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Preface

The Joint Austrian Computer Vision and Robotics Workshop (OAGM and ARW Workshop) was
originally planned to take place at Graz University of Technology on April 16 and 17, 2020. However,
due to the COVID-19 situation in 2020, we had to do without a physical event and thus we had to
cancel both the originally scheduled event in April 2020 and the re-scheduled event in September
2020. After the submission and reviewing process could be finished almost as planned, we decided to
publish the proceedings anyway. In this way, many thanks to all who had made this possible (authors,
reviewers, program chairs, publisher)!

The main intention of the joint workshop would have been to bring together researchers, students,
professionals, and practitioners from the fields of Computer Vision and Robotics to present and ac-
tively discuss the latest research and developments. While in the past there has been a perceivable
gap between these two research directions, we can recognize that there are more and more common
interests, which can also be seen from contributions from both scientific communities. Overall, there
have been 50 original contributions, where an international program committee selected 38 for publi-
cations based on a double-blind review process, where each paper was reviewed by three reviewers.
To follow the tradition, outstanding contributions will be awarded prices sponsored by OCG (OAGM
track) and IEEE RAS (ARW track). In addition, for the very first time, there will be an IEEE Women
in Engineering Award for the best contribution of a female first author (both tracks). Moreover, we
would like to thank Land Steiermark (Ressort fiir Wirtschaft, Tourismus, Europa, Wissenschaft und
Forschung) and the Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation
and Technology for supporing the Joint Austrian Computer Vision and Robotics Workshop 2020.

Even though there is no physical event, we would also like to thank the international speakers who
accpected our invitations: Frank Kirchner (DFKI Bremen), Jiirgen Gall (University of Bonn), and
Thomas Schmickl (KFU Graz). We would be happy to re-invite them in future either for an upcoming
physical or virtual event.

In this way, we are happy to make at least the proceedings available! Stay healthy, hopefully seeing
you again in 2021,

Mathias Brandstotter, Gerald Steinbauer (ARW Chairs)
Friedrich Fraundorfer, Roland Perko, Peter M. Roth (OAGM Chairs)

Graz, July 2020
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OAGM Awards 2019
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OCG Best Student Paper Awards 2019
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Simon Brenner and Robert Sablatnig.
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by
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Semi-Automatic Generation of Training Data for Neural Networks
for 6D Pose Estimation and Robotic Grasping

Johannes Nikolaus Rauer, Mohamed Aburaia, Wilfried Wober
FH Technikum Wien

{rauer, aburaia,woeber}@technikum-wien.at

Abstract. Machine-learning-based approaches for
pose estimation are trained using annotated ground-
truth data — images showing the object and informa-
tion of its pose. In this work an approach to semi-
automatically generate 6D pose-annotated data, us-
ing a movable marker and an articulated robot, is
presented. A neural network for pose estimation is
trained using datasets varying in size and type. The
evaluation shows that small datasets recorded in the
target domain and supplemented with augmented im-
ages lead to more robust results than larger synthetic
datasets. The results demonstrate that a mobile ma-
nipulator using the proposed pose-estimation system
could be deployed in real-life logistics applications
to increase the level of automation.

1. Introduction

Production facilities have successfully deployed
classic fixed-programmed robots since the 1960s.
Due to their inability to perceive the environment,
such robots have mostly been used in mass produc-
tion, where a static setup can be assumed [8]. The
production industries’ move away from mass produc-
tion towards highly customized goods requires in-
creased flexibility. Deploying mobile manipulators,
a combination of mobile and articulated robots, for
intra-logistical transport tasks, promises this desired
modularity [6]. Since the accuracy achieved by mo-
bile robot navigation is not sufficient to grasp ob-
jects, robots need sensors to perceive their surround-
ings and autonomously detect objects’ poses [1]. The
most promising approaches for pose estimation are
machine-learning-based methods applied to camera
data [2]. Deep neural networks are trained using an-
notated ground-truth data — images showing the ob-
ject and information of its pose [4]. State-of-the-art
methods for creating such data use markers rigidly

attached to the objects, which have to be removed in
cumbersome post-processing [3], or need human an-
notators that align 3D models to video-streams [5].
In this work an approach to semi-automatically gen-
erate 6D-pose-annotated training data using an artic-
ulated robot is presented.

2. Semi-Automatic Data-Generation

As shown in Figure 1 the object is placed in front
of the robot and a fiducial marker is put on it in a de-
fined pose. The pose of the marker with respect to
the camera is computed from the captured image and
used to calculate the pose of the object with respect
to the robot’s base. The marker is captured from mul-
tiple perspectives and the mean pose is calculated to
minimize errors of the camera calibration and marker
detection. Afterwards the marker is removed (care
must be taken that the object is not displaced) and the
robot arm moves around the object to capture images
and associated object-pose data automatically. In or-
der to make the data also usable for training neural
networks for object detection, the object can be ren-
dered in a virtual environment to calculate segmenta-
tion masks. The design minimizes the extent of hu-
man labor. It is only necessary to place the marker on
the object, capture images of it, and remove it again,
to enable recording of several thousand training im-
ages fully autonomously. Drawbacks are that the pro-
cess has to be repeated to cover the other half of the
orientation space and that the background is static.
However, this can be solved by data augmentation.

3. Results & Discussion

Multiple annotated datasets are created using the
proposed method and used to train the deep-learning-
based 6D pose estimation system DOPE [7]. The an-
notated training data is split into five equally sized
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Figure 1. Procedure for generating annotated data, using a robot and a movable fiducial marker.

portions and merged to gain datasets containing 20%
to 100% (15k images) of all recorded samples.

The translational-15mm-error metrics (percentage
of tested data for which the translational error is
smaller than 15 mm — accuracy necessary for grasp-
ing) [7] in Figure 2 show, that using pre-trained mod-
els (blue, 6-10) leads to better performance than ini-
tializing networks with random weights (red, 1-5).
Bigger datasets do not necessarily improve the ac-
curacy since biased datasets lead to wrong general-
izations (e.g. network 5). A relatively small dataset
recorded in the target domain achieves better results
than a several times larger synthetic dataset (net-
work 12: 15k real + 15k domain randomized im-
ages), especially when extended using data augmen-
tation (network 11: smallest real dataset augmented
twice). The rotational errors show similar results, but
are generally lower.
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Figure 2. Translational errors compared regarding train-
ing time: Synthetic data (green), augmented data (cyan),
pre-trained (blue) and non-pre-trained networks (red).
Bubble-size visualizes dataset-size.

A qualitative evaluation using a real mobile ma-
nipulator confirms that the proposed pose-estimation
system could be deployed in real-life logistics appli-
cations to increase the level of automation.
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Feasibility study of a certifiable production environment
using safe environmental sensor systems

Maximilian Papa, Vinzenz Sattinger, Wilfried Kubinger
UAS Technikum Wien, Hoeststaedtplatz 6, A-1200 Vienna

{maximilian.papa,vinzenz.sattinger,wilfried.kubinger}@technikum-wien.at

Abstract. Safe robot development is based on three
factors: safety, performance and economy. Currently
however, only two properties can be maximized at
once, which is why an alternative for maximizing all
three factors has been worked on. In particular the
topic of safe environment has been discussed, where
sensors from individual robots will be relocated in
the environment. A sensor thus monitors more than
one robot, which leads to an increase in efficiency.
Due to the novelty, technical and legal requirements
of such a system have first been clarified. The re-
quired components have then been determined in or-
der to plan a possible implementation. Finally an
adapted concept for the Digital Factory of the UAS
Technikum Vienna showed the feasibility of a safety-
certifiable environmental sensor system.

1. Introduction

The fourth industrial revolution is characterized
by a flexible production of individual products,
which will be ensured by interconnected smart com-
ponents and robots [5]. However, robots of the third
industrial revolution are not flexible enough for this
task due to their stationary location. For this rea-
son they are accompanied by mobile robots, which
enable a higher production flexibility [3]. These
robots will further relieve human work forces from
monotonous work allowing them to work on more
complex tasks [2]. A combination of human flexi-
bility and robot repeatability thus represents the fu-
ture of production, whereby safe cooperation must
be guaranteed. Furthermore, appropriate changes in
intelligent production systems are recommended due
to an expected compound annual growth of 23.1%
between 2018 and 2023 in the area covering tech-
nologies of the fourth industrial revolution [4].

2. Current Solutions and Motivation

Development of industrial and mobile robots is
based on three factors as shown in Figure 1. How-
ever, current concepts only manage to maximize two
of the three properties at once. As safety should
never be neglected in a factory, there are two possi-
ble configurations: Either expensive systems or cost-
efficient approaches with weaker performance [1].

performance performance

safety economy safety economy

Figure 1. Factors of common robot development

The motivation of this work is the maximization of
all three properties in development of safe robotics.
A promising solution would be the relocation of indi-
vidual robot sensors into the environment. The basic
idea is that one sensor can monitor several robots and
therefore fewer sensors are needed.

3. Basic Requirements and Methods

As there is no safe environment system available
yet, technical and legal requirements have to be re-
searched for safety certification in Austrian enter-
prises first. However, applicable documents differ in
each case and experts (e.g. TUV AUSTRIA, labour
inspectorate, etc.) should be consulted for support.
Afterwards suitable components of the three identi-
fied key elements of sensor systems, processing units
and communication modules have to be researched
and compared. Subsequently concepts with these re-
quirements and components have to be created and a
value benefit analysis should determine the best one.
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Figure 2. Connections between all components for the safe environment

4. Concepts of a safe environment

A common safety concept (Concept 1) using sepa-
rate sensors in each robot represents the state-of-the-
art [1]. The total close-down of the factory (Concept
2) is another option, but entrances must be monitored
to guarantee that no human can enter the working
factory. People may only enter after switching the
factory to a collaborative mode or a safety stop. If
there were people working in the factory regularly, a
division of the factory into different segments (Con-
cept 3) would be better. Only segments in which per-
sons are located have to work in collaborative mode,
making this concept more efficient. However, this
concept is not optimal with many people working in
it either. Consequently monitoring the whole envi-
ronment with active (Concept 4) or passive (Concept
5) person detection is recommended. Workers have
to wear a transmitter on their body for the active vari-
ant which is not required in the passive detection.

5. Results and Discussion

Safety-certified components are already existing
for the first three concepts, but not for active/passive
detection. However, the first concept by purchas-
ing safety-certified components for each robot would
also be the most expensive concept. Active/passive
person detection also requires various components to
be installed throughout the factory. Only the second
and third concepts would require few sensors at the
zone entrances, making them very economical but
also inefficient with a high volume of people.

Based on these facts and the emphasis on safety,
economy and performance, the third concept was
chosen for an implementation in the Digital Factory.
Of course, the optimal choice depends above all on
the size of the environment and the number of robots.

6. Summary and Outlook

Based on these results a detailed safe environ-
ment implementation for the Digital Factory has been
planned, where the safe communication (shown in
Figure 2) represents the centerpiece of the system:
Environmental sensors have thereby been connected
to inputs/outputs of a safety PLC, which is further
connected to the other safety PLCs via PROFIsafe
by PROFINET. However, already existing PLCs do
not had a PROFIsafe interface, which is why EFI-
gateways have been included. Furthermore special
DATAEAGLE modules are required for a safe wire-
less connection to mobile robots.

A realization of the safe environment is therefore
actually possible, but the safe environment concept
will probably only become a serious alternative with
the development of safety-certified components for
active/passive human detection.
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Abstract. For mobile robots to be considered au-
tonomous they must reach target locations in re-
quired pose, a procedure referred to as docking. Pop-
ular current solutions use LiDARs combined with
sizeable docking stations but these systems struggle
by incorrectly detecting dynamic obstacles. This pa-
per instead proposes a vision-based framework for
docking a mobile robot. Faster R-CNN is used for
detecting arbitrary visual markers. The pose of the
robot is estimated using the solvePnP algorithm re-
lating 2D-3D point pairs. Following exhaustive ex-
periments, it is shown that solvePnP gives systemati-
cally inaccurate pose estimates in the x-axis pointing
to the side. Pose estimates are off by ten to fifty cen-
timeters and could therefore not be used for docking
the robot. Insights are provided to circumvent similar
problems in future applications.

1. INTRODUCTION

Docking can be understood as the localization and
navigation of a robot towards a target location [1].
In contrast to path-planning across larger distances,
docking does not require obstacle avoidance meth-
ods but instead seeks highly accurate pose estimates
[28]. As long as the pose of the robot and the target
location are known in a reference coordinate system
path planning algorithms can easily generate control
commands. In the xy ground-plane, the pose Z con-
sists of three degrees of freedom, z, y, and 6 as the
rotation about its own axis 2, and is described using
the state at time ¢

fi=( & y § 0 0), (1)
where z, y and 6 describe the speed of the robot in
z and y and its rotation respectively. As Thrun et
al. [32] write outlining the motion model and mea-
surement model, taking multiple control steps
with only an initial measurement or observation Zz;

Figure 1. The visual target used for docking. The target
location is on the ground infront. The origin for the PnP
solvers is in the upper left corner. The logos are roughly
9x3 centimeters in size. The upper right logo was raised
during experiments to remove coplanarity.

leads to large uncertainties about its pose, they pro-
pose a measurement step after every control to re-
store confidence in the belief bel(Z). These measure-
ments can be non-vision methods such as evaluat-
ing detections from LiDAR-scans [22] or can come
from a camera setup providing visual feedback [6].
Yurtsever et al. [34] show in their survey on auto-
mated driving systems (ADS) that computer vision
(CV) based approaches to navigation have become
increasingly popular. Artificial landmark detection
as described by Luo et al. [19] and gradient based
optical flow [20] rival modern non-vision solutions.
Classical non-vision systems typically employ Li-
DAR technology, indoor GPS or wireless fingerprint-
ing [17]. While LiDARs are still widely used com-
mercially (such as MiRs and Robotinos) recent ad-
vances in deep learning and their application in the
ADS domain are of more scientific interest. Deep
Convolutional Neural Networks (CNNs) have proven
successful at tackling a variety of perception prob-
lems, including object detection [26] and pose esti-



mation [30]. Open source implementations for dif-
ferent learning tasks are plentiful and can be used
to provide perception for a robotics system. Due to
the strong capabilities of CNNs as general feature ex-
tractors, it is possible to learn multiple visual targets
which can be different depending on the environ-
ment or application. This relaxes the constraint of us-
ing specifically designed visual markers that classical
CV methods pose. The learning task of the object de-
tector in this work is comparatively simple (only one
class of logos exist and they are easily distinguish-
able from the rest of the target, see Fig.1).

In previous work the LiDAR of the mobile robot,
a robotino, was used to create a map of the envi-
ronment and localization was implemented with the
amcl package. While this pipeline in combination
with obstacle avoidance methods has been useful for
path-planning across the room, only employing the
AMCL the robot arrives at the target position with
great inaccuracy (10cm to 20cm). Therefore, for this
project an entirely vision-based solution for docking
was developed which is bound to take over the task
of generating pose-estimates from the AMCL once
the robot comes close to the docking target.

The aim of this work therefore is to approach and
dock onto desired targets in a semi industrial environ-
ment with sufficiently high accuracy. To contribute
to the transition of state-of-the-art CNNs from public
datasets to real world problems an appropriate com-
bination of old and new algorithms is presented in
this work. A CNN based object detectors is used
for image processing and object detection, followed
by a camera pose estimation algorithm using point
correspondences from the detections. The presented
method could be easily adapted to learn new target
positions outfitted with a visual marker with minimal
setup requirements.

2. STATE OF THE ART

The problem of estimating the pose of a calibrated
camera, assuming a known 3D scene, is known as the
PnP-problem [29]. The idea is to use a feature detec-
tor such as SIFT [16] or SURF [2] to extract features
from multiple sequential images. Since an image of
a known 3D point gives two nonlinear constraints on
camera pose and calibration, using three points (or
more precisely three image-object point pairs) would
give all 6 pose parameters. As [33] point out, such
minimal cases lead to polynomial systems with mul-
tiple solutions, hence one additional point is used.

This leads to four necessary points for estimating the
pose (and one intrinsic parameter) and six points for
estimation of 3D pose and five additional calibration
parameters. The problem is formulated diffently for
the planar two-dimensional or the general, aforemen-
tioned three dimensional case. Direct Linear Trans-
formation (DLT, [9]) allows the estimation of the ho-
mography matrix H for the planar problem, requir-
ing at least four 2D-3D point correspondences. For
the general case, DLT estimates the projection ma-
trix P and requires at least six such correspondences.
In either case, H or P can be expressed with a set
AZ = 0 of multiple pairs of independent equations.
Since individual pixels are generally noisy, no exact
solution can be obtained using DLT, only an approx-
imate solution by obtaining the SVD of A. It should
be noted, that for the noisy and overconstrained case,
only the eigenvector of AT A, corresponding to the
smallest eigenvalue, should be computed. A contin-
uation to DLT is the family of PnP algorithms. Effi-
cient PnP or EPnP [14] uses the notion that each of
the n 3D-2D point pairs are expressed as weighted
sum of four virtual control points, and solves the
pose problem from these control points. Perspective-
Three-Point or P3P is a method applicable if only
three correspondences are obtained, and in turn re-
turns four real, possible solutions, the newest imple-
mentation being Lambda Twist P3P [25]. A fourth
point pair can be used to remove this four-solution
ambiguity.

Kartoun et al. [12] were able to achieve docking
times averaging 85 seconds but attributed the success
of their method to the unique hardware on the robot
and a generously large docking station. Burschka et
al. [3] take the aforementioned approach to the out-
doors, using a Kanade-Lucas tracker [18] to track
points in image sequences, followed by RANSAC
and DLT. They achieve good results for rotation, but
struggle with estimating translation. In the work
of Mehralian et al. [21] an Extended Kalman Filter
(EKEF, [11]) is combined with PnP algorithms to cre-
ate EKFPnP. They achieve better robustness against
noisy features, although no details are given regard-
ing the feature tracker.

In the field of deep learning, pose estimation is
a well researched problem [23], camera pose estima-
tion is less so [13] and no architectures or datasets ex-
ists specifically designed for docking a mobile robot.
The dataset would need to include the complete pose
of the robot for every captured image to allow end-



to-end training. Instead, Shalnov et al. [30] were able
to create a deep model using a CNN for camera pose
estimation via object detections of human heads. In
the work of Pavlakos et al. [24] a geometric approach
to object pose estimation using semantic keypoints
is taken but their published dataset only uses out-
door objects and is thus not applicable to docking.
Lastly, as part of Zhou et al. [35]’s Centernet, they
are proposing to regress from centerpoints to other
object properties including pose but their framework
is unnecessarily complex for the task at hand.

While the methods are numerous, no single frame-
work exists that combines deep learning for object
detections with a PnP-solver, all for the application
of mobile robot docking. This work shows the hes-
itation of using CNNs for robot docking is unwar-
ranted, as long as the learning task is managable in
complexity.

3. METHODS AND IMPLEMENTATION

The robotino mobile robot used in this project was
equipped with a Logitech C920 USB webcam. A re-
mote desktop with an NVIDIA GTX 1080 GPU runs
ROS to control the robot and process the images.

To showcase the flexibility of the pipeline regard-
ing the visual target, no QR-tags or ARUCO markers
[8, 27] were used. Three small paper printouts of a
logo were instead fixed on a board roughly 20 by 15
centimeters in size and this board was used for train-
ing the detector. Video data was collected while ar-
bitrarily moving the robot around close to the target.
From the roughly 4500 recorded images 100 were
selected to form the training set. The chosen images
show the target from different viewing angles, dis-
tances, lighting conditions while a few images do not
show the target at all to control for false positives.
The bounding box coordinates of the three logos in
all 100 images were manually annotated. Creating
annotations took around three hours to complete. Re-
sizing the images to 512x512 RGB-images allows
the usage of Che et al. [4]’s toolbox with many dif-
ferent object detectors implemented.

Accuracy of the detector is important, since wrong
detections would lead to wrong pose estimates and
erroneous controls, while inference speed is impor-
tant to enable a smooth docking, although inference
times below 70 milliseconds are unnecessary, due
to the bottleneck imposed by transporting 960x720
images from the camera to the remote desktop via
Wi-Fi using the ROS image_transport package for

compressed transfer. Looking at various speed-
accuracy tradeoff comparisons between object detec-
tors, Faster R-CNN [26] with pretrained ResNet [10]
backbones seems to be a sweet spot, ResNet50 was
chosen for this implementation. Faster R-CNN be-
longs to the class of detectors using a separate region
proposal network to generate bounding box propos-
als. For the optimizer the default stochastic gradient
descent with momentum of 0.9 was used and learn-
ing rate was kept default at 0.01 with a linear step
learning rate scheduler and warmup. Other parame-
ters and image augementation steps were kept default
to Che et al. [4]’s configuration of Faster R-CNN for
PascalVOC [5], including a 50 percent chance of a
random horizontal flip. From the infered bounding
boxes, image coordinates of the upper-left and lower-
right corners of all three logos are saved for the PnP-
solver. The Faster R-CNN network was trained for
fifty epochs which amounted to 37 minutes training
time on a GTX 1080 graphics card. GPU memory us-
age was 2GB showing a weaker graphics unit would
suffice. Both bounding box and classification loss
plateued after training for ten epochs.

The required pose estimate at timestep ¢ for path
planning can be described with the transformation
matrix T:*"9°" € R4*4 from the base link of the robot

base,t - i
to the target position near the station

vz =[5 ] o

with R € R3*3 and t € R3*! being the rotation ma-
trix and translation vector to be estimated at sam-
pling time t respectively. Physically measuring the
transformation from the base link of the robot to
the camera sensor as well as relating the logos at
K040 to the target location allows an estimated cam-
era pose from a reference coordinate system on the
logo-board T{¥™¢™* to be linearly tranformed into

logo
target . : Camera 3
T,.s. - Getting the transformation T 77" with a

calibrated camera and assuming the pinhole camera
model means solving correspondences of points in
2D image space and those same points in the 3D real
world. After calibrating the camera using the ROS
camera_calibration package, the measured points in
the object frame and saved image coordinates are
combined in the Open-CV solvePnP algorithm using
the intrinsic camera parameters. Available variations
of the algorithm are iterative, which is the default
method based on Levenberg-Marquardt optimization
[15] to find a pose which minimizes reprojection er-



ror (sum of squared distances), P3P based on [7]
which requires only four of the six point pairs and
EPnP mentioned earlier. All three variations were
tried and tested. The estimated rotation and trans-
lation vectors, after using Rodrigues to transform
the rotation vector into the rotation matrix R, form
Tioon " and therefore finally Tzzgg’ef. As Siegwart et
al. [31, p. 81ff] write, desired velocity can then eas-
ily be generated using estimated parameters £, and
k., for a linear controller.

The entire pipeline can be quickly summarized as
follows:

1. Create the visual target with arbitrary logos.
Physically measure the logo corners and their
position in relation to Tj,g,. Relate Tj,4, to
Target and on the robot Tegmera 10 Tpgse-

2. To avoid bias in data collection, implement a
random-walk in logo vicinity but constrain 6 to
enable the camera to face the logo most of the
time. Annotate bounding-box coordinates of the
logos for select images.

3. Train the Faster-RCNN object detector with this
dataset. For docking, load the model and obtain
bounding-boxes using ROS image-callbacks.

4. Use the inferred coordinates together with the
measurements and intrinsic parameters of the
. . target
({amera in SolvePnP to obtain T, et atevery
timestep ¢.

5. Use a simple linear controller to generate ROS
motion control commands to guide the robot to-
wards the docking target.

4. RESULTS AND DISCUSSION

During inference, processing a single image
within the ROS pipeline takes the detector approx-
imately 35ms. On average the detection would re-
sult in five bounding box proposals, sorting by con-
fidence and extracting the top three boxes gives six
image coordinates close to the ground thruth typi-
cally within one to four pixels. Evaluating the mloU
gives 96.3% for thirteen test images. Object de-
tection results are therefore both accurate and con-
fident. The PnP-solver, the second major compo-
nent of the framework, proved to be more trouble-
some producing inaccurate results. All three im-
plementations of the solvePnP algorithm express the

translation vector ?3;;67"“ using the right-hand co-

ordinate system Kj,4,. Preliminary results quickly
showed that all methods are accurate in estimating
y and z translation, but struggle with the = coordi-
nate. To get a better understanding of the pose esti-
mates, in particularly the estimated translation vec-
tor, an extensive field study was conducted. The
robot was steered towards six points and the ground
truth translation and rotation were noted. These
poses are described by K;4, in Fig 2 where idx €
{dock,amcl,left_close,left_far,right_close,
right_far}. At each point fifteen images were cap-
tured, supplied to the Faster-RCNN model and the
obtained image coordinates from bounding boxes,
specifically six points per image, given to the PnP-
solvers. After first results were analyzed, showing
again large errors in x, changes were made in hopes
of achieving more accurate pose results. In particu-
lar, the following major changes were made:

1. The upper right logo was raised from the plastic
board to remove the coplanarity of all six points.
By removing the coplanarity more information
is available for estimating the camera pose [9].

2. Since solvePnP, unlike regular DLT, does not es-
timate intrinsics, they are a possible cause of er-
ror. The camera was recalibrated and the new
parameters used. The focal lengths and distor-
tion coefficients differed slightly.

3. The autofocus of the camera was turned off.
Captured images were still sharp and logos
clearly visible nonetheless.

Afterwards, the same study was undertaken, captur-
ing sequences of fifteen images at six locations, and
using the detector followed by solvePnP to obtain
camera pose estimates again. The translation vectors
were than saved and subsequently plotted to give a
visual representation of the results. Figure 2 shows
the results of this experiment in a 3D plot. The most
notable thing here is the iterative algorithm flipped
the signs for all three axis in almost all estimates. Its
results are therefore point-symmetrical about the ori-
gin, a known issue when using solvePnP. Also of note
is that the large error in the = direction still persists.
This error occurs throughout all experiments and is
not intuitive; the estimates in x are strangely placed.
All points lie on the negative (right) half plane (with
exception of some iferative estimates), but the es-
timates for the locations with ground-truth in the
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Figure 2. Pose estimates using the OpenCV solvePnP algorithm, for images captured at described six locations. Different
colours are for different methods with black being ground truth locations. Different symbols mark the six different
locations. Units are in centimeters. The 6 coordinate systems give the pose of the robot. The accuracy in estimating y and
errors in z are similar as with the previous experiment. The point symmetry about the origin for the iterative algorithm is
visible, having incorrectly flipped all three axis signs. Variance stays largely the same even with larger z.

left half are not simply mirrored across the z-axis.
The distance gets consistently underestimated yet it
seems with larger absolute value of x in ground-truth
the absolute estimates in = also seem to increase. The
estimates for the location Ky 7;_r,, break this pattern,
being very close to the estimates for K,,,.;, the loca-
tion where the vision based navigation is supposed to
take over after using amcl localization. It can also be

10

observed that variance only slightly increases about
the estimates in z with increasing z distance. Clus-
ters are very compact, an improvement compared to
the first experiment. This can be attributed to using
more precise intrinsic camera parameters. It is also
visible that all algorithms are accurate for estimating
the small offset in y.

Unfortunately, the reason for this seemingly sys-



tematic error in x could not be determined as of yet
but considering the flipped signs for almost all esti-
mates made by the iterative method, numeric insta-
bility is likely to contribute to the fragile nature of
the solvePnP class.

5. SUMMARY AND OUTLOOK

In this work a novel framework for docking a mo-
bile robot using only vision-based sensors and algo-
rithms was developed. A CNN based object detector
yielded bounding boxes of logos with high accuracy
and confidence. Measurements of the logos were
taken and related in a coordinate system. The fam-
ily of solvePnP algorithms implemented in OpenCV
was used to estimate the camera pose using the de-
tector results and intrinsic parameters. All methods
consistently estimated wrong distances in one of the
directions, namely the x-axis. Following preliminary
experiments, changes were made, in particular the
coplanarity of the object points was removed and re-
calibration of the camera undertaken, and the same
experiments run again. Unfortunately the errors per-
sisted, although improvements regarding the scatter-
ness of the pose estimates could be made. Conse-
quently, no control commands were generated and
docking of the robot could not take place in this in-
stance. For future reference, it is important to note
the fragility of the solvePnP algorithms. The source
of the errors is unclear and while additional point
pairs could improve results regarding compactness,
it seems unlikely they could alleviate the large errors
in predicting the x coordinates.

References

[1] F. Alijani. Autonomous vision-based docking of a
mobile robot with four omnidirectional wheels, 01
2017. Master’s thesis.

H. Bay, T. Tuytelaars, and L. Van Gool. Surf:
Speeded up robust features. In European conference
on computer vision. Springer, 2006.

(2]

[3] D. Burschka and E. Mair. Direct pose estimation
with a monocular camera. In International Work-
shop on Robot Vision. Springer, 2008.

K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li,
S. Sun, W. Feng, Z. Liu, J. Xu, Z. Zhang, D. Cheng,
C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu,
Y. Wu, J. Dai, J. Wang, J. Shi, W. Ouyang, C. C.
Loy, and D. Lin. MMDetection: Open mmlab
detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155, 2019.

M. Everingham, L. Van Gool, C. K. Williams,
J. Winn, and A. Zisserman. The pascal visual ob-

(4]

(5]

11

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

ject classes (voc) challenge. International journal of
computer vision, 88(2), 2010.

M. Fichtner and A. Grobmann. A probabilistic vi-
sual sensor model for mobile robot localisation in
structured environments. In 2004 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Sys-
tems (IROS)(IEEE Cat. No. 04CH37566), volume 2,
pages 1890-1895. IEEE, 2004.

X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng.
Complete solution classification for the perspective-
three-point problem. IEEE transactions on pattern
analysis and machine intelligence, 25(8), 2003.

S. Garrido-Jurado, R. Munoz-Salinas, F. J. Madrid-
Cuevas, and R. Medina-Carnicer. Generation of
fiducial marker dictionaries using mixed integer lin-
ear programming. Pattern Recognition, 51, 2016.

R. Hartley and A. Zisserman. Multiple view geom-
etry in computer vision second edition. Cambridge
University Press, 2000.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition. IEEE, 2016.

R. E. Kalman. A New Approach to Linear Filtering
and Prediction Problems. Journal of Fluids Engi-
neering, 82(1), 03 1960.

U. Kartoun, H. Stern, Y. Edan, C. Feied, J. Handler,
M. Smith, and M. Gillam. Vision-based autonomous
robot self-docking and recharging. In 2006 World
Automation Congress. IEEE, 2006.

A. Kendall and R. Cipolla. Geometric loss functions
for camera pose regression with deep learning. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 2017.

V. Lepetit, F. Moreno-Noguer, and P. Fua. Epnp: An
accurate o (n) solution to the pnp problem. Interna-
tional journal of computer vision, 81(2), 2009.

K. Levenberg. A method for the solution of certain
non-linear problems in least squares. Quarterly of
applied mathematics, 2(2), 1944.

D. G. Lowe. Distinctive image features from scale-

invariant keypoints. [International journal of com-
puter vision, 60(2), 2004.

J. Y. Lu and X. Li. Robot indoor location modeling
and simulation based on kalman filtering. EURASIP
Journal on Wireless Communications and Network-
ing, 2019(1), 2019.

B. D. Lucas, T. Kanade, et al. An iterative image
registration technique with an application to stereo
vision. In Proceedings of the 7th international joint
conference on Artificial intelligence, volume 2. 1J-
CAI, 1981.

R. C. Luo, C. T. Liao, K. L. Su, and K. C. Lin.
Automatic docking and recharging system for au-
tonomous security robot. In 2005 IEEE/RSJ Inter-



[25]

(28]

national Conference on Intelligent Robots and Sys-
tems. IEEE, Aug 2005.

C. McCarthy, N. Barnes, and R. Mahony. A robust
docking strategy for a mobile robot using flow field
divergence. IEEE Transactions on Robotics, 24(4),
Aug 2008.

M. A. Mehralian and M. Soryani. Ekfpnp: Extended
kalman filter for camera pose estimation in a se-
quence of images. arXiv preprint arXiv:1906.10324,
2019.

J. Moras, V. Cherfaoui, and P. Bonnifait. A lidar
perception scheme for intelligent vehicle navigation.
In 2010 11th International Conference on Control
Automation Robotics & Vision, pages 1809-1814.
IEEE, 2010.

M. Oberweger, P. Wohlhart, and V. Lepetit. Hands
deep in deep learning for hand pose estimation.
arXiv preprint arXiv:1502.06807, 2015.

G. Pavlakos, X. Zhou, A. Chan, K. G. Derpanis, and
K. Daniilidis. 6-dof object pose from semantic key-
points. In 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2017.

M. Persson and K. Nordberg. Lambda twist: an
accurate fast robust perspective three point (p3p)
solver. In Proceedings of the European Conference
on Computer Vision. ECCV, 2018.

S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-
CNN: towards real-time object detection with region
proposal networks. CoRR, abs/1506.01497, 2015.
F. J. Romero-Ramirez, R. Muinoz-Salinas, and
R. Medina-Carnicer.  Speeded up detection of
squared fiducial markers. Image and vision Com-
puting, 76, 2018.

J. Rowekdamper, C. Sprunk, G. D. Tipaldi, C. Stach-
niss, P. Pfaff, and W. Burgard. On the position ac-
curacy of mobile robot localization based on parti-
cle filters combined with scan matching. In 2072
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3158-3164. IEEE, 2012.
G. Schweighofer and A. Pinz. Globally optimal o
(n) solution to the pnp problem for general camera
models. In Proceedings of the 2008 British Machine
Vision Conference. BMVC, 2008.

E. Shalnov and A. Konushin. Convolutional neural
network for camera pose estimation from object de-
tections. International Archives of the Photogram-
metry, Remote Sensing & Spatial Information Sci-
ences, 42, 2017.

R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza.
Autonomous mobile robots. MIT press, 2011.

S. Thrun, W. Burgard, and D. Fox. Probabilistic
robotics. MIT Press, 2002.

B. Triggs. Camera pose and calibration from 4 or
5 known 3d points. In Proceedings of the Seventh
IEEE International Conference on Computer Vision,
volume 1, pages 278-284. IEEE, 1999.

12

[34] E. Yurtsever,

J. Lambert, A. Carballo, and
K. Takeda. A survey of autonomous driving: Com-
mon practices and emerging technologies. arXiv
preprint arXiv:1906.05113, 2019.

[35] X. Zhou, D. Wang, and P. Kridhenbiihl. Objects as

points. CoRR, abs/1904.07850, 2019.



Autonomous Grasping of Known Objects Using Depth Data and the PCA

Dominik Steigl, Mohamed Aburaia, Wilfried Wober
UAS Technikum Wien

{mr18m007, mohamed.aburaia,wilfried.woeber}@technikum-wien.at

Abstract. Tiwo main goals for automated object ma-
nipulation processes are cost reduction and flexibil-
ity. Time-consuming, costly object-specific fixtures
can be replaced by vision systems, whereby the ma-
nipulators are extended with cameras so that multi-
ple objects in the environment can be precisely iden-
tified. To be able to manipulate an object, it must be
recognized first in the world, and then the pose must
be calculated. Neural network approaches recognize
and estimate the pose of an object in a single step
and yield superior results, but rely on vast amounts
of training data. This work describes an approach
for estimating the pose of identified objects without
pre-trained pose data. Template matching is used
to recognize objects in depth images, and the pose
is estimated through principal component analysis
(PCA). The input to the algorithm is reduced to the
template. Pre-existing knowledge about the object
further improves accuracy. A maximum deviation
of 0.2 cm from the ground truth has been achieved,
which suffices for the industrial grasping task. The
system was evaluated with real measurements taken
with an RGB-D camera. This work resembles a first
step to estimate an object’s pose with linear statisti-
cal methods.

1. INTRODUCTION

Industrial robots are efficient at picking up objects
in a predefined, structured environment [10]. When
mobile manipulators are deployed in a factory set-
ting and costly fixtures have to be avoided, robots
need the ability to identify and locate objects for ma-
nipulation. To overcome this problem, a vision sys-
tem can be used. One way to give robot vision is to
use two-dimensional images with depth information,
also known as 2.5D images or RGB-D images. RGB-
D images can be used to find and localize objects
by analyzing the environment. Building on top of
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the recognized and classified object, pose estimation
tries to estimate the six degrees of freedom (DOF)
pose of an object in an image. For mobile manipu-
lation of objects this information is needed to accu-
rately grasp objects with a manipulator in the correct
position and orientation.

The current state of the art approaches towards
object recognition and pose estimation are based on
deep neural networks [15]. They usually outperform
human crafted features [19], but unfortunately they
rely on huge amounts of training data for classifica-
tion and pose estimation and are difficult to adapt [9].
This is why, in this work, a more traditional approach
was chosen. The target object is recognized using
template matching in a 3D space. Pose estimation is
implemented using the principal component analysis
(PCA) to place an orthogonal basis in the center of
the grabbing area. Using PCA to estimate the pose of
the object, the needed input to the algorithm can be
reduced to only the template. This work resembles
a first step to estimate an object’s pose with linear
statistical methods.

In the following chapters the related work is sum-
marized, the used methods are explained and the re-
sults are being discussed.

2. RELATED WORK

Object recognition describes the task of localiz-
ing known objects in images. Due to changes in the
viewpoint or lighting, the task of mapping the huge
amount of input pixels to a small output space is still
complex [16]. To mitigate the influence of lighting
conditions, approaches which rely on 3D informa-
tion were researched [8]. The data used in these ap-
proaches is usually made up of a three channel 8-bit
RBG image or an additional fourth channel which
represents the 3D distance of the object to the image
sensor, where each image is described using
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While research improved object recognition and
classification with deep neural nets [15] , parallel ef-
forts focused on template matching for object recog-
nition [2][5]. Template matching uses extracted ex-
ample images to find objects in new images. This
method often involves sliding-window based algo-
rithms [7], which find the template in a rectangular
subpart of the image. Template matching works well
for frontal images, but fails if the viewpoint differs
from the actual template [4]. The simplicity of this
technique still inspired new research, which is why
its performance has improved significantly over the
last 10 years [6][11].

2.1. Pose Estimation

Building on top of the recognized object, it is pos-
sible to estimate the pose of the object relative to the
camera. This process is called pose estimation and it
consists of three general categories. In the first cat-
egory, the object’s pose is stored alongside its fea-
ture vectors. Consequently, each different observed
orientation represents a separate detection, which re-
sults in automatically knowing the objects pose if the
object is matched with a previously trained one.

The second category uses statistical techniques to
align two given RGB-D images with each other. For
this, Iterative Closest Point [3], or ICP, is the most
commonly used algorithm and many variants exist
for different applications [12][14].

The third category tries to combine the pose esti-
mation step with the recognition process itself. This
makes sense, since, as stated earlier, a different view-
point can change the appearance of an object entirely.
This category has been covered by recent research
due to the emerging field of machine learning [18].

Unfortunately, all of the before shown methods
need either vast amounts of training data or an ac-
curate model of the object that has to be detected. In
this work, a different approach is taken. The prin-
cipal component analysis (PCA) [1] is used for esti-
mating the pose of a known object. PCA’s intended
purpose is to extract principal components and re-
duce dimensionality between the input and the output
space. Using PCA to estimate the pose of the object,
the needed input to the algorithm can be reduced to
only the template. The proposed process of pose es-
timation with PCA is shown in the next chapter.
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Figure 1. Visualization of the grasping point. The figure
shows the object that has to be grasped. The orange coor-
dinate system shows the center of the grasping area.

3. METHODS

The objective of the proposed approach is the es-
timation of the pose of a known object. Before the
pose of an object can be calculated, it first has to be
located in an image. For this task, template match-
ing was chosen due to its ease of implementation and
use. After the object has been recognized in the depth
image, principal component analysis is used to deter-
mine the orientation of the found subpart of the im-
age in 3D space.

Figure 1 shows the target object of this work. The
pose of the shape in the “grabbing area” has to be
calculated so that it can be successfully grasped. For
this, the normal vector of the surface facing the cam-
era has to be found. Through orientation of the vec-
tors the rotational components of the 6D pose can
be determined. This task can be solved by comput-
ing the PCA for the points in the grabbing area. In
this case, the principal component analysis yields 3
eigenvectors with their respective eigenvalues for the
given 3D points. As can be seen by studying Figure
1, 2 of the 3 dimensions of the shape in the grab-
bing area differ from the other. The span of values in
the X and Y direction are comparatively large in re-
spect to the depth dimension Z. This also applies to
the respective variances. Using prior knowledge, the
normal vector of the plane parallel to the camera ori-
gin (i.e. corresponding to the surface of the marked
grabbing area) can be estimated using the eigenvec-
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Figure 2. Visualization of the correct alignment of vector
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tor with the smallest eigenvalue (eg. variance).

As the form of the shape is symmetrical, the mean
of the points in the grabbing area estimates the origin
of the coordinate system shown in Figure 1. There-
fore, the mean of the PCA can be used as the transla-
tional component of the transformation matrix.

t= (i, iy, pz)" (2)
The rotation matrix has to be assembled from
three orthonormal vectors. The first vector has al-
ready been found, which is the smallest eigenvector
of the PCA, which forms the Z vector pictured in Fig-
ure 1. The second vector can be obtained by leverag-
ing knowledge about the environment of the indus-
trial grasping use case. As the target object is located
at a target location that is parallel to the ground, the
rotation around the Z axis can be neglected. That is
why the second vector can be aligned with the Y axis
of the camera coordinate system. But since the first
vector found with the PCA could be rotated around
the Y axis of the object coordinate system, the sec-
ond vector has to be projected orthogonally to the
first. This is done with Equation (3) and the process
is visualized in Figure 2.

uz)| = (uj - i) - i (3)

Ul = U2 — Ug||

The third vector can then be calculated using the
cross product of 3 and wu3. The resulting rotation
matrix is constructed using Equation (4).

Uz U3y U3z
R=|ugs ugy uz. (4)
Ule Uly Ulz

After calculating the rotation and translation com-
ponents of the object, a transformation matrix can be
formulated using Equation (5).
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The transformation matrix can then be used to ex-
press the grasping point in the world coordinate sys-
tem, which is used for motion planning of the robot
arm. Having calculated the transformation between
the camera coordinate system and the objects coordi-
nate system one can calculate the objects world posi-
tion as follows

_ Tworld

. camera
camera

obj

(6)

In the following chapter, the performance of the
proposed approach is discussed.

Tob ¥

4. Results

The test setup consisted of the 3D printed model
of the target object shown in Figure 1 and an Intel
RealSense D435!. The RGB-D camera has been set
up at a defined location on a table and the 3D printed
model has been placed in front of it as can be seen in
Figure 3.

To measure the error of the PCA-based approach,
a metric had to be defined. For this, the Euclidean
distance between the ground truth vector and the es-
timated plane normal vector of the PCA is used. Usu-

"https://www.intelrealsense.com/depth-camera-d435/
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Figure 4. Visualization of calculation of the Euclidean dis-
tance between the ground truth vector and the vector esti-
mated by the PCA

ally, with machine learning approaches, the error in
the 2D projection of the 3D bounding box is mea-
sured [13]. Since the estimation error can be mea-
sured directly in this case, the Euclidean distance is
used as a metric instead. To ease the calculation of
the ground truth vector, environment knowledge has
been used to eliminate one dimension out of the 3D
vector. Since the target 3D model is guaranteed to al-
ways be parallel to the ground, as is the camera, the
rotation around the Z-axis defined in Figure 1 can be
ignored. Furthermore, as this approach is being used
in an industrial grasping use case where the indus-
trial robot has to grab the target object perpendicular
to the estimated plane, the Y-component of the esti-
mated PCA vector can be ignored and therefore set
to 0. In order to get two vectors of the same length
for further correct calculation, both, the ground truth
vector and the vector estimated by the PCA have
to be normalized. This results in an Euclidean dis-
tance being calculated between two vectors in the X-
Z plane. This process is shown in Figure 4.

Equation (7) shows the calculation of the ground
truth vector, where the gt vector is the ground truth.
The X and Z components of the ground truth vector
can be obtained by calculating the direction of the
ground truth vector rotated by 5 depicted in Figure
3.

. sin(B)
gt = 0 7
(cosm) ")

Equation (8) shows the calculation of the error in
form of the Euclidean distance.

r=/(z1— 22)%+ (21 — 22)? (8)

x1 and z; denote the respective components of the
ground truth vector. x2 and 29 denote the respective
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Table 1. List of positions that were used for the experi-
ments.

Angle [°] Distance [cm]

+/-0

+/- 10 30, 35, 40, 45, 50, 75
+/- 20

+/- 40 30, 35, 40, 45, 50

+/- 10 around camera
+/- 20 around camera
+/- 30 around camera

30, 35, 40, 45, 50, 75

05 ‘ Boxplot - Angle +{— 0

0.4} '

0.3}

0.2

Euclidian Distance [cm]

0.1

t -
e % .
== ;
1 T

40 45
Object Distance [cm]

0.0

Figure 5. Visualization of the results with the object being
placed on the optical axis

components of the calculated normal vector by the
PCA, that has been projected onto the X-Z plane.

The measurements were taken in distances and
orientations that relate to the industrial grasping use
case. The target object has been moved to several
fixed positions in front of the camera. Table 1 lists
the positions that were used for the measurements.

Figure 5 shows the results for measurements taken
with the object being placed on the optical axis.

Both of the anomalies at 40 and 45cm can be ex-
plained due to poorly selected templates. This can be
mitigated by using advanced approaches for template
matching [5][17]. Those rely on scaling of the tem-
plate to get a more accurate match and also address
the rotational limitations.

Figure 7 shows an example disparity image of the
object viewed by the Intel RealSense camera. It can
be argumented that the anomalies are induced be-
cause of the dark areas in the disparity image, which
can be mostly traced back to occlusions of the stereo
vision system. This has an even larger effect when
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Figure 6. Visualization of the results with the object being placed at differing angles and distances on the optical axis

Figure 7. Disparity image of the object viewed by the Intel
RealSense camera. Occlusions induced by the stereo vi-
sion system make it difficult to accurately locate the grasp-
ing area depicted in Figure 1.

the object is being rotated. Figure 7 also shows that it
is difficult to depict the grabbing area of the object for
creating a fitting template from the disparity image.
Having a poorly chosen template leads to points be-
ing incorporated into the PCA estimation that are not
actually part of the grabbing area and therefore lead
to unexpected results. Nevertheless, it can be con-
cluded that the anomalies are not induced by means
of the method used for estimating the pose.

Figure 6 shows the results for measurements taken
with the object being placed at different angles on the
optical axis. Refer to Figure 3 for a visual presenta-
tion of this process. The angle depicted in Figure 6
corresponds to angle o shown in Figure 3. The dis-
tance mark relates to the distances shown on the X-
axis labels of the graphs in Figure 6. The anomalies
again can be explained by the problems mentioned
before. The right graph in Figure 6 clearly shows the
limits of the proposed approach, as the structure of
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Table 2. Regions in which the algorithm yields results suf-
ficient enough for the industrial grasping use case at hand.

Angle [°]

+/-0

+/- 10

+/- 20

+/- 10 around camera
+/- 20 around camera
+/- 30 around camera

Distance [cm]

30-75

30-75

the box plots over the graph changes in respect to the
other two graphs.

Figure 8 shows the results for measurements taken
with the object being placed at different angles
around the camera. The angle depicted in Figure
8 corresponds to angle 8 shown in Figure 3. The
anomalies again can be explained by the problems
mentioned before.

The results show that the usable region for this al-
gorithm can be summarized with Table 2. Argument-
ing, that the anomalies can be eliminated by using the
enhancements already listed. Angles depicted with
the “around camera” suffix correspond to the object
being rotated around the camera with angle «, as de-
picted in Figure 3.

5. Conclusion

This work presented an approach to estimate the
pose of a known object by using the principal com-
ponent analysis. This resembles a first step to esti-
mate an object’s pose with linear statistical methods.
The results showed that the approach is sufficient for
the industrial use case at hand, since a maximum de-
viation of 0.2 cm compared to the ground truth is
achieved, when anomalies are ignored. The results
also show the limitations of this approach. Anoma-
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lies

shown in the data can be explained through

poorly chosen templates. The problems faced could
be solved in future work by using the recommenda-
tions given in this work.
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Abstract. EDLRIS is a professional and standard-
ized system for training and certifying people in fun-
damental topics of Robotics and Artificial Intelli-
gence. It was developed, implemented and evaluated
within the course of an international 3-year project.
This paper provides an overview of goals, methodol-
0gy, training modules and preliminary results of the
EDLRIS project.

1. Introduction

Robotics and Artificial Intelligence (Al) have a
big impact on the working world and on people’s ev-
eryday life. An increasing number of jobs are related
to Robotics and Al, resulting in a strong demand for
well-trained people in these areas. In order to foster
a solid understanding of sociopolitical, economical
and technical aspects it is important to teach funda-
mental Robotics and Al concepts already prior to, or
outside of university. Nevertheless, hardly any well-
founded teaching approaches exist at the moment. In
order to address this challenge, the European Driving
License for Robots and Intelligent Systems (EDLRIS)
was developed. It specifically focuses on teaching
fundamental concepts of Robotics and Al to trainers
(e.g. educators, teachers, mentors, ...) and trainees
(e.g. young people, pupils, apprentices, ...) following
a train-the-trainer, blended-learning approach [1].

2. Related Work

The project idea was inspired by the European
Computer Driving License (ECDL) [2]. A lot of
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Robotics and Al courses are held at undergraduate
or graduate level (e.g. [3]) but training and certify-
ing people in fundamental topics of Robotics/Al out-
side university hardly exists. Several pre-university
approaches teach only selected or very basic topics
of Robotics/Al (e.g. [4]). In recent years, educa-
tion organizations started to develop Al curricula and
programs for a K-12 audience (e.g. Elements of Al
[5D). However, training and certifying trainers as well
as young people in fundamental Robotics/Al topics,
combining face-to-face and online teaching units - as
done by EDLRIS - is quite unique.

3. Methodology

The general approach of EDLRIS is based upon
following main stages: 1) preparation: conduct-
ing a pre-survey among stakeholders and establish-
ing an advisory board with representatives from in-
dustry and education; 2) development: developing
Robotics and Al training modules including a certi-
fication system to prove the acquired skills of train-
ers and trainees; 3) train the trainers: conducting
training courses and certifications for trainers (face-
to-face (f2f) and online teaching units); 4) train the
trainees: educating and certifying trainees by certi-
fied trainers who act as multipliers;

EDLRIS comprises 4 modules: Robotics Ba-
sic/Advanced and Al Basic/Advanced. All modules
have a strong focus on hands-on activities and in-
clude practical tasks based on the principles of con-
structionism [6]. Basic modules focus on people
without any prior knowledge, aiming at building



awareness, motivating and introducing fundamental
concepts in an easily comprehensible manner (scope:
24 hours f2f, 20 hours online). Advanced modules
primarily focus on people who already have prior
knowledge in computer science/mathematics, aiming
at enabling a deeper understanding of fundamental
concepts (scope: 36 hours f2f, 50 hours online).

Exemplary, the following gives an insight into the
Robotics Advanced module, which puts the focus
on a fundamental understanding of robotic arms and
mobile robots [7]. Preparatory online sessions pro-
vide the necessary basics in calculus, linear algebra
and Python programming. During the subsequent
f2f units, participants are given two concrete prob-
lems: 1) mathematical description/modelling of a
certain robotic arm and its trajectory; 2) indoor local-
ization and navigation of a mobile robot; By work-
ing on these tasks, participants learn about the kine-
matical model (direct/inverse kinematics, homoge-
neous transformation, DOF/DOM, Jacobian) as well
as sensor fusion and state estimation (probabilistic
model, Bayesian and Kalman filter). Teaching tools
are paper+pencil exercises, simulators (Python) and
the TurtleBot 2 robotics platform. The module con-
cludes with the final exam (certification).

A detailed description of all modules can be found
at [1] and on the project website (edlris.eu).

4. Implementation and Evaluation

In 2019, 19 Robotics and Al training courses were
conducted and evaluated using quantitative and qual-
itative methods. In sum, 271 people participated,
whereas 66% also successfully completed the cer-
tification. The majority (76%) of participants were
trainers. A survey among participants was adminis-
tered prior and after each course (Likert scale, open-
ended questions). Summing up the results, 92%
stated that their expectations towards the training
were met and over 90% that the face-to-face (f2f)
units were essential for their learning success. On
the contrary, only 80% agreed that the online units
were sufficiently aligned with the f2f units'. Fur-
thermore, participants mentioned that the gaps (in
terms of complexity) between the Basic and Ad-
vanced modules are too large, making it hard for
young trainees to fully understand the complex, ad-
vanced topics. In addition to the survey, quantita-
tive pre- and post-tests at Al Basic trainings were
conducted using a questionnaire with 10 multiple-

'average percentage over all 4 training modules
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choice knowledge questions. Data analysis (paired
t-test) showed a statistically significant learning gain
(t(21)=18.086, p<.001). Further data analysis is
ongoing and more extensive pre-/post-test evalua-
tions will be conducted during the upcoming training
courses.

5. Conclusions and Future work

This paper presented the European Driving Li-
cense for Robots and Intelligent Systems (EDLRIS),
a training and certification system to teach people
fundamental concepts of Robotics and Al. The first
training courses have been implemented and evalu-
ated in Austria and Hungary in 2019, and, due to the
great demand, further trainings and certifications will
be conducted in 2020. In order to get a better founded
assertion regarding the success of the entire system,
a more extensive quantitative evaluation will be im-
plemented. Furthermore, contents and structure of
the training modules will be adapted according to in-
sights and lessons-learned from the first implementa-
tions.
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Abstract. For public emergencies such as nuclear
accidents or natural disasters, an urgent and reliable
description as well as an evaluation of the environ-
ment form the basis of all organized search and res-
cue (S&R) team plans and actions. If this informa-
tion is not available the risks for the rescue services
increases dramatically. Mobile robots help to mini-
mize these risks by providing information about the
disaster site to rescue teams.

This paper discusses the needs and requirements of
mobile robots in S&R application areas such as nu-
clear disasters and evaluates results achieved during
the ENRICH 2019 trial based on the system architec-
ture of the mobile S&R robot ”Robbie” of UAS Tech-
nikum Vienna. The successful participation of the
ENRICH 2019 show that the mobile robot is capa-
ble of performing S&R actions during emergencies.

1. INTRODUCTION

One of the main reasons for deaths after disas-
ters is that it takes rescue teams too long to dis-
cover victims because they need to ensure their own
safety [13, 22]. Rescue robots are designed for situ-
ations like these that are too dangerous for humans,
e.g. hostage taking, nuclear or natural disasters [21].
S&R robots eliminate the need for human scouts
to expose themselves in hazardous environments by
creating an awareness of the situation at the disaster
site by providing immediate feedback to the rescue
workers before they enter the disaster site [22]. To
support the development of rescue robots, since the
beginning of the 2000s a number of robot trials and
competitions have been held, such as: "ELROB” -
The European Land Robot Trail , "EnRicH” — Eu-
ropean Robotics Hackathon [8], the “Arctic Robot
Challenge” [1], ”Rescue Robot League” [27], the
"DARPA” — Defence Advanced Research Projects
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Agency [6], the ”EuRoC” — European Robotics Chal-
lenges [10] or the "EU-FP7-ICARUS” [12] project
and many other. During these trials different tasks
need to be solved in various environments, rang-
ing from 2D and 3D mapping to the detection and
evacuation of people and manipulation of objects
[8,9,1, 27,6, 10, 12].

