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Abstract

Condensation particle counters (CPCs) are used to measure the number concentration of

sub-micron particles in the exhaust gas of combustion engines. CPCs rely on the con-

densation of vaporized working fluid onto the particles, and the subsequent formation

of sufficiently large droplets, that can be easily detected. In order to optimize the per-

formance of CPCs, a precise understanding of the physical processes affecting droplet

nucleation and growth is of central importance.

To model the formation and subsequent growth of droplets in the evaporator-condenser

system of a CPC, a computer program, specifically the library ’qmomCloud’, was devel-

oped and implemented into the open-source software package OpenFOAM. ’qmomCloud’

is an extension of the existing cpcFoamCompressible solver, which was developed to pre-

dict the vapor concentration profiles inside a CPC. The library ’qmomCloud’ has routines

to solve the population balance equation (PBE) of the droplets using the quadrature

method of moments (QMOM). Also, the local depletion of the vapor concentration due

to the formation and growth of the droplets, as well as the effect of the heat of conden-

sation can be modeled. The qmomCloud library allows to take into account these effects

by calculating the respective source terms in the transport equations for heat and vapor

concentration in the exhaust gas. Furthermore, the qmomCloud library offers a general

framework for the implementation of additional physical models (e.g., coagulation). Thus,

the library provides an environment for fast and efficient prediction of the size distribution

of polydisperse aerosols, and can be used to study a variety of applications in the field of

CPC development.

The reliability and stability of the numerical algorithms implemented in the qmomCloud

library, as well as the implemented physical models for nucleation and growth were rig-

orously tested. The library was employed to study the condensation phenomena in an

evaporator-condenser system of a CPC, including a detailed assessment of coupling ef-

fects, i.e., effects due to latent heat release and the depletion of the vapor in the exhaust

gas. It was found that the droplets grow to a final size of approximately 19µm without

coupling, and that coupling effects lead to a final size of approximately 14µm.
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1 Introduction 1

1 Introduction

1.1 Motivation

The measurement of the particle number concentration in the exhaust gas of combustion

engines has recently formed an integral part of emission standards. For instance, the

European Union has restricted the emission of particles by newly registered diesel

passenger cars to 6 · 1011 particles per km [1].

The most common measurement technique for counting the emitted solid particles is

represented by a condensation particle counter (CPC). In a CPC, the exhaust gas is

passed through a device that is able to generate a certain supersaturation level by

subsequent evaporation and condensation of a working fluid (e.g., n-Butanol). In the

condenser the working fluid condenses onto the particles. Afterwards, the aerosols grow

to a sufficiently large size (in the range of several microns) which allows the detection

of them using a light scattering technique [2]. Because the volumetric flow rate of the

exhaust gas is known, the particle concentration and size distribution can be determined

by simply counting the number of particles with a certain size.

With the AVL Particle Counter (APC) AVL List GmbH provides a widely used tool

to measure particle number concentration in accordance with the particle measurement

programme of the United Nations Economic Commission for Europe [3], [4]. The APC

uses a TSI 3790 Condensation Particle Counter as core sensor. In recent studies it was

found out that the performance of the TSI 3790 CPC varies for different aerosols. Fur-

thermore, it turned out that the counting efficiency decreases with increasing operation

time. This degradation of the CPC performance is a direct indication of droplet size

reduction [5]. Hence, a precise understanding of the physical processes affecting droplet

growth is key for the further optimization of CPCs that do not suffer these limitations.

To model droplet growth inside a CPC, the population balance equation (PBE) of

droplets must be solved in conjunction with the governing equations for mass, heat,

and species conservation [6]. The PBE could either be simulated using a Lagrangian

approach, where each particle is tracked (i.e., a direct approach), or the PBE can

be solved in an Eulerian frame of reference. For the latter approach, often transport

equations for a set of lower-order moments of the particle size distribution are solved.

A popular method is the Quadrature Method of Moments (QMOM), which computes

missing moments, not included in the moment set solved for directly, using Gaussian

quadrature. The QMOM has the advantage that, compared to a Lagrangian approach,

a very much lower number of equations has to be solved, resulting in a low computation

time [7].
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1.2 Goals

The overall goal of this thesis is to develop a simulation tool in order to understand the

droplet grow process inside a CPC. Specifically, the achievable droplet size distribution

should be computed, and appropriate operation conditions (e.g., the temperatures of the

condenser and the evaporator) for a successful operation of a CPC should be defined. The

simulation tool should be based on an already existing CFD solver cpcFoamCompressible

that was developed by Stefan Radl (TU Graz) and Tristan Reinisch (AVL List GmbH).

The new tool (named qmomCloud in the following) should use the QMOM approach to

compute the local droplet size distribution, and should be implemented as a library that

can be linked to any OpenFOAM R© application, e.g., cpcFoamCompressible.

Specifically, the qmomCloud library should model the condensation process (i.e., nucle-

ation and growth of droplets) of the working fluid onto primary particles present in the

exhaust gas. Since the formation and growth of droplets causes a local depletion of the

working fluid’s concentration, as well as a release of condensation heat, the exhaust gas is

affected by condensation processes. This coupling should be modeled as well in order to

better understand local vapor concentration and temperature. Furthermore, convective

and diffusive transport of the particles must be modeled, since (i) the gas velocity profiles

within a CPC is not uniform, (ii) and sub-micron particles can be expected to diffuse with

appreciable rates.

Within this thesis, a general framework for the implementation of physical models was

established such that nucleation, growth, as well as convective and diffusive transport

of the particles can be modeled. The framework is such that the qmomCloud library

can be extended easily to model other physical models, e.g., coalescence or breakage. In

summary the library provides an environment for fast and efficient prediction of the size

distribution of polydisperse aerosols, suitable to study a variety of applications in the field

of CPC development.

1.3 Thesis Outline

After a literature research regarding QMOM (see the recent book of [8]), the core numeri-

cal algorithms of the QMOM were implemented and tested in Matlab R©. Subsequently, all

required physical models were documented, implemented in Matlab and tested to provide

reference results for qmomCloud.

The next step was the implementation of the qmomCloud library in the OpenFOAM en-

vironment. The reliability and functionality of the solver was investigated in a simple test

geometry. Finally, the solver was applied to a pipe flow simulation case that simulates

the flow in the evaporator-condenser system of a CPC. Effects due to the depletion of the

working fluid vapor in the exhaust gas were studied.



1.3 Thesis Outline 3

Chapter 2 provides a short description of the existing cpcFoamCompressible solver and

how this code can be used to predict gas flow, as well as local vapor concentration and

temperature inside a CPC.

In Chapter 3 the theoretical backgrounds for solving a population balance equation for

describing the size distribution of a particle population are documented. Furthermore, the

mathematical basics for QMOM, as well as a detailed description of the physical models

used in this work, are presented.

Chapter 4 details the software architecture of the qmomCloud library, and how qmom-

Cloud can be employed for solving a particular flow problem. Furthermore, a short

introduction to the underlying software package, i.e., OpenFOAM, is provided.

In Chapter 5 the correct implementation of the qmomCloud library, and the coupling to

the cpcFoamCompressible solver was examined. Numerical details connected to the use of

the QMOM, as well as the reliability of the used physical models were studied and results

are summarized in this section.

Chapter 6 provides a description of the existing pipe flow simulation case, key settings

used to control the qmomCloud library, and key results.

Finally, in Chapter 7 the key outcome of the thesis is summarized. An outlook with

respect to further improvements and applications of the qmomCloud library, as well as

the cpcFoamCompressible solver is provided.
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2 Previous CPC Simulation Studies

2.1 CPC Working Principle

With a CPC the number concentration of sub-micron particles (e.g., soot) within a sam-

pled exhaust gas flow cannot be measured directly, since direct particle detection is very

difficult (e.g., the intensity of light scattered by sub-micron is very low). Consequently,

the particles are used as seeds for the condensation of a vapor, i.e., droplets are formed,

which then can be detected using standard light scattering methods. Specifically, a

working fluid is condensed onto the particles, i.e., heterogeneous nucleation and growth

takes place. This is done in the evaporator-condenser system of the CPC with moderate

supersaturation levels to avoid homogeneous nucleation.

In the evaporator the working fluid is evaporated. In the condenser the vaporized working

fluid becomes supersaturated in the exhaust gas, and thus, the conditions for nucleation

of droplets onto the particles are achieved. Once droplets have been formed, they grow

to a size in the range of a few microns.

2.2 Single-Phase Studies

Numerous studies have been performed to study single-phase flow in CPCs with the aim

to predict local supersaturation levels by means of an analytical or numerical approach.

An analytical solution for the supersaturation profile in the condenser section of the pipe

can be obtained by solving a boundary value problem in a cylindrical geometry. This

analytical approach, known as the Graetz Problem [9], is presented in [10]. The work is

based on the numerical model developed by Giechaskiel [11]. However, this solution is

only valid for constant transport properties and gas density, as well as uniform boundary

conditions. The latter is especially problematic for the vapor concentration at the inlet of

the condenser section, since full saturation of the exhaust gas may not be achieved in the

evaporator section. Consequently, a more general numerical approach via computational

fluid dynamics (CFD) has been adopted in more recent studies.

The cpcFoamCompressilbe solver is a CFD code based on OpenFOAM R© that was

developed by Stefan Radl (TU Graz) and Tristan Reinisch (AVL List GmbH) to

investigate the behavior of the working fluid vapor in the evaporator-condenser system

of a CPC. The solver allows to (i) model heat and species transport in a compressible

fluid (i.e., the exhaust gas), (ii) accounts for changes in the gas density due to local

pressure and temperature (e.g., using the ideal gas equations of state), and (iii) accounts

for temperature dependent transport properties (e.g., diffusion coefficients).
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The working fluid inside the evaporator-condenser system of a CPC can be modeled by

employing the cpcFoamCompressilbe solver to the existing pipe flow simulation case.

Inducing a (laminar) fluid flow in the pipe, and different wall temperatures for the

evaporator section (i.e., the high temperature region) and the condenser section (i.e., the

low temperature region) of the pipe (see Fig. 6.1), a steady state solution is obtained.

The result of a simulation is the profile of the supersaturation level inside the pipe that

indicates regions where heterogeneous nucleation of the working fluid onto seed particles

can take place.

2.3 Droplet Growth Studies

The growth of droplets in the condenser is described in [10] and [12] where the growth

model of Fuchs [13] was used. In this work, for the growth studies the operating conditions

of a TSI 3790 CPC were employed. The outcome was that for seed particles in the range

from 17.7 to 100nm the droplets grow up to a final size (at the outlet of the condenser)

in the range of 5 to 8µm. In this previous work, however, the growth was decoupled from

the flow problem.

The same applies to the work of Ahn [14] where the same growth model [13] was used.

Within this work the droplet growth in a TSI 3020 CPC was modeled with the result that

20nm nuclei grow to a size of about 12.3µm. In both studies the sufficient droplet size

of about 0.5µm [14] for the detection with light scattering was exceeded.

Furthermore, in [10] the depletion of the working fluid vapor concentration was estimated

by reducing the mass of the vapor by the mass of the droplets that have grown to their

final size (worst case scenario). Note, these calculations were decoupled from the mass

and heat transfer problem. In case of 40nm seed particles a maximum reduction in the

saturation ratio of about 3% was found.
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3 Theoretical Backgrounds

3.1 Modeling of Multiphase Flows

Disperse multiphase flows consist of a disperse phase and a continuous phase. Their

understanding in terms of a quantitative model is essential to describe, for example,

combustion processes, particle size measurement devices, or particle transport in the

atmosphere. Computational models for disperse multiphase flows can be categorized

in (i) models describing the evolution of the disperse phase (e.g., particle growth,

coagulation, breakage; this can be achieved by solving a population balance equation

(PBE)), as well as (ii) models for simulating multiphase flow. The latter models consist

of spatially inhomogeneous mass, momentum and energy balances of the disperse and

the continuous phase. Typically these models are discretized using the finite-volume

method (FVM) in the context of computational fluid dynamics (CFD).

This Chapter of the thesis is focused on the first type of models (i.e., models for describing

the evolution of the disperse phase), and thus, it will provide an overview of the under-

lying governing equations. Specifically, we will start with a general introduction to the

concepts of a PBE, and then focus on the application to Condensation Particle Counters

(CPCs). As the disperse phase in CPCs consists of droplets (that form around small

primary particles with a predefined size distribution), the term ’droplets’ and ’particles’

are interchangeable in what follows. Note, that one could use the concepts explained

below to describe the size distribution of the primary particles as well. However, such an

analysis is beyond the scope of this text.

3.1.1 Number Density Function

The number density function (NDF) n(t,x, ξ) gives the expected number of particles per

infinitesimal phase-space volume dξ and infinitesimal physical space interval dx. The

NDF depends on time t, external coordinates x and internal coordinates ξ, whereas

the length of the internal coordinate vector is M (ξ ≡ (ξ1, ξ2, ...., ξM)). We are here

concerned with an univariate NDF, for which the length of the property vector is M = 1.

That means there is only one internal coordinate ξ. Multivariate distributions would

have more than one internal coordinate, e.g., a bivariate NDF describing a distribution

having the internal coordinates particle length (or diameter) and particle volume would

be based on ξ1 = dp and ξ2 = Vp. Unfortunately, the numerical description of multivariate

distributions is significantly more involved. Because the droplets in a CPC are well

characterized by their diameter, we will not discuss these distributions, and focus on the

length-based NDF distribution n(t,x, dp) , i.e., ξ = dp. In what follows, we simply use

n to denote the NDF.
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In order to apply the concept of NDFs to describe polydisperse flows, it is useful to discuss

which physical information can be extracted from an NDF. For example, the number of

particles with properties between ξ and (ξ + ∆ξ) in a control volume Ωx is given by

∆Np = Ωxn∆ξ (3.1)

Next, the kth moment of the NDF is given by

mk =

∫
Ωξ

ξkndξ (3.2)

The moments of the NDF reflect certain average quantities of the particle population. For

example, the 0th moment equals the total particle number concentration, i.e., m0 = Np.

Note that n, compared to a probability density function, is not necessarily normalized.

In case it would be the value of m0 would always be unity.

The (arithmetic) mean particle size is defined as

L10 =
1

Np

∫ ∞
0

dpnd(dp) =
m1

m0

(3.3)

More generally, a set of average diameters can be defined based on the ratio of certain

moments

Lk+1,k = K
mk+1

mk

(3.4)

for any k, where the choice of k determines the physical meaning of the L. For k = 2,

and in case the particles are spherical, one gets the Sauter mean diameter L32, which

represents the diameter of a sphere with the same surface area to volume ratio as the

particle population. Note that also other integral properties (e.g., the total surface area)

can be computed using the moments and a geometrical prefactor K [15]. In case we

assume spherical particles, K = π/6.

3.1.2 Transport Equations

Considering all possible changes of the NDF in a finite physical space and phase-space

control volume, one can write a particle number balance

∂

∂t

(∫
Ωx

dx

∫
Ωξ

ndξ

)
+

∫
Ωξ

dξ

∫
∂Ωx

(nv) · dAx +

∫
Ωx

dx

∫
∂Ωξ

(nξ̇) · dAξ

=

∫
Ωx

dx

∫
Ωξ

dξS1 (3.5)
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The first term on the left hand side of Eq. (3.5) describes the accumulation of par-

ticles, and the second and third term describe convection in physical and phase-space,

respectively. Physically speaking, these latter terms reflect continuous changes of the (in-

ternal and external) coordinates of the particle population. In contrast, the term on the

right-hand side of Eq. (3.5) describes discontinuous (or discrete) events, e.g., collision of

particles and subsequent coagulation, or nucleation.

Applying the Reynolds-Gauss theorem yields the population balance equation (PBE)

[8, p. 36]

∂n

∂t
+

∂

∂xi
(vin) +

∂

∂ξi

(
ξ̇in
)

= S1 (3.6)

In case the NDF includes the particle velocity as internal coordinate (i.e. n(t,x,v, ξ)),

one can derive the generalized population balance equation (GPBE) in a similar

way.

∂n

∂t
+

∂

∂xi
(vin) +

∂

∂vi
(Ap,in) +

∂

∂ξi

(
ξ̇in
)

= S1 (3.7)

The third term on the left-hand side of Eq. 3.7 describes the acceleration due to an

external force acting on the particles. In the simplest case, in which the velocity is the

only internal coordinate, the GPBE is the well known Boltzmann equation [8] .

In case the particles (or droplets) are small, and/or the disperse-to-primary-phase density

ratio is small (i.e., the Stokes number is small), the particle velocity quickly adjusts to

that of the surrounding fluid. This assumption of equal fluid and particle velocity fields

is known as the dusty-gas model [8].

If, beside that assumption, the fluid flow is laminar and steady, the GPBE can be greatly

simplified. Specifically, the transport due to advection can be computed directly from the

fluid’s velocity, and diffusive transport (of the particle population) can be modeled with

an effective particle diffusion coefficient Γ. The resulting transport equation is then called

the Laminar PBE

∂n

∂t
+

∂

∂xi

(
uin− Γ

∂n

∂xi

)
+

∂

∂ξi

(
ξ̇in
)

= S1 (3.8)

Note that beside diffusion of the particles (or droplets) in the fluid (= physical-space

diffusion), also phase-space diffusion could be modeled. Phase-space diffusion would de-

scribe e.g. the fluctuation of the growth rate in the case where the fluid condensates onto

particles. Because the above assumptions are valid for most CPCs, the laminar PBE is

thought to be sufficiently general to describe the particle population in a CPC. Phase-

space diffusion is of minor interest and will therefore not be treated. Consequently, we

focus only on the transport equation Eq. (3.8) for the rest of the discussion.



3.1 Modeling of Multiphase Flows 9

Often, the NDF cannot be calculated directly, since the direct solution of, e.g., the laminar

PBE, is very demanding. Thus, in many engineering applications one only aims for a

solution to some average properties of the NDF, i.e., of its moments. Unfortunately,

the terms in the PBE, GPBE, and the laminar PBE require the knowledge of the full

NDF. However, to get the full NDF an infinite set of moments is required. Since we

can only deal with a set of lower order moments, the full NDF cannot be reproduced

exactly. This problem is referred to as the closure problem (see the discussion in the

next chapter), and hence aims on approximating n from average information. Thus, one

needs to derive an equation to describe the evolution of the moments mk first, and then

apply a technique to approximate the NDF. The former can be achieved by integrating the

transport equations Eq. (3.6) or Eq. (3.8) over the phase space. The resulting moment-

transport equations for a length-based NDF with the internal coordinate ξ = dp, and

described by the laminar PBE is

∫ ∞
0

∂

∂t
(dp)

kn · d(dp) +

∫ ∞
0

∂

∂xi
(uin) (dp)

k · d(dp) +

∫ ∞
0

kGn(dp)
k−1 · d(dp)

=

∫ ∞
0

S1(dp)
k · d(dp) (3.9)

Here ξ̇ = G is a growth rate describing, for example, the increase of the droplet size due

to condensation. In the simple situation where G is independent from dp, we obtain a

closed set of moment-transport equations

∂mk

∂t
+

∂

∂xi
(uimk) = kGmk−1 + S1,k (3.10)

The procedure of transforming the PBE to a set of transport equations for the moments

of the NDF is called Method of Moments (MOM). The idea of calculating the time

evolution of the moments instead of the time evolution of the full NDF has two main

advantages:

• Reduction of the dimensionality of the problem by integrating out the internal

coordinate

• Moments correspond to measurable quantities like the total particle number

density, and can be directly used, e.g., in engineering applications.

Nevertheless, there are also some drawbacks, as the loss of information due to the finite

set of moments, as an arbitrary NDF can only be expressed exactly with an infinite set of

moments. The other disadvantage is that the source term cannot be written as a function

of moments only.

E.g. for the 0th moment, the growth term in Eq. (3.10) is zero, because the number

concentration of particles (or droplets) is not affected by condensation. It is now critical to
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realize, that in case the moment-transport equation for the kth moment involves moments

of order higher than k (or other expressions that contain the internal variable ξ), the

transport equation for the kth moment is not closed. The next session will provide a more

detailed explanation of this problem when attempting to solve the system of moment

transport equations.

3.1.3 The Closure Problem

For the solution of the moment transport equations it is essential to know whether the

system of moment equations is closed or not. Therefore, in this section the term ’closure

problem’, that was already mentioned in Sec. 3.1.2, will be defined more closely.

Generally, one wants to solve a system of moment transport equations up to a certain

order kmax that can be written as

∂m0

∂t
= f(m0,m1, ....,mn0)

∂m1

∂t
= f(m0,m1, ....,mn1)

∂m2

∂t
= f(m0,m1, ....,mn2)

∂m3

∂t
= f(m0,m1, ....,mn3)

...
∂mk

∂t
= f(m0,m1, ....,mnk)

...
∂mkmax

∂t
= f(mn0 ,mn1 , .......,mnkmax

) (3.11)

The right-hand side of each equation are the source terms. If the source term for the

kth moment transport equation only consists of moments of order up to k (nk ≤ k), the

system is closed. In this case one solves the system starting with the first equation for

the moment m0. For all the subsequent equations the source terms are known from the

solution of the previous equations and thus one can solve kmax differential equations in a

straight forward manner. An example for solving such a system is provided in Sec. 3.3

where a simple homogeneous growth problem was considered.

However, if the source term for the kth moment transport equation contains moments

of order higher than k (nk > k), the problem is unclosed. In this case the source term

includes moments that cannot be computed from the previous equations, and thus, have

to be calculated somehow differently.

An unclosed set of moment transport equations can be closed by several numerical meth-
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ods, like the method of moments with interpolative closure (MOMIC), where the unknown

moments are interpolated (or extrapolated) form the known set of moments [8, p. 293-

295]. Since the numerical accuracy and the applicability of this methods is limited, a

more reliable closure method is to use quadrature approximation. In this method the

transport equations are closed by approximating the NDF based on the known moments

up to level k. The Gaussian quadrature-based method of moments is presented in the

following section.
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3.2 Quadrature-Based Moment Methods

3.2.1 Gaussian quadrature

Gaussian quadrature is a numerical method to compute an integral property I of an NDF

using the interpolation formula

I =

∫
Ωξ

g(ξ)ndξ =

∫
Ωξ

ξkPN(ξ)ndξ ≈
N∑
α=1

ξkαPN(ξα)wα (3.12)

with the weights wα and N the number of nodes ξα. g(ξ) is a functional group, i.e., a

so-called kernel or weight function [15], and PN is a polynomial of degree N which is

orthogonal to n. The condition for the application of this approximation is that n(ξ) is

continuous, and that PN(ξ) is a positive and integrable function with a finite number of

roots.

It can be shown that in case the nodes ξα are the roots of the polynomial PN(ξ), Eq.

(3.12) is an exact relationship for k = 0 through k = 2N − 1.

It is now important to realize, that the above relationship can be used to compute the

moments of an NDF for a special choice of the polynomial PN , namely PN(ξ) = 1 [15],

i.e.,

mk =

∫
Ωξ

ξkndξ ≈ Np

N∑
α=1

ξkαwα (3.13)

The sum of the weights yields one. Hence, the particle number concentration Np is

needed to take into account that n is not normalized. Based on the fact of exactness

up to order k = 2N − 1, this means that moments up to order k = 2N − 1 can be

computed exactly from N nodes. This degree of accuracy cannot be achieved by any

other approximation, that is why the Gaussian quadrature is so attractive. (For example:

in case one would use N nodes equally spaced in the integration interval, the degree of

accuracy would be only N − 1.)

The nodes and weights can now be used to solve the closure problem. Specifically, the

Gaussian quadrature approximation to the NDF is given by

n ≈ Np

N∑
α=1

wαδ(ξ − ξα) (3.14)

which means that the value of n at ξα is the infinite value of a delta function multiplied

by the weight wα, and zero otherwise. Thus, the NDF can be successfully reconstructed

after computing ξα and wα, and is approximated by a sum of Dirac-δ functions. For N
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nodes one needs polynomials up to order 2N − 1, and thus the first 2N − 1 moments are

required for the reconstruction based on the Gauss-quadrature approximation. This is

the heart of the quadrature method of moments (QMOM).

As an example for the quadrature approximation we consider a normal distribution with

σ′ = 1 and µ′ = 5

n(ξ) =
1√

2πσ′
· e−

1
2

(
ξ−µ′
σ′

)2

(3.15)

The first eight moments of this equation can easily be calculated [8]:

m0 = 1

m1 = µ′ = 5

m2 = µ′2 + σ′2 = 26

m3 = µ′3 + 3µ′σ′2 = 140

m4 = µ′4 + 6µ′2σ′2 + 3σ′4 = 778

m5 = µ′5 + 10µ′3σ′2 + 15µ′σ′4 = 4450

m6 = µ′6 + 15µ′4σ′2 + 45µ′2σ′4 + 15σ′5 = 26140

m7 = µ′7 + 21µ′5σ′2 + 105µ′3σ′4 + 105µ′σ′6 = 157400

The weights and nodes, that are required for the quadrature approximation, can be cal-

culated with the product-difference (PD) algorithm, that will be presented below. For

our example we did so, using a PD-code in Matlab, and calculated the nodes and weights

for N = 3 and N = 4. The calculated nodes and weights are listed in Tab. 3.1. It can be

seen that the sum of the weights is always one. Note, since in this case n(ξ) is normalized

Np is one.

Using Eq. (3.14) we can illustrate the NDF composed of N delta functions at the posi-

tions of the nodes, and weighted with the weights. In Fig. 3.1 this illustration is shown

for the case of N = 3 and N = 4, as well as the exact NDF given by Eq. (3.15). (Be

aware that this is just an illustration since the delta functions are infinite at the positions

of the nodes!)

Note that the moments calculated form the approximated NDF give exactly the same

values as for the exact case listed above.
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Table 3.1: Nodes and weigths of the approximated normal distribution

N = 3 N = 4

ξα wα ξα wα

3,268 0,167 2,666 0,046

5,000 0,667 4,258 0,454

6,732 0,167 5,742 0,454

7,334 0,046

(a) (b)

Figure 3.1: Illustration of a normal distribution function as NDF with µ′ = 5 and σ′ = 1. The red line
shows the exact function and the vertical blue lines represent the approximated NDF using Gaussian
quadrature for (a) N = 3 and (b) N = 4 nodes.

To get the nodes and the weights required for the Gaussian quadrature approximation, a

straight forward way to do so would be solving a nonlinear system of 2N − 1 polynomial

equations. Such an approach is not recommended [15], and next we describe a more

sophisticated approach.
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3.2.2 The Product-Difference (PD) Algorithm

Since the polynomials fulfill a recursion condition, this provides a smarter way to get the

nodes and weights. The recursion

Pα−1(ξ) = (ξ − aα)Pα(ξ)− bαPα−1(ξ) (3.16)

can be written in matrix form with a tridiagonal coefficient matrix, that can be sym-

metrized. This approach then allows one to get a system of equations in which the

eigenvalues are the nodes and the weights can be calculated from the eigenvectors. This

calculation can be done with the product difference (PD) algorithm. Since the

polynomials are orthogonal with respect to n, the coefficients Eq. (3.16) are

aα =

∫
Ωξ
nξPα(ξ)Pα(ξ)dξ∫

Ωξ
nPα(ξ)Pα(ξ)dξ

bα =

∫
Ωξ
nPα(ξ)Pα(ξ)dξ∫

Ωξ
nPα−1(ξ)Pα−1(ξ)dξ

(3.17)

By considering the expressions for the moments given by Eq. (3.13), it becomes clear that

the coefficients aα and bα can be written in terms of the moments. In the PD algorithm

this is exploited, and first a matrix P is constructed using the following algorithm.

• 1st column: Pα,1 = δα1 for α = 1, ....., 2N + 1

• 2nd column: Pα,2 = (−1)α−1mα−1 for α = 1, ....., 2N

• remaining elements: Pα,β = P1,β−1Pα+1,β−2 − P1,β−2Pα+1,β−1 for β = 3, ....., 2N +

1;α = 1, ....., 2N + 2− j

The second step in the algorithm is to calculate the coefficients of the continued fraction

{ζα} using the relationship

ζα =
P1,α+1

P1,αP1,α−1

for α = 2, ...2N (3.18)

The last step is the calculation of the coefficients via

aα = ζ2α + ζ2α−1 for α = 1, ...., N (3.19)

bα = −
√
ζ2α+1ζ2α for α = 1, ...., N − 1 (3.20)

The PD algorithm becomes unstable for larger N (typically if N > 10). A more stable

alternative is the Wheeler algorithm, that is described in [8, p. 53]. However, N > 10

is rarely used because of the larger number of moments that would need to be tracked.

Consequently, we restrict ourselves to methods for which the PD algorithms is sufficiently

stable.
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3.2.3 The Correction Algorithm of McGraw

The moments that are used for calculating the weights and nodes of the Gaussian

quadrature have to be realizable. This means that there has to exist an NDF that

integrates to a set of moments used for the reconstruction of the NDF. In case the PD

algorithm is fed with unrealizable moments, the calculation might become unstable.

Due to the fact that the moment transport equations are integrated numerically,

there will always be some finite discretization errors which can lead to unrealizable

moments. With the correction algorithm of McGraw the realizability is first checked,

and unrealizable moments are corrected if necessary. The McGraw correction algorithm

is based on generating a difference table with the difference vectors as columns, which is

displayed for N = 4 in the following table:

d0 d1 d2 d3

ln(m0) ln(m1)− ln(m0) ln(m2)− 2 ln(m1) + ln(m0) ln(m3)− 3 ln(m2)− ln(m1) + ln(m0)

ln(m1) ln(m2)− ln(m1) ln(m3)− 2 ln(m2) + ln(m1) 0

ln(m2) ln(m3)− ln(m2) 0 0

ln(m3) 0 0 0

The first step of the algorithm is the verification of the realizability of the moment set by

checking the positivity of each element of the difference vector d2.

Then, in the case of a negative element of d2, a correction for the unrealizable moments

is applied. As shown in [8, p. 55 - 60], an efficient way to perform the correction is to

minimize the length of the third order difference vector d3.

The minimization procedure is based on changing the length of the vector d3 by changing

a certain moment mk by a factor ck, and proving whether the length of d3 has reduced or

not. Such a variation in the length of the third order difference vector d3 can be written

as the difference between the unchanged vector (d3)0 and the changed vector (d3)1

(d3)1 − (d3)0 = ln(ck)bk (3.21)

where bk is the response vector that determines the number k of the modified element of

d3. It is easy to see that the length of (d3)1 is minimal if it is orthogonal to bk. Therefore

the length of (d3)1 is reduced by the variation (3.21) if the angle between (d3)1 and bk is

bigger than the angle between (d3)0 and bk. If this is the case, the corresponding moment

is corrected by multiplying it with the correction factor.

(mk)1 = ck · (mk)0 where ln(ck) =
bk · (d3)0

||bk||2
(3.22)
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3.2.4 Extended Quadrature Method of Moments (EQMOM)

With the QMOM the NDF is approximated by N weights and nodes (see Eq. 3.14),

whereas for N + 1 weights and nodes, another two moments would be required. This

approach can be generalized by introducing a new way of representing the NDF:

n(ξ) ≈ Np

N∑
α=1

wαδχ(ξ, ξα) (3.23)

where χ is fixed by one additional moment. For χ = 0 the QMOM approximation is

obtained. δχ can be found from the weight functions of a known family of orthogonal

polynomials, like Laguerre [8, p. 83].

The advantage of EQMOM is that with one additional moment it is possible to reconstruct

a smooth, non-negative NDF that exactly reproduces the first 2N + 1 moments.

Using a Gaussian distribution to define the kernel density function

δχ(x, y) =
1√
2πχ

exp

(
−(x− y)2

2χ2

)
(3.24)

the moments can be written as

mk = m∗k +

[k/2]∑
i=1

k!

i!(k − 2i)!

(
χ2

2

)
m∗k−2i with m∗k = Np

N∑
α=1

wαξ
k
α (3.25)

This system of 2N + 1 equations can be used to compute the N weights and nodes by

iterating on χ2. While this extended method has some advantages with respect to accu-

racy, this iteration requires additional computational cost. It is thought that EQMOM

does not provide any significant advantage over QMOM in the context of this work, and

hence we have not followed this approach in higher detail.

3.2.5 Direct Quadrature Method of Moments (DQMOM)

The QMOM and EQMOM requires the computation of a comparably large number of

moments via the respective transport equations. Then, the nodes and weights are cal-

culated, using, for example, the PD algorithms. The DQMOM follows another strategy,

in which a moment-inversion algorithm is required only at the initialization of a compu-

tation. Thus, an algorithm is used to find the weights and nodes at time zero. Then,

afterwards the time evolution for the nodes and weights is solved directly [8].

