or has already expired.

As soon as the first entitlement is available on the device the EClient starts to con-
stantly switch between the BLE-states Advertising, Standby, and Scanning. Thus, it can
either be connected to a nearby central device (COYERO Client) to get additional enti-
tlements, save energy, or connect to a peripheral device (COYERO Kiosk) to redeem its
entitlements.

The Standby state can be considered a transition state reachable from the BLE-states
Advertising and Scanning when no compatible COYERO Client or Kiosk device was found
during a predefined time interval. Once in Standby state, the subsequent BLE state is
immediately set, alternating between Advertising and Scanning. If no BLE connection
is established for a longer period, the time the EClient remains in Standby state is in-
creased. Since the BLE112 module is not used during Standby-state, the overall energy

CHAPTER 3. DESIGN 39

consumption is reduced. Moreover, the Standby state can be reached from BLE states
ConnectedPeripheral and ConnectedCentral if one of the following conditions is met:

• All data is transferred correctly and one of the devices performs a disconnect.

• The connection is lost.

• A data timeout occurs, meaning that in a certain time span no data packets were
received by the EClient.

Two LEDs are used to indicate which Client-state and BLE-state the EClient is in.
Depending on the specific situation an LED is constantly toggled or simply turned on or
off. See table 3.2 to get an overview of all possible LED combinations.

LED Red LED Blue Client State BLE State

Off Toggles at 2Hz Authentication Advertising

Off Toggles at 1Hz Entitlement Advertising

Toggle 1Hz Off Entitlement Scanning

On Off Entitlement Connected Central

Off On Authentication Connected Peripheral

Off Off Entitlement Standby

On On - -

Table 3.2: Visual State Indication

Both LEDs will be turned on if the user presses the reset button. After pressing it for
three seconds, a reset mechanism is triggered. Consequently, all tokens will be deleted
before the program itself is reset.

3.6 Android Gateway Application

The BLE gateway is implemented in form of a Java application for the Android platform.
The usage of Android devices as a gateway offers two big advantages. First, they are
widely spread, hence a lot of different use cases can be derived and applied. Second, with
regard to usability, this limits the difficulty to learn new UIs and commands for users since
they are already familiar with their own devices.

Regarding Android’s BLE stack there is to say that Android introduced a built-in
platform support for the BLE central role with version 4.3. The possibility for scanning
only for specific devices was introduced with Android 5.0. Additionally, since version 5.0,
BLE peripheral role is supported by the Android BLE stack [Anda].

The gateway application is embedded into the COYERO Client library, which enables
the Android device to act in BLE central role when communicating to the EClient which
in turn utilizes BLE peripheral role. By doing so the COYERO Client application stays
compatible to kiosk devices which utilize BLE peripheral role.

CHAPTER 3. DESIGN 40

In order to distinguish between a COYERO Kiosk and an EClient device before even
establishing a connection, the gateway application listens to different pre-defined adver-
tisement UUIDs. Altogether there are three advertisements the COYERO Client applica-
tion listens to, each of which includes a specific service in case of a successful connection
establishment.

• COYERO Kiosk advertisement:
The COYERO Client application redeems Entitlement-Tokens at the kiosk device.
This functionality was already implemented.

• EClient advertising in Client-state Authentication:
The COYERO Client application acts as gateway for the EClient and retrieves a
server-issued Auth-Token for it.

• EClient advertising in Client-state Entitlement:
The COYERO Client application acts as a gateway for the EClient and retrieves
server-issued Entitlement-Tokens for it.

Chapter 4

Implementation

In the current chapter details about the prototype implementation are discussed. In
addition to information regarding the development environment, including libraries and
several settings, also details about the circuit schematic of the EClient will be given. In
the next step the structure of the developed programs for the EClient written in C/C++
and the gateway application written in Java will be explained (see section 4.4) before
taking a closer look at data structures which the EClient has to handle (refer to section
4.5). Additionally, different encoding schemata that come into play during data transfer
will be presented in section 4.6. Finally, the program flow of the implemented program is
explained in section 4.7 and shown by means of several sequence diagrams.

The software for the EClient and the Android gateway was developed on an Apple
Macbook Air (2011) running macOS Sierra as operating system.

4.1 Development Environment – Embedded Client

The Eclipse based Arduino IDE Sloeber (version 3.1) for macOS was used to
work on the Adafruit Feather M0 board. Adafruit boards are not supported
by default. However, by adding the URL https://adafruit.github.io/arduino-board-
index/package adafruit index.json in Preferences>Arduino>Locations new Adafruit
boards and updates to existing boards are picked up automatically. The URLs point
to index files that the IDE uses to build the list of available and installed boards.

After adding the URL, several Adafruit board packages will be available under Pref-
erences>Arduino>Platforms and Board. Since the Feather M0 uses an ATSAMD21 chip,
support for SAMD devices has to be added as well. This is done by ticking the checkbox in
Preferences>Arduino>Platforms and Boards>adafruit>Adafruit SAMD Boards>1.0.xx
(1.0.13 or higher). Once this initial setup is complete, it should be possible to upload code
to the board. However, in some cases during the upload of the program the following error
appears, indicating that the flash programming utility bossac cannot find the device.

41

CHAPTER 4. IMPLEMENTATION 42

Comport is not behaving as expected

Using comport /dev/cu.usbmodemFD121 from now onwards

Ending reset

Launching

/Applications/sloeber.app/Contents/Eclipse/arduinoPlugin/tools/arduino/bossac

/1.6.1 - arduino/bossac --port=cu.usbmodemFD121 -U true -i -e -w -v /

Applications/sloeber.app/Contents/MacOS/workspace/BLEClient/Release/

BLEClient.bin -R

Output:

No device found on cu.usbmodemFD121

bossac finished

The arduino webpage mentions the following in case of the Arduino Due:
“Opening and closing the “Native” port at the baud rate of 1200bps triggers a “soft
erase” procedure: the flash memory is erased and the board is restarted with the
bootloader” ([Ard17]).

Unfortunately, it seems that the IDE fails to adapt the baud rate automatically in case of
the Feather M0 board. Therefore, it is necessary to manually open the serial at 1200Bd
before launching bossac. That will trigger the reboot and consequently the start of the
bootloader on the chip. By doing so, bossac is able to find the bootloader. The terminal
command to change the baudrate to 1200 for the port, mentioned in the error log above,
looks as follows in macOS Sierra: stty -f /dev/cu.usbmodemFD121 1200. Eventually, it
should be possible to upload programs to the board.

Additional Arduino Libraries

All external libraries included in the EClient project are listed and described in the next
few paragraphs:

• FlashStorage:
The non-volatile flash memory is generally used to store program code which cannot
be changed during runtime. However, this library offers functions to store variables
and C-structs to flash memory and retrieve the data during runtime. This library is
especially useful for devices which do not feature additional storage units. However,
a prerequisite to use it is that the MCU features an ATSAMD21 CPU [Mag16].

• micro-ecc:
This library holds a lightweight ECDH and ECDSA implementation for 8-bit, 32-
bit, and 64-bit architectures. It supports secp160r1, secp192r1, secp224r1, secp256r1,
and secp256k1. secp256r1 is used for the EClient’s program [Mac16].

• Cryptosuite:
It is a cryptographic library for Arduino specialized on secure hashing and hashed
message authentication. It features SHA-1, SHA-256, HMAC-SHA-1 and HMAC-
SHA-256. The EClients utilizes SHA-256 during program execution [Kni10].

• BGLib:
This library acts as a C-wrapper for the event-driven BGLib protocol used to con-
trol the Bluegiga BLE112 module. BLE peripheral and central roles are supported
[Row14].

CHAPTER 4. IMPLEMENTATION 43

• Adafruit BluefruitLE nRF51:
This library provides methods for operating with the integrated nRF51 module of
the Feather M0 board over AT-commands (e.g. for accessing the board’s internal
RNG) [Ada16b].

Additionally, the following changes were applied:

• The Arduino SoftwareSerial library does not work with the Feather M0. The problem
is that the Feather M0 board is a SAMD device and the SoftwareSerial in the Arduino
package currently only supports AVR devices. Hence, HardwareSerial is used to
communicate with the BLE112 module over the BGLib library interface.

• In order to pass larger data packets over the serial interface the
SERIAL BUFFER SIZE constant inside RingBuffer.h was increased to 1024.

4.2 Development Environment – Android

Android Studio IDE version 2.2.1 (for macOS) was used for the development of the gateway
application. Table 4.1 shows the minimum and target SDK versions of the application.
These parameters are specified inside the AndroidManifest.xml. It is a file in the Android
platform that gives information of the app to the Android system, including a description
of its components, different permissions, etc. [Andc].

Attribute API level Version Code name

minimum SDK-version 21 5.0 Android Lollipop

target SDK-version 22 5.1 Android Lollipop

Table 4.1: AndroidManifest – SDK version

The gateway code makes use of the Android BLE stack. Furthermore, it utilizes the
following external libraries:

• com.google.code.gson:gson:2.3.1:
This is a Java serialization/deserialization library that can convert Java objects into
JSON and back [Goo16].

• com.android.volley:volley:1.0.9:
Volley is an HTTP library for easy and fast networking. Some of its advantages are
its support for request prioritization, the possibility to connect to multiple concurrent
networks, automatic scheduling of network requests, an out of the box support for
strings, images JSON, etc. [Andb].