The remainder of this chapter the requirements for
mechanical design, sensor configuration and graph-
ical user interface (GUI) for S&R robots are evalu-
ated, followed by the evaluation of the implemented
hardware and the developed software of the FH Tech-
nikum Vienna in section 2. The results achieved with
these setup are highlighted and discussed in section
3. Concluding section 4 summarizes this work and
gives an overview of future work.

Table 1 summarizes the user requirements for S&R
robots collected in [7] and [24]. Disaster areas are

Requirements for Search and Rescue Robots
Topic Requirement
Dimensions The robot platform must fit on 2 stan-
dard Euro pallets (120cm x 160cm x
95cm) and must not weigh more than

100kg
Nr. of Operators Two people must be enough to operate
the S&R robot
Resistance TP65 for outdoor unmanned ground ve-
hicles (UGV)
Autonomy Must be possible to immediately switch
from autonomous to tele-operated
Sensing Video (RGB and/or thermal) cameras
for visual contact with victims, 3D sen-
sors to generate a structural map of the
environment
Communication Connection Joses will occur — ad-hoc

networks required

Simple interfacing technologies only on
high-level tasks

Must be capable of working in com-
plete darkness as well as light environ-
ments

Energy consumption should be Iower
than 2k VA for recharging

Camera view(s) from robot’s perspec-
tive + environmental perceptions
Sensor and status information of initial
state and sensors

Bird’s eye view map

Table 1. Summary of system requirements survey, data

taken from [7, 24]

Command and Control

Ambient Light

Energy Requirements

Graphical User Interface




usually covered with rubble and debris and can ex-
tend over several floors. Therefore the base plat-
form of the mobile robot must be able to manoeu-
vre in rough terrain and should be suitable for climb-
ing stairs. As stated in [22] track based robots are
designed for operation in uneven, debris-covered ter-
rain and are therefore ideally suited for natural dis-
asters, moreover these tank like tracks add stability
to the whole robot system [25]. Manipulation of ob-
jects is also often required by S&R robots, whether
for demining, interaction with victims or for generat-
ing an unique camera angle [24].

Now that the system requirements have been defined,
following chapter examines the approach of the UAS
to integrate these requirements into a S&R robot.

2. System Concept

Following section explains the hardware and sen-
sor setup of the robot of the UAS as well as the soft-
ware architecture for successful participation in the
EnRicH 2019 trial or other S&R applications.

2.1. System design

Figure 1 gives an overview of the implemented
hardware components which are described in detail
in the next section. As visualized the setup consists

Operator Station
Control
Panel
(Teleoperation)

Operator
Laptop
(GuI)

Mobile Robot

SICK 2D - LIDAR
Front
(2D Mapping/
Obstacle Avoidance)

4G Wifi Router
(Communication
Unit)

SICK 2D - LIDAR )
Back
(2D Mapping/
Obstacle Avoidance) /

Robot Arm
& End-
Effector

Ueye Kamera
(Teleoperation
Support/ POI
Detection)

Velodyne 3D-
Lidar
(30 Mapping) ]

______ “WiFL /Totemet

Realsense D435
Back

(Extension 3D
Mappin

Ethernet

Realsense D435
on EEF
(Teleoperation EEF)

USB 2.0
USB 3.0
Energy

2av 12v
Power Supply
Taurob

Embedded PC

(,Brain”)

Figure 1. System design overview

of two main parts, the "Mobile Robot” and the ”Op-
erator Station”. Although mobile S&R robots have
autonomous capabilities an operator station is needed
to provide a safety fallback and teleoperation system.
The mobile robot itself needs to be equipped with nu-
merous sensors ranging from 2D and 3D LIDARs for
obstacle avoidance and mapping, an robotic arm in-
cluding an end effector (EEF) for manipulation and
front and rear facing cameras for teleoperation.

The remainder of this chapter describes implemented
hard- and software needed to provide a mobile S&R
robot.
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2.2. Implementation - Hardware

The track steered mobile robot ”Tracker” of com-
pany taurob GmbH [31] is used as the basic building
block. Due to adjustable crawler tracks, a high de-
gree of off-road mobility is provided for maximum
versatility [31]. In addition a 4 degrees of freedom
(DOF) robot arm, of taurob GmbH, for manipula-
tion tasks was mounted. The Robot Operating Sys-
tem (ROS) API provided by taurob GmbH was the
decisive factor for this mobile robot platform. The
”Tracker”, manipulator and the current sensor setup
are depicted in figure 2.

Figure 2. Robbie hardware setup

(1) Velodyne PUCK-VLP16, (2) Wifi/ 4G Antenna, (3) Rear-Facing Intel Realsense D435, (4)
Garmin GPS Module, (5) LED Headlight, (6) Ueye UI-3240LE Camera with Camera Mount, (7)
Operation Indication Light, (8) Robotic Arm, (9) SSM1+ Radiatiometer with mounted Probe,
(10) Embedded PC, (11) Rear-Facing Internal Camera and SICK TIM-551-2050001, (12) taurob
Tracker, (13) Front-facing TIM-551-2050001, (14) Intel Realsense D435 mounted on EEF, (15)
EEF, (16) Front-Facing Internal Camera and Internal Headlights

To allow a maximum level of flexibility a modular
hardware setup consiting of a sensor rig was chosen,
thus enabeling easy replacement of sensors as well
as software to enable different S&R tasks. A Garmin
GPS module was attached to the sensor rig for out-
door localization. For GPS-limited indoor scenarios
depth and range sensors were used for localization
and mapping. Therefore, a 3D Light Detection and
Ranging (LIDAR) Velodyne PUCK VLP-16 [32]
and two SICK TIM-551-2050001 [30] 2D LIDARs,
one at the front and one at the rear, were attached to
the robot. In contrast to the 2D LIDARs mounted in
a planar arrangement, the 3D LIDAR was mounted
at an angle of 20° to Robbie’s direction of travel.



To enable accurate tele-operation, the LIDARs
were used in combination with appropriate software
(see section 2.4) to generate a 2D and 3D map of
the environment, giving the user insights into the
environment from Robbie’s point of view (POV), as
shown in figure 3 (8) (7). To include the environment
behind Robbie, which cannot be captured by the
3D LIDAR an RGB-Depth (RGB-D) camera, the
Intel D435 [18], has been mounted slightly facing
downwards on the sensor tower of the mobile robot.
An additional Intel D435 was mounted on the base
plate of the EEF to facilitate tele-operation of the
EEF and Image Based Visual Servoing (IBVS) [4].
In addition, a Phidgets Spatial Inertial Measurement
Unit (IMU) was mounted on the base platform to
improve localization using sensor fusion such as
Extend Kalman Filters and to provide input for
tip-over control [5, 20, 23]. To enable an elevated
POV, a universal camera mount with an attached
Ueye UI-3240LE [17] camera was mounted on
the sensor rig. Finally, to enable radioactive and
nuclear (RN) detection, the robot was equipped with
a radiometer SSM1+ [29].

The processing of this sensor data is a computa-
tionally complex process, so an industrial computer
with the following specifications was also installed
on Robbie’s base platform:

e 1 x Intel Core(TM) i7-7700T (4 Cores, 8
Threads) @ 2.90GHz

¢ 1 x GeForce GTX 1050 Ti
e 2 x 16GB DDR4 2133 MHz

The visualization of these different sensor read-
ings is a difficult task. Therefore an intuitive GUI for
Robbie was developed, which is discussed in the next
section followed by the implemented software.

2.3. User Interface

The user interface is the essential component for
promoting situational awareness [24]. To underline
this statement, the reader’s attention is drawn to the
fact that an S&R robot was rejected in the tragedy of
9.11. because of a too complex user interface [24].
Figure 3 shows the operator station, of the UAS
Technikum Vienna, with the associated user interface
and control panel.

As depicted on the left hand side of figure 3 the
user interface is split into three parts:
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1. Log-Screen / Command input (Figure 3 (1))
All log messages of the running software are
displayed here, this is a necessity to detect soft-
ware system errors. In addition, these terminal
windows can be used to start/restart any soft-
ware modules, this allows a maximum level of
flexibility.

2. GUI (Figure 3 (2))
The GUI allows the operator to perceive the en-
vironment from Robbie’s POV, which is a ne-
cessity for S&R robots [24]. This is achieved by
live streams from the cameras (8). In the default
configuration, the internal, forward and back-
ward facing cameras of the tracker and the el-
evated RGB camera are streamed. Furthermore,
the 2D map generated by the SLAM approach
discussed in section 2.4 is visualized in the mid-
dle part of the GUI as shown in (7), providing a
bird’s eye view for the operator. Finally, sensor
values (4), such as the internal temperature, bat-
tery voltage and estimated time to shutdown and
the detected emitted radiation are displayed in
counts per second. The developed GUI thus vi-
sualizes all suggestions for a good user interface
evaluated in [24], which further enables the op-
timization and interoperability of the available
resources and accelerates access to the victims
[7]. In addition, it is also possible to visualize
additional sensor values and information by a
simple mouse click (5), such as a 3D map, the
additional camera on the gripper, the backwards

Figure 3. left: Complete operator station right: GUI (1)
Logscreen / Command input, (2) GUI depicted in more
detail on the right, (3) Control panel for teleoperation,
(4) Sensor readings and emergency of switch, (5) Topic
visualisation checkbox, (6) Additional teleoperation tool-
box, (7) Map visualisation toolbox, (8) Image stream from
Robbie’s POV



facing camera, the autonomously detected peo-
ple or the local and global cost map for the au-
tonomous drive. In addition, the GUI can also
be used for tele-operation of the robot arm in
case the connection to the control panel fails, so
that a redundant tele-operation system is avail-
able (6).

3. Control panel (Figure 3 (3))
The control panel for teleoperation is used to
tele-operator Robbie. Here the steering of the
base platform as well as the robot-arm is han-
dled. Further the autonomous “come-home”
functionality can be started and stopped.

2.4. Implementation - Software

The Robot Operating System (ROS) [14] is used
as high-level API to evaluate sensor data and control
actuators. To improve the tele-operation process, a
GUI plug-in for rviz [19] has been developed, which
displays all sensor data and enables tele-operation of
the robot arm (see figure 3).

For 2D and 3D mapping the open source frame-
works Cartographer [15] and Octomap [16] were im-
plemented. The main advantage of the Cartogra-
pher algorithm is the ability to detect and calculate
online loop closure with graph optimization, which
minimizes the absolute translation and rotation errors
during map generation [15]. Octomap, on the other
hand, uses a probabilistic estimation of the occu-
pancy of 3D space and represents the environment in
octaves, which consists of occupied voxels [16]. Fig-
ure 4 visualize a generated 2D or 3D map with these
SLAM approaches using the LIDAR sensors listed in
section 2.2, recorded during the EnRicH 2019 trial.

To overcome the need for manual victim recogni-
tion and mappinga ROS package based on Octomap
and YOLO-ROS [2], a convolutional neural network
(CNN) for object recognition in RGB images, was
developed. By utilizing ray casting and the Bounding
Box the x and y coordinates of the victim, with the 6
DOF transformation between the map frame and the
RGB camera frame, is calculated. Detected victims
are visualized on the 2D and 3D map of the GUI By
utilizing 2 different sensors to calculate the position
of the victim thermal imaging cameras can also be
used for victim detection.

Further a ROS package for automatic drive
has been developed which uses the move-base-flex
framework [26], a flexible navigation framework,
and SMACH [3], a task level architecture for build-
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ing complex robot behaviors. Currently two path
planners are implemented. The Timed Elastic Band
(TEB) planner, a planner that takes travel time into
account. Movement is not calculated by the simu-
lated forces within the virtual elastic band, but by
optimizing the travel time and the path [28]. The
TEB planner calculates several feasible paths and se-
lects the fastest one. If the planner does not reach
the target, recovery behaviours are called up. After
each behaviour call the planner tries to reach the tar-
get again. If the target is still not reachable, the next
recovery behaviour is called. After all three imple-
mented behaviors are executed, the local scheduler is
switched to the Dynamic Window Approach (DWA)
algorithm. The DWA breaks up the global plan into
smaller windows, whereby only the current and the
next window are used to calculate the path [11]. The
speeds within the next window are calculated using
the current robot speed, the possible acceleration of
the robot and objects to be avoided. The target tol-
erance of the DWA planner is increased to ensure
that the target position can be reached. If the plan-
ner cannot reach the specified target, the recovery
behaviours are called up as with the TEB planner.
If the system still cannot reach the target after call-
ing all recovery behaviors, the execution of the local
and global planner is terminated. The SMACH script
then returns an error and waits for a new target. The
first implemented recovery behavior clears the cost
maps, the second moves the robot back for 0.3m or
5 seconds and the third turns the robot 360° on the
spot.

During the exploration the radioactivity is contin-
uously measured with the radiometer. After explo-
ration the nuclear radiation of the area around the
driven path is estimated using a Gaussian process.
The amount of radiation is then visualized and piled
over the 2D map together with a legend, further the
radioactivity is also visualized in the 3D map.
Section 3 now introduces the results achieved using
this system concept during the 2019 EnRicH trial.

3. Results and Discussion

Table 2 evaluates the System Readiness Level
(SRL) of the mobile Robot of the UAS Technikum
Vienna based on the survey evaluated in [7, 24]. Us-
ing the survey results of [7] and [24] Robbie’s SRL is
defined as 9/10, since only the IP65 resistance could
not be fulfilled.

Figure 4 visualizes the environment mapped dur-



Requirements for Search and Rescue Robots
Topic Robbie Status
Dimensions 112x58%120cm, ca 75kg
Nr. of Operators Only one operator required
Resistance Currently no IP certificate
due to active cooling
Can be easily switched using
GUI or control panel
Five image-streams pro-
vided, as well as 2D and 3D
maps
Automatic drive counters
connectivity problems
Intuitive GUI and operator
station developed
Can be operated during day
and night due to two LED
headlights
0.36kVA
Three image-streams on
start-up, additional 2 can be
started manually
Battery Voltage, Remaining
operation time and sensor
readings in status-bar
2D map on start-up, 3D map
can be visualised manually

Table 2. Evaluation of Robbie’s applicability using the
survey in [7] and [24]. For a description of the require-
ments see table 1.

Autonomy

B 5 XEE

Sensing

&l

Communication

Command and Control

Ambient Light

Energy Requirements

Graphical User Interface

i)
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ing the EnRicH 2019 as a 2D, 2D with marked ra-
dioactive sources and as a 3D map. As the 2D map
(upper left) depicts, the calculated loop closure of
the cartographer node distorted the map, resulting in
sloping walls. This also led to the fact that two ra-
dioactive sources were merged into one by the ra-
dioactive mapping approach, since the odometry of
the mobile robot is not recalculated during loop clo-
sure. As can be seen in figure 4, the generated 3D

‘ L A, )
Figure 4. Created maps: upper left) 2D map, upper right)

map overlaid with radioactivity measurements bottom) 3D
map

map is only partially dense, which means that a dense
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3D reconstruction was not possible in all regions.
This may be because the range of the 3D depth sen-
sors is too short or because the mobile robot was
driven through these regions too fast.

4. Conclusion and Outlook

In this paper the needs of S&R robots with re-

gard to the system requirements were examined from
the operator’s POV. Furthermore, the approach of the
UAS Technikum Vienna to implement the require-
ments was examined. Search and rescue robots have
to cover a wide range of application areas. Starting
with the robot’s tele-operation, autonomous object
recognition and imaging, up to the processing and vi-
sualization of sensor data for the operator. The search
and rescue robot of the UAS Technikum Vienna is
able to generate different maps (2D and 3D), has au-
tonomous capabilities like human victim recognition
or autonomous drive and has an easy to use graphi-
cal user interface for the operator. The tracker base
platform in combination with the robot arm and the
end effector allow a high off-road mobility and offer
maximum flexibility for manipulation.
Future projects will deal with the tasks of tele-
operation of the robot arm with the help of motion
controls, the enhancement of the human recognition
package by merging the already existing RGB data
with point cloud data using Bayesian sensor fusion
and visual servoing with reinforcement learning for
optimal gripper positioning. Further, to provide real-
world S&R capabilities it is necessary to look into
possibilities to water-proof the mobile robot.
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Abstract. Programming and re-configuration of
robots are associated with high costs, especially for
small- and medium-sized enterprises. We present an
ontology-driven solution that can automate the con-
figuration as well as the generation of process plans
and schedules thereby significantly lowering the ef-
forts in the case of changes. The presented approach
is demonstrated in a laboratory environment with an
industrial pilot test case.

1. Introduction

Robotics technology, which can prove high effi-
ciency, precision, and repeatability, is regarded as a
viable solution to cope with the increasing number
of individualized products. However, robot systems
still often do not meet the demands of small- and
medium-sized enterprises (SMEs) [8]. Especially,
since the programming of industrial robots is com-
plex and time-consuming. To be able to dynami-
cally adapt to new products, robotic systems need to
work autonomously. Autonomous systems, in this
context, means that robots systems can perform high-
level task specifications without explicitly being pro-
grammed [2]. To reach specific goals, such systems
should be able to receive goals and automatically se-
quence plans and execute them considering their cur-
rent state. In our previous work, we presented the
control architecture for industrial robots, which can
generate actions based on an product model by link-
ing product model, manufacturing process, and pro-
duction environment in an ontology [7]. In this paper,
we focus on the automated plan generation from the
ontology and present an approach for flexibly cou-
pling of the decision-making mechanism and ontol-
ogy.

In section 2, we will detail the architecture and im-
plementation. Finally, Section 3 concludes the paper
with a summary and an outlook on further research
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issues.

2. Architecture

The industrial robot control layer responsible for
the management of the robotics systems consists of
a World-Model and a Decision-Making component.
The decision-making mechanism (Planner) acts as
a link between the semantic model of the produc-
tion environment and the available robot system ca-
pabilities. The World Model contains the semantic
representation of the relevant objects in the robotics
system including their properties and relations. The
Planning Domain Definition Language (PDDL) is
used for decision-making and the world model is
conceptually defined using the Web Ontology Lan-
guage (OWL) standard. In this context, we transform
robotics domain knowledge represented in OWL to
PDDL as a targeted mechanism for planning. Multi-
ple applied robotic systems use PDDL for task plan-
ning and a lot of work has been done in combining
ontologies and Al planning base [5, 1]. Especially
ROSPIan [4], a ROS implementation, is a commonly
used implementation for this purpose. Based on
ROSPlan, OWL-ROSPIan [3] extends this approach
using a specialized OWL-Ontology as knowledge-
base instead of traditional databases. The disadvan-
tage of these approaches is the implementation ef-
fort for application. Even OWL-ROSPIlan requires
a predefined data format of the ontology. Our work
extends this research by automating the translation
of the input required by PDDL from the ontology as
well as from the PDDL back to the ontology without
any predefined ontology formats.

2.1. OWL-PDDL Mapping scheme

The basic building blocks of OWL, are triples con-
sisting of subject, predicate, and object. The ba-
sic building blocks of PDDL are actions and PDDL-
predicates. To avoid confusion of the two different
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Figure 1. Mapping OWL triples with PDDL predicates.
Also, three examples of different parameter length are
shown.

types of predicates, the latter ones are only referred
to as PDDL-Predicates. The general idea of this ap-
proach is the equalization of both building blocks, re-
lating triples with PDDL-predicates. Using a similar
approach like WebPDDL [6], OWL-IRIs are used as
PDDL-predicate names to identify the data distinctly.
OWL-predicates relate subjects and objects, as
verbs do in sentences, but PDDL-predicates are only
binary statements relating to multiple object parame-
ters. In practice, PDDL-predicates usually only have
one or two object parameters, which can be seen as
subject and object. The complete mapping scheme is
illustrated with three examples in Figure 1. PDDL-
predicates with only one parameter are mapped to
boolean-valued objects triples. In practice, PDDL-
predicates with more than two parameters are rare
because of their complexity (only 4 percent of all
predicates from all IPC (1998-2018) domains. But,
even these PDDL-predicates can be simplified to
multiple PDDL-predicates with two parameters.

2.2. Semantic PDDL Generation

The system automatically generates the PDDL3-
problem for the planner based on the information in
the ontology and PDDL-domain. This enables easy
and extensible programming of the system. The user
only has to specify the PDDL-domain with IRIs as
PDDL-predicate names and add the goal as triples
into a separate part (separate graph) of the ontol-
ogy database. The system automatically queries
all triples of NamedIndividuals regarding this pred-
icates, maps them to PDDL-predicates as mentioned
earlier and adds them to the init section in the PDDL-
problem. These queries are executed in parallel, and
the particular subjects are recorded. After query-
ing the triples, the OWL-types of the recorded sub-
jects are searched in the ontology and written into the
PDDL-problem. Since each NamedIndividual can
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have multiple parent-classes, but not all are relevant
for planning, only the ones which are specified in the
PDDL-domain are used.

3. Conclusion

The proposed knowledge-driven approach simpli-
fies the programming efforts of the industrial robot.
The code for the industrial implementation is gener-
ated automatically based on the defined rules, states
and actions. A system engineer only needs to de-
scribe the functionality of the assembly line or char-
acteristics of the product to be assembled, without
having to consider further engineering issues. In
our application, we successfully used the developed
mechanism for planning pick-and-place operations
of an industry robot by Kuka as well as the Festo por-
tal robot, when jointly applied for assembling of PCB
boards. As future work, we aim to consider product
assembly tasks involving more complex products and
production layouts.
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Abstract. Most Deep Reinforcement Learning (D-
RL) methods perform local search and therefore are
prone to get stuck in non-optimal solutions. To over-
come this issue, we exploit simulation models and
kinodynamic planners as exploration mechanism in
a model-based reinforcement learning method. We
show that, even on a simple toy domain, D-RL meth-
ods are not immune to local optima and require ad-
ditional exploration mechanisms. In contrast, our
planning-based exploration exhibits a better state
space coverage which turns into better policies than
the ones learned via standard D-RL methods.

1. Introduction

Deep-Reinforcement Learning (D-RL) has shown
promising results in challenging robotics domains
(e.g. [4]), but can be resource demanding and diffi-
cult to train. We assume that part of the difficulty of
learning good policies is related to insufficient ex-
ploration. Other D-RL methods like [1, 3, 6] par-
tially address the problem by increasing the number
of training steps, or by relying on the environment
implementation to provide exploring-starts to cover
a diverse enough state-space region. However, these
solutions are impractical and potentially dangerous
in robotics applications.

In the robotic context, directed exploration via
physically-based simulation appears more promising
to find good solutions more reliably and in less time.
Therefore, this work proposes the Planning for Pol-
icy Search (PPS) method that exploits a kinodynamic
planner in the exploration phase to collect data which
are then used to learn a policy, thereby eliminating
the planning time during execution. PPS is tested on
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Table 1. Description of the 1D double-integrator test en-
vironment: a point mass M can be moved in a one-
dimensional space position-velocity X = [z, &] by apply-
ing a continuous-valued force. Reward is received based
on the distance to two possible goal locations (G1, G=2).

> Heo-

Planner (RRT) Replay Buffer

s,a,r—s'

Simulated
Environment

Figure 1. Illustration of PPS Method

(SAC)

the point mass system described in Table 1 and com-
pared with D-RL approaches.

2. Planning for Policy Search

The presented PPS implementation (Figure 1)
consists of a Linear Quadratic Regulator (LQR)-
Rapidly Exploring Random Tree (RRT) [5] to cre-
ate a tree of data D = {(s,a,r,s’),...} from which
Soft-Actor Critic (SAC) [1] learns a policy. In
contrast to [5] quadratic programming-based finite-
horizon steering is used to extend the tree. In our
setup, all the environment interaction data created
by RRT are used as training data for the policy
rather than using only successful trajectories as ex-
pert demonstrations.

3. Evaluation

PPS is evaluated in the one-dimensional goal
reaching task presented in Table 1. The environment
contains two distinct goal locations. The agent re-
ceives a reward based on the distance to the goal
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Figure 2. The reward (heatmap) and reward distributions
(plots above and on the right of the heatmap) for the
double-integrator. The agent starts at x = 0 with z = 0.
The reward is based on the distance of the agent to the
goal positions 1 and 2.

Alg. DDPG PPO SAC PPS (RRT)
Non-Ex. 155% 20.8% 204% 179.3%
Ex. 59.0% 609% 61.0% -

Table 2. Final coverage as percent of visited bins.

points. The goals (z; = —2.5 and z2 = 6.0) are
chosen such that simply maximizing the reward from
the starting position leads to a suboptimal policy, i.e.
a local optimum (see Figure 2).

We compare the performance of PPS against the
prominent D-RL algorithms Proximal Policy Gradi-
ent (PPO) [6], Deep Deterministic Policy Gradient
(DDPG) [3], and SAC [1], using the implementation
in [2].The algorithms are run for 10° environment
steps; the D-RL algorithms use 100-step episodes.
To have a broader baseline we included an exploring-
starts mechanism where the initial state of the double
integrator is sampled uniformly. However, especially
in robotic tasks, exploring starts are impractical and
potentially dangerous and should be avoided.

We first compare the state-space coverage ob-
tained from data collected during the exploration
phase of the different D-RL approaches. The cov-
erage is calculated as the percentage of non-empty,
uniformly-shaped bins. The number of bins is set
to 4/10°/5 in each dimension, i.e. we expect 5 data
points in each bin on average. See Table 2 for the
final coverages.

Second, Figure 3 depicts boxplots of the evalua-
tion returns achieved by the D-RL algorithms after
training for 10° steps. DDPG achieves higher re-
wards without exploring starts, while PPO and SAC
profits from exploring starts. Our PPS method shows
improved performance compared to non-exploring
starts methods. Moreover, the policies learned with
PPS achieve performance comparable to the directly-
trained SAC policy with exploring starts.
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Figure 3. Box plot of the return distributions (11 indepen-
dent runs); each run consists of the mean of 10 evalua-
tion runs. The evaluation runs are performed towards the
end of the training process, equally spaced 10 learning
episodes apart.

4. Discussion

In this work, we highlighted that standard D-RL
algorithms are not immune to getting stuck in sub-
optimal policies even in a toy problem with two lo-
cal optima. The agent controlled by PPS explores a
wider part of the state space than D-RL methods that
focus on reward accumulation, even with exploring
starts. The data gathered by RRT are not biased by
reward accumulation and is thus more representative
of the environment.
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Abstract. We present and evaluate a particle fil-
ter based approach to predict the location and emis-
sion intensity of an arbitrary and unknown number of
stationary nuclear radiation sources from measure-
ment data taken by an autonomously navigating un-
manned ground vehicle (UGV).

1. Introduction

Due to the threat for humans caused by radiation
and the associated difficulties after a nuclear disas-
ter it is crucial to establish save methods of estimat-
ing the radiation distribution in certain affected ar-
eas. For this purpose we suggest to record radia-
tion measurement using an autonomous UGV. These
measurements are then processed by an adapted par-
ticle filter to generate a detailed radiation distribu-
tion model of the affected area. The approach pre-
sented in this paper has been successfully tested in
realistic conditions at the ENRICH 2019 — European
Robotics Hackathon, where live radiation sources
had to be detected inside the nuclear power plant in
Zwentendorf, Austria.

2. Related Research

In [1] Eric T. Brewer used an autonomously fly-
ing aerial platform to detect and locate a single ra-
dioactive point source using a particle filter. In [2]
M. Morelande et al. compare the performances of a
maximum likelihood estimator and a Bayesian esti-
mator approach to deal with an unknown number of
sources. D. Shah et al. present a particle filter in [3]
that manages to locate multiple radiation sources.

3. Problem Description

The setting is represented by a set © of unknown
radiation sources s and a set I" of radiation measure-
ments m. The goal is to generate a set ¥ of estimated
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sources 3§, that fits the number and intensities of the
real sources accurately. Each set holds elements de-
fined by a certain location x; and y; and an equivalent
radiation dose rate cy; in Svs~! that either represents
the actual measurement for the set I' or the theoret-
ical dose rate that would be measured at the exact
position of a source for the sets © and V. In general
for modelling the radiation intensity at a certain loca-
tion [ based on a set of sources O, we assume that the
radiation follows the principle of superposition and
the inverse-square-law which has been shown to be
applicable by multiple former approaches. [1, 2]:

Qs
o=+ D e
s€0 s

(1

where g, denotes the known background radiation
and d (1) the euclidean distance between the location
[ and the source s.

4. Particle Filter

In contrast to common particle filter use cases in
robotics (e.g., estimating a robots position), it is now
necessary to detect multiple sources that can co-exist
at the same time at different positions. In this context
particles are predictions of potential sources [3] with
each particle p € P being represented similar to real
sources by p =< p, Yp, ap, wy, > with an additional
weight w,, that is related to the probability that a cer-
tain particle has the parameters of a real source. At
first the particles are initialized uniformly distributed
on the plane where the measurements took place and
given a random intensity within the same range of the
measurement results. The algorithm then iteratively
performs the two steps of weighting and re-sampling
and adds estimated sources s to the growing set ¥
until a maximum number of iterations 7 is reached
and W represents a consistent estimation for © based
on the measurements I'.



4.1. Weighting

First an intensity estimation &, for a certain mea-
surement m is calculated based on the single particle
p € P to be weighted and the influence of all already
defined sources 5 € ¥ assuming the model presented
in Equation 1:

(07

P Qs
L7 dy(m)? +§€qu4.w-ds(m)2
(2

~

a(m) = opgr +

Using Equation 2 the relative mean square error con-
sidering all measurements is calculated like:

1 Oy, — Qi 2
== _— 3
ermse |F| Tnzer ( &m > ( )
where |I'| is the number of measurements. The
weight for a single particle is then calculated like:
1
Wy = ———— (G))
P I+ ermse

After all particle weights have been updated the
weights are normalized such that ) . p wy = 1.

4.2. Re-Sampling and Clustering

During re-sampling a certain percentage of parti-
cles with the highest weights stay the same, while
another percentage of particles with the smallest
weights are omitted and newly drawn from a uniform
distribution over the search space. The remaining
particles are re-sampled by adding Gaussian Noise
to the intensity «,, and position based on the parti-
cles weight:

®

diag(cpos, Tpos, Tint)
T T
[I;” y;” a;] ~N ([Ipa Yps Op Plo:_’ UZ;ZS’ -

The total number of particles stays the same. After a
defined number of iterations k the particles are clus-
tered using the mean shift algorithm as suggested by
[3]. The cluster centroids have the same structure as
a single particle and are then evaluated by the weight-
ing algorithm described in section 4.1. If the weight
of a cluster surpasses a defined threshold ¢ the cen-
troid is believed to be a real source and added to the
growing set of predicted sources V.

5. Experimental Evaluation - ENRICH 2019

As part of the TU Graz Robotics Team TEDUSAR
we participated in the European Robotics Hackathon
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Total Particles 2000
Random New Particles 10 %
Sustain Particles 10 %
Max Iterations 1T' 1000
Confidence Threshold ¢ 0.9
Clustering Interval & 20 iter
Position Deviation o, 0.5
Intensity Deviation ;¢ 04

Table 1: Hyper-parameters used for the ENRICH
2019

Figure 1: Source estimation based on live measure-
ment data during the ENRICH 2019 in Zwentendorf.

- ENRICH 2019 at the nuclear power plant Zwen-
tendorf, Austria' and were able to test our particle
filter approach under real world conditions. An au-
tonomous robot created a 3D map of the interior
while our approach created the mathematical model
of the real radiation sources and the radiation con-
tamination. The parameters used are shown in Table
1.

An experimental result can be observed in Figure
1. In this experiment two sources were placed in a
larger room. After traversing the room and collecting
radiation measurements our approach correctly pre-
dicted the location and intensity of the two sources.

6. Conclusion and Future Work

In this paper we presented the adaptation of an ap-
proach based on a particle filter to determine the loca-
tion and intensity for an arbitrary and unknown num-
ber of stationary radiation sources. This approach
has been successfully tested and proven to be appli-
cable in real world scenarios, like an accident in a
nuclear facility. Future work will focus on reducing
the number of hyper-parameters.

'www.enrich.european-robotics.eu
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Abstract.

The increasing number of robots and autonomous
vehicles involved in logistics applications leads to
new challenges to face for the community of Arti-
ficial Intelligence. Web-shop giants, like Amazon
or Alibaba for instance, brought this problem to a
new level, with huge warehouses and a huge num-
ber of orders to deliver with strict deadlines. Coor-
dinating and scheduling such high quantity of tasks
over a fleet of autonomous robots is a really com-
plex problem: neither simple imperative greedy al-
gorithms, which compromises over the quality of the
solution, nor precise enumeration techniques, which
make compromises over the solving time, are any-
more feasible to tackle such problems. In this work,
we use Answer Set Programming to tackle real-world
logistics problems, involving both dynamic task as-
signment and planning, at the BMW Group and In-
cubed IT. Different strategies are tried, and com-
pared to the original imperative approach.

1. Introduction

Industry 4.0 is bringing more and more interest
toward the digitalization of all productive stages in
the industrial field. Even before that, we all have
been witnesses of the big impact robotics had in
industry, by the automatization of repetitive tasks.
In the last years, thanks to the increasing computa-
tional power, Artificial Intelligence (Al) is spreading
as well, leading to the next step of the integration
between robots and production: the automatization
of complex tasks requiring reasoning. In this per-
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spective, optimization of logistics is crucial for large
companies, in order to save both time and money.
Still we are dealing with a production environment
which considers a fleet of robots floating around, ef-
ficiently performing tasks and carrying goods where
to model such NP-hard domains a high number of
constraints is needed. For this reason, a imperative
approach become more and more difficult to main-
tain, and cannot benefit from the numerous meta-
heuristics and optimizations (if not manually imple-
mented) already encoded inside the solvers of other
programming paradigms, like declarative program-
ming. Answer Set Programming (ASP) is a fast and
intuitive logic language, which already has many ap-
plications both in industry and in research (see Sec-
tion 2). In this paper we are going to investigate the
difference between the two paradigms, by replacing
the imperative part of the task schedulers used by two
companies, the BMW Group and Incubed IT, with an
ASP implementation. While classical languages are
well suited for greedy algorithms implementation,
declarative programming has other advantages: first
of all, the focus is on the description of the problem,
leaving all the solving details to the external solver.
Moreover, most solvers are configurable with a lot
of meta-heuristics to cut the search space: the user
has only to find the one which fits the problem better,
without implementing anything. Then, since logic
languages are basically based on enumeration tech-
niques, an ASP solver looks for the best solution,
or at least the best one in a given time. Depending
on the size of the instance, this behaviour leads to
huge computational time with respect to a greedy al-



gorithm. We are interested into the analysis of this
trade-off between greedy solving time and declara-
tive solution quality. This paper is based on Felicitas
Fabricius’ Master thesis [6].

2. Related Research and ASP Foundations

The demand for increased complexity and scala-
bility in industry automatization requires more and
more powerful techniques and algorithms. Impera-
tive programming is suitable to write a very problem-
specific solution. However, the development of such
kind of code can be really arduous, time expensive
and difficult to maintain. Optimal task scheduling
and planning, enriched by domain-based heuristics,
requires a huge amount of code lines if written with
an imperative language [17].

Answer Set Programming, and logic program-
ming in general, allows to tackle combinatorial prob-
lem in a very intuitive way, splitting the work into
two phases: the description of the problem and its ef-
ficient solving procedure [7]. The programmer has
only to care of the former, and this requires just
a fragment of the effort required by an imperative
language. Then, (s)he can use one of the solvers
available in the market, like Clingo or DLV, to find
the optimal solution, improving it with a large set
of meta-heuristics. Although the most common ap-
proach is the imperative one, many use-cases of ASP
applied to industry can be found in the literature: in
2017, Dodaro and Maratea designed a shift plan for
164 Italian nurses, calculating the optimal plan for an
entire year in just 50 minutes, using the state-of-the-
art solver Clingo [3]. Staying in the shift scheduling
field, the DLV solver was deployed to find the opti-
mal shift plan for seaport workers [14]. In this case,
the problem was complicated by the fact that the em-
ployees have different qualifications, and there were
different kinds of tasks. Finding of the optimal one
month-long plan required 8 minutes. A similar work,
considering different demands as well, is described
in [2]. Moving to other kind of industrial fields,
ASP was used in E-tourism in order to find the travel
which suits the user the most [1]. In [12] the au-
thors used ASP for phone routing in call centers. The
customer was classified in a category and assigned
directly to the human operator. We can find plenty
of ASP applications regarding task assignment and
routing as well. Examples can be found in [4], [16],
[10], [13] and [15].

Answer Set Programming is based on the stable
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model semantics, presented by Gelfond and Lifschitz
in [11] for dealing with logic programs with nega-
tion as failure. With the following we give a quick
overview of the language semantics [2, 7].

A rule r in a logic program is an expression of the
form

h<ai,...,0m, Qmil,--., 0y (D)
where a1, . . ., a, are atoms of the form s(t1, ..., tx),
in which s is a predicate symbol and %1, ..., t; are

terms, viz. constants, variables, or functions, and —
stands for default negation. The head h of r is ei-
ther an atom a, a choice {a}, or the special sym-
bol L. If h is an atom and n = 0, we call r a fact,
a choice rule if h is {a}, and an integrity constraint
if his L; we skip < or L, respectively, when writ-
ing rules (1) with n = 0 and integrity constraints.
A logic program P is a set of rules and constraints.
In the first-order case, terms occurring in P may
include arithmetic expressions, and atoms may be
based on relational operators like “<”. On the other
hand, a term, atom, rule, constraint, or program is
ground if it does not include variables, arithmetic ex-
pressions, or relational operators. A first-order pro-
gram P stands for the set grd(P) of all instances
of rules and constraints constructible by substituting
ground terms for variables and evaluating arithmetic
expressions as well as relational operators in the stan-
dard way. For details on ground instantiation, we
refer the interested reader to [5, 9]. The semantics
of a logic program P is given by its stable models,
which are particular sets of (true) ground atoms as
defined in the following. The reduct PX relative to
a set X of ground atoms is the set of all rules and
constraints in grd(P) such that {a1,...,an} C X,
{ams1,...;an}NX =0,anda € X if h = {a}isa
choice for a rule (1). Then, X is a stable model of P
if it is C-minimal among the sets of ground atoms
such that, for all rules in P¥X, {a,...,an} C X
implies h € X ora € X if h = {a}. In addition to
rules, a logic program can contain #minimize state-
ments of the form

#minimize[l; = w1 QLy, ..., 0, = w,QL,].

Besides literals ¢; and integer weights w; for 1 <
¢t < n,a #minimize statement includes integers L;
providing priority levels [8]. The #minimize state-
ments in P distinguish optimal answer sets of P in
the following way. For any set X of atoms and inte-
ger L, let Zf denote the sum of weights w; such that



f; = w;QL occurs in some #minimize statement
in P and ¢; holds w.r.t. X. We also call Z‘f the util-
ity of X at priority level L. An answer set X of P
is dominated if there is an answer set Y of P such
that ¥ < ¥ and ©Y, = % forall L' > L, and
optimal otherwise.

3. ASP and Logistics: Two Cases-Studies

To evaluate ASP in an industrial environment, we
discovered two interesting case-studies. Both are re-
lated to Fleet Management Systems (FMS) - one at
Incubed IT, the other one at the BMW Group. In
both cases, the imperatively described task allocation
strategy was replaced by an ASP-based program.

3.1. The BMW Use Case: Task Assignment and
Charging Management

By the following, the requirements for the FMS
at the BMW Group are described. Here, two ele-
mental decisions have to be made. These are on one
hand the assignment of tasks to the vehicles and on
the other hand the assignment of charging and park-
ing stations to the same vehicles. Both decisions are
made online, which means that neither tasks nor the
needs for charging (and parking) are known before-
hand. With fask we mean a transportation job of a
container, accomplished by a vehicle, from a station
to another one. The required time is estimated from
the Euclidean distance.

For the task assignment, the standard C# sched-
uler applies a trivial first-in-first-out (FIFO) strategy,
which means that earlier created tasks have to be ex-
ecuted first. By that, the criterion for the selection
of tasks, formulated as a constraint, is not to assign
a task if there is another appropriate task with earlier
creation time assignable. Vehicles on the field must
have a battery level at a minimum of 25 %, and charg-
ing vehicles a battery level of 40 % to be assigned to
tasks. The optimal assignment of vehicles to tasks
is based on the traveling costs that are set to be the
Euclidean distance between robots and the first goal
of the assigned task. The used optimization criterion
ensures the lowest traveling cost for the tasks with
earliest time of creation.

In ASP a different optimization criterion is used,
in order to achieve a better overall quality of the so-
lution. The Euclidean distance for all assignments is
summed up and minimized, in order to have a better
make-span and save more energy. Considering T" and
R as the set of tasks and robots respectively, task as-
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signment is encoded by the following logic formulas:

vVt € T(|{r € R|(assign(t,_)}| <1)
Viti,to € T,Vr € R
(assign(t1,r) A assign(ta,r) Aty # ta = 1)

The first formula may (non-deterministically) as-
sign each task to one robot at most. The second one
makes sure that two different tasks are not assigned
to the same robot. The non-deterministic choice is
driven by the optimization algorithm. In ASP, above
formulas are encoded as follows (:- stands for < ):

Listing 1 ASP encoding of the task assignment

0{assign(T,R):robot(R,_,_,_)}1:—
task(T,_,_).

assign(T,R),

assign(T2,R), T != T2.

The first rule makes use of both a conditional lit-
eral and a cardinality constraint. A conditional literal
a : by,..., by, is a nested implication, where a and
b1, ..., by, can be seen as the head and the body of a
rule respectively. The cardinality constraint is used
to ensure that each task is assigned to one robot at
most. Given z{head}y :- body, the meaning is that,
for each different body instantiation (for each task
T in our case), the head is instantiated from z to
y times (from O to 1 in our case). In our code this
implies that, for each task 7', at most one robot R
is assigned inside the head. The second rule is an
integrity constraint. In the case that after the task
assignment was performed unassigned vehicles are
remaining, these free vehicles are assigned to charg-
ing stations and parking places. The rules used for
this particular assignment problem are defined sepa-
rately for vehicles on the field and vehicles currently
in charging stations. A charging vehicle can only
be assigned to a charging station if the battery level
is below 90 %. Vehicles on the field can be sent to
charging stations any time, regardless of the current
battery level. Charging vehicles can go to a park-
ing place only if the battery level is above or equal
90 %, whereas vehicles on the field can go to parking
places independently from the battery level. In the
original implementation, priority is given to vehicles
with the lowest battery level. Similarly to the FIFO
strategy in task assignment, first we assigne the least
charged vehicle to the closest station, then the second
least charged one, and so on. However, this imple-
mentation shows its limits on circumstances where
multiple robots have critical battery levels that differ



only in a very small amount. For this reason, and
since our goal with the declarative encoding is to im-
prove the overall quality of the assignment, in the
ASP implementation we minimize the overall trav-
elling distance, like we do for the task assignment.
The rules and constraints needed are very similar to
the ones we used before, where PR1, PR2 are some
user-defined parameters required for the assignment:

Listing 2 ASP encoding of the charge assignment -
assignment rule

O0{charge(S,R): station (S,PR1,PR2)}I
robot (R,PR1,PR2, ).

3.2. The Incubed IT Use Case

Incubed IT is a robotics company focused on soft-
ware development for smart robots. They typically
deal with problems of the same type as the previ-
ous use-case we just discussed above. Thus the main
topic is multi-robot planning and scheduling. For this
reason, programmers at Incubed IT designed a highly
parameterized platform which, if configured accord-
ingly, can face a lot of different situations, like ware-
houses of online traders, logistic centers of super-
markets and car manufacturing plants. Fortunately,
this platform is quite modular, partially centralized
and partially decentralized, with a main FMS mod-
ule which is responsible for the coordination of the
many parts of the system. Thanks to this design, re-
placing the old solving module with the ASP solver
has been easy to do.

In the imperative implementation, two kinds of
optimization costs can be used: FIFO and global op-
timum. The former does not require more explana-
tions, while the latter considers a priority number as-
sociated to each task. Regarding the task assignment,
we stick to the important constraint rule in ASP: we
can assign only one vehicle to a task, and only one
task to a vehicle at a time. The same rules and con-
straints we used for the BMW use-case thus fit to In-
cubed IT software as well.

We can now focus on the other problem to solve,
the charge assignment. The charging strategy here is
more sophisticated than in the BMW-case, and robot
can be sent to charge for four different reasons: fixed
time slot charging: robots are assigned to charging
stations due to a reached time slot; critical charg-
ing: robots are assigned to charging stations due to a
battery level below the critical charging limit; busy
charging: robots are assigned to charging stations
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due to a battery level below the busy charge limit;
idle charging: robots are assigned to a charging sta-
tion due to not enough appropriate assignable tasks.
Obviously, all of these parameters (critical and busy
charging limit, duration of the time slot) can be cus-
tomized by the user. We define now the rules and
constraints used to implement the third situation:

Listing 3 Assignment of busy charging robots

0{charge (S,R busy) chargingstation (S
s—s-s-5-), robot_station (R,S)}1

robot_charge_opt(R,BL, automatic_mode , _
,-,-,BCL,CCL), BL <= BCL, BL > CCL.

Listing 4 Avoidance of double allocations

:— charge(S,R,_),charge(S,R2,_) ,R!=R2.
:— charge(S,R,_),charge(S2,R,_),S!=S2.
assign(T,R),charge(_,R,_).

In contrast to the BMW case-study, here we do not
handle the two problems of task and charge assign-
ment separately: we optimize two different weighted
criteria. The most important one is the minimization
of the overall travelling distance of robots assigned
to tasks or to charging stations due to forced time-
slot, critical or busy charging. Then, the same op-
timization, with a lower weight, is applied to robots
assigned to parking places and charging stations for
idle charging.

4. Evaluation of Runtime and Quality for
both Case-Studies

In this section, we present a brief evaluation of
both case-studies. We designed several instances
for each case-study involving different numbers of
robots, orders, charging and parking stations to test
different scales. Subsequent, the runtime as well as
the quality of the solutions for these scenarios are
compared. Furthermore, since Clingo can combine
different meta-heuristics and parallelization strate-
gies for the solving process, we tested all the com-
binations between them in order to find, for each
case, the best one. As a result of the evaluation of
these solving approaches [6], we chose the branch-
and-bound-based optimization strategy in combina-
tion with splitting-based search multithreading and
four threads for the two BMW assignment prob-
lems, while for Incubed IT the best approach is the
Vsids Heuristic combined with compete-based mul-
tithreading with four threads.



The systems of BMW and Incubed IT have been
tested on devices with the following specifications.
At BMW an Intel(R) Core(TM) i5 with a 1.70GHz
processor and 8GB RAM is used. At IncubedIT an
Intel(R) Core(TM) i5- 7200U is used with a 2.50GHz
processor and 8GB RAM. On both systems Windows
10 is installed. Clingo is running in version 5.3.0
with Gringo V5.3.0. and Clasp V3.3.4.

4.1. Evaluation at BMW Group

In Table 1, the mean value and the standard de-
viation of the runtimes for all test scenarios (10 for
each scenario) are shown and the number of solved
test runs is given. If the optimal solution is not found
within the BMW-specific time limit of 60 seconds,
the solving process is aborted. Consequently, these
aborted test runs are not considered in the calcula-
tions for the mean and standard deviation. The mean
performance of the imperative method is for every
scenario the best. As shown in the tables, two differ-
ent ways of using ASP were tested. In the first one,
the solver is directly called inside C#, while in the
second we run ASP standalone. The serious perfor-
mance issues of the former indicate potential for an
improved incorporation of the ASP call in C#.

The instances are formed as follow: for the test
scenario 1, we have 5 tasks and 5 robots; for the sce-
nario 2, 20 tasks and 12 robots; finally, scenario 3 has
50 tasks and 30 robots. The positions of the robots
and stations of the tasks are randomly placed on a
1000 m x 1000 m area.

Looking at the results in Table 1 the imperative
solution seems the winner, but in ASP not the Eu-
clidean distance for single robot is optimised, but
the traveling costs of the whole fleet. So, by using
ASP, we are rewarded with far better quality solu-
tions, as witnessed by Table 4, where traveling costs
for scenario 3 are shown. This scenario is particu-
larly interesting, since ASP was not able to find the
provable optimal solutions within the time limit. Al-
though, while looking for that, solvers like Clingo
keep returning the best solution found so far, as soon
as it finds a better one. Looking at Table 4, we can
see that the best ASP solution found within 1 second
considerably beats the C# solution. However, in this
scenario we do not get an improvement with higher
time limits. Results with the other scenarios are sim-
ilar, with the imperative implementation never being
close to the ASP traveling distance. This particular
problem highlights the performance-quality trade-off
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between the two approaches.

In Table 2 the mean value and the standard devia-
tion of the runtime of every test scenario is shown,
considering the charge and park problem. Same
rules as before are applied regarding the time limit
of 60 seconds. The instances are formed as follow:
2 charging stations (CS), 3 parking places (PP) and
3 robots (R) for scenario 1; 7 CS, 14 PP and 3 R for
scenario 2; finally, 17 CS, 33 PP and 30 R for sce-
nario 3.

The imperative C# approach shows for all
scenarios a better performance than the ASP-
implementations, which, as in the task assignment
problem, makes use of a different optimization, mini-
mizing the overall travelling distance between robots
and stations, while the C# program prioritizes the
robots with the most critical battery level. In con-
trast to the task assignment, in this case the problem
is too complex to ASP, which does not succeed in
finding good quality solutions (Table 4) and, in some
cases, it does not succeed to find a solution at all.
This observation leads to the assumption that the en-
coding of the park and charge assignment problem in
ASP is not optimal, as the performance of the task
assignment encoding for similarly scaled instances is
significantly better.

4.2. Evaluation at Incubed IT

In the Incubed IT use-case, the two problems, task
assignment and park and charge assignment, are han-
dled together, according to our characterization in the
previous section. In Table 3, the mean value and stan-
dard deviation of the runtimes for the test scenarios
solved with the original code and with the in-Java
integrated ASP are shown, together with standalone
ASP. A timeout is reached when a test run requires
more than 30 seconds to find an optimal solution.
Test runs that reached the timeout are not considered
in the calculation for the mean and the standard de-
viation. The testing environment has a floor area of
100 m x 86 m where the robots are freely movable.
The three scenarios we are going to test are formed
as follows: for scenario 1, we have 5 robots (R),
3 charging stations (CS), 7 parking places (PP) and
5 tasks (T); 10 R, 6 CS, 14 PP and 10 T for sce-
nario 2; finally, for the last scenario we have 30 R,
18CS,42PPand 15 T.

As we would expect from an NP problem solver,
the reader can notice from the results that ASP is
faster than the Java program while solving small



Test C# ASP within C# Standalone
Scenario Implementation Implementation ASP

wlms] o [ms] #TRS | p[ms] o[ms] #TRS | p[ms] o [ms] #TRS
1 0.00 0.00 10 415.50 18.16 10 8.30 8.92 10
2 0.30 0.48 10 2,802.20 4,445.21 10 1,428.90 2,746.91 10
3 0.00 0.00 10 / / 0 / / 0

Table 1: Runtime and solved test runs (TRS) for the different BMW task assignment implementations

Test C# ASP within C# Standalone
Scenario Implementation Implementation ASP
pwlms] o [ms] #TRS | w[ms] o[ms] #TRS | u[ms] o [ms] #TRS
1 0.00 0.00 10 473.80 81.24 10 13.90 8.88 10
16.20 4.87 10 788.10 350.75 10 341.70 404.17 10
3 1,753.30 127.58 10 / / 0 / / 0

Table 2: Runtime and solved test runs (TRS) for the different BMW park and charge assignment implementa-

tions

instances, regardless of the number of constraints.
Though, once the size of the problem hits the com-
binatorial blow-up point, it fails to return an optimal
plan within time.

To measure the quality of the solution, we con-
sider the two metrics we described in the previous
section: most important are the overall travelling
costs for task assignment and critical charging; the
travelling distance of the other kinds of assignment
(like for parking places) are then considered. Since
the optimization strategy adopted with ASP is very
similar to the one already used in the original pro-
gram, in all the scenarios in which the optimal declar-
ative solution is found within time, its quality w.r.t.
to these metrics coincides to the Java solution qual-
ity. For this reason, like we did for the BMW case,
when the ASP solver fails to find the optimal solu-
tion within the limit, we are interested in the analysis
of the best ASP solution found so far. This situation
shows up in the third scenario. Looking at Table 4,
where the total cost (which is the weighted sum of the
two metrics) is shown, it can be seen that the original
implementation in Java provides a significantly faster
and better solution than the ASP implementations.

5. Conclusion

The goal of this work is to make a comparison,
in different real-world logistics scenarios, between
the classic imperative paradigms and the declarative
ones. Answer Set Programming was chosen because
of its high efficiency, as witnessed by the many ap-
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plications in industry. To achieve that, the FMS of
BMW and Incubed IT were first analyzed, and then
integrated with a new scheduler modeled in ASP. In
the previous section, results and comparison between
the two approaches in both companies are shown and
analyzed. As we expected, there is not a clear winner
between the two systems, but this comparison high-
lighted the pros and cons of both languages, whose
performance highly depend on the kind and size of
tasks to be accomplished. One main quality criterion
of the FMS is the performance and the quality of the
results. To evaluate the criterion, test scenarios have
been set up that are based on typical use-cases of
the FMS. Regarding the BMW use-case, the imper-
ative solution is significantly faster than the declara-
tive one, especially for the task assignment problem.
However, in ASP we make use of a different opti-
mization technique, which rewards with better solu-
tions . This different strategy led to a trade-off be-
tween solving time and solution quality: if the im-
perative method is faster, ASP finds better solutions.
The Incubed IT use-case gave instead different re-
sults, making clear how a very specific scenario can
benefit from a particular approach rather than a gen-
eral one. However, a common behavior can be seen
from both BMW and Incubed IT, which represents
the main weakness of ASP and enumeration tools in
general. It does not scale over the size of the prob-
lem. Yet in the IncubedIT scenario in which ASP
does not experience a combinatorial blow-up, it finds
the best solution in less time than Java, without com-



Test Java ASP within Java Standalone
Scenario Implementation Implementation ASP

W [ms] o[ms] #TRS | p[ms] o[ms] #TRS | p[ms] o [ms] #TRS
1 278.30 226.64 10 121.30 143.50 10 7190 14.96 10
2 491.30 223.23 10 495.00 339.16 10 278.67 236.67 10
3 2,572.80 4,894.22 10 / / 0 / / 0

Table 3: Runtime and solved test runs (TRS) for the different Incubed IT assignment implementations

Use-case Imperative | ASP after 1 sec | ASP after 5 sec | ASP after 60 sec
BMW task assign. 7242 3834 3834 3834
BMW park & charge assign. 3217 6979 6530 4669
Incubed IT assign. 186 293 302 257

Table 4: Traveling costs for all the use-cases [m]

promising over the quality.