The DQMOM is illustrated for an univariate NDF considering a transport equation in-

cluding advection (characterized by the particle velocity v), diffusion (characterized by

the particle diffusivity Γ), as well as a generic growth rate G. After computing the

corresponding moment transport equations as shown above, and using the quadrature
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approximation, one obtains the DQMOM transport equations for the nodes and weights

∂wα
∂t

+
∂

∂x
uwα = Γ

∂2wα
∂x2

+ aα

∂

∂t
wαξα +

∂

∂x
uwαξα = Γ

∂2

∂x2
wαξα + wαG(ξα) + bα (3.26)

where aα and bα are the source terms for the weights and nodes, and α = 1, ...., N . For

Γ >> 0 the numerical solution of Eq. (3.26) will remain more accurate compared to

a solution of Eq. (3.10). However, if Γ is very small or zero, the numerical solution

becomes inaccurate.

When DQMOM is used to solve the moment equations, there might arise problems due to

the fact that the nodes and weights (contrary to the moments) are not conserved in their

transport equations. Thus, the weights and nodes could be discontinuous, even though

the moment set is well defined. In fact, the DQMOM approach is likely to fail in the

following cases [8, p. 338-340]:

(i) For purely hyperbolic moment-transport equations the DQMOM will fail if the nodes

are discontinuous, which is usually the case when the velocity is one of the internal

coordinates (i.e., in case of the GPBE). In this case QMOM must be applied.

(ii) For purely hyperbolic moment-transport equations without shocks in the nodes, the

DQMOM will still fail if it is solved with a standard FVM because of inevitable

numerical errors and numerical diffusion. To handle this problem one can use fully

conservative DQMOM (DQMOM-FC).

(iii) For moment-transport equations with small diffusivities which are in the same mag-

nitude as numerical diffusion (coming from the solution of the DQMOM equations

using FVM), DQMOM should be avoided.

(iv) If the initial or boundary conditions are discontinuous (i.e. discontinuous moment

set in the flow domain), DQMOM can fail if the transport equations are purely

hyperbolic.

(v) If the moment sets are degenerated, DQMOM should be avoided due to the fixed

value of N . This is for instance the case when a NDF is composed of a single

weighted delta function and thus can be reconstructed by only two of the (well

defined) moments.

In summary one can say that the advantage of the DQMOM is, that since the moment

inversion algorithm is only used once, it is more accurate than QMOM. This is especially

beneficial for a multivariate NDF, because in this case it is even more difficult to ensure

the realizability of the moments. However, the DQMOM algorithm becomes inaccurate

for very low diffusivities Γ. Moreover, since the weights and nodes in Eq. (3.26) are not
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conserved, conventional finite volume discretization schemes (see Sec. 3.4.2) might not

be suitable for DQMOM. Because of the limitations and expected numerical difficulties,

we have not further investigated the DQMOM.
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3.3 Application of MOM and QMOM to Homogeneous Systems

For the homogeneous (where there is no spatial dependence) and univariate case, all

derivatives with respect to xi in the PBE become zero. Thus, one has to solve the

following equation, that includes continuous and discontinuous changes in the internal

coordinate:
∂n(ξ, t)

∂t
+

∂

∂ξ
ξ̇n = S1 (3.27)

Depending on the physical models (see Sec. 3.5) that are used for the source terms the

corresponding moment equations might be unclosed. The system of moment equations

can be closed using different methods. Two of them are explained in the following sections.

3.3.1 Method of Moments

The principal idea of the method of moments was already discussed in Sec. 3.1.2. Here

we just want to present an example.

We consider condensation and growth of droplets (ξ̇ > 0) using phase space drift

dmk

dt
= −

∫ ∞
0

ξk
(
∂

∂ξ
ξ̇n

)
dξ (3.28)

Applying integration by parts, the moment transport equation becomes

dmk

dt
= −ξknξ̇(ξ)

∣∣∣∣∞
0

+ k

∫ ∞
0

ξk−1ξ̇ndξ (3.29)

For k = 0 we obtain
dm0

dt
= n(t, 0)ξ̇(0) = J(t, 0) (3.30)

where J(t, 0) is the nucleation rate under the assumption that nucleation occurs only at

ξ = 0. Note, that in more realistic nucleation models nucleation is assumed to occur only

above a critical droplet size, as it is shown in Sec. 3.5.4.

For k > 0 one can easily find a closed formulation of the problem for the case where ξ̇ is

independent of ξ:
dmk

dt
= kξ̇mk−1 (3.31)

Otherwise, if ξ̇ depends of ξ, the problem might be unclosed (e.g., for the power-law

ξ̇ = ξ̇0ξ
α the problem is unclosed for α > 1) [8, p. 290-291].

For an unclosed set of moment transport equations the MOM fails because source terms

of the moment transport equations depend on higher order moments which must be

approximated. As already mentioned, a reliable closure method is to use quadrature

approximation, that is discussed in the following section.
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3.3.2 Quadrature-Based Moment Methods

As described in section 3.2, QMOM, DQMOM and EQMOM can be employed to

overcome the closure problem.

DQMOM avoids the problems with the moment-inversion algorithm, since it is only

applied once. The challenge in the case of DQMOM is to find the transport equations

for the weights and nodes.

If the source term is highly localized in phase space, there is a risk of not having enough

nodes in the localized regions. To overcome that problem, one could use EQMOM

instead of increasing the number of nodes. [8, p. 300-305].

For condensation and growth of droplets, that was discussed in the former section,

the moment transport equation Eq. (3.28) is written in the quadrature approximation

(assuming Np = 1) as follows:

dmk

dt
= k

N∑
α=1

ξk−1
α ξ̇αwα (3.32)

In the simple case for a constant growth rate (ξ̇ 6= f(ξ)), the solution is simply given by

Eq. (3.31), with the initial condition

mk(0) =
N∑
α=1

wα(0)ξα(0)k k = 0, 1, ....., 2N − 1 (3.33)

To calculate the time evolution of the nodes and weights, one can apply the PD algorithm

for each time step, as it can be found in [7] for the case of N = 3, where a simple

growth problem was solved. A very similar problem we will treat in the following example.

Example: Homogeneous growth (reference problem)

As an example we want to consider a simple homogeneous growth problem that is

given by Eq. (3.31). This example should act as a first reference problem for the

implementation of the qmomCloud library. It is documented in [16], where it was solved

with QMOM and DQMOM. Here it is solved using MOM and QMOM for the first 4

moments (i.e. N = 2).

The growth rate ξ̇ in this example was considered as a power-law with 3 different expo-

nents:

ξ̇(ξ) = ξr with r =


0

1

−1

(3.34)
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The resulting moment equations thus are

dmk

dt
= k ·mk−1 r = 0

dmk

dt
= k ·mk r = 1

dmk

dt
= k ·mk−2 r = −1 (3.35)

Note that only for the case r = 1 the system of moment equations is closed, because for

the other cases the low order equations include moments of negative order. (For the case

r = 0 the equation for m0 contains the moment m−1, and for r = −1 the m0-equation

includes m−2 and the m1-equation includes the moment m−1.) Thus, basically only this

closed case can be solved with MOM, where one just has to solve the ordinary differential

equations in a straight forward manner).

However, one can find a closed form for the case r = 0 by setting m0 = const. This

assumption is valid because for the simple growth case the number of droplets, and thus

the corresponding moment m0, does not change.

The only remaining unclosed case is that of r = −1. For this case we have to apply

QMOM, while for the other two cases the system of equations can be solved with both,

MOM and QMOM.

With QMOM the right-hand sides of Eq. (3.35) were approximated using Eq. (3.13).

In case we use the MOM, we just have to solve the ordinary differential equations Eq.

(3.35) since the transport equations Eq. (3.31) were already given in the transformed

form of the PBE. The differential equations were solved in Matlab using the explicit

EULER method for the time integration.

For solving the time evolution of the moments we do of course need initial conditions. The

initial moments were calculated from the initial NDF (see fig. 3.2), that, in this example,

is given by

n(ξ, 0) =

1 for 0 ≤ ξ ≤ 1

0 for ξ > 1
(3.36)

The results were plotted as time evolution of the normalized Sauter mean diameter L32

(see Fig. 3.3) which is the ratio of the 4th and the 3rd moment.

Since the QMOM reproduces the exact moments for a closed set of moment equations,

we obtained exactly the same results as for the MOM for the two closed cases. For the

unclosed case r = −1, only the QMOM results were plotted, since there is no solution

available with MOM.



3.3 Application of MOM and QMOM to Homogeneous Systems 23

Figure 3.2: Initial NDF for the reference problem. The red line shows the exact distribution function,
the blue vertical lines illustrate the NDF in the quadrature approximation for N = 2, according to Eq.
(3.14).

Figure 3.3: Time evolution of the normalized Sauter mean diameter for different exponents r of the
power-law growth rate for the MOM case (dotted lines) and the QMOM case (symbols).
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3.4 Closure Methods for Inhomogeneous Systems

3.4.1 Method of Moments

In inhomogeneous systems the particle (or droplet) cloud represented by the NDF (and

thus its moments) moves in physical space due to advection and diffusion. For the sim-

plest case of advection with a constant velocity u (and without changing the internal

coordinates due to other processes), the change of the moments in physical space can be

described by
∂mk

∂t
+ ui

∂mk

∂xi
= 0 (3.37)

with the exact solution mk(x, t) = mk(x − ut, 0). Since the physical-space transport

is calculated numerically, there are always numerical errors by solving such equations

because of numerical diffusion.

In the case of QMOM, one uses a set of 2N moments to solve the moments transport

equations, whereby only realizable moments can be used in the moment-inversion

algorithm. The moments of the used moment set are correlated. Thus, the truncation of

one moment due to numerical errors can lead to unrealizable moments. Therefore it is

essential to guarantee the realizability of the moment set in every time step.

For an univariate PBE the realizability can be ensured by formulating the moment sets

in terms of canonical moments or by using the McGraw correction algorithm to formulate

realizable spatial transport schemes.

Moreover, to avoid excessive numerical diffusion, only high-order spatial-transport

schemes should be employed [8, p. 330-332].

To compute the NDF and its moments one has to solve the corresponding transport

equations (see Sec. 3.1.2).

If only the physical-space transport problem, accounting for advection and diffusion, is

considered, the last two terms in Eq. (3.8) disappear (note, phase-space transport, e.g.

growth, can be treated as shown in Sec. 3.3).

Depending whether the diffusion coefficient is a function of ξ or not, we get either a closed

or an unclosed set of moment transport equations.

In the special case where Γ 6= f(ξ), we obtain the closed form

∂mk

∂t
+ ui

∂mk

∂xi
=

∂

∂xi

(
Γ
∂mk

∂xi

)
(3.38)

In Sec. 3.5.2 a more realistic diffusion model is presented. In this model the diffusion

coefficient does depend on ξ, resulting in an unclosed set of moment transport equations.
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3.4.2 Numerical Schemes

To solve the spatial evolution of the moments, one uses finite-volume methods, whereas

the changes of the internal coordinates are computed with the methods described in Sec.

3.3.

In finite-volume methods the physical space is divided into cells of size ∆x leading to a

uniform mesh. The spatial distribution of moments is represented as the volume-average

of each cell j at the corresponding cell center xj.

This concept is applied to the moment transport equations Eq. (3.38). By using

approximations (of different order) for the derivatives in the advection and diffusion

terms, and appropriate time discretization (time step ∆t), one can write the equations

as a linear system of the form Amn+1 = Bmn. The realizability condition for the

moments is, that all elements of the matrix B are nonnegative.

Standard finite-volume schemes (see [8], page 351 - 353) of order 4 or higher will almost

always produce unrealizable moments. Therefore, realizable finite-volume schemes

must be applied, which are based on reconstructing the NDF from their moments. The

moment inversion algorithm is employed at each time step n for every grid cell i. In

[8], p. 353, realizable finite-volume schemes are presented using gamma EQMOM for

the moment inversion. The advantage of EQMOM is, that the approximated NDF

reproduces the first 2N + 1 moments exactly .

However, one can also use QMOM to reconstruct the moments using Eq. (3.13). For

an explicit time-stepping scheme, a first-order approximation for advection and a second-

order approximation scheme for the diffusion (see [8], Section 8.3.2 and Appendix B.6),

Eq. (3.38) becomes

mt+1
k,i =

N∑
α=1

wtα,i
(
1− 2ctα,iλ1 − λ2

) (
ξtα,i
)k

+
N∑
α=1

wtα,i
(
ctα,iλ1 − c−λ2

) (
ξtα,i
)k

+
N∑
α=1

wtα,i
(
ctα,iλ1 − c+λ2

) (
ξtα,i
)k

(3.39)

with λ1 = Γ∆t/(∆x)2, λ2 = |u|∆t/∆x, c− = (1− u/|u|)/2 and c+ = (1 + u/|u|)/2.

and

ctα,i =

1 for constant diffusivity

ξ0/(ξ
t
α,i + ξ0) for Stokes-Einstein diffusivity.

(3.40)

The constant ξ0 in the Stokes-Einstein diffusivity is added to treat the limit of vanishing

size so that the diffusivity coefficient remains finite.
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The realizability condition in this case is

1− 2ctα,iλ1 − λ2 ⇒ ∆t < min
α,i

[(
2cα,iΓ

∆x2
+
|u|
∆x

)−1
]

(3.41)

Thus, the realizability condition imposes a time-step limitation, similar to a Courant

number limitation.

In the current work, OF is used to discretize the transport equations for the moments, and

the numerical schemes for discretization of advection and diffusion terms can be selected

at runtime (see [17]). The numerical schemes used are summarized in the corresponding

results section (see Chapters 5 and 6).
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3.5 Models for Physical Processes

In a granular system only particles in vacuum are considered that interact through col-

lisions and low range forces with each other. In a two-phase system also the fluid (con-

tinuous phase) and its interactions with the disperse phase (particles) need to be taken

into account. Such a polydisperse multiple phase model can be described by Eq. (B.7)

which considers all possible changes of the NDF due to the interaction with the continuous

phase, or particle-particle interactions.

In our case we focus on models to describe physical processes related to the condensation

of vapor in a very dilute flow. Hence, particle-particle interactions are not important, and

thus one can neglect many terms in Eq. (B.7). Furthermore we consider a population

of particles (or droplets) that move more or less with the fluid, instead of tracking the

trajectory of each particle. Thus we end up with the mesoscale description Eq. (3.8).

With this equation all relevant physical processes that occur in a CPC can be calculated

by using appropriate physical models, which will be presented in the following sections.

3.5.1 Phase Space Advection - Modeling Heat and Mass Transfer

Exchange of mass and heat between the disperse and the continuous phase leads to

change in the internal coordinates. The driving force of mass transfer is a difference of

the chemical potential of the vapor between the particle (or droplet) surface and the

surrounding fluid (in our case a gas). For heat transfer, this would be a temperature

difference between the two phases.

To derive an expression for the rate of change of the internal coordinate, a mass balance

around the particle is considered [8]

ṁp = MWvApjcond (3.42)

where MWv is the molecular weight of the condensing or evaporating vapor (or more

generally the exchanged molecules) that approach (or leave) the particle surface with

area Ap with the flux jcond.

In case of spherical droplets, their size and surface area can be described by only one

internal coordinate, and we obtain [8]

ξ̇ = 2
ṁp

ρlξ2π
(3.43)

It remains to specify the rate of condensation ṁp, which needs to be closed by a

phenomenological model for the condensation process.
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Condensation on liquid droplets

Considering the mass transfer of vapor from a gas to a liquid droplet, we first assume that

the vapor is treated to be in thermodynamic equilibrium on the droplet surface. This

equilibrium can be described using, for example, the Clausius-Clapeyron equation (see

[8], page 158) or more sophisticated expressions (see [10]). Mass transfer to the droplet

surface (which is positive in case of condensation, and negative in case of evaporation) is

modeled based on the model of Abramzon and Sirignano [18]

ṁp = πρDvShξ ln(1 +Bm) (3.44)

where ρ is the gas density, Dv is the diffusion coefficient of the vapor in the surrounding

fluid, and Bm =
Yf1−Ys1
1−Ys1 is the Spalding mass transfer number. Yf1 is the mass fraction

of evaporating molecules in the gas bulk (far away from the surface) and Ys1 is the mass

fraction of vapor molecules near the surface (but in the gas phase). The latter can

be computed from the assumed thermodynamic equilibrium at the surface. Sh is the

Sherwood number, which is exactly two for the case of a spherical particle that does

not move relative to the surrounding fluid. Note, a similar balance can be employed for

the heat transfer to the particle surface [18]. Since we assume that the droplets are in

thermal equilibrium with the surrounding fluid, this balance is not relevant for our work,

though.

Using the above relations Eq. (3.43) and Eq. (3.44), we can write the moment transport

equations for pure condensation as

∂mk

∂t
=

[
2

ξ

ρ

ρl
Dv Sh ln(1 +Bm)

]
kmk−1 =

[
2
ρ

ρl
Dv Sh ln(1 +Bm)

]
kmk−2 (3.45)

Here, G = 2
ξ
ρ
ρl
Dv Sh ln(1 +Bm) is the droplet growth rate.

Note that this is an unclosed set of equations that can be closed using QMOM.

3.5.2 Physical-space Diffusion - Modeling the Particles’ Random Motion

Because of their small size, particles (or droplets) will exhibit a random motion triggered

by the thermal energy of the surrounding fluid. This diffusive process can be described

using the Stokes-Einstein equation [8, p. 187]

Γ =
Γ0

dp
=

kBTf
3πµfdp

(3.46)
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with the fluid temperature Tf , the fluid viscosity µf and the particle diffusion diameter

dp = ξ. The diffusion coefficient can be fed to Eq. (3.8).

A typical value of the Stokes-Einstein diffusion coefficient in a CPC would be about

2.44 · 10−10 m2

s
. Here a particle size of 100nm, a temperature of 308, 15K and a dynamic

viscosity of 1.85 · 10−5 kg
ms

were used, according to a 3790 Gold CPC from [10].

Note, that there is a counterpart of physical-space diffusion in the phase-space. This

phase-space diffusion is related to fluctuations of the growth rate, typically observed in

crystal growth processes. Since fluctuations of the growth rate have not been observed

for the case of condensation on droplets, we have neglected this process.

Modeling only physical-space transport in this manner (where Eq. (3.46) is fed to Eq.

(3.8)), the corresponding moment transport equations are

∂mk

∂t
+ ui

∂mk

∂xi
=
kBTf
3πµf

∂

∂xi

(
∂mk−1

∂xi

)
(3.47)

Note that Eq. (3.47) is an unclosed form because the moment m−1 appears in the source

term of the equation for m0. Hence QMOM is required for this case as well.

3.5.3 Formation of a Disperse Phase - Homogeneous Nucleation

The formation of a disperse phase is generally related to molecular fluctuations that bring

together a number of molecules. This process takes place in supersaturated continuous

phases. In most cases (except when the new phase is locally and globally stable) an energy

barrier has to be overcome, and thus, the new disperse phase (e.g., the droplet) is stable

if it is larger than a critical size. The nucleation process is described by the source term

on the right hand side of Eq. (3.8) and is categorized as a zero-order point process. Thus,

the source term (fortunately) does not depend on the NDF. The nucleation process is

accompanied by mass transfer from the continuous to the disperse phase, whereby the

total mass and momentum of the former must be conserved. With the droplet size as

internal coordinate and the assumption that droplets are formed at a critical size (see

Sec. 3.5.4) the source term can be written as

S1 = Jδ(ξ − dk) (3.48)

where J is the nucleation rate of particles with the property dk. It is assumed that the

velocity of the particles and that of the fluid is equal, an assumption that we have already

employed before. For the nucleation rate of monodisperse droplets of size dk we can write



3.5 Models for Physical Processes 30

[8]

J =
2Dv

d5
mol

exp

(
− 16πσ3ν̃2

3k3
BT

3
f [ln(S)]2

)
(3.49)

Here Dv is the molecular diffusion coefficient of the vapor in the surrounding fluid, dmol

the molecular diameter, Tf the absolute fluid’s temperature , S the supersaturation in

the fluid and ν̃ the molecular volume. σ is the surface tension between condensed vapor

and fluid.

The critical formation size, also known as Kelvin diameter, can be estimated as

dk =
4σν̃

kBTf

1

ln(S)
(3.50)

In CPCs, however, condensation occurs on nano meter sized particles, and hence

the nucleation process is more complicated [12]. The following section will treat the

heterogeneous nucleation process of a working fluid onto seed particles.

3.5.4 Nucleation of Droplets on a Particle Surface - Particle Activation

To initiate a growth process on primary particles (e.g., soot), the vapor has to form

stable droplets that condense onto the particle surface. This is known as heterogeneous

nucleation, contrary to homogeneous nucleation (discussed in the previous chapter)

where the droplets are formed without condensation nuclei.

The easiest way to describe formation of new particles was shown in Sec. 3.3.1, where

nucleation was assumed to take place at zero particle size. In reality, an energy barrier

needs to be overcome before the formation of a droplet from vapor molecules can take

place. Therefore only clusters with an adequately large size (i.e., a critical cluster size)

are stable.

In [10] a mathematical description of the formation of vapor droplets on primary particles

is provided. The calculations were done for butanol as working fluid, which is the case

for many CPC’s. Here, the governing equations of [10, p. 16-19] for the nucleation

process of critical clusters from a gaseous working fluid and, in further consequence, for

the activation process for growth on the seed particles will be summarized.

According to classical nucleation theory the energy barrier for the formation of a critical

cluster (assuming a spherical cluster) is

∆G∗hom =
4

3
π(r∗)2σ (3.51)
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with the critical cluster radius

r∗ =
2σMWv

ρlRgTf ln(S)
(3.52)

Here σ is surface tension between the vapor and the nucleated cluster that is assumed

to be size independent. MWv is the molecular weight of the working fluid and ρl is the

density of the working fluid in liquid phase.

Note that the critical radius r∗ is the half critical formation size dk in Eq. (3.50) since

ν̃ = kBMWv

Rgρl
= NA

MWv

ρl
.

In the heterogeneous nucleation theory it is assumed that a critical cluster is formed on

the particle surface. Under the assumption of negligible line tension and size independent

surface tension σ, the free energy of formation is

∆G∗het = fg ·∆G∗hom (3.53)

where fg is a multiplicative factor (between 0 and 1) taking into account the contact

angle θ between the critical cluster and the curved primary particle surface. Thus, all

the chemical interactions between the primary particle and the forming vapor droplet

(namely the particle affinity of the working fluid) are contained in the contact angle

and hence in this factor. A contact angle of 180 indicates no affinity. In this case

homogeneous nucleation occurs and fg = 1.

A more detailed explanation of the multiplicative factor and its impact on the nucleation

rate is given in Sec. A.

The nucleation rate can now be expressed in an Arrhenius form as [10]:

Jhet = J0
het exp

(
−∆G∗het

kBT

)
(3.54)

Note that if the kinetic prefactor J0
het = 2Dv

d5mol
, the heterogeneous nucleation rate is the

same as the nucleation rate out of [8, sec. 5] given by Eq. (3.49). In [10] the kinetic

prefactor was calculated differently. However, this is of little consequence, since J0
het has

little impact on the nucleation process, that is anyhow very fast once the critical cluster

radius (i.e., droplet size) is larger than the primary particle diameter. Nevertheless, for

applications we will use the kinetic prefactor from [10], which is

J0
het = d2

pπ1029 (3.55)

Note, here the dimension of the factor π1029 is m−5s−1 in order to have consistent units.

An important observation is that heterogeneous nucleation is much faster than homo-

geneous nucleation (see Appendix A for details). Consequently, it is very unlikely that

under typical conditions in a CPC (i.e., supersaturations between 1 and 1.3) homogeneous
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nucleation takes place. Consequently, we simply limit the nucleation rate, such that the

0th moment of the droplet population is always smaller than a specific primary particle

concentration Nprim. Also, the diameter of the droplet in case of heterogeneous nucleation

will be somewhat larger than that in homogeneous nucleation, simply because the droplet

contains the primary particle. Hence, when computing the source terms in the moment

equations, one needs to consider that droplets with an initial diameter

dd,init = 3

√
d3
p + d3

k (3.56)

form. In most practical cases, dd,init will be 1.26 times larger than the particle diameter,

since dk must be close to dp to yield appreciable nucleation rates.

Applying this nucleation model, the moment transport equations for the pure droplet

formation process is [19]

∂mk

∂t
= Jhet (dd,init)

k (3.57)

Finally, note that in case the number concentration of droplets (or activated primary

particles) is not tracked, a probability that a particle gets activated within a certain time

must be specified [10]

Pact(t) = 1− exp (−Jhett) (3.58)

The calculation of such an activation probability is not necessary when using MOM or

QMOM, since we directly follow the evolution of the number concentration of the droplets.

Note, that the fraction of activated droplets can be easily computed based on the droplet

number concentration m0 and the primary particle concentration Nprim.
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3.6 Coupling Models

When nucleation and growth processes takes place in a CPC, mass transport from the

continuous phase (= working fluid) to the disperse phase occurs. The consequent local

depletion of the working fluid concentration must be taken into account in the source

terms of the transport equations for the continuous phase.

Therefore, in this section the source terms for the species equation (= mass transport

equation) and the heat transfer equation will be derived. In general, the condensation

should lead to a local reduction of the saturation ratio due to the mentioned mass trans-

fer. On the other hand, the local temperature should be increased due to release of

condensation heat.

3.6.1 Mass Transport

The mass transport equation can be written as

∂

∂t
ρv +∇ · (ρvuf ) = −Ṡcoupl (3.59)

where ρv is the vapor density, uf is the fluid velocity, and Ṡcoupl is a sink term describing

mass transport from the continuous to the disperse phase.

Inside a CPC there is a certain amount of vaporized working fluid. Thus the vapor density

can be written as a fraction y of the total gas density ρ:

ρv = y ρ with y = Y ysat (3.60)

Here Y is the dimensionless vapor mass fraction and ysat is the saturated vapor mass

fraction. Hence, the mass transport equation (also called species equation) is

∂

∂t
(ρY ) +∇ · (ρY uf ) = −Ṡcoupl

ysat
(3.61)

Nucleation

According to the heterogeneous nucleation theory (see Sec. 3.5.4), the source term for

the mass transport equation can be written as

Ṡnuccoupl = ρl JhetVp = ρl Jhet

(
d3
kπ

6

)
(3.62)

Growth

For growth the source term can generally be written as

Ṡgrowthcoupl = ṁpNp =

∫ ∞
0

ṁp(ξ)n dξ (3.63)

In the case of spherical droplets, where ξ is the droplet diameter and mp = ρl
πξ3

6
, we can
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write

Ṡgrowthcoupl = ρl
π

6
ṁ3 = ρl

π

6

d

dt

(∫ ∞
0

ξ3(ξ)n dξ

)
(3.64)

Using d
dt
f(x) = df

dx
dx
dt

= df
dx
ẋ, the time derivative of the third moment becomes m3 =

3 ξ̇ m2, and thus the source term is

Ṡgrowthcoupl = ρl
π

2
ξ̇ m2 (3.65)

The growth rate ξ̇ is the mass that approaches the spherical droplet surface per time

divided by the surface area. This behavior is expressed in Eq. (3.43).

With the growth model of Abramzon and Sirignano [18],the mass transfer to the disperse

phase is given by Eq. (3.44). Thus, the growth rate is

ξ̇ =

[
2
ρ

ρl
Dv Sh ln(1 +Bm)

]
ξ−1 (3.66)

Finally, the source term for growth becomes

Ṡgrowthcoupl = [ρ π Dv Sh ln(1 +Bm)] m1 (3.67)

Finally Taking into account both, the nucleation and the growth process, the whole mass

transport equation is

∂

∂t
(ρY ) +∇ · (ρY uf ) = − 1

ysat

[
ρπDvSh ln(1 +Bm)m1 + ρlJhet

(
d3
kπ

6

)]
(3.68)

Note, as stated by Hinds [20], the size of the formed droplets has a minor effect to heat

and mass transfer. Therefore, the impact on the transferred mass (and heat) due to

nucleation is very low compared to that resulting from growth (see, Sec. 5.4).

With Eq. (3.68) the change in the vapor mass fraction can be calculated. Nevertheless,

the more interesting quantity concerning nucleation and growth is the supersaturation.

The supersaturation is defined as the ratio of the actual vapor concentration ρv and the

saturation concentration of the vapor ρv,sat. When using the cpcFoamCompressible solver

the quantities are referred to the values at the evaporator patch of the case (see Sec. 6.1).

This means that at the evaporator the saturation ratio equals Y , and thus, we can write

S =
ρv
ρv,sat

=
Y ρrefv,sat
ρv,sat

(3.69)
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Here, ρv,sat is local concentration of the saturated vapor, that can be calculated assuming

ideal gas behavior, via

ρv,sat =
pv(T )MWv

Rg T
(3.70)

Here, pv is the vapor pressure that depends on temperature. Finally we can write the

supersaturation as

S = Y
ρrefv,satRg T

pv(T )MWv

(3.71)

3.6.2 Heat Transfer

Similar to Eq. (3.61) a transport equation for the energy of the continuous phase as a

result of energy conservation can be formulated. In the entire heat transfer equation (see

Appendix Eq. (B.6)) several terms, which are typically small, can be neglected, leading

to

∂

∂t
(ρh) +∇ · (ρuh) = ∇ ·

(
λ

cp
∇h
)

+ Ḣsource (3.72)

Here, h is the specific gas enthalpy, λ is the heat conductivity and cp is the specific heat.

The source term for the heat transfer is related to that of the mass transfer via the

vaporization enthalpy hv due to nucleation and growth.

Thus, once the source terms for the species equation have been computed, the source for

the energy equation is given by

Ḣsource = Ṡcoupl hv (3.73)

The quantity of interest when changing the enthalpy of the system is the temperature

which can be calculated via

T =
h

cp(T )
(3.74)
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4 The qmomCloud Library

In this section the structure and a description of the main scripts of the qmomCloud

library (in the following called qmomCloud) is presented. The qmomCloud is a part of

the cpcFoamCompressible solver. Both solvers are written for the OpenFOAM R© software

package which will briefly be described in the following section.

4.1 OpenFOAM R©

OpenFOAM(OF) is an open source CFD software package which provides a variety of

standard solvers for fluid dynamics, heat transfer, multiphase flows, etc. The software is

written in C++ and is designed for LINUX/UNIX operating systems [17].

OF has two types of applications: [21]

• solver: are applications to solve specific problems in continuum mechanics and are

characterized by a respective differential equation (e.g. heat transfer equation)

• utilities: are applications to generate the geometry of the domain or to manipulate

data

Beside the standard solvers, OF provides the possibility to implement own solvers, which

is also the case for the cpcFoamCompressible solver (see Sec. 2).

A specific simulation case (i.e., a set of initial and boundary conditions, as well as physical

and numerical parameters to be used as input for a solver) is defined in a file structure.

Specifically, text files are used to control the solver, which can be dynamically updated

(OF will monitor text files during the simulations). The most important files are:

• blockMeshDict utility: to define the test domain (geometry, boundaries, mesh, etc.)

• controlDict file: to select the solver to be used for the simulation, adjust time and

time step settings, and define post-processing routines

An application is run by typing the application name in the LINUX shell. For instance,

to generate the simulation domain, the blockMesh command must be used. To run the

case, the name of the solver has to be used as command.

4.2 Architecture of qmomCloud

The purpose of the qmomCloud is to predict the time evolution of the moments of a

particle size distribution by solving the corresponding transport equations. The set

of equations to be solved is determined by the physical models employed to model

the evolution of the particle size distribution (e.g., nucleation or growth of droplets).

Specifically, a set of physical models can be selected at run time, and each physical model

will add a source term to the moment transport equations. Additionally, the source

terms for the coupling to the heat and (vapor) species transport equation are computed

by the solver.
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The software architecture of the qmomCloud library is sketched in Fig. 4.1. The philos-

ophy of an object-oriented programming style (as dictated by C++ language) was used,

and hence the code is split up into classes. These classes are used to generate objects,

which are then able to handle data (e.g., read, store, exchange or write) and perform op-

erations on the data. The core class of the qmomCloud library is the qmomCloud class.

This top-level class manages all calculations, e.g., the function evolve will reconstruct the

size distribution and solve the transport equation. Specifically, the qmomCloud class

reads the user input (see Sec. 4.3), holds objects of all relevant sub-classes (e.g., for phys-

ical models), and exchanges data with the cpcCompressible solver. The qmomCloud.H

and qmomCloud.C file contain the declaration and definition of the qmomCloud class,

and can be found in the appendix (see Sec. E.1).

Figure 4.1: Architecture of the qmomCloud : The superordinated qmomCloud class manages the classes
at the model and solver level.

