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ABSTRACT: This paper communicates the research plan 
for a dissertation in the field of Passive Brain-Computer 
Interfaces. The main aim is the detection of a driver’s 
mental state in real time and its use in autonomous 
driving. One example of this is embedded in the context 
of driver taking over control of the automated vehicle. A 
offline experiment in laboratory as well as both an online 
and offline experiment in a driving simulator will be 
conducted. This paper proposes an experiment planning 
as well as materials and methods to be used. The 
conduction of experiments and data analysis are pending. 
The outcome of these studies is expected to contribute to 
the design of the driver-vehicle-interaction in 
autonomous driving by identifying driver’s mental states 
during mode transition.  

 
INTRODUCTION 
 
In recent years, autonomous driving has become one of 
the hot topics in research and engineering, which aims at 
minimizing the workload of drivers and optimizing the 
traffic situation. However, in most countries the human 
drivers are still responsible for anything that happens 
while autonomously driving [1]. Therefore, the 
autonomous driving systems designed by most research 
institutes or technology companies at the moment are not 
fully automated, that is to say, when the system cannot 
handle some situations or when the automated system is 
performing some errors, the driver must be able to take 
over control. For example, driving along a highway could 
be automated, but once an urgent traffic situation occurs, 
the driver is required to take over control. When the car 
drives autonomously, the driver’s attention might 
probably be distracted to secondary tasks other than 
driving, as a result, a signal given by the system for 
takeover might be missed, or might surprise the driver. 
This could be dangerous during driving. Hence, it is of 
great importance to monitor the driver’s mental state 
during autonomous driving.  
Passive Brain-Computer Interfaces (passive BCIs) 
provide a new perspective on the use of BCI technology 
and have proven to be one of the most promising 
approaches for monitoring user’s mental state, utilizing 
real-time brain signal decoding [2]. It could provide 
valuable information about the users' intentions, 

situational awareness and emotional states to the 
technical system. This allows the technical system to 
better adapt to the user and thus enhances the human-
machine interaction performance, leading to 
neuroadaptive technology [3].  
In the context of autonomous driving, passive BCI is 
considered as a promising method to improve the driver-
vehicle interaction. It enables the real-time detection of 
driver’s mental state like fatigue, workload, and degree 
of relaxation [4], which could provide essential 
information regarding drivers’ state to the car. 
Combining with other sensor data, the car could adapt to 
individual aspects of the driver and make decisions 
accordingly. As passive BCIs do not rely on directed or 
even conscious actions of the driver [2, 4], the car could 
gain an additional stream of information about subjective 
situational interpretation of the driver while in 
autonomous driving mode. Furthermore, thanks to the 
improvements on dry electrodes, it is now of great 
convenience to apply a dry electrodes system in BCI 
research and its applicability in the context of a running 
vehicle has also been validated, based on the evaluation 
of BCI classification accuracy, amplitude and temporal 
structures of ERPs as well as features in the frequency 
domain [5]. 
During autonomous driving, knowing the actual state of 
the driver and communicating it to the car is crucial, 
especially in the process of take-over control during 
autonomous driving. Ensuring that the driver is able to 
take over control of the automated system properly is one 
of the major issues in highly automated driving. For 
example, the detection of whether the driver is in a 
relaxed state or mentally stressed before takeover, 
whether the driver fully concentrates on driving or is 
distracted by other driving-unrelated tasks, and whether 
the driver is experiencing drowsiness or is totally awake, 
is relevant information to design a communication from 
the car to the driver informing the need to take over. 
Besides, the detection of whether the transmitted signal 
from the automated system has really been perceived by 
the driver or was ignored, is also an important issue in 
autonomous driving. More abstract, from a human 
factors perspective, it is important that the driver 
possesses situational awareness [6]. It is important that 
the car is “aware” about the drivers’ situation in order to 
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communicate important information in an appropriate 
and secure way. Based on former studies, drivers tend to 
show higher drowsiness and less workload with vehicle 
automation, and more involved with the in-vehicle 
entertainment, affording less visual attention to the road 
ahead [7]. Thus in the presented workplan, mental 
workload, attention, and perception of stimulus will be 
examined, which are influential factors on driver’s 
situational awareness while driving. They are all 
recognizable by EEG and their detections could provide 
helpful information to the vehicle to improve the 
interaction of driver and vehicle. 
Detection of mental workload with EEG has been studied 
by many researchers (e.g. [8-11]) and some EEG features 
have been proven to be relevant to mental workload, like 
ERPs and variation of spectral power in theta and alpha 
band. However, there are few studies on detection of 
mental workload in driving, especially in online analysis. 
Kohlmorgen et al. detected real-time mental workload in 
drivers operating under real traffic conditions using 
EEG-based system [12].  They created a system which is 
able to measure the level of mental workload in real time 
and mitigate the workload induced by the influx of 
information from the car’s electronic systems, ultimately 
to detect and avoid stressful situations for drivers. Lei 
also detected driver’s mental workload by EEG in real 
time and used the result to adapt a secondary task 
allocated to driver [13]. With the information on driver’s 
mental workload, the system can better know about 
driver’s state before take over and can thus adapt the take 
over request to it. 
Distraction is fatal in driving and found to be one of the 
main causes for car accidents. Although there are already 
many physiological methods tracking user’s attention 
(e.g. eye tracking, measuring heart rate), EEG is also an 
important way to investigate attention, as it could reflect 
cognitive processing more directly [4]. Many studies 
(e.g. [14-16]) have found alpha activity as an indicator of 
attention allocation. Wang et al. [17] also proposed a 
model to recognize distracted and concentrated EEG 
epochs with a self-organizing map and found frontal and 
left motor components relevant to distracted driving. 
However, there’s still less application in online study for 
driving so far. 
ERP could also be used to detect missed stimulus [18]. If 
a typical ERP sequence is detected, the participant should 
have responded adequately to the stimulus. If a pending 
response is not accompanied by an ERP, the participant 
might have missed to detect the stimulus. In the context 
of take over control of automated driving, ERP could also 
be used to detect whether a transmitted request to take 
over is perceived or missed by the driver, which could 
provide significant information to the system. 

