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ABSTRACT: Most Brain-Computer Interface (BCI) 

work has focused on detecting specific sensory or motor 

information, but BCIs are beginning to be applied to 

more abstract domains like covert speech and 

communication of semantic thought. One potential 

approach to decoding more abstract information is linear 

zero-shot classification via semantic attributes, which is 

computationally efficient and may facilitate real-time 

processing. In this work, several variations of this model 

are applied to electrocorticography (ECoG) data 

recorded during a picture-naming task with nine patients. 

Performances of encoding and decoding models are 

compared, and results are discussed in the context of BCI 

applications. 

 

INTRODUCTION 

 

Sensory and motor information can be understood and 

encoded in terms of physical functions and attributes, and 

brain-computer interface (BCI) applications typically 

utilize models based on these characteristics, e.g. limb 

motion [1] or speech [2]. These approaches are not 

applicable in more abstract domains, such as lexical 

semantics and conceptual thought. However, words or 

concepts can be decomposed into sets of meaningful 

attributes [3], so one can study how those attributes are 

encoded in the brain. For example, the concept of 

“lettuce” might be encoded with heavy weight on the 

attributes “green,” “edible,” and “plant” and low weight 

on the attributes “black,” “manmade,” and “hard.” 
     By using machine learning methods to derive these 

decompositional models from neural data, e.g. functional 

magnetic resonance imagery (fMRI), a better 

understanding of how more abstract concepts are 

represented in the human brain has been achieved [4, 5, 

6, 7]. Stimuli can be represented by their constituent 

semantic attributes, and mappings can be learned 

between each attribute and the observed neural 

responses. In the same way, stimuli can be recovered by 

induction after applying the mapping to novel neural 

data.  

     While this approach has been a boon for studying how 

abstract representations are semantically encoded in 

neural activations, there are clear advantages for neural 

decoding applications as well. Semantically decoding 

neural signals in this manner allows for the classification 

of novel classes of stimuli. This process, coined zero-shot 

classification [5], differs from traditional pattern 

recognition, in which models are tested on new data from 

the same classes used to train the model. In zero-shot 

classification, models are tested on data from new classes 

that were not used to train the model. Zero-shot 

classification has been successfully demonstrated in 

several applications such as computer vision [8] and 

target detection [9].  

     Zero-shot classification on neural signals would allow 

for BCIs to handle novel stimuli more robustly. In 

previous work [10], it was demonstrated that zero-shot 

classification of recognized objects was possible from  

electrocorticography (ECoG) at high levels of 

performance on par with whole-brain fMRI [4]. 

Demonstrations of reliable neural decoding performance 

from electrophysiological responses like this suggest a 

viable path to BCIs for more abstract domains. For 

example, zero-shot decoding could potentially be used to 

classify and/or semantically annotate novel stimuli that 

produce P300 responses [11], such as anomalous images 

[12] or frames of video [13]. Furthermore, 

communication BCIs, such as those used by locked-in 

individuals [14], could potentially use zero-shot 

classification to decode conceptual thought as opposed to 

individual characters. 

     While promising, applications of zero-shot decoding 

to ECoG are new and not well-explored. The mapping 

between semantic attributes and neural features may be 

learned as an encoding model,  i.e. a map from attributes 

to neural features [4, 10], or as a decoding model, i.e. 

direct prediction of attributes from neural signals [5, 6], 

but the efficacy of these approaches have not been 

compared. The mapping is often assumed to be linear, 

and typically learned by either least-squares [4] or ridge 

regression [5, 6, 10] to limit the possibility of overfitting. 

Support vector machines (SVMs) have been used for 

classifying neural data in past studies of human-computer 

interaction [15], as well as in zero-shot classification for 

computer vision [8]. However SVMs have not yet been 

investigated for zero-shot ECoG decoding. In this paper,  

we build on the encoding model described by our group 

in [10] to compare different approaches to zero-shot 

decoding in ECoG.  
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MATERIALS AND METHODS 

 
     The experiments carried out for this work utilized 

ECoG recordings collected during a picture-naming task. 