The first subordinated class is the transportModel class. This class is responsible for

solving transport equations relevant for predicting the particle size distribution. Cur-

rently, only one type of the transportModel class is implemented, namely the moment-

Transport class (see its definition in the momentTransport.C -file, Sec. E.1). In the syntax

of OpenFOAM language, the moment transport equation is implemented in the following

way:

// Assemble transport equation

fvScalarMatrix MEqn

(

fvm::ddt(m_)

+ fvm::div(phi , m_,"div(phi ,m)") //phi is just velocity here

==

fvm:: laplacian(Dp_0_ , m_ ,"laplacian(Dp ,m)")
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+ particleCloud_.momSource ()

);

The equation has the same form as Eq. (3.8), whereas the source term (i.e., the last

term on the right hand side) is calculated by the physicalModel classes of qmomCloud,

and handed over via the function momSource. The first term on the right hand side of

the equation is only used if the Stokes-Einstein diffusion model is deactivated, i.e., a

constant particle diffusivity is assumed (see Sec. 4.3).

The second subordinated class of the solver, called physicalModel , manages the

source terms for the moment equations (see Sec. 3.5), and for the coupling to the

species and energy transport equation (3.6). Three physical models are implemented,

and the definitions of the corresponding classes can be seen in the files nucleation.C,

simpleGrowth.C and diffusionPhysSpace.C. All three files are attached in Sec. E.1. Note

that source terms for the species and energy transport equations (i.e., the continuous

phase) are only calculated for nucleation and growth, since diffusion in phyiscal space

does not affect the continuous phase directly.

The third subordinated class is called qmomSolver . This class is only executed in case

the droplet size distribution needs to be reconstructed, i.e., if unclosed terms exist in the

moment transport equation. For example, when using the growth model acc. to Sec.

3.5.1 or the Stokes-Einstein diffusion model of Sec. 3.5.2), unknown moments have to be

computed from the reconstructed size distribution of the droplets, which is done in the

qmomSolver.C file (see Sec. E.1). Currently, only one type of the qmomSolver class

is implemented, namely the productDifferenceQMOMSol class (see the productDifference-

QMOMSol.C file attached in Sec. E.1). This class contains routines to calculate nodes

and weights in the context of the QMOM approximation using the PD algorithm (see

3.2.2). Furthermore, if the respective switch is activated, the moments are corrected via

the McGraw correction algorithm (see Sec. 3.2.3).

Note, that the qmomSolver class itself contains routines to calculate the weights and nodes

from the reconstructed particle size distribution acc. to Eq. (3.13). Thus, a specific im-

plementation of a qmomSolver only has to provide the reconstructed size distribution.

4.3 How to Use the qmomCloud Library

In this section an overview is provided how a simulation case in OF is set up, and how it

can be executed. The focus of the following discussion is on the use of the qmomCloud

library. More details about the use of standard solvers, as well as more background with

respect to other OF libraries and solvers can be found in [17]. Every simulation case in

OF consists of a directory with a file structure as shown in Fig. 4.2, containing ASCII
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text files or binary files. Text files are used to store data, or control a simulation. The

latter are called dictionaries, since OpenFOAM will look up settings in these files before

and during a simulation run.

Figure 4.2: File structure of an OF case directory for use with the qmomCloud library

The ’controlDict’ file is the central dictionary to control the simulation run. For exam-

ple, the desired solver for a simulation run can be specified. The specification of a solver

is not necessary, however, it facilitates an automated execution of the case. Furthermore,

the time settings (time step, start time, end time, etc.) and some other settings for data

output can be specified in the ’controlDict’ file (the ’controlDict’ file is attached in Sec.

E.2).

In order to allow a more flexible use of the cpcFoamCompressible solver, additional argu-

ments that control the execution of certain routines within the solver will be read from

the ’controlDict’ file. Specifically, four groups of routines of the cpcFoamCompressible

solver can be activated or de-activated by specifying the corresponding key words in the

first lines of the ’controlDict’ file. The following lines summarize the relevant part in the

file:

application cpcFoamCompressible; // compressible solver

minMaxOutputFreq 10; // frequency to report min/max statistics

//Main Switches for Solver Execution Control
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solveFluidFlow; // Activates the calculation of local velocity ,

pressure and density

solveEnergyEqn; // Activates the calculation of the local enthalpy/

temperature

solveSpeciesEqn; // Activates the calculation of the local vapor

concentration

solveParticleEqns; // Activates the update of the particle cloud

information

The first keyword, ’application’, sets the solver to be used, i.e., the cpcFoamCompress-

ible solver in our case. The first three of the sub-solvers can be activated by the keywords

’solveFluidFlow’, ’solveEnergyEqn’ and ’solveSpeciesEqn’. They activate the

solution of the equations for the velocity-, temperature- and concentration fields of the

continuous phase. The keyword ’solveParticleEqns’ activates all relevant calculations

contained in the qmomCloud library, i.e., the calculation of the time evolution of the

disperse phase by solving the moment transport equations.

In the ’fvSchemes’ dictionary the numerical schemes for individual terms in the trans-

port equations are specified. For example, in this file the (numerical) approximations

used to compute the divergence or gradient operators are specified. In the ’fvSolution’

file the error tolerances for solving linear systems of equations (required for all fields

solved for) are specified. Also, other algorithmic details relating to the solution of the

set of (discretized) governing equations are specified (for more details see [17]). Most

important, when using the qmomCloud library, additional fields for the moments need

to be defined in the ’fvSchemes’ and ’fvSolution’ files (the two files are attached in

Sec. E.2). This is because transport equations for the moment set are solved by the library.

The ’qmomProperties’ file (see Sec. E.2) is the core dictionary that contains settings

and parameters for the qmomCloud library. For example, the number of moments to

be calculated, the physical models and their parameters, as well as the output of some

intermediate results can be activated in this dictionary. Moreover, the product difference

solver can be activated, which has to be done when the set of moment equations is

unclosed. Note that whenever growth and physical-space diffusion is modeled, the system

is unclosed, and thus the PD solver has to be activated.

The following settings must be specified before starting a simulation run that uses the

qmomCloud library:

1. Number of Moments

The qmomCloud provides a solution for the moment equations using up to three

nodes and weights. This means that one can track up to six moments for approx-

imating the droplet size distribution. In order to add or remove moments to be



4.3 How to Use the qmomCloud Library 41

tracked, simply a transportModel (e.g., momentTransport) needs to be added to

the list of transport models (decativation can be simply done by commenting out

in C/C++-style fashion or deletion):

transportModels // choose the number of moments 2N you want

to use , the number should be even in case the qmomSolver is used

(

momentTransport //0

momentTransport //1

momentTransport //2

momentTransport //3

// momentTransport //4

// momentTransport //5

);

2. Selection of Physical Models

There are three physical processes that can be modeled: (i) nucleation, (ii) growth,

and (iii) physical-space diffusion. Selecting a model is simply done by adding the

name of the physical model to the list of physical models:

physicalModels

(

simpleGrowth

// nucleation

// diffusionPhysSpace

);

3. Coupling Model
The calculation of the source terms for the energy and the species equation can
simply be done by including the keyword

couplingModel;

Note, coupling does only make sense in case the species and energy equation is

activated in the ’controlDict’ file. Otherwise, the source terms for the continuous

phase transport equations are computed, but the temperature and species (i.e.,

vapor) transport equations are not updated.

4. Activation of the PD solver
To activate the Gaussian quadrature approximation for calculating the source terms
of the moment equations, the product difference solver must be activated by

qmomSolver productDifference;

To deactivate the PD solver, ’qmomSolver’ is set to ’none’.

5. Model Parameters

To specify the parameters of the chosen models, their values has to be set in the
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corresponding sub-dictionary. The name of the sub-dictionary consists of the model

name (e.g., ’nucleation’) and the word ’Props’. For example, settings for the

nucleation model can be made using:

nucleationProps

{

// verbose true;

SName "S";

theta 5; //in grad

dParticle 1e-7;

J0 1e5;

NPrim 100;

cellId2Report 4;

}

6. Output of Intermediate Results

By setting the keyword ’verbose’ to ’true’ in a sub-dictionary, intermediate

results will be displayed and hence can be routed to a log file. This is especially useful

for testing and debugging models. For the output of the nucleation parameters, a

specific cell can be chosen, which is done by setting the keyword ’cellId2Report’

to the value of the respective cell number.

7. Properties of the PD algorithm

The PD algorithm might become unstable due to round-off errors and ill conditioned

moments, especially in situations where moments become very small. Therefore,

it is useful to set the calculation parameters for the moment inversion (i.e., PD)

algorithm appropriately:

productDifferenceProps

{

// verbose true;

iter_max 10;

useCorrector false;

roundPrecision 1e-4;

minConcentration 1e-6;

computeEigenValues true;

}

In the presented example, with ’iter max’ the iteration number in the moment up-

date procedure is limited. With ’useCorrector’ the McGraw correction algorithm

can be switched on, with ’roundPrecision’ the numerical accuracy of the moment

inversion calculation procedure can be specified. ’minConcentration’ specifies

a certain concentration under which the calculation of the nodes is suppressed

by setting the nodes and weights to zero. By setting ’computEigenValues’ to

’false’ the eigenvalues, and thus, the nodes and weights, are guessed (and not
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computed) by assuming zero b-values in the PD algorithm. This setting should

be avoided, unless the simulation suffers major instabilities caused by the PD

algorithm.

The purpose of the ’blockMeshDict’ file is to generate geometry of the simulation

domain, and perform the spatial discretization. The geometry can be generated by

defining the spatial positions of vertices. Using these vertices, geometrical regions (so

called ’blocks’) of the domain can be defined (each block requires eight vertices to

be defined). Afterwards the mesh is generated by discretizing the blocks into cells.

Finally, the boundaries (i.e., exterior surfaces) are specified. For more detailed informa-

tion see [17]. The ’blockMeshDict’ file of the pipe flow case (Sec. 6) is attached in Sec. E.2.

Before running the case, initial and boundary conditions need to be defined in the

’0’ -directory. Here the initial values for all the fields (scalars and vectors in each cell of

the domain) are defined. When using the qmomCloud library, the fields for the moments

(m0 to m5) and for the three nodes and weights have to be defined in the ’0’ -directory

as well.

Finally, a simulation run can be started by executing the .\Allrun-script, which triggers

mesh generation and the execution of the solver.
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5 The 3x3-Test Case

To test the implementation of the qmomCloud library into the cpcFoamCompressible

solver, a simple test case was set up. Specifically, the case consisted of a two-dimensional

box, that was discretized into 3x3 cells in the x- and y-direction (see Fig. 5.1). In order

to investigate the correct functions of the solver and the used models, several types

of testing were performed. In these tests different conditions, like some specific initial

NDF’s, were chosen to evaluate the accuracy of the calculations done by the qmomCloud

library.

In a first step, the correct implementation of the PD algorithm (including the McGraw

correction algorithm) was tested. Afterwards the two physical models, nucleation and

simpleGrowth, were verified. In order to be able to check the results of these two

models, all other physical phenomena, like transport, were switched off. Therefore, in the

controlDict file ’solveFluidFlow’, ’solveEnergyEqn’ and ’solveSpeciesEqn’ were

deactivated, and only ’solveParticleEqns’ was activated.

Finally the coupling models were tested in this simple test geometry in order to see

how the saturation ratio and the temperature is affected by the nucleation and growth

processes.

The original code (see [8, Appendix A1]) for the PD algorithm and the McGraw correction

algorithm were available in Matlab R© (ML). Therefore, the main functionalities of the

QMOM method were tested in ML before it was implemented into the qmomCloud

library and coupled with the cpcFoamCompressible solver.

Hence, the most test results provided in this chapter were compared to results calculated

with ML, where no geometry, and thus, no spatial dependence was considered. Due to

the fact that (spatial) transport phenomena were not considered, the results in every cell

of our test geometry must yield the same results as the ML code.

There are three physical models implemented in the qmomCloud library, whereas one is

physical-space diffusion. Since in this simple 3x3-test case transport was not modeled,

and the implementation of the diffusion algorithm is straight forward and standard in

OpenFOAM, the diffusion model was not tested.

As already mentioned in Sec. 3.4.2, high order numerical schemes for transport in physical

space tend to produce unrealizable moments. However, since for the 3x3-test case there

is no convective transport and no physical-space diffusion, satisfying the realizability

condition, i.e., Eq. (3.39) is not problematic of this test case. Hence, the numerical

schemes for the advection and diffusion terms are irrelevant.
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5.1 Geometry of the 3x3-Test Case

The domain was chosen to be a simple 2D square that is divided into nine cells, three in

each direction (see Fig. 5.1).

Figure 5.1: Illustration of the domain for the test geometry of the 3x3-test case. Each of the nine cells is
labeled with its cell number.

To generate this geometry, the following settings were done in the blockMeshDict file:

• vertices: (000), (100), (110), (010), (0 0 0.1), (1 0 0.1), (1 1 0.1), (0 1 0.1)

• blocks: hex(01234567)(331)simpleGrading(111)

• patches: evaporator (left side), condenser (right side), fixedWalls (top and bottom),

frontAndBack

Note that the patches ’evaporator’, and ’condenser’ are required by the cpcFoam-

Compressible solver, and MUST be specified. This is due to the fact that the solver

cpcFoamCompressible searches for these patches to compute reference quantities needed

during the solution procedure.

The patch ’frontAndBack’ was set to ’empty’ to enable a 2D treatment of the case.

The boundary fields of all the initial field files in the ’0’ -directory of the case have to be

adapted according to the patches in the blockMeshDict file.
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5.2 Reconstruction of the Size Distribution using qmomCloud

The heart of the qmomCloud is the reconstruction of the size distribution, i.e., calculation

of the nodes and weights using the PD algorithm. The PD algorithm uses 2N moments

to first construct the matrix P. Then, using the elements of the matrix P, the N weights

and nodes are computed by calculating the eigenvalues of a Jacobi matrix (see 3.2.2).

The calculation of the weights and nodes in the qmomCloud is done in the ’qmomCloud/-

subModels/qmomSolver/productDifferenceQMOMSol.C’ file, which will be denoted as

PD solver in the following discussion.

The number of moments that should be tracked determines the number of nodes and

weights that are used for the QMOM approximation (see 3.2). For N nodes and weights,

the required number of moments is 2N . Thus, only an even number of moments can be

used.

The nodes and weights are calculated by solving an eigenvalue problem. Since the

standard eigenvalue solver in OF is limited to six eigenvalues, at most three nodes and

weights can be used. Therefore the possible number of moments is limited to maximum

six, corresponding to up to three nodes. However, as stated in [22, p.51], with N = 3

the achievable accuracy is still sufficiently high. The restrictions were implemented

by producing an error that aborts the computation when using a number of moments

greater than six.

The correct implementation of the PD solver was tested based on Exercise 3.1 in [8], with

initial moments (that have to be set in the zero-directory of the case):

m0 m1 m2 m3 m4 m5

1 5 26 140 778 4450

In this example all the intermediate results in OF were compared to the reference results

computed in ML. This was done for N = 2 and N = 3. In Tab. 5.1 it can be seen, that

perfect agreement between the ML and the OF results was found, indicating the correct

implementation of the PD algorithm.

As mentioned in Sec. 3.2.3, the set of moments might become unrealizable due to

numerical errors. To avoid unrealizable moments the McGraw correction algorithm was

implemented in the PD solver. In case the correction algorithm should be used, it has to

be activated in the constant/qmomProperties file. This is done by setting the variable

’useCorrector’ to ’true’ in the ’productDifferenceProps’ sub-dictionary.
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Table 5.1: Comparison of the results of Exercise 3.1 from [8]. The intermediate results of the PD solver
and the obtained moments in OF were checked against the ML code for N = 3.

Matlab OpenFOAM

matrix P



1 1 5 1 24 10 1100

0 −5 −26 −10 −250 −150 0

0 26 140 78 2022 0 0

0 −140 −778 −560 0 0 0

0 778 4450 0 0 0 0

0 −4450 0 0 0 0 0

0 0 0 0 0 0 0





11 1 5 1 24 10 1100

0 −5 −26 −10 −250 −150 0

0 26 140 78 2022 0 0

0 −140 −778 −560 0 0 0

0 778 4450 0 0 0 0

0 −4450 0 0 0 0 0

0 0 0 0 0 0 0



Jacobi matrix J

 5 −1 0

−1 5 −1.414214

0 −1.414214 5


 5 −1 0

−1 5 −1.414214

0 −1.414214 5


nodes (ξ1 ξ2 ξ3)

(
3.2679 5.0000 6.7321

) (
3.267949 5 6.732051

)
weights (w1 w2 w3)

(
0.1667 0.6667 0.1667

) (
0.1666667 0.6666667 0.1666667

)

moments

(
m0 m1 m2

m3 m4 m5

) (
1 5 26

140 778 4450

) (
1 5 26

140 778 4450

)

Also, the correction algorithm was tested and compared to the results of the ML routine

that is based on the McGraw correction algorithm in [8]. This ML code yields the correct

results for Exercise 3.4 in [8]. Thus, the implementation of the correction algorithm was

tested according to this example, where the used moment set was

m0 m1 m2 m3 m4 m5

1 5 26 101 778 4450

Here m3 is changed compared to the previous moment set.

Also for this example all the intermediate results of the correction algorithm were tested

to ensure the correct implementation. The results for N = 3 are listened in Tab. 5.2.

We found no deviations from the ML results, indicating the correct implementation of

the McGraw correction algorithm.

Note, for realistic applications (i.e. to model the formation of a disperse phase in a CPC),

there is no initial NDF. This means that the initial moments are all zero, and the disperse

phase is formed once suitable conditions for nucleation exist. The size distribution of the

formed disperse phase is represented by the moment set. Thus, it is important that our

solver produces a realizable moment set when nucleation takes place. For this reason, the

McGraw correction algorithm was implemented to guarantee realizability requirement.
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Table 5.2: Comparison of the intermediate results of Exercise 3.4 from [8] for N = 3 to test the McGraw
correction algorithm.
The vector di is the ith-order difference vector, k∗ is the index of the moment that has to be changed, ck
is the correction factor of the McGraw correction algorithm, and mk are the corrected moments. Note
that in ML the index of the moment m0 is 1. Thus the index for the same moment is always one higher
than for the OF case.

Matlab OpenFOAM

(d0 d1 d2 d3)



0 1.6094 0.0392 −0.0042

1.6094 1.6487 0.0350 −0.0037

3.2581 1.6836 0.0312 −0.0023

4.9418 1.7149 0.0289 0

6.6567 1.7440 0 0

8.4010 0 0 0





0 1.6094 0.0392 −0.0042

1.6094 1.6487 0.0350 −0.0037

3.2581 1.6836 0.0312 −0.0023

4.9418 1.7149 0.0289 0

6.6567 1.7440 0 0

8.4010 0 0 0



k∗ 4 3

ln(ck) 0.3308554 0.3308554

number of iterations 1 1

(
m0 m1 m2

m3 m4 m5

) (
1 5 26

140.0174 778 4450

) (
1 5 26

140.0174 778 4450

)
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5.3 Physical Models: Nucleation and Growth

The tests for the correct implementation and functionality of the physical models,

nucelation and simpleGrowth, was based on calculating the time evolution of the

moments. The two physical models are presented in Sec. 3.5. Additionally a simpler

growth model was implemented, that was already applied in the reference problem in

Sec. 3.3.2. This simple model was considered because of its low number of parameters,

and the ability of comparing the results to that in [16]. For realistic modeling of a CPC,

however, this simple growth model is not of interest.

To monitor the moment set, as well as the required fields (e.g. Y, S), the corresponding

fields were probed in the cell located in the middle of the domain (cell number 4). This

means that the field values at a specific point (in the middle of the domain) were recorded

for every time step in order to get the time evolution of the quantities. Beside the probe

settings, other preferences regarding to simulation time and the choice of solvers were

done in the controlDict file.

Note that the time settings can vary for specific test cases to ensure realistic conditions.

In order to avoid that the calculations become inaccurate when changing the time

settings, the variable ’adjustTimeStep’ must be set to ’no’ in the controlDict file.

We have combined the implemented models in a way that four different test cases were

performed.

5.3.1 Case 1 - Simple Growth with Power-law Growth Rate (Reference Prob-

lem)

In this first test case the moment equations have the following form:

∂mk

∂t
= k G0 ξ

rmk−1 = k G0mk+r−1 (5.1)

Depending on the exponent r we get either a closed or an unclosed set of equations. For

r = 1 the system is closed and we can calculate the time evolution without QMOM.

For r = 0 the system is unclosed for the moment m0, however, for the simple growth

case we can set m0 = const. since the number of droplets does not change. (Moreover

m0 = const. anyway since the source term vanishes because k = 0.)

Thus, for these two cases no closure method (QMOM in our case) is required and the

time evolution of the moments can be calculated by any ordinary differential equation

solver. In OF this is automatically done when using the cpcFoamCompressible solver.

To verify the implementation of the qmomCloud library, we also calculated the simple

growth example in ML using the explicit Euler-method for the time integration.
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According to the simple homogeneous growth problem in [16], the initial moment set in

is

m0 m1 m2 m3

1 0.5 0.33334 0.25

To select this simple growth model with the power law growth rate G0 and the exponent

r, ’useLocalG’ must be commented out in the ’qmomProperties’ file. Moreover, the

values for G0 and r are set in this file. Specifically, we choose G0 = 1, r = 1, r = 0 and

r = −1.

For the two closed cases (r = 1 and r = 0) the solver was first tested without using the

PD algorithm. For this test excellent agreement with the reference data (i.e., the ML

results) was found.

Afterwards all three cases, r = 1, r = 0 and r = −1, were calculated and the probed

moments (in cell number 4) were compared to the ones calculated with ML. Tab. 5.3

shows the values of the calculated moments for all three power-law cases after the first

time step. The relative error between the OF and the ML results is at most 0.12%, which

is satisfactory small. After four seconds, the relative error did not grow significantly, as

it can be seen in Tab. 5.4.

In Fig. 5.2 the time evolution of the Sauter mean diameter was plotted. The OF results

show excellent agreement with the ML results for both, the closed and the unclosed

cases.

Table 5.3: Comparison of the moments after the first time step (at t = 2 ·10−4 s) calculated using QMOM
in ML and in OF, for the reference problem (power-law cases r=1, r=0 and r=-1). The relative error
between the ML and the OF results was calculated by dividing the differences of the two values by the
ML value.

OpenFOAM Matlab rel. error

r=1 r=0 r=-1 r=1 r=0 r=-1 r=1 r=0 r=-1

m0 1,0000000 1,0000000 1,0000000 1,0000000 1,0000000 1,0000000 0,00% 0,00% 0,00%

m1 0,5001000 0,5002000 0,5006001 0,5002000 0,5004000 0,5011978 0,02% 0,04% 0,12%

m2 0,3334700 0,3335400 0,3337400 0,3336001 0,3337334 0,3341333 0,04% 0,06% 0,12%

m3 0,2501500 0,2502000 0,2503000 0,2503001 0,2504001 0,2506004 0,06% 0,08% 0,12%
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Table 5.4: Comparison of the moments after the first time step (at t = 4 s) calculated with QMOM in ML
and in OF, for the reference problem (power-law cases r=1, r=0 and r=-1). The relative error between
the ML and the OF results was calculated by dividing the differences of the two values by the ML value.

OpenFOAM Matlab rel. error

r=1 r=0 r=-1 r=1 r=0 r=-1 r=1 r=0 r=-1

m0 0,9991118 0,9991118 0,9991118 1,0000000 1,0000000 1,0000000 0,09% 0,09% 0,09%

m1 27,2639200 4,4960030 2,8837720 27,2936167 4,5002000 2,8864040 0,11% 0,09% 0,09%

m2 99,1203200 20,3144800 8,3259380 99,2461338 20,3343333 8,3337333 0,13% 0,10% 0,09%

m3 40506,5300000 92,1573500 24,0453300 40566,8657680 92,2513998 24,0684078 0,15% 0,10% 0,10%

Figure 5.2: Time evolution of the normalized Sauter mean diameter for all power-law cases, r = 1, r = 0
and r = −1, of the reference problem. The calculation was performed using the explicit Euler method in
ML (solid lines) and with the cpcFoamCompressible solver in OF (symbols).

These tests showed the correct implementation of the power-law growth model on the one

hand, and, so far, the correct functionality of the PD solver as a closure method on the

other hand. Hence, we continued to test the more sophisticated growth model according

to Abramzon and Sirignano [18], which will be discussed in the following section.
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5.3.2 Case 2 - Growth according to Abramzon and Sirignano

For this more realistic growth model [18] the moment equations are

∂mk

∂t
= 2

ρ

ρl
Dv Sh ln(1 +Bm) kmk−2 (5.2)

To test the growth model, we assumed that at time zero there is one particle per cubic

meter of size dp. Since this represents a monodisperse distribution, the initial NDF can

be written as

n(ξ) = δ(ξ − dp) (5.3)

and thus, the moments are

mk =

∫ ∞
0

ξkδ(ξ − dp) dξ = dkp (5.4)

In order to deal with realistic conditions according to that in a CPC, the initial droplet

size dp was set to 50nm for the following tests of the growth model. Specifically, the

initial moments were

m0 m1 m2 m3 m4 m5

1 5E-08 2.5E-15 1.25E-22 6.25E-30 3.125E-37

As already mentioned, this growth case requires the reconstruction of the source term

using QMOM. To do so, the variable ’useLocalG’ must be activated in the qmomProp-

erties file. As before, the presented OF results originate from the probe in cell number 4.

Additionally, the following settings were used:

(i) main settings in the ’constant/qmomProperties’ file:

useLocalG;

(ii) time settings in the ’system/controlDict’ file:

deltaT 1e-7;

writeControl adjustableRunTime;

writeInterval 1e-7;

(iii) gas density in the ’constant/thermophysicalProperties’ file:

equationOfState { rho 1.1; }
(iv) liquid density by choosing butanol as working fluid in the ’constant/transportProp-

erties’ file:

binaryDiffusivityModel constant;

diffusingSpecies C4H10On;

diffusingIn air;

(v) initial conditions in the ’0’ -directory:
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-) mass fraction: Y = 1.1;

-) temperature: T = 319.15;

With these settings butanol was chosen as working fluid. The cpcFoamCompressible

solver calculates the required species quantities according to Sec. C of the Appendix,

resulting in an initial growth rate of G = 2
dp

ρg
ρl
ShDv ln(1 +Bm) = 1.08478 · 10−2 m

s
.

For the moment set of a monodisperse NDF, the original PD algorithm from [8] fails due

to a division through zero when calculating the coefficients of the continued fraction (see

Sec. 3.2.2). This behavior of the algorithm was contrary to our expectations and the

incorrect statement in [8, p. 53] that a failure only occurs when dealing with distributions

that have a zero mean value (i.e. m1=0).

To avoid infinite values, and thus, meaningless nodes and weights, the PD algorithm

from [8] was modified. Moreover, the calculation of complex nodes and weights was

undermined in this modified version of the PD algorithm.

In order to proof the reliability of the PD solver, the modifications were first done in the

ML-code. With the explicit Euler algorithm the the moment update is

mt+1
k = mt

k + k ·∆t ·G · dp ·mt
k−2 (5.5)

Since the PD solver had problems with handling a monodisperse distribution, we first

used the following moment update procedure:

mt+1
k = mt

k + k ·∆t ·G · dp · dk−2
p (5.6)

Note, this procedure is only valid for the first update, because the moments have changed

after the first time step. However, under the assumption of a monodisperse distribution

the procedure can also be applied for further time steps by setting the droplet diameter

dp to the value of the (arithmetic) mean particle size m1/m0. This allows to compare the

results from the modified PD algorithm with a solution were no closure is required.

However, beside the mentioned problems, further changes in the PD solver had to be

done in order to ensure stability when dealing with a monodisperse distribution. For

example, deviations from the ideal shape of the matrix P for the monodisperse case due

to numerical round-off errors were found.
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The analytical expression for the matrix P in case of a monodisperse distribution is:

P =



1 1 d1p 0 0 0 0

0 −d1p −d2p 0 0 0 0

0 d2p d3p 0 0 0 0

0 −d3p −d4p 0 0 0 0

0 d4p d5p 0 0 0 0

0 −d5p 0 0 0 0 0

0 0 0 0 0 0 0



Tab. 5.5 shows the matrices calculated in ML and OF for a monodisperse particle of

size dp = 50nm. The round-off errors lead to deviations (that are different for ML and

OF) which cause instabilities in the further calculation procedure of the PD algorithm.

Specifically, non-zero entries in colums four and up are notices, which result from the

difference of two numbers of similar magnitude that are not equal.

Table 5.5: Comparison of matrices P calculated in ML and in OF after the first time step.

Matlab



1,0000E+00 1,0000E+00 5,0000E-08 0 1,18E-45 -5,6291E-84 -2,76E-83

0 -5,00E-08 -2,50E-15 -2,35E-38 0 -5,4216E-91 0

0 2,50E-15 1,25E-22 0 -2,09E-60 0 0

0 -1,25E-22 -6,25E-30 4,18E-53 0 0 0

0 6,25E-30 3,13E-37 0 0 0 0

0 -3,13E-37 0 0 0 0 0

0 0 0 0 0 0 0



OpenFOAM



1,0000E+00 1,0000E+00 5,0000E-08 3,9443E-31 -9,8608E-46 -5,6291E-84 -6,1494E-136

0 -5,0000E-08 -2,5000E-15 0,0000E+00 1,4271E-53 -5,4216E-91 0

0 2,5000E-15 1,2500E-22 7,0065E-46 -3,7709E-61 0 0

0 -1,2500E-22 -6,2500E-30 -4,1762E-53 0 0 0

0 6,2500E-30 3,1250E-37 0 0 0 0

0 -3,1250E-37 0 0 0 0 0

0 0 0 0 0 0 0



Consequently, the following modifications of the qmomCloud library were made:

• Since the deviations of the ideal results originate from rounding errors, the round

precision in the calculation procedure was made to be adjustable. The adjustment

is done in the ’qmomProperties’ file by setting the variable ’roundPrecision’.

• The new PD solver checks whether the sum of the weights equals unity. If the

sum is not exactly unity, the weights are distributed equally to the positive nodes.

Furthermore, negative nodes are avoided, which are meaningless when dealing with

the particle size as internal coordinate.
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• For N = 3 it might still happen that complex nodes occur. To avoid this, a new

option is provided that takes just the a-values (i.e., the diagonal elements) of the

jacobi matrix as eigenvalues. In fact, this option is exactly valid in case the b-values

are small. To choose the method, the new variable ’computeEigenValues’ is set

to ’false’ in the ’qmomProperties’ file.

Since with this option the nodes and weights are guessed rather than computed, the

solver will display a warning when setting this variable to ’false’. However, for

the monodisperse case there should not be any deviations between the two options.

Hence, we ran a growth simulation for initial droplets with a size distribution of a

finite width. For that we chose a log-normal distribution with µ′ = 5 · 10−8 and

σ′ = 0.1 according to Eq. (B.8), and thus, the moments are calculated according to

Eq. (B.9).

For the chosen growth settings no countable deviations in the results occur in com-

parison with setting the variable to ’true’, as it is shown in Fig. 5.3.

• Another issue was the precision for the moments solver itself, that can be adjusted

in the ’fvSolution’ dictionary. In early tests the ’tolerance’ was set to 1e-10 and

’relTol’ was set to 1e-3. It was found that setting the tolerances to 1e-32 and 1e-6,

respectively yielded much better results.

(The proper choice of the precision is indicated by the output ’No Iterations xx’

in the log file of the simulation run, where xx should always be bigger than zero!).

• A further problem might arise in case of a high growth rate. In realistic applications

the growth rate is mainly determined by the supersaturation that occurs inside a

CPC. If the saturation ratio causes a high growth rate and the time step was chosen

too large, stability problems might arise. This behavior becomes clear when consid-

ering Eq. 5.5.

Nevertheless, the qmomCloud (in which our models are implemented) does not pro-

vide a time step refinement to avoid instabilities. Therefore we included a limitation

of the growth rate with a limiting growth factor, that can be specified by the user

in the ’qmomProperties’ file of the case.

• In cases where the set of moments becomes ill-conditioned, the higher order moments

might become unstable (i.e., their magnitude might fluctuate). In order to be able

to suppress these instabilities, a moment limitation was implemented that is detailed

in the next paragraph.
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Figure 5.3: Time evolution of the Sauter mean diameter L32 for the growth of droplets with a log-normal
size distribution with µ′ = 5 · 10−8 and σ′ = 0.1, calculated with ML (red solid line), with OF using
the correct eigenvalues by setting ’computeEigenValues’ to ’true’ (blue triangles) and with OF using
guessed eigenvalues by setting ’computeEigenValues’ to ’false’ (green triangles). The initial moment
set m0 to m5 was calculated according to Eq. (B.9). The simulation was run up to 1ms with a time step
of 10−7 s.

Limitation of the moments

In the course of our tests it turned out that in some cases the higher order moments

become unstable due to numerical errors. This was especially observed in case of very

low moment values.

Therefore, we have implemented a limitation of the moments that can be parametrized

by the user. The limitation is based on the method of moments with interpolative

closure (MOMIC). This method assumes that the higher order moments obey a poten-

tial law (see [8, Fig. 7.1]), and hence an inter- or extrapolation is easily possible. In

the following this limitation of individual moments during droplet growth is demonstrated.

