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Abstract 
In this paper, a robust, real-time object tracking approach is presented. The approach relies only 

on depth data to track objects in a dynamic environment and uses random-forest based learning to 

deal with problems like object occlusion and clutter. We show that the relation between object 

motion and the corresponding change in its 3D point cloud data can be learned using only 6 

random forests. A framework that unites object pose estimation and object pose tracking to 

efficiently track objects in 3D space is presented. The approach is robust against occlusions in 

tracking objects and is capable of real-time performance with 1.7ms per frame. The experimental 

evaluations demonstrate the performance of the approach against robustness, accuracy and speed 

and compare the approach quantitatively with the state of the art.  

 

1. Introduction 
 

Object tracking has been widely researched in the vision community over the recent past and many 

methods are proposed in literature to track objects [6]. Until the last decade the methods mainly 

considered 2D image data as input and in some cases stereo vision and served applications like 

surveillance, military use, security and industrial automation. However, 2D image data only 

captures the 3D projection into two dimensions and is sensitive to illumination changes. With 

recent development of RGB-D devices like Kinect, researchers all over the world are exploiting 

depth data for object recognition and tracking [7]. Tracking can be defined as the problem of 

estimating the trajectory (6 DOF – 3 translations, 3 rotation parameters) of an object in the 3D 

image plane as it moves around a scene. Though there has been a lot of work in tracking humans 

using RGB-D devices [8], not much work is done in the field of tracking objects that could be used 

in industrial settings which often have real-time requirements.  

Object tracking in general is a challenging problem. Tracking objects becomes difficult due to 

abrupt object motions, object to object occlusions, clutter, camera motion and noisy sensor data. 

When considering its application in industrial settings the problem of designing a successful 

tracking algorithm becomes even more difficult. This is due to the requirement of higher levels of 

robustness, accuracy and speed. Also, industrial objects tend to have little texture. In this paper, we 

describe an approach for real-time tracking of objects [12] that aims to answer these challenges. 

The main contribution of this paper is the extended evaluation of the work in [12] and its 

comparison with the state of the art approaches. 
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Inspired by [5] we describe a fast and accurate 3D object tracking algorithm for rigid objects. The 

proposed approach is model-based, uses only depth data and achieves very good accuracy utilizing 

a framework that combines object localization and object tracking. 

 

2. State of the Art 
 
With the introduction of RGB-D sensors like Kinect, various approaches for object tracking in 3D 

were proposed, which ranged from tracking humans [10], hand tracking [8], and tracking rigid and 

non-rigid objects. For a better comparison of our approach with the state of the art, the scope of this 

section is limited to approaches that focus on frame-to-frame tracking of rigid objects using RGB-D 

data. The proposed approaches can be broadly classified into two categories: a) approaches that are 

based on 3D models and b) approaches that do not assume pre-defined object models.  

For example, an approach that does not rely on prior knowledge of the target object representation 

is described in [14]. The approach uses adaptive Gaussian Mixture Models (GMM) to represent 

multiple objects that move independently. The object model is updated incrementally at each time 

instant with the help of the feedback results from the robust tracking process. To correct falsely 

detected objects in presence of occlusions and various types of interactions among multiple objects, 

an approach that exploits component-level spatiotemporal association is proposed in [10]. 

However, the approaches of “individuation-by-feature” [14] and “individuation-by-location” [10] 

require high computation time to learn each object model at every time instant and would 

exponentially increase with the number of objects and their spatial relations. Moreover, in an 

industrial environment which involves human actions, situations keep changing every time instant. 

To achieve robustness and computational efficiency in such scenarios, applying one individuation 

method is not sufficient. To alleviate this problem, an approach that determines individuation 

strategy (by location and/or by feature) depending on the object situation is proposed in [15]. The 

main assumption of the approach is that falsely segmented objects can be detected and rectified 

using both location and position information. It also assumes that objects do not change 

substantially in terms of shape or position from one frame to the other. A probabilistic framework 

for simultaneous tracking and reconstruction of rigid 3D objects using RGB-D sensor is proposed 

by [7], where the probabilistic method is used to statistically determine occlusions. Intensity images 

are used to model appearance of an object while modeling occlusions.  

