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Abstract. This paper proposes to utilize the phase information to enhance steady-state visual evoked potential based 

brain-computer interface (SSVEP-BCI) based on a canonical correlation analysis neural network (CCA-NN). The 

preliminary offline results show that the proposed scheme can achieve a better classification accuracy than the 

standard CCA and the modified CCAs since it identifies the target by considering the flexible phase information. 
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1. Introduction 

Recent years have witnessed a great success of steady-state visual evoked potential based brain-computer 

interfaces (SSVEP-BCIs) which can provide satisfactory performance with ease configuration and little user training 

[Bin et al., 2009; Wang et al., 2010; Volosyak, 2011]. Among the existing SSVEP-BCIs most utilize either the 

frequency information or phase information of SSVEPs for identification. More recently some work has been 

reported which make use of both frequency and phase information of SSVEPs simultaneously to improve the system 

performance [Jia et al., 2010; Pan et al., 2011; Shyu et al., 2012]. In particular, a modified canonical correlation 

analysis (CCA) called phase constrained CCA (p-CCA) is proposed in [Pan et al., 2011] to enhance the classification 

accuracy. If the phase information in p-CCA can be variable in a specified range rather than fixed at a value, it 

should be more suitable to practical applications. This study aims to use a CCA neural network (CCA-NN) with 

flexible phase information to improve the classification accuracy. 

2. Phase Information in Canonical Correlation Analysis  

Standard CCA (s-CCA) finds out the maximum correlation coefficient between two sets X and Y by finding two 

optimal projection matrices (WX and WY). In general, SSVEP-BCIs using CCA detect the gazed-target by finding 

which reference signal (Yk) has the maximum correlation with the multi-channel SSVEPs (X). Then the stimulus 

frequency (fk) of reference signal (Yk) is decided as the gazed-target. s-CCA only considers frequency information in 

reference signal (i.e., Yk=[sin(2πfkt),cos(2πfkt)]
T
), so it is possible to find an unreliable projection direction (WX) 

which means that the combined signal (X
T
WX) has different phase from SSVEPs. It is unreasonable since SSVEP is 

phase-locked to stimulus.  

In p-CCA the reference signal with additional phase information (i.e., Yk=[cos(2πfkt+θk)]
T
) can make sure the 

combined signal with the similar phase as SSVEPs. However, the constant phase information does not conform to 

reality because SSVEP’s phase usually has a large phase deviation around 20
o
~40

o 
[Jia et al., 2011; Lee et al., 2010]. 

As a result, a CCA-NN is proposed to solve this issue. 

2.1. Canonical Correlation Analysis Neural Network  

In [Lai and Fyfe, 1999] artificial neural networks are adopted to implement CCA. Neural networks can find the 

weight vectors (WX and WY) by optimizing a cost function. For example, the cost function shown in Eq. 1  
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where x=X
T
WX, y= Y

T
WY, C1=[1 0], C2=[1 0], and λj (j=1,2,3,4,5,6) are Lagrange multipliers, is proposed to find the 

maximum correlation coefficient while the variance of weights are constrained to 1 and the phase information can be 

constrained within (0,90
o
) (WY (1) ≥ 0 and WY (2) ≥ 0). In fact, WY implies the phase information of the combined 

signal (i.e., arctan(Wy(2)/Wy(1)). In this study, the flexible phase information within (θk−45
o
, θk+45

o
) is embedded in 

CCA-NN by means of constraining WY. 
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2.2. Offline Data Analysis 

Six health subjects participated in the experiment where a visual stimulator presenting 6 frequency-tagged 

flickers (17.14 Hz, 15 Hz, 13.33 Hz, 12 Hz, 10 Hz and 7.5 Hz) was used. All subjects were indicated to gaze at one 

of 6 flickers in turn. Each dataset was divided into training set (for the phase information calibration) and testing set. 

s-CCA, p-CCA, and CCA-NN were applied in this offline data analysis respectively. 

Table 1. Offline classification accuracy and phase deviation of the combined signal. 

Subject 

Classification accuracy Phase deviation 

 s-CCA CCA-NN p-CCA s-CCA CCA-NN p-CCA 

S1 94.4% 99.1% 99.1% 77.1o 34.9o 0 

S2 96.3% 98.2% 98.2% 76.2o 33.0o 0 

S3 75.9% 79.6% 75.0% 75.6o 40.4o 0 

S4 79.6% 89.0% 82.4% 76.3o 34.0o 0 

S5 79.6% 82.4% 71.3% 75.5o 34.8o 0 

S6 96.3% 95.4% 85.2% 75.3o 60.4o 0 

Average 87.0% 90.6% 85.2% 76.0o 39.6o 0 

3. Results and Discussion 

In Table 1 it can be found that CCA-NN can achieve the best classification accuracy. The average phase 

deviation around 40
o
 indicates that the phase information of the combined signal can be constrained in a small range 

in CCA-NN. One interesting finding is that the large phase deviation seems to degrade the improvement (S6). 

In summary, the phase constraint in s-CCA is too loose but in p-CCA it is too rigid. CCA-NN is the most 

generalized as it is able to constrain the phase in a selected range. The preliminary results show that CCA-NN can 

achieve the highest enhancements in terms of classification accuracy. Future work may include investigations on 

several problems. First, the convergence speed of CCA-NN is too low for an online application. Second, in the above 

experiment all the flexible phase information is constrained within (θk−45
o
, θk+45

o
) but this interval should actually 

be adapted to the measured SSVEPs. 
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