Hypotheses: Mental states like mental workload, 
attention, and perception of stimulus could be monitored 
in real time by means of passive BCIs, in driving-like 
tasks in laboratory as well as in a simulated take-over 
context in autonomous driving. 
 
 

MATERALS AND METHODS (IN PLAN) 
 
In the whole experiment process, three studies for 
detection of mental workload, attention and perception of 
stimuli will be conducted. In the following parts, I’ll 
present the detailed design for detection of mental 
workload both in laboratory and in a driving simulator. 
The experiments for attention and perception of stimuli 
will soon be developed. The experiment procedure for 
detection of mental workload is illustrated in Figure 1. 
 

 
Figure1: Procedure of two experiments for detection of mental 
workload in laboratory and in driving simulator. 
 
     Experiment 1 
     Laboratory. This experiment will be conducted in a 
well-controlled laboratory with a screen presenting 
corresponding task.  

Experimental Design. 12 participants will perform 
two tasks at the same time. The primary task is to monitor 
an automated system, which might pause at some time 
point and needs to be controlled by the participants, 
similar to the context of take-over control in autonomous 
driving. The Critical Tracking Task [19] will be 
employed as primary task, which requires the participants 
to control a bar by pressing the left and right key to bring 
the bar back to the central line (see Fig. 2). During the 
monitoring phase, the bar stays in the central 
automatically and participants need to take action only 
when a signal for take-over is delivered. Simultaneously, 
the participants will perform a secondary task – an 
auditory n-back task [20] – to induce different mental 
workload levels. A series of numbers will be presented at 
a time with intervals of 3 second in a randomly ordered 
sequence. As each new item being presented, participants 
are required to say out loud the number n items back in 
the current sequence. For high mental workload level, 
numbers are two-digit numbers from 10-99 and each time 
a 3-items-back number should be recalled. For low 
mental workload level, the numbers are digits from 0-9 
and each time one item back. Conductions of different 
mental workload levels are separated in different blocks 
and each will be performed 40 times with a 
counterbalanced sequence (see Fig. 3). Each block lasts 
60s and there’ll be a brief pause after each block and a 
longer break after every 20 blocks.  

