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ABSTRACT: One of the main goals of modern brain-

computer interfaces (BCIs) is that they should be simple 

and intuitive to use. Long-lasting training and learning 

periods are demotivating for the intended user. 

Therefore, the training should be reduced to a 

minimum. This particularly applies to P300-based BCIs, 

which are known as highly accurate and robust.  

In this paper, we evaluated an approach that uses a 

generic classifier for P300 spelling instead of the usual 

personalized classifier, which  users have to train before 

they can use the P300-based BCI. The generic classifier 

was calculated using the training data of 18 persons and 

evaluated with the data of 7 persons. Results were 

compared to the results achieved with personalized 

classifiers. We found that the generic classifier achieved 

comparable results regarding the effectiveness and 

efficiency. Therefore, our approach seems to be an 

appropriate, zero training alternative to personalized 

classifiers. 

 

INTRODUCTION 

 

The electroencephalogram (EEG) can be used to 

establish a noninvasive communication or control 

channel between the human brain and a computer, a so-

called brain-computer interface (BCI) [1].  

A very prominent BCI application is the P300 speller 

[2]. This type of BCI is mainly based on the positive 

component of an event-related potential (ERP) that 

appears approximately 300ms after a rare stimulus 

occurred among frequently occurring stimuli.  

P300-based BCI provide high accuracies in combination 

with low illiteracy rates. Therefore, they are often used 

for communication and control systems. Various 

applications (e.g., speller [3], Brain Painting [4], music 

composer [5], and web browser [6]) are implemented. 

Prior using such an application, training of a classifier is 

required. Normally, the training is performed by copy-

spelling 5-10 predefined symbols and takes between 5 

and 10 minutes. However, the question is, whether this 

training is really necessary. 

Different approaches are proposed to avoid or reduce 

the training of the classifier. Kindermans et al. 

introduced a probabilistic zero training framework for 

ERPs [7]. They report high accuracies after a certain 

number of sequences. A sequence is defined as all rows 

and columns of the P300 matrix flashed once. However, 

the accuracy is still poor, when the number of sequences 

is limited to 3 or 4. 

Lu et al. introduced a subject-independent model, 

learned offline from EEG of a pool of subjects, to 

capture common P300 characteristics [8]. They 

compared the learned model with a subject-specific 

classification model and a cross-subject model. Results 

indicate that this approach delivers high classification 

accuracies (on average approx. 84%) in combination 

with zero training. The number of sequences was 

defined with ten. No statement was given regarding the 

accuracies achieved with a lower number of sequences. 

 

We asked whether the measured ERP during a P300 

spelling task is stable enough to use a generic classifier. 

Consequently, the aim of this paper is to evaluate the 

power of a generic classifier (GC). The GC was 

calculated with the training data of eighteen P300 BCI 

users. The shrinkage regularized linear discriminant 

analysis (sLDA) was used for classification. Blankertz 

et al. suggested to use this method as a new standard for 

classifying ERPs [9].  The GC was evaluated with the 

data of seven users regarding the efficiency, in terms of 

highlighting sequences that are needed to reach certain 

accuracy. Effectiveness was investigated by 

recalculating the results of a prior study [10] with the 

GC: seven users had to spell four words and to control a 

multimedia player and a web browser with the P300 

BCI. The accuracies of the online measurements and the 

offline simulations were compared. 

 
MATERALS AND METHODS 

 
     Data acquisition:  

The EEG data were acquired with a tap water-based 

biosignal amplifier (Mobita, TMSi, Oldenzaal, the 

Netherlands). Data were taken from six scalp electrodes 

(Fz, Cz, Pz, PO7, PO8, Oz) placed according to the 

extended international 10-20 system. A sampling rate of 

250 Hz was used. The signal processing was performed 

in Matlab (MathWorks, Natick, USA). The EEG signal 

was filtered between 0.1 and 60 Hz with a 4
th

 order 

Butterworth band pass filter. These filter settings were 

chosen to compare the results of this evaluation to the 

results of a prior study [10]. 
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     Generic training data generation: 

Eighteen healthy volunteers (5 female, mean age: 29.39, 

SD:12.71 years) performed a standard P300 classifier 

training procedure: the participants were seated in a 

comfortable chair approximately 60 cm away from a 

computer screen showing the P300 stimulation matrix, 

see Fig. 1. The training was performed with fifteen 

highlighting flashes per row and column. Each 

highlighting had a duration of 50 ms and the time 

between flashes was set to 125 ms. The task of the 

participants was to copy-spell five characters out of a 6 

x 6 matrix filled with letters and numbers. The 

characters were ''H3P5FU'', which were equally 

distributed over the matrix. Elements of the matrix were 

highlighted with famous faces [11].  

