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ABSTRACT: Arm movements have already been 

decoded non-invasively from electroencephalography 

(EEG) signals. In this study we analyzed whether the 

target or the movement direction of the arm can be 

decoded from the EEG. Ten healthy subjects executed 

right arm movements to one out of two targets and 

simultaneously received feedback on a computer screen. 

We then inverted the feedback movements to analyze if 

the EEG carries information about the target or about 

the movement direction. We found two groups, one 

encoding the target and one encoding first the 

movement direction followed by the target. These 

findings are relevant for the development of future 

motor neuroprostheses and non-invasive robotic arm 

control. 

 

INTRODUCTION 

 
Brain-computer interfaces (BCIs) can be used to control 

neuroprostheses or robotic arms. Together, these 

technologies allow to restore or replace basic movement 

function of spinal cord injured (SCI) persons. For 

example, in [1] a robotic arm was successfully 

controlled using an invasive BCI. Also non-invasive 

BCIs based on electroencephalography (EEG) signals 

can be used to restore movement function in persons 

with SCI. Our group demonstrated the restoration of 

grasp function [3], [4] and elbow function [5], [6] with a 

sensorimotor rhythm (SMR)-based BCI. SMR-based 

BCIs detect movement imagination (MI) and use it as a 

control signal. However, the MI itself is often not 

intuitive (e.g., a foot MI may be used to control the right 

arm). Furthermore, only the process of imagination can 

be detected but not the movement itself. For example, 

imagining squeezing a ball and playing tennis may not 

be distinguishable with a SMR-based BCI. However, to 

control a neuroprosthesis in a more natural way or even 

a robotic arm with its many degrees-of-freedom, more 

information about the movement needs to be extracted 

from the EEG. Interestingly, low-frequency EEG 

signals carry more specific information about the 

movement and can be used to decode even movement 

trajectories [7]–[9] or movement directions/targets [10]–

[13]. However, the accuracy of a non-invasive 

movement trajectory decoder is not yet sufficient for 

real-time control, not to mention the decoding of 

imagined movement trajectories. The decoding of 

movement direction or movement target combined with 

a system which then generates the trajectory may be a 

more promising approach. 

A general issue of studies decoding movement targets is 

that hand or cursor movements towards a certain target 

always requires a certain movement direction, i.e. 

movement targets correspond to movement directions. 

That blurs the results of such studies because it cannot 

be determined whether targets or movement directions 

are being decoded. However, that information is 

important when training a decoder (e.g., if targets 

should be shown in the training paradigm). 

Furthermore, in a real life application there is always a 

variable number of potential targets. A decoder based 

on the imagined or attempted movement direction 

would be independent on the number of targets but not a 

decoder based on movement targets. To investigate 

whether a decoder is based on targets or the movement 

direction, we conducted a study (here with executed 

movements) where subjects moved their arm to one out 

of two targets and received feedback on a computer 

screen. Then, we inverted the feedback and conducted 

the same number of trials to analyse whether our 

decoder is based on the movement direction or the 

movement target. We hypothesize that in case of target 

decoding, the classification accuracies would be above 

chance level. Classification accuracies below chance 

level would indicate the decoding of the movement 

direction. 

 

 
MATERIALS AND METHODS 

 

     Subjects: For the experiment 10 healthy subjects 

(one female), all of them right-handed and with normal 

or corrected-to-normal vision, were recruited. None of 

them had participated in any prior BCI experiments. 

They were aged between 25 and 32 (mean 27.7 and SD 

of 2) years. All of them signed an informed consent. 