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-96



 

 

 
Figure 2: Appearance of Critical Tracking Task. While monitoring, 
the bar stays always in the central line. From some time point on, it 
will move away from the central line and participants need to bring it 
back by pressing the left/right key. 
 

 
Figure 3: Experiment procedure for two mental workload levels in 
Experiment 1. H – High mental workload, L – Low mental workload. 
The sequence of H/L blocks is counterbalanced. 
 
     Materials. The data will firstly be collected using a 
64 active Ag/AgCl electrodes mounted according to the 
extended 10–20 system to examine which electrode 
positions are relevant to the corresponding mental states 
and to identify the underlying cortical sources. Based on 
these results, the experiment will be successively 
conducted with a BrainVision LiveAmp system of a 
reduced number of dry electrodes.  
     Analysis. In order to discriminate between different 
mental workload levels, we’ll employ following method 
to classify two mental workload levels. There are two 
parts of this analysis method for EEG data: feature 
extraction and classification. The feature extraction 
consists of four steps: removal of artifact, bandpass 
filtering in most discriminative frequency band, spatial 
filtering, and computing the power spectral in the 
selected frequency band. Classifiers will be chosen from 
linear (LDA, rLDA) methods and classification accuracy 
will be estimated by cross-validation. Furthermore, the 
performance of primary task including reaction time and 
deviation of the bar will also be analyzed to investigate 
the influence of mental workload on take-over 
performance. 
 
     Experiment 2 
     Driving Simulator. This experiment is based on a high 
fidelity static driving simulator of the Department of 
Psychology and Ergonomics at Technical University of 
Berlin, which consists of steering wheel, gas/brake 
pedals and other control elements. A driving scenario 
will be projected in front of the participants and they 
could also use the side mirrors as well as the rearview 
mirror. This driving simulator is partly automated with 
Advanced Driver Assistance Systems such as Adaptive 
Cruise Control. 
     Take-over situation. The vehicle is driving automati-
cally on a highway and is going to drive off at the next 
exit. The driver is engaged in different non-driving tasks 

and he/she will then be informed of the need to take over 
control of the vehicle and to drive off the highway. 
     Experimental Design. In this experiment, there are 
two sessions, including training session and application 
session. In both sessions, 12 participants will perform 
two tasks simultaneously. The primary task is to monitor 
the automatically driving vehicle in the simulator, and at 
some time point participants will be informed to take 
over control of it. At the same time, the participants need 
to perform secondary tasks. The secondary tasks used to 
induce different mental workload levels are listening to 
voice recordings from speeches and answering relevant 
questions (high mental workload) and listening to some 
quiet classical music (low mental workload). The 
procedure of tasks in the training session is the same as 
in Experiment 1, while each block lasts longer (2 min) 
and there’re be 20 blocks in total. The recorded EEG data 
in this session will then be trained. In the application 
session, real-time estimation of driver’s mental workload 
level based on classification trained before will enable 
the system adapt to the driver and give corresponding 
information to the driver.  
     Materials. The data collection will be accomplished 
using the BrainVision LiveAmp system with active dry 
electrodes, as stated in Experiment 1.      
     Analysis. The data collected in training session will be 
analyzed as stated in Experiment 1. Classifier for 
distinguishing different mental workload levels will be 
trained. In the following application session, the best 
performing classifier will then be applied and the outputs 
represent estimated level of workload. Corresponding 
adaptation or feedback will thus be given from the system 
back to the driver, in order to make take-over more proper 
and safer. 
 
OUTLOOK 
 
The results obtained from the experiments above will be 
discussed and conclusions will be formulated. Significant 
real-time detections of different levels of mental 
workload, attention as well as perception of stimuli by 
means of passive BCIs are to be expected, thus providing 
important information to the vehicle and ensuring the 
driver-vehicle-interaction more secure and comfortable. 
It should be confirmed that passive BCIs could be applied 
in autonomous driving situations to detect drivers’ real-
time states. 
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