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ABSTRACT: We present a general approach to the 

development of an unobtrusive and fast passive brain-

computer interface that could be deeply integrated with 

gaze based control for fluent translation of intentions 

into actions, as well as the results of a pilot test of its 

online version in 9 healthy participants. The new hybrid 

Eye-Brain-Computer Interface (EBCI) utilizes an 

electroencephalogram component presumably related to 

the expectation of feedback from the gaze controlled 

interface. Online operation of the EBCI was made 

possible using Resonance, a new platform for fast 

prototyping of BCIs, enabling fast synchronized 

processing of multimodal signals from varying 

hardware with scripts written in R. In the online mode, 

EBCI provided the result of 19 channel EEG 

classification almost immediately when gaze dwell on a 

screen object (a colored “ball”) exceeded 500 ms time 

threshold. For the first time, non-random online EBCI 

classifier performance was demonstrated. 

 

INTRODUCTION 

 
     Selection with gaze – Selection of an object among 

several different objects on a screen is one of the most 

fundamental user’s operation in interaction with 

computers. This operation typically involves a gaze 

dwell on the same object, so automatic detection of such 

dwells with the eye tracking technology can be used to 

predict a user’s command. Based on this approach, 

various systems for assisting paralyzed people with 

preserved gaze control and for helping healthy users in 

certain situations have been developed [1]. While these 

systems are serious competitors of the non-invasive 

brain-computer interfaces (BCIs), they all suffer from 

their inherent limitation known as the Midas touch 

problem [2]: a system that respond to a certain 

intentional gaze behavior, such as an intentional gaze 

dwell on a link to a web page, would respond in many 

cases to unintentional gaze behaviors, i.e. spontaneous 

gaze dwells used for vision or related to mind 

wandering. While this problem is not critical in gaze 

typing, it severely hinders the use of gaze based input in 

many other application areas. Approaches developed for 

solving the Midas touch problems (e.g., using long 

dwell time threshold or additional gaze gestures for 

command confirmation) requires additional efforts from 

the user [1, 3].  

     Selection with gaze plus a passive BCI – A radical 

solution to the Midas touch problem could be the use of 

a BCI that would produce “mouse clicks” only when 

they are required by the user: “point with your eye and 

click with your mind!”, proposed as early as in 1996 

[4]. Unfortunately, typical noninvasive BCI 

technologies, such as mental imagery based BCIs, are 

rather slow for such a task (e.g., [5]); moreover, they are 

based on execution of additional mental tasks that 

require attentional resources. A promising alternative is 

the use of passive BCI approach [6], here, the use of a 

BCI that make a click only when the gaze fixation is 

accompanied by an EEG pattern specific to the intention 

to act at the fixated location. Early attempts to 

implement this approach [7, 8] made use of rather long 

fixations (1-2 s; this is still a relatively inconvenient 

duration); more importantly, experimental paradigms in 

these studies involved elements of visual search (see the 

next paragraph), where strong P300 could arise and 

enable good classification, while the approach could fail 

if targets were not assigned in advance. 

     Communicating intention vs. communicating 

relevance – The gaze plus passive BCI combination is 

currently actively explored in the explicit visual search 

paradigm (e.g., [9, 10, 11]) and its applications for 

estimation of the implicit information’s relevance to the 

user are also developed [12, 13]. Similarly to these 

tasks, communicating intention involves informing a 

computer about what is relevant to the user in the 
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context of his or her current task. Both communicating 

intention and visual search tasks may involve single-

trial analysis and immediate triggering of the interface. 

Both communicating intention and communicating 

implicit relevance use primarily individual information. 

Specific to the communicating intention is that the user 

can form his or her intention freely at any time moment, 

and typically can also refrain from forming an intention. 

Communicating intention with a BCI combined with 

gaze fixations can be done only if sufficient accuracy is 

achieved already with single-trial analysis of short EEG 

segments, because immediate response of the interface 

is needed and because group average (which can be 

relevant in the visual search tasks) is typically not 

possible. While communicating a user’s intention is the 

most usual task for human-computer interfaces, 

including BCIs, specific for gaze plus passive BCI 

combination (if it would be successfully applied for this 

task) could be that it would turn intentions into 

computer actions in the most effortless way. 