To conclude, this work has shown that declarative
programming can perform well on real-world logis-
tics scenario, especially when we are interested in the
quality of the optimization. Another important ad-
vantage of this approach is the separation between
the description and the solving of the problem. In
fact, performance can be an issue with ASP, espe-
cially in a dynamic planning scenario, but fortunately
state-of-the-art solvers like Clingo or DLV come with
many meta-heuristics and optimizations to play with.
Once the proper settings for the specific scenario are
found, solving time can improve considerably, with-
out having to modify the code at all. In all the cases
in which a greedy algorithm is proven to perform
well, in terms of both quality and solving time, im-
perative programming still remains the best choice.

References

[1] Reasoning Web. Semantic Technologies for Intelli-
gent Data Access - 9th International Summer School
2013, Mannheim, Germany, July 30 - August 2,
2013. Proceedings, volume 8067 of Lecture Notes
in Computer Science. Springer, 2013.

M. Abseher, M. Gebser, N. Musliu, T. Schaub, and
S. Woltran. Shift design with answer set program-
ming. Fundam. Inform., 147(1):1-25, 2016.

C. Dodaro and M. Maratea. Nurse scheduling via an-
swer set programming. In M. Balduccini and T. Jan-
hunen, editors, Logic Programming and Nonmono-
tonic Reasoning, pages 301-307. Springer Interna-
tional Publishing, 2017.

E. Erdem, E. Aker, and V. Patoglu. Answer set pro-
gramming for collaborative housekeeping robotics:
representation, reasoning, and execution. 5(4):275-
291, 2012.

(2]

(3]

(4]

40

[5] W. Faber, N. Leone, and S. Perri. The intelligent
grounder of DLV. In E. Erdem, J. Lee, Y. Lierler,
and D. Pearce, editors, Correct Reasoning: Essays
on Logic-Based Al in Honour of Vladimir Lifschitz,
pages 247-264, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

F. Fabricius. ASP-based Task Scheduling for Indus-
trial Transport Robots. Master’s thesis, Graz Univer-
sity of Technology, 2019.

M. Gebser, R. Kaminski, B. Kaufmann, and
T. Schaub. Answer set solving in practice. Synthe-
sis Lectures on Artificial Intelligence and Machine
Learning, 6(3):1-238, 2012.

M. Gebser, R. Kaminski, A. Konig, and T. Schaub.
Advances in gringo series 3. In J. P. Delgrande
and W. Faber, editors, Logic Programming and Non-
monotonic Reasoning, pages 345-351, Berlin, Hei-
delberg, 2011. Springer Berlin Heidelberg.

M. Gebser, R. Kaminski, and T. Schaub. Ground-
ing recursive aggregates: Preliminary report. 2016.
Workshop proceeding.

M. Gebser, P. Obermeier, T. Schaub, M. Ratsch-
Heitmann, and M. Runge. Routing driverless trans-
port vehicles in car assembly with answer set pro-
gramming. 18(3-4):520-534, 2018.

M. Gelfond and V. Lifschitz. The stable model se-
mantics for logic programming. In R. Kowalski,
Bowen, and Kenneth, editors, Proceedings of Inter-
national Logic Programming Conference and Sym-
posium, pages 1070-1080. MIT Press, 1988.

N. Leone and F. Ricca. Answer set programming:
A tour from the basics to advanced development
tools and industrial applications. In Reasoning Web.
Web Logic Rules: 11th International Summer School
2015, pages 308-326, 07 2015.

V. Nguyen, P. Obermeier, T. C. Son, T. Schaub, and
W. Yeoh. Generalized target assignment and path

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]



[14]

[16]

finding using answer set programming. 1JCAI Inter-
national Joint Conference on Artificial Intelligence,
pages 12161223, 2017.

F. Ricca, G. Grasso, V. Lio, and S. Iiritano. Team-
building with answer set programming in the gioia-
tauro seaport. Theory and Practice of Logic Pro-
gramming, 12(03):361-381, 2012.

Z. G. Saribatur, E. Erdem, and V. Patoglu. Cogni-
tive factories with multiple teams of heterogeneous
robots: Hybrid reasoning for optimal feasible global
plans. In 2014 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 2923—
2930, 2014.

S. Schieweck, G. Kern-Isberner, and M. ten Hompel.
Using answer set programming in an order-picking
system with cellular transport vehicles. /IEEE Inter-
national Conference on Industrial Engineering and
Engineering Management, pages 1600—1604, 2016.
M. Selmair, S. Hauers, and L. Gustafsson-Ende.
Scheduling charging operations of autonomous agvs
in automotive in-house logistics. ASIM, 2019.

41



Learning Manipulation Tasks from Vision-based Teleoperation

Matthias Hirschmanner, Bernhard Neuberger, Timothy Patten, Markus Vincze
Automation and Control Institute, TU Wien, Vienna, Austria

{hirschmanner, neuberger, patten, vincze}@acin .tuwien.ac.at

Ali Jamadi
Ferdowsi University of Mashhad, Mashhad, Iran

a.jamadi@mail . .um.ac.ir

Abstract. Learning from demonstration is an ap-
proach to directly teach robots new tasks without ex-
plicit programming. Prior methods typically collect
demonstration data through kinesthetic teaching or
teleoperation. This is challenging because the hu-
man must physically interact with the robot or use
specialized hardware. This paper presents a teleop-
eration system based on tracking the human hand to
alleviate the requirement of specific tools for robot
control. The data recorded during the demonstration
is used to train a deep imitation learning model that
enables the robot to imitate the task. We conduct ex-
periments with a KUKA LWR IV+ robotic arm for the
task of pushing an object from a random start loca-
tion to a goal location. Results show the successful
completion of the task by the robot after only 100 col-
lected demonstrations. In comparison to the baseline
model, the introduction of regularization and data
augmentation leads to a higher success rate.

1. Introduction

Robot manipulation tasks in domestic services and
industry are highly complex due to the various sys-
tem components that are necessary to achieve the
goal. As a result, it is difficult to directly program
robust robot manipulation strategies. Reinforcement
learning is an alternative approach that alleviates the
requirement for human programming and instead en-
ables a robot platform to learn from its own experi-
ence [4, 11, 15]. However, this approach suffers from
substantial training time, with some work reporting
training times in the order of months [15]. Learning
from demonstration (LfD) is an attractive solution in
which a human illustrates how to perform a task and
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Figure 1. Teleoperating the robot arm using hand tracking
from RGB images. The demonstrations are used to teach
a policy to perform a task (e.g. push the box to the goal).

the robot attempts to imitate [21, 2]. This requires no
human programming and far fewer training examples
compared to reinforcement learning methods.

Demonstrations for learning are often collected
through kinesthetic teaching [1] or teleopera-
tion [27]. However, these methods are cumbersome
because the human must either physically interact
with the robot to generate example motions or con-
trol the robot system with specialized hardware that
the operator may not have experience with. De-
spite the advances of teleoperation systems that en-
able novices to improve task performance after only
a small number of attempts [8], the hardware is not
always readily available. LfD can also leverage sim-
ulation [18] or by directly observing human activ-
ity [9, 13, 16, 24]. But these approaches demand ad-
ditional solutions to transfer across domains.

To that end, we present an end-to-end system for
LfD through vision-based teleoperation, which al-
leviates the necessity for virtual reality and teleop-



eration hardware while still directly controlling the
robot platform to avoid the domain shift. We directly
track the human hand using a webcam and use the es-
timated hand pose to control the end-effector of the
robot. The demonstration data are used to train a neu-
ral network, based on the architecture of [27], to en-
able imitation by the robot system. We extend this
work to include different regularization techniques
during training and data augmentation to manage
changes in brightness and imperfect demonstrations.

Our method is implemented for the KUKA LWR
IV+ [3] robotic arm for the task of pushing objects.
Experiments show that the robot is able to replicate
the demonstrated task with as few as 100 recorded
examples. In comparison to the baseline [27], our
inclusion of regularization and data augmentation
achieves a higher success rate.

In summary, we make the following contributions:

e A vision-based hand tracking system to teleop-
erate a robot arm to perform manipulation tasks.

e Training of a neural network with our generated
teleoperated data that enables task imitation.

e Evaluation of the generalization of the imitation
learning to unseen configurations.

e Improvements over the baseline by including
regularization methods during the training.

The remainder of this paper is as follows. Sec-
tion 2 reviews related work and Section 3 presents
our approach. In Section 4 we present our experi-
ments and results. Section 5 concludes the paper.

2. Related Work

A popular approach to program a robot to per-
form manipulation tasks is learning from demonstra-
tion [21, 2]. This involves recording example ma-
nipulation sequences and then to transfer the trajec-
tories to the robot platform to perform the task itself.
Trajectories are typically recorded using kinesthetic
teaching [22, 19, 1], teleoperation [27, 10, 20] or gen-
erated in simulation [6, 18]. Given a set of demon-
strations, these methods find an appropriate mapping
in order to replicate the closest matching trajectory,
often making adaptations due to the variation be-
tween the current and demonstrated scenarios. Some
approaches represent the demonstrations as a set of
primitives by encoding the trajectories and then gen-
erating robot motions through probabilistic methods,
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e.g., Gaussian mixtures [5], Gaussian processes [22]
or dynamic movement primitives [19, 12]. This al-
lows for a more efficient search for the most appro-
priate trajectory to replicate.

More recent works apply deep neural net-
works to learn visuomotor policies that map in-
put images to robot trajectories through behavioral
cloning [27,20]. A network is trained on demon-
strations to learn the image-to-action mapping such
that a closed-loop controller commands the manip-
ulator through sequences of states to complete the
task. In this line of work, teleoperation is the pre-
ferred method to kinesthetic teaching because the hu-
man does not contaminate the training images.

Extensions have been made that generalize the
models to multiple tasks, which allows few- or even
one-shot learning of new tasks [6, 26]. These meth-
ods apply meta-learning to efficiently adapt a learned
model, trained on many prior tasks, to a new task
that is to be imitated. James et al. [10] take a dif-
ferent approach and use metric learning to create
a task embedding. Imitating a new demonstration
is achieved by training a control network to trans-
late learned task embeddings into desired actions.
Huang et al. [9] propose neural task graphs to learn
the common structure of tasks and the conjugate re-
lationship between observed states and actions.

Another direction of work is to learn by using only
videos of humans performing tasks, e.g., [13, 16, 24].
However, human demonstrations do not provide suf-
ficient supervision for learning. Therefore, other
approaches explicitly learn the relationship between
human and robot demonstrations in order to directly
imitate human tasks in the online setting [26].

In this work, we build on the approaches for learn-
ing visuomotor policies through behavioral cloning.
In particular, we adapt the methodology presented by
Zhang et al. [27] by replacing the teleoperation hard-
ware with a vision-based system. Our work is com-
plementary to it as well as to the extension that in-
corporates human demonstrations [26] by using our
teleoperation system as an alternative.

3. Approach

This section describes our approach for learning
from demonstration, an overview is given in Fig-
ure 2. For teleoperation, a webcam is used to track
the hand (Section 3.1) to generate positions that con-
trol the robot’s end-effector (Section 3.2). During
the trajectory, the RGB-D images from a ceiling



mounted ASUS Xtion camera are recorded with the
end-effector pose of the robot. Many demonstrations
are shown to create a dataset that is used to train
a deep imitation learning model (Section 3.3). The
learned policy is then executed by the robot using
only the live RGB-D images and end-effector poses.

3.1. Hand Tracking

The hand tracking method developed by Pan-
teleris et al. [17] is used to estimate the 3D pose of
the human demonstrator from RGB images in real-
time. This approach consists of three steps: (1) Crop-
ping the user hand in the image, (2) passing the
cropped image to a 2D joint position estimator and
(3) mapping the 2D joints on a 3D hand model to
recover 3D positions of the joints.

For finding an initial bounding box of the hand,
a deep neural network model [25] to detect hands in
real-time is applied. Afterwards, the cropped image
of the hand is passed through the hand key-point lo-
calization model of [7] to estimate the 2D location of
the hand joints. It localizes the 21 key-points for the
wrist, 5 fingertips and 5 x 3 = 15 finger joints. This
specific model was selected because it matches or
outperforms other state-of-the-art methods but with
much lower computational requirements. In the end,
the 2D locations of the joints are mapped to the 3D
hand model via non-linear least-squares optimiza-
tion. The 3D positions are then used as the initial
step for the optimization of the next frame.

The 3D positions of the joints are also used to up-
date the bounding box of the hand, which eliminates
the need to use the hand detector model for each
frame. However, failure of the hand tracking mod-
ule based on the hand position and movement in the
previous frames (e.g. due to sudden movements, oc-
clusion, or failure in 2D localization), results in poor
optimization. Therefore, to make the tracker more
robust, the optimization score is checked to reset the
optimizer’s initial state and to use the hand detector
to find a new bounding box for the hand if necessary.

3.2. Robot Control

For the teleoperation of the robot end-effector, the
3D hand position from the hand tracking system is
compared with an initial hand position. If the differ-
ence between the current and the initial position for
any Cartesian coordinate is above a certain thresh-
old k, a new end-effector position is calculated and
commanded to the robot. This difference is then
transformed from the camera frame to the robot base
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frame and denoted as h. The transformation aligns
the directions of the hand and end-effector movement
to allow intuitive teleoperation.

The desired end-effector position p* is calculated
by adding the current end-effector position p and the
value Ap. This is calculated for each Cartesian co-
ordinate with p;, h; € p, h according to:

a(min{hmaz, hi — k}) YV h; > K,
Ap; = ¢ a(max{hmin, —h; — k}) Y h; < —k,
0 otherwise,
(1)

where A, expressing the upper, h,, the lower
limit and « as a parameter that indirectly allows the
sensitivity to speed to be tuned.

As described in Section 3.3, Ap is directly
learned. When executing the learned policy, Ap is
used to calculate the desired end-effector position.
For either the teleoperation or the task execution by
the learned policy, the desired end-effector position
is updated continuously and commanded to the robot.
The orientation of the end-effector could be changed
similarly but was not necessary for our specific task.

3.3. Deep Imitation Learning

We employed the algorithm presented by [27] and
adapted it in several ways to work with our robotic
setup involving imperfect demonstrations and chang-
ing environment conditions (e.g. brightness). The
adapted network can be seen in Figure 2. The in-
put o; at each timestep ¢ consists of the cropped and
scaled color image I, € R20x160%3 " depth image
D, € R120x160x1 444 the 5 most recent end-effector
positions p;—4.¢ € R15. After 3 convolutional layers,
the data is passed through a spatial softmax layer in-
troduced in [14]. During training, the output of this
layer is used for auxiliary predictions of the current
end-effector position and the end-effector position at
the end of each demonstration with two fully con-
nected layers per auxiliary prediction. The output of
the network is the change of the end-effector position
of the robot Ap in millimetres. Compared to [27],
we omit one convolutional layer but use more units
in our dense layers, which slightly reduces training
time without deteriorating performance. Since we do
not change the orientation of the end-effector for this
simple task, we can simplify the output of the net-
work at time ¢ to be Ap; = mg(0;) € R3.

The input data is augmented by randomly chang-
ing the brightness during training and batch normal-
ization is added after each layer to better cope with
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Figure 2. Overview of the system. The dashed lines show the procedure to collect demonstrations for training. The
continuous lines show the information flow during policy execution.

the changing lighting conditions in the test environ-
ment. Additionally, we added dropout of the recent
end-effector positions to avoid the robot following
the same trajectory during most executions and not
taking the object position into account.

The overall loss is defined as

L(0) = )\llﬁu+)\12512+)\c£c+)\s£s+)\aw2a£(“)

auxr*
(2)
The first two terms are the [1 and [2 losses. L. is the
cosine loss and L, are the [2 losses of the auxiliary
predictions. Compared to [27], we added the loss

Ly = exp (~|lmo(00)]*) )

that penalizes very slow speeds. The weights
were chosen as \;; = 1.0, \p = 0.01, A, = 0.05,
As = 0.1, and Ay = 0.01.

4. Experiments

This section presents the experimental results. We
first describe the setup and procedure for collecting
demonstration data. We analyze the performance of
our method with respect to the network design.

4.1. Experimental Setup

All experiments are conducted with a KUKA
LWR IV+ [3] robotic arm using the provided con-
trol unit. The arm has 7 degrees of freedom and
is controlled with position commands for the joints.
The arm is mounted on the ceiling with a small ta-
ble standing underneath it on which the target object
(box) rests. The goal region is marked with tape. An
ASUS Xtion RGB-D camera is mounted to the ceil-
ing to capture the scene from above. For hand track-
ing, a separate webcam is used and faces the operator.

The algorithms for the hand tracking and the task
execution run on a remote PC connected to the
KUKA control unit via Ethernet. The communica-
tion between the remote PC and the control unit is
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enabled through the kuka-lwr-ros package' using the
fast research interface (FRI) [23].

For data collection, the teleoperator directly faces
the robot and the webcam. For each demonstration,
the box is positioned randomly on the table. The
teleoperator moves the box to the goal position us-
ing our control scheme. We collected 98 demon-
strations with an average length of 42.8s with a
rate of 10Hz for our evaluation. That is signifi-
cantly above the average demonstration time per task
of [27], which is between 3.7 s and 11.6 s and neces-
sitates our changes to the architecture to deal with
these imperfect demonstrations.

4.2. Results

For the evaluation, the workspace of the robot on
the table is divided into a grid of 9 different posi-
tions with 20 cm intervals. Per position, the learned
policy is executed for 4 different rotations of the box
(—45°,0°,45°,90°). We measure both if the box is
pushed towards the goal (started push) as well as if
at least part of it is pushed into the goal (success).
If the robot starts to push the box, but loses it, we
restart the policy manually and keep the box in the
same position when the end-effector stops or leaves
the workspace. This could be automated with a sim-
ple heuristic. If the task can be achieved in a consec-
utive trial, we still count it as a success.

As shown in Table 1, our learned policy started to
push the box in the right direction in 86.1 % of the
cases and reached the goal in 58.3 % of the overall
attempts. A reason for most failure cases is the grid
nature of our workspace separation, which inherently
tests the robot on the edges of its workspace where it
is much more difficult to perform the task.

We conducted an ablation study to evaluate our
changes to the original architecture of [27]. We re-

"https://github.com/epfl-lasa/kuka-Iwr-ros



Figure 3. Examples of the learned policy. First row shows successful trials. Bottom row shows failures.

Table 1. Ablation study
Started Push  Success

Vanilla Policy 50.0 % 27.8 %
No Dropout 66.7 % 27.8 %
No Brightness Aug. 75.0 % 41.7 %
Our Policy 86.1 % 58.3%

implemented the original model and adapted it to our
robotic platform and task. To test the effect of indi-
vidual changes, we applied our policy once without
dropout and once without data augmentation. The
vanilla policy and our policy without dropout only
achieve a success rate of 27.8 %, which were almost
exclusively the trials when the box was located in a
middle position and only required a straight push.

The purpose of applying dropout to the end-
effector pose input of the network is to put more em-
phasize on the input images. With the added dropout,
the success rate rises to 41.7 %. Brightness augmen-
tation alone did not improve the overall success rate
over the vanilla policy. However, the combination
of dropout and brightness augmentation achieved a
success rate of 58.3 %. We introduced the data aug-
mentation due to changing lighting conditions in the
test environment during the demonstrations. For the
evaluation we kept the lighting conditions the same.

Qualitative results are presented in Figure 3. The
first row shows sequences of successful trials in
which the box is pushed to the goal. The second row
shows examples of failures. In one case, the robot
end-effector slides past the box and the policy loses
the target. In the second case, the box is pushed to a
location that is not the goal.

5. Conclusion

This paper presented an approach for learning
from demonstration using a vision-based solution for
robot teleoperation. A hand tracking method was
employed to generate commands that control the

46

robot’s end-effector as the human operator completes
a manipulation task. The set of demonstrations were
used to train a deep imitation learning network that
learns a policy, enabling the robot to imitate the task.
Experiments showed that the introduction of regular-
ization and data augmentation increased the success
rate over the baseline method.

For future work, we plan to combine the LfD ap-
proach with reinforcement learning in simulation. By
starting from the learned policy in simulation, the
training time of reinforcement learning approaches
can be greatly reduced. Additionally, combining real
data with synthetic data collected in simulation mit-
igates the problem of domain adaptation of pure re-
inforcement learning methods. Another avenue is to
use more high-level knowledge of the scene (e.g. ob-
ject pose) to make the approach less susceptible to
environment changes.
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Reactive Motion Planning Framework Inspired by Hybrid Automata
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Abstract. This paper presents a motion planning
framework controlled by reactive events and pro-
ducing feedback data suitable to be processed by
various learning and verification methods (e.g. re-
inforcement learning, runtime monitoring). Our
architecture decomposes subtasks of motion plan-
ning into separate perception and trajectory plan-
ner parts. In our architecture, we interact between
these distributed parts through discrete-timed events
controlled by timed state machines, besides classi-
cal continuous state flow. Our research primarily fo-
cuses on autonomous vehicle research, so this frame-
work is supposed to satisfy the requirements of this
field. The motion planner framework interfaces a
widely-used robotic middleware.

1. Introduction

Motion planning (or trajectory planning) is a
mandatory task both in mobile robotics and in au-
tonomous vehicle navigation [4]. The field has been
actively researched and used, providing efficient al-
gorithms suitable for different domains and robot se-
tups. The role of motion planning in robotics is to
create a feasible, collision-free path between the lo-
cation of the agent (mobile robot or vehicle) and an
arbitrarily defined goal point, based on the agent’s
sensory input and actuation. On the other hand, the
emergence of autonomous vehicles and other special
UGVs requires high-reliability, computational effi-
ciency and optimization of velocity profile even in
rough environmental conditions.

The typical problems of motion planner frame-
works are their relatively hard extension and limited
verification capabilities. In this paper, we propose a
prototype of a motion planning architecture with the
focus on providing comprehensive verification out-
put and extension capabilities.
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Figure 1. Electronically modified autonomous test vehicle

2. Motivation and related work

The development of a new motion planning frame-
work was motivated by ongoing research at our uni-
versity. We are developing an autonomous vehi-
cle (an electronically modified Nissan Leaf equipped
with numerous sensors, Figure 1) and a differential
drive robot in various projects. Both rely on motion
planning, thus our aim is to create a motion planner
framework usable in both application - with minimal
configuration effort.

Many commercially available unmanned ground
vehicles (UGV) use ROS and its integrated naviga-
tion component, move_base. This framework is a
monolithic implementation with plugin-oriented ex-
tension and occupancy grids as a basis of environ-
ment representation. Some of these issues had been
addressed in move_base_flex [5]. In autonomous ve-
hicle frameworks, Autoware [3] provides a loose ar-
chitecture enabling the replacement of its built-in
motion planning component with different solutions.
In both approaches, reactive events (e.g. synchro-
nization of all incoming topics, the transition to re-
planning, etc.) in both systems are relatively hard to
trace and debug.
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Figure 2. Overview of the local planner state machine de-
scribed as a state machine

3. Architecture proposal

In this section, we propose the architecture of our
motion planner framework!. By investigating other
planner frameworks we found the following typical
characteristics:

1. The underlying planner is controlled by events
(e.g. transition to re-planning, recovery initia-
tion) in a fashion of a state-machine based ap-
proach (a brief overview of the local planner
state machine is shown on Figure 2).

2. Execution should not start before all input infor-
mation has been received recently.

3. Transitions between states are not necessarily
instantaneous, requiring smoother switching be-
tween behaviors.

The development of a (hybrid) timed state machine
library was motivated by these properties, especially
to efficiently resolve property 1 and 2. Hybrid au-
tomata [1] is a well-studied way to model and ver-
ify systems with both discrete and continuous timed
properties and also to describe robot behaviors [2].
A behavior similar to what is presented on Figure 2
can be easily mapped to hybrid automata formalism.
Transitions are either governed by discrete events
and continuous activities. For example, a continu-
ous variable in this case could be the distance to the
closest obstacle detected and a typical discrete event
is the request to replan a segment of the trajectory
or to execute fallback scenario. We ensure, that each
transitions are published to a middleware framework,
enabling versatile runtime verification.

Our goal was to follow a highly-distributed archi-
tecture, where sub-tasks are decomposed from the
planner component. In our approach, the perception
related tasks like obstacle detection and classification
are decomposed from other specific planner tasks.

! Available at https://github.com/kyberszittya/hotaru_planner.git
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This enables the reuse of components and isolated
verification. Perception components are interacting
with planner components by inducing discrete events
and modifying continuous signals. For instance, an
obstacle detection component may trigger the local
planner to replan by raising a discrete-timed event.
After the obstacle is avoided, the planner restores the
remainder of the original trajectory in relay mode.

4. Conclusion

In conclusion, we provided an overview of a
new motion planning framework under development
which can be easily extended with new algorithms
and tuned to specific domain requirements. A new
initial motion planner framework version is created.
The extension of our framework with various local
planner methods is a primary focus. Global trajec-
tory planner methods will be integrated in the fu-
ture. Our automata framework and the related code-
generator tool will be also enhanced.
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Abstract. This work focuses on retrofitting a
crane model in the wood industry for automated log
grasping. Al inspired vision based approaches are
used to categorize and segment the logs and their
geometry to subsequently define optimal grasping
poses.  Retrofittable sensors and robust control
strategies for cost efficient upgrading of existing
manually operated cranes towards autonomous
systems are developed.

1. Introduction

Classical production lines and handling processes
for raw materials often have a long history and
incorporate a large amount of experience based
knowledge for process optimization and handling
routines. Nowadays, these processes seem to be
stuck in a local minima in terms of efficiency
and performance due to human factors. With
the available degree of automation, robustness
of Al based perception and decision making,
and novel sensor technology, a re-thinking of
these well established processes can take place.
Instead of a radical approach to replace existing
infrastructure, this work leverages currently installed
machines in the wood sector and enables them to
work autonomously through retro-fitting of sensors,
autonomy, and Al based scene understanding. The
project has a strong focus on bringing advanced
methods in the corresponding research fields to
practice. Hence, a model log crane was built as a
1:5 scaled down copy of a real log crane (Fig. 1).

. The research leading to these results has received funding
from BMVIT under grant n. 864807 (AutoLOG)
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Figure 1. Crane model in 1:5 scaled version of a real crane
used in the wood sector. The hydraulics are specifically
designed to match this scale. Manual control is identical
to the real versions.

2. Model and Retrofittable Sensor Design

The 1:5 scaled crane model has been designed and
manufactured from scratch to match the properties
of the real counterparts. This includes hydraulic
actuators, end-effector with two free joints and
an actuated revolute joint with unconstrained 360°
actuation, and backlash. For tests and evaluation, we
installed wire-rope sensors on the hydraulic pistons
to measure their current position. Novel capacitive
and inductive sensors have been designed and
implemented as described in Section 2.1 to measure
the current absolute angles and to provide feedback
on the grasping quality. Apart of the crane itself, the
overall system (Fig. 2) also contains a log storage
box with automated emptying mechanism. Emptying



the box is done by asynchronously opening the box
such that the model logs spread randomly on the
floor. The floor area designed as log picking area
can be shielded during a box emptying process to
prevent the logs from spreading too wide in the
area. With the project goal of the crane being
able to autonomously store the logs in the box,
this automated emptying process enables an endless
cycle for automated training refining the AI based
procedures without supervision.

The crane is controlled at a high level by an
external PC which is connected via Ethernet to
a HAWE-ESX control unit. The ESX controls
the hydraulic pistons and sends the signals of the
wire-rope and custom angular sensors via Ethernet
back to the host PC. The PC also receives data from
two cameras mounted on the fix and movable part
of the crane as well as from five IMUs mounted on
each of the crane joints. These sensors will serve
for automated model creation as we assume to not
have CAD drawings of every crane in a retrofitting
process. The overall connectivity schematic is shown
in Fig. 3.

emptying

Figure 2. Crane model system with automated elements
for continuous learning without human intervention.

2x VGA biw
cameras
2x depth j
camera yUsSB
5x IMU
DoF
| ETH (3DoF)
R ‘ valve
emergency v control unit
stop A
— CAN I
joystick 3x way
CANI 2x angle

Figure 3. Overview on the connectivity of the model
crane, the sensors, and the external PC.
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2.1. Retrofittable Sensors

Automating machinery in the wood sector is
challenging since not only the sensors that enable
autonomy need to be equipped ideally without
disassembling the machine, they also need to be
autarkic in terms of energy, and withstand very
harsh environments. Thus, robust magnetic angular
position sensors following [1] suitable for retrofitting
and wireless operation have been integrated on the
crane model. They can easily be adapted for different
joint geometries. The basic architecture is shown
in Fig. 4 together with the lab setup (currently
with wired CAN). In addition, capacitive sensors

signal processing
cicuitry

|~ conductive
N\ counterpart

Figure 4. The experimental sensor and CAD coil geometry
on the rotary joint of the end-effector: The coil PCB and
signal processing circuitry is mounted to the non-rotating
head whereas the conductive plate is mounted on the
rotating shaft. The conductive counterpart consists of a
3D printed holder and wrapped copper foil.

following [2] are integrated in the end-effector to
augment the machinery with a sense for log grasping
quality (Fig. 5). The crane and sensors are simulated

_~girder

Figure 5. Left: V-REP model. Bottom right: gripper
design. Top right: photograph of the gripper prototype
including the sensor elements wireless electronics.

in V-REP. There, the communication and control are
tested using V-REP/ROS and V-REP/Python bridge.
The simulation also serves as an environment for Al
training of the crane controls and for optimizations
on sensor placement following [3]. A video of the
simulation framework can be found in [4]



3. Control and State Estimation

The manipulator as a forest crane is vastly
different compared to a standard industrial robot:
the rather unconventional design requires detailed
geometrical knowledge to derive the kinematic
model. Also, the hydraulic driving system suffers
from heavy vibrations, backlashes and jerks which
require detailed dynamic parameters for proper
modelling. To capture the complex relationships
on existing machines where CAD and dynamic
models are rarely available, we use machine learning
techniques for the prediction of kinematics and
dynamics parameters. Additional inertial and visual
sensors further help to re-fine the overall state
estimation including the adaptive estimation of the
dynamic parameters defining the sway-motion of the
two free joints on the end-effector. This adaptive
estimation of the kinematic and dynamic parameters
allows a simplified manipulator model for adaptive
control schemes when picking and placing logs with
sway motion.

3.1. Automated Grasping Point Prediction

To find the optimal points for the gripper to grasp
a log (or logs), it is necessary to recognize graspable
objects in the surrounding area of the robotic
manipulator and calculate possible candidates. A
candidate is defined as a point/area of the log
which can successfully be grasped by the gripper.
A ZED camera is used for image acquisition and
consists of a stereo camera system capturing high
resolution RGB-D images from the scene. Core
component of the prediction method is a deep
learning approach using a Convolutional Neural
Network to predict grasping candidates in 2D image
space, similar to [5]. The depth information is used
for: 1) Automatic annotation of training data for a
deep neural network by leveraging sequential depth
data. This method is a step towards continuous
learning making it easily possible to generate new
ground truth training data during real time system
application. 2) Calculation of the final 3D position of
the grasping point from the previously predicted 2D
grasping candidate. Fig. 6 shows a sample scenario
with some logs remaining in the picking area and
marked grasping locations by the Al method.

3.2. Conclusion and Next Steps

We proposed a mechanical setup for training a
crane model of the wood industry for automated
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Figure 6. Model logs in the picking area of the 1:5 scaled
model crane with marked grasping positions by our Al
based method. Red marks the desired locations of the two
grippers in the end-effector of the crane.

log grasping. The setup allows automated operation
such that continuous learning without human
intervention can be possible. Retrofittable sensors
allow additional sensing capability in order to
autonomously control the grasping procedure and to
verify correct picking of the desired logs. The current
results show that while the alignment of the desired
gripper positions to grasp a log is correctly predicted
by the Al not all suggested locations are ideal in
view of the center of gravity. Next steps will include
the feedback of the capacitive sensors to correct the
Al decision in an automated learning procedure.
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Abstract. The concept of human-machine collabo-
ration is regarded as key enabler for agile produc-
tion systems as collaborative robots offer new forms
of flexibility. Due to inherent safety functionalities,
these robots can operate without physically separat-
ing safety devices and thus provide flexibility in task
allocation and execution. However, changes on the
work system require a new risk assessment due to
the present normative regulations, which is a tedious
task as feasible changes are usually not considered
in the implementation phase. This paper presents the
impact of modifications on collaborative robotic cells
and how they influence the risk assessment. Further-
more, a method of considering work system variants
based on desired future modifications is presented so
that implications can be already identified in an early
design phase of the system.

1. Introduction

Robot safety constitutes a key factor in human-
robot working systems [1]. Currently, every manu-
facturer or integrator of a collaborative robotic appli-
cation must place its application on the market in ac-
cordance with Directive 2006/42/EC (Machinery Di-
rective) of the European Parliament and of the Coun-
cil Among other things, this stipulates that the ba-
sic safety and health protection requirements listed
in Annex 1 of the Machinery Directive must be met.
Annex 1 of the Machinery Directive, under General
principles, and also the ISO 10218:2012 standard
requires that the manufacturer of a machine or his
authorised representative must ensure that a risk as-
sessment is carried out. This ensures that the safety
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and health protection requirements applicable to the
machine are determined and that the machine is de-
signed and built taking into account the results of the
risk assessment. In this process of risk estimation
and risk reduction, the limits of the machine, the in-
tended use and the reasonably foreseeable misuse are
determined.

In practice, EN ISO 12100:2010 (Safety of ma-
chinery - general principles for design - risk assess-
ment and risk reduction) is often used as a method of
carrying out a risk assessment. Using this method-
ology, the hazards that can arise from the machine
are identified. The associated hazardous situations
and the risks are estimated by also considering their
severity of possible injuries or damages to health
and the probability of their occurrence. The risks
are then assessed to determine whether a risk reduc-
tion measure in accordance with the objectives of the
Machinery Directive is necessary. If so, the haz-
ards are eliminated or reduced by applying protec-
tive measures while in some circumstances organiza-
tional measures might be necessary. However, ISO
12100 is a type A standard meaning that methodolo-
gies described in its content are applicable for a very
wide range of machinery and not necessarily specific
to the application of robotic applications. Thus, EN
ISO 10218-2, a type C standard, is in place. Section
4 of this document gives a risk assessment scheme
that is specifically refined for robotic applications
(under consideration of ISO 12100 and other related
standards). Topics such as the design, manufacture,
installation, operation, maintenance and decommis-
sioning of the industrial robot system or cell are ad-
dressed. The basic hazards and hazardous situations



for these systems are identified and requirements are
defined to eliminate or sufficiently reduce the risks
associated with these hazards.

The structured process from the Machinery Direc-
tive down to the EN ISO 10218-2 shows that every
safety-relevant change of the application requires a
renewed risk assessment, unless this has already been
considered in the original assessment. New risk as-
sessments on an already existing work system might
make required modifications impossible due to lim-
ited flexibility in the design or re-design. However, in
order to consider safety-related changes in the orig-
inal assessment, prospective modifications and thus
system variants have to be considered in an early de-
sign phase. For this approach, however, the link be-
tween modifications and safety-related aspects is not
yet clearly explored.

Even though, the Technical Specification for col-
laborative robotic applications, ISO/TS 15066:2016,
presents a correlation of the applied robot’s safety
mode and the system’s respective safety-related
changes, the safety mode is only one of many safety-
relevant modification dimensions within human-
robot work systems [2]. Further, it shows draw-
backs in applying the proposed safety measures, es-
pecially when integrating heavy industrial robots or
sharp objects or estimating the human approach ve-
locity [3]. Additionally, there is no advice consider-
ing the robot’s movement predictability due to col-
lision avoiding path planning or varying task alloca-
tion patterns.

As safety modes might not be an appropriate clas-
sification scheme for the identification of safety-
relevant changes, new classifications schemes have
been introduced, such as in [4, 5]. However, af-
ter an extensive literature review, [6] came to the
conclusion that classification schemes for collabora-
tive human-robot work systems are not applied con-
sistently, which may lead to an incorrect identifica-
tion of safety-relevant changes. To counteract this,
model-based approaches have been developed either
based on formal mathematical models, such as in [7],
or based on simulation models, such as in [8]. A risk
management simulator was for example introduced
in [9], whereas [10] introduced a task-based char-
acterization of human-cobot safety. Further, a met-
ric depending on the distance between robot and hu-
man as well as the robot’s structure was introduced
in [11].

However, none of the proposed approaches con-
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Figure 1. Structure of the workplace.

siders a mutual influence of modifications on safety.
In this sense, a structured procedure with the aid of
an Morphological Box (MB) was developed and is
described in detail in the following paper. The pro-
posed approach should support manufacturers and
system integrators in the consideration of safety-
relevant changes in an early design phase of the
planned collaborative human-robot work system in-
cluding its prospective modifications.

2. Impact of Modifications

Within the DR.KORS project on dynamic recon-
figurability of collaborative robotic systems, 50 di-
mensions of modifications were identified directly
influencing the safety of a human-robot system. The
modification dimensions can be classified in work-
piece, end effector, contact points (between human
and robot), speed / acceleration, task / workflow and
operating conditions / change of place. The impact of
modification dimensions will be presented on a labo-
ratory use case example for assembling rocker levers.

2.1. Use Case Description

In the laboratory use case rocker levers consist-
ing of three separate components are assembled with
a collaborative human-robot work system. Adjust-
ing bolts are mounted on two separate rocker levers
which are then assembled on a trestle. At this point,
the positioning of the rocker levers on the trestle
needs manual dexterity as the components tilt eas-
ily. Rocker levers and trestles are provided either
by feeders or on a conveyor belt. The manipulation,



screwing and storing tasks are allocated between four
resources, i.e. human, two robots and a mobile ma-
nipulator. The work system is designed in a way, that
the position of peripheral appliances is variable and
safety devices can be changed. Hence, the collabo-
rative work system consists of (a) a Universal Robot
UR10 on a linear axis for workpiece handling, (b) a
feeder and a conveyor belt for workpiece supply, (c)
a Universal Robot UR3 for workpiece assembly, (d)
a human operator for workpiece assembly and work-
piece removal, (e) a mobile manipulator for work-
piece manipulation and (f) external safety devices,
such as light curtains and laser scanners, for person
safeguarding. See Figure 1 for the layout sketch of
the workplace.

2.2. Modification Dimensions in the Use Case

The laboratory use case offers the possibility of 13
modification dimensions, which either influence the
layout, the task allocation or the motion parameters
of the involved resources.

e Product: Two different products can be assem-
bled on the work system - either in mixed or
unmixed production. The change of the assem-
bled product influences the workpiece supply,
the task allocation as well as the motion paths
of the robots.

e Position during collaboration (end effector
height): The end effector height indicates the
position where human and robot assemble the
product at the same time. It can be changed ac-
cording to the ergonomic height of the operator.

e Position during collaboration (robot base po-
sition): The Universal Robot UR10 is mounted
on a linear axis so to easily change its base po-
sition. This might be necessary due to reacha-
bility reasons when the layout of the work sys-
tem changes or when new collision points arise
on the anticipated robot paths due to changes
in the task allocation. A choice of the robot’s
base position during the collaboration is possi-
ble and influences the sensitivity and stiffness of
the arm due to the according robot posture.

e Resource allocation for trestle feed: The sup-
ply of workpieces can either be implemented
in terms of a feeder, directly coming from the
previous manufacturing machine on a conveyor
belt or by a human operator. The change of the
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supply unit influences not only the layout of the
work system but also the robot paths and op-
tionally the resource allocation (depending on
the picking requirements).

e Resource allocation for screwing: The screw-
ing process can be either done by the Universal
Robot UR3, by the human or by the mobile ma-
nipulator. A change in resource allocation for a
specific task influences the temporal and spatial
proximity of humans and robots and thus may
influence the safety concept.

e Safety function: The safety function can ei-
ther be implemented as force limitation or as
distance monitoring. Based on the safety func-
tion, the safety devices are defined as well as
the layout of the work system in terms of space
requirements and the motion behaviour of the
resources.

e Type of safety device for distance monitor-
ing: The distance monitoring can either be
implemented by a separating safety fence or
by non-separating safety devices such as light
curtains, laser scanners, safety mats, software-
based workspace limitations or a combination
of those.

e Position of safety device for distance moni-
toring: Depending on the type of safety device
and the space requirements of the work system,
the mounting distance of the safety devices is
defined and thus the velocity of the robots. In
general these safeguarding distances are regu-
lated by the standard ISO 13855:2010 - Posi-
tioning of safeguards with respect to the ap-
proach speeds of parts of the human body.

Modification dimensions lead to system variants
of a use case which are necessary for the flexibility of
a collaborative work system. In order to already con-
sider desired variants of a human-robot work system
in the planning and design phase, a Morphological
Box is introduced.

3. Morphological Box

A morphological analysis is a creative heuristic
method introduced by the Swiss astrophysicist Fritz
Zwicky which is mostly applied for fully understand-
ing complex problem areas and considering all pos-
sible solutions without prejudice [12]. The resulting



Modification dimension Parameter value

Product A B A&B
Position during collaboration - end effector height Doin < heol < Mmax

Position during collaboration - robot base Pmin < Phase < Pmax

Robot velocity Vmin < Viob < Vmax

Resource allocation trestle feed

human I by UR10 from feeder I by UR10 from conveyor belt

Resource allocation insert screw

human | screwdriver |

UR10 | CHIMERA

Resource allocation tighten screw

human I screwdriver | UR3

< Safety function force limitation distance monitoring

§ Type of safety device for distance monitoring safety mat |light curtainl laser scannerl software I CHIMERA laser
< Position of safety device for distance monitoring < dsafe > dsafe

- Safety function force limitation distance monitoring

§ Type of safety device for distance monitoring safety fence Ilight curtainl laser scannerl software | CHIMERA laser
< Position of safety device for distance monitoring < dsafe > dsafe

Table 1. Morphological box indicating modification dimensions in the lab use case.

solutions are aggregated in a so called Morphological
Box (MB) representing specific attributes and their
individual characteristics. This multi-dimensional
matrix maps all possible solutions by combining one
characteristic for each attribute.

With the assistance of a MB, a far-reaching risk as-
sessment can be carried out to clarify whether a new
risk assessment (or even a new risk estimation) must
be carried out when modifying the robot system. To
be able to make this decision, a distinction must be
made between changes that have been considered in
advance and changes that have not yet been assessed.

One possibility for a considered change can be, for
example, the storage area, which was defined in ad-
vance as an area and does not focus on the required
storage point as is traditionally the case. This enables
the MB to check whether the changed placement
point is within these defined limits by comparing co-
ordinates and to provide the operator with clear infor-
mation as to whether a new risk assessment is neces-
sary. The maximum safe speed can be used as a fur-
ther example. During the application definition, the
considered speed is not the one required for the pro-
cess, but the maximum safe speed. This has the ad-
vantage that a change can be evaluated using the MB
with the additional parameters that are now available.
These two examples show, that already during plan-
ning and integration the safety assessment must be
implemented in the process via the MB to be able
to make practical comparisons in everyday life. Fur-
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thermore, it becomes apparent that simple changes
can be clarified clearly and efficiently, whereas com-
plex changes require a thorough examination using
mathematical models that support the MB. An ex-
ample with a much higher degree of complexity is
the change of a possible contact point between hu-
mans and robots. These must be verified and vali-
dated in accordance with ISO/TS 15066:2016 point 6
or tested and measured in accordance with EN ISO
10218-2:2012 Annex G.

Due to the complexity of such changes, the MB
can be used to conclude that a new risk assessment
is required. During such a reassessment, the MB
can provide support by showing specific dependen-
cies that need to be considered for the reassessment
in the risk assessment, e.g. the system limits of the
gripping technology, the change in the permissible
force/pressure values due to the shifting of the con-
tact between human and machine. When using the
MB, such restrictions can only be prevented by de-
termining all relevant modifications in the planning
phase to cover the broadest possible range.

In this sense, the MB presented in this paper in-
dicates desired and possible modification dimensions
for a specific use case. Here, the modification dimen-
sions represent the attributes while the parameter val-
ues represent the characteristics. By combining spe-
cific parameter values for each modification dimen-
sion, different system variants of the use case can be
defined. In contrast to conventional morphological



Figure 2. Simulation of the lab use case in ema Work De-
signer.

boxes, the MB in Table 1 allows for multiple selec-
tions within specific modification dimensions. In this
example, the type of safety device for distance moni-
toring allows for combining different devices for one
system variant.

For example, one use case variant could be de-
fined as follows: The product type A of the rocker
lever is assembled in the work system. The collab-
orative task of positioning the levers on the trestle is
done in an ergonomic height for an operator. Trestles
are supplied by a feeder and manipulated by a UR10.
The insertion task of the adjusting bolts is carried out
by the human while the tightening task is done by
the UR3. The velocities of both robots is set to 500
mm/s. The safety function in both areas A and B is
based on force limitation and distance monitoring by
software-based workspace limitations. The distance
between robot base and operator should be as large
as possible during the collaboration.

3.1. Represented System Variants

The main effects on personal safety resulting from
the selection of system parameters via MB are de-
scribed in the following.

Impact of Resource Allocation The modification
space related to the given resources spans all possi-
bilities between manual processing to an almost fully
automated scenario. Special safety considerations
are relevant for those cases where a robot is allocated
to a task. For this purpose, all boundary cases must
be evaluated separately for e.g. critical contact situ-
ations, safety distances as well as force and pressure
impacts on the involved body regions of the human.
This can lead to restrictions which are stored as a set
of rules for a partially automated assessment.
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Figure 3. Setup of the use case in lab environment.

Impact of Safety Device Several extrinsic safety
devices listed in Table 1 are exchangeable, e.g.
whether a light curtain or a laser scanner is used for
distance monitoring is usually irrelevant. However,
the plane used to determine the safety distance has a
significant influence on permissible distances and the
velocity to the moving robot. Horizontal measuring
safety devices, such as a safety mat or a laser scan-
ner on a mobile manipulator, have a substantially dif-
ferent information content than vertical devices such
as a light curtain. In contrast to horizontal safety
devices, vertical safety devices have a higher uncer-
tainty in determining the location of humans. How-
ever, a safety mat can be partially skipped by a hu-
man, whereas a laser scanner mounted on a mobile
robot system, can be used in variable locations.

Impact of Workpiece Supply The feeding of
the workpieces mainly influences mechanical safety
characteristics, which can be determined by means of
a risk assessment. Therefore, the type of the feeding
system has no significant effect on the safety related
system variant.

3.2. Simulated and Experimental Setup

The virtually designed and simulated laboratory
use case is shown in Figure 2, whereas the physi-
cal setup of the use case is shown in Figure 3. All
required modification dimensions were taken into
account, which gives the impression that unneces-
sary redundancies exist especially for the listed ex-
ternal safety devices. However, these allow us to per-
form specific studies on meaningful combinations of
safety devices and a direct and detailed comparison
between them.

In order to assess the effects of modifications on



the system, different configurations of the setup are
analyzed. Quantitative differences, such as cycle and
operating times of the resources are obtained by sim-
ulations in ema Work Designer. In order to validate
the presented method for safe system modification,
four different variants were implemented on the real
plant to cover a wide range of variation possibilities.
The parameters of six modification dimensions were
varied, specifically the product, the resource alloca-
tion (trestle feed, insert screw, tighten screw), the
position of end effector height and the robot base
during collaboration. Significant safety-relevant in-
fluencing factors such as speed of the moving robot
parts, safety distance, vulnerable human body parts,
number and duration of exposure to hazards can thus
be assessed.

4. Conclusion and Future Work

Collaborative work systems in an industrial con-
text are currently limited if changes need to be taken
into account regularly. Although robot programming
of modern sensitive robots is aimed for users with
limited programming skills and becomes more and
more sophisticated, safety regulations limit this flex-
ibility. An advanced structured approach for safety
assessment, as described in this paper, enables safe
implementation of modifications to a known extent.
Future work will include an extensive comparison
between simulated system modifications and mod-
ifications on the real experimental setup. Further-
more, qualitative differences, e.g. in terms of per-
ceived physical workload for the operator will also
be analyzed.
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Abstract. This paper presents several point-to-point
optimization tasks of humanoid arm motions. The fo-
cus lies on optimization of elementary arm motions.
Several cost functions for optimization tasks are de-
fined. Tasks in respect of time optimal control, mini-
mizing joint loads and maximizing the vertical torque
of the torso are presented. The dynamic optimal con-
trol problem is transformed into a static paramet-
ric optimization problem by using B-spline curves.
The optimization is carried out with the Sequential
Quadratic Programming algorithm.

1. Introduction

In general, robotic systems as humanoids are com-
plex structures which are able to interact with their
environment. The research on humanoid robots is a
major and challenging part in the field of robotics.
Various humanoid robotic systems have been de-
veloped in the past, see e.g. [5, 7]. Moreover, a
humanoid walking machine is developed at the Jo-
hannes Kepler University Linz [6]. Fig. 1 shows the
modular setup of the humanoid by means of submod-
ules. In this configuration, the system possesses of 6
degrees of freedom (DOFs) per leg and 1 DOF per
arm.

Figure 1: Schematic representation of the biped
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Figure 2: Schematic representation of the analyzed
arm system

Especially the arm plays an important role regard-
ing interaction or manipulation of an object. More-
over, arms are used to counterbalance the torque
about the vertical axis. In order to achieve a higher
degree of mobility of the arm submodule, a new arm
system is developed. The system consists of 3 actu-
ators and structural elements which are modeled as
rigid bodies. The shoulder is represented by 2 DOFs
and the elbow has 1 DOF. That setup is an approach
toward the 7 DOFs arm module as presented in [1].
In this paper the arm module shown in Fig. 2 is con-
sidered (which will replace the rigid arm in Fig. 1).
The paper focuses on optimization of elementary arm
motions with respect to various goals. Start and final
configurations of the arm system will be regarded as
known from the human gait. As shown in Fig. 2, the
arm system is spatial fixed for all further investiga-



tions.

2. Dynamic Modeling

In general, a multibody model describes the full
dynamical behavior of a system. The equations of
motion can be developed by the Projection Equa-
tion [2]. This method is efficient to derive the dy-
namic of recurrent subsystems. A typical subsystem
in robotics consists of structural elements and actua-
tors.

2.1. Subsystem Modeling

As already mentioned, modeling by means of sub-
systems is useful for robotic systems. Moreover, con-
straint forces and torques Q¢ for coupling subsys-
tems can be determined without additionally effort.
The Projection Equation in subsystem representation
is given by

Nsub ay T
Z <8_n> {MnYn+GnYn _Qn} =0, (1)
n=1 4 Q
Np T T
¢ v, Ow,
=2 [(ayn> <ayn) .X
p+wrp—f°
[ L+ WL —M° } @

with N, subsystems and V,, bodies. The absolute
velocity of the center of mass and the angular veloc-
ity of the i-th body are represented by v.; € R? and
we; € R3, wp,; € R? is the angular velocity of a
chosen body fixed reference frame. The vector of
linear momentum and the vector of angular momen-
tum are given by p; = m;v.; and L; = Jiw. ;. Mass
and inertia tensor are denoted m; and J§ € R33, re-
spectively. Impressed forces and torques are given
by ff € R? and M§ € R3. The vector q € R" rep-
resent the N minimal coordinates of the system. The
describing velocities of each subsystem are given by

.
o= (vj wid) €R, 3)
n

where v ,, is the translational velocity of the cou-
pling point, wp, is the guidance rotational velocity
and ¢ is the relative joint velocity of the n-th sub-
system. In this paper, the 3 rotational coordinates
q=(q1 ¢ Q3)T are introduced as DOFs. Moreover,
3 subsystems are considered to derive the equations
of motion. The describing velocities of the second
subsystem can be seen in Fig. 2.
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2.2. Joint Forces and Torques

As shown by 2.1, the occurring reaction forces and
torques of the n-th subsystem can be determined by
QZ = MnYn + GnYn

with the mass matrix of the subsystem M,, € R""7,
the matrix of centrifugal and Coriolis forces G,, €
R"7 and the vector of forces on the subsystem Q,, €
R”. Without projection into minimal coordinates,
joint forces and torques regarding the three subsys-
tems are given by

1Q° E Ty T (Qf
2Q°| = [0 E Tg Q5 5)
3Q° 0O O E S
The matrix
Rnp  Rpppr ;—orn Rpp pf;neD
Tnp = 0 Rnp RnpeD (6)
0 0 0

maps a quantity from the predecessor frame p into the
frame of interest n. R,,;, € R*3 is the rotation matrix
to transform coordinate vectors resolved in the frame
p into frame n, ,ry, € IR3 is the displacement vector
from the coupling point at the predecessor frame p to
that on frame n and the vector ep € R3 is the axis of
rotation. The transformation matrix is a result of the
kinematical chain [4].

3. Problem Definition

This section reports on different optimization
tasks for point-to-point (PTP) trajectory planning.
In this paper, the optimal dynamic motion problem
is transformed into a static parametric optimization
problem. The joint trajectories are represented by B-
spline curves parameterized by a set of control points
d = (diy -~ dipdoy - doydyy -+ dzn)',
iie. ¢ = q(d) and thus q = q(d) and q = q(d).
For practical applications, several physical restric-
tions of the robotic system have to be considered. In
this paper, constraints regarding to initial and final
state, minimal and maximal joint angles as well as
maximal motor velocities and torques are regarded.
The mathematical formulation of the constraints are
given in Eq. (8)—(14). The task of trajectory opti-
mization leads to a non-linear optimization problem
(NLP). Different cost functions are presented in the
following.



3.1. Time Optimal Control

The optimization problem for time optimal control
is defined as

ly

min/ 1dt (7)
trd Jo
S.t.
q(0,d) = qq ®)
qlty,d) =q,, ©)
q(0,d)=0 (10)
q(tf,d)=0 (1)
Unin < 4(d) < Gpyyq (12)

Umax < 4(d) < Gy (13)
= Quax £ Q(d) < Qpax (14)
Q(q(d)) =M(q(d))q(d) + g(q(d),q(d)). (15)

In this case, the final time ¢ and the set of control
points d to parameterize the B-splines are regarded
as optimization variables. Eq. (15) represents the
dynamical behavior of the robotic system in minimal
representation. M € R332 is the global mass ma-
trix, g € R3 includes non-linear terms and Q € R?
is the global vector of generalized forces. The re-
strictions in Eq. (8)—(12) are associated to process
requirements and those in Eq. (13)—(14) are defined
by chosen motors. This equality and inequality con-
straints were used for all optimization tasks in the
following.

3.2. Minimizing Joint Loads

Aim of this optimization task is to minimize dy-
namic joint forces and torques between ground/torso
and arm of the humanoid walking machine. The final
time ¢ ¢ for the motion is predefined in this task. The
cost function is given by

. T
H:llmQC 1Q°. (16)
The set of control points d are regarded as optimiza-
tion variables. As mentioned above, the optimiza-
tion constraints are given by Eq. (8)—(14). Note, the

occurring joint forces and torques can be calculated
with Eq. (5).

3.3. Maximizing the Vertical Torque of the Torso

During gait, arms are used to counterbalance the
torque around the vertical axis. A momentum con-
trol approach with this quantity is presented in [6].
Hence, another optimization strategy is to find a
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proper set of control points d such that the cost func-
tion
CT C
méix 1Q6 1Q6 (17)
is maximized. Once again, optimization constraints
are given by Eq. (8)—(14). The quantity 1Qg is the
sixth entry of 1Q¢ and describes the joint torque of

the first subsystem in the opposite direction of the
gravity vector.