When applying the moment limitation algorithm, moments with order higher than a

specified threshold are limited by the expected (i.e., extrapolated) moment mexp
k :

mexp
k = m0

(
mk−1

m0

) k
k−1

(5.7)

Specifically, when updating the moment set, which is calculated according to Eq. (5.5),

the moment is bounded to the interval around mexp
k . This interval is determined by the
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limitation factor d.

mk =

mk for mexp
k /d ≤ mk ≤ mexp

k · d

mexp
k else

(5.8)

The limitation factor d can be specified by the user in the qmomProperties file by setting

the variable ’momentLimitFactor’ in the ’momentTransportProps’-sub dictionary.

Moreover, the moment threshold (i.e., the order of the moment above the limitation is

employed) can be specified by setting the variable ’limitMomentAbove’. Moments with

an order higher than this threshold will be limited, while for lower-order moments no

limitation will be applied.

The effect of the moment limitation in a growth problem, with the same growth settings

as before, is demonstrated next. We only use four moments and the moment limitation

factor was set to d = 5. The moment ID for the limitation was set to three, thus, only

the third moment will be limited. The time step for this test was chosen to be 10−4 s

and the simulation was run for 10 steps.

Tab. 5.6 shows the initial moments, as well as the moments after the first step. Since the

moment m3 is not in the limitation interval (m3 is smaller than the lower limit mexp
k /d),

it is corrected by increasing m3 to mexp
3 . Also for the subsequent time steps the limitation

algorithm yielded proper results.

In Fig. 5.4 the time evolution of the mean droplet size L32 is shown, and compared to

the unlimited case. One can observe the larger mean size of the droplets after the first

time step as a result of the limitation algorithm. However, after the second time step

the mean size is reduced compared to the unlimited case due to the limitation. From the

third time step onwards no limitation of the moments were made. Thus, the mean size

grows in a similar manner as in the unlimited case.
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Table 5.6: Moment limitation after the first time step: The table lists the moments at the beginning at
t = 0 s, the moments after the first step at 10−4 s and the corrected moments after the first step. The
ID of the limited moment is 3, thus m3 is corrected with a limitation factor of d = 5.

t = 0 s t = 0.1 ms t = 0.1 ms, corrected

m0 1.000000E-00 1.000000E-00 1.000000E-00

m1 5.000000E-08 5.366117E-06 5.366117E-06

m2 2.500000E-15 5.341117E-13 5.341117E-13

m3 1.250000E-22 3.999588E-20 3.903445E-19

mexp
3 mexp

3 · d mexp
3 /d

3.903445E-19 1.951722E-18 7.806891E-20

Figure 5.4: Moment limitation in case of pure growth affecting the time evolution of the Sauter mean
diameter L32. For the limitation a moment limitation factor of d = 5 was used. The moment ID was set
to 3, thus, the moment m3, and therefore also L32 was corrected. The simulation was run with a time
step of 10−4 s for 10 steps.

Note, for the monodisperse case the extrapolation formula Eq. (5.7) yields correct results

since mk = dkp (see Eq. (5.4)). However, one should be aware that for distributions with

finite width the accuracy of the extrapolation formula Eq. (5.7) depends on the distribu-

tion’s width. This can be shown by considering a log-normal distribution, according to

Eq. (B.8), with µ′ = 4 · 10−8 (acc. to a typical droplet size of 40nm) and different values

of σ′. In this case the extrapolation formula for the moment limitation Eq. (5.7) becomes

mexp
k =

[
exp

(
(k − 1)ln(µ′) +

(k − 1)2σ′2

2

)] k
k−1

(5.9)
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We now consider applying the limitation for the moment m3. In Tab. 5.7 the values of

the exact moment and of the extrapolated moments according to Eq. (5.9) are shown for

different values of σ′. One can see that the accuracy of the method increases significantly

with decreasing σ′. This means that the wider the distribution, the bigger is the error of

the moment limitation.

Table 5.7: Moment limitation for a log-normal distribution function: The table shows the exact moment
m3 of a log-normal distribution with µ′ = 4 · 10−8 and different values of σ′, calculated according to Eq.
(B.9), in comparison to the extrapolated moment mexp

3 according to Eq. (5.9). Additionally, the relative
error rel.Error = |m3 −mexp

3 |/m3 is listened.

σ=1 σ=1/10 σ=1/100 σ=1/1000

m3 5.761096E-21 1.003720E-22 6.694578E-23 6.428865E-23

mexp
3 1.285474E-21 8.639096E-23 6.594909E-23 6.419229E-23

rel.Error 77.687% 13.929% 1.4888% 0.1499%

Finally, for pure growth, we want to test if the McGraw correction algorithm affects

the growth behavior. The McGraw correction algorithm was tested based on Exercise

3.4 from [8]. In Sec. 5.2 it is shown that the correction algorithm works properly for

this simple example. However, during our tests within the 3x3-test case we occasionally

observed instabilities when activating the correction algorithm, especially for long term

tests. Therefore, we have tested the growth example with a much larger time step of

∆t = 10−5 s. The simulation was run up to 1 s with different settings of the variables

’useCorrector’ and ’computeEigenValues’.

When setting both, ’useCorrector’ and ’computeEigenValues’ to ’true’, the higher

order moments (m3, m4 and m5) became unstable as shown in Fig. 5.7. Hence, the

combination of these two settings is not recommended for pure growth problems.

When deactivating the eigenvalue computation (i.e., setting ’computeEigenValues =

true’), the simulation ran without instabilities up to 1 s. However, the growth behavior

changes when activating the ”corrector”. As shown in Fig. 5.5 (a), the droplets growth

is reduced compared to the cases where the correction algorithm was switched off.

Moreover, in 5.5 (b) it can be seen that turning off the eigenvalue computation does not

change the growth behavior.

Another finding is that when calculating the mean droplet size from different moments.

As shown in Fig. 5.5 (a) L10 is different from L21 and L32 if the correction algorithm

is activated. Since we deal with a monodisperse droplet size distribution all three mean
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droplet sizes must yield the same. When deactivating the ”corrector”, all three mean

sizes show perfect overlapping, as it should be (see Fig. 5.5 (b)).

This example has shown that the McGraw correction algorithm might fail, and thus,

we recommend to avoid the usage of this option. In further tests we will set the

’useCorrector’ to ’false’.

(a) (b)

Figure 5.5: Effect of the McGraw correction algorithm on the growth behavior of droplets with an initial
size of 50nm: (a) effect of the variable ’useCorrector’ for ’computeEigenValues’ = ’false’. (b)
effect of the variable’computeEigenValues’ for ’useCorrector’ = ’false’. The simulation was run
with a time step of ∆t = 10−5 s for 105 steps.

(a) (b)

Figure 5.6: Effect of the McGraw correction algorithm on the growth behavior of droplets with an initial
size of 50nm with respect to the different mean sizes: The figures show the time evolution of three
characteristic droplet diameters, i.e., L10, L21 and L32, when setting the variable’useCorrector’ to
’true’ (a) and ’false’ (b). The variable’computeEigenValues’ was set to ’false’. The simulation
was run with a time step of ∆t = 10−5 s for 105 steps.



5.3 Physical Models: Nucleation and Growth 61

Figure 5.7: Effects of the McGraw correction algorithm on the growth behavior of droplets with an initial
size of 50nm with activated eigenvalue solver: The figure shows the time evolution of the moments up to a
point where instabilities in the higher order moments occur. The simulation was run with ’useCorrector

true’ in combination with ’computeEigenValues true’, and a time step of ∆t = 10−5 s. For the
unstable moments m3, m4 and m5 only the last few time steps are plotted in order to see the instabilities.
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5.3.3 Case 3 - Nucleation

Since in a CPC high nucleation rates might exist, which might cause temporal jumps in

the moment set, the robustness of the solver was tested for extreme nucleation conditions.

Also, the results obtained with OF were compared to that of the ML code.

The moment equations for the pure nucleation case have the following closed form:

∂mk

∂t
= Jhet (dd,init)

k (5.10)

The nucleation rate Jhet is calculated according to the heterogeneous nucleation model in

Sec. 3.5.4.

Before dealing with nucleation conditions like they occur in a CPC we want to investigate

the general behavior of the heterogeneous nucleation model. Hence, for the following tests

we used the moment set of Sec. 5.3.1 and the nucleation settings in the ’qmomProperties’

file were:

• J0
het = 30m−3s−1

• Nprim = 100m−3

• dp = 10−7m

• θ = 0◦

Note that the kinetic prefactor J0
het was chosen to be very small (compared to real appli-

cations) in order to get a high nucleation time in the range of seconds. The maximum

value of the particle number concentration Nprim is 100. The values for the working fluid

properties were taken for n-butanol.

Note: to select n-butanol as the working fluid, the name for ’diffusingSpecies’ in the

transportProperties dictionary must be set to ’C4H10On’.

For n-butanol and the above settings, the Kelvin diameter dk is about 34nm. Since

the primary particles are bigger than the Kelvin diameter, and because of the assumed

perfect wetting, the nucleation rate J ≈ J0
het (see App. A).

For this example (uniform initial size distribution) only the moment m0 changes due to

nucleation while the higher order moments remain nearly constant, since dd,init in Eq.

(5.10) is very small. Contrary to that, in case of a zero initial moment set (see below)

also the higher order moments change due to nucleation.

An important property of the heterogeneous nucleation model is that the nucleation

rate is vanishingly small as long as the primary particles are smaller than the Kelvin

diameter. For perfect wetting, the nucleation rate suddenly increases to J0
het in case the

seed particle size exceeds the Kelvin diameter. For higher values of the contact angle the

nucleation rate changes more slowly (see Fig. A.3).
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In order to test this behavior, the primary particle diameter was varied. Fig. 5.8

shows the time evolution of m0 for three different primary particle sizes, dp = 10nm,

dp = 100nm and dp = 1µm, for (a) perfect wetting, as well as (b) for a contact angle of

θ = 5◦. In the case of dp = 10nm, the particles are smaller than dk. Hence, they do not

have a sufficiently large size to activate the nucleation process and therefore m0 remains

constant.

For larger particles (i.e., dp = 100nm and 1µm) m0 grows with J0
het for the case of

perfect wetting. For θ = 5◦, it can be seen that the nucleation rate depends on the

primary particle size. For dp = 1µm m0 grows more quickly than for dp = 100nm. This

behavior agrees with the predictions of the heterogeneous nucleation theory.

Another observation is the correct limitation of the droplet concentration by the particle

concentration (thus, only heterogeneous, but no homogeneous nucleation is predicted):

in case the maximum particle concentration Nprim is obtained, m0 remains constant and

(heterogeneous) nucleation stops.

Furthermore, the impact of the contact angle on the nucleation rate was investigated.

For that, the contact angle was varied from θ = 0◦ to θ = 20◦ in 5◦ steps. The primary

particle size was set to dp = 100nm.

The results are shown in Fig. 5.9. It can be seen, that the nucleation rate decreases with

increasing contact angle, according to the predictions of the heterogeneous nucleation

theory.

(a) (b)

Figure 5.8: Heterogeneous nucleation of n-butanol vapor on seed particles with different sizes: time
evolution of moment m0(t) for different primary particle sizes in case of (a) perfect wetting, and (b)
with a contact angle of θ = 5◦. The solid lines show the calculated time evolution using the explicit
Euler-method in ML, while the symbols show the results obtained with the cpcFoamCompressible solver
in OF.
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Figure 5.9: Heterogeneous nucleation on seed particles with a size of 100nm for different contact angles:
time evolution of the moment m0(t) for contact angles of 0◦, 5◦, 10◦ and 20◦. The solid lines display
the calculated time evolution using the explicit Euler-method in ML, while the symbols show the results
obtained with the cpcFoamCompressible solver in OF.

Note that for all test cases the results obtained with ML on the one hand and OF

on the other hand show excellent agreement. Thus, the tests indicate the correct

implementation and the proper behavior of the nucleation model conforming to the

heterogeneous nucleation theory.

Nevertheless, in a CPC we have different conditions. On the one hand the disperse phase

is formed by heterogeneous nucleation. Thus, the initial moments set equals zero, and

suddenly becomes finite when the nucleation conditions are achieved. On the other hand

we deal with higher number concentrations, and nucleation rates that might not be re-

solvable within one time step. Thus, more extreme nucleation conditions were considered

next.

Specifically, the required fields, Y and T , were set to 1.1 and 319.15K, respectively.

Again, n-butanol was chosen as working fluid, and the required species parameters were

computed according to the equations and parameters of Sec. C.

The nucleation parameters were modified to:

• J0
het = 7.8537 · 1014m−3s−1

• Nprim = 1010m−3

• dp = 5 · 10−8m

• θ = 0◦

So now we deal with 50nm-particles and the number concentration of particles is 1010m−3.

The prefactor J0
het was chosen to be d2

pπ1029m−3s−1, according to [10]. The resulting value

for Jhet is 7.85397 · 1014m−3s−1, and the value for the initial droplet diameter dd,init is

54.6nm.

It is important to recognize that this kinetic prefactor J0
het causes an extremely fast

nucleation. This can lead to problems in the moment update procedure. Specifically, one
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could update the moment using:

mt+1
k = mt

k + ∆t · Jhet · (dd,init)k−1 (5.11)

Clearly, the time step has to be chosen sufficiently small to avoid an overshoot of the

moment set due to nucleation. Consequently, a typical time step would be in the order

of 10−9 s. However, this would cause an enormous run time which is not practicable.

Consequently, the integration algorithm was modified by limiting the nucleation rate

such that an overshoot cannot occur.

For a first test we used a time step of 10−9 s and afterwards it was increased to 10−4 s.

In the case of ∆t = 10−9 s the moments grow linearly until m0 = Nprim, as shown in Fig.

5.10. For ∆t = 10−4 s, Nprim is already reached after the first time step, however, we end

up with the same moment values as before.

This example shows that the behavior of the moments is stable despite the large time

step and the fast nucleation process.

Figure 5.10: Formation of the disperse phase on 50nm seed particles with two different time steps: the
time evolution of the moments calculated in OF is shown for a time step of ∆t = 10−9 s (red line) and
for a time step of ∆t = 10−4 s (blue symbols). The nucleation rate was Jhet = 7.85397 · 1014m−3s−1. In
the former case of ∆t = 10−9 s the moments grow continuously up to the point where m0 = Nprim, while
in the latter case of ∆t = 10−4 s the formation of droplets is completed within one time step.
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5.3.4 Case 4 - Nucleation and Growth

The moment transport equations that take into account nucleation and growth are

∂mk

∂t
= J (dd,init)

k +

[
2
ρ

ρl
Dv Sh ln(1 +Bm)

]
kmk−2 (5.12)

The reliability of the two models (i.e., nucleation and growth) has already been tested

separately for specific initial distributions (monodisperse, log-normal, uniform, etc.) of

the droplet size. However, in a CPC the disperse phase is formed only at certain conditions

(i.e., sufficient high supersaturation of the continuous phase), and generally, the formation

takes place in the condenser. Before the fluid enters the condenser there is no disperse

phase, and thus, all the moments are zero.

In order to demonstrate the reliability of our solver for these conditions, the following test

case will use a zero initial moment set.

For heterogeneous nucelation we used the same settings as in the previous section, which

were:

• dp = 5 · 10−8m

• J0
het = 7.853975 · 1014m−3s−1

• Nprim = 1010

• θ = 0◦

With the chosen settings we get an initial nucleation rate of Jhet = 7.853975 ·1014m−3s−1.

The growth settings were the same as in Sec. 5.3.2, leading to an initial growth rate of

G = 2
dd,init

ρg
ρl
ShDv ln(1 + Bm) = 9.893177 · 10−3m

s
. Also for this combined test case a

comparison between the ML code and the OF calculation was performed. The time step

was set to ∆t = 10−4 s and the simulation time was 1 second.

In Fig. 5.11 the time evolution of the moments is shown. First, it can be seen that

the ML and OF results show perfect agreement, indicating the correct implementation

in OF. Furthermore, the combined model predicts a rapid increase of the 0-th moment

due to nucleation, as well as the subsequent growth process as it should be. Note that

m0 remains constant while the higher order moments change due to growth, because only

heterogeneous nucleation takes place.

In Fig. 5.12 the time evolution of the mean droplet sizes, L21 and L32, is shown. Also here

the formation jump at the first time step can be seen, whereas the mean size changes from

zero to the value of the initial droplet diameter dd,init, which is 54.83nm with the used

settings. The two mean diameter, L21 and L32, show perfect overlapping, which indicates

the correctness of the formed moment set.
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Figure 5.11: Nucleation and Growth on 50nm seed particles: time evolution of the moments m0 to m5

in ML (solid line) and OF (symbols) for a nucleation rate of Jhet = 7.853975 · 1014m−3s−1 and an initial
growth rate of G = 9.893177 · 10−3m

s .

Figure 5.12: Nucleation and Growth on 50nm seed particles: time evolution of characteristic droplet
diameters L21 and L32 in ML (lines) and OF (triangles) for a nucleation rate of Jhet = 7.853975 ·
1014m−3s−1 and an initial growth rate of G = 9.893177 · 10−3m

s .



5.3 Physical Models: Nucleation and Growth 68

Up to now we used a seed particle size of 50nm, and thus, had always sufficient large

particles for heterogeneous nucleation. Next, we consider nucleation and growth behavior

for different primary particle diameter for a supersaturation of S = 1.1, which yields a

Kelvin diameter of 33.5nm. In Fig. 5.13 (a) the nucleation and growth behavior for

different seed particle sizes is shown. The seed particles with sizes below dk (17.7nm

and 23nm) are not activated, since the heterogeneous nucleation factor fg is finite and

the resulting nucleation rate is zero. For the bigger particles (40nm and 100nm) droplet

growth starts from their initial droplet sizes.

When increasing the supersaturation to S = 1.2, the growth rate changes from G =

ξ−15.4239 · 10−10m
s

to G = ξ−11.0793 · 10−9m
s

, and the Kelvin diameter becomes dk =

17.49nm. As shown in Fig. 5.13 (b), under these conditions also the smaller particles

activate, and droplets form.

Another aspect, shown in the figures, is that once the nucleation threshold is exceeded, the

smaller particles grow faster than the bigger ones. Therefore, differences due to different

initial droplet sizes become smaller. Hence, the long term behavior of the droplet sizes

for different seed particles is quite similar. Since the growth rate is higher for a saturation

ratio of 1.2, the final (mean) droplet size is larger compared to the case of S = 1.1.

(a) (b)

Figure 5.13: Nucleation and growth of droplets for different seed particle sizes (17.7nm, 23nm, 40nm
and 100nm) at a saturation ratio of (a) S = 1.1 and (b) S = 1.2. The growth rate in case of S = 1.2 is
G = ξ−11.07928 · 10−9m/s, whereas for S = 1.1 it is G = ξ−15.4236 · 10−10m/s.
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5.4 The Coupling Models

The last test within the 3x3-test geometry should prove the reliability of the coupling

models as documented in Sec. 3.6. The calculation of the source terms (heat and

mass) is performed in the files for the two relevant physical models, ’nucleation.C’ and

’simpleGrowth.C’.

The coupling can be switched on in the ’constant/qmomProperties’ dictionary of the

’qmomTest 3x3’ tutorial case by activating the keyword ’couplingModel’. Moreover,

the transport equations for energy and mass of the continuous phase have to be activated

in order to update the saturation ratio and the temperature. Hence, the keywords

’solveEnergyEqn’ and ’solveSpeciesEqn’ have to be activated in the ’system/con-

trolDict’ dictionary.

For the following tests of the coupling model we want to track the quantitative changes

in the affected quantities, Y , S and T . Their initial values were set in the ’0’ -directory of

the case. For Y we used an initial value of 1.1, for T we set the initial value to 319.15K.

Further, we check the correct behavior of the solver, which means that the mass (and

heat) transfer between the continuous and the disperse phase has to stop when S has

decreased to one, i.e., the droplet growth process is terminated. Moreover, for pure

nucleation the mass (and heat) transfer should also stop in case all seed particles have

been activated, and a droplet has formed on their surface (i.e., m0 = Nprim).

In order to compare the predicted change in the above mentioned quantities, it is useful to

derive analytical expressions for the change of continuous-phase properties. Specifically,

the mass transport equation without flow (see, Eq. (3.68)) is

∂

∂t
(ρY ) = −Ṡcoupl

ysat
(5.13)

Since ρ is constant for this test case, we obtain the change in Y during a short time

interval ∆t (in which the coupling source term is constant) as:

∆Y = −Ṡcoupl
ysat ρ

∆t (5.14)

In a similar manner the change in the enthalpy within a short time step can be calculated

from Eq. (3.72) and Eq. (3.73) resulting in

∆h = −Ṡcoupl hv
ρ

∆t (5.15)

The change in the temperature within a short time intervall can be approximated by

(under the assumption that cp does not change significantly with the temperature, see
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Eq. (3.74))

∆T ≈ ∆h

cp
(5.16)

When knowing the change in the mass fraction and the temperature, the change in the

supersaturation can be calculated, with the use of Eq. (3.71), as

∆S =

(
Y t+∆t T t+∆t

pv(T t+∆t)
− Y t T t

pv(T t)

)
ρrefv,satRg

MWv

(5.17)

Here, ρrefv,sat is the reference concentration of the saturated vapor at the evaporator patch

of the domain, and is displayed in the log file of the case. The vapor pressure of the

working fluid pv(T ) is computed by the cpcFoamCompressible solver using Eq. (C.12).

Note, because of the temperature dependence of S and pv, and because of the temperature

increase due to condensation, the reduction of the supersaturation S will be higher than

the decrease of the mass fraction Y .

With the three formulas, Eq. (5.14), Eq. (5.17) and Eq. (5.16) we can reproduce the

correct implementation of the coupling model by checking the changes in the respective

field values within one time step.

5.4.1 Coupling - Nucleation

For the case of pure nucleation, the mass source is

Ṡnuccoupl = ρl Jhet

(
d3
kπ

6

)
(5.18)

As mentioned in Sec. 3.6, when dealing with typical seed particles for a CPC (i.e., a

particle size in the range of 50nm), the impact of nucleation on the vapor concentration

is rather small. In order to see a countable effect, we enhance the effect of nucleation

by assuming bigger seed particles. For the following test we used a seed particle size of

dp = 50µm, leading to a nucleation rate of J = 7.853975 · 1020m−3s−1. Furthermore, for

the following coupling tests in case of pure nucleation, we used Nprim = 1015m−3, and

the time step was set to ∆t = 10−6s. With the working fluid parameters (see Sec. C

in the Appendix), we obtain a Kelvin diameter of dk = 33.5nm and a liquid density of

ρl = 791.49 kg/m3. Thus, we obtain a mass source of Ṡnuccoupl = 12.1899 kg
m3s

.

With a mass fraction of Y = 1.1, a saturation mass fraction of ysat = 0.0933, a total gas

density of ρ = 1.1 kg/m3 and a time step of ∆t = 10−6s, using Eq. (5.14) we obtain the

following change in the mass fraction within one time step as:

∆Y = −1.1877 · 10−4 ⇒ Y t+∆t = Y t + ∆Y = 1.099881
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Furthermore, using Eq. (5.15) and with hv = 685087.4 J
kg

(acc. to Eq. (C.15)) we obtain

a change in the enthalpy of ∆h = 8.06718 J
kg

. The heat capacity was set to cp = 1005 J
kg

in the thermophysicalProperties dictionary, which is the value for air under typical

conditions. Hence, with Eq. (5.16) we obtain

∆T = 7.6 · 10−3K ⇒ T t+∆t = T t + ∆T = 319.1576K

At the chosen temperature of T t = 319.15K the vapor pressure is pv(T
t) = 3645.394Pa.

With T t+∆t = 319.1576K we get a vapor pressure of pv(T
t+∆t) = 3647.049Pa. Thus,

with ρrefv,sat = 1.018282 · 10−1 kg
m3 , Rg = 8.314 J

molK
and MWv = 74.123 g

mol
we obtain the

change in the supersaturation within one time step according to Eq. (5.17) as

∆S = −5.889 · 10−4 ⇒ St+∆t = St + ∆S = 1.099411

Note, since Jhet is zero if m0 has reached Nprim (which means that a liquid film has formed

on all particles) the mass and heat source for coupling is zero as well. However, if m0 is

lower than Nprim, the nucleation rate is non-zero and has a value of :

Jredhet =
Nprim −m0

∆t
(5.19)

Hence, the mass source is:

Ṡnuc,redcoupl = Ṡnuccoupl

Jredhet

Jhet
(5.20)

Thus, after the first time step (at t = 10−6 s) m0 = 7.853975·1014m−3. After the next time

step m0 will reach Nprim. Hence, according to Eq. (5.19) the reduced nucleation rate is

Jredhet = 2.146025 · 1020m−3s−1 leading to a reduced mass source of Ṡnuc,redcoupl = 3.387098 kg
m3s

.

In addition, the enthalpy change is ∆h = 2.11 J
kg

, and thus, we obtain the following

changes for the next time step:

∆Y = −3.30016 · 10−5 ⇒ Y t+∆t = Y t + ∆Y = 1.099848

∆T = 2.01 · 10−3K ⇒ T t+∆t = T t + ∆T = 3.191521K

With the updated vapor pressure pv(T
t+∆t) = 3.647507 · 103 and the new values for Y

and T we get the change in the supersaturation:

∆S = −1.637 · 10−4 ⇒ St+∆t = St + ∆S = 1.099247

With these settings OF simulations were run, and compared to the calculated values as

indicated above. In Tab. 5.8 the values for m0, Y , S and T from the OF simulation are

presented. It can be seen that all the expected values for Y , T and S were obtained exactly.
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Table 5.8: Coupling in case of pure nucleation: The table lists the values for m0, Y , T and S after the
first three time steps.

t = 1E-6 s t = 2E-6 s t = 3E-6 s

m0 7.853975E+14 1.000000E+15 1.000000E+15

Y 1.100000E+00 1.099881E+00 1.099848E+00

T 3.191500E+00 3.191576E+02 3.191597E+02

S 1.100000E+00 1.099411E+00 1.099247E+00

The progression of the values can also be seen in Fig. 5.14. After the formation of

particles has stopped (m0 = Nprim) the coupled quantities Y , S and T remain constant.

Moreover, the figures show that the change in Y , T and S always occurs one step after

the change in m0 since the mass source is calculated using m0. This delay of one time step

is characteristic for numerical calculations. Nevertheless, the presented example showed

the correct behavior of the implemented coupling model for nucleation.



5.4 The Coupling Models 73

(a) (b)

(c)

Figure 5.14: Coupling in case of pure nucleation: time evolution of m0 and (a) Y , (b) T , and (c)
S. Droplets are nucleated on seed particles with dp = 50µm with an initial nucleation rate of J =
7.853975 · 1020m−3s−1. The simulation was run with a time step of ∆t = 10−6 s for 5 time steps.
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5.4.2 Coupling - Growth

For growth, the mass source is given by

Ṡgrowthcoupl = [ρπDvSh ln(1 +Bm)] m1 (5.21)

For this test we want to use a number concentration of Np monodisperse particles with a

diameter of dp = 100nm, resulting in an initial moment set that is given by

mk = Np d
k
p (5.22)

Thus, with Np = 1015m−3 we get m1 = 108m−2. The initial values for T and Y , as

well as ysat, ρ, cp, MWv, ρ
ref
v,sat and hv were the same as in the previous section. Dv was

calculated according to Eq. (C.11), the Sherwood number was set to Sh = 2 and a

spalding mass transfer number of Bm = 1.2905 · 10−2 was taken from the log file of the

case (Bm is calculated by the solver according to the description in Sec. 3.5.1). With

these values we can calculate the mass source to be Ṡgrowthcoupl = 6.743377 · 101 kg
m3s

.

With a time step of ∆t = 10−6s the expected change in the mass fraction according to

Eq. (5.14) after the first time step is

∆Y = −6.5705 · 10−4 ⇒ Y t+1 = Y t + ∆Y = 1.099343

For the change in the enthalpy we get ∆h = 41.1 J
kg

, and thus, with Eq. (5.17) and Eq.

(5.16) we obtain

∆T = 4.179 · 10−2K ⇒ T t+∆t = T t + ∆T = 319.1918K

The vapor pressure at the initial temperature is again pv(T
t) = 3645.394Pa, whereas

vapor pressure with the updated temperature is pv(T
t+∆t) = 3654.507Pa. Thus, we

obtain the change in the supersaturation within one time step according to Eq. (5.17) as

∆S = −3.254 · 10−3 ⇒ St+∆t = St + ∆S = 1.096746

The simulation was run up to 1ms. In Tab. 5.9 the values after the first two steps, and

after the last time step are listened. At t = 2 · 10−6 s the expected values for Y , T and S

were achieved.

The time evolution of the four listened quantities can be seen in Fig. 5.15. The continuous

phase is depleted of the working fluid vapor (decrease of Y and S) during the growth of the

droplets (increase of L32) at the beginning of the simulation. When the supersaturation

is reduced to one, the growth rate becomes zero, and therefore, the mass transfer to the
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disperse phase stops. Hence, all the quantities remain constant.

Contrary to that, Fig. 5.16 shows the time evolution without coupling. There, the

quantities Y , S, and T do not change while the droplets grow to an average size of about

10µm. In the former case the depletion of the working fluid caused the stop of the droplet

growth at 183.8nm.

Table 5.9: Coupling for growth of droplets with an initial size of 100nm: The values for L32, Y , T and
S after the first two steps, and after the last time step are listened.

t = 1E-6 s t = 2E-6 s t = 1E-3 s

L32 1.048930E+07 1.095098E+07 1.837906E+07

Y 1.100000E+00 1.099343E+00 1.078794E+00

T 3.191500E+00 3.191918E+02 3.204971E+02

S 1.100000E+00 1.096746E+00 1.000000E+00
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(a) (b)

(c)

Figure 5.15: Coupling in case of pure droplet growth: time evolution of (a) Y , (b) T , and (c) S in
comparison to that of L32 in case droplets with an initial size of 100nm grow with an initial rate of
G = 5.3538 · 10−3 m

s . The simulation was run with a time step of ∆t = 10−6 s up to 1ms.
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(a) (b)

(c)

Figure 5.16: Pure droplet growth without coupling: time evolution of (a) Y , (b) T , and (c) S in compar-
ison to that of L32 in case droplets with an initial size of 100nm grow with a rate of G = 5.3538 ·10−3 m

s .
There was no mass and heat transfer between the disperse and the continuous phase since the coupling
was switched off. The simulation was run with a time step of ∆t = 10−6 s up to 1ms.

5.4.3 Coupling - Nucleation and Growth

Finally, we want to test the coupling behavior when employing both, the nucleation

and the growth model. With the same growth settings as before, a primary particle

diameter of 50nm and a Nprim = 1010m−3 we obtain an initial nucleation rate of

J = 7.853975 · 1014m−3s−1. With the used settings we obtain a Kelvin diameter of

dk = 33.5nm, and thus, the droplets start to grow from their initial droplet size of

dd,init = 54.6nm.

Using a time step of ∆t = 10−6 s the formation of droplets stops after 2 time steps, since

all seed particles have activated the formation process. Therefore, in Fig. 5.17 the time

evolution of Y , T and S is only compared with the mean droplet size L32.

The figure shows the quick growth of the formed droplets at the beginning of the

simulation, which causes the decrease of Y and S, indicating the depletion of the working
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fluid. Since the growth rate depends on S, with increasing time the droplet growth

decreases. At about 0.06 s the supersaturation is close to one. Hence, the droplet growth

stops and all quantities remain constant.

Contrary to the vapor concentration of the working fluid the temperature increases due

to coupling until the mass (and heat) transfer between the continuous phase and the

droplets stops.

In general, the tests have shown the correct implementation and functionality of the

coupling models.

(a) (b)

(c)

Figure 5.17: Coupling in case droplets are formed on seed particles with a size of 50nm, and afterwards
grow with an initial growth rate of G = 9.8932 · 10−3 m

s . The figures show the time evolution of (a) Y ,
(b) T and (c) S in comparison to that of L32. The simulation was run with a time step of ∆t = 10−6 s
up to 100ms.
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6 The Pipe Flow Test Case

The reliability and performance of the two most important physical models, nucle-

ation and growth, was tested in the simple 3x3-test geometry. These tests were done

without considering spatial dependencies, which had the advantage of comparing the

OpenFOAM-results with that of a Matlab code.

