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ABSTRACT: Eye movements and their contribution to
electroencephalographic (EEG) recordings as ocular arti-
facts (OAs) are well studied. Yet their existence is typi-
cally regarded as impeding analysis. A widely accepted
bypass is artifact avoidance. OA processing is often re-
duced to rejecting contaminated data. To overcome loss
of data and restriction of behavior, research groups have
proposed various correction methods. State of the art ap-
proaches are data driven and typically require OAs to be
uncorrelated with brain activity. This does not necessarily
hold for visuomotor tasks. To prevent correlated signals,
we examined a two block approach. In a first block, sub-
jects performed saccades and blinks, according to a vi-
sually guided paradigm. We then fitted 5 artifact removal
algorithms to this data. To test their stationarity regarding
artifact attenuation and preservation of brain activity, we
recorded a second block one hour later. We found that
saccades and blinks could still be attenuated to chance
level, while brain activity during rest trials could be re-
tained.

INTRODUCTION

In the last two decades extensive research on the neural
encoding of upper limb movement kinematics has been
carried out [1]. Experiments on kinematics decoding typ-
ically comprise visuomotor (VM) tasks [2–4]. Such tasks
inherently involve visual feedback e.g. the distance be-
tween a target and an end-effector. Naturally, subjects
would foveate between or track objects of interest [5].
This is typically avoided in laboratory conditions by in-
structing subjects to fixate their gaze to an arbitrary fixa-
tion point and reduce blinking to a minimum [2, 3, 6].
We want to emphasize that solely removing frontal chan-
nels from the analysis, while allowing eye movements is
not sufficient to attenuate ocular artifacts (OAs) [4]. Cen-
tral and parietal channels would nonetheless exhibit high
correlations with saccade directions [7].
If the protocol allows saccades and blinks, literature typ-
ically separates between three independent types of ar-
tifacts [7, 8]. (1) Corneo-retinal dipole (CRD) artifacts
cause signal changes that depend on eyeball rotation size
and direction [7]. (2) Eyelid artifacts emerge from blinks,
eyelid saccades and post-saccadic eyelid movements [7].
They elicit a large potential and are generated by the eye-
lid, whose displacement changes the impedance between

positively charged cornea and extraocular skin [8]. (3)
The saccadic spike potential (SP) is most prominent on
periorbital electrodes and believed to result from contrac-
tion of extra-ocular muscles [8].
In future, we plan to apply the methods developed here on
decoding kinematics from continuous visuomotor tasks.
Previous studies consistently reported significant decod-
ing information in low frequency components (<2 Hz)
[2, 3, 6, 9]. We therefore focus on CRD and eyelid move-
ments, since SP artifacts emerge in a frequency range
>20Hz [8].
An alternative strategy to OA avoidance is correction.
Literature provides numerous offline correction methods.
For a recent review see [10]. Most common methods are
either source estimation [7, 11, 12] or regression based
[13] or a hybrid variant [14]. They all assume a linear
mixing model:

x(t) = As(t) = A(b)s(b)(t) + A(a)s(a)(t) (1)

with the scalp recordings x(t) at time t being a mixture of
sources s(t). The mixing matrix A is unknown. It can be
separated into mixing coefficients A(b) for brain sources
s(b)(t) and A(a) for artifact sources s(a)(t).
Cortical control of an end-effector requires online re-
moval of OAs. One approach is to use adaptive algo-
rithms to iteratively estimate A(b) [14]. An advantage is
that they can track changes of mixing coefficients due to
i.e. a changing electrode scalp interface. However, they
assume uncorrelated brain activity and artifacts [10]. This
does not necessarily hold true for VM tasks. An alterna-
tive correction approach proposed in [13] is to use a block
based experimental design. In the first block subjects
perform voluntary eye artifacts. Thereupon a correction
model is learned and applied online in the main block,
during which subjects perform the actual task. Here time
invariant mixing coefficients are assumed. Consequently,
artifacts and brain activity can be correlated during the
actual experiment. If the correlated brain activity con-
tributes negligibly to the estimated eye artifact signals,
only the artifact fraction is removed.
To our knowledge literature lacks a thorough compari-
son of how the previously listed correction approaches
perform on the described block design. We selected five
representatives and assessed their artifact correction per-
formance on held out data. The algorithms are briefly
outlined in the remainder of this section.
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EYE-REG: A regression based algorithm originally
proposed for block design [13]. It requires designated
EOG channels to compute vertical and horizontal esti-
mates of eye artifact source signal ŝ(a)(t). The model,
defined in equation 1, can be rewritten as

x(t) = A(a)s(a)(t) + n(t) (2)

with the brain activity considered as noise n(t). The au-
thors used the least squares solution to calculate an esti-
mate Â(a). The cleaned channels xc(t) are then:

xc(t) = x(t)− Â(a)ŝ(a)(t) (3)