4. Optimization Method

The Sequential Quadratic Programming (SQP) al-
gorithm was chosen to solve all considered optimiza-
tion problems. This approach is also used in [3] for
trajectory planning. The SQP method requires an
valid initial guess for trajectories. In this case, the
initial trajectories are defined as B-splines. Prop-
erties of B-splines can be found in [8]. An initial
guess for the arm angels q are found by interpolating
the initial and final position as well as some support
points with a B-spline of degree 4. Furthermore, ve-
locities and accelerations at the initial and final posi-
tion are set to zero. Twenty control points were cho-
sen to initialize each of the three polynomials. Fig. 3
shows exemplary an initial guess trajectory.

q in rad

15 2

0 0.5 1
tins

Figure 3: Example of an initial guess trajectory

5. Simulation Results

In this section, relevant results of the optimiza-
tion tasks are presented. The typical arm mo-
tion during a step of the biped is defined by the

start configuration q, = (=50 O)Trad and the
final configuration q; = (30 %)Trad of the

minimal coordinates. Moreover, limits regarding

joint angles are defined by q,;, = (—% 0 0)—r rad
and Q4 (mm %T”)T rad.  Maximal mo-
tor rotational velocities and torques are given by
e = (12.66.312.6) rads™! and Q=
(415 480 165) ' Nm. Note, that all motor torques



and rotational velocities of the following figures are
normalized w.r.t. their physical limits.

5.1. Time Optimal Control

Fig. 4 shows the normalized motor torques and
rotational velocities of time optimal control problem.
For time optimal optimization tasks, it is obvious that
at least one motor restriction is active. The final time
is given by ¢t = 0.83 s. Moreover, all physical limits
of the motors are well considered. Occurring joint
forces and torques of the first subsystem are shown
in Fig. 5.
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Figure 4: Normalized motor torques and rotational
velocities of the time optimal control

100
80t
60+
40¢

20+
0
=201

0.4

—
— Fy ||

F¢in N

-40
0 0.2

M¢in Nm
N = O =W ks Ut

04 06 08 1

tins

0.2

o

Figure 5: Joint forces and torques of the time optimal
control
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Figure 6: Normalized motor torques and rotational

velocities of the joint load minimization
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Figure 7: Joint forces and torques of the joint load
minimization

5.2. Minimizing Joint Loads

In comparison to time optimal control, the final
time {y = 2s of this optimal control is predefined
due to the walking speed of the analyzed biped. Fig.
6 and Fig. 7 shows the dynamical behavior of this
task. Motor restrictions are almost inactive and the
occurring joint forces and torques are reduced in
comparison to Fig. 5.

5.3. Maximizing the Vertical Torque of the Torso

As to the last subsection 5.2, the final time ¢y =
2 s is also predefined in this task. Optimization re-



sults of the maximization task are shown in the fol-
lowing figures. Almost all motor torque restrictions
are active due to the maximization. As can be seen
in Fig. 8, the first arm moves at the start in the neg-
ative direction. The resulting motion performs as a
swing-up procedure.
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Figure 8: Normalized motor torques and rotational

velocities of the vertical torque maximization
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Figure 9: Joint forces and torques of the vertical
torque maximization

6. Conclusion

Arm systems of humanoids are used in different
ways, e.g. to counterbalance the torque around the
vertical axis. Motion planning in relation to var-
ious tasks becomes an important role. Therefore,
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in this paper different optimization goals regarding
arm motions were analyzed. Cost functions with re-
spect to time optimal control, joint load minimiza-
tion and vertical torque maximization were consid-
ered. The dynamic optimization process has been
converted into a static optimization process by using
B-splines curves to formulate trajectories. The NLP
were solved with the SQP method.
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Abstract. Biometric recognition systems, especially
vascular pattern based ones, are becoming more
popular. However, these systems are still susceptible
to so called presentation attacks, where a forged rep-
resentation of the original biometric is presented to
the system trying to mimic the original biometric and
fool the system. We propose a presentation attack
approach for finger- and hand-vein recognition sys-
tems using paper prints as well as wax and silicone
artefacts. We further develop a suitable presenta-
tion attack detection (PAD) scheme based on natural
scene statistics and acquire a corresponding hand
vein presentation attack dataset. Evaluating the PAD
scheme on the dataset confirmed its success in the de-
tection of the forged samples.

1. Introduction

In our modern world there is an ever growing need
for personal authentication. Biometric authentication
systems are one way to overcome the typical prob-
lems of classical authentication methods, e.g. dis-
closed or forgotten passwords, lost or stolen keys
and forged signatures. Biometric authentication sys-
tems are based on so called biometric traits, which
are unique behavioural or physiological characterist-
ics of a person. These are inherently linked to a per-
son and cannot get lost, be forgotten or be stolen. The
most prominent examples of biometric traits include
fingerprints, face and iris. Recently, vascular pattern
based biometrics (usually denoted as vein recogni-
tion based systems) gain more attention as well, with
finger- and hand-vein based systems being the most
widely used ones [27]. Vein based systems exhibit
some advantages over other biometric systems, e.g.
fingerprint and face recognition ones. They rely on
the structure of the vascular pattern formed by the
blood vessels inside the human body tissue, i.e. it is
an internal biometric trait. This pattern only becomes
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visible in near-infrared (NIR) light, as the haemo-
globin in the blood absorbs NIR light, rendering the
blood vessels (veins) visible as dark lines in the cap-
tured images. Vein based systems are more resistant
to forgery and they are neither susceptible to abrasion
nor skin surface conditions [11].

Despite the advantages mentioned above, biomet-
ric recognition systems are far from being perfect.
Almost all of the currently employed systems are
susceptible to spoofing or presentation attacks (PAs).
A PA is defined as presentation to the biometric data
capture subsystem with the goal of interfering with
the operation of the biometric system according to
the ISO/IEC 30107-1 standard [4]. This corresponds
to the creation of a forged representation mimick-
ing the original biometric trait (also called a spoof-
ing artefact) that is used to spoof/fool the biometric
system. PAs are posing a severe problem in practical
applications as a genuine user may be impersonated.
By launching a successful PA, an adversary is able
to gain illegitimate access to the system. In con-
trast to passwords and tokens, a biometric trait can
neither be replaced nor revoked. Hence, if a system
is prone to PAs, it can no longer be considered as se-
cure. Fortunately, there are counter-measures which
aim to detect PAs by equipping the biometric system
with either additional hardware or software perform-
ing presentation attack detection (PAD).

In this work we focus on PAs and PAD for finger-
as well as hand-vein recognition systems. We pro-
pose several approaches to create spoofing artefacts
using different materials replicating the vein pattern
of genuine subjects. Furthermore, corresponding PA
datasets are acquired and a PAD approach, tested on
hand veins, is presented.

The rest of the paper is organised as follows: Sec-
tion 2 gives an overview on PAs and PAD schemes
for finger- and hand-vein recognition. In Section 3
the generation of the spoofing artefacts is explained.



Section 4 presents our proposed PAD approach. The
experimental evaluation is described in Section 5.
Section 6 concludes this paper and gives an outlook
on future work.

2. Related Work

Finger- and hand-veins have been shown to be
susceptible to spoofing [26, 24]. PAD approaches
help in detecting presentation attacks and can be cat-
egorised into liveness-based (rely on signs of vital-
ity, e.g. capturing the heartbeat), motion-based (ana-
lyse movements during the capturing process and try
to detect unnatural ones) and texture-based meth-
ods (detect and analyse textural artefacts present in
the image). While the first two categories require a
video or a sequence of consecutive images to be cap-
tured, texture-based methods can be applied to single
images. One liveness based approach is presented
in [19], which applies motion magnification tech-
niques. The majority of the proposed PAD schemes
are texture-based ones, e.g. a Fourier, Haar and
Daubechies wavelet transform based one [16], ex-
ploiting differences in the bandwidth of vertical en-
ergy signals. A binarised statistical image features
based one and some others based on Riesz trans-
form, local binary patterns (LBP), local phase quant-
isation and Weber local descriptors are presented
in [25]. Another approach [23] uses a windowed
dynamic mode decomposition (W-DMD) to detect
spoofed finger vein images. Even baseline LBP [20]
and some LBP variants and extensions of LBP [10]
proved to be effective for the task of finger vein PAD.
Several other approaches are utilising image quality
assessment methods (IQA), e.g. [15] and [1] which
detection accuracy turns out to be highly dependent
on the particular dataset. In [22] the authors showed
that the classification accuracy can be improved by
incorporating natural scene statistics (NSS) [13]. A
very different approach for PAD detection is to use
a photo-response non-uniformity (PRNU) technique
to differentiate PA data from genuine samples [12].
Furthermore, a CNN-based approach has been pro-
posed in [17].

3. Presentation Attack Approaches

Capturing the vein pattern using an appropriate
capturing device forms the basis of vein recognition
in general and finger- and hand-vein PA evaluation in
particular. Therefore, we utilise the PLUS Vein fin-
ger vein scanner [7] and the PLUS hand vein scanner
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(a) Genuine

(b) Post-processed
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Figure 1. Hand vein PA artefacts for 950 nm reflected light
illumination captured with the PLUS hand vein scanner
[8]: genuine image (a), post-processed image for printing
(b) and re-acquired printed image (c).

[8] as capturing devices to prepare our finger- and
hand-vein spoofing artefacts as well as for recaptur-
ing the artefacts. The interested reader is referred
to the authors original publications for more details
about those capturing devices. In the following, the
production of the hand and finger vein spoofing arte-
facts is described. These spoofing artefacts are then
again presented to the capturing devices mentioned
above.

3.1. Hand Vein Spoofing Artefacts

The hand vein capturing device is used to acquire
reflected light images in two different wavelengths
(850 and 950 nm). Since printouts of finger vein
patterns have shown to yield successful presentation
attacks [26], we decided for this approach as an at-
tack scenario for the hand vein recognition system as
well. Our spoofing attack samples are derived from
samples contained in the publicly available PRO-
TECT Vein dataset, which is part of the PROTECT
Multimodal Biometric Database [21].

The hand vein spoofing attack samples are created
by first selecting 100 images based on the visibility of
the vein pattern (5 dorsal and 5 palmar for one hand
of 10 users). Afterwards, a region of interest (ROI)
is manually cropped from the images. These ROIs
are then post-processed using a Contrast Limited Ad-
aptive Histogram Equalisation (CLAHE) and Gauss
filtering, to enhance the visibility of the vascular pat-
tern and remove the skin texture and hair to even-
tually obtain smooth images. Afterwards, the post-
processed images are scaled to approximately match
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©
Figure 2. Wax and silicone artefacts (a) and image as cap-
tured by the PLUS Vein finger vein scanner [7] using dif-
ferent enhancements for the vein pattern: no enhancement
(b), tracing with black marker (c), local contrast enhance-
ment (CLAHE) (d).

(a) (b) (d)

the real-life genuine samples and printed to paper.
Multiple printers and print configurations have been
tested to find an appropriate solution in regard to the
absorption of NIR light. In the end, using a ‘HP
LaserJet 500 colour M551° laser printer in grey-scale
printing mode yielded satisfactory results. Some ex-
amples of the hand vein PA artefact generation and
recapturing are shown in Figure 1.

3.2. Finger Vein Spoofing Artefacts

For the light transmission based finger vein mod-
ality, the establishment of working PA artefacts is
less trivial than in the reflected light case seen for
hand veins. Following an idea as exhibited in a re-
cent Chaos Computer Club video based on a sliced
wax artefact and a silicone model as proposed in [18]
we finally came up with two different types of arte-
facts, as shown in Figure 2. These artefacts are de-
rived from samples contained in the publicly avail-
able PLUS Vein-FV3 finger vein data set [6]. These
two materials exhibited the best properties in regard
to appropriate illumination in the light transmission
case among several other considered materials.

For both types of artefacts, wax and silicone, the
first step in creating the artefacts is to obtain a mould
with a finger-like shape. We use a 3D-printer to cre-
ate the moulds, consisting of two parts: base and
top. Afterwards the vein pattern is printed using a
‘HP LaserJet 500 colour M551° laser printer in grey-
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scale printing mode (similar to hand vein artefacts).
The paper sheet containing the vein pattern is placed
between the bottom and top finger artefact parts, as
shown in Figure 2. The same finger artefact could be
used for all spoofs by simply substituting the piece
of paper containing the vein pattern.

In order to improve the visibility of the vein pat-
tern, different techniques are employed: no enhance-
ment, enhancing the image (CLAHE and Gauss fil-
tering) as well as tracing the veins with a black per-
manent marker. Furthermore, various types of pa-
per are tested. The tracing of the vein pattern yields
the visually most pleasing results. In total, 42 finger
artefacts (2 materials, 7 types of paper, 3 vein pat-
tern enhancements) are generated for 3 fingers of an
exemplary user. Figure 2 illustrates the created arte-
facts and images recaptured with the sensor.

4. Presentation Attack Detection

The PAD system applied in this work uses nat-
ural scene statistics as described in [13] and is based
on the framework presented in [2], which was ad-
apted to presentation attack detection in [22]. In
brief, the features used for detection are the para-
meters of (asymmetrical) generalised Gaussian dis-
tributions, (A)GGD, fit to statistics of characteristics
derived from samples & artefacts using a multi-scale
approach.

The features are fed into a support vector ma-
chine (SVM) for classification, two-class ‘genuine’
and ‘spoofed’, using a radial basis function. First of
all, the available genuine and spoofed data is ran-
domly separated on a user basis into two equally
sized training and test sets.

For training, in order to cleanly separate training
and evaluation data, learning is done using a ‘leave
one label out’ cross-fold technique. All images of
a user’s hand are defined as having the same label,
i.e. the right and left hand have different labels for
each user. Furthermore, also the perspective (dorsal
or palmar) is split into different labels. To evalu-
ate on the whole training dataset each label is left
out in turn, the SVM is trained on the relevant train-
ing data, then the left-out label is evaluated. The
final training evaluation data is the union of the in-
dividually evaluated labels. The parameters are op-
timised for the overall training database, where the
search is done non-exhaustively on a grid with log-
arithmic drill-down, presenting closed set learning.
The spoofing detection accuracy serves as learning



function for the parameter optimisation.

The trained SVM is then applied to the previously
unseen test data and yields an output class and a
confidence, which represents the difference between
class probabilities.

5. Experimental Evaluation

This section describes the experimental set-up for
the evaluation of the hand- (HV) and finger-vein (FV)
spoofing artefacts as well as the spoofing artefact’s
quality and PAD performance.

5.1. Experimental Set-Up

The software used to process the finger- and hand-
vein data is the OpenVein Toolkit [9]. The ROI
extraction has been done manually and the visibil-
ity of the vein pattern is improved by applying dif-
ferent post-processing techniques from the toolkit.
The vascular patterns are extracted using Maximum
Curvature (MC) [14] and the comparison of the res-
ulting binary feature vectors is performed using a
correlation based approach [14].

As defined in ISO/IEC 19795-1 [3], the EER,
FMR1000 and ZeroFMR are used to quantify the
verification performance, where all samples are
compared against each other (full comparison).
The experiments are performed separately for fin-
gers/hands, orientations (dorsal/palmar) and illumin-
ation types where applicable.

The PAD approach is evaluated using the met-
rics defined in the ISO/IEC 30107-3 [5] stand-
ard: detection equal error rate (D-EER), where AP-
CER=BPCER, attack presentation classification er-
ror rate (APCER, equivalent of FAR) which is the
proportion of attack presentations using the same
spoofing artefact species incorrectly classified as
bona fide (true) presentations in a specific scenario,
bona fide presentation classification error rate (BP-
CER, equivalent of FRR) representing the proportion
of bona fide presentations incorrectly classified as
presentation attacks in a specific scenario and a cor-
responding Detection Error Trade-off (DET) curve.

5.2. Results: Quality of Spoofing Artefacts

In order to assess the PAD performance, it is es-
sential to evaluate the quality of the spoofed artefacts
first. This is done by comparing the recaptured im-
ages of the spoofed artefacts against bona fide im-
ages. The main goal in creating the spoofed artefacts
is to have as little as possible impact on the match-
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Figure 3. HV Verification results obtained when compar-
ing bona fide samples only (baseline) and with presenta-
tion attacks (spoofed) for dorsal (left) and palmar (right)
view.

EER FMR1000 ZeroFMR

o Dorsal 850 3.01 3.00 4.00
£ Dorsal 950  4.99 6.00 6.00
2 Palmar 850 16.99 30.00 32.00
' Palmar 950 18.16 32.00 33.00
-, Dorsal 850 10.80 94.80 98.00
€ Dorsal 950 11.20 15.60 16.40
S Palmar 850 20.82 100.00 100.00
" Ppalmar 950 23.22 38.00 41.20

Table 1. Performance values (in %) obtained when verify-
ing bona fide samples only (baseline) compared to verify-
ing bona fide samples against PAs (spoofed) for reflected
light HV recognition.

ing performance. If that is the case, the quality of the
spoofed artefacts can be considered as satisfactory.

The results for the HV artefacts (reflected light)
are shown in Figure 3 and the corresponding per-
formance values are reported in Table 1. In gen-
eral, we notice a matching performance degradation
with spoofing artefacts, however the resulting EER
degradation is still acceptable. It can be observed
that the quality of the 950 artefacts (dorsal and pal-
mar) is consistent for all spoofed patterns, since the
FMR1000 and ZeroFMR remain quite stable in this
case. For the 850 spoofs on the other hand, a large
degradation in the FMR1000 and ZeroFMR can be
observed, which indicates that some of the created
artefacts did not have sufficient quality. Furthermore,
the baseline performance is much lower for the pal-
mar view compared to the dorsal one (3.01% vs.
16.99%), while the relative EER degradation using
spoofed artefacts behaves stably and ranges approx-
imately between 4% and 7% for all modalities.

Table 2 illustrates the comparison scores (genu-
ine and impostor) of the created FV spoofing arte-
facts compared to the baseline, where only bona fide



Artefact Type aGen almp D-EER BPCERI1000 BPCERO
Baseline 0.2346 0.1257 Dorsal 850 0.22 0.43 0.43
Wax 0.1222 0.1236 Dorsal 950 0.33 0.65 0.65
Wax traced 0.1199 0.1220 Palmar 850 0.00 0.00 0.00
Wax CLAHE 0.1252 0.1199 Palmar 950 6.04 30.43 30.43
Silicone 0.1285 0.1297 Table 3. Performance values (11’1 %) for hand veins PAD
Silicone traced 0.1250  0.1250 evaluation

Silicone CLAHE 0.1274 0.1283

Table 2. Average genuine (aGen) and impostor (almp)
FV comparison scores obtained when verifying bona fide
samples only (baseline) compared to verifying bona fide
samples against PAs using different artefact types for light
transmission FV recognition.

images have been used. The scores have been av-
eraged over all three fingers and paper types for il-
lustration purposes because of the small variation in
their scores. It is immediately noticeable that none
of the spoofing artefacts is meeting the quality re-
quirements, since the obtained genuine and impostor
scores are not differentiable. This is also true for the
visually promising traced wax artefacts. Therefore,
a further refinement of these artefacts is necessary
to come up with a dataset of sufficient quality as re-
quired for a sensible PAD evaluation.

5.3. Results: PAD Performance

Following the evaluation of the produced spoof-
ing artefacts’ quality, this section covers the detection
performance of the PAD system described in section
4. The evaluation of the PAD system is only per-
formed for presentation attacks using HV artefacts
due to insufficient quality of the FV artefacts. The
available genuine and spoofed data was split 50/50
on a user basis for training and testing.

The PAD detection performance under different il-
lumination conditions in terms of D-EER, BPCER
@ APCER<=0.001 (BPCER1000) and BPCER @
APCER=0 (BPCERO) is reported in Table 3. It be-
comes apparent that the artefacts are harder to de-
tect under 950nm NIR than under 850nm one. This
might be due to varying reflectivity and absorption
properties of the vein pattern prints for different NIR
wavelengths. The PAD system has some problems
in correctly classifying the palmar 950nm artefacts,
however the PAD performance can be considered
good to excellent across all HV artefacts.
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6. Conclusion

Presentation attacks are still a major problem in
many applications of biometric recognition systems.
Recent publications have shown that even vascular
pattern based systems are susceptible to this kind
of attack. In this work, we investigated two ap-
proaches to produce presentation attack artefacts,
one for finger veins and one for hand veins. We
also developed a suitable presentation attack detec-
tion scheme for vein recognition systems based on a
natural scene statistics framework. We established a
hand vein presentation attack dataset, consisting of
100 presentation attack samples and the correspond-
ing original samples, which is publicly available as
part of the PROTECT MMDB v2!.

The PAD evaluation results on the established
dataset showed that the proposed PAD approach
achieves a good performance in detecting the fake
representations. The verification experiment further
revealed that if the fake representations are not de-
tected, they achieve a rather high verification rate,
i.e. that there is a good chance that a presentation
attack is successful if no suitable PAD approach is
employed.

Our future work will include tests with other types
of presentation attack artefacts for the hand veins and
the establishing of a presentation attack dataset for
finger veins as well.
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Abstract. To provide a complete 2D scene segmen-
tation, panoptic segmentation unifies the tasks of se-
mantic and instance segmentation. For this purpose,
existing approaches independently address semantic
and instance segmentation and merge their outputs
in a heuristic fashion. However, this simple fusion
has two limitations in practice. First, the system is
not optimized for the final objective in an end-to-end
manner. Second, the mutual information between the
semantic and instance segmentation tasks is not fully
exploited. To overcome these limitations, we present
a novel end-to-end trainable architecture that gen-
erates a full pixel-wise image labeling with resolved
instance information. Additionally, we introduce in-
terrelations between the two subtasks by providing
instance segmentation predictions as feature input to
our semantic segmentation branch. This inter-task
link eases the semantic segmentation task and in-
creases the overall panoptic performance by provid-
ing segmentation priors. We evaluate our method on
the challenging Cityscapes dataset and show signif-
icant improvements compared to previous panoptic
segmentation architectures.

1. Introduction

Panoptic segmentation [12] addresses the problem
of complete 2D scene segmentation by not only as-
signing a class label to each pixel of an image but
also differentiating between instances within a com-
mon class. Thus, it can be seen as a unification of
semantic segmentation [22, 24, 3] and instance seg-
mentation [8, 13, 20, 16]. Panoptic segmentation
is a new and active research area with applications
in augmented reality, robotics, and medical imag-
ing [5, 23, 30].

To predict a panoptic segmentation of an image,
recent approaches perform three tasks. First, they
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Figure 1: Illustration of our proposed panoptic seg-
mentation network with task interrelations. We pro-
vide instance segmentation predictions as additional
feature input to our semantic segmentation branch.
In this way, we exploit a segmentation prior which
increases the overall panoptic performance.

perform semantic segmentation to identify regions of
uncountable stuff classes like sky. Second, they per-
form instance segmentation to detect individual in-
stances of countable things classes like cars. Third,
they merge the outputs of these two tasks into a sin-
gle panoptic prediction.

However, this strategy has two limitations in prac-
tice. First, because the panoptic output is generated
using heuristics, the system cannot be optimized for
the final objective in an end-to-end manner. Second,
semantic and instance segmentation share mutual in-
formation and similarities but the relation between
the two tasks is not exploited because they are ad-
dressed independently.

To overcome these limitations, we propose a holis-
tic end-to-end trainable network for panoptic seg-
mentation (HPS) with interrelations between the se-
mantic and the instance segmentation branches, as
shown in Figure 1. Our network directly generates
a full pixel-wise image labeling with resolved in-
stance information by using differentiable operations
instead of heuristics to combine individual results.
Moreover, to take advantage of mutual information
between the semantic and the instance segmentation



tasks, we provide instance segmentation predictions
as additional feature input to our semantic segmen-
tation branch. In particular, we gather predicted in-
stance masks into an initial segmentation image (ISI)
which represents a coarse semantic segmentation for
things classes. In this way, we exploit a segmenta-
tion prior which increases the overall panoptic per-
formance of our system by leveraging similarities be-
tween the two previously disjoint subtasks.

We evaluate our method on the challenging
Cityscapes dataset [4] for semantic understanding
of urban street scenes using the recently introduced
panoptic quality [11] metric. We provide an unbiased
evaluation and compare four different approaches
with an increasing level of entanglement between se-
mantic and instance segmentation. Our experiments
show that both end-to-end training and inter-task re-
lations improve panoptic performance in practice.

2. Related Work

Fusing semantic and instance information has a
rich history in computer vision [25, 26]. However,
only recently [12] formalized the task of panoptic
segmentation and introduced a panoptic quality (PQ)
metric to assess the performance of complete 2D
scene segmentation in an interpretable and unified
manner. This formalization and the availability of
large datasets with corresponding annotations [19]
motivated research on panoptic segmentation.

Early approaches to panoptic segmentation use
two highly specialized networks for semantic seg-
mentation [22, 24, 3] and instance segmentation [21,
8, 17, 27] and combine their predictions heuristi-
cally [1]. Instead, recent methods address the two
segmentation tasks with a single network by train-
ing a multi-task system that performs semantic and
instance segmentation on top of a shared feature rep-
resentation [11]. This reduces the number of param-
eters, the computational complexity, and the time re-
quired for training. To improve the panoptic qual-
ity, newer approaches propose a differentiable fusion
of semantic and instance segmentation instead of a
heuristic combination. In this way, they learn to com-
bine the individual predictions and optimize directly
for the final objective in an end-to-end manner. For
example, UPSNet [28] introduces a parameter-free
merging technique to generate panoptic predictions
using a single network.

Another strategy to improve accuracy is to exploit
mutual information and similarities between seman-
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tic and instance segmentation network branches. In
this context, AUNet [15] incorporates region pro-
posal information as an attention mechanism in the
semantic segmentation branch. In this way, the se-
mantic segmentation focuses more on stuff classes
and less on things classes, which are eventually re-
placed by predicted instance masks. TASCNet [14]
enforces L2-consistency between predicted semantic
and instance segmentation masks to exploit mutual
information. SOGNet [29] addresses the overlapping
issue of instances using a scene graph representation
which computes a relational embedding for each ob-
ject based on geometry and appearance.

Similar to our approach, IMP [6] which has been
developed at the same time uses predicted instance
segmentation masks as additional input for the se-
mantic segmentation branch. Compared to our ap-
proach, a different normalization technique is used
and the instance masks are combined using the max
operator instead of averaging.

3. Holistic End-to-End Panoptic Segmenta-
tion Network with Interrelations

An overview of our end-to-end trainable panop-
tic segmentation network with inter-task relations is
shown in Figure 1. We first present our end-to-end
trainable architecture which combines semantic and
instance segmentation predictions in a differentiable
way in Sec. 3.1. Then, we introduce our interrela-
tions module which provides instance segmentation
predictions as additional feature input to our seman-
tic segmentation branch in Sec. 3.2.

3.1. End-to-End Panoptic Architecture

Our network architecture builds upon Panoptic
Feature Pyramid Networks [11]. Like many recent
panoptic segmentation methods, this approach ex-
tends the generalized Mask R-CNN framework [8]
with a semantic segmentation branch. This results
in a multi-task network that predicts a dense seman-
tic segmentation in addition to sparse instance seg-
mentation masks. For our implementation, we use
a shared ResNet-101 [9] feature extraction backbone
with a Feature Pyramid Network [18] architecture to
obtain combined low- and high-level features. These
features serve as shared input to our semantic and in-
stance segmentation branches, as shown in Figure 2.

For the semantic segmentation branch, we process
each stage of the feature pyramid { P2, ..., P5} by a
series of upsampling modules. These modules con-
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Figure 2: Detailed illustration of our end-to-end
panoptic segmentation network with task interrela-
tions. We internally merge predictions from our se-
mantic and instance segmentation branches in a dif-
ferentiable way. In particular, we concatenate stuff
class predictions from our semantic segmentation
branch with things class predictions in the form of
canvas collections from our instance segmentation
branch. Our instance canvas collections can also be
transformed into an initial segmentation image (ISI)
which serves as additional feature input for our se-
mantic segmentation branch.

sists of 3 x 3 convolutions, batch normalization [10],
ReLU [7], and 2x bilinear upsampling. Because the
individual stages have different spatial dimensions,
we process each stage by a different number of up-
sampling modules to generate H/4 x W/4 x 128
feature maps, where H and W are the input image
dimensions. The resulting outputs of all stages are
concatenated and processed using a final 1 x 1 convo-
lution to reduce the channel dimension to the desired
number of classes.

For the instance segmentation branch, we imple-
mented a Mask R-CNN [8]. We use a region pro-
posal network to detect regions of interest, perform
non-maximum suppression, execute ROI alignment,
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and predict 28 x 28 binary masks as well as class
probabilities for each detected instance.

In order to combine the semantic and instance seg-
mentation outputs, we use an internal differentiable
fusion instead of external heuristics. For this pur-
pose, we first select the most likely class label for
each detected instance using a differentiable

N

soft argmax = Z |

i

eziB

svel O
operation [2], where N is the number of things
classes, 3 is a large constant, and z is the predicted
class logit. Using S in the exponent in combination
with the round function allows us to squash all non-
maxium values to zero. In this way, we approximate
the non-differentiable argmax function, allowing us
to backpropagate gradients.

We then resize the predicted 28 x 28 mask logits
for each detected instance according to its predicted
2D bounding box size and place them in empty can-
vas layers at the predicted 2D location, as shown in
Figure 2 (top right). Additionally, we merge the can-
vas layers for regions of interest with the same class
id and high mask IOU. The resulting canvas collec-
tion from the instance segmentation branch is then
concatenated with the stuff class logits of the seman-
tic segmentation branch to generate our panoptic out-
put, as illustrated in Figure 2 (bottom). The pixel-
wise panoptic segmentation output is attained by ap-
plying a softmax layer on top of the stacked semantic
and instance segmentation information. The shape
of the final output is H x W x (# stuff classes +
# detected instances). For stuff classes, the output
is a class ID. For things classes, the output is an in-
stance ID. The corresponding class ID for each in-
stance can be gathered from our semantic or instance
segmentation output.

During training, it is important to reorder the de-
tected instances to match the order of the ground
truth instances. For this purpose, we use a ground
truth instance ID lookup table. All parameters of our
network are optimized jointly.

3.2. Inter-task Relations

Our differentiable fusion of semantic and instance
segmentation predictions allows us to join the out-
puts of our two branches internally for end-to-end
training. However, it also allows us to provide in-
stance predictions as additional feature input to our
semantic segmentation branch, as shown in Figure 3.



For this purpose, we first evaluate our instance
segmentation branch and build an instance canvas
collection as described in Sec. 3.1. Next, we merge
canvas layers of instances that belong to the same
class using weighted average and insert empty can-
vas layers for missing or undetected classes. In this
way, we generate an initial segmentation image (ISI)
which represents a coarse semantic segmentation for
things classes.

To exploit this segmentation prior in our seman-
tic segmentation branch, we downsample our ISI to
H/4xW /4 x# things classes and concatenate it with
the output of our semantic segmentation upsampling
modules, as shown in Figure 3. Next, we apply four
network blocks consisting of 3 x 3 convolution, batch
normalization, and ReL.U followed by a single 1 x 1
convolution, batch normalization, and ReLLU block
to reduce the channel dimension to the number of
classes. Finally, we use bilinear upsampling to ob-
tain semantic segmentation logits at the original input
image dimensions and apply a softmax non-linearity.

By exploiting the segmentation prior given by ISI,
the upsampling modules of our semantic segmen-
tation branch focus more on the prediction of stuff
classes and boundaries between individual classes in-
stead of things classes. This is a huge advantage
compared to disjoint semantic and instance segmen-
tation branches where redundant predictions are per-
formed in the semantic segmentation branch. As a
consequence, this link between the individual tasks
increases the panoptic performance of our system.

4. Experimental Results

To demonstrate the benefits of our end-to-end
panoptic architecture with interrelations, we evalu-
ate it on the challenging Cityscapes dataset [4] for
semantic understanding of urban street scenes. We
follow the protocol of [4] and train and evaluate on
19 classes (11 stuff and 8 things). We use the recently
introduced panoptic quality [11] metric to assess the
segmentation performance.

4.1. Experimental Setup

Due to our limited computational resources, we
limited the maximum number of instances per im-
age to 30 and excluded samples with more instances
from the evaluation. In this way, we use 2649 of
2975 training images (/~ 89%) and 415 of 500 pub-
licly available validation images (~ 83%). Addi-
tionally, we reduce the spatial image resolution from
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Figure 3: Illustration of our proposed semantic and
instance segmentation branches with inter-task re-
lations. We first run the instance segmentation
branch and then provide instance segmentation pre-
dictions as additional feature input to the seman-
tic segmentation branch via an initial segmentation
image (ISI). Finally, we evaluate the semantic seg-
mentation branch and exploit the segmentation prior
given by ISI to improve the overall panoptic perfor-
mance.

2048 x 1024 to 1024 x 512. For this reason, we
cannot not benchmark against other state-of-the-art
approaches. To provide an unbiased evaluation, we
compare four different approaches with an increasing
level of entanglement between semantic and instance
segmentation. All methods use the same backbone,
training protocol, and hyper-parameters:

Semantic + Instance. This approach uses two dif-
ferent networks based on a ResNet-101 [9] backbone
which independently perform semantic and instance
segmentation. A heuristic is used to combine the in-
dividual results.

Panoptic FPN. This method is a reimplementa-
tion of Panoptic Feature Pyramid Networks [11] with
a ResNet-101 [9] backbone. In contrast to Semantic
+ Instance, the semantic and instance segmenation
branches use a single shared feature representation.
The results, however, are still merged heuristically.

HPS. Our holistic panoptic segmentation net-
work (HPS) extends Panoptic FPN as described in
Sec. 3.1. Our network internally builds the panoptic
segmentation output using differentiable operations
which enables us to optimize for the final objective.

HPS + ISI. This method augments our HPS with
inter-task relations between the semantic and in-



Method | PQ  SQ RQ | PQ™ sQ™ RQ™ | PQ* SQ% RQ™
Semantic + Instance | 40.6 70.9 51.3 40.3 75.4 53.0 40.9 67.6 50.0
Panoptic FPN 419 737 534 | 430 752 566 | 412 725 511
HPS 429 745 543 | 434 757 567 | 426 736 525
HPS + ISI 440 748 555 | 444 764 575 | 437 736 541

Table 1: Quantitative results on the Cityscapes dataset. The results show that a shared feature backbone reduces
overfitting compared to two disjoint networks (Semantic + Instance vs Panoptic FPN). Also, generating the
final panoptic output internally and training the system end-to-end increases the performance (Panoptic FPN vs
HPS). Finally, using inter-task relations in the form of an initial segmentation image (ISI) provides an effective
segmentation prior and increases the overall panoptic quality as well as all other metrics (HPS vs HPS + ISI).

stance segmentation branches by using an initial seg-
mentation image (ISI), as introduced in Sec. 3.2.

4.2. Results

The thus obtained results of the four methods de-
scribed above on the Cityscapes dataset are summa-
rized in Table 1. In addition, to the panoptic quality
(PQ), we show the segmentation quality (SQ) and the
recognition quality (RQ) for all classes, things (Th)
classes only, and stuff (St) classes only. Since PQ is
a measurement of semantic (SQ) and instance (RQ)
segmentation quality an improvement in either part
will increase the accuracy of the overall system.

Interestingly, Semantic + Instance performs worse
than Panoptic FPN. We hypothesize that this is be-
cause the number of training images in Cityscapes is
low. Thus, the shared feature backbone of Panoptic
FPN acts as a regularizer which reduces overfitting
compared to training two individual networks with-
out shared features on this dataset.

Next, HPS improves upon Panoptic FPN across
all metrics and classes, because we optimize for the
final panoptic segmentation output. Our system min-
imizes a panoptic loss in addition to the semantic and
instance segmentation losses which provides better
guidance for the network. In this way, we do not rely
on the heuristic merging of subtask predictions but
directly generate the desired output internally which
results in improved accuracy in practice.

Finally, HPS + ISI significantly outperforms all
other methods because it additionally leverages inter-
task relations. Compared to Panoptic FPN, HPS +
ISI improves PQ by +5% relative from 41.9 to 44.0.
Providing instance segmentation predictions as ad-
ditional feature input for the semantic segmentation
branch gives a segmentation prior. By exploiting this
prior, the semantic segmentation branch can focus
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more on the prediction of stuff classes and bound-
aries between individual classes which results in im-
proved accuracy across all metrics. Additionally, our
architectural advances only add a neglible computa-
tional overhead during both training and inference
compared to Panoptic FPN.

This quantitative improvement is also reflected
qualitatively, as shown in Figure 4. We observe
that HPS + ISI handles occlusions more accurately
(1% row) and resolves overlapping issues on its own
while being less sensitive to speckle noise in semanti-
cally coherent regions (2" row). Thanks to our end-
to-end training and inter-task relations, we predict
more accurate semantic label transitions (3" row)
and reduce confusion between classes with similar
semantic meaning like bus and car 4™ row).

5. Conclusion

Panoptic segmentation is a challenging but impor-
tant and practically highly relevant problem. As ap-
proaching panoptic segmentation by independently
addressing semantic and instance segmentation has
several limitations, we propose a single end-to-end
trainable network architecture that directly optimizes
for the final objective. Moreover, we present a way
to share mutual information between the tasks by
providing instance segmentation predictions as ad-
ditional feature input for our semantic segmentation
branch. This inter-task link allows us to exploit a
segmentation prior and improves the overall panoptic
quality. In this way, our work is a first step towards
fully entangled panoptic segmentation.

Acknowledgment. This work was partially sup-
ported by the Christian Doppler Laboratory for Se-
mantic 3D Computer Vision, funded in part by Qual-
comm Inc.
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Figure 4: Qualitative results on the Cityscapes dataset. Compared to Panoptic FPN, HPS + ISI handles oc-
clusions more accurately (1% row) and is less sensitive to speckle noise in semantically coherent regions (2"
row). Additionally, we predict more accurate semantic label transitions (3" row) and reduce confusion between
classes with similar semantic meaning like rider and person or bus and car (4™ row). Both our end-to-end train-
ing as well as inter-task relations increase panoptic quality. Best viewed in digital zoom.
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Frame-To-Frame Consistent Semantic Segmentation
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Abstract. In this work, we aim for temporally con-
sistent semantic segmentation throughout frames in a
video. Many semantic segmentation algorithms pro-
cess images individually which leads to an inconsis-
tent scene interpretation due to illumination changes,
occlusions and other variations over time. To achieve
a temporally consistent prediction, we train a con-
volutional neural network (CNN) which propagates
features through consecutive frames in a video us-
ing a convolutional long short term memory (ConvL-
STM) cell. Besides the temporal feature propagation,
we penalize inconsistencies in our loss function. We
show in our experiments that the performance im-
proves when utilizing video information compared to
single frame prediction. The mean intersection over
union (mloU) metric on the Cityscapes validation set
increases from 45.2% for the single frames to 57.9%
for video data after implementing the ConvLSTM to
propagate features trough time on the ESPNet. Most
importantly, inconsistency decreases from 4.5% to
1.3% which is a reduction by 71.1%. Our results
indicate that the added temporal information pro-
duces a frame-to-frame consistent and more accurate
image understanding compared to single frame pro-
cessing.

1. Introduction

We address the task of semantic segmentation
which assigns a semantic class for each pixel in an
image. Our focus is on the computation of seman-
tic segmentation for multiple consecutive images, re-
ferred to as frames, in a video sequence. Consecutive
video frames contain similar information, because
they capture a scene which only changes slightly.
Therefore, the semantic segmentation of consecutive
frames is similar as long as motion between frames
does not increase significantly. For example, con-
sider a street scene recorded by a camera mounted
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Figure 1: Consistent Semantic Segmentation. The trained
ESPNet [19] model predicts temporally inconsistent se-
mantic segmentation on two consecutive frames of the
Cityscapes [0] video data set (second row). The semantic
segmentation is color encoded and large inconsistencies
are highlighted with orange boxes. The third row shows
consistent results predicted by our model. We reduce tem-
poral inconsistencies by 71%.

on a vehicle in which we observe a street sign. If the
frame rate is large enough, we will observe the street
sign in multiple images as the vehicle passes by. In
this example, the goal of this work would be to con-
sistently detect the street sign as such in all frames
in which the sign appears. Single frame algorithms
often fail at achieving this task. In general, we aim
for temporally consistent segmentation of all seman-
tic classes throughout a video sequence.

Many state of the art computer vision algorithms
process images individually [26, 17, 3] and hence are
not designed for video sequences. They do not con-
sider the temporal dependencies which occur when
segmenting a video semantically. If single frame
convolutional neural networks (CNNs) predict se-
mantic segmentation on video sequences, results can
become temporally inconsistent because of illumina-



tion changes, occlusions and other variations. Fig-
ure 1 illustrates the differences between a temporally
inconsistent prediction of video frames by a trained
ESPNet [19] and our consistent model.

We address this issue by introducing methods
which alter existing single frame CNN architectures
such that their prediction accuracy benefits from hav-
ing multiple frames of the same scene. Our method
is designed such that it can be applied to any single
frame CNN architecture. Potential applications in-
clude robotics and autonomous vehicles where video
data can be recorded easily. Since we aim for a real-
life application scenario our method does not access
future frames. Instead, we only utilize information
from past frames to predict the current frame. We im-
plement our online method on the lightweight CNN
architecture ESPNet. We include a recurrent neural
network (RNN) layer into the ESPNet which allows
past image features to be combined with current im-
age features and thus computes consistent semantic
segmentation over time. To train the parameters of
our novel model for consistency, we introduce a in-
consistency error term to our objective function. We
verify our methods on a second architecture, which
we name Semantic Segmentation Network (SSNet).
The reason for the development of SSNet is to en-
sure that our methods do not only work on a specific
CNN. We train the parameters of the two models on
street scenes using supervised learning. The data is
provided by the Cityscapes sequence [60] and a syn-
thetic data set which we generate from the Carla [7]
simulator. To avoid the large effort required to manu-
ally label video data, we use the pre-trained Xception
model [3] to predict highly accurate video semantic
segmentation.

2. Related Work

The best performances on semantic segmentation
benchmark tasks such as PASCAL VOC [&] and
Cityscapes [6] are reached by CNN architectures.
Lightweight CNN architectures [19, 12, 29, 25, 27]
have been developed to achieve high accuracy with
low computational effort. We select the highly effi-
cient ESPNet [19] as a basis for our work because
it predicts semantic segmentation in real-time while
maintaining high prediction accuracy. It uses point-
wise convolutions together with a spatial pyramid
of dilated convolutions [28]. The dilated convolu-
tions allow the network to create a large receptive
field while maintaining a shallow architecture. Al-
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though ESPNet processes images fast and accurately,
it lacks temporal consistency when predicting con-
secutive frames. Therefore, we extend the ESPNet
and enforce video consistency.

Video Consistency Kundu er al. [16] and Sid-
dhartha et al. [2] base their work on the traditional
graph cut [14, 15] approach towards semantic seg-
mentation. They extent the traditional 2D to a 3D
CREF by adding a temporal dimension which allows
them to predict temporally consistent semantic seg-
mentation on video. Compared to our approach addi-
tional optical flow information needs to be computed
and the size of the temporal dimension must be pre-
defined in advance. This results in additional com-
putation complexity and less flexibility when chang-
ing parameters such as the frame rate. Therefore, we
decided to implement RNNs [11, 23, 4] which offer
a more flexible approach towards processing video
data.

RNNs are trained to learn which features of past
frames are relevant for current [18, 21] or future [24,

] frames. In general, it is not clear if LSTM, GRU
or any other RNN architecture is superior [5, 13, 10].
Depending on the application, one architecture might
perform slightly better than the other [5]. Variations
through modifying the proposed architectures might
work even better in some cases [13]. The work of
Jozefowicz et al. [13] shows the importance of the
elements inside an RNN cell.

Lu et al. [18] use the plain LSTM to associate ob-
jects in a video. To enforce a frame-to-frame con-
sistent prediction, they use an association loss during
the training of the LSTM. Similarly, we implement
a ConvLSTM and an inconsistency loss to tackle se-
mantic segmentation. We place the ConvLSTM on
different image feature levels in our architecture as
suggested by [22, 21].

3. Consistent Video Semantic Segmentation

In this section, we introduce our methods to-
wards frame-to-frame consistent semantic segmenta-
tion. We present different architecture to propagate
features through time. To train the architectures for
temporal consistency, we extend the cross entropy
loss function with a novel inconsistency error term.

3.1. Temporal Feature Propagation

The propagation of image features from the past
to the current time step allows the neural network to



make predictions based on time sequences. We pre-
fer the ConvLSTM [23] cell for this dense predic-
tion task. Compared to the fully connected LSTM, it
removes unnecessary connections. For instance, the
connection of features from the top left corner of the
previous frame to features of the bottom right corner
of the current frame is not needed. We assume that
if we ensure consistency locally by the convolution
operator, we will generate overall results which are
consistent, as long as motion between frames can be
detect in the local window. Therefore, we need to
choose the filter size large enough to allow the Con-
vLSTM to detect local consistencies and motion be-
tween frames without explicit optical flow informa-
tion. Furthermore, the ConvLSTM allows us to pro-
cess images at different resolutions and reduces the
number of parameters significantly compared to the
fully connected LSTM. The definition of ConvLSTM
cell is shown in [23]. We use two different networks
in which we include the ConvLSTM cell. First,
we introduce the Video SSNet (VSSNet) architecture
which consists of six layers of 3 x 3 convolutions with
dilation rates {1, 1, 2,2, 4,4} and 64 channels. Com-
pared to the SSNet, we replace the last convolutional
layer with a ConvLSTM in the VSSNet. Second,
we also extend the ESPNet [19] with a ConvLSTM
layer. Although it would be reasonable to propagate
features at every layer of a CNN architecture this is
not feasible because of fast growing computational
complexity. Figure 2 shows the ESPNet architecture
with four possible positions for the ConvLSTM. The
proposed architectures are enumerated alphabetically
from ESPNet_L1a to ESPNet_L1d, starting with the
ConvLSTM at the highest feature level which means
that it is located closest to the output layer. Besides
the ConvLSTM layer, we implement two ESP mod-
ules at the first spatial level and three ESP modules
at the second spatial level, which is the simplest con-
figuration introduced in [19]. All other aspects of the
ESPNet architecture remain unchanged.

3.2. Temporal Consistency Loss

Our second building block to enforce consistency
is an additional error term in our loss function. The
resulting loss function £(-) is defined as

‘C(Sv P) = )\CGECC(Sv P) + )‘inconsﬁincons(sv P)a (1

where S € STXM*N contains the semantic ground
truth and P € RT*XMxNXIS| contains the predic-
tions. The set S contains all semantic labels. We
bound the dimensions by the sequence length 7', the
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Figure 2: ESPNet with ConvLSTM. Four different posi-
tions for including a ConvLSTM (orange) into the existing
ESPNet architecture are depicted. Dashed boxes indicate
that only one ConvLSTM is present in a single architec-
ture. L1b, L1c and L1d replace 1 x 1 channel reduction
convolutions while L1a adds an additional layer to the ar-
chitecture of the original ESPNet. Red boxes indicate a
spatial dimensionality reduction by the factor two, while
green boxes indicate a spatial dimensionality increase of
two.

image dimensions M x N and the number of seman-
tic labels |S|. The function L. (-) computes the cross
entropy loss and Lincons(+) penalizes inconsistencies.
The hyper-parameters Ace and Aincons are introduced
to influence the balance between training with focus

on prediction accuracy or consistency.
We define the inconsistency loss as

| T-LMN
Lincons Sa P)= —— Wyce 87 Pa t,m,n) (2)
( ) Whorm (S) t m;:l ( )

IS
Zd(st,m,n = 5) ' (Pt,m,n,s - Pt+1,m,n,s)2 )
s=1

where 0(+) refers to the indicator function defined as

1 if ¢(-) is true
0 else.

The inconsistency loss penalizes pixels with differ-
ent predictions in consecutive frames, which are al-
ready predicted correctly in at least one frame of the
consecutive pair. This ensures that all other incorrect
pixels are only affected by the cross-entropy loss.
Additionally, 6(S¢ ., = ) selects only the correct
semantic class for consistency enforcement. We nor-

5(o(-)) 3)



malize by the sum of pixels which are valid and con-
sistent in the ground truth. This is achieved by

T—-1,M,N
waom(8) = Y 3(Stamm €S) - 6(Stmm = Str1mn);

t,m,n=1
“)
where the first factor checks for validity and the sec-
ond one consistency in the ground truth. The boolean
function wyec () ensures that only valid, consistent
and correctly (vce) predicted pixels are affected by
the following loss term.

wVCC(S7 Pa t7 m, n) = 6(St7m7n € S) .
5(St,m,n - StJrl,m,n) '

&)

¢(St,m,n7 Pt,m,na St—i—l,m,na Pt+1,m,

where the first factor ensures validity, the second
consistency and the third correct prediction in one of
two consecutive images. The third factor is given by
the boolean function 1 (-) which we define as

¥(s1,P1, 52, P2) = min(d(s; = argmax(py)) +
0(s2 = argmax(p2)),1). (6)

This function determines for a pixel at a certain po-
sition if at least one prediction in the consecutive im-
age pair is correct. The input parameters are given by
the two prediction vectors py, p2 € RIS! and the two
ground truth labels s1, so € S for any pixel position.
All four parameters are retrieved from P and S.

In Figure 3 we point out pixels which are affected
by the inconsistency loss. In the bottom right of the
prediction, the road (purple) is labeled inconsistently.
For these pixels the function wyc(-) returns true and
they are penalized by the inconsistency loss.

4. Experiments

First, we explain the generation of semantic video
data with ground truth and show the impact of syn-
thetic data. Second, we evaluate our proposed meth-
ods, i.e. the feature propagation and the inconsis-
tency loss.

Architectures and data preparation We use two
models in our experiments, the ESPNet [19] and the
SSNet. We train the models on images with half
and quarter Cityscapes resolution to reduce compu-
tational complexity. Comparisons between different
configurations are always trained for the same num-
ber of epochs which is chosen high enough to allow
for convergence of the configurations. We generate
the pseudo ground truth for the sequence validation
set with the Deeplab Xception model [3].
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Prediction Ground truth

T scene change
P

Figure 3: Visualization of Inconsistencies. We compare
prediction and ground truth at two different time steps.
The white pixels in image (a) are inconsistently predicted.
Image (b) shows pixels which change their label because
of motion. Only black pixels in image (b) are affected by
our inconsistency loss.

Metrics and abbreviations The metrics which we
use to compare our experiments are mean intersec-
tion over union (mloU 1), the percentage of correctly
classified valid pixels (Acc 1), the percentage of tem-
poral consistently classified pixels (Cons 1) and the
percentage of pixels which are temporally consistent
but wrongly classified (ConsW ). The arrow point-
ing upwards 7 indicates that a higher value is better,
whereas the arrow pointing downwards | indicates
the opposite. Our Cons and ConsW metrics check all
pixels which need to have the same label according
to the ground truth, i.e. black pixels in Figure 3b.

4.1. Data Generation

An important part of our work is the generation of
ground truth for a video data set.We generate street
scene video data with a pre-trained Deeplab Xception
model [3] and the Carla simulator [7].

Real world data The semantic segmentation data
sets of CamVid [1], Kitti [9], Cityscapes [6] and
Mapillary [20] do not provide ground truth for video
data because of the large labeling effort required.
Therefore, we use the Deeplab Xception model pre-
trained on the Cityscapes data set to generate pseudo
ground truth labels for the Cityscapes sequence data
set. The reason why we prefer the Cityscapes dataset
for video processing is that every 20th image of each



Category ‘Experiment ‘mIoU Acc Cons ConsW
ESPNet |Single Frame | 452 896 955 38
Convolution | ESPNet L1aStd. | 46.5 894 97.6 54
s Type ESPNet.LlaD.S. | 452 89.0 972 55
E ESPNetLla7x7| 50.3 91.4 985 3.1
£ Position with | ESPNet L1b3x3| 520 915 987 32
O Eq. Params. [popNet Lic5x5| 49.9 914 982 3.0
ESPNet L1d9x9| 50.1 91.5 983 2.9

Table 1: ConvLSTM on ESPNet. Results on Cityscapes
validation set. We compare the ESPNet trained with single
frame images to different ConvLSTM configurations.

sequence has annotated ground truth semantics. This
allows for comparability with single frame results.

Synthetic data Besides Cityscapes data, we also
generate synthetic data with the Carla simulator [7].
In total, we create 4680 scenes with 30 frames
each. We train the ESPNet_L1b using different ra-
tios between Cityscapes and Carla data. After train-
ing we evaluate on the Cityscapes sequence valida-
tion set. The quantitative results indicate that using
about 10% synthetic data slightly improves frame-
to-frame consistency (Cons) from 98.4% to 98.5%
for Cityscapes only training while mIoU remains at
48.5%. When using more than 20% of synthetic data,
mloU on the Cityscapes validation set declines sig-
nificantly. We assume the reason for the decline is
that only 9 of 19 semantic classes are covered by
Carla data. Nevertheless, we have shown that we can
improve consistency by accurately labeled video se-
mantic segmentation. For simplicity, we do not use
the synthetic data set in other experiments.

4.2. Feature Propagation Evaluation

First, we compare different ConvLSTM as well as
inconsistency loss configurations. Finally, we com-
bine the insights from the comparison to achieve the
highest performance.

ConvLSTM on VSSNet Training the VSSNet
with ConvLSTM and inconsistency loss results in
44.6% mloU, 89.9% Acc, 97.7% Cons and 4.7%
ConsW. The results indicate that we are able to im-
prove accuracy and consistency significantly, com-
pared to the SSNet architecture trained with single
frames which only achieves 39.9% mloU and 94.4%
Cons. After we have shown improvements on the
VSSNet, we implement the following experiments
on the ESPNet.
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Category Experiment |mIoU Acc Cons ConsW
. Inconsistency |SqDiff True | 48.8 90.9 984 3.5
é Loss Func. | Abs Diff True | 48.6 90.9 98.6 35
% Inconsistency Aincons = 0 49.0 90.9 98.0 3.4
] A Aincons = 10 | 48.8 90.9 98.4 3.5
- Aincons = 100| 463 904 986 3.7
Comb. Results | On Val. Set | 57.9 93.0 98.7 2.7
ESPNet L1b | On Test Set | 60.9 -

Table 2: Top: Inconsistency Loss. We vary parameters of
the loss function. Note that the inconsistency loss results
cannot be compared directly to Table 1 because we only
train the LSTM parameters for faster convergence. Bot-
tom: Combined Results. The last two rows show the best
results we are able to produce on Cityscapes validation
and test set by combining the insights of our experiments.

ConvLSTM configurations We test different con-
volution types and positions of the ConvLSTM as
proposed in Figure 2. Table 1 shows the quantitative
results of this comparison in the categories Convolu-
tion Types and Position with Equal Parameters. We
compare the standard convolution operation with the
depth-wise separable convolution inside the ConvL-
STM on the ESPNet_L1a architecture. Results show
that the standard convolution inside the ConvLSTM
produces better results for all four metrics.
Furthermore, we evaluate the position of the Con-
vLSTM layer.We choose the filter size such that all
experiments have a similar number of parameters for
a fair comparison. This also ensures that the size of
the receptive field at the layer is large enough to de-
tect motion. The ESPNet_L1b architecture clearly
outperforms all other architectures in both consis-
tency and accuracy. This suggests that it is more ef-
ficient to propagate high level image features. Addi-
tionally, we found that the Parametric ReLU (prelu)
performs better than the tanh activation function in-
side the ConvLSTM. Therefore, results are reported
implementing the prelu activation function.