With the availability of reliable, fast and simple object reconstruction solutions like 

ReconstructMe1, 3D object models can be obtained in real-time. A popular approach for model-

based object tracking is based on the particle filters [10][18]. For example, the authors in [4] 

propose a 3D model-based visual tracking approach using edge and keypoint features in a particle 

filtering framework.  This approach does not assume the initial pose of the object. It uses given 2D-

3D keypoint correspondences to calculate a set of possible pose hypothesis of the object. Once the 

intial pose is estimated, edge points are used to track movement of the object from frame-to-frame. 

This approach is extended by [5] where an RGB-D object tracking method using a particle filter on 

GPU is proposed.  

Another popular method for 3D object tracking is the Iterative Closest Point (ICP) approach which 

has many variants [16]. The algorithm uses a set of initial parameters and refines them iteratively to 

reach a set of optimal parameters by minimizing the object function. This approach has problems in 

dealing with occlusions and object clutter, which result in a local-minimum. To overcome this 

problem, a model-based learning approach is proposed in [18]. This approach learns the relation 

between the parameters that induce object’ motion and the change they induce on the 3D point 

cloud using random forests. In order to track the object in motion, the change in the 3D depth data 

                                                 
1 ReconstructMe http://reconstructme.net  

98



is used to predict the parameters of this motion. The advantage of using random forests is that it is a 

collection of trees that learn and predict independently, even when some input data is affected due 

to occlusions, other trees can still provide good predictions. In order to track objects in different 

views, [18] trains a random forest for multiple views of the object that leads to a high 

computational effort. Moreover, the approach is not suitable for tracking symmetrical objects as the 

multiple-pose hypotheses are averaged and this leads to erroneous tracking of symmetrical objects. 

An offline learning based approach with known 3D object models based on particle filters is 

proposed in [9]. In [20], the authors propose a learning based approach inspired by [18] with 

reduced computational cost and improved occlusion handling capability.  

In the proposed approach, we make the following contributions: a) we argue that it is sufficient to 

train only 6 random forests, to learn the relation between object motion and its corresponding 

change in 3D point cloud data, which in turn reduces the computational complexity b) dealing with 

symmetrical and non-symmetrical objects and c) a framework that is capable of tracking objects in 

presence of partial occlusions. A quantitative comparison is also carried out in this paper that uses 

synthetic data (that includes ground truth) provided by [5] to compare our approach against the 

state of the art.  

 

3. Method 

 
This section illustrates the proposed approach for localizing and tracking 3D objects with high 

performance and accuracy. First we describe the global localization algorithm RANGO, followed by 

the local tracking algorithm. Then, we illustrate how both components are combined into the full 

tracking framework 

 
3.1. RANGO – RANdomized Global Object localization 

 
RANGO is an algorithm for 3D object localization. It is based on a random sampling algorithm 

(RANSAC) described in [1][3] with several performance and robustness improvements, allowing a 

very fast detection rate when compared to the registration approach proposed in [7]. Its main 

contribution is the replacement of K-nearest neighborhood search for inlier detection with a 

probabilistic grid based approach. Thus the time complexity for the evaluation of a hypothesis 

(acceptance function) is reduced from 𝑂(𝑛 ∗  𝑙𝑜𝑔(𝑚)) where 𝑛 is the number of model points, 𝑚 

denotes the number of points in the scene, to 𝑂(𝑛). Additionally, the evaluation of the number of 

model points that fit the hypothesis is stopped early when the probability of finding a good match is 

too low. 

Sparse 3D Voxel Grid.  Each 3D point of a scene is approximated into a sparse axis aligned 3D 

grid. Each voxel of this grid is defined by a (𝑥, 𝑦, 𝑧) tuple where 𝑥, 𝑦, 𝑧 are (integer) coordinates for 

the voxel location. In RANGO this (𝑥, 𝑦, 𝑧) position is hashed into a single 32bit number which is 

used as an index in a hash table. Due to hashing collisions it is possible that two different points hash 

to the same voxel even though their position is unrelated, but the probability is low enough that it is 

not a problem for our use case. This 3D voxel grid is then used for fast verification of candidate 

transformations.  

