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Abstract. In this work we explore the feasibility of using a cloud-based approach to analyzing EEG signals for use
in BCI. A cloud-based approach allows us to move analysis away from the user, offering a three-fold benefit. First,
it means we can perform more complex analyses as the user transmits data. We are also able to develop algorithms
which utilize data from multiple users. This also allows us to leverage demanding analysis algorithms from mobile
devices such as smart phones/tablets with limited resources. For this approach to be feasible, we need to ensure that
data is processed quickly and reliably, handling any lags that may be incurred due to network communications.
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1. Introduction
As EEG collection devices become smaller and more mobile, the need to perform EEG analysis on small-factor
devices such as mobile phones or tablets grows. These devices have limited processing power, but are equipped with
networking capabilities that allow them to transmit data to a remote resource pool for advanced processing. One
approach is to dedicate a single machine to each user wishing to remotely connect for classification, but this leads to
wasted resources and does not scale well. We propose interleaving computations as an effective and scalable method
of supporting many concurrent users within a pool of limited resources.

2. Approach
In this work we use a feedforward artificial neural network (ANN) with time-delay embedding for the mental task BCI
paradigm. We are building on work introduced in [Anderson and Bratman, 2008; Anderson et al., 2011; Ericson et al.,
2010], using similar neural networks and a time-delay of 3 timesteps. Our focus is not on accuracy, instead we mark
all classifications as passing or failed based on our ability to classify data in a timely manner.

As we are sending data to be classified in a remote resource pool, we have further compressed signals by sending
all data generated for the last 250 ms to be classified together. We consider responses which take more than 250 ms
as failed. We use this measure across all our experiments. This time period was chosen as it is a good fit for our
processing footprint, but is fully adjustable. We can classify signals of this length in 10 s of milliseconds, leaving
plenty of time left over for any communications overheads we may incur from our approach.

2.1. Data
We classify EEG signals generated by an able-bodied adult male, gathered by the CSU BCI lab1. Four tasks are
recorded from the user: imagined right hand movement, imagined left leg movement, counting backwards from 100
by threes, and imagining a computer display tumbling in three dimensions. The dataset is separated into five different
recording sessions, where each recording session has 10 five-second recordings for each of the four tasks. We use four
of our five datasets for training, reserving the fifth for testing. The EEG data was gathered using a NeuroPulse Mindset
24R amplifier with 19 electrodes arranged using the international 10-20 specifications and a sampling rate of 512 Hz.

2.2. Network Setup
In our experiments we used identical machines to support all processing of EEG signals and to stream pre-recorded
EEG signals into the resource pool for classifications. This resource pool consists of machines with four 2.4 GHz
cores, 16 GB RAM, and gigabit ethernet connection, with round-robin load balancing. For classification, we are using
a group-of-experts approach, where multiple ANNs are trained with slightly different initial weights, allowing each to
learn a slightly different solution. Each user has a dedicated group of experts trained on their own data, which users
can tune as needed.

1www.cs.colostate.edu/eeg
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Each machine in the resource pool also has a generic group of experts. This group of experts has access to new
training data from all users currently utilizing that machine. This allows the system to take advantage of hosting
computations for multiple users – it can learn patterns across many users simultaneously, which can lead to increases
in performance [Wang and Jung, 2011].

3. Results
We first focused on determining the maximum number of users we could support on a single machine. This sets an
upper bound for all further stress tests. As we add more machines and users we put more strain on the communications
infrastructure, so we will likely only be able to support fewer users. In our first attempt, we tried to support 30
concurrent users on a single machine. This means that there are effectively 31 unique computations on a machine (one
generic, and one dedicated to each user). With 30 users, we only had one message that returned in over 250 ms out of
150,000 messages sent, leading to a failure rate of 0.0006 %. As the one failed message proved to be one of the first
messages sent, we believe that this was purely an initialization overhead. We then tried to support 35 concurrent users
on a single machine, which had a failure rate of only 0.2 %. When we moved up to 40 concurrent users the failure
rate jumped up to 0.5 %, but the magnitude of failure went from a 9.5 second delay to 30 seconds. To minimize the
magnitude of failures, we decided to cap further tests to 35 concurrent users.
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Figure 1: Density functions of passing
response times in milliseconds for 1000
and 1400 users on a cluster of 40 nodes.

Using the information found in our initial stress tests, we scaled up to a re-
source pool of 40 machines. We hope to support just as many distinct computa-
tions in this setup as we found in the first set of experiments (35 users/machine).
As we expect to overload our communications substrate, we started with 25
users per machine, a total of 1000 computations. With 1000 concurrent users,
we saw a failure rate of 0.005 %, with a worst-case response time of just over
one second. We next moved on to support 35 users per machine (1400 compu-
tations). When supporting 1400 users, we saw a massive jump in the number of
failed computations, up to 0.8 %. We also saw a drastic change in the probabil-
ity density of response times. Looking at these response times (Fig 1), it is clear
that attempting to support more users would lead to more failed computations.

4. Discussion
While we have been working with neural networks for the mental task BCI
paradigm, there is nothing to preclude the use of another algorithm, or even a
different paradigm within our framework. We can support arbitrary processing in a number of programming languages,
such as C, C++, C#, Java, Python, and R [Ericson and Pallickara, 2012]. Different algorithms will have slightly differ-
ent processing requirements and different paradigms will have different communications overheads, but by modifying
the rate at which messages are passed to the network for processing we can account for any of these changes.

While we have explored methods of supporting multiple users concurrently, there are cases where it may not be
feasible for users to remain constantly connected to a cluster, such as when there are in places with poor wireless
connections, or when the user is on a data-limited connection, such as a 3G or 4G network. In these situations, it
makes sense to use an offline model such as we see adopted into some mobile voice recognition applications. The
phone is regularly updated with new models which have been developed after sampling across multiple users. These
are small-form models, which allow quick classifications on the mobile device itself, so users do not require a constant
live connection to outside servers. Users would still, however, be able to access models trained with data from multiple
users, potentially leading to much better results.
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