Inconsistency loss We test different inconsistency
loss configurations on the ESPNet_L1b architecture
because this model delivered the best results in pre-
vious experiments. Table 2 contains the quantitative
results. We only train the LSTM parameters to allow
for fast comparison of multiple models. The other
parameters of the model are pretrained, but do not
receive updates after the LSTM cell is added. Con-
sequently, the scores are slightly lower than in Ta-
ble 1. Substituting the squared difference loss inside
Equation (2) with the absolute difference produces
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Figure 4: Qualitative Results. A comparison between input data, DeepLab Xception ground-truth, single frame training
and LSTM training on the ESPNet (top to bottom). The horizontal axis represents the time steps. Areas with inconsistent
predictions are shown in detail and highlighted with green dashed boxes. Other inconsistencies are highlighted with
orange boxes. The ESPNet with single frame training (Sgl Train) produces inconsistencies in the right, left and on the
road segmentation. The ESPNet_L1b predicts significantly more accurate and consistent results.

similar results. We observe that the hyper-parameter
Aincons = 10 provides a good trade-off between ac-
curacy and consistency when using the squared dif-
ference loss function. The increase in consistency
by 0.4 percentage points is noticeable when compar-
ing the qualitative results. We set the other hyper-
parameter A\, = 1 for all of our experiments.

Combining the findings In order to achieve the
best results with ESPNet_L1b, we train the model in
multiple phases. We use the squared difference in-
consistency loss on correctly predicted classes with
Aincons = 10 and a 5 x 5 convolution inside the
ConvLSTM. The quantitative results are shown at
the bottom of Table 2. When training with the
weighted cross entropy loss and data augmentations
as proposed in [19] the official Cityscapes server re-
ports 60.9% mloU on the single frame test set. Our
method reaches slightly higher accuracy and signifi-
cantly better temporal consistency while using a sim-
ilar number of parameters as Metha et al. [19].

5. Conclusion

We have shown that we can improve temporal
consistency and accuracy of semantic segmentation
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for two different single frame architectures by adding
feature propagation and a novel inconsistency loss.
On the ESPNet, consistency and mloU improve from
95.5 t0 98.7% and from 45.2 to 57.9%, respectively.
This is equal to a reduction of inconsistencies by
71.1% which can be observed immediately when
watching a video sequence.

Moreover, we found that it is best to forward fea-
tures at a high level with a standard convolution
within the ConvLSTM cell. The hyper-parameter
in our novel inconsistency loss function can be used
to prioritize between consistency and accuracy. We
also improve consistency slightly by adding synthetic
data generated by the Carla simulator.

In future experiments we are interested in com-
paring other methods of adding the information from
past frames to the current prediction. We also need to
generate synthetic data such that it contains seman-
tics of all validation classes to increase overall con-
sistency and accuracy.
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Abstract. For many applications, like for instance
autonomous driving or geo-referencing of optical
satellite data, highly accurate reference coordinates
are of importance. This work demonstrates that such
Ground Control Points can automatically be derived
Jrom multi-beam Synthetic Aperture Radar satellite
images with high accuracy.

1. Introduction

Reliable Ground Control Points (GCPs), i.e.,
points of known geographical coordinates, are an
essential input for the precise ortho-rectification of
remote sensing imagery, the exact location of tar-
gets or the accurate geo-referencing of a variety of
geo-datasets. Although GCPs collected by terrestrial
means typically offer a high accuracy, their acquisi-
tion is expensive especially on a worldwide level.

Thus, a concept was formed to extract such GCPs
from Synthetic Aperture Radar (SAR) satellite im-
ages (e.g., [9, 11]). Recently, refined SAR-based
GCP extraction emerged due to three main reasons:
(1) The 2D geo-location accuracy of current SAR
sensors is very high, actually at centimeter level if
atmospheric effects and Earth surface displacements
are taken into account [5]. (2) Metallic objects like
lamp poles or traffic signs (i.e., common features in
urban scenes) appear as focused points in SAR im-
ages and can be detected with subpixel accuracy. (3)
Using stereo acquisitions the 3D position (actually
the ground mark) of these objects can be computed
by means of radargrammetry.

Therefore, this work presents an automatic work-
flow, combining techniques from photogrammetric
computer vision and remote sensing, that derives
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Figure 1. Stereo acquisition from space. Shown are two
SAR satellites observing the same region on ground from
two different orbital directions and look angles.

highly accurate GCPs from a set of multi-beam' high
resolution images from TerraSAR-X, TanDEM-X, or
PAZ satellites [3]. In contrast to [11], where persis-
tent scatter interferometry (PSI) is deployed for point
detection and 3D reconstruction, we build upon com-
puter vision paradigms. Thus, the presented method
can be efficiently applied on single images while PSI
needs a stack of multiple images and is computation-
ally very demanding [4]. In addition, our method can
be applied on amplitude images alone as it does not
rely on the phase information of the signal.

2. Method

The proposed fully automatic workflow for GCP
retrieval consists of the following steps:

'The term multi-beam is equivalent to what is called mulri-
view in computer vision and stems from digital beamforming.



Image acquisition. Acquisition of a set of SAR im-
ages of the area of interest, in optimal case from as-
cending and descending orbital direction (cf. Fig-
ure 1). In case images are gathered from one orbital
direction the stereo intersection angle has to be rea-
sonably large (i.e., larger than 10°). After import
each image consists of complex valued pixels plus
the according sensor model (i.e., the cocircular ge-
ometry based on the Range and Doppler equations
[2, 10]).

SAR delay correction. Adjustment of sensor mod-
els, in specific the SAR internal delays in range di-
rection, for the following effects (cf. [5]): (1) Iono-
spheric signal propagation delay caused by electrons;
(2) tropospheric signal propagation delay caused by
air conditions, e.g., water vapor; (3) solid earth tides
caused by gravity of moon and sun; and (4) plate
tectonics, i.e., continental drift. For each image the
range correction grid is updated, whereas the under-
lying information is gathered from weather and GPS
services.

Point extraction. Metal objects appear as points
or rather bright blobs on dark background (cf. Fig-
ure 2). For detection the image is upsampled based
on complex FFT oversampling with a factor of 2.
Then a matched filter is applied on the amplitude
to localize blobs using a spike-shaped template ker-
nel (cf. [14]). Results are thresholded and the best
matching 2D blob locations are retrieved by subpixel
interpolation [6, 12].

Matching of points. For each stereo pair epipo-
lar rectified images using a coarse digital elevation
model based on the method [13] are generated, also
transferring the extracted points. This method undis-
torts the images in range direction and thus increases
their geometric and radiometric similarity. Those
points are then matched by means of normalized
cross-correlation (kernel size depends on resolution
of the input images). The resulting homologous
points are then transformed back into the input im-
ages.

Retrieval of 3D coordinates. GCPs are calculated
by a multi-image least squares spatial intersection of
SAR range circles yielding a point cloud. Due to over
determination incorrect points can be detected and
rejected.

3. Results and Conclusion

The presented workflow was applied on a multi-
tude of multi-beam scenes distributed over the whole
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~ North: 5329334.85m
Height616.79 m

Figure 2. Roundabout traffic as perceived from an air-
borne digital camera (top) and from the SAR satellite (bot-
tom). The bright blobs in the SAR amplitude corresponds
mainly to light poles. An exemplary pole is highlighted
together with its extracted 3D location.

globe, acquired with various imaging modes (i.e.,
Stripmap, Spotlight, HS Spotlight, Staring Spotlight
[3]). Reference coordinates of metal poles were mea-
sured in-situ with differential GPS with an absolute
3D accuracy of £5 cm such that inaccuracies of the
cadastre system do not propagate into the evaluation.
Table 1 gives exemplary 3D accuracies (defined
as root mean square (rms) values) as can be ex-
pected from the proposed methodology. In planime-
try around 15 cm are achieved and in height around
20 cm, which are impressive numbers taking into ac-
count the altitude of the satellite’s orbit at 514 km.

East [m] North [m] Height [m]
rms 0.14 0.14 0.21
mean 0.04 0.09 0.07
std 0.13 0.10 0.20
min -0.38 -0.26 -0.44
max 0.32 0.26 0.40

Table 1. 3D accuracy evaluation w.r.t. in-situ measure-
ments given in meters based on 26 reference points and
two opposite orbit Staring Spotlight images.

Future work will deal with automatic transfer of
those SAR-based GCPs to optical images by means
of multi-modal image matching. Most promising re-
cent works use deep learning to tackle this ill-posed
issue, for instance, [7, 8, 1].
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Abstract. The library of the TU Wien has been docu-
menting changes in its inventory in the form of phys-
ical library archive cards. To make these archive
cards digitally accessible, the cards and the text re-
gions therein need to be categorized and the text must
be made machine-readable. In this paper we present
a pipeline consisting of classification, page segmen-
tation and automated handwriting recognition that,
given a scan of a library card, returns the category
this card belongs to and an xml file containing the
extracted and classified text.

1. Introduction

A library catalogue is a register where all bib-
liographic entries found in a library are listed. In
this paper we present a pipeline that automatically
processes scanned images of library catalogue doc-
uments such that they can be made available and
also searchable in an online database. While ear-
lier work in this direction uses hand crafted rules
and regular expressions to classify text in extracted
OCR data, in recent years Convolutional Neural Net-
work (CNN) based methods that operate on pixel
level have formed the state-of-the-art in this task [4].

The library catalogue at hand consists of 113073
mostly handwritten documents, mostly collected in
the time period from 1815 to 1930. The scanned im-
ages contain exactly the card with no surrounding
content (see Fig. 1). Documents are classified into
two groups: library cards with a ”Signatur” (a unique
identifier) that we call S cards and cards without it
(V cards). V cards are not relevant for the online
database and must be sorted out.

For training 2000 S cards and 500 V cards where
manually extracted. The S cards where further sorted
into 5 classes based on their layout. The text regions
were manually annotated and verified by experts.
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Model Accuracy
ResNet18 0.988
ResNet34 0.988
ResNet50 0.994

Table 1. The accuracy scores on the test set. The accuracy
is computed with respect to all 6 classes.

In this paper we describe a pipeline that, given a
scanned library card image, determines if it is type S
or V and then returns an xml file with the extracted
and classified text. We describe the components of
our pipeline in Section 2 and give a conclusion in
Section 3.

2. Methodology and Results

The pipeline developed in this project is summa-
rized in Fig. 1.

Classification of S and V cards We use a ResNet
[2] pretrained on ImageNet and finetuned on our doc-
uments to sort out V cards. We do not freeze any lay-
ers during finetuning but instead train the full model
with a smaller initial learning of 4 - 10~*. To prevent
large class imbalances we train the network on all
6 classes. The 2500 annotated documents are ran-
domly split into train, test and validation sets and
rescaled to 512 x 512. Table 1 shows the accuracy
scores on the test set for three ResNets with different
depth parameters.

Page segmentation of S cards The text regions
in S cards are categorized in 7 classes that each
contain document specific information like title, au-
thor, publisher or unique identifiers. The text region
classes are distinguished from one another by loca-
tion, font size and content. We use a CNN for image
segmentation to detect and classify the text regions
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Figure 1. The proposed pipeline consisting of (a) an image classifier to sort out V cards (b) a segmentation network to
detect and classify text regions and (c) baselines and finally (d) an HTR model whose output is combined with the baseline
segmentation and saved as an xml file. Colors denote the different text categories.

Model \ mloU ‘
Large Kernel Matters (ResNext101) | 0.793
DeepLabV3+ (ResNet152) 0.799
dhSegment (ResNet50) 0.772

Table 2. The mloU scores. The image classifiers in brack-
ets denote the frontend used.

and later also the text baselines therein. We exper-
iment with the models dhSegment [4], Global Con-
volutional Network (GCN) [5] and DeepLabV3+ [1].
The 2000 documents were first split in 50% train and
25% test and validation data each and then resized to
512 x 512. We found that adding a border around text
regions (a line with constant width along the outline
of text regions) as an additional class during train-
ing helps the network in learning to separate differ-
ent text regions. Table 2 shows the mean intersection
over union (mloU) scores for the three best perform-
ing models. The segmentation is then used to classify
the extracted text as described below.

Handwriting Recognition For the detection of
text baselines and handwritten text recognition
(HTR) model from Transkribus [3] are used. The
Transkribus platform contains models for baseline
detection and HTR pretrained on german Kurrent
writing (with a character error rate of 7% on a seper-
ate reference dataset [3]), which is the predominant
writing style in our dataset. We apply the baseline
detection of Transkribus, then classify the baselines
according to the segmentation and add missing base-
lines for common errors. Afterwards the HTR model
is applied and the result is saved as an xml file.

3. Conclusion

We have presented an approach for the auto-
matic digitization of a library catalogue. We com-
pared state-of-the-art models for semantic segmenta-
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tion and found that DeepLabV3+ performs well in
the task of page segmentation for historic handwrit-
ten documents. On the levels of baselines the clas-
sification of text using our segmentation appraoch
performs reasonably well for the application how-
ever the character error rate of 7% needs improve-
ment either through retraining on documents from
our dataset or by manual corrections. For futher
work, we believe that a better recognition of base-
lines has the largest potential for further improve-
ments.
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Abstract. In order to support broadband network ex-
pansion in rural areas, the LAYJET Micro-Rohr Ver-
legegesellschaft has developed a highly automated
cable laying technology based on a Fendt 936 trac-
tor as the carrier vehicle and a milling machine with
an integrated cable laying unit [3]. Operating at a
speed of approximately lkph, LAYJET is able to lay
cables of several kilometres of length per day along
of existing roads. The position of the cable needs
to be precisely surveyed for documentation purposes,
which is a time consuming and costly process. LAY-
JET is therefore equipped with a high-end GNSS
RTK positioning system (TRIMBLE NetR9). In ar-
eas with bad GNSS signal reception or even complete
GNSS outage (e.g., roads through a forest) an alter-
native positioning method is needed. JOANNEUM
RESEARCH and the surveying office Hoppl / Graz
have therefore developed a calibrated stereo camera
setup triggered by an odometer which allows recon-
structing the trajectory of the GNSS antenna using
visual odometry (VO).

1. Introduction

VO is perfectly suited to reconstruct the trajectory
of (very) slow moving vehicles as the LAYJET trac-
tor as the drift error is dependent only on distance but
not on time (as it is the case for Inertial Measurement
Units (IMU)). Using a calibrated stereo camera sys-
tem also allows determining the scale correctly with-
out additional measurements [4]. In the following
we describe the camera system and the implemented
VO workflow and show first results from a LAYJET
production run.
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Figure 1. Example for a left and right camera view of the
LAYJET camera system during operation.

2. Method

The stereo camera rig consists of a very stable
steel bar carrying two camera housings separated by
a baseline of 1.7m. The camera rig is mounted on
top of the tractor at 3m height looking backward and
tilted down by approximately 20 degrees. SONY Al-
pha 7 consumer 24 MPixel cameras equipped with
20mm lenses have been selected having a stable in-
ner orientation in mind (auto focus can be switched
off, no image stabilization). Calibration is done at
the measurement lab of the Institute of Engineering
Geodesy and Measurement Systems (IGMS) at TU
Graz using the Remote Sensing Graz (RSG) software
of JOANNEUM RESEARCH [2].

During field operation of the LAYJET system the
stereo cameras are triggered at a fixed spacing of 2m
=+ 2cm by using the integrated odometer of the Fendt
tractor (see Figure 1). This allows stable image trig-
ger also in absence of a reliable GNSS solution. Im-
ages and GNSS positions (if available) are stored on-
board and are transferred each day to a cloud storage
from where they can be accessed in the surveying of-
fice for further processing.

Another software tool developed by JOANNEUM
RESEARCH scans the data of each mission and de-
cides for which sections the trajectory has to be im-
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Figure 2. Template of the GNSS antenna (left) and best
position found in the right image.

proved due to bad GNSS quality or if there are an-
tenna positions missing due to GNSS outages and
need to be derived from VO solely. It is important
that there are GNSS positions available before and
after an outage has occurred to ensure that the VO
trajectory is correctly oriented and placed w.r.t. the
defined coordinate system (UTM). One issue that had
to be solved is to mask out all areas in the stereo im-
ages covered by the tractor or milling machine itself
as this would deteriorate the VO process significantly
and often caused complete fail of the VO solution.

The GNSS antenna is mounted straight above the
position where the cable is laid at a known height off-
set. It is therefore necessary to determine the exact
3D position of the GNSS antenna which can move
relatively to the camera system. This is solved by au-
tomated detection and measurement of the GNSS an-
tenna in both stereo images using an advanced tem-
plate matching process (see Figure 2). GNSS posi-
tions of good quality are introduced as ground con-
trol points (GCP) in the adjustment process. If the
GNSS position is inaccurate or even unknown the 3D
position of the antenna is reconstructed by using the
stereo image measurements of that event.

The VO workflow has been implemented by us-
ing the Agisoft Metashape v1.5.4 software [1] and
its Python scripting capabilities. Importing of the
images, correcting image distortions, applying image
masks, feature point extraction, image matching and
photogrammetric triangulation are fully automated
by the script. The reconstructed camera positions and
derived GNSS antenna positions can be inspected us-
ing the Metashape GUI and QC reporting tools. If the
expected accuracy level has been reached the GNSS
antenna position are exported to an ASCII coordinate
file.

3. Results and Conclusion

The VO workflow has been tested with data from
a LAYJET production run collected in Germany. The
road passes through a forest which causes bad GNSS
signal quality and a low number of visible satellites
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(in addition the RTK correction signal has been lost).
The estimated position accuracy is therefore strongly
reduced to about + 2m. The photogrammetric bun-
dle adjustment uses the GNSS solution as approxi-
mate positions and the well-defined relative geome-
try of the stereo pairs and consecutive stereo models
to improve the accuracy at least by a factor of 10-20.

Figure 3 shows the reconstructed trajectory of the
stereo rig and the derived GNSS antenna positions
for 50 trigger events (section of 100m length). The
sparse 3D point cloud generated during the VO pro-
cess can be easily improved by an additional dense
matching step which allows to inspect the environ-
ment and cable routing more closely.

First test evaluations have shown a throughput of
about 10 stereo models per minute (50min per km) on
an Intel workstation equipped with 16GB RAM and
a NVIDIA GeForce GTX 1660 Ti GPU which should
allow for overnight processing of the data collected
on one day.

Figure 3. Path of the LAYJET tractor reconstructed using
a VO workflow implemented in Metashape.

The VO system described in this paper derives
absolute orientation angles solely from GNSS posi-
tions, which is straightforward for the heading angle
but also works for roll and pitch as long as there are
turns included in the trajectory. In case of exactly
straight road sections the pitch angle is not defined
and has to be set to zero. As the road cross profile
inclination can be assumed to be in the range of +
3deg this causes a lateral position error of up to 15cm
(GNSS antenna height ~ 2.5m).

For longer GNSS outages the estimation of the roll
angle degrades with distance which can lead to sig-
nificant height errors in case of steep descents. It is
therefore recommended to integrate an additional in-
clinometer to measure roll and pitch angles at a preci-
sion of about & 1deg in a next version of the LAYJET
VO system.
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Abstract. We propose an approach for few-shot ob-
Jject detection, consisting of a CNN-based generic ob-
Jject detector and feature extractor, and an online ran-
dom forest as a classifier. This enables incremental
training of the classifier, which reaches similar per-
formance with around 20 samples as when using 50+
training samples in batch learning.

1. Introduction

In many practical applications for object detec-
tion, it is relevant to detect new classes or subclasses
of common objects, for which only very limited
training data are available. While a large amount
of literature on few-shot classification has been pub-
lished in recent years, the problem of few-shot de-
tection is more challenging, as it also involves iden-
tifying candidate regions for the yet unknown object
classes. The problem of few-shot detection can be
discriminated into the two following cases.

Refinement of existing classes. The new class to
be trained is a specific subclass of a class already sup-
ported by an object detection algorithm, e.g., classi-
fying “truck”, when the classifier already has a class
“vehicle”. For this approach, an existing detector and
classifier for the broader class (e.g. Yolo [6], Faster
R-CNN [7]) can be used, and an additional classifier
to be trained/adapted for the new classes is needed.

New classes. Candidate regions for such classes
will not be found by the pretrained classifier, thus an-
other detection approach is needed. One approach to
find candidate regions is to use a detector trained on
“objectness”, i.e. the likelihood that a regions con-
tains a coherent object. On the identified candidate
regions feature extraction and classification can be
performed, similar to the first case.
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We aim to enable training new object classes with
only few (i.e., 5-10) labeled examples, which may
also not be available all at once, but being added
gradually, improve the detector over time. The con-
tribution of this paper is thus using a CNN-based ob-
ject detection framework for generic object detection
and feature extraction, and train an online classifier
on these features. After discussing related work in
Section 2, Section 3 presents the proposed approach
and results, and Section 4 concludes the paper.

2. Related work

[1] does not actually perform detection, but uses
bounding box regression as proposed in SSD to
improve the localisation of the region of interest.
Then binary object-or-not classification as proposed
in Faster R-CNN is used, and uses a modified Faster
R-CNN classifier to facilitate transfer learning. The
work proposes regularisation based on the probabil-
ity distribution of the known classes for the new tar-
get class. [2] propose a method for few-shot classifi-
cation and detection, bootstrapped from few labeled
instances. The method is based on components from
Faster RCNN, using Selective Search or Edge Boxes
for region proposals, and iteratively adds bounding
box proposals and updates classifiers. [5] propose
a pipeline using faster R-CNN up to ROI pooling,
and two FC layers as feature extractors. Classifica-
tion is then performed using a kernel method. [4]
uses FPN to create an object detection pipeline us-
ing metric learning. Classification is done different
for pretrained classes (using Inception v3 [10] up
to FC2), while few-shot learning is done with FPN
(in the DCN variant) instead. [9] propose to train a
generic object detector on ImageNet, sampling pos-
itive and negative candidate regions. This approach
is suitable for generic object detection, beyond the
originally trained classes. An approach based on
meta-features and learning reweighting of those fea-



tures is proposed in [3]. A recent work applies fine-
tuning only region proposal and classification layers
on a data set consisting of many base class and few
new class samples while fixing the feature extraction
part of the network can outperform meta-learning ap-
proaches [11].

3. Proposed Approach

We based our approach on [9], which we use as
generic object detector and feature extractor. For
the classification we follow the pipeline proposed in
[12], which uses online random forests proposed in
[8] as a classifier. The random forest can be incre-
mentally trained, and is able to provide good results
with few training samples. We use the model pre-
trained on ImageNet from [9], and evaluate it on the
12 classes dataset provided with the authors’ imple-
mentation'. Each of the classes has between 55 and
108 training samples. We compare to a linear clas-
sifier trained on the entire set of samples, and train
our online random forest based classifier with all or
a fixed subset of samples per class.

With the full set of examples, the online random
forest based classifier performs similarly but slightly
worse than the linear classifier, with an F1 score of
about 0.80. Down to about 20 samples per class, the
performance stays nearly constant. With 10 samples
the performance drops to around 0.70, with 5 sam-
ples to about 0.67. Only then the performance starts
to degrade more quickly, arriving at only about 1.5
times better than random when using a single sam-
ple. The results are visualised in Figure 1. It is ap-
parent, that the reduction of the Fl-score is mainly
due to reduced recall. In nearly all cases the loss in
terms of recall is caused by misclassifying the object,
while only in few cases the target object is missed in
the detection stage.

4. Conclusion

Based on a recently proposed framework, which
we use for generic object detection and feature ex-
traction, we have developed an approach for few-
shot object detection using an online random forest
as a classifier, which makes it incrementally train-
able. With about 20 samples there performance in
terms of F1 score is similar to a linear classifier on
the full set, and drops by about 0.13 when using only

'nttps://github.com/mahyarnajibi/SNIPER/
tree/cvpr3k
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Figure 1. Detection results (F1 score, precision, recall) of
the proposed approach on the 12 classes data set from [9],
when trained on different numbers of samples per class.
The confidence threshold is 0.15 for the online random
forest classifier.

5 samples, which makes this a practically usable ap-
proach in use cases with few training samples.
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Abstract. Object detection in natural environments
is still a very challenging task, even though deep
learning has brought a tremendous improvement in
performance over the last years. A fundamental
problem of object detection based on deep learning is
that neither the training data nor the suggested mod-
els are intended for the challenge of fragmented oc-
clusion. Fragmented occlusion is much more chal-
lenging than ordinary partial occlusion and occurs
frequently in natural environments such as forests. A
motivating example of fragmented occlusion is ob-
Jject detection through foliage which is an essential
requirement in green border surveillance. This paper
presents an analysis of state-of-the-art detectors with
imagery of green borders and proposes to train Mask
R-CNN on new training data which captures explic-
itly the problem of fragmented occlusion. The results
show clear improvements of Mask R-CNN with this
new training strategy (also against other detectors)
for data showing slight fragmented occlusion.

1. Introduction

Automated surveillance at green borders has be-
come a hot topic for European border guards. Bor-
der guards today face several challenges in protect-
ing EU borders. One well known occasion in public
is illegal migration which had its peak in 2015.

Border surveillance today limited to 2D imag-
ing sensors consists of color and thermal cameras,
mounted on poles or used as handheld cameras by
the border guards. Innovating these technical sys-
tems by adding further capabilities of automatic in-
ference such as the automatic detection of persons,
vehicles, animals and suspicious objects in general
will need to apply object detectors to such imagery.

However, video of green borders especially at EU
borders show significant differences to typical im-
agery of video surveillance such as indoor video or
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Figure 1: The problem of fragmented occlusion in
object detection. Top Left: no occlusion (level Ly).
Top Right: slight occ. (L1). Bottom Left: moderate
occ. (L9). Bottom Right: heavy occ. (L3) occlusion.

video taken in man-made outdoor scenes. For exam-
ple, green borders are scenes showing dense forest,
hills, harsh weather and climate conditions. Such
scenes draw challenges to automated surveillance
and raise several interesting research questions.

This paper considers a challenge for state-of-
the-art object detection in green border surveillance
which is the problem of through foliage detection.
To the best of our knowledge, none of the current
approaches for object detection allow the detection
of objects through foliage. This problem raises an
interesting scientific question, namely how to detect
objects with fragmented occlusion? This problem is
also different to the problem of partial occlusion in



object detection. Fragmented occlusion occurs by
viewing objects behind tree ans bush leaves. Con-
trary to partial occlusion, fragmented occlusion gives
no clear view on minimal recognisable parts of the
object [10] which is used to detect the object [7].

We show in this work that the state-of-the-art in
object detection fails on fragmented occlusion even
for the moderate case. For this, we created a new
dataset (Figure 1) capturing people behind trees. We
labelled nearly 40,000 images in three representative
videos. This data raises new challenges on the la-
belling and evaluation which we only partially an-
swer in this paper. For example, bounding boxes
are the standard in current evaluation of detectors but
such labels are hard to find in data that contains frag-
mented occlusion. As the state-of-the-art detectors
deliver bounding boxes, fragmented occlusion poses
new questions on the evaluation methodology.

Furthermore, we augmented Microsoft COCO!
training data by occluding the ground truth masks
similarly as leaves occlude people behind bushes and
trees. We then show results on training Mask R-
CNN [4] on this new data showing improvement of
Mask R-CNN trained on the original data with slight
fragmented occlusion.

2. Related Work

State-of-the-art object detection is based on deep
learning. Two-stage detectors work by finding as an
intermediate step bounding box proposals [3, 2] on
the feature maps of the backbone CNN. A region
proposal network further improves efficiency [9, 4].
One-stage detectors regress the bounding boxes di-
rectly [8, 6] which is computationally efficient on
GPUs but this approach is inherently less accurate
as it assumes a coarsely discretised search space. Al-
though these methods show usually excellent perfor-
mance for fully visible objects, they break down in
the case of fragmented occlusion. Fragmented oc-
clusion has not been considered for object detection
so far, however there is literature about this topic in
the field of motion analysis [1].

3. Methodology

We created a dataset recorded in a forest consist-
ing of three videos with a total of 18,360 frames and
33,933 bounding boxes which were manually defined
by human annotators. These bounding boxes are di-

'"http://cocodataset.org
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Figure 2: A training image from Microsoft COCO
(http://images.cocodataset.org/
train2017/000000001700. jpg). Top Left:
the image. Top Right: Segmentation mask of the
image. Bottom Left: image overlaid with artificial
trees. Bottom Right: Mask of the overlaid image.

vided into four different occlusion levels including
the unoccluded case (Figure 1).

Then, we extended the Microsoft COCO dataset
by adding artificial trees as foreground to the im-
ages of objects (Figure 2). We chose this dataset,
because it contains pixel-wise segmentation masks in
the ground truth as well as a large number of different
categories including the human person.

The underlying basic idea of our approach is
to add artificial fragmented occlusion to Microsoft
COCO and train Mask R-CNN on this new data.
By this we can adapt the original distribution of
data to the case of fragmentally occluded objects.
Since we are only interested in humans, we apply
this augmentation only to images containing humans
and use only these images for training. The trees
used for the augmentation are generated from real
images we have obtained from the test data. The
method generates whole artificial trees by randomly
adding branches to previously manually segmented
tree trunks. In total 14 such trunks are extracted from
the test dataset. The branches attached to these trunks
are also randomly generated by also adding a few
manually segmented leaves.

The trees are placed in front of objects by ran-
domly selecting the x-coordinate on which they will
be placed and an angle at which the tree will be ro-
tated. The calculated foreground is applied to the im-
age and its negative mask is multiplied by the seg-
mentation mask of the objects in the image. The
Mask R-CNN model is then trained with the aug-



mented images. The selected backbone model is the
Inception v2 [5] network. This network is selected
for its faster computation.

4. Evaluation

To evaluate whether training with the augmented
dataset is useful, the model trained on the augmented
data must be compared with the model not trained on
this data. However, the intersection over Union (IoU)
measure is not meaningful in this case.

Standard evaluation metrics such as the mean av-
erage precision (mAP) define an IoU threshold (e.g.
0.5) and check whether a ground truth object and a
detected object have an IoU value above this value.
If this is the case, the detected object is defined as a
True Positive (TP). If an object is detected but there
is no respective ground truth with an IoU above this
specific threshold, the detected object is defined as
a False Positive (FP). If there is ground truth but no
detected object with an IoU above the threshold, the
object is defined as a False Negative (FN).

These evaluation methods cannot be easily applied
to ground truth showing fragmented occlusion, be-
cause of the following two observations:

IoU too small: Since the data is based on frag-
mented detections, a detector can only detect parts of
the person. An image where this problem occurs is
shown in Figure 3. The bounding box is clearly a TP,
based on the fact, that fragmented objects should be
detected, but due to the occlusion by the branches of
the tree, the whole body cannot be recognized. This
leads to an IoU of only ~ 0.2.

Multiple detections: Another major problem
with the standard evaluation metrics is that exactly
one detected bounding box and one ground truth
bounding box match. However, when handling frag-
mented objects, human heads and/or other body parts
should be detected separately if body parts are cov-
ered. This creates the problem that parts of the body
(like a head) is detected as well as the whole body.
Figure 4 shows some examples.

To tackle these two problems, this paper proposes
a different evaluation metric. For each bounding box
in the evaluation data set, we calculate the maximum
region in the image where there is no overlap with an-
other ground truth bounding box. This region is then
extracted and fed into the model. If the model de-
tects an object, we define it as TP, otherwise as FN.
To assess FPs, we create an additional dataset that
represents the maximum region in an image without
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Figure 3: Ground truth (green) and the detection
(blue) vary substantially due to the occlusion effects.

overlap with any ground truth bounding box. We ex-
tracted in total 45,340 such regions with different as-
pect ratios, different parts of the image and at dif-
ferent time instants. In addition to FPs, we can also
calculate the TNs using this evaluation metrics.

Figure 5 shows these results as recall vs. precision
curve (ROC). There is no significant difference be-
tween Mask R-CNN trained on Microsoft COCO and
on the augmented dataset for L occlusion. However,
clear improvement has been achieved for L; and Lo
occlusion which proves the applicability of the idea
to model fragmented occlusion by the masks. Never-
theless, all approaches basically do not reach the ex-
pected robustness and accuracy for moderate Lo and
heavy L3 occlusion. One reason for this is that our
current technique is not accurate enough to model
fragmented occlusion. Furthermore, clear limits ex-
ist as heavy fragmented occlusion removes local spa-
tial and structural information necessary for current
approaches in object detection.

We further recognise that bounding box labelling
is not the appropriate approach for labelling data
showing fragmented occlusion. Especially for L3
and L4 occlusion, it is frequently impossible to man-
ually define the bounding box. Such occlusion levels
allow an approximate localisation of the object in the
image but make the observation of the object’s extent
impossible. While the recall in Figure 5 is still mean-
ingful, the precision is basically undefined. This ob-
servation has severe consequences on the labelling,



Figure 4: The problem of mul-
tiple detections. Ground truth
is shown in green. Left: state-
of-the-art yields two bounding
boxes of the same, single person.
Middle: two persons are visible.
Detection yields two bounding
boxes which are diffucult to as-
sociate. Right: an even harder
case with three persons.
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Figure 5: This ROC plot shows results of Faster R-
CNN (green), YOLO (blue), Mask R-CNN (red) and
our method (purple) for all occlusion levels.

but also on the evaluation and on the detector which
we leave open for future research.

5. Conclusion

This paper formulates a new scientific question on
object detection with fragmented occlusion which is
different to partial occlusion. We show by a study
that current object detectors fail in this case. We
generated and labelled a new dataset showing people
behind trees in a forestry environment. Such scenes
frequently occur in border surveillance which has be-
come very important in EU security policies. We try
to tackle the occlusion challenge by augmenting Mi-
crosoft COCO including the pixel-wise segmentation
masks to capture the occlusion problem. We show
that Mask R-CNN trained on this data improves on
fragmented occlusion, however, we also observe se-
vere loss of spatial, structural information and that
the bounding box itself is not the appropriate de-
scription to cope with fragmented occlusion. This
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has severe implications on the detection approach it-
self, but also on dataset labelling and evaluation. A
potential solution is left open for future work.
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Abstract. Monitoring of patients after Endovascu-
lar aortic repair (EVAR) is a clinical necessity due
to the high re-intervention rate associated with the
treatment. The risk assessment could be greatly en-
hanced by the inclusion of metrics based on the aor-
tic blood-flow and stent-graft changes. A preliminary
step to this endeavour is, however, the automatic re-
construction of the relevant structures: aortic blood-
lumen and the stent-graft wire frame. In this paper
we present a centerline-guided approach that lever-
ages knowledge about the target structures through
a combination of two 3D U-Nets for efficient auto-
mated segmentation of both structures. We evaluate
our approach on a real-world clinical dataset yield-
ing Dice similarity coefficients of 0.942 and 0.841 for
the blood lumen and stent-graft metal wire, respec-
tively.

1. Introduction

The abdominal aorta is the largest artery in the
human body, with the descending branch supply-
ing the lower body with about 4 liters of blood per
minute [2]. Abdominal Aortic Aneurysms (AAAs)
are critical as a rupture causes massive blood loss
that quickly leads to death at a mortality rate of 85%
to 90% [11], with half of the patients succumbing
before they reach a hospital [1]. Overall, AAAs ac-
count for 175000 deaths per year globally [7]. In
contrast to open surgery, endovascular aortic repair
(EVAR) poses a minimally invasive alternative that
significantly reduces the intraoperative stress on the
patients, who in turn experience shorter periods of
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(b)

Figure 1. An abdominal CT-A scan (a) and a close-
up view of imaging artifacts caused by the stent-graft
wire frame (b). The wire frame of the Medtronic Endurant
stent-graft encompasses the blood lumen in the two iliac
bifurcations and is itself surrounded by the thrombosis.

convalescence. As a result, EVAR is the treatment
of choice for 60% of patients [3]. These advantages
come, however, at the cost of a high re-intervention
rate of 20% [18], necessitating post-operative mon-
itoring of the patients. We seek to aid monitoring
by automatically calculating risk factors from blood
flow simulations, which require prior segmentation
of the target structures. In this paper, we present a
novel method for segmenting the aortic blood lumen
and the stent graft wire frame from post-operative ab-
dominal CT-A scans.

2. Related Work

Blood vessel segmentation is an active field in re-
search [19] and the variety of approaches reflects
the diversity of both the targeted anatomical regions
and the available imaging modalities. For clinical
monitoring of the abdominal aorta after EVAR, CT-
A is the modality of choice [22]. However, unique
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Figure 2. Outline of our method: The top branch shows the centerline extraction step (model A/;) and the bottom branch
the patchwise segmentation step (model M5).

challenges arise due to considerable imaging arti- mentation of blood lumen and stent graft wire frame
facts caused by the stent-graft wire frame and the we will therefore likewise rely on the (3D) U-Net
distinct boundaries between blood lumen and throm- architecture. The distinguishing challenge to other
bus. While there are a number of publications on the segmentation tasks is in our case the fine structure of
segmentation of the abdominal aorta, very few have the stent-graft, with a diameter as small as 0.4 mm
focused on stent segmentation. Klein ez al. [12] used [24], which requires an exceptionally high resolution
a graph-based method to create a geometric model of for accurate reconstruction, pushing the limitations
the stent-graft, disregarding the aorta entirely. To the of modern hardware.

best of our knowledge, there is not a single approach

segmenting both structures simultaneously. For the 3. Dataset

segmentation of the abdominal aorta, traditional ap-
proaches include graph-based methods [6, 4, 23] and
deformable-models [13, 14] which require user in-
teraction to varying degrees and have predominantly
been evaluated on pre-operative scans. A common
problem with graph- and deformable-model-based
approaches is the introduction of many parameters
optimized for the respective dataset, limiting the ro-
bustness and applicability of the methods in clinical
settings [17]. With the introduction of the convolu-
tional neural network (CNN) the field of medical im-
age analysis changed significantly. Today the U-Net
[21] and its 3D equivalent [8] are the most widely
models used for medical image segmentation. Both
models have been applied to the task of the abdom-
inal aorta segmentation, Zheng et al. [26] reporting
a Dice similarity coefficient (DSC) of 0.82 for the () (b) o
aneurysm thrombus and Li ef al. [16] reporting a igure 3. Examples of two ground truth segmentations:

Medtronic Endurant (a) and Anaconda (b). In total the
DSC of 0.92 for the aorta blood lumen. For the seg- dataset contains 5 different types of stent-grafts.

Our dataset consists of 76 abdominal CTA scans
of 36 patients treated with EVAR that we received
from the Kepler University Hospital Linz. Each scan
consists of 155 to 873 axial slices with 512 x 512
voxels. There are large differences in the resolu-
tion with a minimum voxel spacing ranging from
0.404 mm frontal/sagittal and 0.8 mm longitudinal
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to 0.977mm frontal/sagittal and 3mm longitudi-
nal. We used the Active-Contour/Snake-Mode of the
Software ITK-Snap [25] to semi-automatically cre-
ate the initial ground truth segmentation of the aor-
tic blood lumen from below the heart to the second
iliac bifurcation. The stent-graft segmentation was
further added by applying a threshold to a region of
interest around the blood lumen. The segmentation
was then revised using the Paintbrush Mode of ITK-
Snap. Figure 3 shows examples of the final ground
truth segmentations used for training and validation.
The dataset was split into 5-folds using a grouping
criterion on the patient number to avoid having mul-
tiple scans of the same patients assigned to different
folds.

4. Method

We use a two step approach in our segmentation
method that is outlined in Figure 2. First we extract
the aortic centerlines from a coarse blood-lumen seg-
mentation and subsequently use them to extract high
resolution patches along the entire span of the aorta.
In the second step we segment the blood lumen and
the stent-graft wire frame for each patch and merge
the results to a final segmentation. The entire setup is
tuned to work with an NVIDIA GeForce 1080 Ti (11
GB RAM).

4.1. Centerline Extraction

We use a full-image segmentation model M to
create a low resolution segmentation of the aortic
blood-lumen. We resample the scans and ground
truth to a voxel spacing of 1 mm frontal/sagittal
and 3 mm longitudinal and crop them to a large re-
gion of interest of 192 x 192 voxels and 128 slices
(i.e., a physical extent of 192 mm frontal/sagittal and
384 mm longitudinal). The largest connected region
of blood lumen voxels in the resulting segmentation
is then selected and skeletonized using homotopic
thinning [15]. Using the python library Skan [20] we
extract the centerline graph from the skeletonized im-
ages, which is essential for the patchwise segmenta-
tion step. Figure 4 outlines the intermediate results of
the centerline extraction step and an example patch.

4.2. Patchwise Segmentation

A patchwise segmentation model Ms is used to
segment the aortic blood lumen and the stent-graft
wire frame in high resolution patches. We resam-
ple the scans and ground truth to a voxel spacing
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(d)

Figure 4. Extracting patches along the segmented aorta lu-
men: (a) coarse low resolution segmentation of the aor-
tic blood lumen, (b) centerlines approximated via skele-
tonization of the blood-lumen, (c) ground-truth segmen-
tation for a patch sampled along the centerlines, (d) axial
slice of the same patch (scan overlayed with the ground-
truth segmentation).

of 0.35mm frontal/sagittal and 0.75mm longitu-
dinal before extracting patches of size 160 x 160
voxels and 128 slices. Choosing a high resolution
(i.e., small voxel spacing) significantly reduces the
amount of distortion introduced by resampling, es-
pecially considering the varying voxel spacing in the
dataset. However, this results in a rather small phys-
ical extent of 56 mm frontal/sagittal and 96 mm lon-
gitudinal that we seek to use as efficiently as possible
by centering the patches at equally distributed loca-
tions along the entire centerline graph. In our exper-
iments 100 patches per scan proved more than suf-
ficient to cover the aorta and introduce a significant
overlap between the patches. The patches are merged
into a final segmentation using a Gaussian-weighted
kernel that attenuates voxels at the patch boundaries,
where the segmentation results are less reliable.

5. Implementation

In this section we discuss the implementation de-
tails, i.e., the operations used for preprocessing the
dataset, the model architecture and configuration and
the training routine.

5.1. Preprocessing

Preprocessing of the dataset consists, in addition
to the resampling mentioned in Section 4, of clip-
ping and normalization. As the voxel spacing varies



between the models, the entire preprocessing is done
separately for each model. First of all, the dataset
is resampled to the respective voxel spacing using
a third order B-spline interpolation for the scans
and a label-linear interpolation for the ground truth.
Next, the intensity values are clipped to the 0.5th and
99.5th percentile over the entire training dataset of
the fold. Furthermore, the scans are normalized by
subtracting the mean and the standard deviation over
the clipped training dataset.

5.2. Architecture

We use the architecture described by
Isensee et al. [9] and implemented in the Github
project 3DUnetCNN [5] as a basis for our experi-
ments. We adjusted the following model parameters:
input size, model-depth (number of layers), number
of segmentation levels (used for deep supervision)
and base-filters (filters in the first convolution
kernel). For M; (input size of 192 x 192 x 128)
we selected a model-depth of 5 with 3 segmentation
levels and base-filters set to 8. For M5 on the other
hand (input size of 160 x 160 x 128), we chose
an increased model-depth of 6 with 4 segmentation
levels and base-filters set to 16. The changes to Mo
were made in order to account for the larger patch
size (compared to 1283 used by Isensee et al.) and
increase the receptive field of the model. These
changes were omitted for M;, which encompasses
a simpler segmentation task, creating only a coarse
segmentation of the blood lumen label, while Mo,
segments both the blood lumen and the stent-graft
wire frame.

5.3. Training

We trained both models using a weighted multi-
class Dice loss [9] in combination with an Adam op-
timizer. The initial learning rate was set to g =
5 - 10~ with a learning rate drop criterion and early
stopping after 50 epochs. The training ran for 70
to 120 epochs with 200 training samples per epoch.
Due to the 5-fold cross validation used for evaluation,
the following statistics are averaged over all folds,
where for each fold both models M; and My were
trained as follows. M, was trained first for blood
lumen segmentation on the low resolution large re-
gions. The training reached a DSC of 0.978 and
0.898, on average, for the training and validation
items, respectively. M7 was then used to create the
blood lumen segmentations for centerline extraction.
The resulting centerline graphs were subsequently
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used during the training of M5 as the high resolution
patches were extracted at random positions along the
graph. The average training and validation DSCs for
the blood lumen are 0.954 and 0.943, respectively,
and 0.843 and 0.841 for the stent-graft.

6. Evaluation

Having trained two models M; and M5 for each
fold, we use our method to create high resolution
segmentations. Just like during training, M is used
to segment the blood lumen used for centerline
extraction. The resulting centerline graph is again
used to place patches at, however, not randomly
but rather at equally distributed positions along the
entire span of the graph, as described in Section
4.2. In a post-processing step, the largest connected
region of non-background voxels was selected.
To compare the results to the ground truth, the
segmentations where furthermore resampled to their
original voxel-spacing. The last step may be skipped
when using the results for further processing rather
than evaluation (e.g., mesh generation for blood-flow
simulations). Using our method, the cross validation
yields an average DSC of 0.961 for the blood lumen
and 0.841 for the stent-graft label. Two examples
are shown in Figure 5.

To evaluate the effectiveness of our patch extraction
method, we further conducted an experiment using
only Mo, which was trained using a traditional patch
extraction method (see Isensee et al. [10]). Rather
than placing the patches along the aorta centerlines,
they where placed in a sliding-window fashion,
where the patches are aligned in a regular grid of
overlapping tiles. The overlap was set to 32 voxels
in each dimension (corresponding to 11.2mm
frontal/sagittal and 24 mm longitudinal). While
this technique was used both during training and
inference, the remaining setup (including pre- and
post-processing) was left unchanged. We evaluated

(a)

(b)
Figure 5. Evaluation results for the two scans shown in
Figure 3.



the experiment on the first fold and compared the
results to those of our method for the same fold:
Although the blood-lumen segmentation is with
a DSC of 0.963 slightly better than our method,
yielding 0.951 for the same fold, the more complex
stent-graft segmentation does not compare well, with
a DSC of 0.785 versus our method’s score of 0.852.

7. Discussion

The strength of our method is the centerline-
guided segmentation method using the aortic center-
lines to optimize the patch locations during training
and inference. While our method yields better results
than a comparable model using a traditional sam-
pling setup, it also reduces the computational cost
significantly. For traditional patching using a grid
of overlapping tiles (when not allowing the patches
to contain regions outside the image) the number of
patches calculates as follows:

ptenes = [ 110 (M
patches T ’P’d — Hd

where n4 is the number of dimensions, |I|, the size
of an image, |P|,; the size of a patch and 6, the
overlap in dimension d. For our setup and a cho-
sen overlap of 32 voxels this results in 343 patches
on average per scan (|I| = (990, 990,678), |P| =
(160,160, 128), 64 (32,32,32)). Increasing
this overlap to improve the model’s performance
quickly raises this number, e.g., an overlap of half
the patch size (as used by Isensee er al. [10])
would result in 1440 patches on average per scan
(Z (80,80, 64)). The majority of the patches are
irrelevant for the result, as they do not intersect with
the target structure. By using the aorta centerline in-
formation, our method is able to greatly reduce the
number of patches, while also optimizing their con-
tent for training and inference. As a result, we can
target a smaller voxel spacing (which effectively re-
duces the physical extent of the patches) without the
disadvantages of excessive computational costs and
poor model performance.

Conclusions

We presented a novel centerline-guided method
for fully automated segmentation of the aortic blood-
lumen and the stent graft wire frame in abdominal
CT-A scans. Using our method, both training and in-
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ference can be conducted more efficiently. The eval-
uated DSC of 0.961 for the blood lumen and 0.841
for the stent graft wire frame suggest results that are
suitable for medical analysis. In the future, we plan
to use the results of our method for the analysis of
risk factors for post-EVAR patients. Futhermore, we
plan to extend the use of our method to other medical
segmentation tasks.
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Abstract. Equivariance is a desired property for
feature spaces designed to make transformations be-
tween samples, such as object views, predictable.
Encoding this property in two dimensional feature
spaces for 3D transformations is beneficial for tasks
such as image synthesis and object pose refinement.
We propose the Trilinear Interpolation Layer that ap-
plies SO(3) transformations to the bottleneck feature
map of an encoder-decoder network. By employing a
3D grid to trilinearly interpolate in the feature map
we create models suited for view synthesis with three
degrees of rotational freedom. We quantitatively and
qualitatively evaluate on image synthesis in SO(3)
providing evidence of the suitability of our approach.

1. Introduction

Invariant feature spaces are agnostic to input trans-
formations in order to help models overcome vari-
ations in the data capturing process. Equivariant
feature spaces are exploitable with respect to image
space transformations, thus more suited for reason-
ing about changes in image space [9]. As a con-
sequence the property of equivariance is desired for
feature spaces that are used for predicting transfor-
mations of or in the image space. More precisely,
equivariant feature spaces can be exploited to pre-
dict unseen views based on known transformations
or to estimate relative transformations between two
inputs. Feature spaces that correlate an input with
a transformed output via observable transformation
parameters are desired for applications such as im-
age synthesis or object pose refinement.

In this work we study the equivariance of features
spaces of Convolutional Neural Networks (CNN) as
motivated by the task of object pose refinement. This
motivation arises from recent RGB-based object pose
refinement methods that use pairs of images [10, 21]:
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Figure 1: Given an object view and a relative 3D ro-
tation, unseen views are synthesized.

One image represents the observation of the desired
object and the other image usually a rendering of the
object in a hypothesized pose. A network is trained to
predict the relative transformation between the input
pair. We study how to correlate such an image pair,
in feature space, in order to achieve predictability of
the relative object transformations.

The Spatial Transform Network (STN) [6] pro-
vides a mean to learn image space transformations
conditioned on the input to produce a transformed
output feature map. Studies such as [2, 13] apply
a sub part of the STN, known as the Spatial Trans-
former Layer (STL), to properly align the network’s
output with its input by applying image space trans-
lations. The authors of [19] wrap a projection func-
tion around the in- and outputs of the STL in order to
make image properties such as lighting and SO(3)
transformation in a limited range predictable. Al-
ternatively to their approach, we directly modify the
structure of the STL. We extend the STL to enable
trilinear interpolation of a feature map in order to in-
terpret transformations in all of SO(3). In the re-
mainder of the paper it is referred to as the Trilinear
Interpolation Layer (TIL).



Our contributions are:

e We propose a Trilinear Interpolation Layer
suited for creating equivariant feature spaces in

SO(3).

e We provide quantitative and qualitative evi-
dence for the advantage of equivariant feature
spaces by predicting unseen views in SO(3) of
objects from the LineMOD dataset [4].

The remainder of the paper is structured as fol-
lows. Section 2 reviews related work. In Section 3
we describe our approach. Section 4 presents our ex-
perimental results. Finally, Section 5 concludes the

paper.
2. Related Work

Object pose refiners rely on the availability of
prior stages to produce pose hypotheses [7, 10, 12,
16, 18, 20, 21]. When depth data is available, the
Iterative-Closest-Point algorithm (ICP) can be used
to refine initial pose estimates [18, 7, 20]. Recent
RGB-based approaches do not rely on the availabil-
ity of depth data for pose refinement [7, 10, 12, 16,
21]. CNN-based object pose refinement architectures
such as [10, 12, 21] pass two input images to the
network in order to estimate the relative rotation be-
tween these. These images are an observation of the
object in the desired pose and a rendering of the pre-
diction. In [10] the authors base their network archi-
tecture on an approach for optical flow estimation [1]
and predict optical flow, mask and relative pose devi-
ation in SE(3). The authors of [21] use a similar ap-
proach with two encoders, one per input image. The
encoders’ outputs are subtracted and further encoded
to predict the refined pose in SE(3). We present
a concept suitable for enhancing such methods by
guiding the network to learn an equivariant feature
space.

The STN introduced by [6] is widely used for fea-
ture and image space transformation [2, 13, 14, 15,
19]. It consists of the combination of a localiza-
tion network, a grid generator and a sampler.. The
authors of [2] apply STL to properly align the fea-
tures to their inputs. In [13] the authors predict deep
heatmaps from randomly sampled object patches to
predict poses under occlusion. They apply the STL
to upsample their predictions. In [14, 15] an analog
of the localization network is used to produce feature
maps invariant to input transformations. The authors
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Figure 2: Encoder-decoder architecture for image
synthesis.

of [11] leverage on the methodology of STN to gen-
erate realistic looking images from the intersection
of the natural image and geometric manifold, using
an adapted Generative Adversarial Network. Con-
versely to these approaches we modify the STL com-
ponent of STN to enable SO(3) transformations of
input feature maps with spatial dimension.

3. Approach

This section presents our approach for learning
equivarient features in SO(3) in order to synthesize
images from unseen viewpoints. We first give a prob-
lem definition, then describe the Trilinear Interpola-
tion Layer. Finally, we outline how the TIL is used in
an encoder-decoder architecture for image synthesis.

3.1. Problem Statement

Let X = {azc, (5020, ey :Egl)} be a set of training
examples where . refers to the projection [ ] of ob-
ject oc, in its canonical pose, to the image space 1.
The set of zy; are the projections of transformed
objects 0g: where 6 represent the transformation in
SO(3) for the projection into /. Our goal is to learn
the inverse of the mapping function Hfl in order to
produce transformed images. In other words, to learn
I [H_l (zc), 011 given an image of the ob-
ject in its canonical pose and transformation param-
eters.

In order to model the inversion of the mapping
function [ [, we utilize a CNN due to their power to
encode statistical relationships from visual data into
feature spaces [8]. To provide information regarding
relative transformations 6% in SO(3) between pairs
of images to our model, we modify the STL of [6].
An overview of the encoder-decoder architecture for
image synthesis using the modified STL is presented
in Figure 2.

S

3.2. Trilinear Interpolation

The STL [6] allows SE(2) transformations to be
applied to feature maps. This works well in image
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Figure 3: Trilinear Interpolation Layer (TIL) compo-
nents.

space, however, requires adaptation for the SO(3)
domain [19]. The STL is composed of a grid genera-
tor and a sampler.

The grid generator is modified by adding a depth
dimension D. The input feature map of space
REXWXC thus becomes REXWxDXC where H, W
and C are the height, width and number of channels,
respectively. The feature map is centered along D
as shown in Figure 3a. The sampler of the STL bi-
linearly interpolates between corner points using the
corresponding areas. For volumes, this scheme is
unsuitable. Therefore, trilinear interpolation is used
instead, as shown in Figure 3b. Feature maps are
interpolated channel-wise and projected back to 2D
by averaging along the depth dimension. In order
to guarantee proper interpolation in 3D, H and W
must be greater than 1. The proposed modification
enables transformations in SO(3) and only affects
non-trainable layers. Thus, the additional computa-
tional overhead compared to STL is negligible.

Since averaging over D is used for projecting the
grid back to 2D no feature map scaling can be ap-
plied while sampling. Thus, modifying the trilinear
interpolation by allowing scaling along depth would
enable transformations in SFE(3), thus yielding full
6DoF. However, this is out of the scope in this paper.

