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ABSTRACT: Brain-computer interfaces (BCIs) are
prone to errors in the decoding of the user’s intention, yet
the detection of errors can be used to improve the perfor-
mance of BCIs. We recorded the EEG data of 8 subjects
who participated in an experiment to study error-related
potentials (ErrPs) with masked and unmasked onset, dur-
ing a task with continuous control and continuous feed-
back. The masked ErrPs had a delayed onset and less
pronounced peak amplitudes when compared to the un-
masked ErrPs. We obtained an average classification rate
of 94% for correct trials and of 80% for error trials. The
classification rates for masked errors against unmasked
errors were at chance level.

INTRODUCTION

Brain-computer interfaces (BCIs) provide control to their
users, by recognising their intention from neuronal activ-
ity [1]. BCIs are susceptible to errors in the decoding of
the user’s intention and benefit from the ability to detect
what the user perceives as erroneous in order to improve
performance. This is possible because the recognition of
an error elicits a neuronal response that is associated with
a coarse differentiation between favorable and unfavor-
able outcomes [2] and that can be measured using vari-
ous techniques, e.g. electroencephalography (EEG). The
electrophysiological signature of error detection is named
error-related potential (ErrP) and is obtained by subtract-
ing the averaged electrophysiological trace following cor-
rect events from the averaged trace following erroneous
events.
Different types of ErrPs have been described in litera-
ture [3]: response ErrPs occur in speeded response time
tasks in which subjects are asked to respond as quickly
as possible to a stimulus; observation ErrPs occur when
subjects observe an error being committed by an external
agent; feedback ErrPs occur when subjects receive the in-
formation that the action they performed was not correct;
and interaction ErrPs occur in the context of BCIs, when
users believe that the command they issued was misinter-
preted by the interface.
In BCIs that are controlled in a discrete way, the occur-
rence of interaction ErrPs is well established [4, 5]. In
this context, interaction ErrPs can be detected on a single-
trial basis [5, 6, 7]. This enables their real-time detection,
either with the aim of correcting erroneous actions of the

BCI [8] or with the aim of reducing the possibility of the
error reappearing [9, 10].

BCIs that operate in a continuous way have gained at-
tention in the last years because they offer a more natu-
ral interaction between user and interface [11, 12, 13].
This has prompted the study of interaction ErrPs dur-
ing the use of BCIs with continuous control or feedback.
Kreilinger et al. [14, 15] investigated the occurrence of
interaction ErrPs in a BCI using simultaneously contin-
uous and discrete feedback. Spüler et al. [16] studied
interaction ErrPs in a task with continuous control and
continuous feedback, given through a cursor, without any
additional discrete feedback.

The study of asynchronous detection of ErrPs during con-
tinuous movement is still in the early stages. Spüler
et al. introduced the asynchronous detection of interac-
tion ErrPs [16]. In the context of an observation task,
Omedes et al. asynchronously detected observation ErrPs
with sudden and gradually unfolding errors [17, 18]. In
the case of gradually unfolding errors, the moment of the
error onset was not evident to the observer.

In the current work, we investigate interaction ErrPs with
masked and unmasked onset, during a task with con-
tinuous control and continuous, jittered and non-jittered,
feedback. We consider as unmasked the errors that occur
during trials without jittered feedback and as masked the
errors that occur during trials with jittered feedback. We
hypothesize that masked ErrPs occur later than unmasked
ErrPs, when time-locked to the error onset.

MATERIALS AND METHODS

Hardware and data acquisition: EEG data were
recorded at 1000 Hz using BrainAmp amplifiers and an
actiCap system (Brain Products, Munich, Germany) with
61 active electrodes. The electrodes were placed at po-
sitions Fp1, Fp2, AF3, AF4, F7, F5, F3, F1, Fz, F2, F4,
F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FC6, FT8,
T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP9, TP7, CP5,
CP3, CP1, CPz, CP2, CP4, CP6, TP8, TP10, P7, P5, P3,
P1, Pz, P2, P4, P6, P8, PO9, PO7, PO3, POz, PO4, PO8,
PO10, O1, Oz, and O2. The ground electrode was placed
at position AFz and the reference electrode was placed on
the right mastoid.
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Experiment overview: Eight subjects, 5 male, with
ages between 19 and 27, participated in the experiment
after reading and signing an informed consent form. The
experiment consisted of 12 blocks with 30 trials each.
Each trial lasted on average 4.6 s. Between the trials, sub-
jects were given 2.5 s to rest. Between the blocks, sub-
jects were allowed to rest for as long as they needed. One
third of the trials of each block were randomly assigned
as error trials, described below. Half of the blocks, ran-
domly selected, consisted of trials with jittered feedback,
also described below.

