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Abstract 
Improving work efficiency and ensuring safety of the human worker while the human worker and 

robot simultaneously perform the tasks in close proximity is one of the key research topics in 

human-robot cooperation. Given a process which contains a set of tasks or process steps performed 

within the shared human-robot workspace, a methodology for the robot’s trajectory planning will 

be mentioned in this concept paper. The methodology will be based on activity recognition and 

identification of low-level process deviations. Here, the low-level process deviations which occur 

from the robot assistant side are mainly focussed.  

 

 

1. Introduction 
 

A key requirement in the field of human-robot cooperation is to realize the process execution in a 

safe and time-efficient manner. Here, process refers to a list of process steps/tasks performed 

simultaneously by the human worker and robot assistant. To achieve safe execution of shared 

human-robot tasks, a process monitoring component which identifies low-level process deviations 

is a pre-requisite. In the context of shared human-robot tasks, deviations are often classified into 

robot assistant side deviations and human worker side deviations. Robot assistant side deviations 

are defined as unexpected events like unreachable goal configuration, grasp failure reported by the 

robot’s tool and high probabilistic existence of collision-prone trajectories with the nearby static or 

dynamic objects while the robot performs an object manipulation task in the shared workspace. 

Human worker side deviations are defined as expected events like performing spatial sequence of 

actions or activities and unexpected transition between the tasks or process steps. Process 

deviations from the human worker side are not considered within this work. The motivation behind 

this research work is to come up with a trajectory planning framework which can identify and 

handle low-level process deviations with respect to the simultaneous recognition of human 

activities and process steps/tasks. In this research work, the handling of process deviations will also 

be mentioned. 

 

1.1. Related Work 

 

Recent work which deals with trajectory planning is based on prediction of human actions and 

activities to achieve spatio-temporal synchronization in shared human-robot tasks. The 
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manipulation planning framework presented in [3], [9], [16], [5], and [1] considered the trajectory 

planning problem from the normal operation of a manipulation task. A time-series classification 

algorithm was presented in [3] to perform the online prediction of human reaching motion by 

applying a motion capture camera system.  Partial segments of actual motion variables are 

compared with the subset of motion variables which represent the optimally time aligned human 

motion demonstrations. In [9], the predicted motion trajectories are represented as 3D voxels which 

infers the workspace occupancy information. Similar approaches were adopted in [16], [5] for 

human motion prediction. In [6], human-object interactions in combination with human motion 

trajectories were used to build temporal conditional random fields for anticipating human activities. 

In [1], a human worker’s intent was estimated by computing the probabilistic representation of 

workspace segmented areas to which the human is heading.  

 

Task and motion planners were integrated in [13] and [4] to identify and handle low-level process 

deviations such as collision-prone trajectories with the neighbouring objects. Here, the process 

addressed is a pick and place operation performed by a robot on a cluttered table and a payload 

carried by two robots respectively. During the process execution, the interface layer in between the 

task and motion planners determines the presence/absence of obstructions by identifying the 

collision-prone trajectories from the trajectory planner as low-level process deviations. Based on 

these deviations, the task planner is updated with a new state and sends a variation of the initial task 

plan to the trajectory planner. An alternative way to handle these kinds of deviations is to replace 

object grasping with multiple push-grasps in a cluttered environment [10]. With our work we intend 

to enhance the state of the art by cascading activity recognition and task recognition to identify low-

level process deviations and perform task level trajectory planning. In this work, we also intend to 

realize activity recognition by estimating the skeletal joint positions with a higher sampling rate.  

 

1.2. Paper Organization 

 
Section 2 deals with the methodology proposed for trajectory planning based on activity recognition 

and identification of low-level process deviations. Section 3 will present the experimental setup 

including a static process plan where the human worker and robot performs process steps/tasks 

within their shared workspace. Section 4 will detail the expected contributions.  

 

 

2. Methodology 
 
In this section, the methodology behind the trajectory planning based on activity recognition and 

identification of low-level process deviations will be described along with the system architecture. 

Figure 2 depicts the system architecture which consists of 7 major building blocks 1) Object 

tracking 2) Skeletal joints estimation 3) Action recognition 4) Activity recognition 5) Task 

recognition 6) Trajectory planner and 7) High-level planner. The algorithms applied for object 

tracking and action recognition components have already been realized and evaluated in [14] and 

[15] respectively and will not be mentioned in this research work. Therefore, the methods required 

for the remaining major blocks will be mentioned here. 
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Figure 2: System architecture 

 