To evaluate a transform matrix, we iterate over a set of sample points of the model and transform 

them into the scene. Each sample point is hashed into the 3D voxel grid containing scene points. If 

the hashed voxel is filled with a point and has a similar normal vector orientation as the model point, 

we count that as an inlier. This verification method has a complexity of 𝑂(𝑚) where 𝑚  is the 

number of sample points. This verification is only approximate as it is possible to miss a neighboring 

sampling point because we only lookup the voxel the sample point hashes to, ignoring neighboring 
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voxels. A kd-tree would allow for exact nearest neighbor queries, but would have 𝑂(𝑚 ∗  𝑙𝑜𝑔(𝑛)) 

complexity. The speedup achieved by the 𝑂(𝑚) verification allows us to evaluate more candidate 

transformations at the same time to boost accuracy. 

Filtering Candidate Solutions.  After the random sampling and matching process is over, the 

candidate solutions are filtered, since it is likely that multiple similar solutions have been found. In 

[3] a pose clustering approach is used. The pose clustering combines multiple similar poses to find 

an average position from these candidate solutions. This approach falls short for symmetric objects. 

E.g. a sphere where the reference frame is off center will result in many different potential poses, 

but each pose will have a completely different translation and rotation. In RANGO, we have 

replaced the clustering approach with a filtering approach. All candidate solutions are sorted by the 

number of inliers, highest number first. Iteratively, each solution is re-checked if it meets a given 

inlier threshold, and if it does, all scene voxels that were used in this inlier check are removed from 

the 3D voxel grid. This way only the best fitting candidate solution for a potential pose is used, 

while it is still possible to find multiple instances of the same object in the scene data. This 

approach works well for both complex and symmetrical objects. 

 

3.2. Multi-Forest Tracking 

 

Our multi-forest tracking approach is a variation of the multi-forest tracking algorithm described in 

[18]. Our modification to this algorithms retains the performance characteristic of [18] while having 

a significantly lower memory and training overhead, which allows the use of this algorithm on 

devices with limited computational power such as a tablet pc. It is noteworthy that we only use 

depth data for both tracking and object localization. The reason is that our main goal is to be able to 

robustly track industrial parts, and these usually do not carry much color information. 

Single-view-Tracking.  The multi-forest tracker described in [18] uses 6 ∗  𝑛𝑐  ∗  𝑛𝑡  random 

forests, where the number of dimensions to represent a pose is 6, 𝑛𝑐  is the number of camera 

positions and 𝑛𝑡 the number of trees in each forest. For each camera position sample points of the 

objects are extracted and used to train 6 random regression forests for tracking of this camera view.  

An algorithm switches between the camera views that are currently best visible. They parameterize 

this as 𝑛𝑐 = 42 and 𝑛𝑡 = 100 resulting in 25200 random trees. Each tree is generated from a test 

set of 50000 samples, resulting in a significant training effort. In our approach we have reduced 

this effort significantly to only 6 ∗  𝑛𝑡  trees. After the samples have been generated, each random 

forest is trained with all samples for a single dimension of the pose vector. That is, random forests 1 

to 3 are trained for changes in translation (x, y, and z), and random forest 4 to 6 are trained on the 

changes in rotation (roll, pitch and yaw) parameters respectively. During tracking, the depth 

changes are used to predict the changes in pose vector by simply combining the predictions of each 

random forest.  

In practice, we set 𝑛𝑡 = 70, resulting in only 420 random trees which in turn leads to a 60 times 

faster training time and 60 times less memory requirements. It typically takes about 3 minutes on 

an Intel(R) Core(TM) i5-3570 CPU (the proposed approach is implemented and tested on such a 

workstation) to train a new object for tracking. This low memory requirement also allows the 

tracking to run in real time.  

We initially sample a set of approximately 400 points from the surface of the object. Sampling is 

done by raytracing points onto the objects surface, creating a 3D grid around that object and then 

sampling a single point per grid. This sampling approach leads to evenly spaced sample points all 

over the visible surface of the object. The depth distance of these sample points to the visible depth 

map is then used in the training data. Since we have sampled points from all around the objects, 

many points will not lie on the visible surface but will be behind it. We rely on the random 
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regression forest to figure out what this means in term of object movement. In our experiments, the 

use of these single set of points has proven to lead to a highly stable tracking performance. 