Trial and task description: In the beginning of each
trial, 4 equally spaced squares were displayed on the up-
per part of a computer’s screen, at the same distance from
its centre. One of the squares was randomly chosen to be
the target and colored yellow, whilst the others were blue.
On the lower part of the screen was a red circle, which
represented the cursor (see Fig. 1).
The task consisted in moving the cursor from its initial
position to the target with a joystick. The joystick’s dis-
placement from its resting position controlled the direc-
tion of the cursor’s displacement, which moved at con-
stant velocity. The cursor was only allowed to move in-
side the grey area. A trial ended when the cursor reached
the target or when it hit the boundary of the grey region.
In order to minimise eye movements during the trials, the
participants were instructed to fixate their gaze on the tar-
get at the beginning of each trial, and to start moving the
joystick afterwards [19].

Error trials: In these trials, the subject lost the control
of the cursor when it was located at a randomly assigned
distance from the center of the screen, within the area de-
limited by the green half-circles depicted in Fig. 1. When
this happened, the cursor moved perpendicularly to its
direction at the moment of the error onset, until the trial
ended. The side to which it deviated was randomly as-
signed.
Subjects were instructed to keep their gaze fixed on the
target and to bring the joystick back to the resting posi-
tion when recognising that the control over the cursor was
lost.

Jittered feedback: With the intention of masking the
onset of the errors, in these trials the cursor jittered per-
pendicularly to the direction of the movement.

Preprocessing: The data were resampled from
1000 Hz to 250 Hz for the electrophysiological analyses
and to 25 Hz for the time-locked classification. In addi-
tion, a Butterworth filter of order 4 was applied to band-
pass the data between 1 and 10 Hz. Then the data were
segmented into correct and error trials. To epoch the cor-
rect trials, we considered the trials in which the partici-
pants successfully guided the cursor to the target and ex-
tracted a 1.5 s interval beginning with the cursor crossing
the horizontal midline of the screen depicted in Fig. 1.
The error trials were segmented using a 1.5 s interval
starting 0.5 s before the error onset. For the electrophysi-
ological results, a CAR filter was additionally applied.

Figure 1: Experimental protocol: a possible setup at the
beginning of a trial. The green half-circles delimit the
region in which the errors occur. The green horizontal
line represents the onset of the correct trials. The green
elements are invisible to the subjects.

Outliers rejection: Box-and-whisker diagrams were
used to reject outliers [20]. For each channel, the vari-
ance of the voltage during correct and error trials was
calculated. The lower and upper quartiles, Q1 and Q3, of
the channels’ variances were used to calculate the inter-
val [Q1 − k(Q3 − Q1), Q3 + k(Q3 − Q1)], with k = 3.
Channels whose variance lied outside this interval were
excluded.
To remove outlier trials, correct and error trials were
treated separately. The variance of the voltage at FCz in
correct and error trials was used to calculate two intervals,
using the procedure described for the channels’ rejection.
Correct and error trials whose variance of the voltage at
FCz lied outside the respective interval were excluded.
Additionally, trials whose variance of the voltage at FCz
was smaller than 2µV were also excluded because they
reflected problems with the electrode during the record-
ing. On average, 5.64% of the trials were excluded.

Time-locked classification: The raw data were resam-
pled to 25 Hz, bandpass-filtered and segmented as de-
scribed above. The amplitudes of each channel at each
time point of correct and error trials were used as fea-
tures for training a shrinkage LDA classifier [21], which
was tested using 10 times 5-fold cross validation. When
classifying correct trials against error trials, training and
testing sets were composed of 70% correct trials and 30%
error trials. When classifying masked errors against un-
masked errors, training and testing sets were balanced.

RESULTS

Electrophysiological analyses: Fig. 2 shows the av-
erage signal in error trials (red curve) and correct trials
(green curve) at channel FCz for the 8 subjects. The
shaded areas represent the 95% confidence interval of the
average curves. In the averaged error signal, a sharp neg-
ative peak appears at 192 ms after the onset of the error
(t = 0). It is followed by a pronounced positive peak at
300 ms. Finally, a broader negativity appears, peaking at
592 ms after the error onset. Fig. 2 depicts also the grand
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average ErrP (black curve). Fig. 3 depicts the grand aver-
age ErrP signal at different scalp positions. Electrodes
over the central regions of the scalp show ErrPs with
higher peak amplitudes.
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Figure 2: Grand average correct and error signals at chan-
nel FCz. The shaded areas represent the 95% confidence
interval of the average curves. The black curve represents
the grand average ErrP.
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Figure 3: Grand average ErrP at different channels. The
diagram on the bottom right indicates the axes’ scale of
the labeled plots.