If the empiric estimates Â(a) and ŝ(a) are close to the
unknowns, we can recover the brain activity by inserting
equation 2 in 3:

xc(t) = A(a)s(a)(t) + n(t)− Â(a)ŝ(a)(t) ≈ n(t) (4)

MARA1: Multiple Artifact Rejection Algorithm
(MARA) is an independent component analysis (ICA)
based algorithm [12]. ICA is used to estimate an unmix-
ing matrix V that transforms equation 1 into:

ŝ(t) = Vx(t) = VAs(t) ≈ s(t) (5)

and recovers independent components (ICs) ŝ(t). MARA
then applies a plug-and-play classifier to identify artifac-
tual ICs and rejects them [12].

EYE-EEG1: Here, artifactual ICs are rejected based on
a variance ratio metric [7]. An IC’s variance is computed
during designated saccade and fixation periods2. If their
ratio exceeds a threshold, the IC is rejected. In [7] an eye
tracker was employed to detect saccades and fixations.

REGICA1: Regression-ICA is a hybrid method [14].
The authors showed that artifactual ICs carry more ocular
and less brain activity than scalp channels. Hence, they
proposed to apply regression to artifactual ICs only.

EYE-SUB1: Artifact subspace subtraction is another
approach to correct equation 1 for eye artifacts. Instead of
using fixed linear combinations of EOG channels, like for
regression, an artifact unmixing matrix V(a) is computed.
It recovers an estimate of the eye artifact signals ŝ(a)(t):

ŝ(a)(t) = V(a)x(t) (6)

In combination with an estimated artifact mixing matrix
Â(a) equation 3 transforms to:

xc(t) = x(t)− Â(a)ŝ(a)(t) = (I− Â(a)V(a))x(t) (7)

The columns of Â(a) are computed by finding the sub-
space which is maximally different between two condi-
tions e.g. up vs. down saccades [11].

1We used the publicly available eeg-lab extension. Available online:
https://sccn.ucsd.edu/wiki/EEGLAB_Extensions

2Fixations are defined as periods during which no eye movements
happen [7].

MATERIALS AND METHODS

Participants: Five persons, aged 23.6±3.9 years, par-
ticipated in this study. Three of them were female. All
subjects had corrected to normal vision. They had al-
ready participated at least once in an EEG experiment
before. All signed an informed consent after they were
instructed about purpose and procedure of the study. The
experimental procedure conformed to the declaration of
Helsinki and was approved by the local ethics committee.

Stimulus Presentation: Subjects were seated in a
shielded room at 1.4m distance to a computer screen
(NEC Multisync 27” IPS TFT, 60Hz refresh rate, FullHD
resolution). Stimuli were restricted to a square of 0.32 m
x 0.32 m around the center of the screen (∼13° x 13° vi-
sual angle).

Data Acquisition: EEG and EOG were recorded with
a 64 channel ActiCap system connected to a BrainAmp
amplifier. It sampled the data at a rate of 1 kHz and ap-
plied a first order highpass filter with a cutoff frequency
of 0.016 Hz. 58 electrodes were placed at frontal, central,
parietal and occipital sites according to the extended 10-
20 system. The remaining 6 electrodes were placed on
the outer canthi, infra and superior orbital to the left and
right eye respectively. Ground and reference were placed
on AFz and the right mastoid, respectively.

Experimental Procedure: The paradigm is illus-
trated in Figure 1. It defines four conditions. REST:
subjects were instructed to fixate a blue sphere for 10 s.
HORZ/VERT: the sphere moved on a continuous hori-
zontal/vertical trajectory. Subjects were directed to ac-
curately follow it with their gaze. BLINK: The sphere’s
vertical diameter shrunk 8 times for 0.5 s instructing sub-
jects to blink once each time.
We decided to implement a visually guided paradigm to
have control over saccades and blinks. It simplifies split-
ting the data into corresponding epochs. An eye tracker,
originally required by EYE-EEG, was not necessary ei-
ther. Figure 5 (right) illustrates the accordance of the
stimulus with subject behavior (EOG derivatives).
The recording time was divided into 3 blocks. The first
and last followed the presented paradigm. Both consisted
of 27 trials (9 REST, 6 HORZ, 6 VERT and 6 BLINK).
The choice of 27 trials and their partition was motivated
by the requirements of the algorithms. Recordings of the
middle block, lasting roughly 60 minutes, followed a dif-
ferent paradigm and will be published elsewhere.