We now apply the qmomCloud library to a more realistic environment, namely a pipe flow

situation typical for a CPC. In fact, the flow of a gas (i.e., air), partially saturated with

vaporized working fluid, inside a cylindrical pipe is modeled. The pipe is divided into five

sections with different boundary conditions for temperature and the (non-dimensional)

vapor mass fraction. These changes of the boundary conditions lead to a certain supersat-

uration ratio in the pipe, such that nucleation and droplet growth takes place. A similar

simulation of pipe flow, although without considering droplet nucleation and growth, was

previously done by Tristan Reinisch (AVL) and Stefan Radl (TU Graz), and the same

setup was used for the present study. The following modifications were necessary to

activate the qmomCloud class in a simulation run:

• Initial Conditions

In the ’0’ directory of the case the files for the new fields mk (with k ranging between

0 and 5), as well as the corresponding weights and nodes were made. These files

define the initial values of the fields at time zero, as well as the boundary conditions.

All the initial field values were set to zero, since there is no disperse phase at the

beginning of the simulation. All boundary conditions were set to zeroGradient.

• qmomProperties Dictionary

In the constant directory of the case the qmomProperties dictionary was created to

specify the settings for the moments transport equations.

• controlDict Dictionary
The update of the disperse phase properties has to be activated in the system/con-
trolDict dictionary of the case. At the top of the file, where the main switches for
the solver are set, the following line was inserted to activate the solution for the
disperse phase:

solveParticleEqns; // activate to update particle cloud

• fvSolutions Dictionary
In the system/fvSolutions dictionary of the case the finite volume solver for the
moments has to be speficied by inserting the following code lines:

"(m)"

{

solver PBiCG;
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preconditioner diagonal;

tolerance 1e-30;

relTol 0;

maxIter 5;

}

• ’fvSchemes’ Dictionary
Finally, in the ’system/fvSchemes’ dictionary the finite volume scheme for the mo-
ments must be added. For the advection term in the moment transport equations
the following code line was inserted in the ’divSchemes’ sub dictionary:

div(phi ,m) bounded Gauss upwind;

For the diffusive term the following line was inserted in the ’laplacianSchemes’

sub dictionary

laplacian(Dp ,m) Gauss linear corrected;

Note, here we use the ’upwind’ scheme for advection, which is a first order numerical

scheme as it is used in Eq. (3.39) for advection. Hence, unrealizable moments should be

avoided in case Eq. (3.41) is satisfied (see the description in Sec. 3.4.2).

The mentioned files for the pipe flow case are attached in the Appendix E.2.

6.1 Pipe Geometry

As already mentioned, the pipe flow case models a flow through a pipe with five sec-

tions, called inlet, evaporator, insulation, condenser and outlet. Since this problem is

radially symmetric, it can be reduced to an axisymmetric (two-dimensional) computa-

tional domain, as shown in Fig. 6.1. Note, that OpenFOAM requires the specification

of a three-dimensional domain in a Cartesian coordinate system. Consequently, a wedge-

shaped geometry must be used to model an axisymmetric computational domain.

Figure 6.1: Schematic drawing of the domain in which the pipe flow is modeled. Dimensions are in mm.
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The geometry is defined in the ’constant/polyMesh/blockMeshDict’ dictionary of the case

(see Appendix E.2). The domain was spatially discretized as follows:

• radial discretization: the R-direction (which corresponds to the z-direction in the

Cartesian coordinate system used by OF) was divided into 30 cells with a grading

of 0.5. Thus, the radial cell size is refined in a way such that the cells at the pipe

wall have half the size of the cells at the center.

• axial discretization: the X-direction for the sections inlet and outlet was divided

into 100 cells (per section), whereas for the sections evaporator, insulation, and

condenser 200 cells were used (per section).

Hence, the domain is divided into a mesh with 24000 wedge-shaped cells.

6.2 Settings

6.2.1 Initial and Boundary Conditions

The initial and boundary conditions were specified in the ’0’ -directory of the case. Since

all simulations yielded a steady-state solution, initial conditions are only relevant to guar-

antee a stable simulation run. In order to save run time, however, the calculated steady-

state solutions were taken as the initial conditions for all further simulations.

In the following, the most important boundary conditions used in the simulation runs are

presented. Furthermore, key parameters of the working fluid are summarized.

• Temperature T

One of the fields of main importance is the temperature field, since the super-

saturation in the condenser is determined by the temperature difference between

evaporator and condenser. For the walls up to the insulation section we used a wall

temperature of 311.45K. From the condenser section downstream the wall temper-

ature was set to 304.85K. These conditions are identical to ones used by [10].

In the rest of the domain the initial cell temperatures were set according to Fig.

6.2. The temperature crossover at the beginning of the condenser is due to the flow

in X-direction.
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Figure 6.2: Initial temperature profile inside the pipe. Up to the condenser (at X = 0.19m) the temper-
ature was set to 38.3◦C, from the condenser downstream it was set to 31.7◦C. The domain is compressed
in the X-direction by a factor of 40.

• Velocity u

Since a laminar flow prevails inside the pipe, the velocity profile is given by

u(R) = 2uav

(
1−

(
R

RW

)2
)

(6.1)

with RW being the inner radius of the pipe. The average velocity uav can be com-

puted from the volumetric flow rate V̇ and the cross sectional area of the pipe, i.e.,

uav = V̇ /(R2
Wπ).

In OF the velocity field was generated by solving the Navier-Stokes equations di-

rectly, which yields the velocity profile discussed in the last paragraph. An average

velocity of uav = 0.125m/s was used. Note, since the velocity profile will not change

the switch for the Navier-Stokes equation was deactivated in the controlDict file by

commenting out the key word solveFluidFlow;.

• Vapor mass fraction Y

The spatial distribution of the (non-dimensional) vapor mass fraction is shown in

Fig. 6.3. It can be seen that in the inlet section Y is zero. The working fluid is

evaporated at the walls of the evaporator patch. At this patch the reference vapor

mass fraction is defined, thus at the evaporator walls Y is exactly unit. At the

walls of the insulation patch no working fluid is evaporated (i.e., a zero-gradient

boundary condition for Y is employed). However, the temperature is still the same

as at the evaporator walls. At the condenser, a fixed value for Y , corresponding to

the (non-dimensional) saturation vapor mass fraction at the condenser temperature,

has been specified.
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Figure 6.3: Vapor mass fraction for the pipe flow case. The working fluid is evaporated at the walls of
the evaporator patch (0.1m < X < 0.16m). The domain is compressed in the X-direction by a factor of
40.

6.2.2 Working Fluid and Gas Properties

Following the report of Mamakos [10] we chose n-Butanol as the working fluid for the

pipe flow case. The properties of the working fluid are specified in the transportProperties

dictionary of the simulation case, and summarized in Sec. C of the Appendix.

Furthermore, the density of the gas (i.e., the mixture of the exhaust gas and the vaporized

working fluid) is set to ρ = 1.1614 kg/m3 (see the settings in the thermophysicalProperties

dictionary). Thus, the density does not change with temperature and pressure. This is

consistent with the previous analysis of Mamakos [10].

6.2.3 Settings for the qmomCloud

In the pipe flow case we apply the nucleation and growth model, as well as the coupling

model. Based on the experience gained in the 3x3-tests case, the following settings for

the qmomCloud were used:

• Number of Moments

For the pipe flow case the number of moments was chosen to be four. The reason

for modeling the disperse phase with only four instead of six moments was that

instabilities tend to occur in the moments of order higher than three. However,

since the desired result for the disperse phase is the droplet size, four moments still

provide enough information to compute the Sauter mean diameter. Moreover, when

tracking four instead of six moments, the run time is significantly lower, since a

smaller number of transport equations has to be solved. Of course, the accuracy

of the quadrature approximation is lowered when dealing with only two nodes and

weights. Hence, the chosen number of moments is a trade-off between stability and

accuracy.
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• Product-difference Settings
According to the 3x3-test results, the following settings for the PD solver were
used:

productDifferenceProps

{

verbose false;

iter_max 10;

useCorrector false;

roundPrecision 1e-4;

minConcentration 1e5;

computeEigenValues true;

useEqualWeights false;

};

• Nucleation Parameters
According to the maximum primary particle concentration [10, p. 31] we want
to deal with a maximum of Nprim = 1010m−3 seed particles with dp = 40nm.
Furthermore, the nucleation prefactor was calculated according to Eq. (3.55), and
perfect wetting was assumed. Hence the nucleation settings are:

nucleationProps

{

verbose false;

SName "S";

theta 0;

dParticle 40e-9;

J0 5.02655 e14;

NPrim 1e10;

cellId2Report 15001; //id of the cell to report nuc. props

}

• Growth Parameters

simpleGrowthProps

{

verbose false;

useLocalG;

G0 1.0;

r -1;

useQmom true;

SName "S";

YName "Y";

RhoGName "rho";

DiffName "diffEff";

limitGrowthFactor 1e8;

}
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• Moment transport Settings
The diffusion model according Stokes-Einstein diffusion model was deactivated and
the constant droplet diffusion coefficient was set to zero. Furthermore, the moment
limitation for the moment m3 was activated with a limitation factor of five. This
limitation factor will not cause a limitation of the moment set, except for rare
situations in which numerical instabilities might lead to an unphysical increase of
m3.

momentTransportProps

{

verbose true;

fieldName "m";

Dp0 0;

limitMomentAbove 3;

momentLimitFactor 5.0;

}
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6.3 Pipe Flow without Disperse Phase

First, we present the results of the pipe flow case without applying the qmomCloud

library. Thus, only the solution of the continuous phase is obtained. The most interesting

part of the pipe is the condenser, since there, the nucleation takes place. Therefore,

in the following we will only present the results at this patch. The key result is the

saturation ratio S, since the nucleation only takes place at location of sufficiently

high supersaturation. By knowing the temperature field, the Kelvin diameter can be

calculated according to Eq. (3.50). The Kelvin diameter indicates (approximately) the

necessary seed particle size for heterogeneous nucleation to occur.

When running the simulation for the pipe flow case without employing the qmomCloud, a

steady-state solution is obtained after approximately about 0.3 s. Nevertheless, in order

to deal with the same situation as in the next section, we ran the simulation up to 1.2 s.

In Fig. 6.4 the profile of the supersaturation in the condenser is displayed. The highest

supersaturation is located near the cylinder axis, which is typical for a CPC and also a

finding of previous studies (see [10] and [11]).

Fig. 6.5 (a) shows the profile of S along the cylinder axis, as well as that of the Kelvin

diameter. The maximum value of the saturation ratio is 1.1849 at X = 0.2049m.

Fig. 6.5 (b) shows the radial profile of S at the X-position of the maximum supersatura-

tion, as well as the Kelvin diameter. At the position of the maximum supersaturation the

Kelvin diameter is 20.7nm. Thus, particles that induce heterogeneous nucleation have

to be larger than this critical size. For seed particles with a size of 40nm heterogeneous

nucleation will occur within a radius of R ≈ 1.4mm (see Fig. 6.5 (b)). Therefore, when

applying the qmomCloud with seed particles of 40nm, the formation of the disperse

phase within this radius can be expected.

Note, in [10], where the saturation ratio profile was calculated by solving the Graetz

problem (see [9]), the maximum value of S was 1.2177 at an axial position of 1.4243 ·
10−2m, measured from the condenser inlet. This corresponds to an axial position of

X = 0.2042m in the pipe flow case. Thus, compared to the results in [10], the obtained

maximum supersaturation in our case is slightly lower, while its position is well captured.
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Figure 6.4: Two-dimensional supersaturation profile without disperse phase in the condenser, t = 1.2 s

(a) (b)

Figure 6.5: Profiles of supersaturation and Kelvin diameter without disperse phase, data has been sampled
from 6.4 along (a) the X-axis, and (b) along the R-axis at the axial position of the highest supersaturation
X = 0.2049m.
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6.4 Pipe Flow with Disperse Phase - no Coupling

We now focus on a simulation run that includes the modeling of the disperse phase,

but not coupling. Thus, the effect of the droplet formation on the continuous phase

is neglected, and the identical temperature, vapor mass fraction, and supersaturation

profiles were observed. In the controlDict dictionary the qmomCoud library was activated

by including the variable ’solveParticleEqns’.

The tests showed that a steady-state solution for the moment set was obtained after

about t = 0.8 s. Hence, all following simulations were terminated after t = 1.2 s, in order

to be on the safety side. The time step was set to ∆t = 10−6 s.

In Fig. 6.6 the time evolution of the moment m0 is plotted, indicating that already after

t = 0.1 s (Fig. 6.6 (a)) droplets are formed in regions of high supersaturation. The dark

red region indicates that all of the seed particles (1010m−3) have activated the droplet

formation, while the dark blue color exposes regions void of droplets. The interface

between the two regions is quite sharp, especially at the left-hand side. At the right-hand

side the interface is more diffuse due to the numerical diffusion inherent to the convection

scheme.

The disperse phase moves with the gas into the positive X-direction (see (Fig. 6.6 (b),

(c)). The downstream interface of the disperse phase moves into the positive X-direction,

while the upstream interface does not move since new droplets are continuously formed.

As expected from the results in the former section, the disperse phase is formed within

about R = 1.4mm and does not move in radial direction (because diffusion of the droplets

was deactivated). After t = 0.5 s the droplet cloud has moved downstream to the end

of the condenser section, and thus, a steady-state solution for the moment m0 is obtained.
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(a) (b)

(c) (d)

Figure 6.6: Time evolution of the moment m0 in the condenser without coupling for (a) t = 0.1 s, (b)
t = 0.2 s, (c) t = 0.3 s, and (d) t = 1.2 s.

The formation and growth of the droplets takes place in the condenser region of the

pipe where the supersaturation is larger than unit. Thus, when the droplets have left

the condenser, the growth process is nearly completed. This means that the droplets’

final size (i.e., the size detected by the light scattering device) is close to the droplet size

at the end of the condenser section. Therefore, in the following the results are plotted

along the radial axis at the condenser outlet (i.e., at X = 0.243mm), in accordance with

Mamakos [10, Fig. 14].

In Fig. 6.7 the steady-state values of the moment set at the condenser outlet are shown.

The moment m0 (Fig. 6.7 (a)) is close to 1010m−3 up to R ≈ 1.4mm and zero above,

since m0 is affected by nucleation only. This indicates that between a radial position of

R ≈ 1.4mm and the pipe wall no droplets are present.

The moments m1, m2 and m3 (Fig. 6.7 (b), (c) and (d)) have changed due to growth

after the formation was completed. Thus, they show higher values near the cylinder axis
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because the supersaturation is higher at lower radial positions.

(a) (b)

(c) (d)

Figure 6.7: Moment set at the end of the condenser without coupling: steady-state values after t = 1.2 s
of the moments (a) m0, (b) m1, (c) m2, and (d) m3 at the exit of the condenser, i.e., X = 0.243mm,
∆t = 10−6 s.

The quantity of interest is the droplet size at the end of the condenser. As already

mentioned, the mean droplet size can be obtained in various ways. When dealing with

four moments the mean droplet sizes L10, L21 and L32 can be calculated. The Sauter

mean diameter L32 is the ratio of the total droplet volume and the droplet surface area.

Hence, L32 has a sensible physical meaning, and can be used to estimate the droplet

surface area once the droplet volume is known. In contrast, L10 is the arithmetic droplet

size which is of lower significance, since small particles are weighted strongly. The

characteristic diameter L21 is included as well in the presentation for completeness.

In Fig. 6.8 these three diameters are plotted at the condenser outlet. It can be seen that

the three different mean diameters show big differences, which indicates that the final

droplet size distribution has a polydisperse character. The Sauter mean diameter L32

is about twice the mean droplet size L10. When considering the Sauter mean diameter,
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the nucleated droplets grow to a mean size of about 19µm, while L21 is approximately

12µm. When considering L10, a mean droplet size of about 8µm is obtained at the

condenser outlet. This value is comparable to the results of Mamakos [10, Fig. 14] where

the droplets grow up to a size of about 8µm in case of 40nm seed particles. (Note, in

[10] the growth of monodisperse droplets was calculated.)

Nevertheless, in [10] the supersaturation ratio within the condenser was higher, and

therefore, also the mean droplet size should be somewhat higher. Moreover, the particles

get activated up to a radial position of about 1.9mm (due to the higher supersaturation)

in the work of [10], while in the present study the particles get only activated up to

about R = 1.4mm.

Note, if the droplet formation would be completed within one cell in the flow direction

of the domain, the final droplet size would be monodisperse. Hence, a polydisperse

distribution can only be obtained (i) in case of droplet diffusion or (ii) if the nucleation

process takes place over a larger number of cells in the flow direction. Since in our case

diffusion was deactivated the latter case applies.

The nature of the obtained final droplet size distribution is comparable to a log-normal

distribution according to Eq. (B.8) with µ′ = 7 · 10−6 and σ = 0.625. In this case the

mean sizes, calculated with the moments according to Eq. (B.9), would be in the same

range (i.e., L10 = 8.5µm, L21 = 12.6µm and L32 = 18.6µm).

Figure 6.8: Final (mean) droplet size at the exit of the condenser without coupling: steady-state values
(after t = 1.2 s) of the mean droplet sizes L10, L21 and L32 at X = 0.243mm. The seed particle size was
set to dp = 40nm. The simulation was run without coupling model and with a time step of ∆t = 10−6 s.
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6.5 Pipe Flow with Coupling

Finally we want run a simulation that includes the coupling model. Thus, all the

implemented models, except diffusion, are employed in this case. The coupling model was

activated by including the variable ’couplingModel’ in the qmomProperties dictionary

of the pipe flow case. As in the previous section we ran the simulation with a time step

of ∆t = 10−6 s up to an end time of 1.2 s.

The coupling model takes into account that the working fluid vapor is affected by the

condensation process due to mass transport to the droplets and release of condensation

heat. Therefore we would expect that the supersaturation is reduced compared to the

uncoupled case in the previous section.

Fig. 6.9 shows the two-dimensional supersaturation profile in the condenser section. Also

here, the highest supersaturation is located near the cylinder axis. However, compared

with the uncoupled case (where we had the same supersaturation profile as without

disperse phase, see Fig. 6.4) the profile seems more compressed in X-direction. This

is because after the droplets have formed (which starts at an axial position of about

X ≈ 0.195m, see Fig. 6.5 (a)) they grow fast afterwards, and therefore, a lot of working

fluid is condensed. As a consequence the supersaturation gets reduced.

The maximum value of the saturation ratio is 1.137 at X = 0.2001m and R = 0m,

which is essentially smaller than in the uncoupled case where the maximum value was

1.185 at X = 0.2049m. Thus, we observe a reduction of the maximum supersaturation

of about 4 %. Compared to the worst case scenario in [10, Fig. 16], where a maximum

reduction of about 3 % in case of 40nm seed particles is documented, here we observe a

higher reduction in S. This might be due to the different final particle sizes of 14µm in

our case (Sauter mean diameter in case coupling was activated, see Fig. 6.10) and about

8µm in the calculations of Mamakos [10]. Note, in [10] the depletion in S was calculated

using the mass of the droplets that have grown to their final droplet sizes (i.e. worst case

scenario without considering coupling effects).

Due to the lower supersaturation, of course, also the condensation is reduced. Hence, we

would expect that the droplets’ growth is degraded compared to the uncoupled case. Fig.

6.10 displays the three mean droplet sizes L10, L21 and L32. The Sauter mean diameter

L32 (which is the most important one) is reduced by 5µm from 19µm to about 14µm

compared to the uncoupled case (see Fig. 6.8). L21 is lowered from 12 to about 9µm, and

the arithmetic mean size L10 has decreased from 8.5 to about 6.5µm. Thus, we observe

a general reduction of the final (mean) droplet size of approximately 20 %.



6.5 Pipe Flow with Coupling 93

Figure 6.9: Two-dimensional supersaturation profile in the condenser at t = 1.2 s with activated coupling
model.

Figure 6.10: Final (mean) droplet size at the end of the condenser with coupling: The figure shows the
steady-state values (at t = 1.2 s) of the mean droplet size L10, L21 and L32 at X = 0.243mm. Seed
particle size dp = 40nm, and ∆t = 10−6 s.
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7 Conclusions

This thesis aimed on the modeling of the condensation process inside the evaporator-

condenser system of a CPC. In the evaporator the working fluid is vaporized and gets

supersaturated in the condenser. The sub-micron particles, that should be counted,

are sucked through the condenser where they act as seeds for heterogeneous nucleation.

Once droplets have been formed on the seeds, vapor condenses and the droplets grow to

a size in the range of a few microns, and thus, can be detected by light scattering. The

purpose of the thesis was to implement a moment method in the open-source software

tool ’OpenFOAM’ in order to predict the time evolution of the droplet size distribution.

The key outcome of the thesis can be summarized as follows:

• Choice of the Method

The simulation of the condensation process can be done by solving a population

balance equation (PBE) for the disperse phase, i.e., the droplets. Since a direct

solution of the PBE, or a lagrangian approach is very time consuming, a quadrature

method of moments (QMOM) was chosen to model the evolution of a univariate

PBE. The governing equations for the QMOM have been extracted from the book

of Marchisio and Fox [8], and were summarized in see Sec. 3.

• Choice of the Physical Models

Since the condensation process is divided into the formation and growth of droplets,

for its description two physical models were required.

– Nucleation Model

For the formation of the disperse phase (i.e., the droplets), a heterogeneous

nucleation model was used. This model assumes that the critical energy barrier

for the formation of a stable droplet is reduced due to the presence of seed

particles (see Eq. A.1). The interaction between the seed particle and the

working fluid is lumped into a single parameter (i.e., the contact angle θ),

which offers a pragmatic approach to reflect specific of different working fluid-

particle systems.

– Growth Model

For the growth process the model of Abramzon and Sirignano [18] was used

which requires a closure method for the system of moment transport equations.

This is due to the size dependence of the growth rate. The underlying equations

of the model were described in Sec. 3.5.1.

– Diffusion Model

The Stokes-Einstein diffusion model was presented in Sec. 3.5.2, and is now
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implemented in the solver. This model can be used to describe the droplets’

random motion, and thus, provides a correction of the dusty-gas assumption

(i.e., no slip between fluid and particles). To model Stokes-Einstein diffusion

behavior, a closure for the moment transport equations is needed. However,

this model is relevant only for small droplets, i.e., in the early stages of droplet

formation, since the diffusion rate decrases with increasing droplet diameter.

– Coupling Model

Based on the physical models for nucleation and growth, the governing equa-

tions for the mass and heat transfer between the continuous and the disperse

phase were derived in Sec. 3.6. These equations formed the basis for the cou-

pling model that is used to model the impact of the condensation process on (i)

the concentration of the vaporized working fluid, and the (ii) gas temperature.

• Implementation in OpenFOAM - qmomCloud

Based on the theoretical descriptions of Sec. 3 a new libary, called qmomCloud,

was implemented and coupled to the existing cpcFoamCompressible solver. The

structure of the library can be seen in Sec. 4.2. The library is implemented in a

modular way, such that it can be easily extended, e.g., to model coalescence or

breakage of droplets or particle agglomerates.

• The 3x3-Test Case

To test the correct implementation of the qmomCloud, as well as the proper

functionality of the nucleation and growth models, a simple 3x3-test case was

constructed. Following the investigations of the TSI 3790 CPC, for all the tests

within this thesis n-Butanol was used as working fluid. The number of moments

to be tracked was limited to six due to the constraints in the standard eigenvalue

computation in OpenFOAM. Nevertheless, as stated in [22], the use of three nodes

and weights offers a sufficiently high accuracy.

Within the 3x3-test case the two physical models were first investigated separately

with different initial size distributions (monodisperse, log-normal, uniform, etc.).

Afterwards they were tested in combination for the conditions that occur in a

CPC, which means that a zero initial moment set becomes finite due to nucleation

and is further modified due to growth. Finally the impact on the concentration

and temperature of the working fluid vapor according to the coupling model was

examined.

In case of pure growth of monodisperse droplets we found that the PD algorithm

from Marchisio and Fox [8] has to be adapted in order to avoid singularities. Beside
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this modification, a variety of changes and checks were implemented in order to avoid

finite or complex nodes and weights. As a consequence, stable and reasonable results

in case of pure growth could be obtained (see Fig. 5.3). Furthermore, it was found

that the McGraw correction algorithm affects the growth behavior of monodisperse

droplets in a way that the moment set gets distorted, and was therefore de-activated

in further applications.

When both, the nucleation and the growth model, were activated it turned out

that the nucleation is completed after a very short period (i.e., within one time

step). Afterwards the moments (except m0) change only due to growth, whereby

the growth rate is higher for smaller initial droplet sizes (see Fig. 5.13).

Finally, the correct behavior of the coupling model was checked. It was found

that the depletion of the working fluid vapor (i.e. the continuous phase) causes

a decrease in the saturation ratio, while the temperature is increased due to the

release of condensation heat. The heat and mass transfer between the vapor and

the droplets (i.e., the disperse phase) stops if the supersaturation is reduced to one,

as shown in Fig. 5.17.

• Pipe Flow Case

Finally, the new solver was applied to the pipe flow case, i.e., a model of a CPC.

The pipe flow case was first studied without disperse phase, then without coupling

(but with dispersed phase), and finally all relevant physical models and the coupling

were employed.

– Results without Disperse Phase

When deactivating the qmomCloud, the computation of disperse phase prop-

erties is deactivated and the solution for the continuous phase is given by the

saturation ratio profile Fig. 6.4. With the calculated temperature profile, the

Kelvin diameter can be calculated that indicates the minimum seed particle

size for inducing the formation of droplets. It was found that the Kelvin di-

ameter (Fig. 6.5) was below 40nm up to a radial position of approximately

R = 1.4mm, i.e., primary particles of this size will be activated in this region.

The maximum saturation ratio of 1.1849 was found at X = 0.2049m, while

Mamakos [10] found a maximum value of 1.2177 at a position of X = 0.2042m

using the Graetz solution [9]. This difference is due to the fact that the solution

of the Graetz problem only considers the condenser section with temperature

boundary conditions at the inlet and at the wall of the pipe. Contrary to that,

in our case we have also simulated the evaporation of the working fluid, and

have therefore considered more realistic conditions at the condenser inlet.

– Results with Disperse Phase - No Coupling

When activating the qmomCloud, particle activation was found up to a radial
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position of about R = 1.4mm for a seed particle size of 40nm. At the outlet

of the condenser the droplets have grown to a final size (i.e., Sauter mean

diameter) of about 19µm. The arithmetic mean droplet diameter was found

to be about 8µm which is in agreement with the final droplet size reported by

Mamakos [10, Fig. 14].

– Results with Disperse Phase - Coupling

When employing the coupling model the saturation ratio in the condenser was

significantly reduced. The maximum supersaturation was lowered by 3 % to

1.137 and was located at X = 0.2001m. As a consequence the final (mean)

droplet size L32 was reduced to about 14µm.

Generally, with the qmomCloud library a powerful tool for the modeling of condensation

in the evaporator-condenser system of a CPC was generated. This tool can easily be

extended in order to model additional effects, like coagulation and breakage.

However, the results for the pipe flow case were obtained by running the simulation

with a relatively small time step of 10−6 s. This was to avoid instabilities during the

reconstruction procedure, which occurred due to the fine mesh (the domain of the pipe

flow case was divided into 24000 cells) despite the usage of a stable numerical scheme for

the moments. Hence, the simulations were quite time consuming (one simulation was run

for up to 2 days in order to achieve steady state solutions).

In order to reduce the run time, a number of strategies could be followed in future work.

For instance, the computational domain could be divided into a mesh with less cells,

which would allow to run simulations with a larger time step (according Eq. (3.41)

without diffusion). Furthermore, numerical schemes could be adopted for the nodes and

weights instead of the moments, as suggested in [8, Sec. 8.3].

Note, in the course of this thesis no physical-space diffusion was taken into account for the

pipe flow case. This was done because diffusional particle losses have insignificant effect

in numerical calculations for the considered application, as stated in [10, p. 18]. Hence,

we did not apply the Stokes-Einstein diffusion model within this thesis. Nevertheless,

to overcome the instabilities in the moments for small time steps, a constant diffusion

coefficient could be used (a non-zero diffusion term might stabilize the moment transport

equations). Finally we suggest to investigate the pipe flow case with only two instead

of four moments (i.e., only one node) which should lower the run time significantly (i.e.,

comparable to the monodisperse growth calculation Eq. (5.6)). When tracking only two

moments, however, only the arithmetic mean droplet size can be calculated.
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A Appendix

A Heterogeneous Nucleation: Impact of fg

It is intuitive that nucleation of droplets is facilitated when seed particles act as conden-

sation nuclei. This is referred to as heterogeneous nucleation, which is explained in Sec.

3.5.4. Due to the presence of seed particles the energy barrier for droplet formation is

reduced by a factor fg

∆G∗het = fg ·∆G∗hom 0 ≤ fg ≤ 1 (A.1)

fg takes into account the contact angle θ between a critical cluster of vapour molecules

and the curved particle surface. The contact angle characterizes the affinity of the seed

particles for the droplets and takes values between 0 and 180◦.

The higher the affinity of the particle for the working fluid, the lower the contact angle

and fg. Thus, the lower is the energy barrier for particle activation. This behavior is

illustrated in Fig. A.1.

The multiplicative factor fg can be obtained by geometrical considerations as [10]

fg =
1

2

{
1 +

(
1−X ′ cos θ

g

)3

+X ′3

[
2− 3

(
X ′ − cos θ

g

)
+

(
X ′ − cos θ

g

)3
]

+ 3X ′2 cos θ

(
X ′ − cos θ

g

)3
}

(A.2)

with X ′ = dp
2r∗

and g =
√

1 +X ′2 − 2X ′ cos θ.

In the case of perfect wetting the contact angle is zero. For seed particles bigger than

the critical cluster (dp ≥ 2r∗) also fg is equal to zero and the energy barrier for particle

activation vanishes. For seed particles smaller than the critical cluster fg > 0. For perfect

wetting (θ = 0◦) fg is given by

fg =

0 for dp ≥ 2r∗

(1−X ′)2 (1 +X ′) for dp ≤ 2r∗
(A.3)
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Figure A.1: Illustration of the effect of the contact angle on the heterogeneous nucleation mechanism:
nucleation behavior of a butanol droplet on a seed particle at different contact angles. Figure taken from
[10].

We now investigate the variation of nucleation rate with fg. In order to do so, we assume

J0
het in Eq. (3.54) to be one, thus, the nucleation rate is given by

Jhet = exp

(
−fg ·∆G

∗
hom

kBTf

)
(A.4)

As it can be seen in Fig. A.2, the nucleation rate quickly drops towards zero with

increasing values of fg. For fg = 0 the nucleation rate is given by J0
het. Note that

for the very small value of fg ≈ 5 · 10−4, Jhet is already reduced to J0
het/2. Thus the

values of fg should be very close to zero to enhance droplet formation using seed particles.

The main influence parameters to fg, and thus, to the nucleation rate J , are the contact

angle and the ratio of the critical cluster size and the seed particle diameter. As shown

in Fig. A.3, for perfect wetting (θ = 0◦) the nucleation rate quickly increases when the

seed particle is bigger than the critical droplet size. For higher contact angles J rises

more slowly, and for contact angles higher than 120◦, J even remains close to zero.

The figure shows that on the one hand it is crucial to have large enough seed particles

to ensure that nucleation on the particles takes place. On the other hand the affinity of

the seed particles for the droplets, that determines the contact angle, strongly affects the

nucleation rate.

In general one can conclude that the higher the affinity of the seed particles for the droplets

and the larger the seed particles, the easier will be the formation of droplets.
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Figure A.2: Heterogeneous nucleation rate as a function of the multiplicative factor fg that can take
values between 0 and 1. J0

het was set to 1m−2s−1.

Figure A.3: Nucleation rate J as a function of the ratio dp/(2r
∗) for different contact angles according

to equations Eq. (A.2) and Eq. (A.4).
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B Additional Equations

• Navier-Stokes Equation

This equation describes fluid motion in the context of CFD.

∂

∂t
(ρu) +∇ · (ρuu) = ∇ ·

[
µ
(
∇u+∇uT

)]
−∇p+ ρg (B.5)

For compressible flows the full set of conservation equations consist of mass, mo-

mentum, and (thermal and kinetic) energy conservation, as well as the equation of

state.

• Energy Conservation

The energy conservation is written as a transport equation for the total enthalpy,

i.e., thermal and kinetic energy. Since the flow velocity is small, the kinetic energy

can be neglected, and we get

∂

∂t
(ρh) +∇ · (ρuh)− ∂

∂t
p = ∇ ·

(
λ

cp
∇h
)

+ Ṡheat (B.6)

Note, that enthalpy transport due to diffusion is neglected, since the vapor mass

fraction is small.

• Microscale description of a polydisperse multiphase system [8]:

∂n

∂t
+

∂

∂x

[
vpn+ (vp − vf )

∂(ξf1n)

ξf1

]
= − ∂

∂vp
[(〈Afp〉1 + 〈Ap〉1)n]

− ∂

∂ξp
(〈Gp〉1n)

− ∂

∂vf
[(〈Apf〉1 + 〈Af〉1)n]− ∂

∂ξf
(〈Gp〉1n) + S1

− ∂

∂vf

[
1

τpf

(
1− ρvξp1

ρpξf1

)
vfn

]
− ∂

∂ξf1

[
1

τpf

(
ρv
ρp
ξp1 − ξf1

)
n

]
(B.7)

• Log-normal distribution:

The normalized NDF in case of a log-normal distribution is

n(ξ) =
1√

2πξσ′
exp

(
−(ln(ξ/µ′))2

2σ′2

)
for x > 0 (B.8)
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The moments of the log-normal distribution can be calculated via

mk = exp

(
k ln(µ′) +

k2σ′2

2

)
(B.9)
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C Species Parameters

For all the simulations within this thesis n-butanol was used as working fluid, which are

summarized in the following.

