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ABSTRACT: This work presents the recoveriX system, 

a hardware and software platform specially designed for 

stroke rehabilitation, as well as the preliminary results of 

testing it within clinical environment. Three patients with 

motor impairments due to stroke participated to the 

current study. In every session, the patients had to 

imagine 120 left and 120 right hand movements. The 

electroencephalogram (EEG) data was analyzed with 

Common Spatial Patterns (CSP) and linear discriminant 

analysis (LDA). The feedback was provided in form of 

an extending bar on the screen. During the trials where 

the correct imagination was classified, the FES was 

activated to move the corresponding hand. All patients 

were able to achieve high accuracies, even above 95% in 

at least one session, and all exhibited improvements in 

motor function. These first results showed that the stroke 

patients can control the motor-imagery BCI system with 

high accuracy and reflect the efficacy of combining 

movement imagination, the bar feedback and the real 

hand movements. 

 

INTRODUCTION 

 
Motor imagery-based brain-computer interface (BCI) 

have been used to assist people with motor disabilities 

since many years. The BCI systems extract commands in 

real-time, commands which can be used to control 

cursors or external devices like robots or 

neurostimulators. In the last few years, the control of 

functional electrical stimulation (FES) devices, termed as 

neurostimulators, became very interesting for post-stroke 

rehabilitation. A patient can use the movement imagery 

to induce real-time movements of specific limb 

segments. 

In the last decade, a new field of application for motor 

imagery (MI) –based BCI proved to be of great interest. 

Many publications provide evidence that using MI-based 

BCIs can induce neural plasticity and thus serve as an 

important tool to enhance the rehabilitation outcome in 

stroke patients [1-4]. In here, MI is used to introduce 

closed-loop feedback within conventional motor 

rehabilitation therapy. This approach pairs each user’s 

MI with stimulation and feedback, such as activation of 

a FES stimulator, avatar movement, and/or auditory 

feedback indicating successful task completion [5]. 

FES is a rapidly developing technology having the 

potential to restore the body motor functions. For 

example, FES has been used to restore hand grasp and 

release in people with tetraplegia [6] and standing and 

stepping in people with paraplegia [7]. The feasibility of 

integrating a non-invasive BCI system with a FES device 

eliciting foot dorsiflexion by means of surface electrode 

over the tibial anterior muscle has been investigated in 

[8]. Five healthy subjects performed 10 trials of idling 

and repetitive foot dorsiflexion to trigger BCI-FES 

controlled dorsiflexion of the contralateral foot. The 

epochs of BCI-FES controlled foot dorsiflexion were 

highly correlated with those of voluntary foot 

dorsiflexion (correlation coefficient between 0.59 and 

0.77) with latencies ranging from 1.4 s to 3.1s. The 

classification of the mental states was based on a linear 

Bayesian classifier. Moreover, all subjects managed to 

achieve a 100% BCI-FES response (no omissions), and 

one subject had a single false alarm. 

Daly et al. [9] tested a combined BCI and FES system on 

a patient presenting stroke-related dyscoordination of 

isolated index finger joint extension of the metacarpal 

phalangeal joint. The experiment took into account trials 

in which the user attempted to move a finger and alternate 

that with relaxation, as well as trials in which the finger 

movement has been imagined.  The BCI2000 software 

has been used to process the recorded EEG signals. In the 

first session the patient exhibited highly accurate control 

of brain signal for attempted movement (97%), imagined 

movement (83%), and some difficulties with attempted 

relaxation (65%). During the session number six, control 

of relaxation improved to more than 80%. In three weeks 

time, meaning a total of nine sessions, it has been 

concluded that the patient’s volitional isolated index 

finger extension has been improved. 

In [10], Rüdiger Rupp and colleagues made an overview 

of neuroprosthesis for the upper extremity in individuals 

with spinal cord injury and its control with noninvasive 

BCIs.  

In this paper we introduce the recoveriX system, a 

complete new hardware and software platform that can 

record, analyze and utilize EEG activity in real time to 

“close the loop” in stroke rehabilitation. Fig. 1 presents a 

schematic illustration of the conceptual approach used in  
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Figure 1: The schematic view of the recoveriX system. 