3.3. Network Architecture

The network in Figure 2 is an encoder-decoder
architecture. The encoder consists of a truncated
ResNet18 [3], pretrained on ImageNet [17], for fea-
ture encoding. ResNetl8 consists of five stages. In
order to preserve a larger spatial image dimension we
remove the fourth and the fifth stage and take the out-
puts of the last Rectified Linear Unit (ReLU) of stage
three. The final output is a tensor of size 8 x 8 with
128 feature maps.

The encoded image H_l (:cc) as well as the trans-
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formation parameters ¢’ are passed to the TIL. Fea-
ture maps are trilinearly interpolated to produce the
mapping of the encoded transformed image ;. The
transformed encoding is forwarded to the decoder
stage of the network.

The design of the decoder is rather ad-hoc to show
that the TIL is not restricted to a certain architec-
ture. A transposed convolution with ReLLU activa-
tion is followed by stacks of deconvolution layers
with ReLU activation and upsampling layers. These
stacks are repeated two times and a final transposed
convolution layer with linear activation is added.
Feature channels are reduced gradually. Kernel sizes
of the transposed convolutional layers are 5—3—3—5
and upsampling kernel sizes of 3 x 3 are used. All
strides are set to 1. The output of the decoder is an
image of size 64 x 64.

In each training iteration, the deviation of Ty to zy
is minimized. The loss function to be optimized is
[2. The network is trained to correlate objects views
with its corresponding transformation in SO(3) in
the camera frame. Consequently, a feature space is
created that enables to synthesize views not included
in the training set.

4. Experiments

This section presents experiments for image syn-
thesis of unseen views of household objects with lit-
tle texture. These experiments show that the exten-
sion of an encoder-decoder network with the pro-
posed TIL reconstructs objects views in SO(3). In
addition, the method can also reconstruct views in
regions of SO(3) where no data was provided to the
network during training.

4.1. Dataset

Our experiments are conducted on a subset of the
LineMOD dataset [4]. We use the object models of
Benchvise, Cat, Glue, Camera and Lamp. These ob-
jects represent elongated and asymmetric shapes as
well as complex shapes with self occlusion. With this
subset we cover the representative challenges when
synthesizing views for objects.

4.2. Dataset Creation

Dataset images are rendered using the renderer
provided by [5]. For our purposes, the RGB images
are scaled to 64 x 64 pixels. To each object’s canon-
ical pose, 45° are added to elevation in order to only
train on views of the upper hemisphere of the object.
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11 2x2x512 | 0.03 = 4.9¢e-04 0.03 &= 4.2e-04 0.028 4= 4.0e-04 | 0.031 £ 4.3e-04
2 0.096 + 2.1e-05 | 0.093 £ 1.6e-02 | 0.093 £ 1.8e-03 | 0.1 &+ 1.2e-03
DSSIM 0.102 4= 3.5¢-03 | 0.105 £ 2.6e-03 | 0.09 + 3.0e-03 0.1 4 3.4e-03

11 4x4x256 | 0.018 & 3.5¢-04 | 0.02 & 3.6e-04 0.0243 £ 4.0e-04 | 0.018 4 3.2e-04
2 0.065 & 1.8e-05 | 0.0064 £ 1.7e-05 | 0.086 £ 2.5¢-06 | 0.063 £ 1.7e-05
DSSIM 0.061 + 3.0e-05 | 0.067 4 3.6e-05 | 0.07 4 2.8e-05 0.059 + 3.2e-05
11 8x8x128 | 0.016 £ 2.6e-04 | 0.017 £ 2.6e-04 | 0.017 £ 25e-05 0.017 4 2.4e-04
2 0.06 £ 1.6e-03 0.057 & 1.7e-03 | 0.06 + 1.7e-03 0.066 =+ 1.6e-03
DSSIM 0.055 + 3.0e-03 | 0.06 £ 3.0e-03 0.053 +2.9e-03 | 0.055 £ 2.6e-03

Table 1: Performance study for latent spatial dimension and loss function. We present the error and variance,
averaged over all objects, using [/, [2 and DSSIM respectively.

Based on the newly defined canonical pose, images
are rendered in a range of -43° to +43° azimuth and
elevation. This is similar to [19] but with approxi-
mately three times the range in azimuth angle.

For training, only views in a range of -37° to +37°
azimuth and elevation are used. Of these 950 images,
43 images are exclusively used for testing. The se-
lected samples are distributed uniformly in the view-
ing cone. An additional 59 images are included in
the test set. These are in an angle range of negative
and positive 37° to 43° azimuth and elevation. Thus,
views in a range that are not shown to the network
during training.

4.3. Training Protocol

For training we use the Adam optimizer with the
learning rate set to 1073, A batch size of 1 is used.
We train 40 epochs per object for quantitative ab-
lation studies. After 30 epochs, the learning rate
is decreased by one magnitude. Qualitative evalua-
tion is presented after 40 epochs of training. Dur-
ing training, Gaussian blur with uniformly sampled
o = [0.0, 1.5] is used as online augmentation.

4.4. Hyperparameter Studies

We study the choice of loss function used for op-
timization and the optimal size of the bottleneck fea-
ture maps. Table 1 presents results averaging over the
test sets of all five objects. Presented are the Mean
Absolute Error (MAE), Root Mean Squared Error
(RMSE) and Structural Similarity Index (SSIM) as
well as their corresponding variances.

The loss functions compared are /1, {2, Structural
Disimilarity (DSSIM) and a combination of /1 and
DSSIM as used by [19], where ¢ is the weighting
parameter. The bottleneck tensor size is adjusted by
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| Tensor size | 2x2x512 | 4x4x256 | 8x8x128 |
| parameters | 13,330,508 | 3,753,804 | 1,881,932 |

Table 2: Network parameters per bottleneck tensor
size.

truncating ResNet18. For a dimension of 4 x 4 x 256
we use the outputs of the fourth and upsample using
three stacks of transposed convolutions plus upsam-
pling layers. For 2 x 2 x 512 we use four stacks
starting with a 5 x 5 transposed convolution.
Quantitative evaluation shows that the metric used
for evaluating the reconstruction quality correlates
with the loss function used, which is to be expected.
Using [2 is reasonable. However, when synthesiz-
ing views for a specific application more carefully
choosing the loss function will be obligatory. Sur-
prisingly, a bottleneck tensor size of 8 x 8 x 128
leads to image synthesis with the lowest error even
though this network has far fewer parameters than
the other spatial dimensions (see Table 2). This leads
to the conclusion that bigger spatial dimensions are
more important for synthesizing views than network
depth. Based on the chosen hyperparameters we fur-
ther present experiments for synthesizing views.

4.5. Studies on View Synthesis

Studies are presented to illustrate that the pro-
posed formulation generates feature spaces suited for
view synthesis in SO(3). Figure 4 shows views syn-
thesized from unseen transformations during training
time. Additionally, we present view predictions out-
side of the training range. Views inside the train-
ing range are reconstructed with sufficient quality
to visually verify the expected object orientations.
Despite the reconstruction quality being poor for



Figure 4: View synthesis from SO(3) transformations unseen during training time. First row: reconstructed
Lamp with varying azimuth from -43° to 43°. Second row: reconstructed Glue with elevation variation from -
43° to 43°. Row three to five: objects Benchvise, Camera, Cat reconstructed with azimuth/elevation range from
(-43°,-43°) to (43°,43°). Object poses outside the green box are samples out of training distribution. Centered

images, in the red box, mark the canonical poses.
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Figure 5: Error values and its variance over azimuth
angle. The network was trained on its corresponding
loss function with a spatial bottleneck dimension of
8 x 8 x 128. The vertical line shows the training set
range.

some of the synthesized views outside of the train-
ing range, it is visible that views can be predicted
properly based on SO(3) transformations.

Figure 5 provides reconstruction error and vari-
ance over an extended azimuth and elevation angle
range of [0, 180°]. The results in the figure are av-
eraged over all objects. The training dataset contains
images with azimuth angles up to 37°. A sharp rise
in error and variance is observed at azimuth angle of
approximately 45°. For angles above this value, error
and variance increase rapidly. As such, the network
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cannot properly reconstruct these views.

These results show that our formulation for creat-
ing equivariant feature spaces has the desired prop-
erty to correlate spatial transformations with 2D
views of the transformed object. Thus, the pro-
posed Trilinear interpolation layer guides the net-
work towards learning an equivariant feature space

in SO(3).

5. Conclusion

We extend recent work for learning equivari-
ant feature spaces for synthesizing object views in
SO(3). The proposed extension of the Spatial Trans-
form Network [6], that we call the Trilinear interpo-
lation Layer, applies SO(3) transformations to fea-
ture maps from 2D data. Validity of the approach is
provided by training a simple encoder-decoder net-
work architecture. Our experiments show that our
formulation not only enables the prediction of views
unseen during training time but also in a small range
outside.

The current formulation enables control for SDoF,
SO(3) and translations in image space. Future work
will tackle adapting the proposed layer to create ob-
ject view synthesis in all of SE(3). We then plan to
integrate this in a pose refinement strategy to improve
object pose estimation.
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Abstract. Automatic video analysis of digitized his-
torical analog films is influenced by video quality,
composition and scan artifacts called overscanning.
This paper provides a first pipeline to crop the main
frame window by detecting Sprocket-Holes and in-
terpreting the geometric hole layout to distinguish
between two different film reel types (16mm and
9.5mm). Therefore, an heuristic approach based on
histogram features is explored. Finally, our results
demonstrate a first baseline for future research.

1. Introduction

In the age of digitization analog film collections
are digitized by using modern technologies and pro-
cesses'. During these processes the frame content as
well as the area around the exposed frame is scanned.
This area includes black borders of the film reel,
Sprocket-Holes (SH) or parts of the next or previ-
ous frames. This effect is called overscanning and
is needed to ensure preservation of significant infor-
mation (see Fig.1-a). Furthermore, it is a fundamen-
tal procedure for sustainable film digitization and
archival. However, for developing automatic video
analysis tools of scanned historical analog films, this
additional information is undesirable and can influ-
ence the performance of those systems [1, 3, 4]. The
project Visual History of the Holocaust (VHH)* has
been funded in order to digitize analog media col-
lections related to the liberation phase of the Nazi
concentration camps. These collections are used for
further explorations on automatic video content anal-
ysis. However, they do not include annotated meta-
data such as the film reel type or masked overscan ar-
eas. Therefore, automatic mechanisms for detecting
and removing overscans in film reels such as 16mm

"https://dft-film.com/products/archive-challenges-and-
solutions.html - last visit: 2020/02/08
Zhttps://www.vhh-project.eu/en/ - last visit: 2020/02/08
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or 9.5mm (see Fig.1-b) can be used to provide more
efficient ways for exploring analog films.

Figure 1. (a) Demonstration of overscanning, (b) real
world examples of a 16mm (top) and 9.5mm (bottom) film
reels.

Miihling et al. [2] and Zeppelzauer et al. [4] ex-
plore the challenges of cinematographic techniques
in historical videos. However, to our best knowledge
no comparable scientific investigation on automat-
ically removing overscan information by detecting
S H has been published in the last decade. This pa-
per proposes a first Frame-Border-Detection (FBD)
approach to remove overscan areas in scanned ana-
log frames by detecting S H s as well as interpreting
the hole geometry and layout. This information is
used to classify two different film reel types (16mm
and 9.5mm). Moreover, the hole positions are used
to extract the final frame window using traditional
computer vision techniques.

2. Methodology

We propose a multi-stage pipeline split into four
main blocks: Threshold-Filtering (THF ), Connected-
Component-Labelling (CCL), Calculating-Crop-
Window (CCW) and Reel-Type-Classifier (RTC).
The original input frame is first converted into a
grayscale image. In the THF-stage, the input image
is thresholded to get a binary mask. The threshold
T, is calculated for each input frame dynamically
by analyzing the fields 1-6 visualized in Figure



Output

Film Reel Type:
16mm

B

Scale-factor:
1.33

Figure 2. Illustration of (a) the pipeline, (b) the generation of the corner point and (c) calculation of the final crop window.

[ Exp. [ P [ R ] Acc [ moU@0.95 [ IoU@0.70 |
1émm-fixed | 0.95 [ 094 [ 0.88 - -
9.5mm-fixed | 0.94 | 0.68 | 0.82
Iémm-dyn. | 0.96 | 0.84 [ 0.90
9.5mm-dyn. | 097 | 0.64 | 0.8l - -
overall-fixed | 0.948 | 0.812 | 0.85 0.747 0.867
overall-dyn. | 0.962 | 0.74 | 0.86 0.763 0.895

Table 1. Precision (P), Recall (R) and Accuracy (Acc) on
the test set - classification of the reel-types 16mm and
9.5mm. mean Intersection over Union scores at thresh-
olds: 0.95 and 0.7.

2-a. After a filtering process, the mask is used in
the CCL-stage for labeling all detected potential
S H. This step includes a further filtering process to
remove outliers. Finally, this step is the base for the
CCW- and RTC-stage. In CCW the corner points
are calculated as demonstrated in Figure 2-b. The
center of the resulting square is used as reference
point for the final crop window which is defined
with a configurable scale factor (e.g 1.33) to get
the correct scaled frame crop related to the original
film reel such as 960x720 pixels (see Fig.2-c). In
the RTC-stage, our pipeline is able to classify the
input frame into the reel types: 16mm and 9.5mm.
Therefore, the locations of the labeled holes are
analyzed in the masked input image. SHs in the
fields 5 and 6 (see Fig. 2-a) are related to the 9.5mm
film reel whereas the other ones identify the 16mm
reels.

3. Results & Conclusion

The evaluation of our pipeline is based on a
self-generated dataset including 100 labeled frames
randomly selected out of 10 videos related to the
National-Socialism®. The dataset contains 50 anno-
tated frames for each class: 16mm and 9.5mm reels.
The metric mean Intersection over Union (mloU) is
used for evaluating the predicted locations. Precision

3http://efilms.ushmm.org/ - last visit: 2020/02/11
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and Recall are utilized to evaluate the classification
of the two reel types. For the evaluation, two exper-
iments have been conducted: a fixed and dynamic
Th. The results show that the mloU scores signifi-
cantly depending on the THF process. Historical film
frames include damaged and under-/overexposed ar-
eas which make the selection of an optimal 7', chal-
lenging. Furthermore, SH's are not on the same po-
sitions in each frame due to the movements and the
varying speed of the film reel during the scan process.
The results are summarized in Table 1. We provide
a first baseline for further research. However, opti-
mizing our pipeline as well as using Deep Learning-
based methods are planned to improve detection and
classification results.
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Abstract. We study methods for the generation of
highly accurate binary segmentation masks with ap-
plication to images of cars. The goal is the auto-
mated separation of cars from their background. A
fully convolutional network (FCN) based on the U-
Net architecture is trained on a private dataset con-
sisting of over 7000 samples. The main contributions
of the paper include a series of modification to com-
mon loss functions as well as the introduction of a
novel Gradient Loss that outperforms standard ap-
proaches. In a specialized postprocessing step the
generated masks are further refined to better match
the inherent curvature bias typically found in the out-
line of cars. In direct comparison to previous imple-
mentations our method reduces the segmentation er-
ror measured by the Jaccard index by over 65%.

1. Introduction

A majority of buyers and sellers of cars choose to
use online platforms. The quality of pictures on such
platforms has a considerable impact on a buyers like-
lihood to purchase and thus leads to a demand for vi-
sually appealing images. For most sellers it is finan-
cially infeasible to take professional photographs and
it has instead become common practice to digitally
edit them. A binary segmentation mask is created
that segments the image into foreground (the vehi-
cle) and background. This mask is used to either al-
ter (e.g. blur) or entirely replace the background with
an artificial scene. Due to the significant demand
for high quality segmentation masks dedicated busi-
nesses offering this service have emerged. As each
photograph is edited by hand, the total time until the
segmentation mask is available to the dealership lies
between one and two days. The delay in time gener-
ates non-negligible costs. Based on novel deep learn-
ing techniques that have advanced the state-of-the-art
in recent years we study methods for the fully auto-
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mated generation of segmentation masks with focus
on the maximization of accuracy. This paper aims to
improve the state of the CarCutter! service.

2. Related Work

The first application of convolutional networks to
semantic segmentation with per-pixel prediction was
made possible by the introduction of fully convolu-
tional networks (FCN) [13]. Previously segmenta-
tion solutions repurposed convolutional network ar-
chitectures [12, 4] intended either for classification
or object detection and always included fully con-
nected layers. These adaptations come with draw-
backs on either speed or accuracy. By reinterpret-
ing fully connected layers in classification networks
as convolutional layers that cover the entire input re-
gion the network architecture is made independent
of the dimensions of the input image. Instead of
a class probability vector the reinterpreted network
outputs a coarse heatmap for each class. In order to
obtain predictions at the pixel level the coarse seman-
tic information of deeper levels is repeatedly upsam-
pled and added to the activations of shallower fea-
ture maps. This innovation was quickly expanded
on and led to development of the U-Net architec-
ture [11]. It introduces a symmetric encoder-decoder
format consisting of a contracting encoder compo-
nent and an expanding decoder component. This
setup is chosen with the intention of learning a com-
paratively low dimensional image representation in
the narrow region of the network (referred to as
the bottleneck) that captures global context while at
the same time dramatically reducing the number of
learned parameters. Skip connections efficiently pass
shallow encoder features with high localization ac-
curacy to deep decoder layers that are rich in se-
mantic information. Variations on networks of this

Uhttps://www.car-cutter.com/ (accessed February 24, 2020)



type are often focused on the decoder component,
while the standard approach for the encoder com-
ponent is the repurposing of the convolutional stage
of known, well performing networks, such as VGG-
16 [14]. The variations in the decoder component
essentially explore the trade-off between low mem-
ory requirements (and fast inference) and high accu-
racy. Architectures such as [16] also investigate the
benefits of an additional ResNet [5] based refinement
stage. Benchmarks show [2, 10] that almost all state-
of-the-art solutions for a variety of image segmenta-
tion tasks are based on the U-Net architecture. It is
also chosen by well performing entries [6, 15] to the
Kaggle Carvana Image Masking challenge. Ternaus-
Net [6] was part of the winning entry in the challenge
and uses a pretrained encoder based on VGG-11 [14]
while [15] placed in the top 4% using an ensemble
of five network with a pretrained ResNet-50 [5] en-
coder.

3. Dataset

Training was done on a private dataset consisting
of 7614 pairs of RGB-images and binary segmenta-
tion masks. Some images contain additional cars in
the background that are smaller by area. In these
cases the solution is expected to only segment the
main vehicle. The dataset exhibits a bias towards
German car brands such as Volkswagen, BMW and
Mercedes and contains a disproportionate amount of
images with cars higher-than-average in cost. During
preprocessing all images are resized to a resolution of
800px x 600px. Data augmentation is used to boost
the available training data.

To our knowledge, the most closely related dataset
is tied to the Kaggle Carvana Image Masking chal-
lenge?. The goal of this challenge is identical to ours.
Its dataset contains roughly 100000 image/mask
pairs with resolution 1920px x 1080px. Compared to
our dataset the samples are more uniform. Each pic-
ture contains exactly one vehicle which is placed in
a fixed position and all photographs are taken by the
same stationary cameras under identical lighting con-
ditions. The winning entry of this challenge achieved
a Jaccard index of 0.9947 which we consider to be an
upper bound to the score achievable on our dataset.

Zhttps://www.kaggle.com/c/carvana-image-masking-
challenge (accessed February 21, 2020)
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4. Methods

Segmentation is performed with a fully convo-
lutional neural network of the U-Net architecture.
Its implementation is similar to [16], with a pre-
trained convolutional stage of a VGG-16 network
with batch normalization for the encoder and an ad-
ditional ResNet-style refinement block after the de-
coder. Segmentation quality is evaluated using the
Jaccard index which is the de facto standard metric
for image segmentation methods:

_|PNT|
- |PuTl

MJ(PaT) : (1)

In our context 7" and P are subsets of target (ground
truth) and predicted pixels in a segmentation mask.
Images x, target masks ¢ and predicted masks p are
assumed to be non-binary with height N, width M
and values in the range [0, 1].

We study training with (modifications of) the loss
functions Mean Squared Error Lygg and Binary
Cross-Entropy Lpcg as well as the Dice Loss [9]
Lpsc which is defined as

€+ 2> 6 j)ep Pijlij
€+ > (i jepPij +tij’

Lpsc(p,t) ==1— 2

and is related to the Jaccard index. Here D
{1.. N} x{1.. M} is the domain of the segmen-
tation masks and € < N M is a small scalar regular-
ization term.

4.1. Weighting Schemes

We propose modifications that improve upon the
standard losses Mean Squared Error and Binary
Cross-Entropy. The main idea is that not all areas
of an image are equally important or equally diffi-
cult to segment. Loss functions that are the sum or
mean of pixelwise losses can be modified to assign
weights to each pixel in order to adjust for this inho-
mogeneity. We can use a map w of real weights with
shape equal to ¢ and p and define a modified version
of Mean Squared Error as:

1
Luse(p,t) = 177 > wij (pij — ti)”.
(4,7)€D

3)

An analogous modification can be made to Binary
Cross-Entropy.



Notation The notation V, y expresses the convo-
lution of a stack of feature maps y with the gradi-
ent of a two-dimensional Gaussian density with mean
vector (0,0)" and covariance matrix oI, where I is
the identity matrix. In practice it is a convolution
V,y =y * GY with a kernel GY that is normalized
and has shape 2 x C' x C' with C' ~ 4¢. The opera-
tion doubles the channels of the tensor y. To ensure
fast computation the convolution is implemented as
a convolutional layer with frozen weights.

Median Frequency Balancing A simple and pop-
ular [3, 1] weighting scheme is Median Frequency
Balancing (MFB). Each class (foreground and back-
ground in our binary setting) is assigned a weight to
compensate for imbalance in the frequency of occur-
rence. The weights can either be computed individu-
ally for each sample or once for the entire dataset. In
the individual case a foreground/background weight
pair (wy, wp) for a target mask ¢ is given by

N N

wf and Wy =

230G jyep tis
4

An example of such a weight map is shown in the
second column of Figure 1. If a single weight pair
for the entire dataset is preferred then it is computed
as the mean of all sample weights.

Boundary Proximity The separating boundary be-
tween foreground and background is the only area
where the segmentation mask is non-constant. Con-
sequently it is also the area where masks generated
by neural networks exhibit the largest mistakes. In
this approach pixels in close vicinity to the boundary
are assigned larger weights. Such a method is already
suggested by the authors of the original U-Net archi-
tecture [11], although with a less general approach.
We calculate a weight map based on a pixel’s dis-
tance to the separation boundary using convolution
based edge detection. A large gradient in a segmen-
tation mask indicates the presence of an edge. Based
on this we define the weight map

2
wij =1+ cl|(Vot);l3 -

A map of this type is shown in the third column of
Figure 1. The parameter c is a scaling constant and
is set to 5.

2> G.pen(l —tiy)
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Gradient Ratio The typical location of segmen-
tation errors can be characterized more concretely.
Photographs are often taken in poor lighting condi-
tions or with cheap camera equipment resulting in
over- or underexposed areas. Common occurrences
are bright reflections in a vehicles roof or dark shad-
ows around its wheelbase (see Figure 2). Both sce-
narios can obscure the precise transition point be-
tween foreground and background. At the data level
we are confronted with image patches that are ei-
ther nearly entirely white or nearly entirely black,
while the same patch in the ground truth segmen-
tation mask contains a binary transition. Motivated
by this observation we claim that the ratio between
change in the mask and change in the corresponding
image is a measure for prediction difficulty and use
it to define a new weight map. Again we employ dis-
crete gradients:

(Ve 1)3;115

w;; =1+¢ .
R TC AP

As previous the parameter c is a constant which is set
to 0.1 and € is a small regularizing constant with € <
N M. The result of the convolution V, x is a stack
of six feature maps, one for each combination of the
three image channels and the two partial derivatives
in the gradient. A weight map of this type is shown
in the fourth column of Figure 1.

Comparative Results In Table 1 we show results
for the pixelwise losses Mean Squared Error and Bi-
nary Cross-Entropy, first in their default state and
then with the addition of one or more weighting ex-
tensions. To us a pixelwise loss is a function that
sums over the losses of individual pixels. Conse-
quently when the gradient is computed during back-
propagation all terms except the ones belonging to
the individual pixels vanish. We can argue that in
such a loss function no pixel is ignored or treated
lesser.

In direct comparison Binary Cross-Entropy out-
performs Mean Squared Error in every test. From an
information theoretic point of view it is the natural
loss for binary classification problems. When using
Mean Squared Error none of the proposed weighting
schemes improved over uniform weights whereas the
opposite holds true for Binary Cross-Entropy where
the best results are achieved using a combination of
Median Frequency Balancing and Gradient Ratio.



Figure 1. Comparison of weighting methods. A sample
image (left) and weight maps for Median Frequency Bal-
ancing (left middle), Boundary Proximity (right middle)
and Gradient Ratio (right).

Figure 2. Examples of an overexposed bright region (left)
and an underexposed dark region (right).

Lyse LBcE
Default 1.189 x 102 1.145 x 1072
MFB 1.284 x 1072 1.114 x 1072
Boundary Proximity 1.217 x 1072 1.126 x 1072
Gradient Ratio 1.296 x 1072 1.108 x 1072
MFB + Gradient Ratio 1.282 x 1072 1.106 x 102

Table 1. Comparison of network performance after train-
ing with Mean Squared Error Lysg and Binary Cross-
Entropy Lpcg measured by 1—Jaccard index.

4.2. Gradient Loss

We expand on the idea of using discrete gradients
in loss functions and introduce the Gradient Loss.
This loss is inspired by the H' Sobolev seminorm
|flzn = ||V £l 2. Instead of optimizing the plain
value of the segmentation mask we optimize its gra-
dient:

Ly (p,t) = Lyse(Vep, Vs t) &)

In our tests we observe that neural networks trained
with this loss produce masks with cleaner constant
regions. We believe it allows them to learn that seg-
mentation masks should be largely constant, i.e. for
most areas V, p should be zero. It is not advisable to
use the Gradient Loss on its own since it is based only
on a seminorm. Depending on how the convolution
treats missing values on the boundaries there might
hold Ly (p + ¢,t) = Lv(p,t) for constant values ¢
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1—Jaccard index

Lpsc 9.237 x 1073
LpcE 1.145 x 102
LMSE 1.189 x 1072
Lpsc + LBcE 1.045 x 1072
Lpsc + Lysk 9.633 x 1073
Lpce + Lv 1.082 x 1072
Lvse + Ly 1.224 x 1072
Lpsc + Lpce + Ly 1.027 x 1072
Lpsc + Luvse + Ly 9.118 x 1073
Previous solution 2.640 x 102

Table 2. Network performance after training with compos-
ite loss functions measure by 1—Jaccard index.

(invariance to constant shifts). If the Gradient Loss
is combined with Mean Squared Error we essentially
obtain a discrete version of the H' Sobolev norm.

4.3. Composite Loss Results

It is common practice to combine the Dice Loss
with a pixelwise loss [8] which results in segmenta-
tion maps with sharper boundaries. The combination
of multiple loss functions is achieved by simple ad-
dition of the individual losses. Addition of the Dice
Loss to the pixelwise losses uniformly results in a
performance increase (see Table 2) due to its close
relation to the Jaccard index. In these tests Mean
Squared Error surpasses Binary Cross-Entropy by a
significant margin while the incorporation of weight-
ing schemes worsened results. The further addition
of the Gradient Loss leads to mixed, but generally
positive results. Although the effects on the combi-
nation of Dice Loss and Binary Cross-Entropy are
minor, we achieve overall best results with the com-
bination of the three losses Dice Loss, Mean Squared
Error and Gradient Loss. The score outperforms the
previous best result which was achieved with plain
Dice Loss. Compared to a previous implementation
used by the CarCutter service the segmentation error
is reduced by 65%.

4.4. Postprocessing

The proposed weighting schemes and loss func-
tions can only work if over- or underexposed re-
gions are not completely devoid of texture. Other-
wise a neural network may only learn to predict a
pixel’s probability to belong to the foreground class
which inevitably causes non-sharp transition in the
predicted masks. An alternate approach is the use of
a custom postprocessing procedure.



Figure 3. Two examples of active contour modeling.
Crops of car images (left), the inferred segmentation
masks (middle) and contour segments (right) before ac-
tive contour modeling (red) and after (blue).

Inferred segmentation masks are thresholded and
the resulting sharp separating contour between the
foreground and background region is subjected to a
refinement procedure. The contour is split into cer-
tain and uncertain regions depending on the neural
networks certainty in its prediction. A contour re-
gion is considered to be certain if nearby values in
the corresponding segmentation mask are close to 0
or 1, and uncertain otherwise.

Uncertain Regions These contour regions typi-
cally occur in over- or underexposed areas of an im-
age and are iteratively adjusted using active contour
modeling [7]. The method aims to minimize an en-
ergy functional of a spline contour in the inferred
segmentation mask. Figure 3 shows the effects of
the approach on two examples. The first example
shows its positive influence while the second is a fail-
ure case.

Certain Regions Cars typically have large regions
that are smooth for aerodynamic and aesthetic rea-
sons. Edges that are present however can be rather
sharp. The motivation of the following procedure,
which we call adaptive smoothing, is to mimic this
bias. We aim to perform a high degree of smooth-
ing without displacing the contour by more than 0.5
pixels. The upper limit is enforce since based on the
neural network assessment such a segment is already
close to the ground truth target.

As an initial step the contour segment is split into
separate sequences for x and y coordinates. The fol-
lowing procedure is applied separately to both. Let
& = (ki) be such a sequence of real points. We
use Gaussian filters G, with standard deviations o;
that adept to the current position. A kernel G, is ob-
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Figure 4. Comparison of a contour before postprocessing
(red) and after adaptive smoothing (blue). Full segmenta-
tion mask and contours (bottom second from the left) and
five enlarged regions.

tained by sampling a Gaussian density in the points
Z N [—20;, 20;] and normalizing.

The smoothed contour x° has equal shape to s and
is defined as

S
Ky

(k*Gg,) (6)

i

For the computation of the values o; we are looking
for the largest kernel that displaces x less than 0.5
pixels. A naive implementation of this idea has two
issues: First the set {o; € R>o : |r; — £§| < 0.5}
might not be bounded and second this approach can
lead to large jumps in consecutive entries of o. For
this reason we pose the definition with additional re-
strictions:

(B)
(@)
(M)

o1 =0y =0,
ie{l...N—1},

o; € R>o maximal s.t. |k; — ;| < 0.5.

loi — oit1] < «,

Under these conditions solutions exist and are
unique. Requirement (B) enforces the fixed bound-
ary conditions k; = k] and Ky = k%, while (C)
ensures continuity within the contour segment. The
parameter « specifies an upper bound for the slope.
In practice the setting « = 0.5 performs well. For
the implementation of this method it is advisable to
only consider a discrete set of possible values for o;.
A comparison of contours before and after postpro-
cessing can be seen in Figure 4.

5. Conclusion

We studied methods for the generation of highly
accurate binary segmentation masks, including
weighting schemes that improved the performance of
default loss functions and a novel Gradient Loss. In
addition we developed a specialized postprocessing
procedure that exploits a bias in our dataset. We cre-
ated a solution that poses a significant upgrade over



a previous implementation of the CarCutter service.
Direct comparison of masks generated by our imple-
mentation with ones generated by the service in April
of 2019 showed a reduction of 65% in the segmenta-
tion error as measured by the Jaccard index. With the
exception of our postprocessing procedure the pre-
sented methods are applicable to the general image
segmentation task.
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Abstract. Systems for additive manufacturing are
experiencing an enormous upswing in the industry.
In this paper a method for the optical control of pow-
der beds is presented. The system is based on a cam-
era and directional lighting and is suitable for detect-
ing two types of defects, including (i) areas where too
little/too much powder has been applied, and (ii) ar-
eas with different porosity. The system is evaluated
for both types of errors.

1. Introduction

Binder-Jetting is a popular method for additive

manufacturing of high-resolution components. In
this process, powder is applied in layers, which is
then selectively cured by a binder [3]. In order
to prevent dead times and production downtimes in
powder-bed-based additive manufacturing, a system
was sought that would reliably find defects in the in-
dividual powder layers. Defects in the powder bed
can occur either in the form of excess/missing pow-
der, or as insufficient porosity of the powder. If such
defects are not detected, components may be pro-
duced which do not achieve the expected strength
values or contain predetermined breaking points in-
side. The analysis system should be simple in design
and reliable in operation.
Three different types of optical analysis are used
in existing plants: Laser triangulation [2], a cam-
era with structured illumination [4] or a camera with
directed illumination [1]. All approaches aim at
creating a geometric image of the powder surface.
Laser triangulation or structured illumination can be
used to create three-dimensional models of the plane,
while directed light can only be used to find qual-
itative deviations from the plane. Since a qualita-
tive evaluation of the surface is sufficient, the method
with directed light is chosen.
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Top-light

Shadows

Side-light

Figure 1. Side-light causes shadows at defective positions

2. Imaging System

The prototypical image system is installed in an
existing machine for additive manufacturing.

The system consists of a camera and two lights.
One light source illuminates the powder bed verti-
cally from above to achieve the most uniform illumi-
nation possible (top-light). The second light source
shines on the powder bed at a very flat angle (side-
light). The side-light creates shadows when there are
differences in height in the powder bed, which the
camera captures from above. These shadows are not
created when using the top-light (Figure 1). After
the creation of each powder layer, two images are
acquired, one using the top-light, and one using the
side-light. By subtracting the two images from each
other, the shadows are extracted and evaluated. The
top-light ensures that color differences in the powder
are not misinterpreted as shadows.

3. Image Processing

After acquiring the images of one layer, the pro-
cessing of the images is done. The two images
are high-pass filtered to minimise global illumination
differences. (A constant correction is not possible be-
cause differences in the powder mixture lead to dif-
ferent reflection properties.) Afterwards the images
are subtracted from each other to extract the shad-
ows. A powder layer without defects thus produces
an image with very low grey values, as there is no
difference between top-light and side-light. Defects



Figure 2. Variance of the difference image: high red in-
tensity = high variance = missing powder

or high porosity stand out from the image in the form
of high grey values. The variance of the grey val-
ues in small, rectangular sectors is used as an indica-
tor of quality. The observation in sectors is needed
to locate the defects. A low variance indicates that
few defects occur in the powder bed, the layer is well
compacted. High values of the variance can indicate
defects or high porosity.

3.1. Large defects

A difference image with powder missing over a
large area can be seen in Figure 2. Areas with miss-
ing powder (or too much, albeit an unlikely case) pro-
duce large shadows, which appear as high grey val-
ues in the difference image. If the defects are larger
than the sectors of the detection, the mean value of
the grey values have to be considered in addition to
the variance. A weighted average of the two factors
is used as a criterion for the evaluation.

3.2. Porosity

Another factor that is evaluated is the porosity of
the powder layers. The strength characteristics of the
printed components are directly related to the degree
of compaction of the powder. If the porosity is too
high during the printing process, lower strength
values are expected. Porous powder layers create
shadows in the area of the grain size of the powder
used, which appear as noise in the differential image.
The variance of the grey values in the sectors is
sufficient for detection. It should be noted that areas
close to the light source tend to be overexposed,
which makes evaluation more difficult.

4. Experimental Validation

To test whether the strength of components can be
estimated during the manufacturing process, several
series of test specimens were printed and then tested.
It was confirmed that layers with few defects and
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Figure 3. Variance of the grey values of the powder layers
of two layers of test pieces with different porosities

a low porosity achieve higher strength values. The
evaluation of the test is shown in Figure 3. Series C
achieves S¢ = 10.8 MPa with a compression ratio
of 10%, while series D achieves S¢ = 11.4 MPa
with a compression ratio of 15%. Test specimens
with higher density and better strength characteristics
show lower porosity in the printing process, which is
reflected in the differential images as a lower vari-
ance of the grey values.

5. Conclusion

Our tests have shown that a simple system con-
sisting of one camera and two light sources is well
suited for process control of powder bed based ad-
ditive manufacturing processes. Both coarse defects
in the powder bed and different porosities can be de-
tected, which avoids production downtimes and en-
ables quality control already while printing.
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Abstract. We propose a method to automatically
generate high quality ground truth annotations for
grasping point prediction and show the usefulness of
these annotations by training a deep neural network
to predict grasping candidates for objects in a clut-
tered environment. First, we acquire sequences of
RGBD images of a real world picking scenario and
leverage the sequential depth information to extract
labels for grasping point prediction. Afterwards,
we train a deep neural network to predict grasping
points, establishing a fully automatic pipeline from
acquiring data to a trained network without the need
of human annotators. We show in our experiments
that our network trained with automatically gener-
ated labels delivers high quality results for predicting
grasping candidates, on par with a trained network
which uses human annotated data. This work low-
ers the cost/complexity of creating specific datasets
for grasping and makes it easy to expand the existing
dataset without additional effort.

1. Introduction

Automated grasping is a very active field of re-
search in robotics. The process of having a robot
manipulator successfully grasp objects in a cluttered
environment is still a challenging problem. Re-
cent state-of-the-art for grasping position computa-
tion often use deep learning techniques and super-
vised learning. However, these methods usually need
to be trained on a large amount of labeled data.
Therefore, it is of high interest to find techniques to
automatically label data for robotic grasping. Previ-
ous work [17, 19] focused on using raw RGBD data
for automatic object segmentation by leveraging se-
quential depth information from the scene. However,
the segmentation mask is not sufficient as annotation
for grasping point prediction because many state-of-
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the art approaches define the grasping proposal using
a bounding box representation.

We propose a fully automatic pipeline from raw
RGBD data to a system that predicts grasping point
candidates using our automatically labeled data for
training. Figure 1 shows our workflow. As practical
example, we captured RGBD data from log order-
ing in the wood industry. We will demonstrate the
usefulness of our approach by training a deep neural
network to predict grasping points using our auto-
matically generated labels as ground truth. The main
contributions of this work are:

1. A fully automatic annotation pipeline for grasp-
ing point prediction using sequential RGBD
data.

An automatic annotation method that allows
dense labeling of grasping points for graspable
objects. Additionally, the annotations contain
implicit information about the order of object
removal due to the usage of sequential input
data. These labels can be directly used for train-
ing a supervised learning approach.

. A deep neural network which is able to pre-
dict grasping points in a cluttered environment,
solely trained with a small number of automati-
cally labeled images.

2. Related Work

Grasping point detection. The conventional
method for grasping point detection uses informa-
tion about object geometry, physics models and
force analytics [1]. With the rise of deep learning,
data-driven methods [2] became more common.
Methods like [13, 9, 7, 20] use deep neural networks
and supervised learning to predict multiple grasping
points for a single object. Chu et al. [4] were able
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Figure 1. Overall workflow of our method containing data acquisition, automatic grasping point annotation using depth
images and training a deep network for grasping point prediction. (Left) Our dataset is constructed by recording sequences
of RGBD images while a human expert removes wooden logs from the scene. (Middle) The sequence of captured depth
images is used to automatically annotate grasping points in every corresponding RGB image. (Right) This automatically
annotated data are then used to train a deep neural network to predict grasping points.

to predict multiple grasping points for multiple
objects in an image. Zeng et al. [18] showed that
they are able to grasp unseen objects with their
winning contribution for the Amazon Robotics
Challenge in 2017. Other approaches [12, 10] use
Reinforcement Learning (RL) on a real or simulated
robot to perform thousands of grasp attempts and
use the feedback to improve the grasping point
predictions. RL has the advantage that no labeled
data are necessary for training, but it is on the other
hand very time and hardware consuming.

Representations of grasping points in 2D. Sax-
ena et al. [16] described a grasping point as g =
{z,y}, where x and y define the center of the grasp-
ing point proposal. This representation lacks infor-
mation about the opening width of the gripper. Red-
mon and Angelova [13] overcame this limitation by
using a rectangular representation for the grasping
point. This is very similar to the bounding box rep-
resentation of objects in the field of object detec-
tion, with the addition of a rotation angle 6 which
describes the orientation of the bounding box. An
overview about other common representations can be
found in [3].

Automatic label generation. Datasets used for
deep learning are often hand annotated, which is time
consuming and can be error prone due to the involve-
ment of human annotators. In the domain of ob-
ject segmentation, modern tools like DeepExtreme-
Cut [11] or GrapCut [15] significantly reduce the
amount of work for labeling RGB data to a small
number of clicks. However, they are not fully auto-
matic and are not able to work with depth data. Zeng
et al. [19] showed that they are able to use back-
ground subtraction to generate segmentation masks
of new objects in the scene. Suchi et al. [17], most
similar to our approach, use sequences of depth im-
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ages to predict segmentation masks of the objects in
the scene. However, the difference of our method
compared to all previously mentioned approaches is
that we do not only calculate the segmentation mask,
but directly infer grasping proposals. Furthermore,
segmentation masks do not give any information in
which order the objects should be removed, which
can be crucial for grasp success in cluttered environ-
ment.

3. Data Acquisition and Automatic Annota-
tion

This section describes our simple strategy to au-
tomatically label grasping points for scenes with ob-
jects in a cluttered environment.

3.1. Data Acquisition Protocol

The process requires a statically mounted RGBD
camera which records color and depth information
from the scene. We then ask human experts to re-
move one object after the other from the scene. Af-
ter each successful grasp, we capture depth and color
images. Figure 2 shows a sequence of recorded RGB
images. This method provides us not only with con-
secutive RGBD images of the picking procedure, but
also gives implicit information about the optimal or-
der of object removal according to a human expert.
This information is highly important because not all
objects are equally easy to grasp due to their random
placement (e.g. objects on top of one another).

3.2. Automatic Label Generation

As illustrated in Figure 3, we perform auto-
matic grasping point annotation through an 3-stage
pipeline. Our algorithm takes two consecutive depth
images from the scene as input and calculates grasp
proposals for the object which was removed. A grasp



Figure 2. Sequence of recorded RGB images. The sequence starts in the top left with the full stack of objects and we
record an RGB image after each object removal. We also record the corresponding depth image for every RGB frame.

proposal g is defined as Automatic grasping point annotation. The re-
fined segmentation mask is then used to calculate

g={z,y,0,w,h}, (1) geometric features of the object. The skeleton of

the object mask is calculated by using [8] to remove

where « and y describe the center of the grasp pro- boarder pixels as long as the connectivity does not
posal, 0 describes the angle of the rotated bounding break. The resulting skeleton of the object is approx-
box, and w and h describe the width and height of imated with a line segment, which makes it more ro-
the predicted box. bust to outliers. Each point on this line segment can
Initial depth segmentation. The main focus of our then be used as a possible center of a grasp proposal.

The height h and the rotation angle 6 of a grasp pro-

algorithm is to detect depth changes in the scene af- - ) : i i
posal is determined by calculating the intersection

ter a successful grasp was performed by a human ex- ! A
pert. Therefore, we calculate the depth difference I* between a line, which is normal to the skeleton and

of two consecutive depth images as passes through the center of a grasp proposal, and
the edges of the mask. The bounding box width w

I* = |I; — Iy, ) is directly dependent on the used gripper and we set

this parameter manually to suit our robotic gripper.

where 7 and I5 are the depth images previously nor- All this information are then combined and used to

malized between 0 to 255. The output I* is a rough generate the final grasping proposals. The proposals
estimate of the segmentation mask of the removed have certain characteristics:

object. 1. The center of a bounding box is located at the

Segmentation mask refinement. The intermedi- spine of the object.
ate segmentation is coarse and contains noise mainly
due to inaccurate sensor values and small movements
of the objects. Therefore, further refinement of the

2. The height of the bounding boxes are bounded
to the edges of the object mask.

segmentation mask is needed. We apply binary im- 3. The width of the bounding boxes can be set
age morphology to remove the majority of noise and manually, because this parameter highly de-
smooth the mask edges. A Gaussian filter is then ap- pends on the gripper characteristics.

plied for further noise reduction and to create the re-
fined mask which is used for further processing. The
Gaussian filter g ;jse, is defined as

4. The majority of the grasp proposals are gener-
ated near the center of mass, which is based
on the assumption that these points more likely

1 2242 lead to an successful grasp.
= on02 e 3)

Gfilter (.T, Y, 0)
Results. Our automatic annotation pipeline allows

where x and y are the spatial dimensions of the inter- us to generate a high number of grasping labels with-
mediate mask I*, and o is defined as the standard de- out any supervision of human annotators. Further-
viation for the Gaussian kernel. In our experiments, more, due to the fact that the data is recorded while
we set 0 = 1, which means that it is equal for both an expert did the grasping, we implicitly have super-
axes. vision about which object should be removed from
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Segmentation
Mask
Refinement

a)

b)

Figure 3. Our automatic annotation pipeline. a) Two consecutive depth images with one object removed (marked in red).
Calculating the difference of the depth images gives a rough segmentation mask of the removed object. b) Refinement
of the mask using morphological operations and Gaussian filtering. c) Geometric features (object edges, skeleton, center
of mass) are calculated using the refined segmentation mask and are used afterwards to calculate the final position of the
grasping point proposals. The last step transfers the proposed bounding boxes to the corresponding RGB image.

the scene, without any additional costs. The only
time humans are involved is, when checking all the
predicted labels via manual inspection to find images
which contain erroneous labels. In this process we
roughly drop 10% of the images to avoid inaccurate
labeled training data. Figure 4 shows results of our
automatically labeled dataset.

3.3. Human-based Data Annotation

Additionally to our automatic labeling approach,
we also labeled the whole dataset manually. The idea
is to train a grasp prediction network on both types
of labels independently, and then compare the per-
formance of both approaches. All hand labeled data
were checked by human experts with domain knowl-
edge to verify the correctness of the annotations.

4. Grasping Point Prediction in a Cluttered
Environment

Chu et al. [4] proposed a deep neural network to
predict multiple grasping points for multiple objects
in the scene. We adapted their approach and retrained
the network with our specific dataset.

4.1. Network Architecture and Loss Function

The network architecture is based on the Faster
R-CNN object detection framework [14] using a
ResNet-50 [6] as backbone. It takes a three chan-
nel RGB image as input and predicts a number of
grasping point candidates, whereas one candidate g
is defined as described in Equation 1. Note that the
rotation angle 6 is quantized into R = 19 intervals,
which makes the prediction of this parameter a clas-
sification problem. All other parameters (see Equa-
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tion 1) are predicted using regression. During train-
ing, the composite loss function L, is defined as

[’total = Lgpn + EgCT'a (4)

where L, describes the loss according to the grasp
proposal net and L., is the grasp configuration pre-
diction loss. The loss term L, is used to define
initial rectangular bounding box proposals without
orientation ({z,y,w, h}), whereas L, is used to
define the orientation and the refined bounding box
prediction {x,y,0,w,h}. Figure 5 shows the struc-
ture of the prediction network and indicates how the
loss parts Ly, and Ly, are calculated. Further in-
formation about the network architecture and the loss
function can be found in [4].

4.2. Data Preprocessing and Augmentation

Our dataset for training the prediction network
consists of only 52 images. Therefore, data augmen-
tation is used to increase the size of the training data
by the factor of 100. Figure 6 shows examples of the
augmented data. This increases the variation in the
training data and decreases the possibility of overfit-
ting during training. After augmentation, each image
was resized to 227 x 227px to fit the input dimension
of the network.

4.3. Training Schedule

Pre-trained ImageNet [5] weights are used as ini-
tialization for the ResNet-50 backbone to avoid over-
fitting and ease the training process. All other lay-
ers beyond ResNet-50 are trained from scratch. The
whole structure of the network can be seen in Fig-
ure 5. We used the Adam Optimizer and trained our



Figure 4. Visualization of automatically generated labels. Each edge of one grasping point proposal is visualized with a
different color to show the orientation of the box. Our method allows dense labeling of the object but only four grasping
point proposals are visualized in each image to guarantee the clarity of the visualization. Note that only one object per
image is labeled which implicitly adds expert knowledge about the optimal order of object removal.

Loss 2: )
Lger(ph B) ‘

ResNet-50 (1 to 40) Loss 1:
7x7 conv, 64 (1) pA— Lgpn(pi, ti)

ResNet-50 (41 to 49)

data pre- 3x3 maxpool, 64 | | ROI . (7c, 20 ) O
- processing > Residual block_1 (9) | | feature map 7R:_’s Eygégé?cgais(g) :_: ‘ O
’ (e 80 )=» =

pi| pooling
|
Residual block 2 (12) | | J e 1x1, 512 wp (e 2k Jmb
Residual block_3 (18) feature map s | T fi
14x14, 1024 netwo = fc 4k

Figure 5. Architecture of the grasping point prediction network. The network takes RGB images as input, and predicts
multiple grasping candidates. The grasping candidates are defined as an oriented rectangular bounding box. The output
bounding boxes are drawn with different colors, whereas the red edges denote the parallel plates of the gripper and the
black lines indicate the opening width of the gripper. Figure was taken from [4].

A= cywh)i=

! dom placement of objects) to verify the generaliza-
2P E tion capabilities of our network. We used the same
training schedule for both methods, as well as the
; e e same parameters for non-maximum suppression for
Figure 6. Data Augmentation. (Left) RGB input image, both experiments to ensure a fair comparison. The
(others) randomly shifted and rotated input image. evaluation of our predicted grasping candidates is di-
vided into two parts:

o

network for 50000 iterations with a initial learning

rate « = 0.0001. The anchor sizes for the bound- 1. Quantitative evaluation of the predicted grasp-
ing box proposals are chosen according to the size of ing points by calculating the ratio of graspable /
the objects in our dataset using [8, 16, 24, 28]px, with non-graspable candidates.

anchor ratios of [0.5,1,2]. All other hyperparame-
ters were taken from [4]. Note that the goal of these
experiments was to show the practical benefit of our
method for automatic label generation, rather than to 5.1. Quantitative Evaluation
compete for the best possible performance for grasp-
ing point prediction. We believe that a more care-
ful selection of hyperparameters, combined with an
optimized training schedule could further boost the
results.

2. Qualitative evaluation by visualizing the pre-
dicted grasping candidates.

For quantitative evaluation we decided to calcu-
late the relative number of predicted grasp candidates
that are non-graspable for both networks trained with
manually/automatically labeled data. We define a
non-graspable prediction as 1) the size of the pre-
dicted bounding box is unsuitable ( either too big or

5. Experiments and Evaluation s ) )
too small) or 2) grasping is not feasible due to partial

We trained the previously described prediction occlusion of the object. Figure 8 shows examples of
network two times separately, once with automati- non-graspable candidates. Table 1 shows the quan-
cally annotated data and once with the same data la- titative results indicating that a deep network trained
beled by hand. Both networks were evaluated using a with automatically labeled data can achieve similar
test set containing 22 images which are independent performance compared to the same network trained
from the training data (different camera position, ran- with manually labeled data.
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Figure 7. Comparison of predicted grasping candidates for both networks trained on automatically labeled data (top two
rows) and manually labeled data (bottom two rows). We apply non-maximum suppression to reduce the number of
visualized boxes and to ensure the clarity of the visualization.

Method Valid grasping candidates in %
Auto-Label 81.17
Man-Label 83.43

Table 1. Relative number of valid grasping candidates for
both approaches. The network trained with automatically
labeled data is named Auto-Label, whereas the network
trained with manually labeled data is named Man-Label.
Both networks show similar performance which empha-
sizes the usefulness of our automatically labeled data.

Figure 8. Examples for non-graspable predictions. (Left)
predicted bounding box not graspable because another ob-
ject is on top; (middle) box too big; (right) box too small.

5.2. Qualitative Results

Qualitative results of our grasping point predic-
tions are shown in Figure 7 for the networks trained
with the manually annotated data and the automati-
cally generated labels respectively.
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6. Conclusion

We have proposed an automatic annotation

method for easily generating grasp proposals for
robotic manipulations using only one RGBD cam-
era. Our annotation method requires minimal human
interaction and is highly cost effective. With the pro-
posed method, we generated ground truth data and
successfully trained a deep neural network to predict
grasping candidates. To underline the usefulness of
our approach, we trained our grasp prediction net-
work with hand annotated and automatically anno-
tated data separately, and our experiments showed
similar performance for both attempts. This leads to
the conclusion that our automatically generated la-
bels are highly accurate.
We believe that the best strategy to train a deep net-
work for grasping point predictions is to initially
train with a large number of automatically annotated
frames using our method, and afterwards fine-tune it
with a small number of frames annotated by human
experts. This strategy can lead to highly accurate re-
sults with minimal human interaction.
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Abstract. Object detectors based on deep neural
networks have revolutionized the way we look for
objects in an image, outperforming traditional im-
age processing techniques. These detectors are of-
ten trained on huge datasets of labelled images and
are used to detect objects of different classes. We ex-
plore how they perform at detecting custom objects
and show how shape and deformability of an object
affect the detection performance. We propose an au-
tomated method for synthesizing the training images
and target the real-time scenario using YOLOvV3 as
the baseline for object detection. We show that rigid
objects have a high chance of being detected with
an AP (average precision) of 87.38%. Slightly de-
formable objects like scissors and headphones show
a drop in detection performance with precision aver-
aging at 49.54%. Highly deformable objects like a
chain or earphones show an even further drop in AP
10 26.58%.

1. Introduction

Object detection in RGB images has received a lot
of attention in the previous years due to advances
in deep neural networks (DNN) research. Classi-
cal techniques usually rely on searching for features
in an image that were hand-crafted by a human.
Deep neural networks on the other hand use huge
datasets of hand-labelled images to learn these fea-
tures. These labels are either a bounding box of an
object or its mask. This approach has shown great ef-
ficiency. In general there are two types of DNN based
object detectors. The first group performs the detec-
tion in a single run through a network. These meth-
ods are generally fast and can even run in real-time
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Figure 1. Objects used for evaluation

with standard hardware. Second group has a separate
region proposal and detection stage, which usually
makes the execution of the methods slower but more
precise than the first group of methods. Recently,
a combination of CBNet and Cascade R-CNN has
achieved a new state of the art result on the COCO
dataset [9] with an impressive AP50 of 71.9%. [10]

Detecting custom objects is a common problem
in robotics. DNN or more precisely Convolutional
Neural Networks (CNN) require large amounts of
data for training. Having that data hand-labelled by
a human is extremely time consuming so there is a
lot of research going on in the field of synthesizing
training data. This is typically done by first making
a 3D reconstruction of the objects and then placing
them in a virtual environment which allows the sim-
ulation of artificial deformations and the creation of
arbitrary synthetic views where labels are taken from
the 3D template. However, obtaining a full 3D recon-
struction is not possible with all objects, especially



in the case of deformable objects. Objects like fold-
ing headphones, scissors, chains, cables can vary in
appearance depending on their current usage. This
poses a problem for CNN based object detectors. We
propose a simple RGB based method for recognition
of rigid but also deformable objects and synthesize
images for training a neural network. We then test
this method by training the YOLOv3 [13] network
with the fully synthetic dataset and explore how does
the shape of an object, ie. it’s symmetry and de-
formability affect the detection performance.
The contributions of the work include:

e An automated pipeline on synthetic data gener-
ation used for detection and recognition of both
rigid and deformable objects.

e A novel RGB based method for quick and ef-
fortless acquisition of object masks.

e We explore the effect of deformability of an ob-
ject to its detection performance.