The gateway application was embedded into the COYERO Client Android library which
provides the COYERO Client device with API calls for NFC/BLE/QR-Code communi-
cation with COYERO Kiosk devices. Additionally, the COYERO Client library holds
methods responsible for communicating with the COYERO Server.

CHAPTER 4. IMPLEMENTATION 44

4.3 Circuit and Wiring

This section illustrates the circuitry of the EClient. It basically consists of a Bluegiga
BLE112 module and an Adafruit Feather M0 board. Section 3.4 explains why this partic-
ular hardware setup was chosen for the EClient.

Figure 4.1 gives an overview on the pin layout of the Bluegiga BLE112 module, while
table 4.2 describes the corresponding pins [Blu14a].

Figure 4.1: BLE112 Pinout [Blu14a]

Pin Number Description

RESET 29 Active low reset

GND 1, 10, 21, 30 Ground

DVDD 20 Supply voltage 2V - 3.6V

AVDD 2, 3 Supply voltage 2V - 3.6V

VDD USB 9 Supply voltage 2V - 3.6V

USB+ 11 USB data plus

USB- 12 USB data minus

PX Y 4-8, 13-19, 22-28 Configurable I/O port

Table 4.2: Pinout Table BLE112 (Adapted from [Blu14a])

CHAPTER 4. IMPLEMENTATION 45

In order to make the BLE112 module more easily connectable to other devices like the
Feather M0, it was used in form of a breakout board provided by CISC Semiconductor.
The left part of figure 4.2 shows the BLE112 breakout board, while the right part consists
of the Feather M0. It should be noted that the pins P0 5 (RX) and P0 4 (TX) of the
BLE112 chip are responsible for the serial communication.

Two LEDs and a tactile switch were added to the board. The switch is used to trigger
the deletion process of the user data. Subsequently, the GPIO pin connected to the RESET
pin is set to LOW to restart the device. The LEDs provide a way to optically distinguish
which state the EClient is currently in (see table 3.2 for further information).

Regarding the Feather board only those pins actually in use are illustrated by the
figure. This is due to two reasons. First, this provides a better overview and ensures the
illustration is not overloaded. Second, it puts an emphasis on the fact that also other
similar Arduino boards could be used instead of the Feather M0.

Figure 4.2: Prototype Board

Signals between the two devices are transferred over the Serial UART interface. They
communicate serially at a transistor-transistor logic (TTL) level meaning that signals
between the communication participants always remain between the limits of 0V and the
device’s power supply VCC , which, in case of the Featherboard M0 and the BLE112, is
3.3V.

CHAPTER 4. IMPLEMENTATION 46

Figures 4.3 and 4.4 demonstrate what the transferred data between the devices might
look like. The signals were measured with an oscilloscope1 while the BLE112 was con-
nected to the Feather M0 (as illustrated in figure 4.2) and some data was transmitted.
Channel 1 measured the voltage at the TX pin and Channel 2 was responsible for mea-
suring the voltage level at the RX pin of the BLE112. Both figures clearly demonstrate
that the signals are always in between 0V and 3.3V.

Figure 4.3: BLE112 Breakout board – TX pin (CH1)

Figure 4.4: BLE112 Breakout board – RX pin (CH2)

1Tektronix TDS2024B

CHAPTER 4. IMPLEMENTATION 47

Figure 4.5 provides a schematic view of the BLE112 breakout board connected to the
Feather M0 board, focusing on its individual parts and wiring.

Figure 4.5: Electronic Schematic

CHAPTER 4. IMPLEMENTATION 48

4.4 Software Structure

This section provides information on the software of the developed prototype comprising
charts of the embedded client and Android gateway application.

Embedded Client

The class diagram in figure 4.6 gives a brief overview of the most important files and
their dependencies of the EClient-program written in C and C++. In order to maintain
a better overview return types and parameters of functions are omitted.

Figure 4.6: Class Diagram Embedded Client

CHAPTER 4. IMPLEMENTATION 49

The core of the program lies inside BleHwClient. When starting the device the setup
function inside BleHwClient is called. Among other things, it is responsible for initializing
the BLE module, setting up the board’s pins, and checking if keys and an Auth-Token
are already stored on the device. Depending on whether this data is already available in
memory or not, the EClient may start acting as BLE peripheral in search of connectable
clients to get an Auth-Token. Otherwise, it starts switching between peripheral and central
mode in order to receive Entitlement-Tokens from COYERO Clients or redeem them at
COYERO Kiosk devices. Altogether, BleHwClient can be considered a state machine. It
sets the EClient’s BLE-states and Client-states according to the situation the device is
currently in. See section 3.5 for a more detailed description of all possible states of the
EClient. Additionally, the device handles BLE timeouts which occur when it is in one
BLE-state for a predefined time without finding any connectable devices or no data is
transferred while it is connected to another device. In this case, the EClient’s current
BLE role will be stopped and switched. This switching mechanism between peripheral
and central role occurs periodically until a connection to another device is established.
Moreover, the moment an ongoing connection is terminated the switching between the
BLE roles starts again.

Regarding Bluetooth functionality the BGLib library provides all BLE relevant meth-
ods the BLE112 module offers. To maintain an overview of all BLE methods and callbacks,
three classes were introduced. When the EClient acts in peripheral mode, for instance,
BLEPeripheral is responsible for advertising as well as for data transfer to a nearby BLE-
Central device by managing the GATT characteristics and their values of the EClient.
BLECentral takes over when the BLE central role is active. It involves scanning and
data exchange between the communication participants. Since the effective user payload
size is 23 bytes, the BLEHelper class was introduced which splits longer packets into 20
bytes long data chunks and sends them one by one. Last but not least, the BLE class is
responsible for handling the connection and delivering BLE status updates.

Data transferred between the EClient and other COYERO devices is encoded in TLV
format (explained in subsection 4.6.1). The Token class is used by BLECentral and
BLEPeripheral to transform the received TLV-encoded byte stream into Token-objects
which in further consequence are transformed either into an AuthToken or Entitlement
C-struct. In addition to these tokens also a ClientFingerprint struct can be allocated by
the Token class.

Since data should also be storable to devices without additional storage unit, like
EEPROM, the FlashStorage library is used to handle writing and reading operations to
the internal flash memory. No objects but only structs and primitive data types can
be stored via this library. Therefore, AuthToken, Entitlement, ClientFingerprint and
ECCKeys data is stored inside a struct before writing it to the flash. For further details
on these C-structs refer to section 4.5.

Finally, Cryptocore makes use of the Cryptosuite and MicroECC libraries. Cryptosuite
is responsible for hashing data with SHA-256, while MicroECC creates ECC keypairs and
provides ECDSA functionality for creating signatures or verifying them. The elliptic curve
used within COYERO is secp256r1.

CHAPTER 4. IMPLEMENTATION 50

Android Gateway Application

In the following, the software structure of the gateway code which acts in between EClient
and COYERO Server is discussed. The code was embedded into the COYERO Android
Client application which utilizes BLE central role when communicating to the EClient
or to COYERO Kiosk devices. Figure 4.7 shows the corresponding class diagram of the
gateway application. To provide a better overview only gateway relevant methods are
shown, while function parameters and return values are omitted.

The BLEInterfaceNew class controls and manages BLE activities of the client appli-
cation. It provides methods for scanning for other BLE devices, connecting to them, or
aborting connections. It additionally acts as watchdog which aborts ongoing connections
if no data is transferred in a certain time.

BLEHwModule contains gateway specific code. This class is invoked if an EClient was
found during the scanning phase. In addition to the code responsible for connecting to
the EClient, it also stores information about the embedded client’s Auth-Token. This, in
further consequence is needed to retrieve corresponding Entitlement-Tokens.

Figure 4.7: Class Diagram Android Gateway

CHAPTER 4. IMPLEMENTATION 51

The moment the connection establishment to an EClient was successful the BLE-
GattServerLogicHwModule comes into play. It basically consists of the Android Bluetooth-
Gatt-Callbacks making it possible to read from characteristics and descriptors on periph-
eral devices or write to them.

Just like the EClient when acting as central device, also the gateway uses a BLEHelper
class to split longer packets into 20 Byte long data chunks before sending them one by
one.

Aside from the mentioned BLE classes there is also the CoyeroClient and Cryptocore.
While CoyeroClient is responsible for initializing and administering functionality of the
COYERO Client library, Cryptocore offers methods for generating ECC key pairs as well
as for signing data and verifying signatures.

4.5 Data Handling

Certain data sets need to be stored in the non-volatile flash-memory of the EClient as
C-structs, including:

• ECCKeys:
Holds the raw bytes for private and public ECC keys. Since secp256r1 is used, the
private key is 32 bytes and the public key 64 bytes long. Additionally, the public
server key is stored and used for verifying Auth-Tokens of COYERO Clients. All
keys are stored in their raw form.

• ClientFingerprint:
Consists of the SHA256 hashed Auth-Token of the COYERO Client which retrieved
the EClient’s Auth-Token. It serves as a reference for the EClient to determine from
which device it received its Auth-Token. This ensures that the EClient does not
accept any Entitlement-Tokens from devices whose Auth-Token digest differs from
the stored one.

• Auth-Token and Entitlement-Tokens:
Data structures for identifying entities and entitlements related to an entity. See
subsection 2.1.2 for further explanation of these tokens.

