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ABSTRACT:  

    In this work, the idea of the sensation-induced 

neurophysiological prior was introduced to facilitate 

motor imagery (MI) classification. Covariance matrix of 

MI without Prior, with stimulus-induced 

Neurophysiological Prior, and with regularization, were 

separately constructed to extract spatial filter via 

Common Spatial Pattern (CSP). It has been shown that 

the MI BCI performance was significantly higher in MI 

with Neurophysiological Prior condition than other two 

with p<0.05, while there showed no significant 

difference between MI without Prior and MI with 

regularization. Integration of the externally induced 

neurophysiological prior has the benefit of helping CSP 

spatial filter extraction, and improve the classification 

performance of BCI users. 

 

 

INTRODUCTION 

    Brain-computer Interface (BCI) provides a non-

muscular communication and control channel between 

the user’s thoughts and the external world, providing a 

promising channel for completely locked-in patient to re-

interact interact with society [1]. Through mentally 

performing imagined movement of one’s own limbs 

(e.g., left or right hand), their subjective motor intention 

can be decoded by translating the brain signals induced 

by the motor imagery (MI) [2], [3]. This is done without 

the need for external stimulus, such as visual stimuli in 

P300 and Steady-state visual evoked potential (SSVEP) 

based BCI system [4], [5]. MI based independent BCI has 

received enormous interest [6]–[9], and provided a new 

avenue for stroke neurorehabilitation [10], [11]. 

However, numerous experimental evidence has shown 

that a significant portion of individuals cannot 

successfully use MI-based BCI system. This 

phenomenon has been called “BCI-illiteracy” problem, 

where BCI control does not work for roughly 15%–30% 

of users [12]–[15]. 

There is extensive interest in further improving MI 

performance and reducing the number of BCI-illiterate 

users. Machine learning algorithms on MI detection has 

largely improved through several BCI competition, and 

the Common Spatial Pattern (CSP) is currently most 

widely used in MI detection [7], [8]. However, recent 

studies have reported gains in accuracy of approximately 

5% when using CSP extensions and optimized spatial-

spectrum filtering based on mutual information [9]. 

Some users still fail to reach the acceptable level of 

accuracy, which is often set to 70%, even with the state-

of-the art algorithms [16], [17]. Other techniques shown 

to help subjects achieve greater BCI control include 

training the subject to modulate rhythmic activity [18], 

and coadaptating the subject with the machine [19] have 

all been shown to help more subjects to achieve BCI 

control. Recently, the idea of utilizing tactile stimulation 

for calibration and training subjects has shown to be a 

promising way to facilitate MI decoding [15]. Because of 

the similarity between vibration induced oscillatory 

activation and MI induced brain dynamics, and the fact 

that subjects were able to produce much more consistent 

brain acitivation patterns after receiving real tactile 

stimulation, we hypothesize that the neurophysiological 

prior induced by tactile sensation would help to improve 

MI decoding. In this study, the feasibility of this 

objectively induced neurophysilogical prior will be 

investigated. 

 

MATERIALS AND METHODS 

Subjects 

    Five healthy subjects participated in this experiment 

(two female, all right handed, average age 23.2±1.5 

years). This study was approved by the Ethics Committee 

of the Shanghai Jiao Tong University, Shanghai, China. 

All participants signed an informed consent form before 

participation.  

EEG Recording and Somatosensory Stimulation 

EEG signals were recorded using a SynAmps2 system 

(Neuroscan, U.S.A.). A 64 channel quick-cap was used 

to collect 62 channel EEG signals, and the electrodes 

were placed according to the extended 10/20 system. The 

reference electrode was located on the vertex, and the 

ground electrode was located on the forehead. An analog 

bandwidth filter of 0.5 Hz to 70 Hz and a notch filter of 

50 Hz were applied to the raw signals. Signals were 

digitally sampled at 250 Hz.  

In this experiment, mechanical stimulation was 

applied to the wrist extensor tendons. The vibration 

motor (Pico Vibe 9mm Vibration Motor, Precision 

Microdrives Ltd., typical normalized amplitude 6 G) was 
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used for wrist tendon stimulation. The vibrator was 

enclosed in a rubber case and sewn in an elastic band. 

This was done to isolate it from the skin on the subject’s 

wrist to avoid any injection of leakage current to the 

hand. The vibration frequency was 110 Hz. The 

amplitude of vibration and stimulation positions were 

individually adjusted such that the subject could properly 

sense it.    