Preprocessing: The EEG data was first downsam-
pled to 250 Hz. To attenuate 50 Hz line noise, a 2nd order
Butterworth bandstop filter was applied. Slow drifts were
removed by a zero-phase 4th order Butterworth highpass
filter with 0.4 Hz cutoff frequency.
We visually inspected the data for bad channels and
flagged 1 to 3 channels across subjects. They were spher-
ically interpolated. We then extracted epochs of 7 s start-
ing 1 s after cue presentation and rejected 1.7±1.2 trials
per block by visual inspection.
Three of the five algorithms, that we compare, process
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Figure 1: Experimental task. (left) The visual stimuli consisted of a 3D grid and a sphere, located in the center of the screen. Every trial
started with a break lasting 2 to 3 seconds (uniformly distributed). Thereupon the sphere color changed to blue. After 1 s a condition
dependent pattern was presented for 10 s. (right) First 5 s of the condition dependent patterns (blue). REST: the sphere remained in the
center of the screen. HORZ: it moved along the horizontal plane according to a windowed sinusoid with a frequency of 0.5 Hz. VERT:
the same movement but along the vertical plane. BLINK: the vertical diameter of the sphere changed, instructing the subject to blink.
Additionally horizontal, vertical and radial EOG derivatives for selected trials of subject 1 are plotted (black).

the data in IC space. Before computing ICA we applied
principal component analysis (PCA) on the 64 EEG/EOG
channels and retained components explaining 99.9% of
the variance. We then applied the extended Infomax al-
gorithm to compute the unmixing matrix V of equation 5.
The regression based algorithms require EOG compo-
nents as artifact sources ŝ(a)(t). The horizontal EOG
(HEOG) derivative was computed as the difference be-
tween right and left outer canthi, vertical EOG left/right
(VEOGL/R) as the difference between left/right superior
and inferior electrode, and the radial EOG (REOG) com-
ponent as the average of all six EOG electrodes.

Fixation, saccade and blink detection: EYE-EEG
required separating the data into fixation and saccade
periods. Since we asked subjects to avoid eye move-
ments during REST condition, we used REST trials as
fixation periods. For saccade detection the HEOG and
VEOG3 component were first lowpass filtered (zero-
phase Butterworth, 2nd order, 20 Hz cutoff frequency).
Horizontal/vertical saccade periods were extracted from
HORZ/VERT condition trials if the absolute value of
the H/VEOG component was above 10 µV for at least
200 ms. The sign was also used to split the data into
left/right and up/down saccades.
Blink detection is also based on the lowpass filtered
VEOG component. Samples during BLINK trials were
set to be blink related if the VEOG amplitude was above
200 µV. The limits of these periods were expanded by
75 ms to include blink on- and offset.

3VEOG is the arithmetic mean of VEOGR and VEOGL.

EYE-REG: In [13] the authors argue to omit the REOG
component, since it also captures considerable brain ac-
tivity. We, therefore, used only HEOG and VEOGL/R as
predictor variables for multiple linear regression.

EYE-SUB: First, penalized logistic regression (PLR)
[11] with a regularization factor of 10−3 was applied to
compute four artifact source signals ŝ(a)(t) (4x1) that
have a maximum magnitude difference between either
left/right, up/down, blink/up or blink/down conditions.
Similar to the regression approach, given ŝ(a)(t), Â(a)

(64x4) can be computed by the pseudo inverse. The rest
data was used to estimate a noise covariance matrix Rn

(64x64). Considering Rn, the unmixing matrix V(a)

(4x64) can be calculated by the regularized weighted
least squares solution [11]:

V(a) =
(
Â(a)TRnÂ(a) + Λ

)−1

Â(a)TRn (8)

with Λ = λI and regularization factor λ = 10−4.
EYE-EEG: Similar to the original paper we set the

threshold for the variance ratio to 1.1 [7].
REGICA: Precomputed ICs were flagged using the

correlation between each IC and HEOG, VEOG with a
threshold of 0.2. Multiple linear regression was applied
to flagged ICs only. We used H/V/REOG as predictor
variables.