4.6 Data Encoding

This chapter is about encoding formats that are applied to the data structures transferred
between EClient and the gateway application. See subsection 4.6.1 to get more information
about Type-Length-Value encoded data as well as subsection 4.6.2 to find out more about
ASN.1-notation and DER-encoding.

4.6.1 Type-Length-Value (TLV)

All data sent over BLE is encoded in TLV-format. It allows the receiver to decode the
information without requiring any pre-knowledge of the size or semantic meaning of the
data. Each TLV-encoded data-unit conforms to the following format:

CHAPTER 4. IMPLEMENTATION 52

• Type: Unique byte-code of 1 byte length indicating the kind of data following next.

• Length: Holds the size of the value field. Since also the length has a size of 1 byte,
the maximum possible length of a data-fragment is 255 bytes.

• Value: Actual data bytes.

Thanks to this simple syntax data can be interpreted easily with dedicated parsing func-
tions. Additionally, TLV elements can be placed in any order inside the message body
since they can be identified though their Type/Tag byte. Another advantage compared
to static encoding mechanisms is that data of variable length can be transmitted because
the actual length information is always part of the encoded package. However, it should
be considered that the Tag and Length bytes cause an additional overhead which could
lead to longer data transmissions, especially when dealing with bigger data sets.

4.6.2 ASN.1 DER-Encoding

Abstract Syntax Notation One (ASN.1) is a notation for structured data which describes
rules for encoding and decoding data. ASN.1 specifies several TLV-based encoding stan-
dards, such as Basic Encoding Rules (BER) or Distinguished Encoding Rules (DER),
which are sets of rules for transforming data structures described in ASN.1 into a se-
quence of bytes and back [ITU15].

Many widely used cryptographic software libraries make use of DER-encoding.
OpenSSL, for instance, uses it for any binary output, e.g. cryptographic keys, certifi-
cates and signatures. So does the Java SE Security library. However, other libraries like
micro-ecc require cryptographic keys to be in raw-byte-form. Hence, conversion mecha-
nisms between DER-encoded data and raw bytes, or vice versa, are required.

In the following a short example will be given which explains how to extract the
raw elliptic curve points from a DER encoded signature. Additionally, another example
explains how an EC public key is represented when being DER encoded.

ECDSA Signature

This is an ASN.1 example describing the structure which an ECDSA signature exhibits:

ECDSASignature ::= SEQUENCE {

r INTEGER ,

s INTEGER

}

When encoded into the DER format it is transformed to the following byte sequence:

I1 L1 I2 L2 R I3 L3 S
I1: Tag of ’SEQUENCE’ (0x30)

L1: Length of remaining bytes
I2: Tag of ’INTEGER’ (0x02)

L2: Amount of bytes for r
R: r converted into a big-endian encoded byte array

I3: Tag of ’INTEGER’ (0x02)
L3: Amount of bytes for s
S: s converted into a big-endian encoded byte array

CHAPTER 4. IMPLEMENTATION 53

The values r and s of an ECC secp256r1-signature, for instance, have a length of 32 or
33 bytes, respectively. If the leading bit is set, an additional zero byte has to be prepended.
Therefore, the total length of a DER-encoded secp256r1-ECDSA signature varies between
70 to 72 bytes.

Elliptic Curve Public Key

The public key of a secp256r1 curve is defined in a 65 byte format. The first byte of
value 0x04 indicates an uncompressed point [TIB+09]. This byte is followed by 32 bytes
representing the X coordinate and another 32 bytes representing the Y coordinate of the
EC point [Cer09].

Libraries such as Java SE Security apply the ASN.1 DER based encoding on the key-
data by wrapping it into a structure that describes the used elliptic curve through the
following symbolic identifiers.

There is a SEQUENCE whose contents are a nested sub-SEQUENCE and a BIT
STRING. The nested sub-SEQUENCE in turn contains two OBJECT IDENTIFIER val-
ues. The first one points out that the key is an elliptic curve public key and the second
one designates which kind of ECC curve it is (e.g. NIST P-256). In contrast, the BIT
STRING holds the encoded curve point representing the public key itself. To sum it up:
the encoded key has a total length of 91 bytes. The first 26 bytes are an identifier for the
involved curve, while the remaining 65 bytes contain the encoding of X and Y.

With this in mind the following example demonstrates what a DER-encoded ECC
secp256r1 public key (generated, for example, by the Java SE Security library) looks like:

I1 L1 I2 L2 I3 L3 O3 I4 L4 O4 I5 L5 0x00 0x04 X Y
I1: Tag of ‘SEQUENCE’ (0x30)

L1: Length of remaining bytes (89 Bytes)
I2: Tag of ‘SEQUENCE’ (0x30)

L2: Length of remaining bytes (19 Bytes)
I3: Tag of ‘OBJECT IDENTIFIER’ (0x06)

L3: Length byte of object identifier O1
O3: Object identifier bytes

I4: Tag of ‘OBJECT IDENTIFIER’ (0x06)
L4: Length byte of object identifier O2
O4: Object identifier bytes

I5: Tag of ‘BIT STRING’ (0x03)
L5: Length byte of bit string
0x00: Leading zero byte, because the specified length requires it
0x04: First byte of public key, indicating an uncompressed point
X: X coordinate of EC point (32 bytes long when using secp256r1 curve)
Y: Y coordinate of EC point (32 bytes long when using secp256r1 curve)

The micro-ecc library, for instance, needs the public key to be in its 64 bytes raw
format. In the example mentioned above this could be achieved by simply extracting the
coordinates X and Y.

CHAPTER 4. IMPLEMENTATION 54

4.7 Program Flow

This section is about several explanations regarding the program flow of the EClient in
conjunction with other COYERO entities, including COYERO Client, Kiosk, and Server.
After describing initial setups of the EClient’s program in subsection 4.7.1, subsection
4.7.2 will describe the program flow when the Client-state is set to Authentication, while
subsection 4.7.3 will talk about the program flow when the Client-state is set to Enti-
tlement. For a further explanation of available Client-states and BLE-states see section
3.5.

4.7.1 Sequence Setup

Figure 4.8: Sequence: Setup

Figure 4.8 shows the behavior of the EClient at program start. Whenever it is started it
will operate in peripheral mode after doing some checks. First of all, it has to be verified
if a valid ECC keypair already exists on the device. If not, it is generated and stored to
memory. Since a new keypair requires a new Auth-Token, the Client-state will be set to
Authentication. If, however, valid ECC keys are already available, there will be a second
check to see if there is also an Auth-Token on the device. If so, no authentication step is
needed and the Client-state is directly set to Entitlement.

CHAPTER 4. IMPLEMENTATION 55

After determining the right Client-state the EClient starts to advertise its presence
enabling COYERO Client devices to establish a connection to it. The advertising data
itself is set depending on the current Client-state and serves as information for a COYERO
Client device if either an Auth-Token or an Entitlement-Token has to be sent.

4.7.2 Sequence Authentication State

Figure 4.9 gives an overview of the program flow if the device’s Client-state is set to
Authentication. In this case the goal of the EClient is to retrieve a server signed Auth-
Token needed for further authentication. The EClient will advertise its presence with a
specific advertising packet telling nearby COYERO Client devices that it is in need of an
Auth-Token. As soon as a COYERO Client acting as BLE central device is in range, it
will try to connect to the EClient. If a connection between these two devices is established
successfully, the EClient will send a data packet containing its public ECC key and its
MAC address to the COYERO Client.
In order to minimize the risk of other devices being connected to the COYERO Client
and to prevent them from getting a server signed Auth-Token instead of the EClient, a
specific dialog window will pop up on the Android app asking the user for permission to
proceed. As an additional hint the EClient’s blue LED will be turned on, implying that
the device is connected and ready to receive an Auth-Token.

Subsequently, the COYERO Client will forward the data together with its own Auth-
Token to the server. Its Auth-Token is used by the server to derive an additional Auth-
Token for the EClient assigned to the same user. Since a token, among other things,
consists of the public ECC key of the owner, the public key of the EClient is integrated
into it. Its MAC address, by contrast, is only used for identifying it among other clients.
Finally, the new Auth-Token is sent back to the COYERO Client together with the public
server key required for further authentication purposes on EClient side.

The next step involves the client generating a unique fingerprint by hashing its Auth-
Token with SHA256. The purpose of the gathered digest is to give the EClient the possi-
bility to determine if the COYERO Client it is communicating with was also responsible
for delivering its Auth-Token. If the check fails, no entitlements from this client will be
accepted. There are two advantages of using the hashed Auth-Token as fingerprint:

• Each Auth-Token is bound to one specific device. Therefore, it is possible to uniquely
identify a COYERO device by its Auth-Token.

• Since the Auth-Token is sent anyway before transmitting entitlements, the embedded
client just has to hash the received Auth-Token and compare the result with the
previous received digest in order to determine whether it is communicating with the
right device. No further information has to be sent by the COYERO Client. This
enables a faster throughput of the COYERO protocol.

Last but not least, the digest is sent to the EClient together with the public server key
and the newly generated Auth-Token. If the delivered Auth-Token can be verified with
the public key of the server, the whole dataset will be stored on the device.