 

     Test data generation: 

Data from the study presented in [10] were used as test 

data. Seven  participants (1 female, mean age 25.29, 

SD:2.75) performed a training, hereinafter called 

personal training, two copy-spelling tasks, a multimedia 

player, and a web browser control task with the same 

data acquisition system, which we used to gather the 

training data. None of the seven participants 

participated in the generic training data generation 

measurements and the data were acquired at least half a 

year later than the training data. In [10] the personal 

training setup and signal processing were the same as 

described for the generic training data generation, 

except the word ‘’BRAIN’’ was spelled. 

The copy-spelling tasks consisted of spelling 4 words 

with 5 letters each. The participants were advised to 

spell the German words ‘’SONNE’’ (engl. ‘’sun’’), 

‘’BLUME’’ (engl. ‘’flower‘‘), ‘’TRAUM‘‘ (engl. 

‘’dream’’), and ‘’KRAFT’’ (engl. ‘’force’’). Between 

the second and the third word additional tasks, see 

below, were performed. The users were instructed not to 

correct wrongly spelled letters. The matrix was the same 

for training and copy-spelling.  

The multimedia player task was to control a multimedia 

player to look at pictures. The minimal number of 

selections was 10 and the maximum number was 15. 

The participants were advised to correct 

misclassifications. The web browser task was to look 

for ‘’BCI’’ in Google and to select and read the 

Wikipedia webpage about BCI. The minimal number of 

selections was 9 and the maximum number was 18. The 

participants were advised to correct misclassifications. 

The P300 matrices for the multimedia player and the 

web browser task were different, cf. [6]. 

 

     Generic classifier creation: 

The generic training data of the eighteen volunteers 

were divided into epochs of approximately 800 ms (204 

samples) after stimulus onset. The epochs were 

averaged per channel and row or column. Afterwards, 

the data were downsampled by the factor of 12 to 

reduce the number of features per channel. The data of 

each channel were concatenated to receive one feature 

vector per row and column. Thus, ten target feature 

vectors (2 vectors * 5 characters) and fifty non-target 

feature vectors (10 vectors * 5 characters) were 

available per volunteer.  

In sum, 180 target feature vectors and 900 non-target 

feature vectors were used to train a generic sLDA 

classifier. 

 

     Generic classifier evaluation:  

The GC was evaluated with the test data described 

before. We compared the accuracies calculated with the 

personalized classifier (PC), i.e., the classifier trained 

with data from the personal training, and the GC, 

respectively. PC accuracies for every flashing sequence 

were calculated per participant by a leave-one-letter-out 

cross validation of the personal training data. The same 

personal training data were classified with the GC. 

Accuracies per sequence and participant were calculated 

to evaluate the efficiency of the GC. The efficiency is 

high when a small number of sequences suffice to 

achieve high accuracy, i.e. above 70%. This is the 

proposed minimal level of sufficient accuracy for BCIs, 

cf. [12-15]. 

Additionally, we compared the online accuracies of the 

different tasks with simulated accuracies calculated with 

the GC to investigate the effectiveness of the GC. 

 

RESULTS 

 

The spatial GC weight distribution is shown in Fig. 2. 

To highlight only important weights, absolute values 

below 0.2 are not shown. 

Fig. 3 shows the average accuracies and confidence 

intervals of the GC and the PC using the training data of 

[10]. The confidence intervals show no significant 

differences. Interestingly, the GC on average showed 

better classification accuracies after sequence 13: the 

accuracies of the GC stayed stable at 100% or 2.9% 

above the PC accuracies. The proposed minimal level of  

Figure 1 – P300 stimulation matrix with letters and 

numbers. Rows and columns were highlighted with the 

face of Albert Einstein. 
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Figure 3 – Average (N=7) accuracies achieved with a certain number of sequences. The accuracies for the personal 

classifier were calculated with a leave-one-letter-out cross validation. Gray and green areas indicate the confidence 

intervals (CI) for proportions. The red dashed line indicates the minimal level of sufficient accuracy. 

