# Various superstructures formed by tin-vacancy ordering in $K_{8}$ Sn $_{44} \square_{2}$ and $\mathbf{R b}_{8}$ Sn $_{44} \square_{2}$ clathrates 

Wilder Carrillo-Cabrera, Michael Baitinger, Burçu Uslu and Yuri Grin

Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
carrillo@cpfs.mpg.de
Keywords: electron diffraction, vacancy ordering, superstructures, clathrate-I, $\mathrm{K}_{8} \mathrm{Sn}_{44}$
The $K_{8} \mathrm{Sn}_{44} \square_{2}$ and $\mathrm{Rb}_{8} \mathrm{Sn}_{44} \square_{2}$ clathrates are Zintl phases stabilized by creating tin vacancies ( $\square$ ) in the covalent clathrate-I framework [1]. Recently, $\mathrm{Rb}_{8} \mathrm{Sn}_{44} \square_{2}$ [2] and $\mathrm{Ba}_{8} \mathrm{Ge}_{43} \square_{3}$ [3] were reported with partial and full vacancy ordering. Both show the same cubic $2 a_{1} \times 2 a_{1} \times 2 a_{1}$ superstructure (space group Ia $\overline{3} d$ ), with the vacancies building up a spiral substructure along $\{100\}$ (similar to that in Fig. 1c).

In contrast to earlier work on $\mathrm{K}_{8} \mathrm{Sn}_{44} \square_{2}$ (Pearson symbol $c P 52$, $a_{1}=12.03 \AA$, space group $P m \overline{3} n$ ) [1, 4], in our X-ray powder diffraction (XRPD) patterns splitting of the reflections is observed at high $2 \theta$ values, indicating a non-cubic unit cell. In addition, weak reflections between the main ones revealed the formation of a superstructure. By studying the samples on a Tecnai 10 electron microscope (equipped with CCD camera TemCam-F224HD from TVIPS), selected area electron diffraction SAED patterns show the existence of three different superstructures. The first one is a tetragonal $2 a_{1} \times 2 a_{1} \times 2 a_{1}$ superstructure (SAED patterns in Figs. 1a, 1b) observed in a sample annealed at $350^{\circ} \mathrm{C}$ (quenched in water). A suitable crystal structure model $(a=24.063(2) \AA, c=24.007(2) \AA, I \overline{4} 2 d$ space group, Pearson symbol $t I 416$ ) was derived from the structure of $\mathrm{Ba}_{8} \mathrm{Ge}_{43} \square_{3}$. In this superstructure (see Figs. 1c, 1d), 1.5 of 2 vacancies per formula unit are fully ordered. The pairwise ordering of the majority of the vacancies in the basal plain (Fig. 1d) explains the shortening of the $c$ axis. The second superstructure has an orthorhombic $4 a_{1} \times 2 a_{1} \times 2 a_{1}$ unit cell (oC832, SAED patterns in Figs. 2a, 2b) and was found in a furnace cooled sample (after annealing at 350 ${ }^{\circ} \mathrm{C}$ ). The third one is a tetragonal $4 a_{1} \times 4 a_{1} \times 2 a_{1}$ superstructure ( $t I 1664$; see Figs. 2c, 2d) found in a sample annealed at $200^{\circ} \mathrm{C}$ (quenched in water).

TEM study of a $\mathrm{Rb}_{8} \mathrm{Sn}_{44} \square_{2}$ sample annealed at $400{ }^{\circ} \mathrm{C}$ (water quenched) revealed a giant orthorhombic $8 a_{1} \times 2 \sqrt{2} a_{1} \times 2 \sqrt{2} a_{1}$ superstructure (oC3328; see Fig. 3). Other superstructures related to the oC832 and $t I 1664$ variants in $\mathrm{K}_{8} \mathrm{Sn}_{44} \square_{2}$ were also observed in this $\mathrm{Rb}_{8} \mathrm{Sn}_{44} \square_{2}$ sample. No obvious splitting of the reflections in the high $2 \theta$ region of $\mathrm{Rb}_{8} \mathrm{Sn}_{44} \square_{2}$ XRPD patterns was observed. Thus, it is expected that in the $\mathrm{Rb}_{8} \mathrm{Sn}_{44} \square_{2}$ superstructures the distribution of the tin vacancies is more homogeneous (no vacancy pair structure) than in the $\mathrm{K}_{8} \mathrm{Sn}_{44} \square_{2}$ superstructure variants. Within the same space group, there are at least two different modes for vacancy arrangement.

1. J.T. Zhao, J.D. Corbett, Inorg. Chem. 1994, 33, 5721
2. F. Dubois, T.F. Fässler, J. Amer. Chem. Soc. 2005, 127, 3265.
3. W. Carrillo-Cabrera, S. Budnyk, Yu. Prots, Yu, Grin, Z. Anorg. Allg. Chem. 2004, 630, 2267.
4. J. Gallmeier, H. Schäffer, A. Weiss, Z. Naturforschung 1969, 24b, 665.


Figure 1. (a) [100] and (b) [110] SAED patterns of the $I$-centered tetragonal $2 a_{1} \times 2 a_{1} \times 2 a_{1}$ superstructure ( $t$ I416) of $\mathrm{K}_{8} \mathrm{Sn}_{44} \square_{2}$. (c), (d) Fragments of the $2 a_{1} \times 2 a_{1} \times 2 a_{1}$ structure showing the arrangement of the tin $\square$ vacancies (spiral substructure along $a$ axis in (c)). At shortrange level, pairs of vacancies are formed on the basal plane (gray arrows in (d)).


Figure 2. (a) [001] and (b) [011] SAED patterns of the orthorhombic $4 a_{1} \times 2 a_{1} \times 2 a_{1}$ superstructure (oC832) of $\mathrm{K}_{8} \mathrm{Sn}_{44} \square_{2}$. (c) [001] and (d) [101] SAED patterns of the $I$-centered tetragonal $4 a_{1} \times 4 a_{1} \times 2 a_{1}$ superstructure $(t I 1664)$ of $\mathrm{K}_{8} \mathrm{Sn}_{44} \square_{2}$.


Figure 3. (a) [001] SAED pattern of the orthorhombic $8 a_{1} \times 2 \sqrt{2} a_{1} \times 2 \sqrt{2} a_{1}$ superstructure (oC3328) of $\mathrm{Rb}_{8} \mathrm{Sn}_{44} \square_{2}$. (b) Tilted [001] SAED pattern ( $\sim 6^{\circ}$ about the $a^{*}$ axis), showing the different Laue zones, (uvw) ${ }_{\mathrm{n}}{ }^{*}$ layers for $\mathrm{n}=-2,-1,0,1,2,3,4$.