CHAPTER 4. IMPLEMENTATION 56

Figure 4.9: Sequence: Retrieval of Auth-Token

CHAPTER 4. IMPLEMENTATION 57

4.7.3 Sequence Entitlement State

In the scenario described by figure 4.10 the EClient acts as peripheral device with its
Client-state set to Entitlement. By doing so, the advertising packet will change compared
to when the EClient advertises in Authentication state. Hence, COYERO Clients know
that the EClient is ready to receive entitlements. As soon as a COYERO Client connects
to the EClient, the COYERO Client’s Auth-Token and the current time is requested. The
timestamp is required to check if the validation period of the EClient’s tokens is still okay.
Since embedded devices like the Feather M0 do not have internet access or a built-in real-
time clock combined with a consistent power supply, the current date and time has to be
gathered in this way. Consequently, the following four checks have to be undergone and
passed before requesting entitlements:

• The Auth-Token of the COYERO Client has to be verifiable with the public server
key received during the authentication process. If not, the connection is aborted.

• The already stored fingerprint must match the digest of the hashed Auth-Token of
the COYERO Client. If so, the EClient knows that it is the same device which also
sent its Auth-Token, otherwise the BLE connection is dropped.

• It has to be checked if the EClient’s Auth-Token has already expired. This is done
by comparing the received timestamp with the value inside the ServiceEnd field of
the Auth-Token. If the token expired the EClient will disconnect from the COYERO
Client and switch to Authentication state in order to renew the token.

• Last but not least, a challenge response protocol is applied to verify if the received
Auth-Token of the COYERO Client really belongs to the device currently speaking
to the EClient. First, the EClient generates a random number and challenges the
COYERO Client to sign it with its private key. Subsequently, it is signed by the
COYERO Client and returned to the EClient. Furthermore, the received signature
has to be verified against the generated random number by using the public key of the
COYERO Client which is embedded into its Auth-Token. If this check is successful,
it was proven that the device the EClient is speaking to is the right owner of the
Auth-Token.

If all checks mentioned above are passed, the EClient finally proceeds to the actual
request of Entitlement-Tokens (figure 4.11). The request will be sent to the COYERO
Client which forwards it to the server. From all entitlements the COYERO Client pos-
sesses, the server derives corresponding versions for the EClient bound to the EClient’s
Auth-Token. They will be sent back to the phone where they are filtered.

CHAPTER 4. IMPLEMENTATION 58

Figure 4.10: Sequence: Retrieval of Entitlement-Token (Part 1)

CHAPTER 4. IMPLEMENTATION 59

Only those entitlements which are “Non-Consumable” according to their Properties field
are forwarded to the EClient. First, already locally stored Entitlement-Tokens are checked
for their validity period on the EClient side. If they are expired, they are simply discarded.
Second, all newly received entitlements are stored if they are not already on the device.

Figure 4.11: Sequence: Retrieval of Entitlement-Token (Part 2)

CHAPTER 4. IMPLEMENTATION 60

As soon as entitlements are available on the EClient and its Client-state is set to
Entitlement it will continuously switch between peripheral and central role at cycle times
of one second. This additionally enables communication with COYERO Kiosk devices
which act as peripherals only. Figure 4.12 explains the program sequence for the scenario
when the EClient connects to a COYERO Kiosk device specialized in the parking sector,
to redeem its Entitlement-Tokens.

Figure 4.12: Sequence: Redemption of Entitlement-Token

CHAPTER 4. IMPLEMENTATION 61

Right after connecting to the kiosk, a random nonce will be generated and sent
together with a specific service-ID and application-ID to the EClient. These IDs
are used as filter criteria to specify which Entitlement-Tokens are redeemable by the
kiosk device speaking to the EClient. Subsequently, on EClient side it will be checked
if any of the locally stored entitlements match the given filter criteria. If so, the
received challenge will be signed and sent back to the kiosk device together with the
Entitlement-Token found and the EClient’s Auth-Token. Afterwards, the response can
be verified by the kiosk with the public key of the EClient’s Auth-Token against the
original challenge. If, furthermore, the verification process of the received Auth-Token
turns out to be positive, also the Entitlement-Token will be validated by the kiosk. If
it is valid, it will be redeemed and the user will finally obtain the actual product or service.

4.8 Communication Between Client and Server

The Coyero API library provides several methods for interaction between clients, kiosks,
and the COYERO backend. It is organized around REST and is designed to have resource-
oriented URLs. It uses HTTP response codes to indicate API errors. Authentication of
the COYERO devices is necessary whenever they intend to communicate with the server.
It is ensured by providing their secret API key for basic HTML authentication in the
request. Additionally, all API server calls have to be done over HTTPS, otherwise they
will fail [CIS15, COY16].

In the course of this thesis the API library had to be extended for new HTTPS calls
customized for the EClient. Added features include:

• getAdditionalAuthTokenForToken: Creates an additional Auth-Token for a
user who already possesses an Auth-Token. The new Auth-Token is linked with
a new device entity and sent back.

• getAllValidEntitlementTokens: If an Auth-Token ID is submitted, additional
entitlements are derived from the entitlements bound to the Auth-Token ID. There-
inafter, the list of additional entitlements is returned.

Chapter 5

Evaluation

Chapter 5 expands the initial assessment described in section 2.6 of the thesis’s prototype.
It evaluates the results of this thesis and compares them to similar projects discussed in
chapter 2. While the results of several measurements are illustrated in section 5.1, the
comparison-based part of this chapter can be found in section 5.2.

5.1 Measurements

Source Line of Code (SLOC) of Prototype Implementation

The prototype implementation consists of about 6500 SLOC split across the embedded
client implementation written in C/C++ and Gateway-, GUI-, and server Code written
in Java.

Figure 5.1: SLOC of Prototype Implementation

The distribution of the SLOC can be inferred from chart 5.1. These metrics were mea-
sured with the program SourceMonitor (Version 3.5) developed by Campwood Software.1

1http://www.campwoodsw.com/sourcemonitor.html (Accessed: 2017-04-07)

62

CHAPTER 5. EVALUATION 63

Timing

The following three tables provide timing-relevant information. Table 5.1 shows how
much time the EClient takes to retrieve a server signed Auth-Token via the gateway
and to verify and store it. Table 5.2 shows how much time passes to retrieve and verify
an Entitlement-Token, while table 5.3 illustrates the timing behavior of the redemption
process at corresponding COYERO Kiosk devices.

Action Time [ms]

Retrieve Auth-Token via Gateway 1610

Verify Auth-Token 401

Store Auth-Token 70

Total 2071

Table 5.1: Time Measurement – Retrieve and Store Auth-Token

Action Time [ms]

Get Timestamp + Auth-Token Client 410

Do Checks on Auth-Token 488

Challenge Response 831

Retrieve Entitlement 342

Store Entitlement 65

Total 2136

Table 5.2: Time Measurement – Retrieve and Store Entitlement-Token

Action Time [ms]

Read Data from Kiosk 620

Prepare Data to Redeem 604

Redeem Entitlement 452

Total 1676

Table 5.3: Time Measurement – Redeem Entitlement-Token

In summary, the retrieval of Auth- and Entitlement-Token takes approximately two sec-
onds each, while the entitlement redemption itself is processed in less than two seconds.
These values represent short waiting times for the user underlining the usability aspect of
the developed prototype.

CHAPTER 5. EVALUATION 64

Power Consumption

Depending on the active BLE-state the power requirements change. Table 5.4 illustrates
how each BLE-State affects the overall power consumption if the Feather M0 board of
the EClient is powered via a micro USB cable.2 According to Adafruit’s datasheet of the
Feather M0 it will automatically regulate the 5V USB down to 3.3V [Ada16a]. To get a
better insight into all BLE-states implemented and their remit please refer to section 3.5.

BLE-State Power consumption [mA]

Standby 16.9 - 18.5

Advertising 24.7 - 25.8

Scanning 43.0 - 44.7

Connected Peripheral 26.0 - 26.5

Connected Central 27.5 - 28.1

Table 5.4: Measured Power Consumption

These measurements demonstrate clearly that a device acting as BLE central, espe-
cially when scanning, consumes much more power than when acting as BLE peripheral
device. This, in further consequence, is one of the reasons why power constrained devices
should utilize the peripheral role only. The higher power consumption presents no prob-
lem for the EClient since, according to the use case description of section 3.1, it could be
powered directly by a car.

If, however, the EClient should be operated by battery, the integrated Feather M0
board offers the possibility to connect a lithium polymer or lithium ion battery to the JST
jack. This will let the board run on a rechargeable battery which is recharged at 100mA
when the device is powered by USB [Ada16a].

5.2 Comparison with Other Systems

The goal of this thesis was to design and implement an embedded client making use
of several BLE roles and a smartphone-based gateway application in order to exchange
data between the embedded client and the cloud. The prototype designed was embedded
successfully into the COYERO access platform. The application area of the EClient and
its gateway is the parking domain. Hence, the EClient can be used as a smart device to
give its users access to parking lots or garages. Thanks to cryptographic concepts like PKI
and ECDSA they do not need to worry about security.

The following pages compare the prototype implementation discussed in this thesis
with related projects listed in sections 2.3 and 2.4 which rely on similar technical concepts.
The comparison includes communication aspects, security relevant features, as well as
information on compatibility and general setup. Subsequently, products that are being
operated in the parking domain and enable their customers access without smartphone
will be named for comparison purposes. They were already described in section 2.5.