Masked and unmasked errors: The grand average cor-
rect and error signals, masked and unmasked, are shown
in Fig. 4. The averaged unmasked error signal presents
a first negative peak 184 ms after the error onset, a posi-
tive peak at 316 ms and a broader negativity that peaks at
572 ms. The averaged masked error signal presents a first
negative peak at 196 ms, followed by a positive peak at
348 ms and a broader negativity that peaks at 600 ms. The
averaged masked error signal is delayed in comparison to
the averaged unmasked error signal, when time-locked to
the error onset. The peaks of the averaged masked error

signal have a lower amplitude than the ones in the aver-
aged unmasked error signal.
Fig. 5 displays the averaged correct and error signals,
masked and unmasked, for each subject individually. The
first negativity of the grand average error signal, masked
and unmasked, is not present in the error signals of all
the participants. A delay in the masked error signal in
comparison with the unmasked error signal is present in
the signals of the majority of the subjects. Subject 5
does not display ErrPs at channel FCz after CAR filtering.

Average of unmasked correct trials
Average of masked correct trials
Average of unmasked error trials
Average of masked error trials
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Figure 4: Grand average correct and error signals,
masked and unmasked, at channel FCz. The shaded ar-
eas represent the 95% confidence interval of the average
curves.

Time-locked classification: Both masked and un-
masked trials were considered to classify correct trials
against error trials. Tab. 1 shows the percentages (mean
and standard deviation) of successfully recognised cor-
rect and error trials for each subject and their average.
Tab. 1 also shows the Cohen-κ coefficient for each sub-
ject and their average. We obtained an average of 94.3%
recognition rate for correct trials and of 80.3% for error
trials. The average Coehen’s κ coefficient obtained was
of 0.76.
We also tried to classify masked errors against unmasked
errors but the results obtained were at chance level (50%),
as shown in Tab. 2.

DISCUSSION

We presented results on the electrophysiology of inter-
action ErrPs and compared errors with masked and un-
masked onset. In our study, the ErrP displayed a very
similar shape to the error signal because the correct signal
was not associated with any event. The masked error sig-
nals were delayed in comparison to the unmasked ones,
when time-locked to the error onset. We assume that this
is due to subjects taking longer to recognise masked er-
rors. The first negative and positive peaks in the masked
error signals presented lower amplitudes than in the cor-
responding peaks in the unmasked error signals. This oc-
curred either due to a variability of the moment in which
subjects recognised the error in masked trials or due to
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a change in the cursor’s direction causing more surprise
in unmasked trials than in the masked ones, in which the

participants were used to some instability in the feedback.
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Figure 5: Average of correct and error signals, masked and unmasked, at channel FCz and for each subject. The shaded
areas represent the 95% confidence interval of the mean curves.
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Table 1: Percentages (mean and standard deviation) of
successfully classified correct and error trials and Cohen-
κ coefficient.

Subject Correct (%) Error (%) κ

1 98.4 ± 1.4 91.9 ± 5.6 0.91 ± 0.04
2 99.1 ± 1.4 87.5 ± 7.3 0.89 ± 0.06
3 95.0 ± 3.2 81.2 ± 7.1 0.78 ± 0.06
4 93.4 ± 3.2 82.1 ± 8.4 0.76 ± 0.08
5 90.3 ± 4.1 68.7 ± 11.0 0.60 ± 0.12
6 92.0 ± 3.9 77.3 ± 9.9 0.70 ± 0.10
7 92.3 ± 3.8 77.6 ± 10.5 0.71 ± 0.11
8 93.7 ± 3.0 76.1 ± 9.6 0.71 ± 0.09

Average 94.3 ± 4.3 80.3 ± 11.0 0.76 ± 0.13

Table 2: Percentages (mean and standard deviation) of
successfully classified masked and unmasked error trials.

Subject Masked (%) Unmasked (%)

1 64.9 ± 13.1 68.8 ± 15.7
2 63.2 ± 12.1 54.4 ± 17.6
3 65.8 ± 15.9 70.1 ± 13.6
4 51.3 ± 16.0 62.1 ± 14.1
5 68.4 ± 15.9 68.1 ± 13.4
6 66.4 ± 13.3 55.9 ± 15.3
7 51.0 ± 14.7 55.5 ± 15.3
8 41.9 ± 17.7 41.1 ± 13.8

Average 59.1 ± 17.4 59.5 ± 17.4

CONCLUSION

We investigated interaction ErrPs with masked and un-
masked onset. The masked error signals were delayed in
comparison to the unmasked ones, when time-locked to
the error onset. The first negative and positive peaks in
the masked error signals presented lower amplitudes than
the corresponding peaks in the unmasked error signals.
We obtained good classification rates for correct trials
against error trials using time domain features. Neverthe-
less, our classification results for masked errors against
unmasked errors were at chance level.
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