Pose Forecast.  Tracking is performed on a frame by frame basis, by checking how depth values 

from sample points of the current positions vary when compared to the depth values of the current 

depth map. This means when an object is moving fast between two frames so that no or only few 

sample points of the previous position overlaps with the new position, the object cannot be tracked. 

In our algorithm we use the previously estimated movement prediction as a starting guess for the 

new movement prediction. This allows for objects to move further between two frames, and also 

provides a more accurate initial guess for the pose estimation. Initially when performing object 

localization, a movement of zero is assumed. 

 

3.3. Combined Object Localization with Tracking 
 

The full object tracking framework as shown in Fig. 1 combines both global object localization and 

tracking. The goal of this framework is to produce a continuous, low latency stream of the current 

object position. Whenever possible the system uses the fast tracking described above, and if 

tracking was not successful it switches back to the slower but global object localization. To track 

multiple objects simultaneously this tracking framework is run in parallel for each object. 

From Object Localization to Tracking.  Depending on the configuration of the object 

localization, it is possible to find multiple instances of the same object in a single frame. For our 

use case we assume that only a single instance is the correct one. To determine which of these 

instances the correct one is, we perform two checks. First, the instances are ranked by the number 

of inliers (r), and only if it passes a certain threshold it is considered as a potential correct pose. For 

each pose the multi forest tracker is evaluated and tracking is performed. When running the 

tracking algorithm on a correct pose, the estimated tracking transformation should be a minimal 

movement (m). When the tracking algorithm would estimate a large movement, this means that 

either this current position is wrong or cannot be tracked successfully. We use this tracking 

movement as an additional filtering criterion. In practice, we use both parameters to form a single 

sorting criterion quality (q) in (1): 

𝑞 =  
𝑟 

𝑚2 

We rank all candidate poses by this criterion, which leads to more accurate results than the use of 

either one of the criterion separately. 

 

 

Figure 1. Object tracking framework. The framework first performs global object localization on the input 

depth data. After the detection results are filtered they are passed to the Object Tracking module. If tracking 

was successful, the framework will directly use the tracking module to track objects for the next sensor input. If 

not, it will revert back to global object localization for the next sensor input frame.  The tracking results are 

published to a higher level system. 

 

Tracking Verification.  After tracking has been performed, we calculate the movement of the 

object with respect to the camera position. To determine if tracking was successful, we calculate if 

the current movement is reasonably realistic. We do this by calculating the acceleration of the 

object within the last 3 frames. If the acceleration is above a threshold, we consider the tracking as 
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not successful. This happens when the tracking has “lost” the object and consecutive tracking 

iteration move the object around in the sensor data. In practice we have set this velocity to 80mm 

per frame. With 30 fps this means a velocity of about 2.4m per second. This is enough to accurately 

track quickly moving objects, while being robust to detect the random movements that typically 

occur when tracking of the object fails. 

 

4. Experiments and Evaluation 
 

In order to compare the performance of our approach against the state of the art we use the 

synthetic dataset provided by Choi and Christensen [5]. The approach is also evaluated on real-

world objects and the results are presented in [12]. Interested readers can find more information 

here2. The dataset in [5] consists of four object models and a synthetic test sequence (1000 RGB-D 

frames) for each object. The test sequence is obtained by placing each object in a virtual kitchen 

model and moving a virtual camera around the model. The object trajectories w.r.t the virtual 

camera coordinate frame serves as the ground truth pose (error free since it is generated via 

rendering) of the object. Fig. 2 shows one such frame of each object sequence. The performance of 

the proposed tracking approach on the synthetic data set is as shown in Figure 3.  

 
Figure 2. Example images from the synthetic test data set provided by [5], a) Milk b) Orange Juice c) Tide d) 

Kinect Box 

 
Figure 3: Results of the tracking approach on the synthetic data set a) Milk b) Orange Juice c) Tide and d) Kinect box 

 

                                                 
2 http://tracking.profactor.at  
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Evaluation. The evaluation aims at comparing our approach against the particle filter based 

approaches [5][18][9] and online learning based approach [20] in estimating the translation (in x, y, 

and z axis) and rotation (roll, pitch and yaw) parameters. We compute the root mean square (RMS) 

errors (translation, rotation) and average time per frame.   Table I shows our approach outperforms 

[5] and [18] over all sequences. Unlike [5] our approach only uses depth data for 3D tracking. It 

also performs better than [9] on average of about 0.31 mm and 1.16 deg in estimating the 

translation and rotation parameters respectively. Our approach requires much less computational 

time (1.7 ms per frame) when compared with [9] (131 ms). Though our approach performs on par 

with [20] in terms of run-time, it performs better in estimating the translation (by 0.31 mm) and 

rotation parameters (by 0.15 deg) on average. 

