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ABSTRACT: Passive brain-computer interfaces have 

been formally introduced and defined almost a decade 

ago, and have gained considerable attention since then. 

Here, we provide a new perspective on this field. We 

refer to neuroadaptive systems, and identify a key 

aspect with regards to which various passive BCI-based 

systems differ from each other: interactivity. With 

increased interactivity, the systems become increasingly 

responsive, autonomous, and capable to adapt to the 

user. We give an overview of four separate categories of 

interactivity using examples of past and current 

research. This categorisation of passive BCI-based 

neuroadaptive systems helps identify and pinpoint 

relevant human-computer interaction aspects and 

possibilities for future neuroadaptive technology and 

research. 

 

INTRODUCTION 

 
The term and concept of passive BCI was formally 

introduced at the 4th Graz BCI Conference in 2008 [1]. 

Although at that point, with hindsight, a number of 

previous works could be said to have already made use 

of passive BCI, e.g. [2-5], it was in the year 2008 that it 

was highlighted by two research groups, independently 

of each other, as a promising research endeavour of its 

own. BCI methodology that, up until then, was 

primarily aimed at clinical applications for direct 

communication and control, they argued, could also be 

used to provide implicit input [6-7] to a system to the 

benefit of any ongoing human-computer interaction 

without placing any additional demands on the user. 

To that end, a passive BCI system [8] derives its 

output from automatic, involuntary, spontaneous brain 

activity, interpreted in the given context [9]. The brain 

activity in question is not expressly or voluntarily 

modulated in order to make use of the BCI system, but 

rather reflects aspects of the naturally present cognitive 

or affective state of the user. The system takes this 

context-sensitive interpretation of the user’s state as 

implicit input, enabling it to adapt and support the user 

with their task. 

This is contrasted with active BCI, where brain 

activity is consciously and purposefully modulated to 

achieve explicit BCI-based communication or control, 

and with reactive BCI, where the signal itself is not 

generated voluntarily, but its external elicitation is made 

possible by voluntary attention shifts [8]. For example, 

an active BCI may rely on imagined movements of the 

left and right hands to steer a prosthesis to the left or 

right [10], and a reactive BCI may use the evoked 

potentials resulting from presented stimuli to detect 

which stimulus was attended to [11]. 

The concept of passive BCI was ultimately 

included in the 2012 standard work on BCI [12], 

although the term “passive” was criticised for lacking a 

neuroscientific definition. Indeed both the concept and 

the terminology assume a perspective centred on the 

user experience, with the user remaining passive (i.e., 

undertaking no explicit actions) with respect to the BCI. 

However, indeed care should be taken when 

presuming that user actions and mental states can be 

readily categorised as either “voluntary” (re/active BCI) 

or “spontaneous” (passive BCI). For example, the user’s 

knowledge of the supposedly passive BCI system may 

still lead to certain voluntary changes in activity; or, a 

supposedly active BCI system may take into account 

brain activity that is not fully voluntarily modulated.  

From the user-centred perspective, a thought 

experiment can clarify the issue. If the same user 

behaviour and brain activity would be observed if the 

user was not aware of their influence over a system, 

then we can say that this is “natural” behaviour and 

activity that in that moment does not depend on the 

presence of the system. In this article, when referring to 

passive BCI systems, we refer to systems that are—or 

can be—based on such natural brain activity.  

Regardless, however, of these definitory issues, the 

concept of using BCI methodology to provide computer 

systems with a measure of its user’s mental state as 

implicit input has endured and received increasing 

attention over the past decade.  

The BCI Society categorises BCI systems based on 

the intended function of the output. They recognise five 

categories of applications: BCI systems can replace, 

restore, enhance, supplement, or improve the user’s 

natural output [12-13]. The BNCI Horizon 2020 

roadmap for the BCI community [13] lists a total of six 

future applications for the two categories improve and 

enhance, five of which rely on passive BCI as defined 

here. The category supplement is not included in the 

roadmap, but, as mentioned by Wolpaw and Wolpaw 

[12], this, too, is partially the domain of passive BCI. 