2. Related work

Computer vision tasks depend on large amounts of
annotated training data. For the tasks of detecting ob-
ject classes such as cars or airplanes there are numer-
ous hand-annotated datasets available: COCO [9],
PASCAL VOC [3] and Open Image Dataset [7].
These datasets are built by researchers or companies
and consist of a large number of images. Each image
has annotations of objects of interest. This may be a
bounding box only or contain the mask of the object
as well. The COCO (Common Objects in Context)
dataset consists of over 330 thousand images con-
taining objects that are split into 80 classes. How-
ever, sometimes, especially in robotics related tasks,
we are interested in detecting a specific object. For
example not any mug but the user’s favourite coffee
mug. The mentioned datasets are of little use in these
cases, so there is a necessity for a specialized dataset.
Datasets are normally difficult to obtain so there is a
lot of research concerning synthesizing datasets.

Jungwoo Huh et al. [6] proposed a method for syn-
thesizing training data that, similarly to ours, relies
on obtaining masks of an object. In order to produce
the synthetic images they use pure pasting, whereas
we use a combination of pasting and Poisson image
editing. Additionally they evaluate their method on
rigid objects only, for example a baseball bat, a bot-
tle, a toy rifle etc. The only deformable object that
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they use is an umbrella but they keep it closed dur-
ing the training and testing so we can consider it as
a rigid object in this case. Additionally, they use
YOLOV2, which has a lower mAP (Mean Average
Precision) than the YOLOv3 while also preserving
the ability to process the images in real-time. For
obtaining the masks of the objects they use a semi-
automatic segmentation method while ours is fully
automated and does not involve any manual post-
processing.

Debidatta Dwibedi et al. [2] assume that object
images, which cover diverse viewpoints, are avail-
able. They apply a CNN to obtain a mask of the
object. They then randomly place the object into
a scene image using Poisson cloning. Next, they
train the Faster R-CNN [14] network using the syn-
thetic images and evaluate the method on the GMU-
Kitchens dataset [5]. For the evaluation of the
method they also use exclusively rigid objects like
bottles, detergents, cups, cornflakes packages etc.
Although simple, the method achieves an mAP of
88%, which is similar to what we report on detection
of rigid objects.

Georgakis et al. [4] propose a method for syn-
thesizing training data that takes into consideration
the geometry and semantic information of the scene.
They use publicly available RGB-D datasets, the
GMU-Kitchens [5] and the Washington Washington
RGB-D Scenes v2 [8], as backgrounds for the object
images. Using RANSAC they detect planes in the
image and artificially place objects on top of them,
while also scaling their size according to the dis-
tance from the camera. This method produces nat-
ural looking images, because instead of being placed
randomly in an image, the objects such as a cup
or a bottle are placed on a flat desk surface or on
the ground. They test their method using SSD and
Faster R-CNN [14] and report an mAP between 70%
and 85% depending on how much real data they use.
Considering the fact that the scenes they use for eval-
uation are cluttered this is a good results. The objects
used for evaluation are a bowl, a cup, a cereal box, a
coffee mug and a soda can. These are all non de-
formable objects.

3. Synthetic Data Generation

Object detection is required in cases such as self-
driving cars, unmanned aerial vehicles, robotics etc.
Except for detecting rigid objects like cars, chairs
or cups it is often needed to detect deformable ob-



jects like chains or cables. Most of the previous
work on object detection focuses on detecting rigid
objects[3, 15, 6, 2]. Our goal is to expand this re-
search to deformable objects as well. We train an
object detector based on CNN to detect both rigid
and deformable objects. For this task a big amount
of training images is required. Obtaining this data
manually is time consuming, therefore we propose a
method for synthesizing the training data which in-
cludes an RGB based segmentation procedure that is
able to handle deformable objects. We then use pub-
licly available datasets as background for the syn-
thetic images and augmentation techniques to in-
crease the variability of the dataset.

Figure 2. Illustration of the mask acquiring process. Top
left image shows the original RGB image. Top right im-
age shows the result of appyling k-means method to the
original RGB image. Bottom left image shows the auto-
matically selected contour and the area inside of it colored
in green. Bottom right image shows the final extracted ob-
ject masks.

3.1. Data acquisition

Publicly available datasets which contain anno-
tated objects are suitable for training CNN to detect
object classes. However, when it comes to detecting
specific objects, a specialized dataset is required. We
synthesize a dataset by capturing the images of the
objects and develop a method to segment them from
the flat surface on top of which they were placed.

For the recording of objects a Kinect camera by
Microsoft mounted on a tripod is used. The cam-
era is placed at approximately 30 cm above the flat
surface and facing the object at an angle of approx-
imately 45 degrees. During the recording, both the
camera and the flat surface are stationary. The flat
surface should preferably be unicolor so that the ob-
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ject is clearly distinguishable from it.

After the recording was initiated, the object was
manipulated by hand in order to get it to face the
camera from all possible viewing angles. The point
is to get the object to face the camera in as many
unique perspectives as possible. The advantage of
this method is that it is able to capture deformable
objects by simply changing their shape while they
are being recorded.

3.2. Data processing

In order to synthesize images that are needed for
training of the network object masks are needed. Ob-
taining the masks of the object is possible by man-
ually segmenting the object from the background or
by using a segmentation method. Manually segment-
ing objects is inefficient, therefore we devise a simple
method for object segmentation that is used for both
rigid and deformable objects. For the segmentation
of the object from the background a combination of
computer-vision based methods is used. It contains
the following five steps:

1. Firstly, k-means clustering is applied to the im-
age with the k value of 2. This method is suc-
cessful at distinguishing the boundaries of inter-
est. Additionally it is computationally more ef-
ficient than a possible alternative of using Otsu’s
Thresholding.

After application of k-means, morphological
operations like image closing and erosion are
applied to the image in order to connect possible
discontinuities in the border of the object.

. Next, contour detection is applied to the whole
image and locations of gravity centers of the
area inside of the detected contours are deter-
mined. A red circle is drawn on the image com-
ing from the Kinect camera, which is shown
on the screen, in which the center of the object
should be placed in order to automatically start
the capturing process.

The algorithm then determines if the contour
satisfies conditions in terms of its length and
distance from the center of the image and, if
that is the case, the recording is started. Af-
ter the capturing process is initiated a predeter-
mined number of object projections is recorded
at a regular time interval or per keyboard com-
mand. The number of projections recorded is



40, which is usually more than enough to cap-
ture the object from all different angles.

. If the object of interest is deformable the cap-
turing process is paused, to capture a deformed
state, and then re-started. Images of segmented
objects are then stored on a hard drive for syn-
thesizing training data.

Figure 2 shows the illustration of the mask acquir-
ing process.

3.3. Synthesizing training data

Figure 3. Examples of synthetic images that are used for
training the YOLOv3 network

In order to synthesize the training images we used
a combination of Poisson image cloning [11] and
pure pasting of the segmented objects onto differ-
ent background images. As background for the syn-
thetic images we used the Indoor Scene Recogni-
tion dataset [12] and Describable Textures Dataset
(DTD) [1]. We used ten different objects for the eval-
uation and generated 2500 synthetic images per ob-
ject. To handle the blur that appears while the ob-
jects are moving, we artificially blurred 20% of the
images by adding horizontal motion blur between 5
and 15 pixels to the objects. As objects move closer
or further away from the camera their relative size
changes, so we introduce artificial scaling of the ob-
ject uniformly distributed between 50% and 125% of
its original size. In order to tackle the occlusion prob-
lem small patches of textures from the DTD dataset
are placed randomly on 10% of the synthetic images.
These cover between 0% and 50% of the object sur-
face. Additionally we introduce multiple objects to
the image and allow them to occlude each other by a
maximum IOU (Intersection Over Union) of 40%.

Figure 3 shows the examples of the synthetic im-
ages that are used for training the YOLOV3 network.
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4. Evaluation

To evaluate the method, we trained the CNN based
object detector YOLOV3 using the synthetic images.
A total of ten objects were used, which differ greatly
in their shape and deformability. We know already
that YOLO performs very well when facing rigid ob-
jects. Therefore our aim was to explore to what ex-
tend the shape of an object can be deformed. As an
example of rigid objects we use a can, two differ-
ent tea boxes, and a lemon juice bottle. Slightly de-
formable are headphones, scissors and a human hand
model. Extremely deformable objects that we used
are earphones, power cable and a piece of chain.

Properties of objects used for evaluation and their
detection precision are presented in Table 1.

\
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Figure 4. Successful and unsuccessful cases of detection
of different deformable objects

Figure 5. Chain detection success cases

Figure 6. Chain detection failure cases

In order to evaluate the precision of the proposed
method two minute videos of each object being ma-
nipulated were filmed and every 20th frame extracted



Objects Deformability | Precision
lemon juice bottle rigid 89.61
red tomato can rigid 84.52
red tea box rigid 87.65
yellow tea box rigid 87.76
headphones slightly def. 57.32
Scissors slightly def 54.15
human hand model | slightly def. 37.16
power cable highly def. 34.66
chain highly def. 30.24
earphones highly def. 14.86

Table 1. Object detection performance, def - deformable

and manually annotated. We then ran the YOLO net-
work trained with the synthetic data and calculated
precision for each object, taking as ground truth the
hand-annotated data. An Intersection Over Union
(IOU) of 50% was considered a successful detection.

As shown in previous work rigid objects like a
can, a tea box or lemon juice bottle have a very good
chance at getting detected with the precision being at
close to 90%. These objects do not change greatly
in appearance when placed in different positions and
it is therefore easy for the network to learn their ap-
pearance. We purposely choose that some of the ob-
jects have similar color, so that, due to lack a of great
number of objects used for evaluation, the detection
performance may not be attributed to simple color
searching.

Slightly deformable objects that we used were
scissors, headphones and a human hand model. We
see that in the case of slightly deformable objects the
detection performance drops significantly with it be-
ing around 55% for the scissors and the headphones.
The chances of detecting the human hand model are
even lower, being 37.16%.

The last three objects that we evaluate are a chain,
a power cable and a pair of earphones. These objects
are considered to be highly deformable. Again there
is a clear drop in detection performance with the
precision of earphones detection being only 14.86%.
Chances that a power cable or a piece of a chain will
be detected are a bit over 30%.

All of the objects used for evaluation can be seen
in Figure 1. Detection of objects used for evaluation
using YOLO trained on COCO dataset was unsuc-
cessful for all of the objects except for the scissors
with the detection rate of 62.35%, similar to our re-
sult. The chain detection success cases can be seen
on Figure 5, whereas the chain failure cases are pre-
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sented in Figure 6.

We can see that the in the cases where chain de-
tection is successful a mask of chain taking a similar
structure can be found in the bottom row of Figure
5. In the cases where the chain detection fails there
are no masks available that resemble the given chain
structure.

We then pose the chain detection problem as sin-
gle link detection problem and try to detect the struc-
ture of the chain by detecting each individual link in
the chain. In order to do so, we use our proposed
method to segment the link in many different orien-
tations and synthesize the training images. We then
connect the individual links into a chain and test de-
tection of individual links while the chain is taking
different configurations. The results of a single link
detection can be seen on the top row of the Figure 7.

Figure 7. Examples of link detection

We also record 100 images of a chain taking dif-
ferent shapes and manually annotate each of the
links on the chain in all of the images and train the
YOLOV3 network with those annotated images. The
results of a single link detection with the manually
annotated links can be seen on the bottom row of the
Figure 7.

We took chain as an example of a highly de-
formable object that is made out of simple rigid ele-
ments. These results show that the detection of an de-
formable object is possible by detecting its elemen-
tary parts.

Successful and unsuccessful cases of object detec-
tion are presented in the Figure 4. As shown, on
the examples of the power cable, the scissors and
the headphones, detection is successful in some of
the configurations. If the configuration is slightly
changed the detection fails. This is due to the big
variability in the appearance of these objects which
is caused by their deformability. Potentially, mod-
elling of deformable objects such as a power cable or
a chain could be used to generate big amounts of dif-



ferent object masks. This would enable the network
to learn a bigger amount of object views, than those
that a human demonstrator can show in a reasonable
time.

Our method works well when facing rigid objects,
when the number of unique views is limited. How-
ever, when it comes to deformable objects, number
of unique views increases dramatically. Therefore,
in those cases the efficiency of our method drops sig-
nificantly.

5. Conclusion

In this paper we intend to highlight open prob-
lems of a standard object detector when applied to
slightly and highly deformable objects. We specifi-
cally trained the YOLOv3 detector to cope with these
cases. To reduce the time consuming effort of image
annotations, we proposed an automated method for
synthesizing the training images. The idea is to show
objects on simple background and use a short videos
and a few annotations with augmentation of training
data to obtain better performance. While this works
well for rigid objects with an AP of 87.38%, we show
that for slightly deformable objects like scissors and
headphones the detection performance drops signifi-
cantly to 49.54%. The drop is, as expected even more
drastic for highly deformable objects like a chain or
earphones, down to AP of 26.58%.

Using the example of a chain we show that it is
possible to pose the problem of detection of the de-
formable objects as detection of its elementary rigid
element - a link. To further tackle this problem, mod-
elling of deformable objects could be used for syn-
thetic data generation.
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Border Propagation: A Novel Approach To Determine Slope Region
Decompositions
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Abstract. Slope regions are a useful tool in pattern
recognition. We review theory about slope regions
and prove a theorem linking monotonic paths and the
connectedness of levelsets. Unexpected behavior of
slope regions in higher dimensions is illustrated by
two examples. We introduce the border propagation
(BP) algorithm, which decomposes a d-dimensional
array (d € N) of scalar values into slope regions. It
is novel as it allows more than 2-dimensional data.

Figure 1. gray-scale to height-map conversion

1. Introduction

In this section we develop an intuitive understand-
ing of the term slope region [3] and its generalization
to higher dimensions. The concise definition of the
terms already employed here is reserved for the next
section.

Consider an image, either gray-scale or in color.
If it is a color image, it can be decomposed into its
color channels (red-green-blue), which can individu-
ally be read as gray-scale images. We consider pixel
intensity of one such gray-scale image as the height
of a landscape, yielding a 2D surface in 3D space.
The surface will have peaks in areas where the image
is bright, and will have dales in dark areas.

Now our aim is to partition the surface into regions
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(i.e. subsets) in a particular way: We require each
region to consist only of a single slope, by which
we mean that we can ascend (or descend) from any
given point of the region, to any other given point of
the region, along a path that runs entirely within the
region. Such a decomposition is not unique, but we
can at least try to get a partition as coarse as possible,
meaning that we merge slope regions if the resulting
subset is still a slope region, and we iterate this un-
til no further change occurs. There might be many
different coarsest slope decompositions.

The criterion we used to describe slopes, any two
points being connected by either an ascending or a
descending path, can easily be used in higher dimen-
sions. Think of a computed tomography scan, which
will yield gray-scale data, but not just on a 2D im-
age, but rather on a 3D volume. We want to partition
the 3D volume, such that any two points in a region
can be connected via an either ascending or descend-
ing path within the region. Recall that ascending and
descending refers to the intensity value of the tomog-
raphy scan as we move in the volume. For piecewise
linear functions on a volume, decompositions were
introduced in [1].

By abstracting from image and tomography to a
real function f : (2 — R defined on some subset of
R™ (think of it as the pixel intensity function), and by
rigorously defining a coarsest slope decomposition,
we can lift the concept to arbitrary dimensions in a
mathematically concise fashion.

2. Defining Slope Regions

In this and the following chapters we will con-
sider a topological space (£2,7) with a continuous
function f : Q@ — R. In practice or for ease of
imagination, (2, 7) will typically be a rectangle or
cuboid subset of R? or R? equipped with the eu-



clidean topology and f will describe a continuous
image or 3D-scan.

Definition 2.1. A path is a continuous function from
the real interval [a, b] (with a < b) into a topological
space 2.

Definition 2.2. Two points = # y in a topological
space 2 are called path-connected if and only if there
exists a path v : [a,b] — Q with v(a) = x and
V(0) = y.

Definition 2.3. The set of all points which are path-
connected to a point x € € is the connected compo-
nent of x:

[z] := {y € Q|z is path-connected to y}

Any subset of {2 which can be written in above way
(for a suitable choice of x) is called a connected com-
ponent.

Definition 2.4. A path~ : [a, b] — Q is called mono-
tonic if and only if the whole path is ascending or the
whole path is descending, meaning the first or second
formula below has to hold, respectively:

Vs,t € [a,b] : s <t = f(y(s)) < f(7(1))
Vs,t € [a,b] : s <t = f(y(s)) = f(7(1))

Definition 2.5. Let R C Q. R is called slope re-
gion or monotonically connected if and only if for all
x,y € R there exists a monotonic path vy : [a,b] —
R with v(a) = z and y(b) = y.

Definition 2.6. A family of sets {A; C Q |i € I}is
called a slope region decomposition if and only if:

e A;is aslope region for all i €
° Vi,jEI:i#jinﬂA]’ZQ.
e Ui Ai=0

Definition 2.7. Consider two slope region de-
compositions .4 {A4; CQ|iel} and B
{B; cQ|jeJ}. Wecall A coarser than B, al-
ternatively B finer than A, in Symbols A > B if and
only if

VjieJ3diel:B; CA;.

Theorem 2.8. > is a partial order, i.e. fulfills reflex-
ivity, antisymmetry and transitivity.

Proof: Straight forward. Antisymmetry follows
from the decomposition property. O
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Definition 2.9. A slope region decomposition A is
called maximally coarse or simply coarse if and only
if there is no other coarser slope region decomposi-
tion.

We can apply Zorn’s lemma [6] to the partial or-
der =, which yields the existence of maximal ele-
ments. For this we need to show that chains have
upper bounds.

Theorem 2.10. For any ascending chain of slope re-
gion decompositions (A;);cp, that ist > s = Ay =
As, there is a slope region decomposition A satis-
fingVi el : Ay = A;.

Proof: We consider the equivalence relation “con-
nected in A;” for two points z,y € Q:

rr~y:sdAe A, e ANy EA

The equivalence relation is a subset of Q2, and A; >
A, implies ~;D~y. This suggests the use of ~,:=
Uier ~i to get an upper bound. Indeed the equiv-
alence classes of ~, yield a partition A, of €2,
which is coarser than any .4;. But do they form a
slope region decomposition? Yes: For any two fixed
points z, y to be ~,-connected, they need to be ~;-
connected for some ¢ € I. So there is a mono-
tonic path linking z and y in A = [z]~, C [z]~.,
by which they are monotonically connected in A.
Therefor A is a slope region decomposition. g
Hence every set () has a coarse decomposition.

Theorem 2.11. Let A C Q be a path-connected set.
A is a slope region if and only if all levelsets of f in
A are path-connected, i.e.

Ve e R: f~1({c}) N A is path-connected.

Proof: ”=" via contraposition:

Suppose there exists ac € R with L := f~1(c)nA
not path-connected. We decompose L in its compo-
nents and pick = and y from different components.
Since f(x) = f(y) = c a monotonic path between
x and y would have to lie completely in L. However,
since x and y are from different components, they
cannot be connected by a path in L and therefore can-
not be connected with a monotonic path. Therefore,
A is not a slope region.

”<=" via ironing out an arbitrary path:

Given x,y € A we have to find a monotonic path
. Without loss of generality suppose f(z) > f(y).
Since A is path-connected, there exists an (not nec-
essarily monotonic) path vy : [a,b] — A from z to



a ay b1 as by b

Figure 2. applying the Rising Sun lemma

y. Using the Rising Sun lemma [5] on the continuous
function f o o we get the shadow S = | J;(as, b;)
consisting of at most countably many intervals.

S consists of the points which contradict the
monotonicity of f o7y, thus we want to iron out these
points.

Let ¢, := f(ay) = f(bn). Since the levelset of ¢,
is path-connected, we can connect yy(ay, ) and o (by,)
with a level path ) : [an, by] — A.

Finally, we define:

(o) = {

- is a monotonic path from x to y, thus A is a slope
region. g

o € [an, by]

elsewhere

V(o)
Yo(o)

3. Results In The Plane And Counterexam-
ples In Higher Dimensions

There are two theorems ([3] Lemma 1 and [3]
Lemma 2) that are useful, but only hold if Q C R?,
not in general if O C R? for d > 2. But first, we
prove a lemma.

Theorenz 3.1. Let A be a slope region. Then the
closure A is also a slope region.

Proof: Follows from continuity of f. g

The following theorem is only formulated for
closed slope regions, but because of the above the-
orem this is not a big restriction.

Theorem 3.2. Let d = 2 and A C R? be a closed
and bounded slope region. Let (0A;);cs be an enu-
meration of the connected components of the bound-
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Figure 3. a sketch of the situation in Theorem 3.2

ary 0A. Fori € I, if 0A; is homeomorphic to a cir-
cle, then f|ga, has at most one local minimum and
one local maximum (but the extrema might be spread
out in a connected plateau).

Proof: Assume there are two local minima
ai,az € 0A; with f(al) < f(ag). Since 0A;
is homeomorphic to a circle, there have to be lo-
cal maxima b; and by € OA; between them with
f(a2) < f(b1) < f(b2), one on each arc.

Since A is a slope region, a; and a9, as well as by
and b2 have to be connected by a monotonic path.
Because of the Jordan Curve Theorem [2, p.169],
these paths have to cross in a point ¢ € A. But this
yields a contradiction: f(c) < f(a2) < f(b1) <
f(c). Thus the assumption of the existence of two
local minima has to be false. U

Note: The circle assumption is actually unnecce-
sary and the proof without it remains the same in
spirit, but becomes inhibitivly technical, which is
why we omit it here.

Example 3.3. Let Q = R? and A = B1(0,0,0) be
the closed unit ball. Let f be the distance to the z-
Axis.

fiR3 = R:(z,y,2) = Vy2 + 22

The levelsets of f in A are either the x-Axis for f =
0 or the sides of cylinders for f > 0. In any case,
they are connected. Thus, by Theorem 2.11, A is
a slope region. 0A has one connected component,
which is the unit sphere. f|g4 has two local minima,
which are the intersections with the z-Axis, (1,0, 0)
and (—1,0,0).

Thus, the previous theorem does not hold in R3.
In fact, it does not hold in any R? for d > 2. There

18 also no limit on the number of local minima on the
surface of a slope region.

Theorem 3.4. Let d = 2 and A C R? be a slope
region. Let s € A be a saddle point. Then, s € OA.



Proof: Assume s is an interior point of A, which
means there is a open set U with s € U C A. s
being a saddle point means there is a neighborhood
V Cc Usothat Vo := VN [f < f(s)] as well as
Vi =V nN[f > f(s)] decompose into two or more
connected components.

Pick a1, as from different components of V_ as
well as by, by from different components of V. a
and a9 have to be connected by a monotonic path, but
this path has to move outside of V' since the points
are from different components of V_ and by virtue
of being monotonic, the path cannot go through V.
Analogue for b1 and bs.

Again by the Jordan Curve Theorem, these two
paths have to cross in some point ¢, which again
yields a contradiction.

f(e) <maz(f(ar), flaz)) <
< f(s) <min(f(br), f(b2)) < f(c)

Thus the assumption that s is a interior point has to
be false. U

Example 3.5. Let @ = A = R3. Let f be the dis-
tance from the unit circle laying in the z-y-plane.

fiR3 SR (z,y,2) —

H(-T - |\~Tj§/||2’y - IIwZ/|I2’Z> H2 ||(2:,y)||2 #0
||(1,0,Z)| ||(9c,y)||2 =0

2

Again, let us look at the levelsets to show A is a slope
region. The levelset of f = 0 is the unit circle. For
0 < f < 1 the levelsets are tori. f 1 marks
a transition and the levelset is a torus with its hole
closed. Then, for f > 1 the levelsets look like the
exterior surface of a self intersecting torus, topolog-
ically equivalent to a sphere. All these levelsets are
connected. Thus, A is indeed a slope region.

Now consider the point (0, 0,0). Along the x and
y-direction it is a local maximum, however along the
z-direction it is a local minimum. Thus, it is a saddle
point. Therefore, theorem 3.4 does not hold in higher
dimensions.

4. Motivating The Border Propagation (BP)
Algorithm

Now we will work our way to the central in-
sights on which the border propagation algorithm
(BP) hinges. Let us develop ideas for smooth
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Figure 4. evolution of discretized regions during the algo-
rithm

(hyper-)surfaces first, and deal with discrete variants
in the next section.

Slope regions can be constructed and grown in
a straight-forward iterative manner by sweeping
through the function values from lowest to highest.
This is similar to the intuition employed in Morse
theory[4, Section 1.4]. Visualize a smooth, compact
2D surface in 3D space. We want to decompose this
surface into slope regions. Initially, our decomposi-
tion is empty, i.e. there are no slope regions (thus
we don’t have an actual decomposition yet). This is
shown in Figure 4, Image 1.

Imagine a water level rising from below the sur-
face, up to the point of first contact. Starting at this
global minimum, we add a new region, containing
only the argmin (i.e. a single point on the 2D image
where the minimal value is taken).

Now, there might be many points where the global
minimum is taken. This will either be due to a con-
nected region (plateau) on the surface, which we
want to include into the single existing region, or it
will be due to individual dales, which all have their
lowest point at the same height. In this case, we can’t



put the points into the existing region, because we
would not be able to get from one argmin to another
via a monotonic path. Instead, we need to add a new
region for each individual dale.

Both cases can be dealt with by contracting con-
nected points into their connected component, and
creating a new region for each resulting component.
This will ensure that plateaus are assigned to a single
region.

As the water rises, we can add points to an exist-
ing region growing it upwards if they are just outside
the region!. Otherwise they correspond to a distant
local minimum and have to be dealt with as before,
by opening a new region for each point (or rather,
each connected component). This is shown in Figure
4, Image 2.

With the water rising further still, the regions will
grow upwards to a point where they meet (Figure 4,
Image 3). Any such point is a saddle point, and we
have to account for it the next time we want to grow
any one of the touching regions. The saddle point
connects the edges of the regions which meet in it,
at the current height of the water level. It might be
the case that the not-yet-assigned points (the ones
above the water) get separated into multiple con-
nected components, or they might remain connected.

If the points remain connected, then we decide for
a single one of the involved regions to be allowed
to grow upwards from the component. This means
that one region effectively inherits the growth direc-
tions from the other region(s). The other region(s)
lose their potential for expansion and remain frozen
in their current state.

If the unassigned points have multiple components
(as in Figure 4, Image 3: the unassigned grey points
are separated into the lower left and upper right ar-
eas), then we may assign one component to each in-
volved region. The regions will then grow only in the
directions determined by the assigned components as
the water rises. This can be observed in Figure 4,
Image 4: The green region is allowed to grow to the
lower left, while the red region floods the upper right.
The same procedure of swapping areas of expansion
also happens as we move from Image 5 to 6. Any re-
gion without an assigned component remains frozen.

"Why can we do that? By adding only points which are con-
nected to the region we ensure path-connectedness, and by grow-
ing the region upwards, we can construct ascending paths from
old points to new ones. The smoothness of the surface guaran-
tees that while moving at a fixed height, we can reach all points
of the region with that height.
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Should there be more components than regions, then
we open up a new region for each surplus component,
as in the top of Image 7.

An oddity which can occur are self-loops: A re-
gion might grow into a ”C”-shape, and then proceed
to close up into an “O”-shape. This case can be
treated similarly as above, the only difference is that
the saddle is found by recognizing that the region col-
lides with itself, not with another region.

Eventually this procedure will arrive at the global
maximum, and the entire surface will be divided into
regions. Since we proceeded with the necessary care
and attention along the way, we ensured that the re-
gions remained slope regions, and we also only cre-
ated additional regions when we absolutely had to,
showing that the resulting composition is maximally
coarse.

The same algorithm can be applied in higher di-
mensions. We deal with iso-hyper-surfaces as level
sets, but the topological considerations about con-
nectedness remain the same as in the illustrative 2D
case.

5. Discrete BP

The somewhat vague description of BP in the pre-
vious section assumed a continuous surface. In most
applications, however, the data will be provided in a
discrete raster format. Some intricacies arise from
this discretization, most notably iso-surfaces of a
smooth function f will not have a straight-forward
representation in the discrete grid obtained from ras-
terizing f. The data structure we use is a set of in-
dices, representing the positions in the discrete array
already assigned to a region.

Each region also has a set of (yet) unassigned
points, which determine where the region might
grow in the next iteration, called the border. This ef-
fectively models the smooth levelsets in the discrete
representation.

The pseudo-code for the algorithm is
printed below, the executable python code
can be accessed in our github repository:

https://github.com/SirFlolll/MustererkennungLVA

6. Further Potential Development

The result of BP is satisfactory, but we assume
that improvements can be made in running time.
The code was profiled multiple times and has been
adapted to run faster with significant gains in many
instances.



Algorithm 1 Border Propagation
Enumerate all values of f and collect points into
levelsets.
for each levelset in bottom to top order do
Add points to regions if they are in the border
of a region
if an added point is in the border of different
region then
Find the union of the borders of the in-
volved regions
Find the connected components thereof
Assign these to the regions in an arbitrary

way
end if
if an added point splits the border of the region
in two then
Reduce the border the region to one com-
ponent
for each other component do
Create a new region containing the
component as border
end for
end if
for leftover points that cannot be added to any
regions do
Create a new region containing only that
point
end for
end for

Additional features we consider:

e Providing a folerance parameter, which gov-
erns how steep a continuous function might
get, before an iso-surface is deemed discon-
nected in the discrete data. This would allow for
a trade-off between continuous connectedness
and discrete connectedness. Modeling continu-
ous connectedness creates fewer slope regions
and yields pleasing results on smooth data,
but the resulting regions are not monotonically
connected (in the discrete sense of connected)
in general. Discrete connectedness guaran-
tees monotonic connectedness, but it necessar-
ily creates significantly more and smaller slope
regions. On smooth data the latter tends to pro-
duce too fine of a decomposition.
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e Using established data structures that model
smooth level sets from discrete data. There
might be performance gains in employing such
a data structure.

7. Conclusion

In this paper we have shown that slope regions
of continuous functions in high dimensions (n >
3) do not have the same critical point properties
well-established in 2D. Hence previous graph-based
methods of building slope region decompositions by
merging regions according to their border extrema
will fail in high dimensions. Instead we developed
a new, levelset-based method of growing regions,
which yields slope region decompositions on discrete
data of arbitrary dimension.

Acknowledgements

The BP algorithm as well as this paper are the re-
sult of a pattern recognition course held at the Vi-
enna University Of Technology from Oct 2019 till Jan
2020. Professor W. KROPATSCH introduced us to the
concept of slope regions and posed the challenge to
compute them in high dimensions (> 2). We wish
to thank him as well as DARSHAN BATAVIA and the
anonymous reviewers for their valuable input.

References

[1] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pas-
cucci. Morse-smale complexes for piecewise linear
3-manifolds. In Proceedings of the nineteenth annual

symposium on Computational geometry, pages 361—
370, 2003.

A. Hatcher. Algebraic Topology. Cambridge Univer-
sity Press, 2002.

W. G. Kropatsch, R. M. Casablanca, D. Batavia, and
R. Gonzalez-Diaz. Computing and reducing slope
complexes. In International Workshop on Compu-
tational Topology in Image Context, pages 12-25.
Springer, 2019.

Y. Matsumoto. An introduction to Morse theory.
Iwanami series in modern mathematics. American
Math. Soc., Providence, RI, 2002.

F. Riesz. Sur un Théoreme de Maximum de Mm.
Hardy et Littlewood. Journal of the London Math-
ematical Society, 1(1):10-13, 1932.

M. Zorn. A remark on method in transfinite alge-

bra. Bulletin of the American Mathematical Society,
41(10):667-670, 1935.

(2]

(3]

(5]

(6]
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Abstract. The availability of social media data rep-
resents an opportunity to automatically detect and
assess disasters to better guide emergency forces.
We propose a method for flood level estimation
from user-generated images to support assessing the
severity of flooding events. Furthermore, we provide
labeled data for water detection. Results on a public
benchmark dataset are promising and motivate fur-
ther research.

1. Introduction

The visual estimation of flood levels is a novel
task. In this paper we aim at detecting images with
a certain water level, i.e. where the water is at least
knee-high. Our work is based on preliminary work
from the MediaEval 2019 Satellite Task [1]. Our con-
tribution is twofold: we demonstrate the feasibility
of visual flood level estimation by combining a su-
pervised water detector with pose estimation and we
provide novel image annotations for water detection.

Related work focuses on either visual, textual or
multimodal flood level estimation from social media
content [1]. Zaffaroni et al. [5], for example, com-
bine multiple pre-trained networks for the estima-
tion of flood level. Further approaches can be found
in [4]. We aim at presenting a simple and efficient ap-
proach to provide a baseline for future comparison.

2. Methods

Input to our approach are social media images. We
propose two approaches that build upon three com-
ponents: (i) a supervised water detector that predicts
whether a certain image or image region contains wa-
ter, (ii) a pose estimator that detects people and their
joints and (iii) a rule-based fusion module that com-
bines the information from the water detector and
the pose estimator to make a final decision. The
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first approach (see Figure 1A) aims at detecting wa-
ter within the whole image and detecting at least one
person with concealed lower body parts. The second
approach (see Figure 1B) performs water detection
locally around each detected human body. If at least
for one body the model detects concealed lower ex-
tremities and water in the vicinity, the image is as-
signed to knee-high water.

Rule-based
Classfier
N e — —=1"
B)
4 N .
/ E Detector \
;.  [Rule-based M
\ ;i; % | Classfier -

Figure 1: Global (A) and local (B) approach.

We employ ResNet50 (pre-trained on ImageNet)
for water detection. Images are resized to the net-
work’s input size (227x227) while keeping the origi-
nal aspect ratio. Horizontal flipping, brightness vari-
ations and non-uniform re-scaling of the images are
applied for data augmentation. The top five layers
are fine-tuned (6 epochs, batch size 256) before the
whole network is trained using Adam optimizer (10
epochs, batch size 32, learning rate 10~%). We em-
ploy OpenPose [3] to detect body joints from de-
picted human bodies. To filter out unreliable skele-
tons, we exclude those with a confidence score (Cyy)
- calculated from the two most robust upper body
parts (head and chest) - below an empirically esti-
mated threshold of 0.6. We calculate a mean confi-
dence score (C'1) over the lower body parts (knees
and feet). To determine whether the lower extremi-



ties of a skeleton are visible, we employ the follow-
ing heuristic rule: C;/ max(Cp,10™%) > T, with T
being an empirically determined threshold of 1.5. Fi-
nally, positive predictions of the rule-based classifier
and the water detector implies a positive detection of
a person standing in knee-high water.

3. Datasets

Experiments are carried out on two datasets pro-
vided by the MediaEval Benchmark Multimedia
Satellite Task 2018 (MMSat18) and 2019 (MM-
Sat19) respectively [1, 2]. All available data is man-
ually annotated (water/no water) and used to train the
water detector. A total of 13.761 image annotations
(5.395 water, 8.366 no water) along with correspond-
ing image URLSs (incl. download tool) as well as our
ResNet50 model weights can be accessed publicly!.

4. Results & Discussion

For experimental evaluations, we randomly split
the MMSatl9 data into training (80%) and valida-
tion (20%) sets preserving class priors. Testing is
performed on the (non-public) test set of the MM-
Sat19 benchmark. For the global approach (GA), we
used the pipeline in Figure 1A. First, the water detec-
tor is trained only on the MMSat19 data (GA-1) and
later on both datasets (GA-2). For the local approach
(LA), we used the pipeline in Figure 1B with MM-
Sat19 data. Finally, we apply majority voting to all
three approaches.

Due to the imbalanced data, we used macro aver-
aged Fl-scores as performance measure. The exper-
imental results surpass the random baseline of 0.5,
which shows that our models are able to learn use-
ful patterns. The results on the test set show only
minor differences between the four approaches. The
overall performance is similar on the validation and
test sets, which indicates a good generalization abil-
ity. The classification accuracy of the water detec-
tor is quite high with 88% (not shown in Table 1).
The main source of failure are false detections of the
pose tracker due to occlusions by foreground objects
and reflections in the water (see Figure 2). Potential
improvements identified include the use of several
pose estimators trained on content from different en-
vironments, e.g., rural and urban areas. Additionally,
pixel-wise classification (segmentation) of water and
human bodies could be useful to deal with occlusions
and reflection in the water.

"https://tinyurl.com/waterDetectionDataset
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Figure 2: Challenges: misleading images (left), wa-
ter reflections (middle) and occlusions (right).

Approach Validation (P/R/F1) | Test (F1)
GA-1 0.58 0.67 0.61 0.61
GA-2 0.55 0.60 0.56 0.59

LA 0.58 0.77 0.60 0.59
Majority Voting | 0.59 0.68 0.61 0.61

Table 1: Macro-averaged precision (P), recall (R),
and f1-scores for visual flood level estimation.

5. Conclusion

Our experiments show that pose estimation and
water detection provide useful clues for the assess-
ment of flood levels. By building upon skeletons,
the presented approach is invariant to gender, age
and height. Main challenges for robust water level
estimation represent occlusions and reflections. For
future work, a larger, more balanced and more het-
erogeneous dataset is needed.
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Abstract. Restoration of real-world analog video is
a challenging task due to the presence of very het-
erogeneous defects. These defects are hard to model,
such that creating training data synthetically is infea-
sible and instead time-consuming manual editing is
required. In this work we explore whether reasonable
restoration models can be learned from data without
explicitly modeling the defects or manual editing. We
adopt Noise2Noise techniques, which eliminate the
need for ground truth targets by replacing them with
corrupted instances. To compensate for temporal mis-
matches between the frames and ensure meaningful
training, we apply motion correction. QOur experi-
ments show that video restoration can be learned
using only corrupted frames, with performance ex-
ceeding that of conventional learning.

1. Introduction

Recently the approach to signal reconstruction
from corrupted measurements shifted from explic-
itly modeling the statistics of the corruptions and
image priors, e.g. Block-matching and 3D filtering
(BM3D) [6] or Total Variation (TV) based meth-
ods [4, 24], to learning based techniques such as
Convolutional Neural Networks (CNNs) [11]. Since
then, deep learning techniques [9, 18] have become
very popular. Residual learning [9], batch normal-
ization [10] and similar improvements along with
increasing computational power and high quality
datasets made it possible to train such architectures ef-
ficiently. Deep architectures are now the state-of-the-
art for many image restoration tasks such as denoising,
deblurring, and inpainting [8, 13, 19] as well as se-
mantic segmentation [16, 23] and classification [27].

Despite these advances, generalization perfor-
mance of such models is still largely limited by the
size of the available dataset. The acquisition of clean
targets is often very tedious or difficult and it has
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Figure 1. Sample from the dataset, corrupted by typical
temporally incoherent and very local defects highlighted
in orange.

been proposed that data collection is becoming the
critical bottleneck in machine learning [22]. It is
therefor interesting to investigate whether networks
can learn meaningful mappings when only being pre-
sented corrupted samples — both as input and as tar-
get. Lethinen ef al. [15] showed that clean targets are
not required to learn meaningful reconstructions, pro-
vided that the corrupted samples are drawn from an
arbitrary distribution conditioned on the clean target
which needs to be the expected value. This technique
now known as Noise2Noise (N2N) has been success-
fully applied to image restoration tasks [14].

In this work we explore the applicability of N2N
for video denoising, especially concerning the real-
world case of having finite data. Due to the nature
of the defects, acquiring ground truth samples would
require manual editing of the frames and is often not
feasible. Further, the defects are very complex and
divers in nature such that modeling them is difficult
to impossible. Figure 1 displays such an example,
where temporally incoherent defects with small spa-
tial extent and high inter-pixel correlation can be seen.

The N2N setting imposes limitations that require
special considerations. Since different frames show
the scene at different points in time, they cannot di-
rectly be used as training pairs. We overcome this by
separating temporal motion compensation and spatial
denoising, allowing corrupted samples to be both in-



put and target for the model. With this architecture
we were able to achieve satisfactory results, showing
that video restoration can be done entirely without
ground truth data. This significantly eases the task by
avoiding the requirement for tedious manual labeling.

2. Related Work

Learning-based Image Restoration Convolu-
tional Neural Networks (CNNs) were first used in
2008 [11], where they achieved similar performance
to model based approaches. Later, Burger et al. [2]
showed that shallow plain Multi Layer Perceptrons
(MLP) can achieve results comparable to BM3D.
The DnCNN [30] combined recent advances such
as the convolutional structure, global residual
learning [27], batch normalization [10], and a ReLU
activation [20] to achieve a significant performance
increase over state-of-the-art explicit models. Later,
the FFDNet [31] extended the DnCNN by the use
of input noise maps to account for spatially varying
noise intensity, in order to apply it to real-world
photographs. CBDNet [8] builds on this idea and
introduces a noise estimation subnetwork whose
output is fed into the denoising network along
with the image to achieve notably good results for
real-world denoising.

Video Restoration Compared to image denoising,
little work exists on video denoising. Patch-based
approaches are still the most prominent, e.g. V-
BM4D [17] and Video Non-Local Bayes (VNLB) [1].
The Deep Video Denoising Network (DVDNet) [28]
was one of the first convolutional network approaches
to outperform VNLB, whilst being computationally
more efficient. In the DVDNet, two separate net-
works are used for spatial and temporal denoising,
and adjacent frames are motion compensated using
DeepFlow [29]. Similarly, ViDeNN [5] uses sepa-
rated spatial and temporal denoising networks, but mo-
tion compensation is learned in the temporal network.
Frame-to-frame Training [7] exploits N2N by fine-
tuning a pretrained network on motion-compensated
successive frames. However, the applicability to real-
world data remains limited since only one frame is
considered for restoration. Besides denoising, learn-
ing based methods have been successfully applied
to frame interpolation [21], super resolution [3] and
deblurring [25].
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3. Methods
(@)

of Ny frames z; € R™ with a resolution n = n; x

. : N .
We consider video scenes &; )j _f | consisting

no and RGB channels. Each frame of a scene :c; is

assumed to be corrupted by additive noise, i.e.

xé-:y;—i—ng—l—nd, Q8
where yj- is the underlying clean true frame, n, mod-
els noise due to film grain and n, represents the spa-
tially correlated single-frame defects highlighted in
Figure 1. Both noise sources are uncorrelated across
the temporal dimension due to the stochastic nature
of film grain ny and the temporal incoherence of ng.
We note that the approach is not limited to this noise
model.

3.1. Models for Single-Frame Defect Restoration

The simplest approach to estimate the clean true
frame y§ is by means of single-frame denoising. For
this setting we use the DnCNN [30] to generate a
prediction §; by

g = N(p), @)
solely based on the single corresponding corrupted
frame :c; Here, 0 are the parameters of the DnCNN.
They are learned from data either by supervised learn-
ing (SL) — provided that target frames are available
— or by the N2N approach, which we describe later
in this section. The major disadvantage of the single-
frame denoising approach is that the model cannot
exploit temporal information to detect and restore the
single-frame defects.

To overcome this issue and enable the extraction
of temporal features, we propose to learn a variant
of the DnCNN model operating on two consecutive
frames. These two adjacent frames need to be aligned
to compensate the motion in dynamic scenes and ease
the denoising problem. In detail, we account for the
motion by computing the optical flow

)

from frame z° to :cé, where F: R™ x R™ — R
implements the pretrained PWC-Net [26]. Using the
thereby estimated flow f; ;j» we warp a frame 2! of the

i _

F(

scene onto the reference frame xz by

1A
v Jzg

L = W(al, L)) (4)



2 where

R"3 is the bilinear warping opera-

to obtain the motion compensated frame &’
W: ]Rn?] Rn2
tor.

In addition, we also compute the backward flow f;z
and perform a forward-backward check to obtain a
binary mask m?; € {0,1}" in the reference frame
discarding occluded areas. To enable an effective
detection of the single-frame defects using temporal
information, we require the flow estimation to inter-
polate over the defects such that they are considered
valid in the mask.

Combining the motion compensated frame and the
mask with the reference frame :1:; yields the input to
the dynamic model V¥ : R™3 xR™3 x {0, 1}" — R"3.
Its output

Z);] /\/’0( ;7 A,Zzymzzj) (&)
is the estimation of the clean true frame combining
spatial and temporal information from two adjacent
frames. As before 6 denotes the trainable parameters

of the DnCNN model learned from data by a SL or
N2N approach.

3.2. Supervised and Noise2Noise Learning

Let us first consider supervised learning for recon-
structing single-frame defects. Here one requires
for every training sample frame x; a corresponding
target frame gj; which can be created by tedious and
time-consuming manual editing. Given a collection
iy
and a corresponding manually edlted target

N
scene {4 = (41, Uy, )} )
supervised training problem as

of corrupted video scenes {&; = (¢, ..

we define the

Ns
min 2} L7 py (&, 13, 0) (6)

The scene specific loss L%D} depends on the consid-

ered model. For the static model N 0 we use

Ze (M

whereas the loss for the dynamic model N/ g is given
by

L8(&, 1, 0) -%). O

L2 (&i,v,0) = (8)
Ny Ny
miy) =)

j=12z2=1
z#]

where £ € {||"[|1, [|I3, [I|c} and [[z]le = 3Z; |2ile is
the Huber norm using

1,2 .

=T if|lz| <e
jzle =142 1 - : ©)
€(|z| — 5€) else

Despite the constant number of training sample
frames, we can use N;N¢(Ny — 1) pairs for training
the dynamic model due to the possible permutations,
a factor of (Ny — 1) more than for the static model.
To avoid the manual editing of target frames,
we propose to adopt the N2N approach to remove
single-frame defects. Thus, only the corrupted

video scenes {¢&; = (z¢, .. fo)}AiS
ing training. We modify the training problem for N2N
to estimate the learnable parameters 6 of the models

to

are used dur-

mmZE{S D} (&,0), (10)

using the specific scene loss for the static model

Ny Ny
LY (&,0) = 32 >t (miy © (WE()) — i)
=1 k=1
ki
an
and for the dynamic model
LN (&, 0) = (12)
SOt (miy o Wh(h ity miy) — dty)) -
j=12=1 k=1
z#] k#j
k#j

This is illustrated in Figure 2. In contrast to super-
vised learning, we choose a frame 1’2 and compensate
for the motion to the reference frame :1;; and get the
warped frame i"}g ; as well as the binary mask m}c '
Then we only evaluate the loss function in the areas
where the forward-backward check is consistent to dis-
regard motion estimation errors. A particular advan-
tage of N2N learning is that a factor of (Ny — 1) more
training samples are available for the static model and
(N — 2) for the dynamic model without the necessity
to manually edit any frame.

In all our numerical experiments we optimize (6)
and (10) using a dataset of N, = 368 video sequences
of Ny = 3 frames, which was divided into training
(343) and test set (25). For each of the 368 samples
there is 1 manually edited target at j = 2, where only
the single-frame defects ny were removed and the film



training data
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Figure 2. [llustration of the proposed sampling process for N2N learning to video restoration using motion compensation.
Here we choose :I:; as the reference frame, and warp z, and zj, onto it. Then, we calculate the estimate ¢, j by using the

reference frame m; and 2*

;> and finally the loss using #},;.

static dynamic
Error
SL N2N SL N2N
U 0.002151 0.018161 0.000675 0.001 648
4y 0.002736 0.012005 0.000320 0.001910
e=0.1 — — 0.000721 0.001630

Table 1. Evaluation of the average mean squared error to
the manually edited target images of the test set.

grain was not changed. We used a pre-trained PWC-
Net [26] for motion compensation and extended the
DnCNN [30] to 20 layers with batch normalization,
and 64 convolution kernels of size 3 x 3. Using the
ADAM [12] optimizer on a batch size of 128, we
trained the models for 3000 iterations with a learning
rate of & = 1 x 10™* and decay rates of 5; = 0.9
and B2 = 0.999. We sampled patches of size 64 x 64
from the frames and augmented the data by vertical
and horizontal flipping. Finally, we estimate 9 as

@52 if mzﬁ A (_‘7”32)
Uy = Yo ifmgp A (—miy) (13)
@12;%2 else
4. Results

In this section we present results to highlight the
benefits of N2N learning for removing single-frame
defects in scanned historical video scenes. We per-
form quantitative and qualitative evaluation for the
static and dynamic models and compare supervised
learning to N2N. The qualitative results were also
evaluated in a reader study with a focus on temporal
coherence.

We show the Mean Squared Error (MSE) on the
test set in Table 1 and some representative examples
in Figure 3. Given the nature of the defects, their
detection is easier if the model can use temporal in-
formation. This is confirmed by the results in Table 1,
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Original SL N2N
Overall Best 3.13% 43.23% 53.65%
Least Flickering 0.52% 10.94% 88.54%
Significant Smoothing 0% 1.04%  56.77%

Table 2. Quantitative evaluation of the reader study. The
results of indicate that the majority of participants prefers
the N2N method, where artifacts are significantly better
removed at the cost of introducing some smoothing.

since the results show that the dynamic model outper-
forms the static model.

The numerical results indicate better performance
for the models trained on SL targets. However, this is
misleading since it does not necessarily correspond to
better defect removal. In fact, Figure 3 suggests that
N2N learning improves defect removal. The superior
MSE of supervised models is explained by the preser-
vation of film grain, which has not been removed
in the targets. In contrast, since film grain differs
between the frames, N2N models learn to remove
it. Thus, even though they are qualitatively better at
removing defects, they yield worse numerical errors.

Further, visual quality of videos cannot be de-
termined by considering the individual frames only.
The temporal context needs to be considered as well,
where incoherencies can lead to an unpleasant view-
ing experience. Quality measures could be improved
by taking temporal coherency into account, however
objective evaluation would still be problematic. Thus,
numerical error measures are not suited to fully deter-
mine the visual quality of the output.

In general, evaluation is best done by a human who
can subjectively decide whether, e.g., removal of film
grain is desired, and how pleasant the final video is to
watch over all. We therefor conducted a reader study'

"Material available at https://github.com/zacmar/restoration-
reader-study
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Figure 3. The first row depicts crops from the corrupted frame m; along with the corresponding manually edited target g;
The second and third row show the results obtained using the static model A, 9. whereas, the results of the dynamic model
are depicted in the last three rows. The columns alternate between supervised learning (SL) and N2N results and on the
right we show which loss function was used during training.

in which the reader was presented three versions of
the same scene side by side: (i) The original frames,
the output of the models trained using (ii) SL and
(iii) N2N (|||, € = 0.1). Table 2 presents the results
obtained from 24 people who were each shown 8
video sequences. It shows that the model trained with
N2N is best at removing the defects, at the cost of
over smoothing the images. Still, it was the overall
preferred method, with 53.65 % of all samples being
deemed “Overall Best” by the participants.
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5. Conclusion

In this work we explored the possibilities of using
N2N learning for video restoration. We trained static
and dynamical models by considering adjacent frames
using supervised learning and N2N, relying on robust
motion estimation. Using this paradigm we demon-
strated that video restoration can be learned by only
looking at corrupted frames at performance levels
exceeding those of supervised learning. This opens



up new possibilities in areas where acquiring clean
training data is too time consuming or infeasible.

There are some limitations that we leave for future
research. Due to the structure of our dataset, the num-
ber of samples available for N2N learning was limited
by the available ground truth targets. Since N2N does
not require manual frame editing, it is possible to
increase the size of the dataset without much effort.
Along with the increase of the size of the dataset,
the model complexity could be increased, typically
resulting in better performance.
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Abstract. Median filtering is well established in
signal and image processing as an efficient and ro-
bust denoising filter with favourable edge-preserving
properties, and capable of denoising some types of
heavy-tailed noise such as impulse noise. For multi-
channel images such as colour images, flow fields
or diffusion tensor fields, multivariate median filters
have been considered in the literature. Whereas the
L' median filter so far dominates in image process-
ing applications, other multivariate concepts from
statistics may be used such as the half-space median
which in the focus of this work.

In the understanding of discrete image filters a
central question is always how these relate to the
space-continuous physical reality underlying dis-
crete images. For the univariate median filter, a mile-
stone in answering this question is an asymptotic ap-
proximation result that links median filtering to the
mean curvature motion evolution. We will present an
analogous result for half-space median filtering in
the bivariate (two-channel) case, which contributes
to the theoretical understanding of multivariate me-
dian filtering and provides the basis for further gen-
eralisations in future work.

1. Introduction

Median filtering [10] is a well-established proce-
dure in signal and image processing. For grey-value
images it is known as an efficient and robust denois-
ing method with favourable edge-preserving proper-
ties. In standard median filtering, a pixel mask (for
example, a (2m + 1) x (2m + 1) square, or a dis-
crete approximation of a disc) is moved as a sliding
window across the image. At each pixel location, the
mask is used to select grey-values of the input im-
age; the median of these grey-values is then assigned
to the central pixel as its new grey-value in the output
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image. This filter can also be iterated, which is then
called iterated median filtering.

Continuous median filtering. Thus, median filter-
ing is designed in the first place as a discrete pro-
cedure. An important question regarding its valid-
ity for images is therefore whether it is in a sound
relationship to the underlying continuous nature of
images. This is indeed the case: Firstly, it is straight-
forward to conceive mathematically a median filter
for space-continuous images: Given an image as
a function over a planar domain, one can cut out
a neighbourhood around each location in the plane
(say, a square or disc centered at the reference point)
and determine the median of the (continuous) distri-
bution of image values within this neighbourhood.
Discrete median filtering of a sampled image ap-
proximates this concept. Secondly, assuming disc-
shaped neighbourhoods (of radius g) in this pro-
cess, it has been proven in [5] that iterated space-
continuous median filtering approximates a partial
differential equation (PDE) as ¢ — 0 in the sense
that one space-continuous median filter step asymp-
totically approximates a time step of size ?/6 of an
explicit time discretisation of the mean curvature mo-
tion PDE u; = |Vu|div(Vu/|Vul) for the planar
image u evolving in time.

Multivariate medians. Due to the success of me-
dian filtering for grey-value images, researchers
have proposed generalisations of the median filter
to multi-channel images (such as colour images, op-
tic flow fields, diffusion tensor fields). After early
attempts such as the vector median filters from [1]
which focussed on methods to select one vector from
a given set of input vectors as its median, attention
turned soon to multivariate median concepts known
from the statistical literature in which the median



Figure 1. From left to right: Synthetic test image (30 x 30 pixels) in orange—blue colour space. —

Componentwise median

filtering. — L' median filtering. — Oja median filtering. — Half-space median filtering. For all median filters the sliding
window was a discrete disc of radius v/5, and one iteration was applied.

of multivariate data (such as points in the plane or
space) is not restricted to be one of the input data.
The L' median [12] was the first concept of this kind
discussed in the statistical literature [2, 4, 13] and
also in image processing [9, 17]. Shortcomings of
this concept, especially its lack of affine equivari-
ance which contrasts to the very general monotonous
equivariance of the classical univariate median, led
statisticians to alternative concepts such as Oja me-
dian [7], half-space median [6, 11] and convex-hull-
stripping median [3, 8].