TABLE I.  COMPARISION OF OUR APPROACH WITH THE STATE OF ART AGAINST THE RMS ERRORS IN 

TRANSLATION (IN MM),  ROTATION (DEGREES) AND THE RUNTIME (MS) 

  PCL [18]1 Choi [5]2 Krull [9]3 Tan [20]4 Ours5 

a
) 

M
il

k
 

  
 R

M
S

 E
rr

o
r 

Transl. (x) 13.38 0.93 0.51 1.23 0.63 

Transl. (y) 31.45 1.94 1.27 0.74 1.19 

Transl. (z) 26.09 1.09 0.62 0.24 0.48 
Roll 59.37 3.83 2.19 0.50 0.19 

Pitch 19.58 1.41 1.44 0.28 0.28 
Yaw 75.03 3.26 1.90 0.46 0.27 

        Time 2205 134 135 1.5 1.7 

b
) 

O
ra

n
g

e 

ju
ic

e 

  
 R

M
S

 E
rr

o
r 

Transl. (x) 2.53 0.96 0.52 1.10 0.39 
Transl. (y) 2.20 1.44 0.74 0.94 0.37 

Transl. (z) 1.91 1.17 0.63 0.18 0.37 
Roll 85.81 1.32 1.28 0.35 0.12 

Pitch 42.12 0.75 1.08 0.24 0.17 
Yaw 46.37 1.39 1.20 0.37 0.15 

 Time 1637 117 129 1.5 1.69 

c)
 

T
id

e
 

  
 R

M
S

 E
rr

o
r 

Transl. (x) 1.46 0.83 0.69 0.73 0.42 
Transl. (y) 2.25 1.37 0.81 0.56 0.51 

Transl. (z) 0.92 1.20 0.81 0.24 0.64 
Roll 5.15 1.78 2.10 0.31 0.22 

Pitch 2.13 1.09 1.38 0.25 0.29 

Yaw 2.98 1.13 1.27 0.34 0.30 
 Time 2762 111 116 1.5 1.7 

d
) 

K
in

ec
t 

B
o

x
 

  
  

R
M

S
 E

rr
o

r 

Transl. (x) 43.99 1.84 0.83 1.54 0.30 
Transl. (y) 42.51 2.23 1.67 1.90 0.49 

Transl. (z) 55.89 1.36 0.79 0.34 0.31 
Roll 7.62 6.41 1.11 0.42 0.21 

Pitch 1.87 0.76 0.55 0.22 0.27 

Yaw 8.31 6.32 1.04 0.68 0.23 
 Time 4539 166 143 1.5 1.71 

  
M

ea
n

 

 

Transl. 18.72 1.36 0.82 0.81 0.50 

Rot. 29.70 2.45 1.38 0.37 0.22 

Time 2786 132 131 1.5 1.7 

1,2 Intel Core2 Quad CPU Q9300, 8G RAM with Nvidia GTX 590 GPU; 3 Intel(R) Core(TM) i7 CPU with a Nvidia GTX 550 TI GPU; 

4  Intel(R) Core(TM) i7 CPU; 5 Intel(R) Core(TM) i5 CPU 

 

6. Conclusion 
 
We have presented a framework for combining object tracking and object localization to provide 

robust tracking performance in a challenging scenario. A quantitative analysis of the evaluation on 

popular test data set is also presented. The evaluation shows that our approach performs better than 

the state of art in terms of estimating the translation and rotation parameters. The approach is 
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capable of real-time computation at 1.7 ms per frame on average. The next steps would be to 

combine the real-time object tracking approach with human tracking and extend the framework 

towards human activity recognition in industrial settings. 
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