Since its inception around a decade ago, passive 

BCI applications have thus come to represent a 

relatively large and promising area of BCI research. 
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Among passive BCIs themselves, however, a 

further categorisation is possible. Whilst already 

focusing on the user’s behaviour to define the scope of 

passive BCI, we propose to also focus on the BCI’s 

behaviour, rather than its consequences. By focusing on 

the system’s behaviour rather than its intended function, 

a clearer and more formal emphasis is placed on how 

the two adaptive agents (i.e. the human and the 

computer) cooperate and interact with each other. In 

BCI applications for communication and control (i.e. 

replace, restore), the intended division of labour 

between man and machine, and the feedback given from 

machine to man, is relatively clear. In passive BCI 

systems however, as they are intended to be unobtrusive 

and inconspicuous, the machine’s influence can 

manifest in a number of different ways, with different 

implications for the human-machine system as a whole. 

It is important to take this into account when designing 

such systems. 

We identify four categories of systems, listed 

ordinally by increasing degree of interactivity. 

Interactivity denotes “the ability of a computer to 

respond to a user’s input” (Oxford English Dictionary, 

Oxford University Press, 2016). By the proposed 

measure, most past and current research into passive 

BCI as well as suggested future applications, including 

all those mentioned in the BCI roadmap, provide 

relatively little interactivity and fall into the lower 

categories. We found only two recent examples for the 

final identified category. We believe that a lot can be 

gained by focusing on increased interactivity when 

designing new passive BCI systems. 

This categorisation suggests a new way to think 

about passive BCI systems, and highlights BCI-based 

opportunities for increased human-computer synergy. A 

more detailed review and discussion of these categories 

can be found in our contributed chapter for the BCI 

Handbook (in press), of which this conference 

submission is a summary aimed more at current BCI 

researchers. 

The following four sections will describe one 

category each: mental state assessment, open-loop 

adaptation, closed-loop adaptation, and automated 

adaptation. The paper concludes with a discussion and 

outlook. 

 

MENTAL STATE ASSESSMENT 

 

The first category encompasses systems the sole 

purpose of which is the measurement of mental states, 

without providing any feedback. Because feedback is 

lacking, these are not BCI systems, nor is there any 

interactivity. This category of mental state assessment 

[14-15] is still included, however, to serve as a 

theoretical zero point on the interactivity scale, and 

because mental state assessment does provide the basis 

for all higher systems. 

The measurement and quantification of mental 

states can be helpful and informative by itself in various 

fields where no interactivity is required. Instead, user 

state information is gathered to be analysed and studied 

afterwards, to answer different questions. 

For example, mental state assessment based on BCI 

methodology is being used in the field of 

neuroergonomics, “the study of brain and behaviour at 

work” [16]. One mental state that is highly relevant to 

ergonomics and human factors research is the state of 

high workload [17]. Whilst there are disagreements as 

to its precise definition and measurement in theory [18], 

BCI can offer a data-driven approach based on reference 

measurements. For example, Gevins and Smith [19] 

simulated controlled working conditions of three 

different load levels. Based on differences they found in 

frontal theta and parietal alpha, they constructed a 

cognitive workload index that could then be used to 

analyse other, less controlled recordings.  

Using such pre-calibrated indices, mental state 

assessment can be used, for example, to compare 

alternative graphical user interface designs with respect 

to the workload they induce. See [20] for a review. 

Such an approach has a number of advantages 

compared to traditional methods to obtain information, 

such as questionnaires. Brain activity provides a 

continuous source of data, and its recording does not 

interfere with the state that is measured. The method 

can be individually calibrated, side-stepping 

intersubjective reference issues as well as conceptual 

conflicts. Certain mental states may not even be 

possible to ascertain otherwise. 

All this, however, hinges on the ecological validity 

of the recordings and corresponding interpretations. 