2Measured with Voltcraft VC220 Multimeter

CHAPTER 5. EVALUATION 65

5.2.1 Communication

The project discussed in paper [FMA+16] makes use of BLE enabled smartphones to detect
slope errors in advance. The devices are able to act as master and slave by supporting BLE
central and peripheral roles in order to pass data through a multi-hop network. This BLE
multi-role behavior is also utilized by the EClient, making it possible to talk to dedicated
COYERO Client devices (centrals) and COYERO Kiosk devices (peripherals). In case of
the EClient, besides the central role also the peripheral role enables data reception and
transmission when connected since the allocated BLE characteristics are readable and
writable. In both projects mentioned above a connection between dedicated devices is
established before exchanging data.

The project illustrated by paper [CLH16], on the other hand, sends data without an
actual connection. It utilizes BLE beacons to forward user data collected from BLE wear-
ables to a central point. The beacons use the non connecting BLE roles broadcaster and
receiver to exchange data. Compared to the connection enforced roles central and periph-
eral, this approach offers the advantage that data can be transferred faster. The reason
for this is that relevant data is already inside the advertising packet. Hence, scanning
devices may directly read from it without having to undergo a connection establishment
procedure. However, the disadvantage of this approach is that only a limited set of data
can be passed on and the data itself is being sent without knowing if it was actually re-
ceived by other devices or not, without further ado. This, in further consequence, implies
that a connection between devices is always required if more data has to be sent or if
the implemented communication protocol between the BLE devices relies on synchronous
messaging.

According to the BLE specification [Blu14b] the Link Layer BLE dual mode is only
supported by BLE chips running a BLE 4.1 stack or newer, meaning that those devices
are able to act as master and as slave simultaneously. Managing multiple BLE roles and
connections at the same time is a complex and power consuming task. Therefore, many
BLE devices today still do not support this concurrent multi-role behavior. Nevertheless, it
is possible for devices not supporting link layer dual mode to act as master as well as slave
by actively switching between BLE roles. The project discussed in [CLH16] utilizes the
CC2541 SoC’s BLE 4.0 stack to scan or broadcast in alternate sequence for five seconds.
The Bluegiga BLE112 chip used by the EClient also uses a BLE 4.0 stack. Therefore, it
is necessary to actively switch between different BLE modes in order to be able to talk to
different BLE devices regardless of their active BLE role.

The gateway developed in form of an Android smartphone application was embedded
into the COYERO Client app. Since it utilizes BLE central role, it is able to talk to the
EClient functioning as BLE peripheral. The gateway accepts requests from the EClient,
transmits them to the server, and sends back the server response. Depending on the request
itself, data may be processed by the gateway before sending it back to the EClient. In
any case, in order to meet all requirements of the COYERO protocol and to be able to
provide the EClient with required server, data two-way communication between EClient
and Gateway is necessary. There are other approaches that investigated smartphone based
gateway solutions. The project described in [TSPA16] is one of them. Also in this case the
smartphone acts as BLE central device and retrieves data from other BLE devices acting
as BLE peripheral. Since the main task of the gateway is to retrieve and store sensory data

CHAPTER 5. EVALUATION 66

from BLE peripherals into one central online database, one-way communication from BLE
device to gateway is necessary without further interaction between smartphone gateway
and BLE device.

Smartphone gateways based on the fabryq platform [MERH15] support BLE read and
write operations enabling one- or two-way communication between gateway and client
depending on the application. Last but not least, BluFi’s gateway is an example of a
smartphone independent solution. Compared to all other gateway approaches discussed
in this thesis it has the advantage of offering peripheral as well as central role in order to
connect to BLE devices of all kinds [Blu16b].

5.2.2 Security Between BLE Devices and Gateway

The amount of security an application needs depends highly on its requirements and ap-
plication area. Sometimes security goals like confidentiality are not required. The system
discussed in [CLH16], for example, gathers anonymous positioning data of customers in-
side a theme park, while the project explained in [FMA+16] is utilized for early slope
detection in mountains. In both cases, even if an attacker eavesdrops data, the benefit he
gains remains limited.

The EClient/gateway project also does not provide data encryption mechanisms. All
data including tokens are sent publicly. However, security goals like integrity, authen-
tication, and authorization are provided by relying on a combination of cryptographic
concepts like PKI and ECDSA. A COYERO Client device may only redeem purchased
entitlements if it can authenticate itself in the context of several checks. Among other
things, it needs to possess the correct private key corresponding to the public key inte-
grated into all its tokens to pass a challenge-response authentication process with kiosk
devices. Therefore, even if an attacker gains access to a token, he cannot do anything with
it as long as he does not know the user’s private key which never leaves the EClient. An
additional layer of encryption would be redundant and just increase the computational
effort and consequently the overall energy consumption of the device.

Other projects like the ones specified in papers [MERH15, TSPA16] are specialized
in retrieving sensory data from BLE peripherals of different kinds. BLE sensors could
provide values like temperature but also more privacy relevant information like vital data
about their users. Pulse rate or blood oxygen saturation are just some examples. However,
those papers do not mention how the communication channel between BLE devices and
the gateway could be secured. To enable an encrypted connection to BLE devices, the
BluFi gateway, for example, makes use of BLE AES 128 link layer encryption. Addition-
ally, all communications from and to beacons are encrypted via RSA [Blu16b]. Just like
BluFi also Onyx Beacon provides AES-128 link layer encryption. Additionally, MAC’s
are used to ensure message authentication [Onya]. Regarding the security features of the
Apple Watch, an OOB pairing method is used to exchange the BLE link layer key for the
AES-128 encryption. Subsequently, also public keys for further cryptographic operations
are exchanged. In addition to the link layer encryption, messages transferred between the
Apple Watch and an iOS device are also signed and encrypted on the application layer.
Finally, Apple Homekit’s security relies, among other things, on ECC Ed25519 for authen-
tication between iOS devices as well as between iOS devices and accessories and Secure
Remote Password (3072-bit) protocol for exchanging keys [MA16, App17a, App17b].

CHAPTER 5. EVALUATION 67

5.2.3 Compatibility

The prototype of the developed EClient was embedded into the COYERO access platform,
while the gateway part was implemented as part of the COYERO Client library. In its
current implementation state the EClient is compatible with other devices utilizing a
COYERO library. The gateway itself was designed and customized in a way to fulfill all
needs and requirements of the EClient and the security conscious COYERO protocol.

A more generic smartphone based gateway approach is shown in paper [TSPA16] where
sensory data of different BLE devices can be retrieved by specifying the devices and their
BLE properties via an XML schema.

The project Fabryq goes one step further by providing a framework for developers and
end users to interact with BLE sensors of different kinds over the internet. Developers
only have to concentrate on writing applications in form of a web client, while users can
choose among those programs and use the one that best fits their desired use case and
hardware [MERH15].

5.2.4 Setup

Table 5.5 shows the projects discussed in chapter 2 that rely on BLE to enable a client
device to transfer data over the internet via a gateway.

Project/Product Client Device Gateway Device

Downhill [FMA+16] Android phone Android phone

IoT Cloud Data
Management[TSPA16]

BLE wearable
devices

Android phone

BLE beacon-based
Network[CLH16]

CC2561 (SoC) PC

Fabryq [MERH15] BLE devices iOS device

Apple Watch [App17a] Apple Watch iOS device

Apple Homekit [MA16] BLE devices Apple TV or iPad

Onyx Beacon [Onya] Beacon device iOS/Android device

Prototype of this thesis EClient Android device

Table 5.5: Client/Gateway Setup of Different BLE Projects and Products

Although the devices are employed in different application areas the technology running
in the background is similar. It is notable that in a lot of projects smartphones are used as
gateways. First of all, they provide a lot of different sensors and communication channels
on their own. Furthermore, they are battery operated devices and hereby also suitable for
outdoor applications. Additionally, they offer the possibility to act as interface between
user and application. Thanks to their large price range Android phones are widespread.

Among the projects mentioned in table 5.5 the setup of the Apple Watch in combi-
nation with the iPhone is the most similar to the prototype developed during this thesis.
Just as the Apple Watch incorporates many functions of the iPhone but needs it for syn-
chronization purposes and internet access, the EClient acts as an independent COYERO

CHAPTER 5. EVALUATION 68

Client but needs a COYERO Client smartphone to retrieve data from it (e.g. current
time) or to exchange data with the COYERO Server over the internet.

If BLE was combined with IPv6, no additional gateways would be needed to grant
BLE devices the possibility to communicate over the internet [NTS+15]. The absence of
a gateway in turn would provoke a higher computational effort and expanded memory
requirements for embedded devices. First, program logic which otherwise would be exe-
cuted by the gateway would have to be processed by the embedded devices itself. Second,
BLE devices would need enough memory and processing power to support a BLE and an
IPv6 stack. In the particular case of the EClient another problem would be associated
with the absence of the smartphone gateway: Although the EClient might indicate its
state via specific LED combinations (see table 3.2), it would not be able to display any
details about available user data. Therefore, the COYERO Client gateway cannot be
considered as redundant because, in addition to its gateway functionality, it also provides
a user interface where data can be managed. Other projects [TSPA16] [MERH15] utilize
smartphones functioning as gateway and user interface in a similar way.

5.2.5 Application Area

The application area of the EClient and its gateway embedded into the COYERO access
platform is smart parking. After an initial synchronization process between EClient and
COYERO Client acting as gateway, the EClient can operate autonomously for the valid-
ity period of its issued entitlements. Consequently, this enables its users to gain access
to parking lots, garages or other places where secure access plays an important role with-
out further interactions with their smartphones. This, in further consequence, increases
usability a lot.