• molecular weight from [10]: MWv = 74.123 · 10−3 kg
mol

• critical temperature from [23, p. 2-137]: Tc = 563.05K

• liquid density from [23, p. 2-95]: (T in K)

ρl(T ) = 71.5287 ·
(

0.266

(
1+(1− T

563.05)
0.24419

))−1

kg/m3 (C.10)

• vapor molecular diffusion coefficient from [10]: (T in K, p in N/m2)

Dv(p, T ) = 4.26199 · 10−5 · T 1.75 · p−1m2/s (C.11)

• vapor pressure from [23, p. 2-51]: (T in K)

pv(T ) = exp

[
93.173− 9185.9

T
− 9.7464ln(T ) + 4.7796 · 1018T 6

]
(C.12)

• surface tension [24, p. Dca 45]: (T and Tc in K)

σ(T ) = 0.04839

(
1− T

Tc

)0.91063

kg/s2 (C.13)

Note, in Mamakos [10] the surface tension according to [25, p. 5.91] was used:

(T in K)

σ(T ) =
27.18− 0.0898(T − 273.15)

1000
kg/s2 (C.14)

• enthalpy of vaporization from [23, p. 2-157]: (T and Tc in K)

hv(T ) = 6.7390 · 107

(
1− T

Tc

)0.173+0.2915 T
Tc

J/kmol (C.15)
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D Definitions

• disperse phase: finely dispersed droplets (=continous phase), e.g. colloids

• phase space: is the space of all possible particle states. In the mesoscale description,

the phase space ist definded by the internal coordinates, thus the infinitesimal phase

space volume dξ

• seed particles (also called primary particles): particles that act as nucleation seed

with the consequence that the energy barrier for the formation of a droplet is de-

creased

• dusty-gas model: in this model it is assumed that the particles’ velocity field is equal

to that of the continuous phase. This assumption is valid in case of a small Stokes

number.
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19 \*---------------------------------------------------------------------------*/
20
21 #include "qmomCloud.H"
22 //TODO: include declarations of subModels
23 #include "qmomSolver.H"
24 #include "transportModel.H"
25 #include "physicalModel.H"
26 #include "error.H"
27 //#include "couplingModel.H"
28
29 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
30 Foam::qmomCloud::qmomCloud
31 (
32     const fvMesh& mesh,
33     const double  Csat,
34     const double  Ysat
35 )
36 :
37     mesh_(mesh),
38     qmomProperties_
39     (
40         IOobject
41         (
42             "qmomProperties",
43             mesh_.time().constant(),
44             mesh_,
45             IOobject::MUST_READ,
46             IOobject::NO_WRITE
47         )
48     ),
49     verbose_(false),
50     ignore_(false),
51     liqDictionary_
52     (
53         IOobject
54         (
55             "liqProperties",
56             mesh.time().constant(),
57             mesh,
58             IOobject::MUST_READ_IF_MODIFIED,
59             IOobject::NO_WRITE
60         )
61     ),
62     liquids_
63     (
64         liqDictionary_.subDict("species")
65     ),
66     xLiquid_
67     (
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68           "molFractions", 
69           liqDictionary_.subDict("composition"), 
70           liquids_.size()
71     ),
72     thermoDictionary_  
73     (
74         IOobject
75         (
76             "thermophysicalProperties",
77             mesh_.time().constant(),
78             mesh_,
79             IOobject::MUST_READ_IF_MODIFIED,
80             IOobject::NO_WRITE
81         )
82     ),
83     pRef_
84     (
85          thermoDictionary_.lookup("pRefSpecies")
86     ),
87     CSat_(Csat),
88     YSat_(Ysat),
89     transportModelList_(qmomProperties_.lookup("transportModels")),
90     physicalModelList_(qmomProperties_.lookup("physicalModels")),
91     couplingModel_(NULL),
92     qmomSolver_(NULL),
93     momSource_
94     (
95         IOobject
96         (
97             "momSource",
98             mesh_.time().timeName(),
99             mesh_,

100             IOobject::READ_IF_PRESENT,
101             IOobject::NO_WRITE
102         ),
103         mesh_,
104         dimensionedScalar("zero", dimensionSet(0,0,-1,0,0), scalar(0.0)) //1/s
105     ),
106     massSource_
107     (
108         IOobject
109         (
110             "massSource",
111             mesh_.time().timeName(),
112             mesh_,
113             IOobject::READ_IF_PRESENT,
114             IOobject::NO_WRITE
115         ),
116         mesh_,
117         dimensionedScalar("zero", dimensionSet(1,-3,-1,0,0), scalar(0.0)) //kg/m³/s
118     ),
119     enthalpySource_
120     (
121         IOobject
122         (
123             "enthalpySource",
124             mesh_.time().timeName(),
125             mesh_,
126             IOobject::READ_IF_PRESENT,
127             IOobject::NO_WRITE
128         ),
129         mesh_,
130         dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0), scalar(0.0)) //W=kgm^2/s^3
131     ),
132     velFieldName_(qmomProperties_.lookup("velFieldName")),
133     U_(mesh_.lookupObject<volVectorField> (velFieldName_)),
134     phi_
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135     (
136        (
137            linearInterpolate(U_) & mesh_.Sf()
138        )
139     ),
140     requiresPDF_(false),
141     doCoupling_(false)
142     
143 {
144     #include "versionInfo.H"
145
146     if (qmomProperties_.found("verbose")) verbose_=true;
147     if (qmomProperties_.found("ignore")) ignore_=true;
148
149     transportModels_ = new autoPtr<transportModel>[nrtransportModels()];
150     for (int i=0;i<nrtransportModels();i++)
151     {
152         transportModels_[i] = transportModel::New
153         (
154             qmomProperties_,
155             *this,
156             transportModelList_[i],
157             i
158         );
159     }
160
161     physicalModels_ = new autoPtr<physicalModel>[nrPhysicalModels()];
162     for (int i=0;i<nrPhysicalModels();i++)
163     {
164         physicalModels_[i] = physicalModel::New
165         (
166             qmomProperties_,
167             *this,
168             physicalModelList_[i],
169             i
170         );
171
172         if( physicalModels_[i]->requiresPDF() )
173             requiresPDF_ = true;
174     }
175
176     if (qmomProperties_.found("couplingModel")) 
177     {
178         doCoupling_=true; 
179         Info << "qmomCloud couplingModel: Will perform back-coupling to fluid equations." << endl;
180     }
181
182     qmomSolver_ = 
183         qmomSolver::New
184         (
185             qmomProperties_,
186             *this
187         );
188     
189     #include "endVersionInfo.H"
190
191 }
192
193 // * * * * * * * * * * * * * * * * Destructors  * * * * * * * * * * * * * * //
194 Foam::qmomCloud::~qmomCloud()
195 {
196 }
197 // * * * * * * * * * * * * * * * private Member Functions  * * * * * * * * * * * * * //
198
199
200 // * * * * * * * * * * * * * * * protected Member Functions  * * * * * * * * * * * * * //
201

E Code Files 109



File: /home/mario/OpenFOAM/mario-2.…/cpcFoam/qmomCloud/qmomCloud.C Page 4 of 6

202 //void Foam::qmomCloud::setVectorAverages()
203 //{
204 //    if(verbose_) Info << "- setVectorAverage(Us,velocities_,weights_)" << endl;
205 //    averagingM().setVectorAverage
206 //    (
207 //        averagingM().UsNext(),
208 //        velocities_,
209 //        particleWeights_,
210 //        averagingM().UsWeightField(),
211 //        NULL //mask
212 //    );
213 //    if(verbose_) Info << "setVectorAverage done." << endl;
214 //}
215
216 // * * * * * * * * * * * * * * * public Member Functions  * * * * * * * * * * * * * //
217
218
219 // * * * * * * * * * * * * * * * ACCESS  Functions  * * * * * * * * * * * * //
220
221 const transportModel& Foam::qmomCloud::transportM(int i)
222 {
223     return transportModels_[i];
224 }
225
226 const physicalModel& Foam::qmomCloud::physicalM(int i)
227 {
228     return physicalModels_[i];
229 }
230
231 int Foam::qmomCloud::nrtransportModels()
232 {
233     return transportModelList_.size();
234 }
235
236 int Foam::qmomCloud::nrPhysicalModels()
237 {
238     return physicalModelList_.size();
239 }
240
241 //****************************************
242 //Prepare moment sources
243 void Foam::qmomCloud::computeMomSource(int kthMom_) 
244 {
245 //Set to zero
246     momSource_ *= 0.0;
247     
248     //Update physical models and sum up
249     //source for kthMoment
250     for(int iModel=0; iModel < nrPhysicalModels(); iModel++)
251     {
252         //Prepare the source terms before computing source for 0-th moment
253         if(kthMom_==0)
254             physicalM(iModel).update();
255             
256         //Sum-up the source terms    
257         momSource_ += physicalM(iModel).source(transportModels_, kthMom_);
258     }
259     return;
260
261 }
262
263 //****************************************
264
265 //Prepare mass sources
266 void Foam::qmomCloud::computeMassSource() 
267 {
268     //Set to zero

E Code Files 110



File: /home/mario/OpenFOAM/mario-2.…/cpcFoam/qmomCloud/qmomCloud.C Page 5 of 6

269     massSource_ *= 0.0;
270     
271     //Check if physical model is up to date
272     for(int iModel=0; iModel < nrPhysicalModels(); iModel++)
273     {
274         if(physicalM(iModel).isUpToDate())
275             massSource_ -= physicalM(iModel).massSource(transportModels_);
276         else
277             FatalError << "Physical model with id " << iModel << " is not up to date. This is bad."

<< abort(FatalError) ;
278     }
279     return;
280
281 }
282
283 void Foam::qmomCloud::computeEnthalpySource()
284 {
285     //Set to zero
286     enthalpySource_ *= 0.0;
287     
288     //Check if physical model is up to date
289     for(int iModel=0; iModel < nrPhysicalModels(); iModel++)
290     {
291         if(physicalM(iModel).isUpToDate())
292             enthalpySource_ += physicalM(iModel).energySource(transportModels_);
293         else
294             FatalError << "Physical model with id " << iModel << " is not up to date. This is bad."

<< abort(FatalError) ;
295     }
296     return;
297
298 }
299
300 //****************************************
301
302 // * * *   Evolve    * * * //
303 bool Foam::qmomCloud::evolve
304 (
305 //    volScalarField& alpha,
306 //    volVectorField& Us,
307 //    volVectorField& U
308 )
309 {
310
311     bool doCouple = false;
312     if(!ignore())
313     {
314
315         // A - reconstruct distribution by QMOM Solver if necessary
316         qmomS().solve(transportModels_);
317
318         // B1 - Update convective flux
319         phi_ = linearInterpolate(U_) & mesh_.Sf();
320         
321         // B2 - Update Transport models
322         for(int iTModel=0; iTModel < nrtransportModels(); iTModel++)
323         {
324                 transportM(iTModel).update(phi_);
325                 transportM(iTModel).bound( transportModels_ );
326         }
327    
328         //Update the sources for the coupling
329         computeMassSource();
330         computeEnthalpySource();
331
332     }//end ignore
333     return doCouple;
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334 }
335
336 //////////////////////////////////////////////////////////////////////////////
337
338 void  Foam::qmomCloud::resetStatus()
339 {
340         for(int iModel=0; iModel < nrPhysicalModels(); iModel++)
341         {
342             physicalM(iModel).resetStatus();
343         }
344 }
345
346 // * * * * * * * * * * * * * * * *  IOStream operators * * * * * * * * * * * //
347
348 #include "qmomCloudIO.C"
349
350 // ************************************************************************* //
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19 Application / Class
20     qmomCloud
21
22 Description
23     Core class for particle clouds to be described with a quadrature 
24     method of moments (QMOM)
25
26 \*---------------------------------------------------------------------------*/
27
28 #ifndef qmomCloud_H
29 #define qmomCloud_H
30
31 // choose version
32 //#include "OFversion.H" TODO: list compatible OF versions
33
34 #include "fvCFD.H"
35 #include "IFstream.H"
36 #include "liquidProperties.H"
37 #include "liquidMixtureProperties.H"
38
39 #if defined(version21) || defined(version16ext)
40     #include "turbulenceModel.H"
41 #elif defined(version15)
42     #include "RASModel.H"
43 #endif
44
45 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
46
47 namespace Foam
48 {
49
50 // forward declarations
51 class transportModel;
52 class qmomSolver;
53 class physicalModel;
54 class couplingModel;
55
56
57 /*---------------------------------------------------------------------------*\
58                            Class qmomCloud Declaration
59 \*---------------------------------------------------------------------------*/
60
61 class qmomCloud
62 {
63
64 // protected data
65 protected:
66
67     const fvMesh& mesh_;
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68
69     const IOdictionary      qmomProperties_;
70
71     bool verbose_;
72
73     bool ignore_;
74     
75     //Liquid Properties
76     const IOdictionary            liqDictionary_;
77     const liquidMixtureProperties liquids_;
78     const scalarField             xLiquid_;
79     const IOdictionary            thermoDictionary_;
80     const dimensionedScalar       pRef_;    
81     
82     //Reference Gas Properties
83     const double                  CSat_;
84     const double                  YSat_;
85     
86     
87     //List of submodels to be used
88     const wordList transportModelList_;
89     const wordList physicalModelList_;
90
91     autoPtr<transportModel>*  transportModels_;
92     autoPtr<physicalModel>*   physicalModels_;
93
94     //the control to the coupling
95     autoPtr<couplingModel>    couplingModel_;
96
97     //the solver for reconstructing the particle PDF
98     autoPtr<qmomSolver> qmomSolver_;
99     

100     //Moment Source Field
101     mutable volScalarField  momSource_;
102     
103     //Exchange fields
104     mutable volScalarField  massSource_;       //sum of all mass sources from couplingModel
105     mutable volScalarField  enthalpySource_;   //sum of all enthalpySources from couplingModel
106
107     word velFieldName_;
108     const volVectorField& U_;
109     mutable surfaceScalarField phi_;
110
111 mutable bool requiresPDF_;
112
113     mutable bool doCoupling_;
114
115 // Protected member functions
116 //    virtual void setForces();
117
118
119 public:
120
121     friend class qmomSolver;
122
123 // Constructors
124
125     //- Construct from mesh and a list of particles
126     qmomCloud
127     (
128             const fvMesh& mesh,
129             const double  Csat,
130             const double  Ysat
131     );
132
133     //- Destructor
134     virtual ~qmomCloud();
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135
136 // public Member Functions
137
138     // Access
139        virtual const    transportModel& transportM(int);
140        virtual const    physicalModel&  physicalM(int);
141
142        virtual int      nrtransportModels();
143        virtual int      nrPhysicalModels();
144
145        inline const     qmomSolver& qmomS() const;
146
147        inline bool      verbose() const;
148
149        inline bool      doCoupling() const { return doCoupling_;};
150
151        inline const bool& ignore() const;
152
153        inline const IOdictionary& qmomProperties() const;
154        inline const IOdictionary& liqDictionary() const;
155        inline const liquidMixtureProperties& liquids() const;
156        inline const scalarField& xLiquid() const;
157        inline const dimensionedScalar& pRef() const;
158        
159        inline const double& CSat() const;
160        inline const double& YSat() const;
161
162        inline const               fvMesh& mesh() const;
163
164        inline const wordList& transportModels();
165
166
167     // Write
168
169       // write qmomCloud internal data
170         virtual bool evolve();
171
172         bool requiresPDF() const {return requiresPDF_;}; //return true if a physical model requires 

the full PDF
173         
174     // Sources for Moments
175         void computeMomSource(int modelID_);
176         const volScalarField& momSource(){return momSource_;};
177
178     // Sources for Mass and energy
179         void  computeMassSource();
180         const volScalarField& massSource(){return massSource_;};
181         
182         void  computeEnthalpySource();
183         const volScalarField& enthalpySource(){return enthalpySource_;};
184
185         void  resetStatus();
186
187     // functions
188         //NONE AT THE MOMENT
189 };
190
191
192 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
193
194 } // End namespace Foam
195
196 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
197
198 #include "qmomCloudI.H"
199
200 #endif
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201
202 // ************************************************************************* //
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19 \*---------------------------------------------------------------------------*/
20
21 #include "error.H"
22 #include "momentTransport.H"
23 #include "addToRunTimeSelectionTable.H"
24 #include "qmomSolver.H"
25 #include <sstream>
26 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
27
28 namespace Foam
29 {
30
31 //Helper function
32 inline string intToString (int a)
33 {
34     std::ostringstream temp;
35     temp<<a;
36     return temp.str();
37 }
38
39 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
40 defineTypeNameAndDebug(momentTransport, 0);
41
42 addToRunTimeSelectionTable
43 (
44     transportModel,
45     momentTransport,
46     dictionary
47 );
48
49 // * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //
50
51 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
52
53 // Construct from components
54 momentTransport::momentTransport
55 (
56     const dictionary& dict,
57     qmomCloud& sm,
58     int modelID
59 )
60 :
61     transportModel(dict,sm,modelID),
62     propsDict_(dict.subDict(typeName + "Props")),
63     verbose_(false),
64     fieldName_(propsDict_.lookup("fieldName")),
65     m_
66     (   IOobject
67         (
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68             fieldName_+intToString(modelID),
69             sm.mesh().time().timeName(),
70             sm.mesh(),
71             IOobject::MUST_READ,
72             IOobject::AUTO_WRITE
73         ),
74         sm.mesh()
75     ),
76     modelID_(modelID),
77     Dp_0_ 
78     (
79         dimensionedScalar("Dp0", 
80                           dimensionSet(0, 2, -1, 0, 0), 
81                           readScalar(propsDict_.lookup("Dp0"))
82                          )
83     ),
84     limitMomentAbove_(99),
85     momentLimitFactor_(1.0)
86 {
87     if (propsDict_.found("verbose")) verbose_=readBool(propsDict_.lookup("verbose"));
88
89     if (propsDict_.found("limitMomentAbove"))
90     {
91         limitMomentAbove_ = readScalar(propsDict_.lookup("limitMomentAbove"));
92         if(limitMomentAbove_<2) 
93             FatalError << "limitMomentAbove must be >=2 in order for the momentum limiter to work"

<< abort(FatalError) ;
94
95         momentLimitFactor_= readScalar(propsDict_.lookup("momentLimitFactor"));
96         if(momentLimitFactor_<=1.01)
97             FatalError << "momentLimitFactor_must be >1.01 in order for the momentum limiter to 

work" << abort(FatalError) ;
98         Info << "...detected moment limiter. Will limit moments >= "  
99              << limitMomentAbove_ 

100              << " with factor " << momentLimitFactor_ << endl;
101     }
102 }
103
104
105 // * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //
106
107 momentTransport::~momentTransport()
108 {}
109
110 // * * * * * * * * * * * * * * * * Member Fct  * * * * * * * * * * * * * * * //
111 void momentTransport::update(surfaceScalarField phi) const
112 {
113     //Set the sources for the moments
114     particleCloud_.computeMomSource(modelID_);
115     
116     //Assemble transport equation
117     fvScalarMatrix MEqn
118     (
119         fvm::ddt(m_)
120       + fvm::div(phi, m_,"div(phi,m)")    //phi is just velocity here
121       == 
122         fvm::laplacian(Dp_0_, m_,"laplacian(Dp,m)")    
123       + particleCloud_.momSource()
124     );
125     
126     if(verbose_)
127     {
128         dimensionedScalar  totalSource = gSum(particleCloud_.momSource().internalField()*m_.mesh().V

());
129         dimensionedScalar  totalVolume = gSum(m_.mesh().V());
130
131         Info << "volume-average momSource[" << modelID_ << "]: " << (totalSource/totalVolume).value
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() << endl;
132     }
133
134     //solve Eqn.
135     MEqn.solve(m_.mesh().solver("m"));
136     
137     return;
138 }
139
140 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
141 void momentTransport::bound(autoPtr<transportModel>* transportModels) const
142 {
143
144     //lower bound
145     m_= max(0.0,m_); 
146
147     //Upper Limiter
148     if(modelID_ >= limitMomentAbove_)
149     {
150       Info << "...limiting moment with id " << modelID_ << endl;
151
152       forAll(m_.internalField(),cellI)
153       {
154           //estimate current moment from previous two moments
155           double m_0 = transportModels[0]->m().internalField()[cellI];
156           double m_Minus1 = transportModels[modelID_-1]->m().internalField()[cellI];
157
158           double m_expected = m_0 
159                             * powf(
160                                       m_Minus1 / (m_0+SMALL),
161                                       double(modelID_) / double(modelID_-1.0)
162                                   );
163
164           if(verbose_)
165             Info << "m0: "          << m_0 
166                  << ", m[x-1]: "    << m_Minus1
167                  << ", m_exp[x]: "  << m_expected
168                  << ", m_curr[x]: " << m_.internalField()[cellI] << endl;
169
170           if(  ( m_.internalField()[cellI] > m_expected * momentLimitFactor_ ) //too high
171              ||( m_.internalField()[cellI] < m_expected / momentLimitFactor_ ) //too low
172             )
173                 m_.internalField()[cellI] = m_expected; //reset to expected value in case value 

above the limit
174
175
176        }
177     }
178
179
180 }
181
182 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
183
184 } // End namespace Foam
185
186 // ************************************************************************* //
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19 \*---------------------------------------------------------------------------*/
20
21 #include "error.H"
22 #include "nucleation.H"
23 #include "transportModel.H"
24 #include "qmomSolver.H"
25 #include "addToRunTimeSelectionTable.H"
26 #include <sstream>
27 #include <math.h>
28 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
29
30 namespace Foam
31 {
32
33 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
34 defineTypeNameAndDebug(nucleation, 0);
35
36 addToRunTimeSelectionTable
37 (
38     physicalModel,
39     nucleation,
40     dictionary
41 );
42
43 // * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //
44
45 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
46
47 // Construct from components
48 nucleation::nucleation
49 (
50     const dictionary& dict,
51     qmomCloud& sm,
52     int modelID
53 )
54 :
55     physicalModel(dict,sm,modelID),
56     propsDict_(dict.subDict(typeName + "Props")),
57     verbose_(false),
58     SFieldName_(propsDict_.lookup("SName")),
59     S_(sm.mesh().lookupObject<volScalarField> (SFieldName_)),
60     rStar_
61     (
62         IOobject
63         (
64            "rStar",
65             sm.mesh().time().timeName(),
66             sm.mesh(),
67             IOobject::READ_IF_PRESENT,
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68             IOobject::AUTO_WRITE
69         ),
70         sm.mesh(),
71         dimensionedScalar("zero", dimensionSet(0,1,0,0,0), scalar(0.0))
72     ),
73     J_
74     (
75         IOobject
76         (
77            "JNuc",
78             sm.mesh().time().timeName(),
79             sm.mesh(),
80             IOobject::READ_IF_PRESENT,
81             IOobject::AUTO_WRITE
82         ),
83         sm.mesh(),
84         dimensionedScalar("zero", 
85                           dimensionSet(0, 0, -1, 0, 0), 
86                           scalar(0.0)
87                          )
88     ),
89     J_0_
90     (
91         dimensionedScalar("J0",
92                           dimensionSet(0, 0, -1, 0, 0),
93                           readScalar(propsDict_.lookup("J0"))
94                          )
95     ),
96     theta_
97     (
98         dimensionedScalar("theta",
99                           dimensionSet(0, 0, 0, 0, 0),

100                           readScalar(propsDict_.lookup("theta"))
101                          )
102     ),
103
104     dParticle_
105     (
106         dimensionedScalar("dParticle",
107                           dimensionSet(0, 1, 0, 0, 0),
108                           readScalar(propsDict_.lookup("dParticle"))
109                          )
110     ),
111     N_prim_
112     (
113         dimensionedScalar("NPrim",
114                           dimensionSet(0, 0, 0, 0, 0),
115                           readScalar(propsDict_.lookup("NPrim"))
116                          )
117
118     ),
119     cellId2Report_(0)
120
121 {
122     if (propsDict_.found("verbose")) verbose_=true;
123 localThetaRad_ = theta_.value() * 3.14159265359 / 180;
124
125     if (propsDict_.found("cellId2Report")) cellId2Report_=int(readScalar(propsDict_.lookup

("cellId2Report")));
126 }
127
128
129
130 // * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //
131
132 nucleation::~nucleation()
133 {}
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134
135 // * * * * * * * * * * * * * * * * Member Fct  * * * * * * * * * * * * * * * //
136 inline void nucleation::update() const
137 {
138 //    Info << "Computing source for " << iMoment << "th moment. Will use " 
139 //         << iMoment-1+r_ << "th moment as the base" << endl;
140
141     //Compute local properties and nucleation rate
142     double localT_      = 0.0;
143     double localSigma_  = 0.0;
144     double localRhoLiq_ = 0.0;
145     double localS_      = 0.0;
146     double localRStar   = 0.0;
147     double localddInit  = 0.0;
148     double localGhet    = 0.0;
149 double localJ_ = 0.0;
150 double hEvap_ = 0.0;
151 double localMassS_  = 0.0;
152 double localHeatS_  = 0.0;
153
154
155     forAll(T_.internalField(),cellI)
156     {
157         localT_     = T_.internalField()[cellI];
158         localS_     = S_.internalField()[cellI];
159
160
161         
162         localSigma_ = liquids_.sigma(pRef_.value(), localT_, xLiquid_);
163         localRhoLiq_= liquids_.rho  (pRef_.value(), localT_, xLiquid_);    
164         
165         
166         localRStar         =  2.0   //this is the critical radius of the droplets
167                             * localSigma_ * MWVapor_
168                             / (
169                                  localRhoLiq_*Rgas_.value() * localT_ * log(max(1.0,localS_)) 
170                                + 1e-10
171                               );
172
173        localddInit      = pow  //compute the radius of the initial droplet
174                              (
175                                    localRStar * localRStar * localRStar
176                                 +dParticle_.value() * dParticle_.value() * dParticle_.value() / 8.0
177                               , 0.3333333333333333333333
178                              );
179                     
180         localGhet          =  4.188790205    // 4/3*pi
181                             * localRStar*localRStar 
182                             * localSigma_
183                             * fg(localRStar);
184         
185                  
186         //Save to fields                              
187         rStar_.internalField()[cellI] = localddInit ;
188         J_.internalField()[cellI] = J_0_.value()
189                                   * exp(
190                                          -1.0* localGhet / localT_ / kB_.value()
191                                        );
192
193         localJ_     = J_.internalField()[cellI];
194
195         //Update mass and enthalpy
196         massSource_.internalField()[cellI] =  J_.internalField()[cellI]
197                                            * localRStar * localRStar * localRStar
198                                            * 4.188790205    // 4/3*pi
199                                            * localRhoLiq_;
200         /*massSource_.internalField()[cellI] =  0;*/
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201
202 localMassS_ = massSource_.internalField()[cellI];
203
204         hEvap_ = liquids_.hl(pRef_.value(), localT_, xLiquid_);
205         energySource_.internalField()[cellI] =  massSource_.internalField()[cellI]
206                                              *  hEvap_;  
207
208 localHeatS_ = energySource_.internalField()[cellI];
209
210
211         //Print stats to file
212       if(verbose_ && cellI == cellId2Report_)
213       {
214          Pout << "nucleation[" << cellId2Report_ 
215                  << "]: T S sigma rhoLiq rStar dInit Ghet J hEvap massSource heatSource:  "
216        << localT_ << "  "
217        << localS_ << "  "
218        << localSigma_ << "  "
219        << localRhoLiq_ << "  "
220        << localRStar << "  "
221  << localddInit << "  "
222  << localGhet << "  "
223  << localJ_ << "  "
224  << hEvap_ << "  "
225  << localMassS_ << "  "
226  << localHeatS_ << "  " << endl;
227       }
228
229     }
230
231     isUpToDate_ = true;
232
233 }
234
235 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
236
237 inline volScalarField& nucleation::source(autoPtr<transportModel>*  transportModels, int iMoment) 

const
238 {
239     if( iMoment==0 )
240     {
241
242       double timeStep = particleCloud_.mesh().time().deltaT().value() + 1e-99;
243       forAll(source_.internalField(),cellI)
244       {
245           //Correct the nucleation rate to bound m_0 to N_prim_
246           double m_0Old = transportModels[0]->m().internalField()[cellI];
247           if(  (m_0Old + J_.internalField()[cellI] * timeStep) > N_prim_.value())
248           {
249                 double Jold = J_.internalField()[cellI];
250                 J_.internalField()[cellI] = max( 0.0, 
251                                                  ( N_prim_.value() - m_0Old ) / timeStep 
252                                                );   //bound by zero, i.e., always nucleation,
253
254                 //Update mass and heat exchange rate
255                 massSource_.internalField()[cellI]   *= J_.internalField()[cellI] 
256                                                       / max(Jold,1e-32);
257                 energySource_.internalField()[cellI] *= J_.internalField()[cellI] 
258                                                       / max(Jold,1e-32);
259           }
260
261           source_.internalField()[cellI]  = J_.internalField()[cellI];
262
263        }
264     }
265     else    //source term for kth moment
266     {
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19 \*---------------------------------------------------------------------------*/
20
21 #include "error.H"
22 #include "simpleGrowth.H"
23 #include "transportModel.H"
24 #include "qmomSolver.H"
25 #include "addToRunTimeSelectionTable.H"
26 #include <sstream>
27 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
28
29 namespace Foam
30 {
31
32 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
33 defineTypeNameAndDebug(simpleGrowth, 0);
34
35 addToRunTimeSelectionTable
36 (
37     physicalModel,
38     simpleGrowth,
39     dictionary
40 );
41
42 // * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //
43
44 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
45
46 // Construct from components
47 simpleGrowth::simpleGrowth
48 (
49     const dictionary& dict,
50     qmomCloud& sm,
51     int modelID
52 )
53 :
54     physicalModel(dict,sm,modelID),
55     propsDict_(dict.subDict(typeName + "Props")),
56     verbose_(false),
57     r_(readScalar(propsDict_.lookup("r"))), //just for testing, obsolete if useLocalG_ is used
58     G_0_    //just for testing, obsolete if useLocalG_ is used
59     (
60         dimensionedScalar("G0", 
61                           dimensionSet(0, 0, -1, 0, 0), 
62                           readScalar(propsDict_.lookup("G0"))
63                          )
64     ),
65     useLocalG_(false),
66     G_
67     (
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68         IOobject
69         (
70            "Growth",
71             sm.mesh().time().timeName(),
72             sm.mesh(),
73             IOobject::READ_IF_PRESENT,
74             IOobject::AUTO_WRITE
75         ),
76         sm.mesh(),
77         dimensionedScalar("zero", 
78                           dimensionSet(0, 0, -1, 0, 0), 
79                           scalar(0.0)
80                          )
81     ),
82     SFieldName_(propsDict_.lookup("SName")),
83     S_(sm.mesh().lookupObject<volScalarField> (SFieldName_)),
84     YFieldName_(propsDict_.lookup("YName")),
85     Y_(sm.mesh().lookupObject<volScalarField> (YFieldName_)),
86     RhoGFieldName_(propsDict_.lookup("RhoGName")),
87     RhoG_(sm.mesh().lookupObject<volScalarField> (RhoGFieldName_)),
88     DiffFieldName_(propsDict_.lookup("DiffName")),
89     diff_(sm.mesh().lookupObject<volScalarField> (DiffFieldName_)),
90     requiresPDF_(false),
91     massSourceIsSet_(false),
92     limitGrowthFactor_(-1.0)
93 {
94     if (propsDict_.found("verbose")) verbose_      = readBool(propsDict_.lookup("verbose"));
95     if (propsDict_.found("useQmom")) requiresPDF_  = readBool(propsDict_.lookup("useQmom"));
96
97     if (propsDict_.found("useLocalG"))
98     {
99        useLocalG_=true;