Evaluation: All algorithms were fitted to the first block
of data i.e. computation of ICA, regression weights and
fitting of hyper parameters. The second block was solely
employed for testing.
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To assess artifact attenuation, we computed absolute val-
ues of Pearson correlation coefficients |r| between EOG
derivatives and each EEG channel. HEOG was used
for HORZ, VEOG for VERT and blink periods during
BLINK condition, respectively. Bootstrapping was ap-
plied to estimate chance level for |r|. Thus, we first
merged the test trials of all subjects. We then randomly
sampled 5 trials4 of e.g. HORZ condition and computed
|r| with EEG channels of 5 random REST trials. The
shuffling was repeated 5000 times for each condition.
This yielded a 95%-quantile of 0.11 in every of the three
conditions.
Preservation of neural activity was assessed twofold.
Firstly, through computing the root mean squared error
(RMSE) between cleaned xc and uncleaned x signals
during REST condition trials [14].

RMSE(k) =

√√√√ 1

Ns

Ns∑
n

(x[k, n]− xc[k, n])2 (9)

with k being the channel index and Ns the total number
of samples in the test set.
Secondly, by computing the ratio between power spectral
density of cleaned (Pxxc) and uncleaned (Pxx) signals

Pxxratio(k, f) =
Pxxc(k, f)

Pxx(k, f)
(10)

for each EEG channel k and frequency bin f [13]. We
applied Welch’s method to estimate the power spectral
density for each trial and averaged across a subject’s test
trials.

RESULTS

Figure 2 depicts grand average topoplots of the 58 EEG
channels after correction. The plots summarize mean test
set performance for each metric and algorithm. The first
row represents the uncorrected EEG. We observed typical
eye artifact patterns for HORZ, VERT and BLINK con-
ditions. Table 1 complements Figure 2. It lists mean and
standard deviation across subjects for frontal, central and
parietal channel groups.
Regarding the RMSE during REST, all algorithms ex-
hibit a gradient from pre-frontal to occipital regions.
MARA and EYE-EEG removed most activity, whereas
EYE-REG and EYE-SUB achieve lowest RMSE across
channel groups.
Figure 2 and Table 1 also summarize the absolute corre-
lation |r| between EEG channels and EOG derivatives af-
ter correction. One can clearly see that MARA could not
identify ICs related to horizontal and vertical eye move-
ments. This results in correlation values of up to 0.28
for frontal regions, which are clearly above the estimated
chance level (0.11). The topoplots of the other algorithms
show consistent attenuation of horizontal eye movements
over scalp regions. Concerning vertical eye movements,

4Average number of trials in a subject’s test set after rejection.

Figure 2: Topoplots (58 EEG channels) summarizing the
average test set performance of the algorithms across sub-
jects. (left) RMSE between corrected and uncorrected sig-
nal during REST condition, (right) absolute correlation |r|
with HEOG/VEOG/VEOG during HORZ/VERT/BLINK con-
ditions.

EYE-SUB, EYE-EEG and REGICA could attenuate the
correlation to similar levels as for horizontal ones. We
also found that EYE-SUB and REGICA could attenuate
blinks to chance level for frontal/central and parietal re-
gions.
For visualization purposes, subsequent Figures show only
the four algorithms that could attenuate artifact correla-
tions to chance level, namely, EYE-REG, EYE-SUB, EYE-
EEG and REGICA.
To estimate their performance decrease, we calculated
group level means for train and test set. Figure 3 dis-
plays them for the average EEG channel. The barplots
indicate mean and 95%-confidence interval for each con-
dition and its associated metric. Non-overlapping train
and test set confidence intervals, indicate a significant
difference. The absolute correlation |r| increased signifi-
cantly for EYE-SUB (HORZ) and EYE-EEG (HORZ and
BLINK).
The power spectral density ratio Pxxratio between cor-
rected and uncorrected EEG revealed further differences
across algorithms. Group level mean and its 95%-
confidence interval are depicted in Figure 4 for frontal,
central and parietal regions. EYE-SUB had its mean clos-
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Table 1: Group level summary of performance metrics for
frontal, central and parietal channel groups on the test set. Mean
and standard deviation across subjects are stated per metric. The
lowest value per metric and channel group is highlighted.