Data was recorded from 9 patients with intractable 

epilepsy (2 female, 31-44 years old) during inpatient 

monitoring for pre-surgical localization of their ictal 

onset zone and eloquent cortex. All patients provided 

informed consent according to a protocol approved by 

the Johns Hopkins Medicine Institutional Review 

Boards. 

     The stimulus set was originally reported in [4], and 

the data collection paradigm and analyses were originally 

reported in [10]. White line drawings of objects were 

briefly presented on a black background, and a white 

fixation cross was shown between stimuli. Each image 

was shown for one second, with a rest interval varying 

randomly between 3.5 and 4.5 seconds. Participants were 

instructed to name the image as soon as possible, or pass 

when necessary. Six blocks of data were collected per 

patient, with all 60 objects being shown in pseudo-

random order within each block. ECoG signals were 

sampled at 1000 Hz, digitized, and recorded using the 

BlackRock Neuroport system.  

     The stimuli consisted of line drawing representations 

of 60 nouns from 12 semantic categories as listed in Tab. 

1.  Each of the 60 nouns was uniquely mapped to a vector 

of 𝑃 = 218 semantic attributes originally used in [5]. 

The attributes were generated by crowdsourcing answers 

to a series of 218 questions via Amazon Mechanical 

Turk. All 218 questions were asked of 1,000 different 

objects, including all 60 of the objects included in this 

study. Questions probed a variety of semantic properties, 

including size, usage, composition, and category, with 

answers on an ordinal scale [−1, −0.5, 0, 0.5, 1]. It was 

empirically determined that regression models tended to 

perform better when the vector of attributes for a given 

noun was normalized to unity length. 

     A high-level illustration of the neural feature 

extraction process is shown in Fig. 1. After data 

collection, excessively noisy channels were discarded, 

 

Table 1: List of stimulus nouns and their categories. 
Category Nouns 

Animals bear, cat, cow, dog, horse 

Body parts arm, eye, foot, hand, leg 

Buildings apartment, barn, church, house, igloo 

Building 

parts 

arch, chimney, closet, door, window 

Clothing coat, dress, pants, shirt, skirt 

Furniture bed, chair, desk, dresser, table 

Insects ant, bee, beetle, butterfly, fly 

Kitchen 

Utensils 

bottle, cup, glass, knife, spoon 

Manmade 

Objects 

bell, key, refrigerator, telephone, 

watch 

Tools chisel, hammer, pliers, saw, 

screwdriver 

Vegetables carrot, celery, corn, lettuce, tomato 

Vehicles airplane, bicycle, car, train, truck 

 
Figure 1. Illustration of neural feature extracton from 

ECoG recordings, adapted from [10]. 

 
Figure 2: Illustration of encoding (top) and decoding 

(bottom) models, adapted from [10]. 

and the signals that were retained were spatially filtered 

using local common-average referencing. Signals were 

then low-pass filtered, resampled to 256 Hz, and time-

gated from stimulus onset to one second post stimulus 

onset. Features were extracted from the FFT spectrogram 

by integrating over 12 octaves with center frequencies 

spaced by half-octaves beginning at 2 Hz and time offsets 

of 250 and 500 ms post-stimulus. Because the number of 

electrodes varied per subject, the number of potential 

ECoG features varied as well. Features were down-

selected by ranking them according to their stability over 

stimulus presentation, which has precedence in similar 

studies [4, 5, 6]. The stability of a particular neural 

feature was calculated by averaging all pairwise Pearson 

correlations between responses in blocks of trials. Up to 

200 of the most stable neural features were considered. 

     The collected ECoG features and the accompanying 

semantic attributes for each stimulus can be used to learn 

an encoding or decoding model. The manner by which 

these models relate the neural and semantic features to 

one another are illustrated in Fig. 2. 