     An EEG marker for the new hybrid Eye-Brain-

Computer Interface (EBCI) – In our previous study [14] 

we recorded and compared the electroencephalogram 

(EEG) during gaze dwells intentionally used for control 

and during similar spontaneous gaze dwells (all 500 ms 

duration or longer). In the gaze dwells used for control, 

but not in the spontaneous ones, a slowly progressing 

negative wave was found in the occipitotemporal area, 

likely related to the expectation of the interface 

feedback. Feature extraction was oriented on using this 

wave as their main source. It was possible to classify the 

“controlling” vs. spontaneous dwells using features 

from 13 EEG channels and only 300 ms length epochs 

[14]. 

     The problem of fast prototyping of multimodal 

interfaces –  The new interface, the EBCI, should be 

able to classify the EEG synchronized with gaze events 

in online mode and provide a response as soon as 

possible when the dwell time threshold is exceeded. 

Creating such an interface from scratch would require a 

vast amount of programming work, because many 

computational and user interface configurations may 

need to be tested before finding optimal ones, while 

each of these configurations should be adapted for 

sufficiently synchronized operation together with quite 

different sources of data streams, the interface and the 

experiment control tools. A platform specifically 

oriented on developing multimodal interfaces could be a 

solution, especially if it could support high-level 

programming languages for more flexible, fast and 

inexpensive designing of highly varying configurations 

needed at the early stage of the development of the new 

types of human-machine interfaces. A number of open 

source software platforms for BCI prototyping have 

been developed ([15, 16, 17, 18, 19]; see also [20, 21] 

for reviews); however, as follows from the publications, 

online fusion of signals from different sources was 

either not planned by their developers or was not their 

primary concern. 

     The Resonance platform – The Resonance platform 

is developed (by Y.O.N.) specifically for supporting the 

development of the interfaces that need to process 

online data streams from different sources. The platform 

takes care of data and event transmissions, 

synchronization and recording, and running 

classification algorithms. An R package (also named 

Resonance; freely available at https://github.com/tz-

lom/Resonance-Rproj ; [22]) allows not only to process 

data in online mode but also to apply efficiently the 

same R code offline to the recorded data for a precise 

reconstruction of the online processing to debug and 

verify the algorithms. For programming the visual part 

of the interface, its “behavior” in response to detected 

user’s intentions and organization of an experiment, 

integration with QML is provided. This platform (in its 

earlier version) was used to create a gaze controlled 

game EyeLines for capturing EEG synchronized with 

gaze interaction events in [14]. Recently, it was used for 

the online EBCI tests using the same game [23].  

     The problem of the access to a ground truth in 

relation to EBCIs – In our first attempt to test the EBCI 

online [23] we found it especially difficult to obtain the 

ground truth when the user is given freedom in defining 

the ways to solve a task. Similar problems may appear 

in free operation using any kind of interface, yet their 

severity can be specific to EBCIs because both the gaze 

and brain components may contribute to it: gaze dwell 

may occur out of conscious control at a location that is 

already studied unconsciously as a candidate for making 

a click on it, and similar patterns can be expected from 

brain’s activity that accompany preparation to the 

action. Indeed, our participants told us that EBCI false 

alarms (the events they were not going to elicit) often 

looked as meaningful “hints”, and that in such cases it 

was tempting to them not to report these events as false 

alarms. In addition, in this preliminary study we asked 

to press a key for reporting a false alarm, and this 

instruction also could lead to the refrain from reporting 

because of the need to switch to a manual task from a 

fully non-manual one (this problem can be also 

observed in pure BCI and gaze control studies). 

Therefore, we could not evaluate the online 

performance of the EBCI reliably. 

     The aim of the current study was to test several 

changes in our previously developed protocol for EBCI 

performance evaluation: modified instruction (focus on 

the identity of the interface response with intention 

instead of its “correctness”) and reporting tool (use of 

the EBCI instead of the keyboard for reporting 

deviations from intentions) in the free operation test; 

two new tests with fixed tasks for separate estimation of 

sensitivity and specificity (see details below). We also 

planned to get the preliminary EBCI performance 

estimations if the changes would turn to be successful. 