2.1. Skeletal Joints Estimation 

 
Estimation of skeletal joints is a crucial pre-requisite to overcome real-time data loss. The sampling 

rate of currently affordable RGB-D sensors is 30 fps. Recent works [3, Section 1.1], [9, Section 1.1] 

indicates that this sampling rate is not sufficient to recognize human activity in less than 1s. This 

leads to the motivation of estimating the skeletal joints data with a higher sampling rate. In the first 

stage, mathematical modelling of skeletal joints of left and right hands with respect to Head, Neck 

and Spine Shoulder skeletal joints will be performed in offline. In the second stage, the measured 

skeletal joints will be fed to a zero order hold (ZOH) component to provide the k
th

 sample at time 

instant k*Ts with repeated values until the k+1
th

 sample appears at time instant (k+1)*Ts. To 

overcome real-time data loss at time instant k*Ts, extrapolated values for skeletal joints of the left 

and right hands will be generated from the mathematical model. In the third stage, the samples with 

the higher sampling rate resulting from the ZOH and the extrapolated values resulting from the 

mathematical model will be used for estimating the desired skeletal joints positions. A forward 

Markov model describing the desired skeletal joints positions will be assumed and a stochastic 

subspace realization algorithm [8] will be applied to estimate the desired skeletal joint positions.  

 

2.2. Activity and Task Recognition 

 
Activity is defined as the sequence of actions or a single action performed by a human and his/her 

interactions with the objects of interest within an arbitrarily short time window. During the offline 

stage, probabilities of the recognized actions, human-object interactions and actual positions of 

robot’s joints are considered as activity specific features and are collected with respect to M activity 

demonstrations by L individuals. Here, human-object interactions are represented by human motion 

trajectories and 3D position information, IDs and probability values of tracked objects. The 

recorded M*L demonstrations are then fed to a classifier for activity classification. A Markov model 

will be adopted to represent the temporal relationship between human activities over time. During 

the online stage, partial segment of the activity specific features are used as inputs to compute the 

probability for states which represents human activities. The state with the highest probability will 

then be the recognized activity [12]. The activity recognition approach mentioned in this section 

will be extended for task recognition using a Hidden Markov model (HMM) to represent the 

process steps/task as its states. In the case of task recognition, the probability values of human 
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actions and his/her activities, robot’s planned trajectories and positions of the robot’s tool will be 

considered as task relevant features to model the states of the HMM [2].  

 

2.3. Trajectory Planner 

 
The trajectory planner considers the static workcell, actual skeletal joint positions, detected human 

activities and 3D locations of the objects of interest as an input and computes a collision-less 

trajectory for the robot. These activity dependent collisions-less trajectories will result in process-

specific object manipulations like Grasp, Lift, Place, and Present. During the execution of the 

process, trajectory planner will send status updates about the object manipulations which will be 

requested by the high-level planner. Path planning algorithms which were applied in [11], [7] will 

be investigated to verify which one of them would be ideal for safe execution of the considered 

process. 

 

2.4. High-Level Planner 

 
High-Level Planner is an intermediate layer which receives the status updates continuously from 

major building blocks and robot’s tool positions to monitor the process execution. The High-Level 

Planner will be included with the static description of sequential order of process steps/tasks 

involved within a process. During the execution of the process, the High-Level Planner will 

compare the actual state of the process with its desired state and identify the low-level process 

deviations from the robot assistant side. Based on these deviations, the trajectory planner will then 

compute a collision-free trajectory which will lead to successful completion of the previously failed 

process steps/tasks. Here, High-Level Planner will continuously send the same process step/task to 

the trajectory planner until the identified deviation vanishes. 

 

 

3. Experimental Setup 
 
The process of assembling a Steam cooker device using its individual objects is considered here. 

The individual objects of the steam cooker are present on the worktable as depicted below.  

 
Figure 3: Experimental setup included with individual objects of a steam cooker device 

 

In Figure 3, UR10 is the universal robot which is placed on a movable platform. This movable 

platform is clamped to the worktable where the human worker and ur10 robot will share the 

workspace.  A Kinect v2 sensor is applied for the human action and human activity recognition and 
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an Asus Xtion sensor provides the scene data for the localization and tracking of objects of interest. 

The following static work plan related to the assembly process of a Steam cooker will be assumed.  

 Step 1: Human worker picks the base object and robot grasps and lifts the heater object 

 Step 2: Human worker holds the base object and robot shows the heater object to the human 

 Step 3: Human worker attaches the base object to the heater object and inserts the timer cap 

on the side of heater object and performs the screwing 

 

 
Figure 3.1.2: Human worker performing step 3 

 

 Step 4: Robot lifts and places the compound object resulted from step 3 

 Step 5: Human picks the turbo ring object and places it inside the compound object while 

the robot grasps and lifts the tray object 

 Step 6: Robot presents and hands over the tray object to the human worker 

 Step 7: Human worker inserts the tray object into the compound object resulted from step 5  

 

 
Figure 3.1.3: Left image => step 6 and Right image =>step 7 

 

 

4. Expected Contributions 
 

The expected contributions resulting from this research work will be 1) Identification of low-level 

process deviations from the robot assistant side 2) task level trajectory planning based on 

simultaneous task and activity recognition to handle such process deviations 3) estimation of 

skeletal joints positions with a higher sampling rate.  
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