 

recoveriX. The user imagines or performs specific 

movements, such as wrist dorsiflexion. The resulting 

EEG activity is detected through electrodes positioned in 

an electrode cap, then sent to an amplifier. 

After the signals are amplified and digitalized, they are 

sent to a computer which manages the data analysis and 

presentation of feedback. Like in conventional therapy, 

the recoveriX users are instructed to perform motor 

imagery and receive feedback (specifically, visual 

feedback on a monitor and through FES stimulation). 

Unlike conventional therapy, RecoveriX users also wear 

an EEG cap that monitors MI that influences the 

feedback. The key element is the real-time connection 

between brain activity and feedback. recoveriX provides 

feedback only when the user correctly imagines the left 

or right hands movement. Thus, unlike conventional 

therapy, the feedback is always paired with the brain 

activity.  

This paper presents further details about our system, 

experimental procedures, results from three patients 

clinical trials, and future research directions. Many of our 

future research directions will be addressed within the 

new RecoveriX project, an SME Instrument active from 

2016-2018.  

 
MATERALS AND METHODS 

 
     Subjects: Three patients participated in this study, as 

all of them experienced a sylvian ischemic stroke. 

Subject 1 is a 61 years old woman, right-handed, who 

suffered a stroke that left her with difficulties in moving 

the right hand. One month after the stroke, she 

participated in 24 recoveriX training sessions. Subject 2 

(male, 69 years, right handed) joined our study 4 months 

after suffering a stroke. At that time, he was not able to 

perform any kind of movements with the right hand 

fingers. He performed 22 training sessions with our 

system. Due to personal problems, patient P2 had to leave 

the hospital 2 days earlier than planned, therefore missing 

the last 2 training sessions. The third subject (male, 64 

years, right handed) joined our study three months after 

the stroke and performed 24 training sessions with 

recoveriX. At the time he started the training, he was able 

to perform only some limited movements with the left 

arm.   

All three patients were recorded in an open room at the 

Rehabilitation Hospital of Iasi. The patients were not 

placed in an anechoic chamber to reduce noise that might 

affect the EEG, and none of the equipment was placed in 

a shielded area. During the period the patients attended 

the recoveriX training session, they performed also 

conventional rehabilitation therapy consisting of passive 

movements helped by a physiotherapist.  

Data acquisition and experimental paradigm: the EEG 

data were recorded using a g.HIamp device (g.tec 

medical engineering GmbH, Austria) with a sampling 

frequency of 256 Hz and digitally filtered with a 0.5-

30Hz 8th order bandpass Butterworth filter. The electrode 

cap had 45 active electrodes (g.LADYbird, g.tec medical 

engineering GmbH, Austria) arranged according to the 

10-20 International System. Fig. 2 shows the recoveriX 

system mounted on a patient (left) and the electrode 

displacement on the scalp (right). The data classification 

was done using common spatial patterns (CSP) and a 

linear discriminant analysis (LDA) classifier. The study 

was approved by the institutional review board of the 

Rehabilitation Hospital of Iasi, the ethical approval has 

been granted, and all patients signed an informed consent 

before the start of the study.  
The patients were seated in a comfortable chair in front 

of a computer monitor that presented cues and feedback 

(see Fig.2) with FES pads positioned over the forearm of 

each upper limbs to induce wrist extension and fingers 

opening. The FES stimulation was provided through an 

8-channel neurostimulator (MOTIONSTIM8, 

Krauth+Timmermann GmbH, Germany). For all 

patients, the first session was a training session, where 

each subject got trained regarding the correct motor 

imagery taks (in all three cases, hand opening), and then 

conducted two practice runs for getting familiar with the 

experience of electrical stimulation and visual feedback. 

During all subsequent sessions, after setting up the 

system, each patient performed six runs each lasting 

about 6 minutes. Each run contained 40 8-seconds trials 

with a randomly chosen inter-trial time interval between 

1 to 2 seconds. Each MI trial started with the display of a 

cross in the center of the monitor. After 2 seconds, a beep 

informed the user about the upcoming cue. The patients 

were instructed to start imagining the movement of either 

left or right hand when an arrow pointing to the left or 

right side was presented as a cue. After the cue 

dissapearance, the users began to receive visual and 

proprioceptive feedback.  The visual feedback consisted 

of a blue bar starting in the center of the monitor and 

exending to the rignt or left side, according to the 

classified MI. The patients had to continue imagining the 

hand opening and closing movements for 4 seconds after 

the cue, until the visual feedback presentation ended. The 

neurostimulator induced the fingers and wrist extension 

of the coresponding hand only if the classified MI was 

the one dictated by the cue.  