 
METHODS 

 
     Participants – Nine healthy volunteers (four female; 

age 18 to 50, median 24) took part in the study after 

signing an informed consent.  
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     Apparatus and software were generally the same as 

in our previous work [23]. Resonance platform (see 

above) and specific modules controlled all aspects of 

the experiment. The game module (written in QML) 

implemented game logic and presented the game visual 

interface on a computer screen. It communicated with 

EyeLink 1000 eye tracker (SR Research, Canada) to 

control its settings and acquire gaze data. Eye tracking 

data (at 500 Hz rate) were converted to dwell events 

with a spatial (dispersion-based) criterion: the events 

were generated when gaze stayed in a 2° × 2° square 

region for 500 ms (the dwell time threshold), and 

medians of X and Y coordinates during the dwell were 

taken as its position. When the game module received 

such event, it sent a message to the Resonance data 

processing module which ran an R script that performed 

synchronization of the EEG and gaze dwell events, 

feature extraction and classification. If classification 

result was positive, a “click” event was sent back to the 

game, typically in tens of milliseconds after exceeding 

the dwell time threshold. The EEG data (also at 500 Hz 

sampling rate) were captured by actiCHamp EEG 

amplifier with actiCAP active electrodes (Brain 

Products, Germany). Its synchronization with the eye 

tracking data was based on synchronization pulses sent 

from the eye tracker to the EEG amplifier trigger port at 

the beginning of each trial.  

     The gaze controlled game – As in our previous work 

[23] EyeLines, the gaze controlled version of the 

computer game Lines (also known as Color Lines), was 

used both for the EBCI classifier training and its online 

testing. In EyeLines, each move consists of at least two 

gaze “clicks”: the participant had to select one of the 

colored balls presented in the game board with a gaze 

dwell on it (the selected ball was indicated by a frame 

around it), and then make another dwell to indicate the 

location where it should be moved. The game board 

subtended 18 × 18° on the monitor screen (Fig. 1). 

When 4 balls of the same color formed a line, it 

disappeared, and the player get a score. After each 

move, three new balls of randomly selected colors 

appeared on the board at random positions (see [14] for 

details).  

 

 
 

Figure 1. EyeLines game board.  

 

     Classifier training – EEG data for classifier training 

were collected, for each participant, in four games that 

were played with 500 ms (or longer) gaze dwells (each 

game lasted 5 min). An additional element (shown left 

to the 7 × 7 square board in Fig. 1) was used in the 

game interface at this stage of experiment, as in [14, 

23]: participants had to switch on the gaze based control 

prior to each move by fixating a special “switch-on 

button” (a location outside the game board). Dwells not 

preceded by switching control on made no effect in the 

game and were considered as spontaneous. 271 to 369 

EEG epochs related to controlling gaze fixations (on 

balls and on new locations for them) were collected. In 

[14, 23], the “switch-on button” disappeared from time 

to time, to provoke more spontaneous gaze dwells. In 

the current study, we used EEG related to spontaneous 

dwells only to adjust the classifier threshold and to test 

the classifier. Thus, less such data were needed, and the 

“switch-on button” was made available to a participant 

during all the game. It was found in our previous study 

[14] that averaged EEG related to spontaneous fixations 

has very low amplitude. Therefore, we now decided to 

use EEG epochs sampled from random time instances to 

imitate “spontaneous” data for classifier training. The 

number of such epochs was equal to the number of 

control-related epochs for each participant. 

     To obtain 152 features, EEG amplitudes from 19 

channels (Fz, F3, F4, Cz, C3, C4, Pz, P1, P2, P3, P4, 

POz, PO3, PO4, PO7, PO8, Oz, O1, O2) were averaged 

in 50 ms windows started at 8 time instances (+300, 

+320, ... +440 ms relative to dwell start), separately per 

channel and window. +200..+300 ms interval was used 

for baseline correction. No high-pass filter was used. It 

was shown earlier that such a procedure ensures that the 

features are not affected by EOG contamination [14]. 

Shrinkage LDA from Fieldtrip toolbox [24] 

(http://www.ru.nl/neuroimaging/fieldtrip) was used to 

train the classifier. Threshold was adjusted to obtain 

specificity of about 0.90 on a validation subset.  