Special care must be taken to validate the 

measurements, ideally cross-context. See e.g. [21-22] 

for a discussion of pitfalls and lessons learned in mental 

state assessment research, which also applies to 

(passive) BCI research more generally. 

 

OPEN-LOOP ADAPTATION 

 

Interactivity denotes the computer’s ability to respond 

to a user’s input. In the case of passive BCI 

applications, this input is the implicit input [6-7] 

gathered by the system by analysing the user’s natural 

brain activity in real time. In BCI terminology, the 

system’s response to this interpreted input is generally 

termed feedback [12], denoting an action and/or piece of 

information resulting from the input that is subsequently 

“fed back to” (i.e. perceived by) the user.  

As mentioned above, passive BCI systems can be 

unobtrusive and inconspicuous, and their responses to 

user input may thus be similarly hidden. It is for this 

reason that we refer to adaptation as a more generic 

term for the system’s response to input. Traditional 

feedback—e.g. a cursor moving on a screen or a 

prosthetic limb moving—can be one form of such 

adaptation, but, as this categorisation will also highlight, 

the nature of passive BCI enables other meaningful 

types of adaptations as well. When adaptation is based 

on (natural) brain activity, we refer to these systems as 

neuroadaptive [23]. 
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It is through the system’s adaptations in response to 

user input that different levels of interactivity can be 

achieved. The first level of interactivity—the second 

category overall—consists of open-loop adaptations. 

Systems from this category of applications apply mental 

state assessment to obtain a measure of a mental state 

on-line, and respond to certain states with specific pre-

programmed actions in an open-loop fashion. 

“Open loop” refers to the absence of any direct or 

intended coupling of the adaptation back to the input. 

For example, in the above example of a workload 

index, open-loop adaptation could be used to assess the 

load level in real time, and give a warning every time a 

certain threshold is exceeded [24]. 

Prominent in the literature is the use of the error-

related negativity as indicative of the mental state “error 

perception” [25]. Once the system learns that its user 

perceived an error, the system adapts, for example by 

correcting the error in case of a binary decision [3]. 

Note that such input corrections can also induce errors, 

rather than correcting them, when the initial mental state 

was not correctly detected. 

Other examples include the detection of an 

“intention to interact” mental state to replace an explicit 

selection command in hybrid gaze/BCI systems [26-27]. 

Once such an intention is detected upon fixating an 

interactive on-screen element, a “mouse click” can be 

automatically executed. 

In a gaming context, Van de Laar et al. [28] showed 

how, once a certain threshold of “relaxation” (versus 

“tension”) is passed, the user’s in-game character would 

switch from one set of abilities to another. 

Open-loop adaptive systems, based on passive BCI, 

use a measurement of the user’s state as implicit input. 

The user states of interest can be transient, such as error 

perception, or more constant and continuous ones such 

as moods or workload. As such, the former ones need to 

be clearly linked to the context (e.g., what was 

perceived to be in error?) for the adaptation to be 

effective [9]. This implicit input can then be used as a 

basis to execute timely adaptations. Continuous mental 

states are better suited to control an application’s mode.  

As mentioned above, it is important to validate that 

the mental state that is intended to be measured is 

indeed the one that is measured. Real-time adaptation in 

response to these measurements can provide an indirect 

validation that at least the system functions as intended. 

Open-loop adaptation reflects simple stimulus-

response logic: single, independent state detections 

result in single, fixed actions. More interactivity can be 

achieved when the system’s adaptations have an 

influence that reaches beyond the single responses, 

affecting further input and future actions; for example, 

when interactive applications exhibit closed-loop 

control, discussed next. 

 

CLOSED-LOOP ADAPTATION  

 

In closed-loop systems, the system’s output is fed back 

to the system as new input, or otherwise influences the 

next input cycle. In our present context, the ultimate 

source of input is the human user, and the input given to 

the adaptive system constitutes a measure of their 

mental state. In a closed-loop passive-BCI system, the 

initiated adaptation must thus influence the mental state 

that is being measured. Closed-loop adaptive systems 

apply mental state assessment to obtain a measure of a 

mental state on-line, and adapt to certain states—or 

changes in states—by means of actions that influence 

that same mental state.  