 

     EEG Measurement: We used 68 passive electrodes 

covering frontal, central, parietal and temporal areas for 

recording EEG signals from the scalp. An electrode cap 

with equidistant electrode positions was used. Also, 

three electrooculography (EOG) electrodes, positioned 

above the nasion and below the outer canthi of the eyes 

were used. Reference was placed on the left mastoid, 

ground on the right mastoid. All electrode impedances 

were tried to keep below 5kΩ. An 8-th order Chebyshev 

band-pass filter from 0.01Hz to 200Hz and a Notch 

filter at 50Hz was applied. Signals were sampled with 
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512Hz using biosignal amplifiers (g.tec medical 

engineering GmbH, Austria). Moreover, we measured 

electrode positions with ELPOS (Zebris Medical 

GmbH, Germany). EEG, EOG and movement data (3D 

positions and joint angles of the right arm) were 

recorded with a customized TOBI Signal Server [14] 

and Matlab (MathWorks, Massachusetts, USA). For 

recording the movement data a custom made plugin for 

the ARMEO Spring software was used.  

 

     Experimental Paradigm: Subjects were seated in a 

chair and their right arm was fixed in an ARMEO 

Spring rehabilitation device (Hocoma, Switzerland). 

The ARMEO Spring is basically an exoskeleton and 

supports the subjects’ arm from gravity to prevent 

muscle fatigue. With the sensors of the ARMEO Spring 

it is possible to keep track of the hand- and elbow 

position and joint angles.  

For the experiment a self paced center-out reaching task 

was employed. Subjects moved their right arm from a 

starting position (about 150 degrees elbow flexion, 60 

degrees shoulder flexion and 0 degree abduction in the 

shoulder joint (see Figure 1)) to one of two targets (red 

and blue) presented on a computer screen. The red and 

blue target were positioned in the right upper corner and 

in the left lower corner, respectively (see Figure 2). The 

final position for reaching the red target required a 100 

degree flexion and 20 degree abduction in the shoulder 

joint and a 150 degree elbow flexion. For reaching the 

blue target it was a 60 degree flexion, 20 degree 

adduction and 30 degree internal rotation in the 

shoulder joint and a 150 degree elbow flexion. The 

computer screen also showed an arm model as a visual 

feedback (see Figure 2). The arm model was previously 

built with the software MSMS (MDDF, University of 

Southern California, Los Angeles, California). The 

model received its joint angles and coordinates from the 

ARMEO Spring and showed the participants their actual 

hand-/arm position in real time. 

The experiment consisted of two conditions: (i) normal 

condition where the virtual arm on the computer screen 

moved exactly like the subjects’ arm and (ii) inverted 

condition where the virtual arm movements were 

inverted to real arm movements (i.e. subjects had to 

move their arm to the opposite target to reach the actual 

target with the virtual arm).  

 

 
Figure 1: Experimental setup. A subject connected with 

the ARMEO Spring, EEG mounted in the position in 

front of a screen which presents feedback to the subject.   

 

The paradigm is shown in Figure 3. At second 0 an 

audio cue started a trial by either saying „Red“ or 

„Blue“. The subjects got instructed to immediately look 

at the specific target to avoid eye movements during the 

reaching phase which could have affected the 

classification. Three to 5 s after the trial start a beep 

sounded representing the go cue. The participants got 

instructed to start their reaching movements to the 

specific target 1 to 3 s after the go cue. When the virtual 

arm on the computer screen touched the specific target, 

a second beep tone sounded serving as a success cue.  

 

 
Figure 2: Upper: MSMS arm model, for giving real time 

feedback to the subjects. Lower: Arm model in 

experimental setup, i.e. first person view, transparent 

scapula, all joints in starting position and including both 

targets 

 

 

 
Figure 3: Paradigm and timing of a single trial. 

 

 

After successfully touching a target subjects moved 
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their arm back to the starting position. The trial ended 2 

s after the success cue. After a trial, a break between 1 

and 3 s followed. Each run consisted of 30 trials (15 

trials for each target, randomly distributed). 12 runs 

were recorded - 6 for normal condition and 6 for 

inverted condition, always changing the condition after 

2 runs. Thus, in total we recorded 180 trials - 90 trials 

for each condition. Additionally, we recorded 2 resting 

state runs and 2 runs with deliberate eye movements 

(not used in this work). 