      Let 𝒔 be a 𝑃-dimensional vector of semantic 

attributes, and 𝒏 be an 𝑀-dimensional vector of neural 

features. The encoding model takes the form of a linear 

mapping of 𝒔 onto each 𝑛𝑚, for 𝑚 = 1,2, … , 𝑀: 

�̂�𝑚 = 𝒔𝑇𝜷𝑚
(𝑒𝑛)

 (1) 

     The parameter vector 𝜷𝑚
(𝑒𝑛)

 consists of the regression 

coefficients for encoding the 𝑚th feature. In prior work, 
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𝜷𝑚
(𝑒𝑛)

 was learned using ridge regression [10], and the 

same is done here since the model output �̂�𝑚 is 

continuous-valued. The ridge regression solution for 

𝜷𝑚
(𝑒𝑛)

 is given by 

𝜷𝑚
(𝑒𝑛)

= (𝑺𝑇𝑺 + 𝜆(𝑒𝑛)𝑰)
−1

𝑺𝑇𝒏𝑚, (2) 

where 𝑺 is the 𝑇 × 𝑃 matrix of semantic attributes, where 

𝑇 is the total number of trials used to train the model, 𝒏𝑚 

is the 𝑇 × 1 vector of values of the 𝑚th neural feature 

(normalized to zero-mean, unit-variance), and 𝜆(𝑒𝑛) is a 

regularization parameter determined empirically by grid 

search amongst five values between 1 and 10. 

     Conversely, the decoding model takes the form of a 

linear mapping of 𝒏 onto each 𝑠𝑝, for 𝑝 = 1,2, … , 𝑃: 

�̂�𝑝 = 𝒏𝑇𝜷𝑝
(𝑑𝑒)

, (3) 

     The parameter vector 𝜷𝑝
(𝑑𝑒)

 consists of the regression 

coefficients for decoding the 𝑝th attribute. The ridge 

regression solution for 𝜷𝑝
(𝑑𝑒)

 is given by 

𝜷𝑝
(𝑑𝑒)

= (𝑵𝑇𝑵 + 𝜆(𝑑𝑒)𝑰)
−1

𝑵𝑇𝒔𝑝, (4) 

where 𝑵 is the 𝑇 × 𝑀 matrix of neural features, 𝒔𝑝 is the 

𝑇 × 1 vector of values of the 𝑝th attribute, and 𝜆(𝑑𝑒) is a 

regularization parameter determined empirically by grid 

search amongst five values between 100 and 1000. 

     The discrete-valued output �̂�𝑝 suggests that a classifier 

may be more appropriate than regression for learning the 

decoding model. As suggested by [8], a linear SVM is 

also used to learn 𝜷𝑚
(𝑑𝑒)

. For a binary problem where 

𝑠𝑝 ∈ [−1,1], the SVM solves the following optimization 

problem, which maximizes the margin between the 

classes:  

𝜷𝑝
(𝑑𝑒)

= arg min
𝜷

{𝑐 ∑ max[0,1 − 𝑠𝑝(𝜷𝑇𝒏𝑡)]
2

𝑇

𝑡=1

+ ‖𝜷‖2}  

 (5) 

    To train the SVM, the elements of 𝒔 were re-quantized 

to [−1,0,1] by combining the [-0.5, 0, 0.5] responses. Re-

quantization casts the original attribute values as simple 

answers: no, don’t know, and yes. The liblinear 

software package was used to train three one-versus-one 

SVM classifiers to discriminate each pair of values [16]. 

Tuning parameters 𝑐 = {1, 10, 100} were considered, 

with per-class weighting according to the number of 

training samples. Voting amongst the three classifiers is 

used at test to predict �̂�𝑝. To assess the effect of 

modifying the attributes in this manner, ridge regression 

was also applied to the re-quantized attributes in another 

version of the decoding model. 