     Game playing with online EBCI – After classifier 

training, participants played another four EyeLines 

games, now with a hybrid EBCI. Now, control was 

always switched on, and 500 ms gaze dwells made 

effects if confirmed by the EEG classifier. To 

compensate for the EEG classifier’s misses, additional 

threshold was used (following a suggestion from [8]): if 

gaze dwell time exceeded this threshold (1000 ms), 

“click” was made in any case, without applying the 

classifier to the EEG. In the first game using the online 

EBCI, the rate of its positive responses was computed 

and used in two of the remaining three games for a 

“random classifier” that provided responses with this 

rate irrespective the current EEG data.  

     The participants’ task in the games was almost the 

same in the classifier training stage and in the online 

EBCI stage of the experiment: they were asked just to 

play the game with gaze dwells only. They were told 

that their EEG will help to recognize their intention to 

click in the online EBCI stage, so there will be no 

“switch-on button”, but sometimes their intentions will 
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be not recognized correctly. They were also told that it 

is important to report each case when they notice that 

the selected ball is not exactly that one that they decided 

to select, and even cases when a “good” ball was 

selected when they were about to make a decision to 

“click” on it, but before they actually made a clear 

decision. Unlike in our previous study [23], the 

participants did not need to switch to manual tools for 

reporting such cases: instead, they had to deselect the 

ball by continuing looking on it. However, they were 

not aware of the difference between the real and random 

classifier conditions. 

     Online tests for sensitivity and specificity were run in 

the end of the experiment to obtain online classification 

data with well known ground truth. For these tests, a 5 × 

5 board was used instead of the 7 × 7 used in the games. 

First, balls with random colors appeared one by one at 

random locations, and the participants had to set them 

into four lines from left to right, top to bottom (Fig. 2). 

This test was used to estimate online EBCI sensitivity. 

Then, the participant was asked to remember the 

locations of the balls with three colors most frequently 

presented at the moment. The remembering task lasted 

for two minutes, and then the participant had to indicate 

the ball locations on a paper sheet. The EBCI was on 

but not used intentionally, and participants were told to 

ignore ball selections that sometimes happened. This 

test was used to estimate online EBCI specificity. Two 

pairs of the tests, one with real and one for random 

classifier (in random order), were used for four 

participants, and a double number of them was used for 

another five. 

 
 

Figure 2. The board being filled with balls during a test 

for estimating online EBCI sensitivity. 

 

     EBCI classifier performance was estimated for ball 

selection in the first four games where no online EEG 

classification was used (Offline Performance in Games), 

for next four games played with online EBCI 

(separately for real and random classifiers, Online 

Performance in Games), and for the final tests (also 

separately for real and random classifiers, Online 

Performance in Tests).  

     Offline Performance in Games was estimated using 

five-fold cross-validation (the test subset did not overlap 

with the validation subset for threshold estimation). We 

computed ROC AUC, sensitivity, specificity and 

Youden's J index (J = sensitivity + specificity – 1; 

similarly to ROC AUC, it can be helpful when 

specificity gets higher on expense of sensitivity, and 

vice versa. While it is less reliable estimate than ROC 

AUC, its advantage is that it could be computed both for 

offline and online classifier performance.) 

     Online Performance in Games was quantified as 

sensitivity, specificity and J values, assuming the 

following meanings of the observed events: true 

positives for the gaze “clicks” with the short (500 ms) 

dwell time threshold (i.e., confirmed by the EEG 

classifier) not followed by de-selection; true negatives 

for dwells with duration between 500 ms and 1000 ms 

not confirmed by the EEG classifier; false positives for 

gaze “clicks” with the short (500 ms) dwell time 

threshold (i.e., confirmed by the EEG classifier) 

followed by de-selection; false negatives for gaze 

“clicks” with the long (1000 ms) dwell time threshold 

(spontaneous dwells of this duration are rare in playing 

EyeLines [14]).  

     Online Performance in Tests was also quantified as 

sensitivity, specificity and J values, but sensitivity and 

specificity were computed separately for the two tests 

(see above their description). 

 

RESULTS 

 

     EBCI offline performance appeared to improve 

compared to our previous results: ROC AUC was 

0.74 ± 0.04 (M ± SD) for classification of dwells on 

balls (Tab. 1, second column), while, for example, in 

[14] it was 0.69 ± 0.09 for dwells on “switch-on 

button”, where more prominent EEG potentials were 

observed comparing to dwells on balls. Among the 

changes in methodology that account for this 

improvement could be, as our additional pilot analysis 

suggested, the use of randomly sampled EEG epochs 

instead of spontaneous fixation-related data as the non-

target class in classifier training.  