 

     Signal Processing: We removed trials which were 

suspected to contain muscle, technical or movement 

artifacts. Therefore the data got filtered from 0.3Hz to 

70Hz (4-th order zero-phase Butterworth filter) and 

trials that exceeded a threshold of 3 times the standard 

deviation of the absolute value, Kurtosis or joint 

probability were excluded from any further processing 

steps. 

For determining the movement onset a principal 

component analysis (PCA) was done on the x/y/z hand 

position data recorded by the ARMEO Spring. We 

differentiated the first principal component and detected 

a movement onset whenever a certain threshold was 

crossed after the go cue. The threshold was found 

empirically. 

For calculating the movement-related cortical potentials 

(MRCPs) a 0.3 Hz - 35 Hz 4-th order zero-phase 

Butterworth band-pass filter was applied and data 

segments averaged. MRCPs were calculated for both 

conditions and electrode positions FCz, C3, Cz and C4. 

In order to discriminate between the two red and blue 

targets, we applied a shrinkage linear discriminant 

analysis (sLDA) [15] to calculate classification 

accuracies. A 0.3Hz - 3Hz 4-th order zero-phase 

Butterworth band-pass filter was applied on the raw 

EEG data to extract low frequency signals. 

Subsequently, we downsampled data to 16Hz for 

computational convenience. We computed the 

classification accuracy within the time window -2s to 2s 

relative to movement onset. In one analysis, we 

classified a moving time window of 750ms using data 

from all band-pass filtered EEG channels, i.e., we used 

all EEG data within a window of the past 750ms (12 

sample points) and then moved the window one sample 

further. Classification accuracies were calculated using 

a 10x10 fold cross-validation. This analysis was 

separately performed for the normal and inverted 

condition. 

In another analysis, we used the data of the normal 

condition as training data and the data of the inverted 

condition for testing in order to find out whether it was 

target or movement direction decoding.  

 

RESULTS 

 

     Classification of directions: Figure 4 and 5 show the 

classification accuracies for the normal condition and 

inverted condition, respectively. Classification 

accuracies are scaled from 0 to 1 and time is relative to 

the movement onset (=0s). The significance level was 

61.35% (⍺ = 0.05, adjusted Wald interval, Bonferroni 

corrected for the number of shown sample points) [16]. 

The maximum average classification accuracies were 

0.78 (normal) and 0.79 (inverted). Table 1 shows the 

average movement times to the targets for each 

condition. 

 

Table 1: average time and standard deviation in seconds 

to reach red and blue target during normal and inverted 

condition 

Target Normal cond. [s] Inverted cond. [s] 

Red 1,20 ± 0,65 1,36 ± 0,76 

Blue 1,41 ± 0,74 1,10 ± 0,65 

 

 

 
Figure 4: Cross-validated classification accuracies in the 

normal condition (all subjects and the grand average). 

 

 

 
Figure 5: Cross-validated classification accuracies in the 

normal condition (all subjects and the grand average). 

 

     Classification (testing with inverted conditions): We 

trained the classifier on the normal condition and tested 

it on the inverted condition. Accuracies below chance 

level indicate movement direction decoding as hand 

movements were executed in the opposite direction to 

the target. Accuracies above chance level indicate target 

decoding. Two groups arose: group I shows an 

increasing classification accuracy after the movement 

onset (Figure 6); group II shows first a decrease of 

classification accuracy followed by an increase (Figure 

7). Time is relative to the movement onset (=0s) and the 

significance level was 61.35%. The maximum average 

classification accuracies were 0.71 (group I) and 0.70 

(group II).  

Proceedings of the 
7th Graz Brain-Computer Interface Conference 2017 DOI: 10.3217/978-3-85125-533-1-63

https://paperpile.com/c/EPJPsQ/AvSr
https://paperpile.com/c/EPJPsQ/3bio


 

 
Figure 6: Classification accuracies when training on the 

normal condition and testing on the inverted condition 

(group I). 