Condition REST HORZ VERT BLINK
Metric RMSE |r| |r| |r|
Unit µV - - -

Frontal (F3, Fz, F4)
EYE-REG 1.8±0.5 0.06±0.04 0.11±0.07 0.19±0.15
EYE-SUB 1.4±0.1 0.08±0.03 0.06±0.04 0.11±0.08
MARA 3.1±1.0 0.12±0.13 0.28±0.25 0.23±0.08
EYE-EEG 2.3±0.4 0.06±0.02 0.06±0.05 0.15±0.09
REGICA 2.0±0.2 0.07±0.02 0.07±0.04 0.10±0.04

Central (C3, Cz, C4)
EYE-REG 1.0±0.4 0.06±0.04 0.10±0.04 0.16±0.10
EYE-SUB 1.1±0.4 0.07±0.05 0.06±0.04 0.08±0.05
MARA 2.5±1.0 0.10±0.13 0.24±0.22 0.14±0.09
EYE-EEG 2.2±0.9 0.05±0.02 0.05±0.02 0.12±0.07
REGICA 1.3±0.3 0.05±0.03 0.04±0.03 0.08±0.04

Parietal (P3, Pz, P4)
EYE-REG 0.7±0.2 0.07±0.04 0.12±0.06 0.12±0.06
EYE-SUB 1.0±0.4 0.06±0.04 0.07±0.04 0.10±0.08
MARA 2.2±1.0 0.10±0.13 0.20±0.21 0.12±0.03
EYE-EEG 2.1±0.8 0.04±0.02 0.06±0.04 0.10±0.08
REGICA 1.2±0.4 0.05±0.02 0.04±0.03 0.09±0.03

Figure 3: Algorithm performance on the average EEG channel
for train (dashed) and test (solid) set. Mean and 95%-confidence
interval across subjects are plotted for RMSE (left) and absolute
correlation |r| (right). Significant differences between train and
test set are marked by *.

est to an ideal ratio of 1 and least variability of the mean
across frequencies. EYE-EEG showed similar behavior
for frontal, but larger attenuation in delta/theta frequency
bands for central and parietal areas. EYE-REG resulted in
largest mean attenuation in frontal areas, closely followed
by REGICA. This improved considerably for central and
posterior areas. We could also observe a larger variance
of REGICA for the beta frequency band. It peaked in
frontal channels.

DISCUSSION

In this work we compared five ocular artifact (OA) re-
moval algorithms with regard to their applicability in a
two step block design. We first trained the algorithms
on a 5 min block of recordings. We then assessed their

Figure 4: Mean and 95%-confidence interval of the group level
power spectral density ratio Pxxratio for frontal (F3/z/4), cen-
tral (C3/z/4) and parietal (P3/z/4) channels during REST condi-
tion. An ideal algorithm would yield a ratio of 1 for all frequen-
cies.

OA removal quality on a test block recorded 60 minutes
later. This approach implies a constant mixing matrix
A(a) for artifact sources. Our results, mainly Table 1 and
Figure 3, give evidence that it is a reasonable assumption.
We found that correlations for saccades and blinks could
be attenuated to chance level, even 60 minutes after train-
ing. We emphasize that the difference between train and
test set, displayed in Figure 3, captures not only the dif-
ference in time but also whether the data was used for
parameter estimation. Therefore, we can not rule out if a
significant difference was due to changing scalp projec-
tions or over-fitting on the train data.
As already pointed out in the introduction, allowing eye
movements while only removing frontal channels is in-
sufficient. Average correlations of up to 0.5 for uncor-
rected central and parietal channels (Figure 2) demon-
strate the necessity for correction.
Regarding the algorithms, MARA, which did not rely
on any label information, achieved lowest performance.
While EYE-SUB, which required most information (an-
notated saccade and blink events), could attenuate ar-
tifacts to chance level and maintain low RMSE dur-
ing REST condition. REGICA and EYE-EEG showed a
tendency to achieve better attenuation for saccades and
blinks in central and posterior areas but also to remove
more brain activity.
The visually guided paradigm allowed us to control arti-
fact occurrence. This simplified an automated annotation
of artifact types (e.g. up/down saccades). In general, all
algorithms tested here can be applied online. After arti-
fact rejection and model calibration, which takes around
5 minutes, the correction process itself involves only ma-
trix multiplications.
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Figure 5: Representative examples in time domain for 2 s windows of selected trials. Displayed are 11 channels before (black) and after
correction with EYE-SUB (red).

CONCLUSION

Based on the average performance on the test set, we
found that MARA is not suitable for the investigated block
design. Our results indicate, that artifact subspace sub-
traction (EYE-SUB) could achieve the best trade-off be-
tween attenuating eye artifacts and maintaining rest brain
activity. Figure 5 depicts the difference between cor-
rected and uncorrected EEG for representative trials and
channels.
To complement our findings, we plan to analyze the effect
on a kinematics decoder. This is a necessary step, since a
significant performance drop was reported for a linear de-
coder after correction for OAs [6]. This demonstrates that
eye artifacts were correlated with the dependent variables
(x/y/z velocities). Our block design accounts for such a
scenario, which encourages further research in this direc-
tion.
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