     Estimation of the EBCI online performance in games 

yielded, unfortunately, inconsistent results (not 

presented in Tab. 1): the random classifier demonstrated 

apparently non-random behavior. It seemed that the 

participants often did not reported the false positives for 

at least two reasons: because of not noticing the 

selection (especially if it appeared just before a saccade 

to a different location) or because of difficulty to 

differentiate a clearly formed decision from a decision 

that was yet being prepared during the dwell.  

     EBCI online performance in tests appeared more 

sensible (see Real and Rand columns in Tab. 1). 

Youden's J index for the random classifier did not differ 

from zero significantly (p = 0.15, according to 

Wilcoxon signed rank test), while for the real classifier 

it differed from zero (p = 0.016) and from random 

classifier J values (Z = 2.52, p = 0.012). Specificity was 

also significantly higher for the real classifier 

comparing to the random one (Z = 2.10, p = 0.036). 

Difference between real and random classifier for 

sensitivity was not significant (Z = 1.52, p = 0.13), but it 

was also in favor for the real classifier. Thus, although 

tests used to measure sensitivity and specificity were 

performed under different conditions, it appeared to be 
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very likely that the significant difference in Youden's J 

represented non-random online performance of the 

EBCI. Nevertheless, online performance in tests was 

lower than offline performance (compare Offline and 

Real columns in Tab. 1). Significant decrease in online 

mode was observed, comparing to offline results, for 

Youden's J (Z = 2.55, p = 0.01) and for sensitivity (Z = 

2.55, p = 0.01), while for specificity it decreased 

nonsignificantly (Z = 0.18, p = 0.86).  

 
Table 1: Performance of the classifier: offline results for games and online results for tests 

 AUC Sensitivity Specificity Youden’s J 

Sbj Offline Offline Real Rand Offline Real Rand Offline Real Rand 

29 0.80 0.50 0.10 0.10 0.86 1.00 0.90 0.36 0.10 0.00 

30 0.74 0.39 0.25 0.09 0.88 0.87 0.90 0.27 0.12 -0.01 

32 0.74 0.42 0.15 0.08 0.88 0.85 0.86 0.30 0.00 -0.06 

33 0.67 0.22 0.11 0.00 0.90 0.94 0.84 0.12 0.05 -0.16 

34 0.79 0.37 0.05 0.05 0.91 0.92 0.92 0.28 -0.03 -0.03 

35 0.74 0.29 0.21 0.25 0.89 1.00 0.78 0.18 0.21 0.03 

36 0.75 0.36 0.30 0.23 0.87 0.80 0.73 0.23 0.10 -0.04 

37 0.69 0.29 0.17 0.14 0.89 0.88 0.84 0.18 0.06 -0.02 

38 0.70 0.22 0.24 0.29 0.96 0.87 0.74 0.18 0.11 0.02 

M 0.74 0.34 0.18 0.14 0.89 0.90 0.83 0.23 0.08 -0.03 

SD 0.04 0.09 0.08 0.10 0.03 0.07 0.07 0.08 0.07 0.06 

 

DISCUSSION 

 

This pilot study, for the first time, provided substantial 

evidence indicating that the Eye-Brain-Computer 

Interface based on the user’s expectation of gaze 

controlled interface feedback may function in online 

mode. However, there were several issues in this study 

that should be resolved in future work: 

      (1) Online performance in this study was lower than 

in offline modeling. This could be related to unfavorable 

testing conditions. In the previous study [14] we found 

that the EEG marker for the gaze dwell used to send a 

command degrades along controlling gaze dwells that 

closely followed each other. Although it was not fully 

clear whether this was indeed a result of close 

positioning of the controlling dwells in time, the same 

effect, if it exists, could affect the marker in many gaze 

dwells intentionally used for control in the EyeLines 

game, because moves are often made rather 

automatically, without much thinking. In the sensitivity 

test, the required actions could be also too automatic for 

developing a strong expectation-related activity in the 

EEG. 

     (2) Sensitivity and specificity were calculated from 

data obtained under different conditions. This could bias 

Youden’s J metric if these conditions affected classifier 

sensitivity and specificity differently. 