     After learning the mapping between neural features 

and attributes, a novel stimulus can be decoded by a 

distance-based classifier in neural space (if an encoding 

model was used) or semantic space (if a decoding model 

was used). Let the cosine distances resulting from the 

encoder output be denoted as 

𝑑𝜙
(𝑒𝑛)

=  
�̂� ⋅ 𝒏𝜙

‖�̂�‖ ⋅ ‖𝒏𝜙‖
, (6) 

where 𝒏𝜙 is the output of the trained encoder applied to 

𝒔𝜙, the true attribute vector for noun 𝜙, and  

�̂� = [�̂�1, �̂�2, … , �̂�𝑀]𝑇. Therefore, neural decoding by 

means of an encoding model takes the form of 

�̂�(𝑒𝑛) = arg min
𝜙

{𝑑𝜙
(𝑒𝑛)

}. (7) 

Similarly, neural decoding by means of a decoding model 

takes the form of 

𝑑𝜙
(𝑑𝑒)

=  
�̂� ⋅ 𝒔𝜙

‖�̂�‖ ⋅ ‖𝒔𝜙‖
, (8) 

�̂�(𝑑𝑒) = arg min
𝜙

{𝑑𝜙
(𝑑𝑒)

}, (9) 

where 𝒔𝜙 is the decoder output and �̂� = [�̂�1, �̂�2, … , �̂�𝑃]𝑇. 

 

RESULTS 

 

     Experiments were conducted to assess performance of 

zero-shot stimulus prediction using four different 

modeling approaches: Ridge Encoder, Ridge Decoder, 

Ridge Decoder Re-Quantized Attributes, and SVM 

Decoder with Re-Quantized Attributes. The zero-shot 

problem was simulated by employing leave-one-noun-

out cross-validation; feature selection and training were 

performed using 59 of the 60 nouns, and one noun was 

held out for testing. Therefore, the number of trials used 

to train the models was 𝑇 = 6 × 59 = 354 per subject. 

Two options for testing were compared: predicting from 

the average ECoG feature vector over all 6 trials, and 

predicting from single trials. Performance was measured 

via the mean rank accuracy (MRA). The MRA 

represents the average rank accuracy (RA) of the zero-

shot test class, taken across the full set of 60 nouns ranked 

according to the cosine distance, 

𝑀𝑅𝐴 =
1

60
∑ 𝑅𝐴𝜙

60

𝜙=1

, (10) 

where 𝑅𝐴𝜙 is the relative (percentage) rank of the test 

noun 𝜙 within a ranked list of potential classes, 

𝑅𝐴𝜙 = 100 × (
60 − 𝑟𝜙

59
), (11) 

and 𝑟𝜙 is the rank of 𝑑𝜙
(𝑒𝑛)

 (if  an encoding model was 

used) or 𝑑𝜙
(𝑑𝑒)

 (if a decoding model was used). The MRA 

could also be calculated on a per-category basis by 

averaging the MRA of all nouns within the same 

category.  

     The per-noun and per-category MRAs were tested for 

significance using a Monte Carlo procedure. A total of 

1,000 null encoding and decoding models were trained 

for each subject by permuting the rows of 𝑺, and the 

maximum MRA was calculated over all choices of 𝑀 and 

𝜆(𝑒𝑛) or 𝜆(𝑑𝑒). The 𝑝-values for the MRAs achieved by 

the alternative models were then computed using the 

distribution of the MRAs achieved by the null models. 

     The observed per-noun MRAs of the four decoding 

approaches are summarized in Tab. 2 and Tab. 3. The 

reported values represent maximum performance over all 

numbers of neural features and choices of 

regularization/tuning parameters that were considered. 

Tab. 2 summarizes the performance for decoding block-

averaged neural responses, and Tab. 3 summarizes the 

performance of decoding single-trial neural responses. 

     The MRA for block-averaged neural features were 
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Table 2: Per-noun MRA using block-averaged neural 

features at test. Boldface indicates significance at  

𝑝 < 0.01, italics indicates significance at 𝑝 < 0.05, and 

the highest performance per subject is underlined. 