100        r_ = -1;
101        printf("simpleGrowth: using local growth rate \n");
102     }
103
104     if (propsDict_.found("limitGrowthFactor"))
105     {
106        limitGrowthFactor_=readScalar(propsDict_.lookup("limitGrowthFactor"));
107        if(limitGrowthFactor_<1.1)
108            FatalError << "limitGrowthFactor<1.1: This will limit growth very much. Choose this 

parameter > 1.1 !" << abort(FatalError) << endl;
109        printf("simpleGrowth: using non-standard limitGrowthFactorof %g \n",limitGrowthFactor_);
110     }
111     
112     //Check r
113     if(r_==-1)
114     {
115         printf("using r=-1 for simpleGrowth model \n");
116     }
117     else if(r_==0)
118         printf("using r=0 for simpleGrowth model \n");
119     else if(r_==1)
120         printf("using r=1 for simpleGrowth model \n");
121     else        
122     {
123         requiresPDF_ = true;
124     }
125
126     if(requiresPDF_)
127         Info << "simpleGrowth will use QMOM." << endl;
128             
129 }
130
131
132 // * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //
133
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134 simpleGrowth::~simpleGrowth()
135 {}
136
137 // * * * * * * * * * * * * * * * * Member Fct  * * * * * * * * * * * * * * * //
138 inline void simpleGrowth::update() const
139 {
140
141     //Compute local properties and nucleation rate
142     double localT_      = 0.0;
143     double localRhoLiq_ = 0.0;
144     double localRhoG_   = 0.0;
145     double localDiffG_  = 0.0;
146     
147     double localS_      = 0.0;
148     double localY_      = 0.0;
149     double localBm_     = 0.0;  //spalding mass transfer number
150     double localYsf_    = 0.0;  //equilibrium mass fraction (directly above droplet surface)
151
152     forAll(T_.internalField(),cellI)
153     {
154         localT_     = T_.internalField()[cellI];
155         localS_     = S_.internalField()[cellI];
156         localY_     = Y_.internalField()[cellI];
157         localRhoG_  = RhoG_.internalField()[cellI];
158         localDiffG_ = diff_.internalField()[cellI];
159         
160         localRhoLiq_= liquids_.rho  (pRef_.value(), localT_, xLiquid_);
161
162
163         //Using the definition of the Saturation, assuming thermal equilibrium of gas and droplets
164         //as well as the dimensionless mass fraction,
165         //we can compute the local saturation mass fraction from Y and S:
166         //S = Yi / localYsf 
167         //Yi = YSat * Y , here YSat is the reference saturation mass fraction @ the evaporator
168         // --> localYsf = YSat * Y / S
169         localYsf_ = YSat_ * localY_ 
170                    / fmax(1e-12, localS_);
171         if( fabs(1.0 - localYsf_) > 1e-12)
172           localBm_ = (YSat_*localY_ - localYsf_) / (1.0 - localYsf_);
173         else
174           localBm_ = 0.0; //in case we have S = 1, there is no mass transfer to the droplet. this 

is to avoid division by zero
175
176 //Save to fields, this is G * \xi    !!
177         G_.internalField()[cellI] = 4.0 //2*Sh 
178                                    *localRhoG_ / localRhoLiq_
179                                    *localDiffG_
180                                    *log( fmax(1e-12,1.0 + localBm_) );
181
182     }
183     //printf("min/max G_: %.5f / %.5f \n", min(G_).value(), max(G_).value()); //TODO: also check 

other variables
184     if(verbose_)
185     {
186     printf("localT_ = %.5f \n", localT_);
187     printf("localS_ = %.5f \n", localS_);
188     printf("localY_ = %.5f \n", localY_);
189     printf("localRhoG_ = %.5f \n", localRhoG_);
190     printf("localDiffG_ = %.5f \n", localDiffG_);
191     printf("localRhoLiq_ = %.5f \n", localRhoLiq_);
192     printf("YSat = %.5f \n", YSat_);
193     }
194
195     isUpToDate_ = true;
196 }
197
198
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199
200 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
201 inline volScalarField& simpleGrowth::source(autoPtr<transportModel>*  transportModels, int iMoment) 

const
202 {
203 //    Info << "Computing source for " << iMoment << "th moment. Will use " 
204 //         << iMoment-1+r_ << "th moment as the base" << endl;
205
206   //Growth cannot change m0
207   if(iMoment==0)
208   {
209     source_ *= 0.0;
210     return source_;
211   }
212
213   //Moment used in the source expression
214   int k = iMoment-1+r_;
215
216   // *** Use QMOM ***
217   if(requiresPDF_)
218   {
219       //Set the required moment exponent for the source term
220
221
222       //Set the source
223       if(useLocalG_)
224       {
225        source_ =   G_ 
226                  * double(iMoment)
227                  * particleCloud_.qmomS().reconstructMoment( transportModels, k ); 
228       }
229       else
230       {
231         source_  = G_0_
232                  * double(iMoment)
233                  * particleCloud_.qmomS().reconstructMoment( transportModels, k ); 
234       }
235   }
236   // *** Use MOM ***
237   else    
238   {
239     if( (k) >= 0)
240     {
241 if(useLocalG_)
242       {
243         source_  = G_
244                * double(iMoment)
245                * transportModels[k]->m();
246       }
247       else
248       {
249         source_  = G_0_
250                * double(iMoment)
251                * transportModels[k]->m();
252       }
253     }
254     else    //return zero growth rate
255     {
256       source_ *= 0.0;
257       Info << "simpleGrowth: WARNING: Neglecting source term for " << iMoment << "-th moment 

because MOM is used." << endl;
258     }
259   }
260
261   //Limit the growth rate - just do for moment 1 (to fix G_ for other moments)
262   if(limitGrowthFactor_>0 && iMoment==1)
263   {
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264       double maxIncr_ = limitGrowthFactor_-1.0;
265       double deltaT = T_.mesh().time().deltaT().value();
266       double sourceError(0.0);
267       double tooMuchFactor_(0.0);
268
269       forAll(T_.internalField(),cellI) //loop all cells
270       {
271           if( (source_[cellI] * deltaT) > (transportModels[iMoment]->m()[cellI]*maxIncr_ ) )
272           {
273               tooMuchFactor_ = source_[cellI]
274                              / ( maxIncr_*transportModels[iMoment]->m()[cellI] / deltaT )
275                              + 1e-64;
276
277               //Scale source and growth rate
278               source_[cellI]/= tooMuchFactor_;
279               sourceError   += G_[cellI]*(1.0-1.0/tooMuchFactor_);
280               G_[cellI]     /= tooMuchFactor_;
281
282               if(verbose_)
283                 Pout << "tooMuchFactor: " << tooMuchFactor_ << ". Resetting G[" << cellI << "] to "

<< G_[cellI] << endl;
284           }
285       }
286       if(verbose_ && sourceError>0.0)
287           Pout << "sourceError: " << sourceError << endl;
288   } 
289
290    
291   return source_;
292 }
293
294 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
295
296 inline volScalarField& simpleGrowth::massSource(autoPtr<transportModel>*  transportModels) const
297 {
298
299   //Set the required moment exponent for the source term, same as for the third moment!
300   int k = 3 - 1 + r_;
301
302   // *** Use QMOM ***
303   if(requiresPDF_)
304   {
305       //Set the source
306 if(useLocalG_)
307       {
308        massSource_.internalField() =   G_ 
309                  * 1.570796327 //3*pi/6
310                  * particleCloud_.qmomS().reconstructMoment( transportModels, k ); 
311       }
312       else
313       {
314         massSource_.internalField()  = G_0_
315                  * 1.570796327 //3*pi/6
316                  * particleCloud_.qmomS().reconstructMoment( transportModels, k ); 
317       }
318   }
319   // *** Use MOM ***
320   else    
321   {
322       if(useLocalG_)
323       {
324         massSource_.internalField()  = G_
325                  * 1.570796327 //3*pi/6
326                * transportModels[k]->m();
327       }
328       else
329       {
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330         massSource_.internalField()  = G_0_
331                  * 1.570796327 //3*pi/6
332                * transportModels[k]->m();
333       }
334   }
335
336   //Multiply with local liquid density
337   double localT_      = 0.0;
338   double localRhoLiq_ = 0.0;
339   forAll(T_.internalField(),cellI)
340   {
341         localT_     = T_.internalField()[cellI];
342         localRhoLiq_= liquids_.rho  (pRef_.value(), localT_, xLiquid_);
343     
344         massSource_.internalField()[cellI] *= localRhoLiq_;
345   }
346   
347
348   massSourceIsSet_ = true;
349   return massSource_;
350 }
351
352 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
353
354 inline volScalarField& simpleGrowth::energySource(autoPtr<transportModel>*  transportModels) const
355 {
356
357   //Requires that mass source is called before!
358   if(!massSourceIsSet_)
359     FatalError << "Mass source is not set in simpleGrowth::energySource. Fail!" << abort

(FatalError) << endl;
360
361
362   double localT_      = 0.0;
363   double hEvap_       = 0.0;
364
365   forAll(T_.internalField(),cellI)
366   {
367         localT_     = T_.internalField()[cellI];
368         hEvap_      = liquids_.hl(pRef_.value(), localT_, xLiquid_);
369
370         energySource_.internalField()[cellI] = massSource_.internalField()[cellI] * hEvap_;
371   }
372
373   return energySource_;
374 }
375 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
376
377 } // End namespace Foam
378
379 // ************************************************************************* //
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19 \*---------------------------------------------------------------------------*/
20
21 #include "error.H"
22 #include "diffusionPhysSpace.H"
23 #include "transportModel.H"
24 #include "qmomSolver.H"
25 #include "addToRunTimeSelectionTable.H"
26 #include <sstream>
27 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
28
29 namespace Foam
30 {
31
32 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
33 defineTypeNameAndDebug(diffusionPhysSpace, 0);
34
35 addToRunTimeSelectionTable
36 (
37     physicalModel,
38     diffusionPhysSpace,
39     dictionary
40 );
41
42 // * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //
43
44 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
45
46 // Construct from components
47 diffusionPhysSpace::diffusionPhysSpace
48 (
49     const dictionary& dict,
50     qmomCloud& sm,
51     int modelID
52 )
53 :
54     physicalModel(dict,sm,modelID),
55     propsDict_(dict.subDict(typeName + "Props")),
56     verbose_(false),
57     gamma_0_    //just for testing, obsolete if useLocalDiff_ is used
58     (
59         dimensionedScalar("gamma0", 
60                           dimensionSet(0, 2, -1, 0, 0), 
61                           readScalar(propsDict_.lookup("gamma0"))
62                          )
63     ),
64     dynViscosity_(1e-5),
65     gamma_
66     (
67         IOobject
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68         (
69            "diffParticle",
70             sm.mesh().time().timeName(),
71             sm.mesh(),
72             IOobject::READ_IF_PRESENT,
73             IOobject::NO_WRITE
74         ),
75         sm.mesh(),
76         dimensionedScalar("zero", 
77                           dimensionSet(0, 2, -1, 0, 0), 
78                           scalar(0.0)
79                          )
80     ),
81     useLocalDiff_(false),
82     requiresPDF_(false)
83 {
84     if (propsDict_.found("verbose")) verbose_      = readBool(propsDict_.lookup("verbose"));
85     if (propsDict_.found("useQmom")) requiresPDF_  = readBool(propsDict_.lookup("useQmom"));
86
87     dynViscosity_ = readScalar(propsDict_.lookup("dynViscosity"));
88
89     if (propsDict_.found("useLocalDiff"))
90     {
91        useLocalDiff_=true;
92        printf("using local diffusion rate \n");
93     }
94     
95     if(requiresPDF_)
96         Info << "diffusionPhysSpace will use QMOM." << endl;
97             
98 }
99

100
101 // * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //
102
103 diffusionPhysSpace::~diffusionPhysSpace()
104 {}
105
106 // * * * * * * * * * * * * * * * * Member Fct  * * * * * * * * * * * * * * * //
107 inline void diffusionPhysSpace::update() const
108 {
109
110     //Compute local properties and nucleation rate
111 double localT_      = 0.0;
112     double invThreePiViscosity = 1.0
113                                / (9.424777961 * dynViscosity_ + 1e-32);
114
115     forAll(T_.internalField(),cellI)
116     {
117         localT_     = T_.internalField()[cellI];
118
119         //Save to fields, this is G * \xi    !!
120         gamma_.internalField()[cellI] = kB_.value() * localT_ * invThreePiViscosity ;
121
122         if(verbose_)
123         {
124         printf("localT_ = %.5f \n", localT_);
125         printf("gamma_  = %.5g \n", gamma_.internalField()[cellI]);
126         }
127
128     }
129
130     isUpToDate_ = true;
131 }
132
133
134
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135 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
136 inline volScalarField& diffusionPhysSpace::source(autoPtr<transportModel>*  transportModels, int

iMoment) const
137 {
138 //    Info << "Computing source for " << iMoment << "th moment. Will use " 
139 //         << iMoment-1+r_ << "th moment as the base" << endl;
140
141   // *** Use QMOM ***
142   if(requiresPDF_)
143   {
144       //Set the source
145     if( (iMoment-1) >= 0)
146     {
147       if(useLocalDiff_)
148       {
149        source_ =   fvc::laplacian(gamma_, transportModels[iMoment-1]->m(),"laplacian(Dp,m)");
150       }
151       else
152       {
153         source_  = fvc::laplacian(gamma_0_, transportModels[iMoment-1]->m(),"laplacian(Dp,m)");
154       }
155     }
156     else    //return source based on reconstructed moment set
157     {
158       if(useLocalDiff_)
159       {
160           source_   = fvc::laplacian(gamma_, 
161                                      particleCloud_.qmomS().reconstructMoment( transportModels, 

iMoment-1 ),
162                                      "laplacian(Dp,m)"
163                                     );
164       }
165       else
166       {
167           source_   = fvc::laplacian(gamma_0_, 
168                                      particleCloud_.qmomS().reconstructMoment( transportModels, 

iMoment-1 ),
169                                      "laplacian(Dp,m)"
170                                     );
171       }
172     }
173   }
174   // *** Use MOM ***
175 else
176   {
177     if( (iMoment-1) >= 0)
178     {
179       if(useLocalDiff_)
180       {
181        source_ =   fvc::laplacian(gamma_, transportModels[iMoment-1]->m(),"laplacian(Dp,m)");
182       }
183       else
184       {
185         source_  = fvc::laplacian(gamma_0_, transportModels[iMoment-1]->m(),"laplacian(Dp,m)");
186       }
187     }
188     else    //return zero growth rate
189     {
190       source_ *= 0.0;
191       Info << "diffusionPhysSpace: WARNING: Neglecting source term for 0-th moment." << endl;
192     }
193   }
194   
195   return source_;
196 }
197
198
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199 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
200
201 } // End namespace Foam
202
203 // ************************************************************************* //
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19
20 \*---------------------------------------------------------------------------*/
21
22 #include "error.H"
23 #include "qmomSolver.H"
24 #include "transportModel.H"
25
26 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
27
28 namespace Foam
29 {
30
31 //Helper function
32 inline string intToString (int a)
33 {
34     std::ostringstream temp;
35     temp<<a;
36     return temp.str();
37 }
38
39 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
40
41 defineTypeNameAndDebug(qmomSolver, 0);
42
43 defineRunTimeSelectionTable(qmomSolver, dictionary);
44
45 // * * * * * * * * * * * * * * private Member Functions  * * * * * * * * * * * * * //
46
47 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
48
49 // Construct from components
50 qmomSolver::qmomSolver
51 (
52     const dictionary& dict,
53     qmomCloud& aCloud
54 )
55 :
56     dict_(dict), 
57     particleCloud_(aCloud),
58     N_(particleCloud_.nrtransportModels() / 2),
59     nodes_(N_),
60     weights_(N_)
61 {
62   //Create the volScalarFields if required
63   if(particleCloud_.requiresPDF())
64   {
65
66     if( N_ < 2)
67     {
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68         Info   << "You use " << N_ << " nodes and " << particleCloud_.nrtransportModels() << " 
moments." << endl;

69         Info   << "WARNING: The solver will skip the reconstruction of nodes, and approximate the 
size distribution with a single diameter!" <<  endl;

70     }
71
72     if( N_ > 3)
73         FatalError << "You are using more than 3 nodes, which requires a more complex eigenvalue/

eigenvector computation. The solver cannot handle this. Use less moments (and nodes)." <<  abort
(FatalError);

74
75
76     if( particleCloud_.nrtransportModels() < (2*N_) )
77         FatalError << "Too few moment transport equations. Add more transportModels!" <<  abort

(FatalError);
78
79     if( particleCloud_.nrtransportModels() > (2*N_) )
80         FatalError << "Too much moment transport equations. Remove one or more transportModel, such 

that the number of moment equations matches the 2 * the number of nodes!" <<  abort(FatalError);
81
82
83     for (int i=0; i<N_; i++)
84     {
85         nodes_[i].reset 
86         ( 
87             new volScalarField
88                  (   IOobject
89                     (
90                         "node"+intToString(i),
91                         particleCloud_.mesh().time().timeName(),
92                         particleCloud_.mesh(),
93                         IOobject::READ_IF_PRESENT,
94                         IOobject::AUTO_WRITE
95                     ),
96                     particleCloud_.mesh()
97                  )
98         );
99

100         weights_[i].reset 
101         ( 
102             new volScalarField
103                  (   IOobject
104                     (
105 "weight"+intToString(i),
106                         particleCloud_.mesh().time().timeName(),
107                         particleCloud_.mesh(),
108                         IOobject::READ_IF_PRESENT,
109                         IOobject::AUTO_WRITE
110                     ),
111                     particleCloud_.mesh()
112                  )
113         );
114
115
116     }
117   }
118 }
119
120
121 // * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //
122
123 qmomSolver::~qmomSolver()
124 {
125 }
126
127 // * * * * * * * * * * * * * * public Member Functions  * * * * * * * * * * * * * //
128 const volScalarField qmomSolver::reconstructMoment(autoPtr<transportModel>*  transportModels, int
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i) const
129 {
130     tmp<volScalarField> myMoment(0.0 * transportModels[0]->m()); //initialize with zero
131
132     for(int iNode=0; iNode < N_; iNode++)
133     {
134             myMoment  =  myMoment
135                         +(
136                              weight(iNode) 
137                            * pow( node(iNode) + scalar(1e-64), i )
138                          );
139     }
140
141     myMoment =  myMoment * transportModels[0]->m(); //Multiply with 0-th moment (i.e., the 

concentration)
142     
143     return myMoment;
144 }
145
146 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
147
148 } // End namespace Foam
149
150 // ************************************************************************* //
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1 /*---------------------------------------------------------------------------*\
2 License
3
4     This is free software: you can redistribute it and/or modify it
5     under the terms of the GNU General Public License as published by
6     the Free Software Foundation, either version 3 of the License, or
7     (at your option) any later version.
8
9     This code is distributed in the hope that it will be useful, but WITHOUT

10     ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11     FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12     for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this code.  If not, see <http://www.gnu.org/licenses/>.
16
17     Copyright (C) 2014- Stefan Radl, TU Graz, Austria
18
19 \*---------------------------------------------------------------------------*/
20
21 #include "error.H"
22
23 #include "transportModel.H"
24 #include "productDifferenceQMOMSol.H"
25 #include "addToRunTimeSelectionTable.H"
26
27 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
28
29 namespace Foam
30 {
31
32 #define SMALLNUMBER 1e-30
33 #define VSMALLNUMBER 1e-100
34
35 // * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
36
37 defineTypeNameAndDebug(productDifferenceQMOMSol, 0);
38
39 addToRunTimeSelectionTable
40 (
41     qmomSolver,
42     productDifferenceQMOMSol,
43     dictionary
44 );
45
46
47 // * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * //
48
49 // Construct from components
50 productDifferenceQMOMSol::productDifferenceQMOMSol
51 (
52     const dictionary& dict,
53     qmomCloud& aCloud
54 )
55 :
56     qmomSolver(dict,aCloud),
57     propsDict_(dict.subDict(typeName + "Props")),
58     alphaMin_(0.0),
59     alphaLimited_(0),
60     P_(2*N_+1),
61     jacobi_(N_),
62     mCurr_( aCloud.nrtransportModels() ),
63     nodesCurr_(N_),
64     weightsCurr_(N_),
65     bkk_(aCloud.nrtransportModels()),
66     bk_(aCloud.nrtransportModels()),
67     d_(aCloud.nrtransportModels()),
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68     cos_quad_alfa_(aCloud.nrtransportModels()),
69     verbose_(false),
70     useCorrector_(false),
71     iter_max_(100),
72     cellIDVerbose_(0),
73     monodisperseCorrFactor_(0.01),
74     roundPrecision_(1e-8),
75     computeEigenValues_(true),
76     useEqualWeights_(false),
77     minConcentration_(1e-6),
78     haveJustOneNode_(false)
79 {
80
81     simpleMeanDiameterId_[0] = 0;
82     simpleMeanDiameterId_[1] = 1;
83
84     //check settings
85     if (propsDict_.found("verbose"))        verbose_=readBool(propsDict_.lookup("verbose"));
86     if (propsDict_.found("useCorrector"))   useCorrector_=readBool(propsDict_.lookup

("useCorrector"));
87     if (propsDict_.found("iter_max"))       iter_max_=readScalar(propsDict_.lookup("iter_max"));
88     if (propsDict_.found("cellIDVerbose"))  cellIDVerbose_=readScalar(propsDict_.lookup

("cellIDVerbose"));
89     if (propsDict_.found("monodisperseCorrFactor")) monodisperseCorrFactor_=readScalar

(propsDict_.lookup("monodisperseCorrFactor"));
90     if (propsDict_.found("roundPrecision"))     roundPrecision_     = readScalar(propsDict_.lookup

("roundPrecision"));
91     if (propsDict_.found("computeEigenValues")) computeEigenValues_ = readBool(propsDict_.lookup

("computeEigenValues"));
92     if (propsDict_.found("useEqualWeights"))    
93     {
94         useEqualWeights_    = readBool(propsDict_.lookup("useEqualWeights"));
95         if(useEqualWeights_)
96             Info << "WARNING: Will assign equal weights to each computed node (which is > " << 

SMALLNUMBER << ")." << endl;
97             Info << "...This might be inaccurate (but stable)!" << endl;
98     }
99     if ( propsDict_.found("simpleMeanDiameterId0") && propsDict_.found("simpleMeanDiameterId1"))  

100     {
101         simpleMeanDiameterId_[0]  = int(readScalar(propsDict_.lookup("simpleMeanDiameterId0")));
102         simpleMeanDiameterId_[1]  = int(readScalar(propsDict_.lookup("simpleMeanDiameterId1")));
103         Info << "Have found simpleMeanDiameterIds: " << simpleMeanDiameterId_[0] << " and "  << 

simpleMeanDiameterId_[1] << endl;
104         Info << "...will divide moment[" << simpleMeanDiameterId_[1] 
105              << "] with moment["  << simpleMeanDiameterId_[0]
106              << "] to approximate the distribution with a single node in case this is necessary."
107              << endl;
108     }
109
110     if (propsDict_.found("minConcentration"))   minConcentration_   = readScalar(propsDict_.lookup

("minConcentration"));
111
112     Info << "WARNING: Will not attempt to reconstruct nodes below m[0] = " << minConcentration_ << 

endl;
113     if(!computeEigenValues_)
114         Info << "WARNING: PD algorithmus will not use the eigenvalues, but just guess them. " << 

endl;
115
116     //Allocate and reset values of temp arrays
117     forAll(P_, i)
118     {
119         P_[i].setSize(2*N_+1);
120         for(int j=0; j < P_[i].size(); j++)
121         {
122             P_[i][j] = 0.0;
123         }
124     }
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125
126     forAll(jacobi_, i)
127     {
128         jacobi_[i].setSize(N_);
129         for(int j=0; j < jacobi_[i].size(); j++)
130         {
131             jacobi_[i][j] = 0.0;
132         }
133     }
134
135     forAll(mCurr_, i)
136     {
137         mCurr_[i] = 0.0;
138     }
139
140     int nodeCount_=0;
141     forAll(nodesCurr_,i)
142     {
143         nodesCurr_[i]   = 0.0;
144         weightsCurr_[i] = 0.0;
145         nodeCount_++;
146     }
147     if(nodeCount_<2)
148     {
149         haveJustOneNode_ = true;
150         Info << "PD algorithm: made settings for " << nodeCount_ << " node(s)." << endl;
151         Info << "This is less than two, and hence the algorithm will do a simplified calculation"

<< endl;
152     }
153     //initialize only if corrector is used
154     if(!useCorrector_)
155         return;
156
157     forAll(d_, i)
158     {
159         d_[i].setSize( particleCloud_.nrtransportModels() );
160         for(int j=0; j < d_[i].size(); j++)
161         {
162             d_[i][j]  = 0.0;
163         }
164     }
165
166     forAll(bkk_, i)
167     {
168         cos_quad_alfa_[i] = 0.0;
169
170         bkk_[i].setSize(bkk_.size());
171         bk_[i].setSize(bk_.size());
172
173
174         for(int j=0; j < bkk_[i].size(); j++)
175         {
176             bkk_[i][j] = 0.0;
177             bk_[i][j]  = 0.0;
178         }
179     }
180     if(verbose_)
181     {
182         Info << "size P_: " << P_.size() << " , " << P_[0].size() << endl;
183         Info << "size jacobi_: " << jacobi_.size() << " , " << jacobi_[0].size() << endl;
184         Info << "size bk_: " << bk_.size() << " , " << bk_[0].size() << endl;
185     }
186
187 }
188
189
190 // * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * //
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191
192 productDifferenceQMOMSol::~productDifferenceQMOMSol()
193 {}
194
195
196 // * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * //
197 void productDifferenceQMOMSol::correctMoments(scalarList& m, int & totalIt ) const
198 {
199     int    k_star  = 0; 
200     double lnck    = 0.0;
201
202     if(!useCorrector_)
203         return;
204
205     //reset matrices
206     forAll(bkk_, i)
207     {
208         for(int j=0; j < bkk_[i].size(); j++)
209         {
210             bkk_[i][j] = 0.0;
211             bk_[i][j]  = 0.0;
212         }
213     }
214
215     //define the unitary corretion matrix, index starts at 0!
216     forAll(bkk_, k)
217     {
218         for(int i=0; i < bkk_[k].size(); i++)
219         {
220             if(i==k)
221                 bkk_[i][0] = 1.0;
222             else
223                 bkk_[i][0] = 0.0;
224             
225         }
226
227
228         for(int j=1; j < 4; j++)           
229             for(int i=0; i < (bkk_[k].size()-(j+1)+1); i++)   
230                     bkk_[i][j] = bkk_[i+1][j-1]
231                                - bkk_[i][j-1];
232
233         for(int i=0; i < bkk_[k].size(); i++)   
234             bk_[k][i] = bkk_[i][3];       
235     }
236
237     bool check_corr = true;
238     int  iter = 0;
239
240     while(check_corr && iter<iter_max_)
241     {
242         // 1 - Check the need for correction
243         check_corr = false;
244
245 for(int i=0; i < bkk_.size(); i++)   
246         d_[i][0] = log(fmax(VSMALLNUMBER,m[i]));
247    
248         for(int j=1; j < (particleCloud_.nrtransportModels()+1); j++)    
249         { 
250             for(int i=0; i < (particleCloud_.nrtransportModels()-(j+1) + 1); i++) 
251             {
252                 d_[i][j] = d_[i+1][j-1]-d_[i][j-1];
253                 //Ueberpruefen, ob d_2 ein negatives Element enthaelt, wenn ja, dann wird
254                //check_corr=1 gesetzt, d.h. es wird weiter korrigiert
255                 if (j==2 && d_[i][j]<0.0)
256                    check_corr = true;
257             
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258             }
259         }
260
261         // 2 - Correct the moment
262         if(check_corr)
263         {
264             iter++;
265             totalIt++;
266             k_star = 0; //set starting index
267
268             for(int k=0; k<particleCloud_.nrtransportModels(); k++)
269             {
270                 //Compute scalar products
271                 double tmpCos1 = 0.0;
272                 double tmpCos2 = 0.0;
273                 double tmpCos3 = 0.0;
274                 for(int sumI=0; sumI < bk_[k].size(); sumI++)
275                 {
276                     tmpCos1 += bk_[k][sumI]*d_[sumI][3];  
277                     tmpCos2 += bk_[k][sumI]*bk_[k][sumI];
278                     tmpCos3 += d_[sumI][3]*d_[sumI][3];
279                 }
280
281                 //compute k_star
282                 double tmpCos4 =      tmpCos1
283                                       / 
284                                        (     
285                                             sqrt(tmpCos2 * tmpCos3)
286                                           + SMALLNUMBER    
287                                        );
288                 cos_quad_alfa_[k] = tmpCos4 * tmpCos4;
289
290                 if( cos_quad_alfa_[k] >= cos_quad_alfa_[k_star] )
291                     k_star = k;
292             }
293
294             //Actually correct
295 //check  [4]
296             double tmpCos1 = 0.0;
297             double tmpCos2 = 0.0;
298             for(int sumI=0; sumI < bk_[k_star].size(); sumI++)
299
300             {
301                 tmpCos1 -= bk_[k_star][sumI]*d_[sumI][3];
302                 tmpCos2 += bk_[k_star][sumI]*bk_[k_star][sumI];
303             }
304
305             lnck =   tmpCos1
306                     /
307                     ( tmpCos2 + SMALLNUMBER ); 
308
309             m[k_star] = exp(lnck)*m[k_star];
310         }
311
312         if(verbose_)
313         {
314             Info << "iter: " << iter << " d: " << d_ ;
315 //            Info << "bkk: " << bkk_ << endl;
316 //            Info << "bk: " << bk_ << endl;
317 //            Info << "m: " << m << endl;
318             Info << "check_corr: " << check_corr << endl;
319             Info << "lnck: " << lnck << " k_star: " << k_star << " m[k_star]: " <<  m[k_star] << 

endl  << endl;
320
321         }
322
323     }
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324
325
326 }
327
328 // ************************************************************************************
329
330 void productDifferenceQMOMSol::solve(autoPtr<transportModel>*  transportModels) const
331 {
332     if(!particleCloud_.requiresPDF())
333         return;
334
335     int totalCorrIt = 0;
336     forAll(particleCloud_.mesh().cells(), cellI)
337     {
338     
339         if( 
340              (transportModels[0]->m()[cellI] <= minConcentration_)
341            ||(transportModels[1]->m()[cellI] <= VSMALLNUMBER)
342           )  //skip solver if concentration or first moment is zero
343         {
344             for(int iNode=0; iNode < N_; iNode++)
345             {
346                 nodes_[iNode]->internalField()[cellI]   = 0.0;
347                 weights_[iNode]->internalField()[cellI] = 0.0;
348             }
349             continue;
350         }
351     
352         //Fill local moments into container
353         forAll(mCurr_, i)
354         {
355             mCurr_[i] = transportModels[i]->m()[cellI];
356         }
357
358         if(haveJustOneNode_)
359         {
360             computeNodesSimple(nodesCurr_, weightsCurr_, mCurr_);        
361         }
362         else
363         {
364             //Correct Moments if necessary
365             correctMoments(mCurr_,totalCorrIt);
366
367 //Compute the nodes
368             computeJacobi(jacobi_, P_, mCurr_);    
369             computeNodes(nodesCurr_, weightsCurr_, jacobi_, mCurr_);    
370         }
371
372
373         //Push computed values into fields
374         for(int iNode=0; iNode < N_; iNode++)
375         {
376             nodes_[iNode]->internalField()[cellI]   = nodesCurr_[iNode];
377             weights_[iNode]->internalField()[cellI] = weightsCurr_[iNode];
378         }
379
380         //report to screen
381         if(verbose_ && cellI==cellIDVerbose_)
382         {
383                Info << "cellI:  " << cellI << " m: " << mCurr_ << endl;
384                Info << "P:      " << P_ << endl;        
385                Info << "jac:    " << jacobi_ << endl;
386                Info << "nodes:  " << nodesCurr_ << endl;     
387                Info << "weights:" << weightsCurr_ << endl;
388 }
389     }
390
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391     if(verbose_)
392     {
393
394            Info << "totalCorrIt:  " << totalCorrIt << endl;
395     }
396
397     
398 }
399
400 // ************************************************************************************
401 inline double productDifferenceQMOMSol::subtractRoundoff(double a, double b, double precision) const
402 {
403     double result = a - b;
404     if( std::abs(result) < (precision*std::abs(a)) )
405         result = 0.0;
406     return result;
407 }
408
409 // ************************************************************************************
410 void productDifferenceQMOMSol::computeJacobi( scalarListList& jacobi, scalarListList& P, scalarList 