Regarding the use case of smart parking without smartphones, both Evopark and
Telepass are already commercially deployed systems. Customers of those systems are
equipped with additional devices. In case of Evopark it is a chip card, while in case of
Telepass the user gets a small appliance that has to be attached on the car’s windscreen.
As soon as cars equipped with those systems approach a garage of a supported provider,
the user gains access without smartphone interaction [P. 04, evo].

A distinguishing characteristic which affects the application area and use case is that
the EClient uses BLE, while the other systems utilize RFID. Since most smartphones
are BLE-enabled devices, direct communication between them and the embedded device
is feasible. Not only does a smartphone act as internet-gateway for the EClient, it also
serves as user interface for managing and keeping track of the user’s entitlements. Speaking
of different entitlements, the EClient in combination with the COYERO access platform
has the advantage of being a more generic system than the other two. It allows purchasing
and redeeming entitlements for a broader range of application areas. Possible scenarios
are, for example, getting access to hotels or redeeming food vouchers at drive-through
restaurants.

Chapter 6

Conclusion and Future Work

The first part of this chapter summarizes the thesis by giving an overview of the most
important parts. The second part elaborates possible future extensions and improvements
of the developed prototype and the COYERO access protocol. On one hand, security
relevant issues are discussed and suggestions for improvement are given. On the other
hand, additional hardware units for increased security are proposed.

6.1 Resume

This thesis is about the design and implementation of an embedded device with BLE 4.0
stack acting in multiple BLE roles and of a corresponding Android gateway application
that enables the embedded device to talk to the cloud. The prototype was integrated into
the COYERO access platform which grants its users access to local infrastructures and
products.

Since embedded devices are power constrained, BLE, known for its power saving fea-
tures, was chosen as the technology to transfer data wirelessly. The BLE code was imple-
mented on the Arduino based Featherboard M0 which interacts with an attached BLE112
chip over the Serial UART interface to utilize BLE relevant features. This modular design
enables the reuse of the code for similarly specced Arduino boards by just taking along
the BLE112 unit. Regarding related work a distinction between scientific methodologies
and commercial products was made. Systems and devices relying on the same or similar
technologies were explained and served as a basis for discussion. The primary applica-
tion area of the prototype developed in the course of this thesis is smart parking without
smartphone. In this sense, also a few other projects which are already deployed in this
field of application but use RFID were discussed and compared.

The embedded device significantly facilitates the process of gaining access to parking
lots for the user by minimizing the interactions required between user and mobile phone.
The user only needs to open the COYERO Client app once for the synchronization of his
purchased entitlements. Afterwards, the embedded device can act autonomously during
the validity period of the issued entitlement. It authenticates the user against a COYERO
Kiosk device in charge of controlling the gate at the entrance of a garage, for instance.

69

CHAPTER 6. CONCLUSION AND FUTURE WORK 70

The more connected our world becomes, the more important it is for technology to
be secure against faults of different kinds. In order to be protected against fraudulent
activities the embedded device and its gateway incorporate security mechanisms like PKI
and ECDSA which are supported and demanded by all COYERO entities.

6.2 Future Work

This section includes possible improvements of the COYERO access platform, which in
further consequence would also enhance the security level of the developed prototype.
The authentication mechanism between EClient and kiosk is carried out on just one side
to enable a faster data transmission. This is especially useful in the parking scenario to
lower waiting times. However, mutual authentication would provide more security. Sub-
section 6.2.1 describes an improved and more secure authentication mechanism between
a COYERO Client or an EClient and a COYERO Kiosk device. It was not implemented
in the current version of the prototype since, according to the specified requirements (see
section 3.2), compatibility to other COYERO devices should be maintained. In this sense
the COYERO Kiosk should not be modified in any way.

Additionally, the current version of the COYERO protocol is vulnerable against relay
attacks. See subsection 6.2.2 for further explanations. Countermeasures against this kind
of attack were not implemented because this would have introduced major changes to the
COYERO protocol, which would have involved also the modification of other COYERO
devices.

6.2.1 Improved Authentication

The challenge-response part of the protocol between COYERO Client and Kiosk was
designed in a way to enable fast data transfer with a minimum number of transactions.
The main difference of the following approach compared to the implemented version (see
figure 4.12) is that the communication participants now perform a mutual authentication
based on their Auth-Tokens just by adding one additional transaction.

To put it in other words, also the kiosk device has to prove that it is the rightful owner
of an Auth-Token. Therefore, also the EClient challenges the kiosk to sign a random
challenge. If the Auth-Token of the kiosk device can be validated against the COYERO
Server’s public key and the signed response is verifiable with the public key of the kiosk
device embedded into its Auth-Token, the protocol is processed as described in subsection
4.7.3. Figure 6.1 illustrates the proposed authentication procedure.

CHAPTER 6. CONCLUSION AND FUTURE WORK 71

Figure 6.1: Improved Authentication Between EClient and Kiosk

6.2.2 Relay Attack

In IT-security a relay attack is a special form of a man-in-the-middle (MITM) attack.
While during a classic man-in-the-middle attack an attacker intercepts and manipulates
communications between two parties initiated by one of the parties, in a relay attack
communication with both parties is initiated by the attacking device. Subsequently, the
attacker is able to relay messages between the communication participants without ma-
nipulating or necessarily reading them.

Attack Scenario

A relay attack with the current version of the COYERO protocol would be possible, given
the setup shown in figure 6.2.

CHAPTER 6. CONCLUSION AND FUTURE WORK 72

Figure 6.2: Relay Attack Scenario

Consider the following attack scenario. Bob is in possession of a smartphone with an
installed COYERO Client app. Recently he acquired a one year permission to park at
Alice’s gated parking lot. Whenever Bob wants to park his car there, he first has to
authenticate himself at Alice’s kiosk device which is part of the control unit of the gate.

Eve has no intention of spending money on parking entitlements. Nevertheless, she
wants to enter the garage. To do so Eve equips herself with two phones. On the first
smartphone a compromised COYERO Client application is installed, while on the second
one an altered COYERO Kiosk application is running. After completing all preparations,
she finally approaches the parking gate. In the background her client smartphone and
Alice’s kiosk device start exchanging messages. Under normal circumstances Eve wouldn’t
be able to get inside the garage without being in possession of the right authentication
and entitlement data.

To overcome this problem she impersonates Bob. For this, she forwards all requests
coming from Alice’s kiosk over the internet to her compromised COYERO Kiosk device
which is positioned near to Bobs Client device. Now Eve’s kiosk starts communicating to
Bobs Client application by delivering all received requests originating from Alice’s device.
Bob now thinks that he is speaking to Alice. Subsequently, he passes his responses back
to Eve’s kiosk device which in further consequence sends them back to Alice through Eves
COYERO Client. By doing so Alice’s kiosk believes that it is talking to Bob and will
grant Eve access to the garage. Eventually, the parking gate will open and Eve is free to
enter.

Mitigation on Link Layer: BLE Pairing

In order to mitigate the risk of a relay or generally a MITM attack, the BLE link layer
pairing could be used. Several key exchange protocols are provided for the pairing process.
However, the exact implementation of the pairing protocols varies across different BLE
versions. In case of the BLE 4.0 standard a 128-bit Temporary Key (TK) is exchanged.
The TK is in turn utilized to generate a 128-bit Short Term Key (STK) for encrypting
the connection [Blu10].

CHAPTER 6. CONCLUSION AND FUTURE WORK 73

According to the core specifications of BLE 4.0 and 4.1, devices may choose between
Secure Simple Pairing methods such as Just Works, Passkey Entry, or Out of Band Pairing
(OOB) depending on their input/output capabilities. The following methods provide
confidentiality if passive eavesdropping during the pairing process can be avoided [Blu10,
Blu14b]:

• OOB:
The TK is exchanged using a different wireless technology such as NFC, for instance.
The security level highly depends on how secure the OOB channel is.

• Passkey:
In this case the TK is a number consisting of six digits that is passed between the
devices by the user. The exact way how this number is transferred can vary. One
possible solution would be that one device generates a random number and shows it
on its display. Subsequently, the user could read the number and enter it manually
into the other device.

If the possibility of passive eavesdropping cannot be ruled out the LE Secure Connections
pairing model supported as of BLE version 4.2 would be a possible remedy. In this
case the ECDH key agreement protocol is used in order to mitigate the risk of passive
eavesdropping. It provides a mechanism for exchanging a Long Term Key (LTK) over an
unsecured channel to encrypt the connection [Blu14b].
Although BLE pairing methods provide concepts as a means of leveraging security, they
negatively affect usability because each pairing method involves the interaction of the user,
e.g. for manually entering a number in case of Passkey, for approaching a certain location
in case of OOB combined with the short range technology NFC, etc.

Mitigation on Application Layer: Timeouts

In order to minimize the risk of MITM attacks without affecting usability, the COYERO
protocol could introduce timeout mechanisms. If a transaction takes longer than an ex-
pected pre-defined threshold, the ongoing connection could be terminated. This measure
is based on the assumption that a MITM would prolong the actual data transfer. In
case of COYERO, if a malicious device intercepts the communication between two com-
munication participants, the overall communication time would rise compared to a direct
communication between COYERO Client and Kiosk since data had to be passed through
at least one additional device.