The adaptations can be either discrete or 

continuous. For example, sounding an alarm bell to call 

to attention someone who has been detected to doze off 

is a discrete countermeasure, aimed at promoting the 

state being monitored: vigilance.  

Kirchner [29] used a sequence of discrete events of 

increasing saliency: if an initial alarm was not perceived 

(as detected by the passive BCI), the alarm was repeated 

with a higher intensity.  

Continuous adaptation can provide a more fine-

grained approach. For example, adaptive automation 

[30] attempts to match task demands to the current 

capacity of the user, in real time. When workload 

increases, certain tasks are automated in order to keep 

the user in a productive state of engagement. As more 

capacity becomes available again, task control is 

gradually handed back to the user, keeping the 

equilibrium. 

For example, Kohlmorgen et al. [31] implemented a 

form of passive BCI-based adaptive automation in the 

car. During highway driving, one of the participants’ 

tasks would be automatically suspended and 

unsuspended depending on measured workload levels. 

Similarly, Yuksel et al. [32] demonstrated closed-

loop adaptation of educational material. The pacing of 

the learning process was adjusted dynamically in real 

time in order to sustain the student’s performance, based 

on a measure of workload. 

In a gaming context, [33] applied the concept of 

closed-loop adaptation to Tetris, adjusting the game’s 

speed in order to maintain a level of optimal 

engagement. 

These examples show how closed-loop feedback 

mechanisms can increase interactivity and human-

computer synergy. The system’s adaptations enable it to 

respond purposefully, as well evaluate the effect of each 

adaptation, such that the system obtains a qualitative 

participation in the ongoing interaction. The system not 

merely adapts to given input, but influences the next 

input and with that, its next adaptation. The implicit 

input is now part of a more interactive implicit dialogue 

between a user and the system. 

Closed-loop systems go beyond open-loop systems 

by influencing the next interaction cycle. They can thus 

have a continuous, dynamic effect on their users and the 

interaction as a whole. The logic of a single closed loop, 

however, is still a limited one, usually reflecting the 

limited amount of input gathered by the system. 

Coupling adaptation directly to a limited range of input 

necessarily limits the range of the adaptation. By 
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distancing the adaptation itself from the input, a further 

step can be made beyond closed-loop systems towards 

increased interactivity, discussed next. 

 

AUTOMATED ADAPTATION 

 

Purely closed-loop systems are restricted by their 

respective loops in that the adaptations directly follow 

the input signal. In case of input derived from 

neurophysiological signals, such as EEG, its bandwidth 

and dimensionality are generally limited. It gives insight 

into momentary mental states, but not into likely causes, 

or appropriate responses. The adaptive systems 

mentioned thus far are embedded in fixed, known 

contexts. As such, it is reasonable to assume that, for 

example, an increase in workload is caused by the task 

demands of that same environment, and can be 

counterbalanced by increased automation. These 

interactive functions however are constrained by this 

logic that is predetermined by known contexts. 

In this next category, the adaptive logic itself is 

adaptive, such that a system can support its user across 

different and changing contexts. To that end, the system 

needs access to context information as well as the user’s 

mental state. By collating and co-registering these, the 

system can learn its user’s behaviour and responses in 

different scenarios. Based on that, it can then decide 

how and at what times to give support. Automatically 

adaptive systems apply mental state assessment 

alongside other methods of information gathering in 

order to build a model to represent aspects of the user’s 

cognitive or affective responses. This model then serves 

as a basis for the system’s own autonomous behaviour. 

Zander et al. [7, 23] detected error- and 

satisfaction-related brain activity not in order to 

immediately correct perceived errors, but to learn, over 

time, the user’s preferences. To that end, the system 

exhibited different behaviours and registered which 

system actions led to negative evoked responses and 

which led to positive ones, depending on the given 

context.   