 

 

 
Figure 7: Classification accuracies when training on the 

normal condition and testing on the inverted condition 

(group II). 

 

Motor related cortical potentials: Figure 8 and 9 show 

the MRCPs for the normal and inverted condition, 

respectively. The figures show the confidence intervals 

as determined with a bootstrap test (⍺ = 0.05) at the 

electrode positions FCz, C3, Cz and C4. In the normal 

condition, differences between the two targets are 

observable at movement onset and around the approach 

to the target. The inverted condition shows more distinct 

differences between the targets. These amplitude 

differences are from ca. 0.5s before movement onset up 

to 2s after movement onset. 

 

 
Figure 8: MRCPs evolving in the normal condition. 

Shown are the MRCPS for both targets (red, blue) 

 

 

 
Figure 9: MRCPs evolving in the inverted condition. 

 

 

DISCUSSION 

 

We demonstrated the decoding of movements to one out 

of two targets from low-frequency time-domain EEG. 

Movements were decoded with normal and with 

inverted feedback. It was possible to decode the 

movement before movement onset, i.e. in the motor 

planning phase. Keeping in mind the lag introduced due 

to the 750ms classification time window, the 

classification accuracies peaked in the movement 

execution phase before the targets were reached. Our 

results are in line with other EEG studies which 

analyzed time-domain features during movement 

direction/target decoding [10], [12], [17]. However, also 

power modulations mostly in low-frequency bands and 

the high-gamma band have been shown to carry 

movement direction/target related information [12], 

[13], [18]. 

The motivation of our study was to analyze if low-

frequency time-domain EEG signals carry information 

about the movement direction or the target. We did this 

by inverting the feedback when testing the classifier. In 

case of target decoding, the classifier would not be 

affected by the required inversion of movements and 

classification accuracies would still be above chance 

level. In case of movement direction decoding, 

however, the classifier would be affected and 

classification accuracies would be below chance level, 

i.e. mirrored around the chance level. Our results can be 

divided into two groups: in one group the decoder was 

mainly based on the movement targets, in the other 

group the decoder first decoded movement directions 

and then movement targets. This finding has to be 

considered when novel control systems for future 

neuroprostheses or robotic arms are developed. 

Generally, classification accuracies around the time 

when the target was reached have to be interpreted with 

caution. The paradigm was designed to avoid eye 

movements at movement onset, but subjects may not 

have suppressed eye movements when approaching a 

target with the virtual hand as this was a visuomotor 

task requiring hand-eye coordination. Thus, eye 

movements may have happened at the end of the 

reaching movement and the classifier may have picked 

up the change of the electrical field of the eye dipole. 
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Further analysis has to quantify this effect. Furthermore, 

systematic differences between the movement times of 

the two targets may be responsible for the successful 

classification. Different MRCPs may have been evolved 

not because of different targets but because of different 

movement times or movements amplitudes (MRCPs are 

influenced by movement parameters, e.g. movement 

speed [19]). 

The MRCPs show a typical negative peak around 

movement onset [19]. The inverted feedback condition 

was more difficult to the subjects than the normal 

condition and therefore challenged more the motor 

planning and the movement execution. This higher 

difficulty probably enhanced the differences between 

the MRCPs in the inverted condition. The differences 

before movement onset correspond to the motor 

planning and are intrinsic. However, the amplitude 

differences after movement onset are either due to the 

execution of a motor plan which accounts for the 

inverted feedback (intrinsic) or due to different 

movement profiles (extrinsic), e.g. more correction 

movements. If the differences are extrinsic in nature, the 

same differences may evolve in the normal condition 

with the same altered movement profile. 

We report here a study with healthy subjects. Further 

studies have to confirm if the same effects can be found 

in persons with SCI. 

 

CONCLUSION 

 

We show the decoding of movements to one out of two 

targets from low-frequency time-domain EEG. 

Furthermore, we found evidence that the decoding is 

based on movement targets but also on the movement 

direction. 
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