Figure 2 – The graphs show the averaged EEG data of 18 participants after targets stimulations (blue solid lines) and 

non-target stimulations (red dashed lines). Additionally, the weights of the GC are represented by different gray tone 

areas. Due to the downsampling of the signals, weights are shown as areas. 
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Table 1 – Offline (simulated) accuracies of the copy-spelling tasks using the generic classifier (GC) and the 

personalized classifier (PC). Different results are marked in bold. Sp1, Sp2…Spelling run 1, 2; MMP…Multimedia 

player; WB…Web browser. 
 

Part. Sequ. 
GC accuracies in %  PC accuracies in % 

Sp1 MMP WB Sp2 Av. SEM  Sp1 MMP WB Sp2 Av. SEM 

1 8 100 100 81.8 100 95.5 10.4  100 100 90.9 90 95.2 10.7 

2 8 100 90 100 80 92.5 13.2  100 100 90.9 100 97.7 7.5 

3 9 100 100 100 100 100 0.0  100 100 100 100 100 0.0 

4 10 80 91.7 88.9 80 83.9 18.4  100 91.7 100 90 95.4 10.4 

5 11 70 100 66.7 80 79.2 20.3  80 64.3 73.3 70 71.9 22.5 

6 13 100 100 100 100 100 0,0  90 100 90 100 95.0 10.9 

7 14 100 100 100 100 100 0.0  100 100 100 90 97.5 7.8 

 

sufficient accuracy (70%) was reached by the GC on 

average after 2 (71.4%) and by the PC after 3 (77.1%) 

sequences. However, the lower limits of the confidence 

intervals exceeded this level after 5 sequences (PC) and 

7 sequences (GC), respectively, see Fig. 3. 
 

The GC evaluation showed comparable results between 

the PC and GC, see Tab. 1. Differences are marked in 

bold. On average the GC outperformed the PC four 

times (range 0.3 – 7.3%) and the PC outperformed the 

GC two times (5.2% and 11.5%, respectively).  

The average accuracies are far above the level of 

sufficient accuracy (70%). 

 

DISCUSSION AND CONCLUSION 

 

We showed that it is possible to use a P300-based BCI 

with zero training and high accuracies using a generic 

classifier. The results indicate that in terms of efficiency 

and effectiveness both classifiers are about equal. 

Moreover, the simulated GC spelling results partly 

outperformed the PC results.  

The comparison of the accuracies for a defined number 

of sequences, see Fig. 3, shows that in case of a small 

number (between 1 and 4) no differences were 

detectable. For a medium number (between 5 and 10), 

the PC achieved better results than the GC. Finally for a 

large number (above 12), the GC outperformed the PC. 

However, the confidence intervals overlap most of the 

time and to make a more accurate statement more data 

must be taken into account. 

During the spelling and control tasks the participants 

used a defined number of flashing sequences, see Tab. 1 

second column. Comparing the averaged results 

indicates that participants (P2, P4) who used a medium 

number of sequences (between 8 and 10) would achieve 

better results with the PC. On the other hand, 

participants (P5, P6, and P7) who used a large number 

of sequences (above 10) would achieve higher 

accuracies with the GC.  

 

One limitation of this comparison is that the presented 

online results were achieved with an SWLDA classifier 

and the simulated results were achieved with an sLDA 

classifier. Another limitation is that the GC was 

evaluated with data obtained by the same setup 

regarding the biosignal acquisition system, the signal 

processing etc. as the training data. It might be 

reasonably assumed that using a different biosignal 

acquisition system requires an adapted generic 

classifier. 

 

Lu et al. also reported high P300 spelling accuracies 

using a generic classifier [8]. However, they performed 

two similar sessions with ten participants spelling the 

same 41 characters twice and performed a two-fold 

cross validation. No information was given regarding 

the time between the sessions and they did not evaluate 

the efficiency of their subject-independent model. We 

trained the GC with the data from different users and 

tasks than we evaluated it. In addition, we used different 

matrix sizes, cf. [6]. Finally, we used only six electrodes 

instead of eight in [8]. 

 

The next step would be to test the GC online with a 

representative number of people. In addition, it is 

conceivable to adapt the GC to a person by recalculating 

the GC with data of the actual user. Our results indicate 

that it should be sufficient to use a high number of 

sequences at the beginning to achieve almost 100% 

accuracy with the GC. This data can be used to 

recalculate the GC and adapt it to a person. 

Subsequently, the number of stimulation sequences can 

be reduced afterwards. 
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