Motor assessment: we assessed the motor improvement 

for patients 1 and 3 using the 9-hole PEG test. In this 

game, the user has to fill 9 holes of a wooden board with 
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Figure 2: The recoveriX system mounted on a patient 

(left) and the EEG electrode positions over the scalp 

(right). 

 

Figure 3. The time course of a single trial. 

 

sticks placed on the table, and then to put the sticks back 

on the table one by one. The test has to be performed for 

both hands and the time for accomplishing the task and 

the number of dropped sticks are counted, representing 

the score for that evaluation. 

The muscle contraction by FES was sufficient enough to 

cause movement of the affected hand for all patients. 

The feedback period lasted four seconds. The time course 

of a single trial is presented in Fig. 3. 

Feature extraction and classification: The CSP method 

is very well known for discrimination of two motor 

imagery tasks [11] and was firstly used for extracting 

abnormal components from clinical EEG [12]. By 

applying the simultaneous diagonalization of two 

covariance matrices, one is able to construct new time 

series that maximize the variance for one task, while 

minimizing it for the other one. 

Considering N channels of EEG for each right and left 

trial X, the CSP method outputs an N x N projection 

matrix. This resulting matrix reflects the subject specific 

activation patterns of the data during motor imagery of 

left or right hand in this study. The decomposition of a 

trial can be written as: 

Z=W∙X    (1) 

This transformation projects the variance of X onto the 

rows of Z and results in N new time series. The columns 

of W-1 are a set of CSPs and can be considered as time-

invariant EEG source distributions. 

Due to the definition of W, the variance for a left 

movement imagination is largest in the first row of Z and 

decreases with the increasing number of the subsequent 

rows. The opposite is the case for a trial with right motor 

imagery. For classification of the left and right trials, the 

variances have to be extracted as reliable features of the 

newly designed N time series. However, it is not 

necessary to calculate the variances of all N time series. 

The method provides a dimensionality reduction of the 

EEG. Mueller-Gerking and colleagues [13] showed that 

the optimal number of common spatial patterns is four. 

Following their results, after building the projection 

matrix W from an artifact corrected training set X, only 

the first and last two rows (p=4) of W are used to process  

new input data X. Then the variance (VARp) of the 

resulting four time series is calculated for a time window 

T. After normalizing and log-transforming four feature 

vectors are obtained (2). These four features are used as 

input for a linear discriminant analysis (Fisher’s LDA 

[14]) classifier which categorizes the MI as left-hand or 

right-hand movement. 
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Using the training data recorded during runs 1 to 4, 5 sets 

of spatial filters and classifiers were calculated from two 

seconds time windows shifted in time with a 0.5 seconds 

Hamming window based on the data from the time 

interval from 4 to 8 seconds in each trial. The classifier 

with the highest ten-fold cross validated accuracy [15] 

was chosen to provide the visual and FES feedback while 

recording runs 5 and 6. These last two runs were used to 

calculate the online accuracy of the chosen classifier for 

the current session. The classifier calculated in the 

previous session was used to provide the feedback while 

recording the first 4 runs. 

 

RESULTS 

 

Figure 4 presents the BCI control accuracy for all three 

patients based on the online results. All three patients 

started with accuracies above 80%. Patient P1 reached an 

average accuracy of 90.5% over all sessions, while 

patient P2 reached 85.4% and patient P3 87.1%. Each 

patient attained accuracy above 96.2% in at least one 

session. There are sessions were the accuracies were low 

for all patients. These lower scores are highly correlated 

with each patient’s degree of tiredness, emotional state or 

other health conditions during that day. Patient 1 reported 

that she could not sleep during the night before the 

session 16, when she achieved the lowest accuracy. 

Patient 2 got a cold and coughed a lot during sessions 15 

and 16.  