m ) const
411 {
412
413 //    Info << "productDifferenceQMOMSol - Computing " 
414 //           << N_
415 //           <<" nodes for moments " << m << endl;
416     //Some Interesting computations!
417 //    printf("m[i]-m[1]^i: %.15g %.15g %.15g %.15g %.15g %.15g \n",
418 //                m[0],
419 //                m[1]-m[1],
420 //                m[2]-m[1]*m[1],
421 //                m[3]-m[1]*m[1]*m[1],
422 //                m[4]-m[1]*m[1]*m[1]*m[1],
423 //                m[5]-m[1]*m[1]*m[1]*m[1]*m[1]);
424
425     //Fill the P_ matrix, indices start with 0!
426     P[0][0] = 1.0;
427
428     for(int i=1; i<(2*N_+1); i++)   //1st column
429         P[i][0] = 0.0;
430
431     for(int i=0; i<(2*N_); i++)     //2nd column
432        P[i][1] = pow(-1,i) * m[i];
433
434     for(int j=2; j<(2*N_+1); j++)   //3rd+ column
435        for(int i=0; i<(2*N_+1-j); i++) 
436        {
437         P[i][j] =  subtractRoundoff(
438                 P[0][j-1] * P[i+1][j-2],
439                     P[0][j-2] * P[i+1][j-1],
440                     roundPrecision_);
441              
442        }
443
444     //Fill the zetas, indices start with 0!
445     scalarList zeta(2*N_);
446     zeta[0]=0.0;
447     for(int i=1; i<(2*N_); i++)
448     {
449         if( P[0][i]*P[0][i-1] > 0 )
450         zeta[i] =   P[0][i+1]
451                     / ( P[0][i] * P[0][i-1]);
452         else
453         {
454         zeta[i]=0;  //TODO: check
455
456             if(m[1]<VSMALLNUMBER)
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457                 FatalError << "1st moment is zero or very small!" << abort(FatalError) << endl;
458
459             //Implementation of correction for mono-disperse systems
460             if(i==3) //4-th moment
461             {
462
463                 double z1  = m[0]*m[2] - m[1]*m[1];
464                 double eps = fmax(std::abs(z1)*monodisperseCorrFactor_, SMALLNUMBER);
465                 double z2  = m[1] * sqrt( (z1+eps) * (z1+eps) );
466 //                Pout << "i=3 - m[1]:" << m[1] << " P[0][i+1]: " << P[0][i+1] << " z1:" << z1 << " 

eps: " << eps << " z2: " << z2 << endl;
467                 zeta[i]    = P[0][i+1]/z2;
468             }
469
470
471             if(i==4 || i==5) //5-th or 6-th moment
472             {
473                 double z1(0),z2(0);
474                 if(i==4)  {
475                     z1  = m[0]*m[2] - m[1]*m[1];
476                     z2  = m[1]*m[3] - m[2]*m[2];
477                 }
478                 else  {
479                     z1  = m[1]*m[3] - m[2]*m[2];
480                     z2  = m[2]*( m[1]-m[3] )
481                         + m[0]*( m[4]-m[2] );
482                 }
483
484                 if(z1>=0.0 && z2>0.0)   {
485                     double eps1 = fmax(std::abs(z1)*monodisperseCorrFactor_,
486                                       SMALLNUMBER);
487                     z1 = sqrt((z1 + eps1)*(z1 + eps1));
488                 }
489                 else if(z2>=0.0 && z1>0.0)   {
490                     double eps2 = fmax(std::abs(z2)*monodisperseCorrFactor_,
491                                       SMALLNUMBER);
492                     z2 = sqrt((z2 + eps2)*(z2 + eps2));
493                 }
494 //                else if(z1==0.0 && z2==0.0)    {
495                 else    {
496                     z1 = SMALLNUMBER;
497                     z2 = SMALLNUMBER;
498                 }
499
500                 if(i==4)
501                     zeta[i]    =  P[0][i+1]/(m[0]*z1*z2); 
502                 else
503                     zeta[i]    =  P[0][i+1]/(m[0]*m[0]*z1*z1*z2); 
504             }
505
506
507             //Prints
508             if(verbose_)
509                 Pout << "m0*m2 - m1^2 = " << m[0]*m[2] - m[1]*m[1] 
510                      << ",  zeta[" << i << "]: " << zeta[i] << endl;
511
512         }
513     }
514
515     //Fill coefficients for Jacobi
516     scalarList a(N_);
517     scalarList b(N_-1);
518     for(int i=0; i<N_; i++)
519     {
520         a[i] = zeta[2*i+1]
521              + zeta[2*i];
522     }
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523
524     for(int i=0; i<(N_-1); i++)
525     {
526         b[i] = zeta[2*(i+1)] 
527              * zeta[2*i+1];
528     }
529
530
531
532     for(int i=0; i<(2*N_); i++)
533         if(verbose_)
534
535            Pout << "zeta[" << i << "]: " << zeta[i]  << endl;
536
537
538
539
540         if(verbose_)
541
542            Pout << " a1: " << a[1] << ",  a2: " << a[2] << ",  a3: " << a[3]
543                 << " b1: " << b[1] << ",  b2: " << b[2]<< endl;
544
545
546
547     //Fill Jacobi
548     for(int i=0; i<N_; i++)
549         jacobi[i][i]=a[i];
550
551     for(int i=0; i<(N_-1); i++)
552     {
553         jacobi[i][i+1] = -sqrt(fmax(0.0,b[i]));   //TODO: check!
554         jacobi[i+1][i] = -sqrt(fmax(0.0,b[i]));   //TODO: check!
555     }
556
557
558
559 }
560
561 // ************************************************************************************
562
563 void productDifferenceQMOMSol::computeNodesSimple(scalarList& nodes, scalarList& weights, 

scalarList m) const
564 {
565      nodes[0]    =  m[simpleMeanDiameterId_[1]]
566                  / (m[simpleMeanDiameterId_[0]]+VSMALLNUMBER);
567      weights[0]  = 1.0;
568 }
569
570 // ************************************************************************************
571
572 void productDifferenceQMOMSol::computeNodes(scalarList& nodes, scalarList& weights, scalarListList 

jacobi, scalarList m) const
573 {
574
575     
576     //Convert scalarList to OpenFOAM tensor
577     tensor myT = tensor::zero;
578     myT.xx() = jacobi[0][0]; myT.xy() = jacobi[0][1]; 
579     myT.yx() = jacobi[1][0]; myT.yy() = jacobi[1][1];
580
581     //Initialize a with diagonal elements of Jacobi
582     vector a = vector(myT.xx(), myT.yy(), 0.0);
583
584     if(N_>2)
585     {
586        myT.xz() = jacobi[0][2];
587        myT.yz() = jacobi[1][2];
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588        myT.zx() = jacobi[2][0]; 
589    myT.zy() = jacobi[2][1]; 
590    myT.zz() = jacobi[2][2];
591        a[2] = myT.zz();
592     }
593     vector aJacobi = a; //Save in case it is used later
594
595     //Compute eigenvalues & corresponding eigenvectors
596     if(computeEigenValues_)
597         a = eigenValues(myT);
598
599     double weightSum = 0.0;
600     for(int i=0; i<N_; i++)
601     {
602         if(N_==2)
603             nodes[i] = fmax(VSMALLNUMBER,a[i+1]); //negative nodes are meaningless
604 else if (N_==3)
605 nodes[i] = fmax(VSMALLNUMBER,a[i]); //negative nodes are meaningless
606
607         if(useEqualWeights_)
608         {
609             if(nodes[i] >= SMALLNUMBER)
610                 weights[i] = 1.; //Assign equal weight to each node, normalize later
611             else
612                 weights[i] = 0.; //Assign equal weight to each node, normalize later
613         }
614         else
615         {
616             vector eigenVec = eigenVector(myT, nodes[i]);
617             weights[i] = fmin(1.0,eigenVec[0]*eigenVec[0]*m[0]); //bound weight to be max 1
618         }
619         weightSum += weights[i];
620
621     }
622
623     //Correct Nodes and Weights in case Algorithm has computed wrong weights
624     if( (weightSum<(1.0-1e-5)) || (weightSum>(1.0+1e-5)) ) 
625     {
626         if( weightSum>1e-3 )        //Just Re-normalize
627         {
628             for(int i=0; i<N_; i++)
629             {
630                 weights[i] /= (weightSum+SMALLNUMBER); //Re-normalize
631             }
632             weightSum = 1.0;
633         }
634         else    //There is a serious problem with the weights, they are too small!
635         {
636             weightSum = 0.0;
637             for(int i=0; i<N_; i++)
638             {
639                if(nodes[i]>VSMALLNUMBER) //We have a valid node
640                {
641                    weights[i] = 1.0;
642                    weightSum += 1.0;
643                }
644                else
645                {
646                    nodes[i]   = 0.0;
647                    weights[i] = 0.0;
648                }
649             }
650
651             if( weightSum < 1.0)  //Re-normalization of weights also failed. Enforce simple 

calculation using trace of Jacobi
652             {
653               a         = aJacobi;  //force use of Jacobi elements as eigenvalues
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654               weightSum = 0.0;
655               for(int i=0; i<N_; i++)
656               {
657                 if(N_==2)
658                     nodes[i] = fmax(VSMALLNUMBER,a[i+1]);   //negative nodes are meaningless
659                 else if (N_==3)            
660         nodes[i] = fmax(VSMALLNUMBER,a[i]); //negative nodes are meaningless
661     
662                 vector eigenVec = eigenVector(myT, nodes[i]);
663                 weights[i] = eigenVec[0]*eigenVec[0]*m[0];
664                 weightSum += weights[i];
665               }
666             }
667
668             //Final Checks
669             for(int i=0; i<N_; i++) 
670                 weights[i] /= (weightSum+1e-64);     
671
672             if( weightSum < (1.0-1e-5))
673             {
674                 //Fall back and compute a node based on two moments
675                 //e.g., m1 and m0 
676                 //in case we have a mimimum concentration,
677                 //set to zero (no growth possible)
678                 int iStart = 0;
679                 if(m[0]>minConcentration_)
680                 {
681                     nodes[0]    =  m[simpleMeanDiameterId_[1]]
682                                 / (m[simpleMeanDiameterId_[0]]+VSMALLNUMBER);
683                     weights[0]  = 1.0;
684                     iStart = 1;
685                 }
686
687                 for(int i=iStart; i<N_; i++) 
688                 {
689                     nodes[i]   = 0.0;    
690                     weights[i] = 0.0;   
691                 } 
692             
693                 if(verbose_)
694                     Info << "****PD Algorithm Serious WARNING: Calculation of weights failed "
695                          << "because of ill jacobi / eigenvector calculation. Using m[0] and m[1] 

to estimate node[0]." << endl;
696             }
697
698             if(verbose_)
699                 Info << "****Corrected Nodes: " << nodes << ", weights: " << weights << endl;
700         }
701     }
702 }
703
704
705
706
707 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
708
709 } // End namespace Foam
710
711 // ************************************************************************* //
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1 /*--------------------------------*- C++ -*----------------------------------*\
2 | =========                 |                                                 |
3 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4 |  \\    /   O peration     | Version:  2.2.1                                 |
5 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6 |    \\/     M anipulation  |                                                 |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10     version     2.0;
11     format      ascii;
12     class       dictionary;
13     object      blockMeshDict;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16
17 convertToMeters 1;
18
19 pipeLength_1 0.1;
20 pipeLength_2 0.160;
21 pipeLength_3 0.190;
22 pipeLength_4 0.243;
23 pipeLength_5 0.343;
24
25 pipeRadius 0.0023;
26 deltaY     0.00008; //for 0.1 diameter pipe use  0.0034905
27 deltaYM -0.00008;//for 0.1 diameter pipe use  0.0034905
28
29 resolutionRadial 30;
30 resolutionPipe_1  100;
31 resolutionPipe_2  200;
32 resolutionPipe_3  200;
33 resolutionPipe_4  200;
34 resolutionPipe_5  100;
35 refinementRadial 0.5;
36
37 //***********END OF USER INPUT********************************
38
39 //explicitely specify name and type of error patch
40 //to avoid troubles with collapseEdges
41 defaultPatch    
42 {
43     name errorPatch;
44     type   patch;
45 }
46
47 vertices        
48 (
49     (0 0 0)                                 //0
50     ($pipeLength_1 0 0)                 //1
51     (0              $deltaYM   $pipeRadius) //2
52     ($pipeLength_1  $deltaYM   $pipeRadius) //3
53     ($pipeLength_1  $deltaY    $pipeRadius) //4
54     (0              $deltaY    $pipeRadius) //5
55     ($pipeLength_2  $deltaY    $pipeRadius) //6
56     ($pipeLength_2  $deltaYM   $pipeRadius) //7
57     ($pipeLength_2  0 0) //8
58     ($pipeLength_3  $deltaY    $pipeRadius)         //9
59     ($pipeLength_3  $deltaYM   $pipeRadius)             //10
60     ($pipeLength_3  0 0) //11
61     ($pipeLength_4  $deltaY    $pipeRadius) //12
62     ($pipeLength_4  $deltaYM   $pipeRadius) //13
63     ($pipeLength_4  0 0) //14
64     ($pipeLength_5  $deltaY    $pipeRadius) //15
65     ($pipeLength_5  $deltaYM   $pipeRadius) //16
66     ($pipeLength_5  0 0) //17
67 );
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68
69 blocks          
70 (
71     hex (0 1 1 0 2 3 4 5) ($resolutionPipe_1 1 $resolutionRadial) simpleGrading (1 1

$refinementRadial)
72     hex (1 8 8 1 3 7 6 4) ($resolutionPipe_2 1 $resolutionRadial) simpleGrading (1 1

$refinementRadial)
73     hex (8 11 11 8 7 10 9 6) ($resolutionPipe_3 1 $resolutionRadial) simpleGrading (1 1

$refinementRadial)
74     hex (11 14 14 11 10 13 12 9) ($resolutionPipe_4 1 $resolutionRadial) simpleGrading (1 1

$refinementRadial)
75     hex (14 17 17 14 13 16 15 12) ($resolutionPipe_5 1 $resolutionRadial) simpleGrading (1 1

$refinementRadial)
76 );
77
78 edges           
79 (
80 /* arc 2 5 (0 0 $pipeRadius)*/
81 /* arc 3 4 ($pipeLength_1 0 $pipeRadius)*/
82 );
83
84 patches         
85 (
86 patch
87 inlet 
88 (
89 (0 2 5 0)
90 )
91
92 patch
93 outlet
94 (
95 (17 16 15 17)
96 )
97
98 wedge
99 axi_symm-f

100 (
101 (0 1 3 2)
102 (1 8 7 3)
103 (8 11 10 7)
104 (11 14 13 10)
105 (14 17 16 13)
106 )
107
108 wedge
109 axi_symm-r
110 (
111 (0 1 4 5)
112 (1 8 6 4)
113 (8 11 9 6)
114 (11 14 12 9)
115 (14 17 15 12)
116 )
117
118 wall
119     fixedWalls_1
120 (
121 (2 3 4 5)
122 )
123
124 wall
125     evaporator
126 (
127 (3 7 6 4)
128 )
129
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130 wall
131     insulation
132 (
133 (7 10 9 6)
134 )
135
136 wall
137     condenser
138 (
139 (10 13 12 9)
140 )
141
142 wall
143     fixedWalls_5
144 (
145 (13 16 15 12)
146 )
147
148 );
149
150 mergePatchPairs
151 (
152 );
153
154 // ************************************************************************* //
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1 /*--------------------------------*- C++ -*----------------------------------*\
2 | =========                 |                                                 |
3 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4 |  \\    /   O peration     | Version:  2.2.1                                 |
5 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6 |    \\/     M anipulation  |                                                 |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10     version     2.0;
11     format      ascii;
12     class       dictionary;
13     object      qmomProperties;
14 }
15
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17 velFieldName "U";
18 TFieldName   "T";
19
20 couplingModel; //main Switch to activate coupling to fluid equations
21
22 transportModels
23 (
24     momentTransport //0
25     momentTransport //1
26 momentTransport //2
27 momentTransport //3
28 // momentTransport //4
29 // momentTransport //5
30 );
31
32 physicalModels
33 (
34     nucleation
35     simpleGrowth
36 /*    diffusionPhysSpace //be cautioned when using this model! n*/
37 );
38
39 //qmomSolver  none; //productDifference;
40 qmomSolver  productDifference;
41
42
43
44 //Properties of Models and Solvers
45 momentTransportProps
46 {
47 /*    verbose     true;*/
48     fieldName "m";
49     Dp0        0; //1e-8; //1e-9; //particle diffusivity. MUST set to zero in case advanced 

diffusion modelID
50                      //is used as a "physicalModels"
51     limitMomentAbove    3;
52    momentLimitFactor   5;
53
54 }
55
56 simpleGrowthProps
57 {
58 /*    verbose     true;*/
59     useLocalG;      //Main switch to use local growth rate, comment out if G0 should be used
60
61   G0          1.0;  //obsolete in case local growth rate (G0 is only used to test the code,  

//see physical model "simpleGrowth") 
62     r           -1;    //obsolete in case local growth rate is used
63     useQmom     true; //FORCES the usage of MOM or QMOM, so be careful what you do here!
64     SName       "S";
65     YName       "Y";
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66     RhoGName    "rho";
67     DiffName    "diffEff";
68
69     limitGrowthFactor 1e8;
70
71 }
72
73
74 nucleationProps
75 {
76 /*    verbose     true;*/
77     SName       "S";
78     theta       0; //in grad
79     dParticle   4e-8;
80     J0          5.02655e14; //1e5;
81 NPrim 1e10; //NPrim limits the nucleation rate (and thus the particle number 

concentration) for every cell, not in the whole domain!!!
82
83     cellId2Report 15001;    //id of the cell to report nucleation properties
84 }
85
86 productDifferenceProps
87 {
88 /*    verbose true;*/
89     iter_max            10;
90     useCorrector        false;  //Main Switch for corrector
91     roundPrecision      1e-4; //1e-16;     //set lower precision for higher stability
92     minConcentration    1e-6;  //minimum concentration below which NO ATTEMPT will be made to 

compute nodes
93     computeEigenValues  true;   //if false, this will force the use of the Jacobi-elements as the 

eigenvalues
94     useEqualWeights     false;   //if true, will by-pass eigenvector computation, and use simple 

estimate of weights
95
96     simpleMeanDiameterId1   2;  //use to specify which moment is used for a simple estimate of the 

local diameter (numerator)
97     simpleMeanDiameterId0   1;  //use to specify which moment is used for a simple estimate of the 

local diameter (denominator)
98
99 };

100
101 /*diffusionPhysSpaceProps
102 {
103 //    verbose     true;
104     useQmom       true;
105     gamma0        0.0;
106     useLocalDiff  true;
107     dynViscosity  1.8e-5;
108 }*/
109
110
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1 /*--------------------------------*- C++ -*----------------------------------*\
2 | =========                 |                                                 |
3 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4 |  \\    /   O peration     | Version:  2.2.1                                 |
5 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6 |    \\/     M anipulation  |                                                 |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10     version     2.0;
11     format      ascii;
12     class       dictionary;
13     location    "system";
14     object      controlDict;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17
18 application     cpcFoamCompressible; //compressible solver
19
20 minMaxOutputFreq    1000; //frequency to report min/max statistics
21
22 //Main Switches for solver
23 solveFluidFlow;
24 solveEnergyEqn;     //deactivate in case of stability problems
25 solveSpeciesEqn;    //deactivate in case of stability problems
26 solveParticleEqns;    //activate to update particle cloud information
27
28 startFrom       startTime; // use "latestTime" to continue simulation from last time
29
30 startTime       0;
31
32 stopAt          endTime;
33
34 endTime         1.2;
35
36 deltaT          5e-7;
37
38 writeControl    adjustableRunTime;
39
40 writeInterval   1e-1;
41
42 purgeWrite      15;
43
44 writeFormat     ascii;
45
46 writePrecision  7;
47
48 writeCompression off;
49
50 timeFormat      general;
51
52 timePrecision   6;
53
54 runTimeModifiable true;
55
56 adjustTimeStep  false; //use false in case MOM/QMOM is used!
57
58 maxCo           0.6; //decrease in case of stability problems
59
60 libs (
61      "libOpenFOAM.so"
62       "libsimpleSwakFunctionObjects.so"
63       "libswakFunctionObjects.so"
64       "libfieldFunctionObjects.so"
65       "libgroovyBC.so"
66      );
67
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68 functions
69 {
70   //**************************** 
71   //Min/max reporting
72   minMaxValues_S
73   {
74       type fieldMinMax;
75       outputControl          timeStep;
76       outputInterval $minMaxOutputFreq;
77       fields
78       (
79            S 
80      );
81   }
82   minMaxValues_m0
83   {
84       type fieldMinMax;
85       outputControl          timeStep;
86       outputInterval $minMaxOutputFreq;
87       fields
88       (
89            m0
90      );
91   }
92   minMaxValues_m1
93   {
94       type fieldMinMax;
95       outputControl          timeStep;
96       outputInterval $minMaxOutputFreq;
97       fields
98       (
99            m1

100      );
101   }
102   minMaxValues_m2
103   {
104       type fieldMinMax;
105       outputControl          timeStep;
106       outputInterval $minMaxOutputFreq;
107       fields
108       (
109            m2
110      );
111   }
112   minMaxValues_m3
113   {
114       type fieldMinMax;
115       outputControl          timeStep;
116       outputInterval $minMaxOutputFreq;
117       fields
118       (
119            m3
120      );
121   }
122   minMaxValues_node0
123   {
124       type fieldMinMax;
125       outputControl          timeStep;
126       outputInterval $minMaxOutputFreq;
127       fields
128       (
129            node0
130      );
131   }
132   minMaxValues_node1
133   {
134       type fieldMinMax;
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135       outputControl          timeStep;
136       outputInterval $minMaxOutputFreq;
137       fields
138       (
139            node1
140      );
141   }
142
143   //**************************** 
144   //Sampling
145   samplesCondenser
146   {
147     type                        sets;
148     interpolationScheme cell; //ATTENTION: AVOID USAGE IF cellPoint or cellPointFace in wedge 

geometry!
149     setFormat                raw;
150     outputControl          outputTime;
151
152     sets
153     (
154 /* 
155      sample_1_x-axis
156      {
157 //       type    uniform;
158         type    midPoint;
159         axis    x;
160         start   ( 0 0 1e-7 );
161         end     ( 0.343 0 1e-7 );
162 //        nPoints 20;
163       }
164      sample_2_eaporator_outlet
165       {
166 //        type    uniform;
167         type    midPoint;
168         axis    z;
169         start   ( 0.16 0 0.000 );
170         end     ( 0.16 0 0.0023 );
171 //        nPoints 20;
172       } 
173      sample_3_condensor_inlet
174       {
175 //        type    uniform;
176         type    midPoint;
177         axis    z;
178         start   ( 0.19 0 0 );
179         end     ( 0.19 0 0.0023 );
180 //        nPoints 50;
181       }
182      sample_4_x200
183       {
184 //        type    uniform;
185         type    midPoint;
186         axis    z;
187         start   ( 0.2 0 0.000 );
188         end     ( 0.2 0 0.0023 );
189 //        nPoints 20;
190       }
191
192      sample_5_axis
193       {
194 //        type    uniform;
195         type    midPoint;
196         axis    x;
197         start   ( 0 0 1e-7 ); 
198         end     ( 0.26 0 1e-7 );
199 //       nPoints 50;
200       }
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201 */
202      sample_6_condensor_outlet
203       {
204 //        type    uniform;
205         type    midPoint;
206         axis    z;
207         start   ( 0.243 0 0 );
208         end     ( 0.243 0 0.0023 );
209 //        nPoints 50;
210       }
211     );          
212
213     fields
214     (
215             p Y S T m0 m1 m2 m3
216     );
217   }
218
219   //**************************** 
220   //Probing
221   probes
222   {
223         type            probes;
224         functionObjectLibs ("libsampling.so");
225         outputControl   outputTime;
226         probeLocations
227         (
228             ( 0.001 0 1e-7 )
229             ( 0.200 0 1e-7 )
230         );
231         fields
232         (
233             p Y S T m0 m1 m2 m3
234        );
235   }
236 };
237
238 // ************************************************************************* //
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1 /*--------------------------------*- C++ -*----------------------------------*\
2 | =========                 |                                                 |
3 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4 |  \\    /   O peration     | Version:  2.2.1                                 |
5 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6 |    \\/     M anipulation  |                                                 |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10     version     2.0;
11     format      ascii;
12     class       dictionary;
13     location    "system";
14     object      fvSolution;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17
18 solvers
19 {
20     "rho.*"
21     {
22         solver          PCG;
23         preconditioner  DIC;
24         tolerance       0;
25         relTol          0;
26     }
27
28     p_rgh
29     {
30         solver           GAMG;
31         tolerance        1e-8;
32         relTol           0.01;
33
34         smoother         DIC;
35
36         cacheAgglomeration true;
37         nCellsInCoarsestLevel 10;
38         agglomerator     faceAreaPair;
39         mergeLevels      1;
40
41         maxIter          200;
42     }
43
44     p_rghFinal
45     {
46         $p_rgh;
47         relTol          0;
48     }
49
50     "(U|T|h|k|epsilon|R)"
51     {
52         solver          PBiCG;
53         preconditioner  DILU;
54         tolerance       1e-10; //decrease if unstable, and then increase towards the end of the 

simulation
55         relTol          0.01;
56     }
57
58     "(U|T|h|k|epsilon|R)Final"
59     {
60         $U;
61         relTol          0;
62     }
63
64     "(Y)"
65     {
66         solver          PBiCG;
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67         preconditioner  DILU;
68         tolerance       1e-10;
69         relTol            1e-3;
70     }
71
72     "(Y)Final"
73     {
74         $U;
75         relTol          0;
76     }
77     
78     "(m)"
79     {
80         solver          PBiCG;
81         preconditioner  diagonal; //diagonal = more stable setting
82         tolerance       1e-32;
83         relTol          1e-6; //0; //
84         maxIter         5;
85     }
86     
87 }
88
89 PIMPLE
90 {
91     momentumPredictor yes;
92     nOuterCorrectors 2; //use minimum 2 if compressible!
93     nCorrectors     2;
94     nNonOrthogonalCorrectors 0;
95     pRefCell        0;
96     pRefValue       0;
97 }
98
99 relaxationFactors

100 {
101
102     rho             1.0;
103     p_rgh           1.0;
104     U               1.0;
105     h               0.3;  //can be increased to 0.4 to increase rate of convergence
106     "(k|epsilon|omega)" 0.3;
107
108 }
109
110 // ************************************************************************* //
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1 /*--------------------------------*- C++ -*----------------------------------*\
2 | =========                 |                                                 |
3 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4 |  \\    /   O peration     | Version:  2.2.1                                 |
5 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6 |    \\/     M anipulation  |                                                 |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10     version     2.0;
11     format      ascii;
12     class       dictionary;
13     location    "system";
14     object      fvSchemes;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17
18 ddtSchemes
19 {
20     default         Euler;
21 }
22
23 gradSchemes
24 {
25     default         Gauss linear;
26 }
27
28 divSchemes
29 {
30     default         none;
31     div(phi,U)      bounded Gauss limitedLinearV 1.0; //upwind;
32     div(phi,T)      bounded Gauss limitedLinear 1.0; //upwind; //
33     div(phi,Y)      bounded Gauss  upwind; //limitedLinear 1.0; //
34     div(phi,k)      bounded Gauss  limitedLinear 1.0; //upwind;
35     div(phi,epsilon) bounded Gauss  limitedLinear 1.0; //upwind;
36     div(phi,R)      bounded Gauss  limitedLinear 1.0; //upwind;
37     div(R)          bounded Gauss linear;
38     div((nuEff*dev(T(grad(U))))) Gauss linear;
39
40     //relevant for compressible solver only
41     div((muEff*dev2(T(grad(U))))) Gauss linear;
42     div(phi,K)      bounded Gauss  limitedLinear 1.0; //upwind;
43     div(phi,h)      bounded Gauss  upwind; //limitedLinear 1.0; //
44     div(phi,m)      bounded Gauss  upwind; //limitedLinear 1.0; //
45 }
46
47 laplacianSchemes
48 {
49     default         none;
50     laplacian(nuEff,U) Gauss linear corrected;
51     laplacian(Dp,p_rgh) Gauss linear corrected;
52     laplacian(alphaEff,T) Gauss linear corrected;
53     laplacian(DkEff,k) Gauss linear corrected;
54     laplacian(DepsilonEff,epsilon) Gauss linear corrected;
55     laplacian(DREff,R) Gauss linear corrected;
56     laplacian(diffEff,Y) Gauss linear corrected;
57     
58     //relevant for compressible solver only
59     laplacian(muEff,U) Gauss linear corrected;
60     laplacian(alphaEff,h) Gauss linear corrected;
61     laplacian(Dp,m) Gauss linear corrected;
62 }
63
64 interpolationSchemes
65 {
66     default         linear;
67 }
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68
69 snGradSchemes
70 {
71     default         corrected;
72 }
73
74 fluxRequired
75 {
76     default         no;
77     p_rgh;
78 }
79
80
81 // ************************************************************************* //
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1 /*--------------------------------*- C++ -*----------------------------------*\
2 | =========                 |                                                 |
3 | \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
4 |  \\    /   O peration     | Version:  2.2.1                                 |
5 |   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
6 |    \\/     M anipulation  |                                                 |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10     version     2.0;
11     format      ascii;
12     class       dictionary;
13     location    "constant";
14     object      thermophysicalProperties;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17
18 thermoType
19 {
20     type            heRhoThermo; //General thermophysical model calculation based on enthalpy
21     mixture         pureMixture; //General thermophysical model calculation for passive gas mixtures 
22     transport       const; //sutherland; //model for transport properties, default: const;      
23     thermo          hConst;     //Constant specific heat cp model with evaluation of enthalpy
24     equationOfState rhoConst; // perfectGas
25     specie          specie;
26     energy          sensibleEnthalpy; //refer to absolute energy where heat of formation is 

included, and sensible energy where it is not
27 }
28
29 pRef            1.01325e5;
30 pRefSpecies     pRefSpecies [1 -1 -2 0 0 0 0] $pRef; //Reference pressure for species solver
31
32 mixture
33 {
34     specie
35     {
36         nMoles          1;
37         molWeight       28.96; //AIR
38     }
39     thermodynamics
40     {
41         Cp              1005; //heat capacity in J/kg/K
42         Hf              0;    //heat of fusion
43     }
44
45     //Option A: Setting for   
46     //transport       const; 
47     //equationOfState rhoConst; 
48     transport   //for constant transport properties
49     {
50         mu              1.8915e-05;
51         Pr              0.707;
52     }
53     equationOfState //specify density
54     {
55         rho 1.1614;   
56     }
57
58 /*
59     //Option B: Setting for     
60     //  transport     sutherland; //model for transport properties, default: const;      
61     //equationOfState perfectGas
62     transport //for Sutherland transport properties, for air, from McQuillan PROPERTIES OF DRY AIR 

AT ONE ATMOSPHERE
63               //for calculation of thermal conductivity see 
64               //OpenFOAM-2.2.1/src/thermophysicalModels/specie/transport/sutherland/

sutherlandTransportI.H
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65     {
66         As           1.4592e-06;
67         Ts           109.1;
68     } 
69 */
70 }
71
72
73 // ************************************************************************* //

E Code Files 162


	Introduction
	Motivation
	Goals
	Thesis Outline

	Previous CPC Simulation Studies
	CPC Working Principle
	Single-Phase Studies
	Droplet Growth Studies

	Theoretical Backgrounds
	Modeling of Multiphase Flows
	Number Density Function
	Transport Equations
	The Closure Problem

	Quadrature-Based Moment Methods
	Gaussian quadrature
	The Product-Difference (PD) Algorithm
	The Correction Algorithm of McGraw
	Extended Quadrature Method of Moments (EQMOM)
	Direct Quadrature Method of Moments (DQMOM)

	Application of MOM and QMOM to Homogeneous Systems
	Method of Moments
	Quadrature-Based Moment Methods

	Closure Methods for Inhomogeneous Systems
	Method of Moments
	Numerical Schemes

	Models for Physical Processes
	Phase Space Advection - Modeling Heat and Mass Transfer
	Physical-space Diffusion - Modeling the Particles' Random Motion
	Formation of a Disperse Phase - Homogeneous Nucleation
	Nucleation of Droplets on a Particle Surface - Particle Activation

	Coupling Models
	Mass Transport
	Heat Transfer


	The qmomCloud Library
	OpenFOAM®
	Architecture of qmomCloud
	How to Use the qmomCloud Library

	The 3x3-Test Case
	Geometry of the 3x3-Test Case
	Reconstruction of the Size Distribution using qmomCloud
	Physical Models: Nucleation and Growth
	Case 1 - Simple Growth with Power-law Growth Rate (Reference Problem)
	Case 2 - Growth according to Abramzon and Sirignano
	Case 3 - Nucleation
	Case 4 - Nucleation and Growth

	The Coupling Models
	Coupling - Nucleation
	Coupling - Growth
	Coupling - Nucleation and Growth


	The Pipe Flow Test Case
	Pipe Geometry
	Settings
	Initial and Boundary Conditions
	Working Fluid and Gas Properties
	Settings for the qmomCloud

	Pipe Flow without Disperse Phase
	Pipe Flow with Disperse Phase - no Coupling
	Pipe Flow with Coupling

	Conclusions
	Appendix
	Heterogeneous Nucleation: Impact of fg
	Additional Equations
	Species Parameters
	Definitions
	Code Files
	Main Files of the qmomCloud Library
	Main Files of the Pipe Flow Case