6.2.3 Additional Secure Hardware

Only few devices deployed in IoT applications offer hardware-based security features like
secure storage elements or cryptographic hardware accelerators. However, several manu-
facturers offer external hardware elements which can be attached to several development
boards to enhance the security level. The outsourcing of confidential data such as cryp-
tographic keys in case of the EClient would make it harder for attackers to gain access to
this data.

Manufacturers like Atmel or Maxim Integrated offer secure hardware which can be
attached to other boards. The Atmel ATECC508A [Atm15] and the Maxim Integrated

CHAPTER 6. CONCLUSION AND FUTURE WORK 74

DS28C36 [Max16], for example, are cryptographic devices with a secure hardware based
key storage that can be attached to other devices through the I2C interface. Since they
also offer elliptic curve and SHA-256 functionality, they would be suited to match the
cryptographic needs of the EClient discussed in this thesis. Among other things, those
chips offer the following features:

• Integration of elliptic curve Diffie-Hellman key agreement (ECDH) and elliptic curve
digital signature algorithm (ECDSA)

• P256 elliptic curve support

• SHA-256 hash algorithm with HMAC option

• Secure key storage

• True random number generator (RNG)

If there is no need for an encrypting unit but only for secure storage, the DS3660
of Maxim Integrated could be used. It offers 1kB of secure SRAM storage and features
to prevent tampering. It includes a seconds counter, watchdog timer, CPU supervisor,
nonvolatile SRAM controller, and an on-chip temperature sensor. An external battery
source is automatically used to keep the memory, time, and tamper-detection circuitry
active if a power failure occurs [Max].

Bibliography

[AC99] L. Steve A. Carlisle. Understanding Public-Key Infrastructure: Concepts, Stan-
dards, and Deployment Considerations, pages 33–35, 24–30. New Riders Pub-
lishing, 1999.

[Ada16a] Adafruit Industries. Adafruit Feather M0 Bluefruit LE, Sep 2016.
https://cdn-learn.adafruit.com/downloads/pdf/

adafruit-feather-m0-bluefruit-le.pdf. Accessed: 2016-10-12.

[Ada16b] Adafruit Industries. Adafruit BluefruitLE nRF51. Dec 2016. https://github.
com/adafruit/Adafruit_BluefruitLE_nRF51. Accessed: 2016-12-14.

[Anda] Google Android. Android 5.0 Bluetooth Low Energy. https://developer.

android.com/about/versions/android-5.0.html. Accessed: 2017-03-24.

[Andb] Google Android. Android Volley. https://developer.android.com/

training/volley/index.html. Accessed: 2017-03-24.

[Andc] Google Android. App Manifest. https://developer.android.com/guide/

topics/manifest/manifest-intro.html. Accessed: 2017-04-19.

[App17a] Apple Inc. About Bluetooth and Wi-Fi on Apple Watch. Mar 2017. https:

//support.apple.com/en-us/HT204562. Accessed: 2017-04-01.

[App17b] Apple Inc. iOS Security Guide iOS10. pages 23–25, 29, 43–44. Mar
2017. https://www.apple.com/business/docs/iOS_Security_Guide.pdf.
Accessed: 2017-04-10.

[Ard17] Arduino. Getting started with the Arduino Due. 2017. https://www.arduino.
cc/en/Guide/ArduinoDue#toc4. Accessed: 2017-03-30.

[Atm15] Atmel Corporation. ATECC508A Atmel CryptoAuthentication Device
SUMMARY DATASHEET, Oct 2015. http://www.atmel.com/Images/

Atmel-8923S-CryptoAuth-ATECC508A-Datasheet-Summary.pdf. Accessed:
2016-12-20.

75

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m0-bluefruit-le.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-feather-m0-bluefruit-le.pdf
https://github.com/adafruit/Adafruit_BluefruitLE_nRF51
https://github.com/adafruit/Adafruit_BluefruitLE_nRF51
https://developer.android.com/about/versions/android-5.0.html
https://developer.android.com/about/versions/android-5.0.html
https://developer.android.com/training/volley/index.html
https://developer.android.com/training/volley/index.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://support.apple.com/en-us/HT204562
https://support.apple.com/en-us/HT204562
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.arduino.cc/en/Guide/ArduinoDue#toc4
https://www.arduino.cc/en/Guide/ArduinoDue#toc4
http://www.atmel.com/Images/Atmel-8923S-CryptoAuth-ATECC508A-Datasheet-Summary.pdf
http://www.atmel.com/Images/Atmel-8923S-CryptoAuth-ATECC508A-Datasheet-Summary.pdf

BIBLIOGRAPHY 76

[Blu] Bluvision Inc. BLUFI FACT SHEET. https://bluvision.com/wp-content/

uploads/2014/11/Bluvision-BLUFI.pdf. Accessed: 2016-12-20.

[Blu10] Bluetooth SIG. BLUETOOTH SPECIFICATION Version 4.0. In Specification
of the Bluetooth System, pages 86–89 (Volume 1), 473–478 (Volume 3), 524–525
(Volume 3), 603–610 (Volume 3), 68–70 (Volume 6), Jun 2010.

[Blu14a] Bluegiga Technologies. BLE112 DATA SHEET, 1.44 edition, Mar 2014.

[Blu14b] Bluetooth SIG. BLUETOOTH SPECIFICATION Version 4.2. In Specifica-
tion of the Bluetooth System, pages 88 (Volume 1), 93–94 (Volume 1), 133–136
(Volume 1), 605–606 (Volume 3), Dec 2014.

[Blu16a] BlueKrypt. Cryptographic Key Length Recommendation - NIST Recommenda-
tions (2016). 2016. https://www.keylength.com/en/4/. Accessed: 2016-10-06.

[Blu16b] Bluvision Inc. SPECIFICATION SHEET - BLUFI, 1.3 edition, 2016. http:

//bluvision.com/wp-content/uploads/2016/12/Specs-BluFi1.3.pdf. Ac-
cessed: 2016-12-20.

[Cer09] Certicom Corporation and D. Brown. Standards for Efficient Cryptography
1 (SEC 1) – SEC 1: Elliptic Curve Cryptography. Standards for Efficient
Cryptography, pages 10–11, May 2009.

[CIS15] CISC Semiconductor GmbH. COYERO Executive Summary. 2015.

[CLH16] C. Chang, S. Li, and Y. Huang. Building Bluetooth Beacon-based Network
for Spatial-Temporal Data Collection. In Proceedings of the 2016 International
Conference on Communication and Information Systems, ICCIS ’16, pages 91–
95. ACM, 2016.

[COY16] COYERO Inc. COYERO access – Docs API. 2016. https://www.coyero.biz/
coyero/docs/api/. Accessed: 2017-03-07.

[DHTS13] A. Dementyev, S. Hodges, S. Taylor, and J. Smith. Power Consumption Anal-
ysis of Bluetooth Low Energy, ZigBee, and ANT Sensor Nodes in a Cyclic Sleep
Scenario. In Proceedings of IEEE International Wireless Symposium (IWS).
IEEE, Apr 2013.

[evo] evopark GmbH. Evopark. https://www.evopark.de. Accessed: 2017-03-31.

https://bluvision.com/wp-content/uploads/2014/11/Bluvision-BLUFI.pdf
https://bluvision.com/wp-content/uploads/2014/11/Bluvision-BLUFI.pdf
https://www.keylength.com/en/4/
http://bluvision.com/wp-content/uploads/2016/12/Specs-BluFi1.3.pdf
http://bluvision.com/wp-content/uploads/2016/12/Specs-BluFi1.3.pdf
https://www.coyero.biz/coyero/docs/api/
https://www.coyero.biz/coyero/docs/api/
https://www.evopark.de

BIBLIOGRAPHY 77

[FMA+16] M. Fujimoto, S. Matsumoto, Y. Arakawa, H. Suwa, and K. Yasumoto. Devel-
opment of BLE-Based Multi-hop Communication System for Detecting Slope
Failure Using Smartphones. In 2016 45th International Conference on Parallel
Processing Workshops (ICPPW), pages 16–21, Aug 2016.

[Goo16] Google. Android Gson Library. Oct 2016. https://github.com/google/gson.
Accessed: 2017-03-07.

[GOP12] C. Gomez, J. Oller, and J. Paradells. Overview and Evaluation of Bluetooth
Low Energy: An Emerging Low-Power Wireless Technology. In Sensors, pages
11734–11741. MDPI AG, Aug 2012.

[Int14] Intel Corporation. Developing Solutions for the Internet of Things,
2014. http://www.intel.com/content/dam/www/public/us/en/documents/

white-papers/developing-solutions-for-iot.pdf. Accessed: 2017-01-20.

[ITU15] ITU Telecommunication Standardization Sector (ITU-T). Recommendation
ITU-T X.690 – Information technology - ASN.1 encoding rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Dis-
tinguished Encoding Rules (DER). SERIES X: DATA NETWORKS, OPEN
SYSTEM COMMUNICATIONS AND SECURITY, pages v, 1–10, 18–19, Aug
2015.

[Jec15] C. Jechlitschek. Radio Frequency IDentification - RFID A Survey Paper on
Radio Frequency IDentification (RFID) Trends. 2015.

[Kni10] Peter Knight. Cryptosuite. May 2010. https://github.com/Cathedrow/

Cryptosuite. Accessed: 2016-11-22.

[MA16] Dennis Mathews and Apple Inc. System Frameworks Session – What’s New in
Homekit. WWDC16 Session 710, pages 1–60, 2016.