Experimental Protocol 

    The experiment comprised of two sections. In the first 

section, the subject performed only left and right hand MI 

tasks, and in the second section vibration stimuli were 

applied to the subject’s left and right wrist tendons and 

the subject’s task was to passively feel the stimulation. In 

the first section, the subject’s task was to perform MI 

according to a given cue. A total of 120 trials were 

performed by the subjects in 3 runs. At the beginning of 

each trial, a fixation ‘+’ appeared in the center of the 

screen. At the 1st second, a vibration burst with the same 

intensity stimulated both hands to alert the user of the 

subsequent task. The vibration pulse lasted 200 ms. Then 

at the 3rd second, a red cue pointing either left (L-MI) or 

right (R-MI) was presented visually on the computer 

monitor. This cue was superimposed on the fixation ‘+’ 

and lasted for 1.5 s. Subjects were instructed to perform 

the mental task after the appearance of the cue arrow. The 

mental task continued until the 8th second when the 

fixation ‘+’ disappeared. Next there was a relaxation time 

period lasting for about 1.5 s, during which subjects 

relaxed and could blink. Finally a random time period of 

about 0 to 2 s was inserted after the relaxation period to 

further avoid subject’s adaptation. In the second session, 

the subject’s task was to feel the vibration sensation 

according to a given cue. A total of 120 trials were also 

performed by the subjects in 3 runs. The timing of the 

trial was the same, except that at 3.6 s, vibrations were 

only applied to the left or right tendon of the wrist until 

the 8th second when the fixation ‘+’ disappeared. 

Algorithm with Neurophysiological Prior 

    Spatial filter technology was adopted for reducing the 

high dimensional feature space and enhancing the feature 

discrimination between different mental tasks. The 

spatial filters were calculated based on the common 

spatial pattern (CSP), which has been extensively 

explored in MI-based BCI literature. Mathematically, it 

is realized by simultaneous diagonalization of the 

covariance matrices for the two classes. The bandpass 

filtered EEG signal is represented as  with dimensions 

M × N, where M is the number of recording electrodes, 

and N is the number of sample points, and k is the trial 

index. The spatial covariance of the EEG can be obtained 

from 

  (1) 

where  denotes the transpose of the matrix , and 

 is the sum of the diagonal elements of the 

matrix . 

   (2) 

   (3) 

   (4) 

   (5) 

where  and  are the two index sets for left and right 

hand MI respectively, and  and  are the two index 

sets for left and right hand vibration stimulation 

respectively.  and  are the estimated covariance of 

left and right MI respectively, and  and  are the 

estimated covariance of the left and right hand vibration 

stimulation respectively. 

  (6) 

  (7) 

  (8) 

  (9) 

The covariance with sensation-induced 

neurophysilogical prior will be   and , for contrast, 

 and  will be regularized covariance,  is the 

parameter for the regulariztion, with the range between 0 

to 1, and selected among {0:0.1:1}. 

Three sets of the spatial filter will be extracted based 

on the following augmented generalized decomposition 

problem: 

               (10) 

        (11) 

      (12) 

The rows of W are called spatial filters; the columns of 

are spatial patterns. For the -th trial, the filtered 

signal  are uncorrelated. In this work, the log 

variance of the first three rows and last three rows of  

(corresponding to the three largest and three smallest 

eigenvalues), are chosen as feature vectors, and linear 

discriminative analysis (LDA) is selected as the 

classifier. The training set of LDA was only based on 

motor imagery dataset. 

We attempted to give a view considering the 

nonstationary property of the data by performing a cross 

validation with a ten-fold chronological split. The 60 

trials of each MI task were temporally sorted, and divided 

into ten partitions, each of which contained temporal 

information similar to actual BCI use. Difference Spatial 

filters were extracted from the above condition in the 

divided training set, i.e. without prior (equation 10), with 

neurophysiological prior (equation 11) and with 

regularization (equation 12). 

RESULTS AND DISCUSSION 

    Fig. 1 compares the MI performance when the CSP 

spatial filters were extracted in different condition. One 

way ANOVA with repeated measure indicated that there 

was a significant difference among the three conditions 

(F(2,8)=14.6, P<0.05), and post-hoc comparison showed 

that the MI with Neurophysiological Prior was 

significant greater than other two conditions, and no 

significance difference was found between MI without 

Prior and MI with Regularization. It can be noted that two 

of the five subjects, the performance were around 60% 

with traditional method but it improved with the 

proposed method and surpassed the 70% accuracy level. 
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The results have shown that the sensation-induced 

neurophysiological prior provides a way to help CSP 

spatial filters extraction, the induced prior has the 

characteristics of easy to induce, stable and less likely to 

be influenced by subject’s internal state, such as 

attention, stress, which affect MI mental effort. 

Through pre-experiment recording session of the real 

vibration sensation, it would also provide a way to 

evaluate the potential BCI performance of subjects [15] 

and provide guidance to subjects in order to better use MI 

based BCI system. 

As the BCI performance is the result of a cumulation 

of BCI-specific and user-specific factors, this current 

offline analysis only focused on the algorithm part of 

CSP with stimulus-induced Neurophysiological Prior. 

This approach provided a potential way to further 

improve MI-based BCI performance. 

CONCLUSION 

    Motor Imagery BCI performance can be further 

improved by integrating the stimulus sensation-induced 

neurophysiological prior. The stimulus-induced 

oscillatory dynamics facilitate the extraction of CSP 

spatial filters, which resulted an improved MI 

performance. This proposed method has the potential to 

further improve BCI performance. 
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