 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 84.11 79.19 80.08 75.25 

S2 83.92 79.75 78.33 77.33 

S3 65.64 62.86 62.47 60.79 

S4 66.69 65.69 64.47 62.81 

S5 68.17 67.42 67.58 65.93 

S6 67.14 70.81 70.11 64.19 

S7 67.31 69.67 69.47 64.07 

S8 75.61 73.00 72.36 71.03 

S9 87.69 82.75 81.75 80.58 

 

Table 3: Per-noun MRA using single-trial neural 

features at test. Boldface indicates significance at  

𝑝 < 0.01, italics indicates significance at 𝑝 < 0.05, and 

the highest performance per subject is underlined. 
 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 74.80 71.07 71.17 64.05 

S2 75.70 72.65 71.81 70.82 

S3 57.55 56.31 55.77 54.99 

S4 59.15 57.86 57.13 56.80 

S5 60.13 60.62 60.58 57.75 

S6 59.13 61.74 61.59 57.15 

S7 65.07 66.19 65.38 60.16 

S8 64.15 62.28 61.81 61.18 

S9 80.63 76.65 75.56 73.09 

 

higher than single-trial MRA because averaging repeated 

trials mitigates noise. Performance varied within 5% 

MRA for most subjects. For all but one subject, S2, the 

Ridge Encoder/Decoder MRA was significant at  

𝑝 < 0.01. For most of the subjects (S1-S4, S8, and S9 for 

block-average and single trial decoding, S5 for block-

average decoding only) the Ridge Encoder also yielded 

the highest MRA and is consistent with performance in 

similar fMRI studies, e.g. [4]. For the other subjects (S5 

for single-trial decoding, S6 and S7 for both types of 

decoding), the Ridge Decoder was slightly better and re-

quantizing the attributes did not significantly affect 

performance. 

     The per-category MRA, for both block-averaged and 

single-trial neural features at test, is summarized in  

Tab. 4 and Tab. 5, respectively. All per-category MRAs 

were significant at 𝑝 < 0.01. For each subject, the 

highest per-category MRA tended to be no more than 5% 

less than the highest per-noun MRA. For three subjects, 

the Ridge Decoder performed best, and the Ridge and 

SVM Decoders with Re-Quantized Attributes were each 

best for one subject. 

     The RA of each noun was analyzed by comparing the 

results of the best-performing (S1) and worst-performing 

(S3) subjects. Those results are illustrated in Fig. 3 and 

Table 4: Per-category MRA using block-averaged neural 

features at test. Boldface indicates significance at 𝑝 <
0.01, italics indicates significance at 𝑝 < 0.05, and the 

highest performance per subject is underlined. 
 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 80.54 79.17 79.86 73.87 

S2 82.19 79.63 79.19 78.31 

S3 62.99 62.99 62.83 61.33 

S4 65.55 65.12 64.42 63.18 

S5 64.77 67.01 66.09 67.03 

S6 66.52 70.63 70.46 64.79 

S7 68.79 70.13 69.96 65.49 

S8 70.18 73.34 73.36 70.92 

S9 82.23 81.99 81.22 80.59 

 

Table 5: Per-category MRA using single-trial neural 

features at test. Boldface indicates significance at  

𝑝 < 0.01, italics indicates significance at 𝑝 < 0.05, and 

the highest performance per subject is underlined. 
 Ridge  

Encoder 

Ridge 

Decoder 

Ridge 

Decoder w/ 

Requant 

SVM 

Decoder w/ 

Requant 

S1 72.39 70.63 70.77 63.37 

S2 74.16 72.65 72.31 70.41 

S3 56.52 56.00 55.85 55.34 

S4 58.56 58.01 57.81 57.16 

S5 58.50 59.48 59.25 57.55 

S6 58.87 61.79 61.78 57.77 

S7 66.47 66.55 66.01 60.63 

S8 62.11 62.37 62.04 60.97 

S9 76.48 75.84 75.34 72.63 

 
Fig. 4, respectively. The nouns are listed in descending 

order of RA by the Ridge Encoder. Note that the 

performance of the three decoder models does not follow 

the same trend as the performance of the encoder model. 

In fact, some of the nouns that are decoded poorly by the 

Ridge Encoder (e.g., hand and foot for S1, fly and bed for 

S3) are actually decoded with much higher RA by the 

three decoder models.  

 

DISCUSSION 

 

For a majority of subjects, zero-shot stimulus prediction 

via an encoding model was superior to decoding models 

for ECoG signals recorded primarily from temporal and 

basal occipital regions. The difference in MRA between 

the encoding model and the best decoding model was 

within 5%. A possible explanation may be that the 

encoding model is more robust. The semantic attributes 

used to fit the encoding model are deterministic, while 

the ECoG features used to fit the decoding model are 

noisy. 