[Mac16] Ken MacKay. micro-ecc. Jul 2016. https://github.com/kmackay/micro-ecc.
Accessed: 2016-10-27.

[Mag16] Cristian Maglie. FlashStorage library for Arduino. Oct 2016. https://github.
com/cmaglie/FlashStorage. Accessed: 2016-10-27.

[Max] Maxim Integrated. Maxim Integrated DS3660.
https://www.maximintegrated.com/en/products/power/

supervisors-voltage-monitors-sequencers/DS3660.html.
Accessed: 2017-03-30.

https://github.com/google/gson.
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/developing-solutions-for-iot.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/developing-solutions-for-iot.pdf
https://github.com/Cathedrow/Cryptosuite
https://github.com/Cathedrow/Cryptosuite
https://github.com/kmackay/micro-ecc
https://github.com/cmaglie/FlashStorage
https://github.com/cmaglie/FlashStorage
https://www.maximintegrated.com/en/products/power/supervisors-voltage-monitors-sequencers/DS3660.html
https://www.maximintegrated.com/en/products/power/supervisors-voltage-monitors-sequencers/DS3660.html

BIBLIOGRAPHY 78

[Max16] Maxim Integrated. DS28C36 Deep Cover Secure Authenticator (Abridged
Data Sheet), Jun 2016. https://datasheets.maximintegrated.com/en/ds/

DS28C36.pdf. Accessed: 2016-12-20.

[MERH15] W. McGrath, M. Etemadi, S. Roy, and B. Hartmann. fabryq: Using Phones
as Gateways to Prototype Internet of Things Applications using Web Scripting.
In Proceedings of the 7th ACM SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS ’15, pages 164–173. ACM, 2015.

[NTS+15] J. Nieminen, TeliaSonera, T. Savolainen, M. Isomaki, Nokia, B. Patil, AT&T,
Z. Shelby, ARM, C. Gomez, and Universitat Politecnica de Catalunya/i2CAT.
RFC 7668 – IPv6 over BLUETOOTH(R) Low Energy. Oct 2015. https:

//tools.ietf.org/html/rfc7668. Accessed: 2017-03-27.

[Onya] Onyx Beacon Ltd. Onyx Beacon: Beacon Hardware. http://www.onyxbeacon.
com/beacon-hardware. Accessed: 2017-04-28.

[Onyb] Onyx Beacon Ltd. Onyx Beacon: Tracko. http://www.onyxbeacon.com/

tracko. Accessed: 2017-03-28.

[P. 04] P. Bergamini and Autostrade per l’Italia S.P.A. Il transponder più conosci-
uto: il Telepass. Nov 2004. http://www.ttsitalia.it/file/Infomobility/

transponder%20telepass.pdf. Accessed: 2017-03-11.

[Row14] Jeff Rowberg. BGLib - Arduino. Feb 2014. https://github.com/jrowberg/

bglib/tree/master/Arduino. Accessed: 2016-10-20.

[SC11] Phil Smith and Convergence Promotions LLC. Power Comparison Wireless
Technologies. Aug 2011. https://www.digikey.com/en/articles/techzone/
2011/aug/comparing-low-power-wireless-technologies. Accessed: 2017-
02-05.

[Sil] Silicon Labs. UG164: Thunderboard React (RD-0057-0201) User’s Guide,
1.2 edition. http://www.silabs.com/documents/public/user-guides/

ug164-thunderboard-react.pdf. Accessed: 2016-10-10.

[Sil15] Silicon Labs. BGSCRIPT SCRIPTING LANGUAGE DEVELOPER
GUIDE, 4.1 edition, Dec 2015. https://www.silabs.com/documents/login/

user-guides/UG209.pdf. Accessed: 2016-10-12.

[Spo16] Michael Spoerk. IPv6 over Bluetooth Low Energy using Contiki. Master’s thesis,
Institute for Technical Informatics, Graz University of Technology, Oct 2016.

https://datasheets.maximintegrated.com/en/ds/DS28C36.pdf
https://datasheets.maximintegrated.com/en/ds/DS28C36.pdf
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/rfc7668
http://www.onyxbeacon.com/beacon-hardware
http://www.onyxbeacon.com/beacon-hardware
http://www.onyxbeacon.com/tracko
http://www.onyxbeacon.com/tracko
http://www.ttsitalia.it/file/Infomobility/transponder%20telepass.pdf
http://www.ttsitalia.it/file/Infomobility/transponder%20telepass.pdf
https://github.com/jrowberg/bglib/tree/master/Arduino
https://github.com/jrowberg/bglib/tree/master/Arduino
https://www.digikey.com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies
https://www.digikey.com/en/articles/techzone/2011/aug/comparing-low-power-wireless-technologies
http://www.silabs.com/documents/public/user-guides/ug164-thunderboard-react.pdf
http://www.silabs.com/documents/public/user-guides/ug164-thunderboard-react.pdf
https://www.silabs.com/documents/login/user-guides/UG209.pdf
https://www.silabs.com/documents/login/user-guides/UG209.pdf

BIBLIOGRAPHY 79

[TCDD14] K. Townsend, C. Cuf, A. Davidson, and R. Davidson. Getting started with
Bluetooth Low Energy - TOOLS AND TECHNIQUES FOR LOW-POWER
NETWORKING, pages 15–44, 51–66. OReilly Media, 2014.

[TEL] TELEPASS S.P.A. Telepass Parcheggi in Struttura. https://www.telepass.

com/servizi/parcheggi-in-struttura. Accessed: 2017-03-11.

[Tex15] Texas Instruments. TI Designs Multi-Standard CC2650 SensorTag Design
Guide, Mar 2015. http://www.ti.com/lit/ug/tidu862/tidu862.pdf. Ac-
cessed: 2016-10-11.

[Tex16a] Texas Instruments. CC13xx, CC26xx SimpleLink Wireless MCU Technical Ref-
erence Manual, Jun 2016. http://www.ti.com/lit/ug/swcu117f/swcu117f.

pdf. Accessed: 2016-10-10.

[Tex16b] Texas Instruments. CC2650 SimpleLink Multistandard Wireless MCU, Jul 2016.
http://www.ti.com/lit/ds/swrs158b/swrs158b.pdf. Accessed: 2016-10-10.

[TIB+09] S. Turner, IECA, D. Brown, Certicom, K. Yiu, Microsoft, R. Housley, Vigil
Security, T. Polk, and NIST. RFC 5480 – Elliptic Curve Cryptography Sub-
ject Public Key Information. 2009. https://tools.ietf.org/html/rfc5480.
Accessed: 2017-03-27.

[TMTG13] R. Tabish, A. Ben Mnaouer, F. Touati, and A. M. Ghaleb. A comparative
analysis of BLE and 6LoWPAN for U-HealthCare applications. In 2013 7th
IEEE GCC Conference and Exhibition (GCC), pages 286–291, Nov 2013.

[TSPA16] S. Theodoros, S. Sotiriadis, E. Petrakis, and C. Amza. Internet of Things
Data Management in the Cloud for Bluetooth Low Energy (BLE) Devices. In
Proceedings of the Third International Workshop on Adaptive Resource Manage-
ment and Scheduling for Cloud Computing, ARMS-CC’16, pages 35–39. ACM,
2016.

[WA14] Robert Walsh and Apple Inc. Core OS – Designing Accessories for iOS and OS
X. WWDC14 Session 701, pages 59–75, 97–98, 2014.

[YKKK15] J. Yim, S. Kim, N. K. Kim, and Y. B. Ko. IPv6 based real-time acoustic
data streaming service over Bluetooth Low Energy. In 2015 IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing (PACRIM),
pages 269–273, Aug 2015.

https://www.telepass.com/servizi/parcheggi-in-struttura
https://www.telepass.com/servizi/parcheggi-in-struttura
http://www.ti.com/lit/ug/tidu862/tidu862.pdf
http://www.ti.com/lit/ug/swcu117f/swcu117f.pdf
http://www.ti.com/lit/ug/swcu117f/swcu117f.pdf
http://www.ti.com/lit/ds/swrs158b/swrs158b.pdf
https://tools.ietf.org/html/rfc5480

	Introduction
	Related Work
	COYERO access
	COYERO access Features
	COYERO access Token Management
	Communication Between COYERO Entities
	Security

	Bluetooth Low Energy
	Bluetooth Low Energy Protocol Stack
	Physical Layer
	Link Layer
	L2CAP
	SMP
	ATT and GATT
	GAP

	Scientific Methodologies
	Embedded Data Collection Based on BLE
	BLE Gateway Approaches
	IPv6 over BLE

	Commercial Products
	Smart Parking Without Smartphone
	Related Work Conclusion

	Design
	Use Case
	Requirements
	Architectural Description
	Hardware Selection
	Embedded Device as State Machine
	Android Gateway Application

	Implementation
	Development Environment – Embedded Client
	Development Environment – Android
	Circuit and Wiring
	Software Structure
	Data Handling
	Data Encoding
	Type-Length-Value (TLV)
	ASN.1 DER-Encoding

	Program Flow
	Sequence Setup
	Sequence Authentication State
	Sequence Entitlement State

	Communication Between Client and Server

	Evaluation
	Measurements
	Comparison with Other Systems
	Communication
	Security Between BLE Devices and Gateway
	Compatibility
	Setup
	Application Area

	Conclusion and Future Work
	Resume
	Future Work
	Improved Authentication
	Relay Attack
	Additional Secure Hardware

	Bibliography

