FIB preparation and TEM characterization of Si₃N₄ precipitates grown in multicrystalline Si for solar cell application

<u>A. Lotnyk</u>^{1,2}, H. Blumtritt², J. Bauer², and O. Breitenstein²

1. Faculty of Engineering, Institute for Material Science, Synthesis and Real Structure,

Christian Albrechts University of Kiel, Kaiserstr. 2, D-24143 Kiel, Germany

2. Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany

lot@tf.uni-kiel.de

Keywords: Focused Ion Beam (FIB), silicon nitride (S₃N₄), precipitates, mc-Si, solar cell

During processing of block-cast multicrystalline silicon (mc-Si), Si₃N₄ and SiC precipitates appear frequently at the top of mc-Si blocks [1,2]. There are three different types of Si₃N₄ precipitates: 1) hexagonal-shaped Si₃N₄ rods surrounded by SiC particles (Figure 1(a)), 2) Si₃N₄ filaments growing at grain boundaries of mc-Si (Figure 1(b)) and 3) Si₃N₄ filaments growing outside of grain boundaries of mc-Si (Figure 1(c)). The first and second types of these precipitates are already well characterized by scanning electron microscopy (SEM) equipped with an energy dispersive X-ray spectrometer [1,2] and by electron backscattered diffraction [1]. However, due to the complexity of specimen preparation, the reports on characterization of the precipitates by transmission electron microscopy (TEM) are very rare. It is well-known that the different thinning rate in two phase materials, e.g. Si₃N₄ embedded in mc-Si, is a common problem in the samples preparation for TEM investigation by conventional methods. This problem can be overcome by using focused ion-beam (FIB) for preparation.

In the current study, we have used a FIB milling in the samples preparation for TEM investigations as described in Reference [3]. To prepare a cross-sectional specimen a FIB lamella was cut perpendicular to the area of interest (Figure 2(a)). To produce a plan-view sample a FIB lamella was cut parallel to the area of interest (Figure 2(b)). TEM investigations were carried out using a CM 20 Twin (Philips, Netherlands) microscope operated at 200 kV.

Figure 3(a) shows a cross-sectional bright field TEM image and a selected area electron diffraction (SAED) pattern (inset), respectively, of a Si₃N₄ rod. The patter is indexed according to the β modification of Si₃N₄. The TEM investigations also show that the rod is single crystalline and is growing in [0001] direction of Si₃N₄. Figure 3(b) shows a cross-sectional bright field TEM image and a SAED pattern (inset), respectively, of a Si₃N₄ filament growing at a grain boundary of mc-Si. The structural modification of the filament is found to be the α modification of Si₃N₄. The TEM investigations also show that the filament is single crystalline and contains defects like grain boundaries. Figure 3(c) shows a plan-view bright field TEM image and an SAED pattern (inset), respectively, of a Si₃N₄ filament precipitated outside of a grain boundary of mc-Si. The patter is indexed according to the β modification of Si₃N₄. No accumulation of dislocations is found in the Si matrix around the Si₃N₄ filaments.

- 1. A.-K. Søiland, E.J. Øvrelid et al., Mater. Sci. Semicond. Process. 7 (2004) p39.
- 2. A. Lawerenz, M. Ghosh et al., Solid State Phenomena **95-96** (2004) p501.
- 3. A. Lotnyk, J. Bauer, O. Breitenstein and H. Blumtritt, Sol. Energy Mater. Sol. Cells **92** (2008) p1236.
- 4. This work was supported by the Federal Ministry of Environment (BMU) under Contract number 0327650D (Solar Focus). Q-Cells AG (Thalheim, Germany) is gratefully acknowledged for providing the material used for this investigation.

G. Kothleitner, M. Leisch (Eds.): MC2009, Vol. 1: Instrumentation and Methodology, DOI: 10.3217/978-3-85125-062-6-119, © Verlag der TU Graz 2009

Figure 1. (a) SEM image of a Si₃N₄ rod surrounded by a cluster of β -SiC particles, (b) SEM image of Si₃N₄ and β -SiC filaments growing at a grain boundary (GB) of mc-Si and (c) SEM image of Si₃N₄ filaments growing outside of grain boundaries of mc-Si.

Figure 2. (a) SEM image of a FIB lamella (cross-sectional method of preparation) prepared from a sample containing Si_3N_4 and SiC filaments precipitated at grain boundaries of mc-Si like in Fig. 1(b) and (b) SEM image of a FIB lamella (plan-view method of preparation) prepared from a sample containing Si_3N_4 filaments precipitated outside of grain boundaries of mc-Si (see Fig. 1(c)).

Figure 3. (a) Cross-sectional bright field TEM image of a Si_3N_4 rod. The inset shows the SAED pattern of the rod, (b) cross-sectional bright field TEM image of a Si_3N_4 filament growing at a grain boundary of mc-Si. The inset shows the SAED pattern of the filament and (c) plan-view bright field TEM image of a Si_3N_4 filament precipitated outside of a grain boundary of mc-Si. The inset shows the SAED pattern of the filament.