Specifically, this approach was applied to two-

dimensional cursor control. The system moved to the 

cursor autonomously, whilst registering the evoked 

responses to the movements in different directions. 

Over time, the system could learn the pattern behind 

these responses and as such, learned where the user 

wanted the cursor to go. Already during the learning 

process, the system adapted its behaviour to steer the 

cursor towards the suspected target. 

Iturrate et al. [34] demonstrated a similar principle 

using a robotic arm. Participants observed its 

movements whilst their error-related responses to 

certain movements were tracked and remembered. The 

robotic arm was guided based on the inferred 

information. 

In automated adaptation, the gathering of 

information is the primary system adaptation in lieu of 

direct actions, with action to follow only once the 

system autonomously determines it to be appropriate. 

The parameters of adaptation are learned automatically 

by the system itself. This increased autonomy also 

translates into increased interactivity, as the system 

learns to respond in different ways even to input that 

was given in the past, or not even given at all. 

 

DISCUSSION AND OUTLOOK 

 

We propose a categorisation of passive BCI-based 

neuroadaptive systems based on the behaviour of that 

system in terms of its interactivity.  

The category of mental state assessment systems 

represent a base category. These systems provide no 

interactivity, but by registering natural brain activity 

that is not influenced by the system itself, they lay the 

foundation for passive BCI and interactive 

neuroadaptive systems. 

The most basic way to implement interactivity is to 

enable open-loop adaptation, giving systems the ability 

to respond to given input in an open-loop fashion: 

simple input-output response logic connects a mental 

state to a specific action, with no further dependencies 

between them. 

In closed-loop adaptation, the system’s output 

influences its upcoming input. The system now 

purposefully attempts to influence the user’s mental 

state. Interactivity is increased as the system’s actions 

do not merely inform, but purposefully act upon the 

user and thus influence the interaction as a whole.  

Automated adaptation, finally, refers to the 

category of systems that learn to adapt and act 

autonomously based on (implicit) information gathered 

previously. Increased interactivity is due to the system’s 

increased autonomy with respect to its adaptations and 

adaptive strategies. 

 

These three adaptive behaviours are, of course, not 

mutually exclusive. An automated adaptation system 

might predict what a user intends to do and execute that 

action in advance, but then, in an open-loop fashion, 

undo the action when it is detected that the prediction 

was in error.  

Note also that whether the above error-correction 

example should be considered open-loop or closed-loop 

depends on the exact state that is being targeted. Error 

perception, as a transient state in the form of e.g. an 

error-related potential, cannot always or necessarily be 

used as such in closed-loop systems. A more persistent 

state, perhaps reflecting general dissatisfaction (initially 

caused by the error), however, can be influenced in a 

closed loop. 

It is important in general that researchers and 

designers pay close attention to exactly define the user 

state they are targeting. This categorisation also helps in 

formalising that. 

  

Four out of five future scenarios suggested in the BCI 

roadmap under the relevant categories fall into the 

open-loop adaptation category. The one remaining 

example of passive BCI systems in the BCI roadmap 
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uses closed-loop adaptation. 

We would thus encourage researchers to also look 

further afield. Human-computer synergy can only be 

achieved by close cooperation between the two agents. 

Human-human communication is a dynamic, 

continuous process, and hinges on a shared 

understanding of the world and informative as well as 

empathic models of the conversation partner [35]. 

Human-computer interaction can be improved by 

mirroring such processes: by dynamic, responsive 

adaptation, and by having the system learn 

autonomously how to optimise that behaviour. Passive 

BCI methodology in particular can help us attain such 

close human-computer cooperation, as it can give 

systems access to an individually calibrated, real-time 

source of subjective and personally relevant information 

concerning the user.  

A formalisation of passive BCI-based 

neuroadaptive systems helps identify and pinpoint 

relevant human-computer interaction aspects during the 

design and development of such systems, and aids the 

design of and discourse about future neuroadaptive 

technology. 
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