     (3) The EEG components that are related to the 

completion of a visual search task rather than to freely 

formed intention/expectation could contaminate the 

online test results. The participants had to locate each 

new ball in the test for sensitivity and to locate the balls 

related to the same color in the task of specificity, so the 

components related to finding a target, such as the P300 

wave, could arise each time the fixation on these balls 

started. If the classifier was sensitive to these 

components, the results of these tests would be biased 

toward higher sensitivity and lower specificity 

compared to what should be observed under the use of 

intention-related components only; if the effect on 

sensitivity prevailed, Youden’s J would be inflated. The 

time courses for the intentional dwells in EyeLines on 

which the classifier was trained (both them and 

topographies were similar to what was observed with 

our earlier studies with EyeLines, see Fig. 4 and Fig. 7 

in [14]) were different from what is specific to the P300, 

however, this could not guarantee that classifier was 

completely insensitive to the P300 in tests.  

      All these issues imply that better methodology must 

be designed for EBCI testing. Issue (3) is especially 

important to resolve to finally prove if the expectation 

based EBCI is selectively sensitive to the user’s 

intention. For assessing prospects for practical 

application, other challenging factors should be 

included into tests, such as saliency of relevant and 

irrelevant objects [25]. It is also evident that EBCI 

performance improvement is strongly needed. As 

suggested by our preliminary results, this may become 

possible with finding more adequate feature sets [26] 

and classifiers [14] for the EBCI. 

 

If its further development will be successful, the 

expectation based EBCI could practically implement the 

idea of Grey Walter who proposed, as early as in 1960s, 

to use the expectation-related activity in the EEG for 

“the direct cerebral control of machines”, “by-passing 

the operant effector system” [27]. 

 

ACKNOWLEDGEMENTS 

 

This work was supported by the Russian Science 

Foundation, grant 14-28-00234. 
 

REFERENCES 

 

[1] Majaranta P, Bulling A. Eye tracking and eye-based 

human–computer interaction. In: Fairclough SH, 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-66



Gilleade K (Ed.). Advances in Physiological 

Computing: Human–Computer Interaction Series. 

Springer, London 2014, pp. 39–65 

[2] Jacob RJ. The use of eye movements in human-

computer interaction techniques: what you look at is 

what you get. ACM Trans. Inf. Syst. 1991;9: 152-

169 

[3] Velichkovsky B, Sprenger A, Unema P. Towards 

gaze-mediated interaction: collecting solutions of 

the “Midas touch problem,” in Proc. INTERACT'97, 

Chapman and Hall, London, UK, 1997, 509-516 

[4] Velichkovsky BM, Hanse JP. New technological 

windows into mind: there is more in eyes and brains 

for human-computer interaction, in Proc. CHI '96, 

1996, 496-503 

[5] Zander TO, Gaertner M, Kothe C, Vilimek R. 

Combining eye gaze input with a brain–computer 

interface for touchless human–computer interaction. 

Int. J. Hum. Comput. Interact. 2010;27: 38-51 

[6] Zander TO, Kothe C. Towards passive brain–

computer interfaces: applying brain–computer 

interface technology to human–machine systems in 

general. J. Neural Eng. 2011:8:025005  

[7] Ihme K, Zander TO. What you expect is what you 

get? Potential use of contingent negative variation 

for passive BCI systems in gaze-based HCI, in Proc. 

ACII’11, 2011, 447-456 

[8] Protzak J, Ihme K, Zander TO. A passive brain-

computer interface for supporting gaze-based 

human-machine interaction, in Proc. UAHCI’13, 

2013, 662-671. 

[9] Brouwer AM, Reuderink B, Vincent J, van Gerven 

MA, van Erp JB. Distinguishing between target and 

nontarget fixations in a visual search task using 

fixation-related potentials. J. Vis. 2013;13:17.  

[10] Finke A, Essig K, Marchioro G, Ritter H. Toward 

FRP-based brain-machine interfaces–single-trial 

classification of fixation-related potentials. PLoS 

ONE. 2016;11:e0146848.  

[11] Ušćumlić M, Blankertz B. Active visual search in 

non-stationary scenes: coping with temporal 

variability and uncertainty. J. Neural Eng. 