     The SVM Decoder was the worst performing model 

for most subjects and yielded less significant MRAs, 

suggesting that it makes several incorrect assumptions 

about the decoding problem. One might be the training
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Figure 3: Per-noun RA using block-averaged neural 

features for S1 (best performer). Nouns are listed in 

order of descending RA by the Ridge Encoder. 

set size. In [8], the SVM was applied to visual features 

extracted from a set of 75,489  images belonging to 57 

classes – a much larger data set than what was considered 

in this study.  It is possible that the smaller training set 

may be bolstered by use of a kernel function, but this 

introduces another tuning parameter which would need 

to be optimized for each attribute to avoid overfitting. 

     The SVM also assumes the training set is balanced 

between classes, so that maximizing the margin 

minimizes the classification error. However, of the 218 

attributes, only 50 had reasonable balance between the 

re-quantized classes 𝑠 = −1, 𝑠 = 0, and 𝑠 = 1. We 

attempted to soften this assumption by weighting the 

SVM cost parameter (𝑐) proportionally to the size of each 

class, but the effect was negligible. One could soften the 

balanced-class assumption further by optimizing 𝑐 for 

each attribute, but that was not explored in this study. 
      Several aspects of this work suggest that some form 

of a semantic BCI may be viable. First, we demonstrated 

that the semantic zero-shot learning approach to semantic  

decoding can be fruitfully applied to ECoG using 

encoding or decoding models. As pointed out in [5], “It 

is intractable to collect neural training images for every 

possible word in English, so to build a practical neural 

decoder we must have a way to extrapolate to 

recognizing words beyond those in the training set.” Our 

study only focused on the ability to classify among 60 

zero-shot nouns, and the problem will become more 

difficult as the scale increases to more classes, especially 

when the attribute-to-noun mapping is ambiguous or 

completely unknown. In such cases, simply outputting 

the most highly-weighted semantic attributes may still be  

 
Figure 4: Per-noun RA using block-averaged neural 

features for S3 (worst performer). Nouns are listed in 

order of descending RA by the Ridge Encoder. 

useful for communicating a novel word or concept.  

     One issue that would need to be addressed is 

collection of adequate training data, which can be time 

consuming and costly. But efforts in fMRI demonstrating 

how voxel-wise models can be built from large datasets 

of activity elicited by natural stimuli, like movies and 

stories, suggests these might be more economical 

strategies for collecting training data [17, 18]. 

Furthermore, efforts in large-scale pattern classification 

using semantic hierarchies to trade specificity for 

accuracy suggest a potential avenue towards robust 

classification of a wide variety of novel classes [19].  

    Another obstacle that must be overcome in developing 

a practical semantic BCI is consistency in real-time 

decoding performance. While the highest MRAs were 

achieved when averaging across multiple trials, there was 

a modest drop (< 10%) in performance when decoding 

nouns or categories from single trials. In addition, our 

encoding model did not account for temporal variability 

in semantic processing, as our features were extracted 

from fixed time windows post stimulus onset. However, 

the superior performance observed for the encoding 

model implies that accurate real-time decoding may be 

possible by cross-correlating a recorded neural signal 

against a pre-computed lookup table of signals predicted 

from various combinations of attributes. 

 

CONCLUSION 

 

     Four approaches to zero-shot stimulus prediction were 

compared for predicting recognized objects from ECoG 

signals evoked during a picture-naming task. All four 

approaches attempt to learn a mapping between neural 
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features and semantic attributes, but differ in what they 

consider to be the direction of the mapping and in how 

the mapping is learned from training data. Performance 

was relatively consistent from subject to subject between 

the four approaches, though in most cases the Ridge 

Regression Encoding model yielded the best 

performance. These results represent an initial step 

toward realizing semantic BCI, and suggest that the next 

generation of neuroimaging technologies paired with the 

algorithms demonstrated here could help new BCI 

applications to come to fruition.  
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