All of these multivariate medians are defined in
the first place as discrete concepts: Given a set of
points x1,..., T, in R™, they yield a median p €
R™. Algorithmically, their application to multivari-
ate images is straightforward; however, the validity
of such a procedure again depends on the question
whether it approximates a suitable filter for space-
continuous images. Furthermore, the question arises
whether a PDE can be stated that is approximated by
such a space-continuous multivariate median filter.
For the L' median and Oja median, these questions
have been answered in [14]: The definition of space-
continuous variants of these filters is more or less
straightforward, and PDE limits could be stated for
images with values in R? and R3. For the half-space
median, a space-continuous counterpart has been de-
scribed in [15] but the PDE limit (in R?) was stated
only as a conjecture, without proof. We mention that
for the convex-hull-stripping median stating a space-
continuous filtering procedure is already a difficult
task in itself, see [16].

QOur contribution. The purpose of this work is
to advance the theoretical understanding of half-
space median filtering as a multivariate image fil-
ter. We will derive the PDE approximated by space-
continuous half-space median filtering of bivariate
images, thereby proving the conjecture stated in [15].
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Aspects of practical application are not in the fore-
ground at the present stage of research; examples are
presented just for illustrating the properties of multi-
variate median filters, and are restricted to the bivari-
ate case (notwithstanding the greater practical impor-
tance of three-channel colour images).

Structure of the paper. After shortly demonstrat-
ing the effect of multivariate median filters, we will
recall the definition of the half-space median for dis-
crete data and its space-continuous analogue in Sec-
tion 2. In Section 3 we will prove the PDE approx-
imation result as conjectured in [15]. A short sum-
mary and outlook in Section 4 concludes the paper.

2. Multivariate Median Filtering

The univariate median filter excels as an edge-
preserving denoising filter for images that can deal
well with types of noise such as impulse noise. Un-
fortunately, for multi-channel images a straightfor-
ward generalisation by using the median just for each
channel separately does not lead to reasonable results
as we demonstrate by a small synthetic example in
Figure 1. For simplicity, and since our theoretical
work presented in the next section is currently re-
stricted to the bivariate case, we use a test image with
just two colour channels (yellow and blue) which
is degraded by pepper noise (impulsive noise con-
sisting of black noise pixels). Whereas componen-
twise median filtering removes noise pixels in ho-
mogeneous colour regions, it even amplifies noise
near colour edges. A more plausible filtering re-
sult is achieved by multivariate median filters three
of which are demonstrated in the figure: the L' me-
dian filter (see e.g. [9]), the Oja median filter (see
e.g. [14]) and the half-space median filter which is
in the focus of the present paper. As can be seen,
the multivariate median filters lead to some interpo-
lation between the two colours near edges but don’t



Figure 2. Left: Set of 30 sample points in the plane. Right:
Map of half-space depths w.r.t. the sample points. Points
in the white area are half-space medians.

amplify noise. Whereas the L' median filter yields
the visually most appealing result in this example, its
underlying median concept relies on Euclidean dis-
tances which might not be always be meaningful in
applications. The Oja simplex median as well as the
half-space median cure this weakness (they are affine
equivariant), with the half-space median yielding a
better denoising result in this example.

Discrete half-space median. Let us shortly recall
the definition of half-space median based on [6, 11].
Given points x1, . .., ,, € R"”, the half-space depth
of a point p € R" is the minimal number of data
points that can lie on one side of a hyperplane
through p. For example, the half-space depth of any
p outside the convex hull of the given points is zero
because there exists a hyperplane through p which
does not split the data points at all. In contrast, if
there is a p somewhere in the middle of the given
points for which any hyperplane through p splits the
data set in half, it will have a half-space depth equal
or close to m/2. A half-space median of the given
data is then simply a point of maximal half-space
depth, see Fig. 2 for an example. For discrete data
sets, there is in general a convex polyhedron in R"
consisting entirely of half-space medians. We will
not further discuss this underdetermination, however,
as it plays no role in the continuous situation.

Application of the discrete half-space median for
the filtering of R"-valued images is in principle
straightforward: A sliding window is used to select at
each pixel location a set of neighbouring pixels, and
the half-space median of their values becomes the
new image value at the given pixel. Practically, how-
ever, the algorithmic complexity of the half-space
median computation is an issue which requires fur-
ther work, see the remarks in [15].

Having shown a synthetic example in Figure 1, we
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Figure 3. Left: Test image sailboat (512 x 512 pixels)
reduced to yellow—blue colour space. Right: Half-space
median filtering result, using a discrete disc of radius 2 as
sliding window, 5 iterations.

present the result of half-space median filtering on a
natural colour image (reduced to two colour chan-
nels) in Figure 3. Similar to the classical median
filter for grey-value images, the iterated multivari-
ate median filter removes small details and simplifies
contours. Notice, however, that a slight blurring of
edges occurs, albeit much less than in linear filters
such as box averaging (with the same window size as
in the median filter) or Gaussian smoothing (with a
comparable standard deviation).

Continuous half-space median. In a continuous
setting, the discrete set of data points is replaced with
a density over R", i.e., an integrable function v with
total weight 1. The half-space depth of p € R™ then
is the minimum among all integrals of v over half-
spaces cut off by hyperplanes through p. Again, the
half-space median of ~ is the point of maximal half-
space density, which will be unique in generic cases.

The construction of a half-space median filter
for space-continuous R™-valued images is again a
straightforward adaptation of the univariate proce-
dure, with the density of image values within a slid-
ing neighbourhood of each image location being the
input from which the continuous half-space median
is taken.

Affine equivariance. The definitions of half-space
depths and and half-space medians rely only on in-
cidence relations between points and half-spaces in
the data space. Affine transforms of the data space
preserve all of these relations. As a consequence, for
any such affine transform the half-space median of
the transformed input data coincides with the trans-
formed half-space median of the original data. This
is dubbed by saying that the half-space median is
affine equivariant. This property ensures that the



half-space median can be applied meaningfully to
data for which no physically meaningful Euclidean
structure in R™ can be assumed (e.g., if different di-
mensions of the data space refer to incommensurable
physical quantities).

3. PDE Limit of Half-Space Median Filtering

Our main theoretical result is the following propo-
sition which was already stated as a conjecture in
[15]. It specifies the space- and time-continuous
image evolution which is approximated by iterated
space-continuous half-space median filtering in the
limit case when the radius of the sliding window goes
to zero, thereby generalising the result from [5] for
the univariate median filter and results from [14] for
other multivariate median filters. In particular, the
approximated PDE is identical with the one approxi-
mated by the Oja median filter, see [14, 15].

Proposition 1 Let u : R? O 2 — R?, (z,y) —
(u,v) be a smooth bivariate image over a compact
domain (2. At any regular location x = (x,y) € {2,
i.e., for which the Jacobian Du(x) is of rank 2, one
step of space-continuous half-space median filtering
with a disc-shaped window of radius ¢ approximates
a time step of an explicit time discretisation of the
PDE

ur =2Au+ A (uyy — Uzz) + Bugy (1)

with time step size 0° /24, where the coefficient ma-
trices A = A(Du), B = B(Du) are given by

A 1 UpUy +UyVp  —2Ugly )
Ug Vy — Uy Vg, 20,0y —UgVy —UyVy |’
2 Ugp Vg — Uy V —uZ + u
Yy y T Yy
B = 2 2 - )
Uy Vy — Uy Uy Uy — Uy  —UgUz+Uyly

The proof of this result relies on the following
lemma.

Lemma 2 Let u be as in Proposition 1, and let xq =
0 € 2 be a regular point for which u(xg) = 0, and
Du(xg) is the 2 x 2 unit matrix. Then one step of
space-continuous half-space median filtering with a
disc-shaped window of radius ¢ approximates at xg
a time step of an explicit time discretisation of the
PDE system

4
(&)

Up = Ugg + SUyy — 2Vzy ,

UV = 31}.’L':E + Uyy - 2'U,;Ey

with time step size 0*/24.
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Note that the lemma states the approximation re-
sult of the proposition for a specific geometric con-
figuration where the gradients of the components w,
v of u are locally aligned with the z, y coordinate
axes and of unit magnitude. This special geometric
situation also helps in understanding the effect of the
PDE of the proposition. A more detailed discussion
is found in [14, Sect. 3.1.3] from which we shortly re-
call the main facts. First, the right-hand side contains
terms which play a similar role as the mean curvature
motion approximated by the univariate median filter:
in the lemma, wu,, and v,, represent separate mean
curvature motion contributions for the u and v chan-
nel. Second, there are coupling terms — in the lemma:
Uzy in the equation for u, and u,, in the equation for
v — that promote a joint evolution of the channels.
Third, there is an isotropic diffusion term Awu which
has no counterpart in the univariate case. Remember
that also Figure 3 shows a slight edge-blurring effect
of multivariate median filtering.

Proof of Lemma 2. By Taylor expansion of u
around O we obtain within the p-disc D, around 0

(6)
(N

u = x+ ax® + by + cxy ,
v=y+de? +ey? + fay .

where = denotes equality up to O(g%) terms. The
inverse function can be written as

®)
(©))

r=u—au®—b?—cuv ,

y=v—du®—ev? — fuv .

Coarse estimates yield that the median of the values
u(z,y) for (x,y) in D, differs from 0 by O(¢?). Let
therefore a median candidate point in the (u, v) plane
be given as pu = (A\o?, uo?)* with A\, u = O(1) (i.e.,
bounded for ¢ — 0). To determine the half-space
depth of u, we consider straight lines through g in
the (u, v) plane. A parametric representation of such
aline L = L(y) is

(10)

u(t) =X +tp,  v(t) = po’+1q

where p = cos ¢, ¢ = sin ¢ with the angle ¢ denot-
ing the direction of the line, and ¢ is a real parameter
which also determines an orientation of L.

We are interested in the total weight w(p) of the
density of values u within the half-plane on the right
side of L(y). The half-space depth of w is propor-
tional to the minimum of w(y) for ¢ € [0, 27].



The line L is mapped to some curve C' in the (z, y)
plane by the inverse function w — z from (8), (9).
Then, w(¢p) is proportional to the area of the part of
D, that lies on the right side of C. We will there-
fore study in the following the part of C' within D,,.
For sufficiently small p, this is a curve segment cor-
responding to a parameter interval [t~ ¢ 1] for ¢, with
t* = 0(o).

We calculate a parametric representation of C' by
inserting (10) into (8), (9) to obtain

z(t) = Ao + tp — at’p® — bt?q® — ct’pq, (11)
y(t) = po® +tq — dt’p® — et’q® — ft*pq . (12)
By easy estimates, one has t* = 49 + r*p? with

+ = O(1). Thus, the intersection points z+ =
(2(t), y(t )T @ = (2(t7),y(t))T of C with
the boundary of D, are given by

=+o < > +o'n* (13)

A+ p—apz—qu—cpq>
+

= . (14
K <u+'riq—dp2—eq2—qu (1
As x* are to lie on the boundary of D,, we have
for their Euclidean norms |x*| that |x*|?> = ¢%. By
p? + ¢* = 1, this implies ((p, q),n*) = O(p) and
thus 7 = r + O(p) and n* = 1 + O(p) with

r=ap’ + (c+d)p’q+ (b+ f)pd® +eq® , (15)
A+ apt
+(c+d)p*q+ (b+ f)p*e® + epg®
—(Ap+ pq)p — ap® — bg* — cpq
1+ apiq
+(c+d)p*¢* + (b+ f)pg® + eq*
—(Ap + pg)g — dp® — eq® — fpq

(16)

From (14) it is evident that the intersection points x*
differ from the intersection points +0?(p, ¢)T of the
diameter d,, of D, in direction ¢ with the boundary
of D, just by an offset g>n + O(o?). The component
of this offset perpendicular to d,, is

(0®n, (—=q,p)") = 0*(up — Aq — dp®

+(a—fP*q+ (c—e)pg® +bg®) . (A7)

Up to higher order terms O(?), the entire curve C
is approximated by a parabola over the diameter 9,
with height h(t) = 0*(up — Aq) + t*(—dp® + (a —
F)P?q+ (c—e)pg® + bg?) for t € [t~,¢T]. The area
on the right of C (i.e., below () differs from that of
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the half-disc below the diameter J,, by
++
J
= 20°(up — Aq) + 30° (—dp® + (a — f)p’q
+ (c— e)pg* + bq3) +0(o%) . (18)

= h(t) + O(o®

Alp) )dt

The half-space depth of w is proportional to the min-
imum of 702 /2 + A(yp) for ¢ € [0, 27].

The sought half-space median is therefore given
by those A, p for which the minimum of A(yp) is
largest. It can be proven that the minimum of A(yp)
differs only by higher-order terms w.r.t. o from that
of

Alp) = (Bu—2d+3(c—e))cosy
+ (—3)\ + %(a -+ %b) sin ¢
+ (- }Ld 1(c—e)) cos(3p)
+ ( —f) - i )sm (3¢) (19)
where we have inserted p = cosy, ¢ = sin,

and addition theorems. This function is the super-
position of a shifted 27-periodic sine function (com-
bining the cos ¢, sin ¢ contributions) and a shifted
27 /3-periodic sine function (combining the cos(3¢p),
sin(3¢) contributions). Moreover, A is an odd func-
tion, such that is maximum and minimum are of
equal magnitude and opposite sign. Since only the
2m-periodic part of A depends on A, p, it is easy to
see that the amplitude of A is minimised (and thus
the minimum is maximised) if and only if A\, u are
chosen such that the 27-periodic contribution van-
ishes. Again, the neglection of higher order terms
in A(p) above entails only a higher-order error in A,
w. Therefore, the sought median is determined up to
higher order terms by

c

5 (20)

b d
A= ti—43, HM=7t1—
from which the claim of the lemma follows by virtue
of @ = U /2, b = uyy/2, ¢ = Upy, d = V32/2,

e = Uyy/2, f = Uyy. O

Proof of Proposition 1. The transfer of the lemma
to the general geometric situation of the proposition
is analogous to [14, Sect. 3.1.2]. It relies on the ob-
servation that for any regular point @ € {2, trans-
forming the values w in its neighbourhood via the
affine transform & = (Du(x)) 'u leads to a trans-
formed function & with D4 = diag(1, 1) as required
by the lemma. Due to the affine equivariance of the



half-space median, the median of @ yields the me-
dian of the original data by the inverse transform. As
the PDE system of Lemma 2 is identical to that for
the Oja median in [14], the calculations from [14,
Egs. (25)—(26)] for the transform step apply verba-
tim, and yield the claim of our proposition. U

4. Summary and Outlook

In this work, we have studied the continuous limit
of half-space median filtering, one of the possible
generalisations of median filtering of grey-value im-
ages to multi-channel images, in the bivariate case.
We have proven a result already conjectured in [15]
stating the approximation of a particular PDE by this
filter. The result is embedded in the context of pre-
vious work on PDE approximation by multivariate
median filters, see [14], and is a step on the way to
a deeper understanding of multivariate median filters
for signals and images.

An interesting fact is that despite clear differences
in the practical outcome of the corresponding filters
on discrete images (see Figure 1), the affine equiv-
ariant Oja median and half-space median filter ap-
proximate the same PDE. This indicates that they can
be seen as different discrete realisations of one un-
derlying fundamental multivariate median filter, de-
spite the substantial differences in their underlying
discrete concepts (see the discussion in [15]).

As mentioned earlier, the focus of our work was
in the theoretical domain. Further study of the prac-
tical applicability of half-space median filtering is a
subject of ongoing work. In particular, algorithmic
efficiency issues will require further investigation.
Moreover, bivariate images as considered here are
a rare exception in practice (with two-dimensional
optic flow fields being the most relevant case, see
[14]). A much greater role is played by images with
three (such as RGB colour images or tensor fields in
two dimensions) or even more channels (multispec-
tral images, tensor fields in three dimensions). Ex-
tension of the theoretical investigation to three and
more channels is therefore another important goal for
future research.
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Abstract. In this paper, we present a system based
on multiple Time-of-Flight (ToF) 3D sensors paired
with a central processing hub for integration into
robots or mobile machines. This system can produce
a 360° view from the robot’s perspective and enables
tasks ranging from navigation and obstacle avoid-
ance to human-robot collaboration.

1. Introduction

Today’s e-commerce growth and the paradigms
of Industry 4.0 in the manufacturing space present
new challenges for robotic systems [1]. In order
to increase mobility and autonomy of such systems
they need to gather and interpret as much informa-
tion as possible from their surroundings. Approaches
for collision avoidance with 1D time-of-flight sen-
sors have been explored [2], the use of several high-
resolution sensors would enable applications like hu-
man pose estimation and gesture recognition as well
as automation tasks such as handling of goods. Close
collaboration and additional functionalities are made
possible with the setup proposed in this paper which
consists of intrinsic 3D Time-of-Flight sensors that
can cover 360° around a robot’s arm or chassis.

2. System architecture

The multi-ToF platform! consists of a central pro-
cessing module based on a NVIDIA Tegra TX2 pro-
cessor (the hub) and multiple camera modules that
work in parallel (the frontends). This platform archi-
tecture allows for the integration of various sensor
and camera types.

The ToF sensor frontend for the platform is a com-
pact module designed for close-range detection. Ta-
ble 1 summarises the technical data and performance
of two frontend variants. The frontend is connected

"https://www.becom-group.com/goto/multi-tof-platform
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VCSEL Diodes

110° Lens

FPD-LINK £

ToF Sensor "4

Figure 1. Image of a front-end including descriptions of
its components (left) and a ring of four front-ends (right).

QVGA VGA

frontend frontend
Resolution 304 px x 240 px | 640 px x 480 px
Field of view 110° x 82° 110° x 82°
Distance range 0.1-15m 0.1-20m
Operating 850 nm 940 nm
wavelength
Framerate 40Hz 30Hz

Table 1. Frontend specifications.

to the hub via FPD-Link III, using a cable that also
provides the power supply. Four frontends can be ar-
ranged as a ring to allow a 360° coverage.

The hub controls the frontends, performs calibra-
tion and correction operations on the incoming data,
and ultimately calculates depth maps or point clouds.
The data is transmitted from the hub via a Gigabit
Ethernet connection and supports ROS to gather the
individual data streams. The following operations
are performed on the hub:

1. Synchronization and triggering
2. Acquisition and depth map calculation

. Corrections (temperature, FPPN, distance off-
set, intrinsic and extrinsic)

. Filtering (spatial and temporal)
. 3D point cloud calculation

Registration and transformation



Operations 1 and 6 are specific to multi-camera sys-
tems and are therefore described in more detail in the
following sections. The remaining CPU/GPU per-
formance on the hub is available for Al and deep-
learning applications.

3. Synchronization

Imaging systems that rely on multiple active sen-
sors inevitably require a synchronization. In the case
of the multi-ToF platform, synchronization serves
two purposes: On the one hand, it avoids interfer-
ence effects between the sensors, and on the other
hand, it simplifies the registration of the point clouds
produced by the individual frontends. The hub can
synchronize multiple frontends by using a hardware
trigger to start the acquisition of individual frontends.
This could be done in a round-robin scheme or by
triggering opposite sensors at the same time to avoid
interference.

4. Point cloud registration

Each ToF-sensor frontend produces a 2D depth
map which can be converted into a 3D point cloud.
A consistent 360° view of the environment necessi-
tates the registration of these individual point clouds
in a common world coordinate system. Through an
extrinsic calibration all sensors of the ring can be
combined in a single point cloud which can be trans-
formed in a robot or world coordinate system given a
known position of the robot’s joints.

5. Advantages and performance

With today’s ToF technology, cameras are capable
of detecting objects with high framerates and low la-
tencies. Active lighting ensures that data quality is
independent from ambient conditions to a high de-
gree. The exact distance measurement accuracy is
dependent on the target’s reflectivity and distance,
but the user can expect a relative accuracy of 1%
based on the distance.

Considering the system’s performance in the con-
text of machine learning, ToF cameras provide use-
ful additional information compared to, for exam-
ple, 2D RGB cameras: Objects can be more easily
spatially separated using the 3D point cloud and the
corresponding IR greyscale image can be employed
when training a network. Training labels can easily
be transferred between the four ToF channels (X, Y,
Z, and amplitude) at pixel precision. As a result, ToF
cameras reveal more information about the observed
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greyscale image (right).

Figure 2. Depth image (left),

scene, but labelling the data does not require addi-
tional effort. The recognition performance of deep
learning algorithms in particular benefits from an in-
crease in the amount of available data.

6. Conclusion

In this paper we have presented a hardware plat-
form which uses multiple ToF Sensors and a central
processing hub to generate a high-resolution point
cloud around an autonomous machine which enables
collaborative and safety functions. Further work
will include a synchronization of multiple machines
working in close proximity using a clock synchro-
nization mechanism over state of the art wireless con-
nectivity hardware.
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Abstract. Precise thickness measurements of retinal
layers are crucial to decide whether the subject re-
quires subsequent treatment. As optical coherence
tomography (OCT) is becoming a standard imaging
method in hospitals, the amount of retinal scans in-
creases rapidly, automated segmentation algorithms
are getting deployed, and methods to assess their
performance are in demand.

In this work we propose a semi-supervised frame-
work to detect incorrectly segmented OCT retina
scans: ground-truth segmentations are (1) embed-
ded in 2D feature space and (2) used to train an out-
lier scoring function and the corresponding decision
boundary.

We evaluate a selection of five outlier detection
methods and find the results to be a promising start-
ing point to address the given problem. While this
work and results are centred around one concrete
segmentation algorithm we sketch the possibilities of
how the framework can be generalized for more re-
cent or more precise segmentation methods.

1. Introduction

It is known that frequent eye screening helps to
early-diagnose the diabetic macular edema (DME)
[14] and therefore raises the effectiveness of needed
treatments. Additionally, the number of age-related
macular degeneration (AMD) patients is increasing,
because of ageing population [9], as well as those
suffering from DME due to the rising number of dia-
betes cases. OCT technology is nowadays minimally
invasive, very fast, and therefore widely spread, so
that a large number of OCT scans needs to be pre-
processed automatically. Ophthalmological depart-
ments are developing or deploying systems to deal
with the large amount of OCT data produced. One
such instance to segment retinal layers from OCT
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scans is based on the work [5]. While accurate in
most of cases, the method occasionally exhibits im-
perfections. An improvement is desirable, as the cor-
rect segmentation is essential for further automatic
evaluation of OCT scans. This is because the thick-
ness of the retinal layers is highly related to the pres-
ence of diseases, like AMD or DME [5]. They are
caused by intraretinal and subretinal fluids, leading
to a swelling of the retinal layers [10], exerting pres-
sure on the light-receptors damaging them and thus
eyesight.

Imperfections in segmentation can be caused by
different reasons such as bad contrast of parts of the
scan, noise, artefacts or an unsupported edge-case of
the segmentation algorithm.

This work aims to support the identification of in-
correctly segmented OCT scans with a two-fold pur-
pose in mind. First, it is of interest to increase the
trust of ophthalmologists in the algorithm by flag-
ging segmentations that may potentially require man-
ual inspection. Second, to improve segmentation al-
gorithms, it is desirable to automatically identify in-
correct segmentations of previously unseen scans and
focus on improvements for such cases.

2. Dataset

A set of 100 OCT scans, each accompanied with
both manual ground truth (GT) and algorithmic (A)
segmentation [5] have been provided for this study.
Each OCT scan is a stack of 200 1024 x 200 gray
scale images. Both the ground truth and the algorith-
mic segmentation are available as slice-wise bound-
aries of 13 retina layers. Figure 1 shows boundary
examples of the first retina layer (LL1). There is no
expert assessment available on whether the algorith-
mic segmentations are accepted as correct or not.

For legal issues, this dataset is currently unavail-
able for public use.



Figure 1: Three examples (scans 1, 2, and 5) of ground truth (left) and incorrect algorithmic (right) segmenta-

tions of the first retina layer (L1) in mid-stack slices.

3. Method

In order to identify incorrectly segmented OCT
scans we suggest in section 3.1 to embed the segmen-
tation results in as few dimensions as possible. While
this is certainly motivated by curse of dimensionality
it is additionally motivated by an increase of inter-
pretability — ophthalmologists may desire to visually
relate a particular case to cases inspected previously.

Methods of outlier detection can be divided in
three branches [6]. Supervised classification, when
both inliers and outliers are labeled and in balance;
unsupervised when training data of both inliers and
outliers are unlabeled; and semi-supervised when
training data consists only of observations describ-
ing normal behavior. In section 3.2 we follow semi-
supervised methods for the following reasons. First,
there is no assessment of algorithmic segmentations
available and we only can roughly estimate the class
based on some metric (e.g., the Dice coefficient).
Second, the outlier class (wrong segmentations) is
expected to be under-represented. Third, it is likely
there are several sources of segmentation error which
could map to low-density clusters. We aim to detect
outliers in low-density regions, too. We model the
distribution of the inliers (correct segmentation) and
compare the test points to this distribution.

3.1. Area curves and their representation

While for each retinal layer a list of region proper-
ties can be thought of, for sake of interpretability the
slice-wise area values are of special interest. Further-
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more, the focus of this work was restricted to layer 1.
This decision is based on the observation that a seg-
mentation error in L1 layer propagates to subsequent
layers while correct L1 segmentations tend to corre-
late with correctly segmented scans.

For each segmented OCT, we introduce the vector
a = [ag,...,a199] of layer-1 area values and refer
to is as the area curve. Examples of how area curves
look like for both ground truth and algorithmic seg-
mentations are given in figure 2.

Looking at the (orange) area curves calculated
from the algorithmic segmentation, which are of the
main interest, two types of shape appear: Those ex-
hibiting a maximum (cf., scan 1, 2 or 5 of figure 2),
or a minimum (cf. scan 0) around the middle of the
slices.

In healthy eyes, the layers get thinner around the
cavity of the fovea [11], causing the area curves to
exhibit a global minimum and tend to be convex. The
first hypothesis about the curves with dominant con-
cave bumps therefore was that they may correspond
to pathologies where fluid intruded into the retinal
layers and caused them to thicken.

Closer inspection of the corresponding scans and
a comparison to the (blue) GT area curves, however,
quickly disproved this hypothesis and revealed that
the concave bumps tend to correspond to failures in
segmentation. Further investigations revealed that
the issue of a too thick segmented layer 1 appeared
in all scans that exhibit a global maximum in the area
curve or tend do be concave.
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Figure 2: Examples of area curves resulting from ground truth (blue) and algorithmic (orange) segmentations.
Scan 0 is an example of correct segmentation, the remaining three cases (scans 1, 2, 5) correspond to incorrect

segmentations shown in figure 1.

3.1.1 Curve Embedding

To grasp the convex-vs-concave nature of the area
curves and to embed them in a lower dimensional
space we chose to approximate them by second or-
der polynomials a(x; w) ~ wg + w1z + wer? and
to represent them by the three regression coefficients
w;.

Following [3] the regression coefficients w
[wo, w1, ws] T for each area curve are calculated by
means of regularized least-squares, i.e, by solving
w = (A[+®"®)"1® " a, where \ is the regulariza-
tion term, I the 3 x 3 identity matrix, ® the 200 x 3
design matrix with rows [1, x, 2], and = indexes the
slices z € {0..199}.

The optimal regularization coefficient was deter-
mined close to zero A ~ 0, which can be explained
by the fact that fitting a low-grade polynomial to 200
values does not suffer from overfitting. This reduces
the curve fitting to ordinary least squares, i.e., mul-
tiplication of the area curve vector by the psuedoin-
verse of the design matrix: w = (®'®)"'®Ta =
dfa.

3.1.2 Regression Coefficients

Regression coefficients corresponding to all 100
ground truth (blue) as well as algorithmic (orange)
segmentations are scatter-plotted in the first row of
figure 3. Its second row shows the three correspond-
ing kernel density estimation (KDE) plots.
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The two wg KDE plots indicate very similar distri-
butions and therefore the wq coefficients do not seem
to be discriminative.

The too-thick segmented layers are mapped to
concave area curves. Therefore, the distribution of
wy coefficients is of special interest, as they are re-
sponsible for the positive/negative curvature of the
polynomials. Looking at the KDE plot of wy coef-
ficients, there is a high peek from the ground truth
coefficients between 0 and 0.5, showing that there
are almost no negative ws coefficients. Therefore the
assumption that ground truth curves tend to exhibit
convexity (positive curvature) holds. In contrast, the
orange KDE resulting from algorithm segmentations
is more flat in the GT area and also exhibits a minor
peek around -0.5. This indicates the presence of a
cluster of negative wy values, which corresponds to
concave area curves. This distribution can be con-
firmed looking at scatter plots including ws. For
example in the wi—ws plot there is a (blue) clus-
ter formed by ground truth coefficients while several
negative wo algorithm coefficients are scattered out-
side of it.

Interestingly the w; coefficients exhibit a very
similar behaviour to the wy coefficients: almost no
positive w; GT coefficients and a tendency to bi-
modal distribution of the algorithm ones forming a
small peek around value of 100.

The highly correlated coefficients w; and ws en-
courage for further dimensionality reduction. Indeed,
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Figure 3: Scatter and kernel density estimation plots of the L.1-area curve regression coefficients. The blue and
orange dots/curves correspond to the respective coefficients of ground truth and algorithmic segmentation.

an interactive 3D scatter plot revealed the points
close to a 2D linear manifold embedded in three
dimensions. Projection of both ground-truth and
algorithm-segmentation coefficients onto the first
two PCA eigenvectors yields 2D scatter plot shown
in the left part of figure 4.

In the following the problem of identifying incor-
rect segmentations is thus cast to outlier detection in
a 2D feature space.

3.2. Outlier Detection Using Projected Regression
Coefficients

Our approach to outlier detection is a semi-
supervised one: we reuse the ground-truth coeffi-
cients to fit a model that represents the expected seg-
mentation behavior. Subsequently the likelihood of
an algorithmic segmentation to be generated by the
learned model is tested.

While there is a broad spectrum of methods for
outlier (novelty) detection, we show a digest of 5 al-
gorithms resulting from our experiments and discuss
their performance.

Feature Bagging (FB) [7] fits several base detec-
tors on sub-samples of the dataset and use aver-
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aging to combat over-fitting. We used the LOF
(see below) as the base detector.

Nearest Neighbors (KNN) [2] the distance of the
sample to its most distant k-th neighbor is used
as the outlier score. We set k = 5.

Local Outlier Factor (LOF) [4] Samples with
much lower local density than their neighbors
are declared as the outliers. The local density
was estimated by 20 nearest neighbors.

Minimum Covariance Determinant (MCD) [12]
fits the minimum covariance determinant model
to the data. The outlier-ness of a sample is
proportional to its Mahalanobis distance.

One-class SVM (OCSVM) introduced in [13] aims
to find a smooth boundary modelling a user-
specified probability that randomly drawn point
will land outside.

4. Results and Discussion

To evaluate the outlier detectors quantitatively, no-
tion of positives (incorrect segmentation) and nega-
tives is necessary for the test data, i.e. for algorithmic



segmentations. As this information was not present
we chose to disambiguate the two classes by setting
a Dice coefficient threshold. To figure out a suffi-
ciently high Dice threshold we refer to the score-vs-
dice scatter plot in the middle column of figure 4.
Here the blue margin corresponds to the ground-truth
region, proposed by the detector. The orange clus-
ter within this margin then corresponds to true neg-
atives (correct segmentations), and suggests the dice
threshold of 0.87.

Figure 4 shows three plots for each of the five
methods. In the following its columns are described
in detail.

Left column: in addition to feature scatter plot the
decision boundary and the scoring function of the re-
spective detector are shown. In the following texts
the orange test points falling outside the blue region
will be referred to as the positives, points inside the
blue region as the negatives.

Middle column shows scatter plots of Dice vs out-
lier scores. The horizontal line is the Dice thresh-
old. The vertical lines are the thresholds of the scor-
ing function proposed by the respective algorithms.
The four quadrants correspond to TNs, FPs, FNs, and
TPs, respectively. These four numbers are typeset in
the top center of the plot and the recalls and preci-
sions computed thereof are displayed in the titles.

Right column shows the ROC and Precision-
Recall curves corresponding to the possible thresh-
olds in the scoring function. The areas under these
curves are abbreviated by auROC and auPR, respec-
tively, and are displayed in the title.

The performance numbers are summarized in Ta-
ble 1. In terms of precision, the areas under ROC and
PR, the kNN seems to be the method of choice. How-
ever, the OCSVM wins in term of recall, because of
its steep narrow margin which determines the outlier
score. While LOF and FB are of lower recall, they
are less over-fitted than earlier two, and we can ob-
serve an improvement when an ensemble of LOFs
is aggregated into the FB. The MCD is easily inter-
pretable but unfortunately not performing well.

Looking at the result of the well-fitting OCSVM,
there are four FNs with a low Dice coefficient. In-
vestigation on these revealed that such cases indeed
might appear, because the area curves of the ground
truth do not show a minimum around the middle of
the slices, but have a nearly a rising shape. While
the segmentation algorithm did not perform well on
these scans, it still exhibits a convex fit to the area
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method Rec. Prec. auROC auPR
FB 0.73  0.95 096 0.93
KNN 0.77 1.00 097 094
LOF 0.65 0.89 096 0.91
MCD 0.54 0.88 095 0.87
OCSVM | 0.85 0.92 0.88 0.89

Table 1: Summary of results

curve.

Analyzing the two false positives, one of them ap-
peared close to the OCSVM boundary. The less over-
fitted detectors (e.g the MCD), however, have classi-
fied this point correctly. The second false positive
was a FP in all methods, except for the KNN. This
could be because the ground truth data again shows
an unusual shape: in contrast to the other ground
truth shapes it starts with a high maximum, then falls
down, but does not rise up again. There are few addi-
tional ground truth curves having this kind of shape
which we consider unusual. When the segmentation
algorithm yields such a shape, it is more likely to be
a wrong segmentation.

Whether an ROC curve should be used to assess an
outlier detector depends on the imbalance of the test
set. In the current setting, the segmentation algorithm
[5] does not seem to be mature enough as it pro-
duces around 25 percent of incorrect segmentation.
As more reliable segmentation methods will be de-
veloped, the test set becomes increasingly more im-
balanced and the validation by ROC and its area will
have to be replaced by the precision-recall curves.

5. Conclusion and Future Work

We proposed a semi-supervised method to detect
incorrectly segmented OCT retina scans: ground-
truth segmentations are used, after feature extraction
and projection to 2D, to train the decision bound-
ary and the outlier scoring function. This function is
subsequently used to flag the incorrectly segmented
scans.

We evaluated a selection of five outlier detection
methods and find the results to be a promising start-
ing point to address the given problem.

While in this work the data-pipeline components
are tailored to a specific segmentation algorithm and
its pitfalls, we would like to sketch how the presented
approach can be generalized. Firstly, higher-degree
polynomials (i.e., more regression coefficients) could
be used if it turns out that the segmentations can not



be discriminated by the concave/convex shapes. Sec-
ondly, we concentrated only on description of layer
1, as imperfections in its segmentation propagated to
subsequent layers. As the segmentation algorithms
mature, descriptors of remaining layers could be in-
corporated. With an increased number of features,
the ensemble-based detectors (FB in this work) may
improve in their performance. Finally, after the seg-
mentation algorithms become very advanced, it may
turn out that the area-related descriptors loose their
discriminative power and a need for completely new
set descriptors may arise. In the proposed semi-
supervised framework, the manually crafted features
can be replaced by ones proposed by auto-encoders
[1] or generative adversarial neural networks [8].
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Abstract. Forensic analysis is used to detect image
forgeries e.g. the copy move forgery and the object
removal forgery. Counter forensic techniques (meth-
ods to fool the forensic analyst by concealing traces
of manipulation) have become popular in the game
of cat and mouse between the analyst and the at-
tacker. Methods to counter forensic techniques based
on SIFT keypoints are being analysed in this paper
(aka anti-forensic techniques), with particular em-
phasis on keypoint removal in the context of copy
move forgery detection. Local smoothing is sug-
gested in this paper and turns out to be a highly at-
tractive alternative to techniques investigated in lit-
erature so far.

1. Introduction

In the past, images were considered as an authen-
tic source of information — with increasing popularity
and the availability of low-cost image editing soft-
ware such as Adobe photoshop, corel paint shop and
GIMP the truthfulness of an image can no longer
be taken for granted. Among other forgery types,
copy move forgery and object removal forgery are
the most prominent ones. In a copy move forgery,
a part of the image itself is copied and pasted into
another part of the same image to conceal an impor-
tant object or information, or to conceal that an ob-
ject has been removed from the image in an object
removal forgery. In most cases of image forgery, it is
extremely difficult to distinguish between an original
image and the forged one. Therefore, it is required to
develop methods/techniques to assess the authentic-
ity of an image — Digital Image Forensics (DIF [19])
has served this purpose to a large extent. Whenever
an image is forged, there are some traces which are
left behind in the forged image. These traces are use-
ful for the forensic researcher to detect a forgery.

A wide range of DIF forgery detection techniques

166

have been established in the recent years [4, 6, 21].
Besides recent deep learning based schemes, tech-
niques relying on Scale Invariance Feature Trans-
form (SIFT) keypoints have been shown to be effec-
tive. In particular, SIFT keypoints [12] have been
proposed to reveal copy move forgeries [6] and im-
age cloning [17], as well as to detect copyrighted ma-
terial using CBIR techniques [9].

Attackers are making it difficult to apply these
techniques by developing counter forensic tech-
niques, i.e. by minimising those traces left behind
in forged images. In the context of SIFT keypoint
forensics, this is done by manipulating SIFT key-
points, e.g. removing existing ones or injecting fake
key points to fool the forensic techniques. This paper
is a contribution to such counter forensic approaches
against SIFT-keypoint forensic techniques. In partic-
ular, we focus on SIFT keypoint removal techniques.
Section 2 reviews corresponding techniques as pro-
posed in literature and suggest a new approach. Sec-
tion 3 is devoted to an extensive empirical evalua-
tion, looking at the tradeoff among image quality,
keypoint removal effectiveness as well as the gener-
ation of new keypoints. In the conclusion we discuss
results obtained and give an outlook to further work
in this direction.

2. SIFT Keypoint Removal Techniques

The simplest approach, global smoothing (GS),
reduces the potential keypoints at the level of dif-
ference of Gaussian (DoG) by Gaussian smoothing
(which flattens the pixel values of an image), e.g. [1]
applies a Gaussian filter with ¢ = 0.7 and window
size 3 X 3 as a good compromise between amount
of deleted keypoints and overall visual quality of an
image. A more sophisticated approach is to first ap-
ply GS (the original paper [9] suggests to employ
o = 1.3), detect remaining keypoints, and apply lo-
cal smoothing (LS) in patches around detected key-



points, with size 3 X 3 to 7 x 7 pixels (denoted as
GS+LS).

Another strategy to remove SIFT keypoints is the
collage attack (CA) [10], which substitutes an orig-
inal image patch (patch containing a keypoint) with
another patch (containing no keypoint) of the same
size contained in a pre-computed patch dictionary.
The new patch must not contain SIFT keypoints and
should be as similar as possible to the original one
according to some similarity criteria (e.g., [1] cre-
ated a dictionary of about 120,000 patches and chose
histogram intersection distance, widely used in im-
age retrieval applications [22], as a patch similarity
measure. The same approach is used in experiments
of [3].

Removal with minimum distortion (RMD) [9]
adaptively calculates a small image patch and adds
it to the neighbourhood of the key point such that the
overall operation results in a minimum least-square
distortion in the keypoint neighbourhood under the
condition that the keypoint is removed. Finally, the
classification based attack (CLBA) presented by [1]
arranges GS+LS, CA, and RMD into an iterative pro-
cedure which first detects SIFT keypoints, classifies
them into distinct classes, and subsequently applies
one of the three individual removal techniques to the
suited classes.

For all these techniques, [2] suggested to remove
only one of the matching keypoints from each match-
ing keypoints pair in case of preventing to detect
copy move forgeries. There are also forensic tech-
niques to counter those anti-forensic keypoint re-
moval methods (see e.g. [7, 16].

As GS has significant impact on image quality (as
we shall see as well in the next section), also the
combination with LS (i.e. GS+LS) is affected by this
quality impact. Therefore, we introduce a new tech-
nique to remove SIFT keypoints called local smooth-
ing (LS), and compare the various performance indi-
cators to already existing (smoothing) techniques i.e.
GS, GS+LS, and CA.

3. Experiments
3.1. Experimental Settings

With respect to software and tools, we mainly used
Matlab 2014a [14] (on Windows 7 64bit) with some
internal toolboxes (parallel toolbox for fast computa-
tion, image processing toolbox) and the external li-
brary vi_feat [20] (the latter to smooth images and
to compute SIFT keypoints; we have chosen Edge
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Thresh = 12 to control the number of keypoints
used). For the computation of image quality metrics
(IQM) (PSNR, VSNR, UQI, SSIM), we used the Ma-
Trix MuX visual quality assessment package [15].
As experimental data, we used the first 100 images
(i.e. from ucid00001.tif to ucid000100.tif) from the
Uncompressed Image Database (UCID) [18] for ex-
periments for keypoint removal methods assessment.
For the CA, we created a keypoint-free patch dictio-
nary from all images using overlapping patches.

For experiments with respect to detecting actual
copy move attacks, we combined two datasets to re-
sult in 100 images (50 actually forged images and
50 original images). Forged images are taken from
a public dataset for assessing forensic techniques
[5] (see Fig. 5 for examples), which contain sim-
ple translated copies of objects/regions, while the
“original” images are taken from the RAISE dataset
[8] from the BUILDING PHOTO category (see Fig.
6). The latter data has been included to determine
the methods’ robustness against indicating false pos-
itives'!. In keypoint removal for countering copy
move detection, we removed only one keypoint from
each matching pair of keypoints as suggested.

3.2. Experimental Results

In order to assess the quality of the image af-
ter removing keypoints, we used different IQM, i.e.
PSNR, SSIM, VSNR, and UQI. Fig. 1 com-
pares three different techniques, i.e. GS, GS+LS,
and LS. In GS+LS, an image is smoothed first glob-
ally with ¢ = 1.3 as suggested in literature and af-
terwards patches containing keypoints (of different
sizes) are smoothed locally. In the plots, different
smoothing strength (different o values) is depicted
on the X axis, while the Y axis represents the output
value for a specific image quality measure.

Fig. 1 reveals that the quality of a locally
smoothed (LS) image is better in comparison to the
other two smoothing techniques (i.e. GS and GS+LS)
for all IQM. GS deteriorates image quality quickly
for increasing smoothing strength. Also for the com-
bined method GS+LS the quality is found to be rather
low due to the impact of GS. The quality of the LS
images is better because we are smoothing only the
patches around SIFT keypoints while other pixels are
left untouched. As expected, when increasing the
patch size in LS and GS+LS, the quality of the pro-

!Similar looking structures within an image may lead to an
image incorrectly being classified as copy move forged image.
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Figure 1: IQM Comparison among GS vs LS vs
GS+LS

cessed images decreases.
Table 1 displays IQM values for the CA.

Patch Sizes | PSNR | VSNR | UQI | SSIM |

3x3 Patch | 64.80 | 32.78 | 0.99 | 0.99
5x5 Patch | 51.95 | 32.23 | 0.99 | 0.99
7x7 Patch | 47.10 | 47.58 | 0.99 | 0.99
9x9 Patch | 42.86 | 40.89 | 0.98 | 0.99

Table 1: IQM for CA.

For UQI as well as SSIM we notice almost no
quality degradation by the CA, no matter which patch
size is being used. For PSNR, CA is superior to all
GS+LS variants and for almost all other settings ex-
cept for extremely low smoothing strength. Finally,
for VSNR, CA is again superior to all GS+LS vari-
ants and for all other techniques but LS with patch-
size 3 for low smoothing strength. Overall, the qual-
ity obtained with the CA is very good, and only com-
parable to LS with patchsize 3, however, with all
patch sizes considered.

But how effective are the smoothing-based meth-
ods in actually removing keypoints ? Contrasting to
CA, in which all present keypoints are replaced by
keypoint-free patches, smoothing does not guarantee
that keypoints are actually removed. Fig. 2 illus-
trates the percentage of original keypoints which are

168

still present after smoothing for increasing smooth-
ing strength.

ssssssssssssssssss

(c) Patch Size 7 x 7

uuuuuuuuuuuuuuuuuuu

(d) Patch Size 9 x 9

Figure 2: Share of retained keypoints: GS vs LS vs
GS+LS

For larger patch sizes, GS and LS perform al-
most identically (which is clear considering the def-
inition), while GS+LS is most effective in removing
keypoints. For smaller patch sizes, GS is most ef-
fective for high smoothing strength, while GS+LS is
best for low smoothing strength. LS is not very ef-
fective under these conditions.

When applying techniques for keypoint removal,
new keypoints are being created, e.g. at the edge of
the patches in CA, LS, and GS+LS. This is not de-
sired, as these new keypoints might match to exist-
ing ones and thus aid the forensic analyst. Fig. 3
illustrates the creation of new, additional keypoints
by showing the percentage of newly created ones.
LS clearly introduces the lowest number of addi-
tional keypoints, and if the size of the smoothing
patch is increased then also the number of new key-
points is also increased. The smoothing strength also
plays a certain role: For weak smoothing, increasing
the strength leads to more new keypoints, while af-
ter reaching a peak, a further increase of smoothing
strength decreases the number of newly created key-
points. This effect is expected and most obvious for
GS.

In Table 2, the percentage of newly created key-
points for CA is shown. Only LS with patchsize 3
gives better results, for all other techniques we notice
higher percentages of newly created keypoints when
comparing Fig. 3 to the values in Table 2.
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Figure 3: Creation of New Keypoints.

| 3x3 Patch | 5x5 Patch | 7x7 Patch | 9x9 Paich |
| 43.01% | 39.76% | 3443% | 3221% |

Table 2: Newly Generated Keypoints in CA.

When new keypoints are being generated, it is not
their number that is most important. The aim of re-
moving keypoints is compromised, if the newly gen-
erated ones are similar to the removed ones in terms
of their SIFT descriptors. In this case, attacks might
still be recovered by the forensic analyst even though
keypoints have been removed. In Fig. 4 we plot the
distance (squared Euclidean distance (SED)) of the
SIFT descriptors describing removed and newly cre-
ated ones. In particular, we compute SED between
removed keypoints and their closest newly generated
keypoints in terms of their descriptors. To avoid bias,
we divide the result by the number of removed key-
points, as we display results in terms of increasing
percentage of removed keypoints.

For the patch-based techniques, an increase of the
patch size leads to higher SED, which is expected
and desired. When increasing the percentage of re-
moved keypoints, there is a tendency for increasing
SED, except for LS and CA with smaller patch sizes.
The largest SED values (which is the aim when re-
moving keypoints) are seen for techniques involving
GS (not shown) when a large share of all keypoints
is being removed. CA clearly exhibits the lowest
values, which means that the advantage of this ap-
proach in removing all keypoints is endangered by
the creation of new keypoints which are close to the
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Figure 4: Distance to newly created keypoints.

removed ones in terms of their SIFT descriptors.

After having analysed four different SIFT key-
point removal techniques with respect to different
properties, we tested these methods in an actual copy
move forgery scenario. The following definitions are
employed:

o TruePositive(TP): A true positive test result
for a forged image is one that detects at least 7
matching keypoint pairs.

FalseNegative(FN): A false negative test re-
sult for a forged image is one that detects at most
7 — 1 matching keypoint pairs.

TrueNegative(TN): A true negative test re-
sult for an image from the BUILDING PHOTO
category is one that detects at most 7 — 1 match-
ing keypoint pairs.



e FalsePositive(FP): A false positive test re-
sult for an image from the BUILDING PHOTO
category is one that detects at least 7 matching
keypoint pairs.

Based on these definitions, we are able to com-
pute precision, recall, and F1-score. Recall, that the
aim of the attacker is to disable the techniques of the
forensic analyst. Thus, the attacker developing these
techniques to counter SIFT keypoint based forensic
techniques by removing keypoints aims for low TP
(and low TN), as high FN makes the forensic analyst
miss forged images and high FP confuses the analyst
as many genuine images are determined as forgeries.

First, we computed SIFT keypoints and then for
each keypoint we found the two nearest neighbours
from all remaining keypoints using a K-d tree based
on Euclidean distance d; and do (where dy and ds
are distances and d; corresponds to the closest neigh-
bour), 7" € (0,1). [13] and [11] suggested that there
is a match only if % < T holds. In these papers
T = 0.6 but we looked into results for 7' = 0.4,
T=05"T=06andT =0.7.

Figure 6: Original Images

Fig. 7 shows confusion matrices (i.e. the number
of TP, FN, TN, FP) for using 50 keypoints, 7 = 1,
for four different values of T', comparing copy move
forgery detection without manipulating images, and
with applying keypoint removal techniques LS, CA,
and GS+LS. Patch size is set to 9x9 pixels in all
patch-based techniques.

Overall, we observe that all three SIFT keypoint
removal strategies work, i.e. they reduce signifi-
cantly the number of TP. However, they increase also
the number of TN, thus, the number of false posi-
tives is also reduced (which is not desired). When we
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Figure 7: Copy Move Forgery Detection

compare the three removal strategies, GS+LS clearly
has a higher number of TP, thus is least efficient and
does not need to be considered further in this com-
parison. LS and CA are close, with slight advantages
for LS, however, difficult to confirm in this visual
representation.

When looking into recall and precision values for
7=1,2,3and T = 0.4,0.5,0.6, 0.7 using 50, 100,
and 200 keypoints (overall 36 configurations), we
find precision(L.S) < precision(CA) in 33/36 cases,
while recall(LS) < recall(CA) in 20/36 cases. There-
fore, overall, LS is clearly more effective in prevent-
ing to detect a copy move forgery as CA is. In terms
of Fl-score F1(LS) < F1(CA) in 27/36 cases, which
confirms the trend.

Table 3 shows precision, recall and F1-scores of
the confusion matrices shown in Fig. 7. The cases in
which LS delivers the best (lowest) results are under-
lined - we notice that this is also the clear majority
within these result subsets.

] T CA T LS GS+LS

I

[ | T ][ Prec. T Rec. | FI | Rec. | FI [ Prec. | Rec. |

F1

08I | 042 | 055 036 | 047 || 086 | 0.60

0.71

076 | 044 | 036 042 | 052 || 081 | 0.62

0.70

0.72 0.46 0.56 0.50 0.57 0.84 0.74

0.79

T
1
1
1
1

069 | 058 | 063 0.56 | 0.60 || 084 | 086

0.85

Table 3: Comparison of keypoint removal techniques
in terms of precision, recall, and F1-score.

4. Conclusion

Local smoothing (LS), as proposed in this paper,
turns out to be more effective in preventing a detec-
tion of a copy move attack as compared to the col-




lage attack (CA). For the patch-size chosen in the
comparison, the image quality is slightly superior for
CA. GS and GS+LS as also proposed in literature
are neither competitive in terms of maintained image
quality nor in terms of preventing the copy move at-
tack detection capability. When considering the ease
of application, LS is clearly preferable, as CA re-
quires the generation of a keypoint-free dictionary
and a vector-quantisation like patch selection pro-
cess, while LS only applies a local Gaussian smooth-
ing. Overall, LS turns out to be a highly attractive
alternative to SIFT keypoint removal techniques ap-
plied so far in literature.
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Figure 1: Results of the method.

Abstract. We describe a method to generate addi-
tional sizes of a garment from a single scanned size
and grading tables. The method helps retailers and
manufacturers to efficiently capture their entire prod-
uct range, which in turn enables advanced AR appli-
cations such as virtual fashion try-on.

1. Introduction

Online fashion retailers need 3D models of their
entire product range to enable advanced e-commerce
applications, such as 3D viewing and virtual try-on.
These retailers usually have a high number of items
and the product range changes frequently. Therefore,
to obtain 3D models for their entire product catalog,
manual modeling is not a feasible approach.

3D reconstruction through photogrammetry is
more efficient and photo-realistic. However, retail-
ers want to avoid the overhead of scanning multiple
sizes of a single garment. This document describes
a different approach which algorithmically generates
the different sizes from a single 3D reconstructed
model and the garment’s grading tables, and thereby
increases the scalability of photogrammetry. Figure
1 shows results.
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(a) (b)

Figure 2: Sizing the mesh. a) semantic classification
map. Red parts do not scale with size, green parts
scale along a single dimension. b) sizing an upper
arm. The color coding shows the body part associa-
tion.

2. Related Work

Previous work in garment modeling generates
sizes by adapting a garment to a target body, as op-
posed to sizing tables [1]. Other machine-learning-
based approaches enable decomposition and assem-
bly of new garments but do not allow resizing [2] or
rely on templates [4], which inherently limits these
approaches to known shapes.

3. Method

The challenge of size synthesis is that garments do
not scale uniformly. For example, going from size
“Medium” to size “Large”, the scale factor for the
length of the sleeves is different from the factor for
the circumference of the sleeve. The way a garment’s
parts scale is described by a grading table. We use
this information to adjust the geometry of the model
for the distinct sizes.

Furthermore, the fabric of the garment is not



a) b)

Figure 3: Increasing the size of a texture patch (a) by
scaling (b) or repetition (c).

scaled uniformly but repeated. Knowledge of the
used materials is needed to simulate this behavior.
Elements like buttons or pockets also do not scale, or
only under certain constraints (e.g., seams or zippers
scale in one direction). Prints on a garment usually
also scale independently from the pattern of the fab-
ric. The behavior usually cannot be described by a set
of global rules. Therefore, the proposed system pro-
vides a way to adjust the scaling behavior for each
element independently.

3.1. Input

The method takes a 3D garment model created
through photogrammetry and a size chart as its in-
put. The garment model consists of a mesh and a
mapped texture. A parametric body model consist-
ing of a pose and a shape description is registered
to the 3D garment model. The measurements of the
grading table are associated with the parametric body
model in the form of edge paths.

3.2. Semantic Region Segmentation

First, the garment mesh and its texture are input
to a machine learning algorithm which assigns a se-
mantic meaning to each texel (e.g. collar, seam,
button, etc.). Moreover, the same algorithm labels
background and mannequin texels for removal. The
map’s semantic meaning can be transferred to the
mesh’s faces and vertices through texture mapping.

3.3. Sizing the Mesh

The grading table describes how different ele-
ments like sleeves, collars, legs, etc. scale between
the sizes. Each measurement is associated with an
edge path in the parametric body model. These paths
are projected onto the garment’s mesh. The actual
scaling transformation is performed through Lapla-
cian Mesh Processing [3]. Parts which should not
scale obtain high regularization weights. The edge
path lengths act as the data terms of the desired trans-
formation. See Figure 2.
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Figure 4: Texture decomposition of (a) into illumina-
tion (b) and material (c).

3.4. Sizing the Texture

Simply scaling a garment’s mesh and texture
based on the grading table and the parametric body
model is not enough because fabrics are not stretched
but rather more of the fabric is used (Figure 3).
This is achieved by repeating the texture instead of
scaling. The pattern repetition is aligned with the
sewing/cutting lines of the garment, which are de-
rived from the parametric body like measurement
paths. Finally, the texture needs to be preprocessed to
separate the material’s diffuse color from large scale
lighting effects, such as wrinkles which should not
be repeated. Figure 4 shows the decomposition.

4. Conclusion

We have shown a method to generate additional
sizes of a garment from a single scanned size and
grading tables. The method helps retailers and man-
ufacturers to efficiently capture their entire product
range, e.g. for virtual fashion try-on. Moreover, this
work demonstrates how to overcome a major limi-
tation of photogrammetry: the ability to create 3D
models of items which are not available for scanning.
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