2016;13:016015 

[12] Jangraw DC, Wang J, Lance BJ, Chang SF, Sajda P. 

Neurally and ocularly informed graph-based models 

for searching 3D environments. J. Neural Eng. 

2014;11(4):046003 

[13] Golenia J, Wenzel M, Blankertz B. Live 

demonstrator of EEG and eye-tracking input for 

disambiguation of image search results. In: 

Blankertz B, Jacucci G, Gamberini L, Spagnolli A, 

Freeman J (Ed.). Symbiotic Interaction. LNCS, vol 

9359. Springer, Cham, 2015, pp. 81-86 

[14] Shishkin SL, Nuzhdin YO, Svirin EP, Trofimov 

AG, Fedorova AA, Kozyrskiy BL and Velichkovsky 

BM. EEG negativity in fixations used for gaze-based 

control: Toward converting intentions into actions 

with an Eye-Brain-Computer Interface. Front. 

Neurosci. 2016;10:528 

[15] Schalk G, McFarland DJ, Hinterberger T, 

Birbaumer N, Wolpaw JR. BCI2000: a general-

purpose brain-computer interface (BCI) system. 

IEEE Trans. BME. 2004;51(6):1034-1043 

[16] Renard Y, Lotte F, Gibert G, Congedo M, Maby E, 

Delannoy V, ... Lécuyer A. OpenViBE: An open-

source software platform to design, test, and use 

brain–computer interfaces in real and virtual 

environments. Presence: teleoperators and virtual 

environments. 2010;19(1):35-53 

[17] Venthur B, Dähne S, Höhne J, Heller H, Blankertz, 

B Wyrm: A brain-computer interface toolbox in 

python. Neuroinformatics. 2015;13(4):471-486 

[18] Breitwieser C. TiD--Documentation of TOBI 

Interface D. arXiv:1507.01313. 2015 July 6  

[19] Lee MH, Fazli S, Kim KT, Lee SW. Development 

of an open source platform for brain-machine 

interface: openBMI. In Proc. 4th Int. Winter Conf. 

on BCI, 2016 

[20] Brunner C, Andreoni G, Bianchi L, Blankertz B, 

Breitwieser C, Kanoh SI, Kothe CA, Lécuyer A, 

Makeig S, Mellinger J, Perego P. BCI software 

platforms. In Towards Practical Brain-Computer 

Interfaces. Springer, Berlin 2012, pp. 303-331 

[21] Torniainen J, Henelius A. A short review and 

primer on online processing of multiple signal 

sources in human computer interaction applications. 

arXiv:1609.02339. 2016 Sep 8 

[22] Nuzhdin YO. 2016. [A library for data processing 

in a brain-computer interface.] Lomonosov-2016. 

Moscow, Russia, pp. 78-80 (in Russian) 

https://lomonosov-

msu.ru/archive/Lomonosov_2016/data/8342/uid739

90_be24b87706be48e2ea8263b7d53dd62a7822e46b

.pdf 

[23] Nuzhdin YO, Shishkin SL, Fedorova AA, Trofimov 

AG, Svirin EP, Kozyrskiy BL, Medyntsev AA, 

Dubynin IA, Velichkovsky BM. The expectation 

based Eye-Brain-Computer Interface: An attempt of 

online test. Proc. BCIforReal'17, Limassol, Cyprus, 

2017, pp. 39-42 

[24] Oostenveld R, Fries P, Maris E, Schoffelen JM. 

(2011). FieldTrip: open source software for 

advanced analysis of MEG, EEG, and invasive 

electrophysiological data. Comput. Intell. Neurosci. 

2011:156869 

[25] Wenzel MA, Golenia J-E and Blankertz B. 

Classification of eye fixation related potentials for 

variable stimulus saliency. Front. Neurosci. 

2016;10:23 

[26] Shishkin SL, Kozyrskiy BL, Trofimov AG, 

Nuzhdin YO, Fedorova AA, Svirin EP, Velichkovsky 

BM. Improving eye-brain-computer interface 

performance by using electroencephalogram 

frequency components. Bull. RSMU. 2016;2:36–41 

[27] Walter WG. Expectancy waves and intention waves 

in the human brain and their application to the direct 

cerebral control of machines. Electroenceph. Clin. 

Neurophysiol. 1966;21:616 

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-66