Table 1 presents the score of the 9-hole PEG test for 

patients P1 and P3, for the paretic and for the healthy 

hand. For patient P1, the evaluation was performed 

before starting the first recoveriX training session and the 

results were considered as baseline for the subsequent 

evaluations, which were done once at each 3 sessions of 

training. P3 patient’s condition didn’t allowed him to 

perform the 9-hole PEG test before and during the first 6 
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Figure 4. The online accuracy plots of the three patients across the training sessions with the recoveriX system. 

 

 
 

Figure 5. The snapshots with the moves that patient P2 was able to do after 22 sessions of training with recoveriX. 
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Table 1: The results of the 9-hole PEG test for patients 

P1 and P3 

Sessions 

Time [s] / dropped PEGs 

Paretic hand Healthy hand 

P1 P3 P1 P3 

0 65 / - - 31 / - - 

3 54 / - - 32 / - - 

6 45 / - - 32 / - - 

9 42 / - 90 / 1 31 / - 26 / - 

12 42 / - 77 / - 31 / - 26 / - 

15 38 / - 94 / - 29 / - 26 / - 

18 34 / - 60 / - 29 / - 25 / - 

21 30 / - 61 / - 29 / - 25 / - 

24 30 / - 52 / - 29 / - 26 / - 

Time 

improve-

ment [sec] 

35 38 2 0 

 

training sessions. After 9 sessions of training, the motor 

functions of his left hand improved, and he was able 

perform the test for the first time. In his case, the results 

of the evaluation after the 9th session were considered as 

baselines for the next evaluations. 

The last line of Tab.1 presents the time improvements of 

each hand for patients 1 and 3. Both patients improved 

the time exercise of the paretic hands with 35 seconds, 

respectively 38 seconds, and the time exercise for the 

healthy hands remained relatively constant. After the last 

training session, P1 managed to perform the test with the 

paretic hand in 30 seconds, almost the same time as with 

the healthy hand.  

Patient 2 could not perform the 9-hole PEG test during 

the study. He started to move the thumb after the 12th 

session, and during the last sessions of training he started 

to perform small range voluntary movements also with 

the other fingers. Fig. 5 presents two snapshots taken 

while patient 2 performed voluntary movements with his 

right hand after the last session of training. 

 

DISCUSSION 

 

Results discussion: Before starting this study, we 

supposed that patients will have difficulties in achieving 

high accuracies. These first results showed the opposite. 

This may occur because these patients are highly 

motivated to participate in a study to improve their motor 

functions. All patients reported that they were eager to 

come back for further recoveriX sessions especially after 

they seen the first functional improvements. The high 

accuracy, coupled with rewarding feedback, also 

motivated the patients to perform the motor imagery 

effectively. In addition to motivating patients, the blue 

bar feedback is important to maintain patients’ attention. 

A feedback is also provided by the FES system that 

actively moves the hand as long as the person imagines 

the movement. This activates tactile and proprioceptive 

systems that feed back to the sensorimotor system. The 

BCI system is able to manage this feedback, and the CSP 

and LDA algorithms can adapt to changes in each user’s 

brain activity. Even though motor improvements were 

reported after the last training session for all three 

patients, in this early stage of the study we do not exclude 

the possibility that the motor improvements were due 

spontaneous remission or due to concomitant 

physiotherapy. This crucial point will be better discussed 

after testing the system on a higher group of patients and 

the results compared with the ones of a control group, as 

planned. Anyway, even though a control group is missing 

the feedback from the clinicians has been a positive one 

and according to their experience dealing with patients in 

the same condition, the recoveriX system has certain 

potential to induce voluntary hand movement in stroke 

patients.  

Future research directions: This paper validates the 

recoveriX approach from a technical perspective by 

demonstrating that, at least with the three patients using 

the prototype system presented here, our system can 

function in real-world settings. Up to now we found that 

the participants to our study had sometimes difficulties 

with the bar feedback when the classification was 

incorrect, because it was hard to associate the 

corresponding movement with the feedback. Therefore, 

one of our future development directions involve 

improved immersive software to present feedback and 

maximize the patients’ engagement by replacing the 

graphically simple feedback with more advanced 

environments such as different views of an avatar whose 

movements attempt to mimic the movements that the 

user imagines [16]. At the beginning of each trial, the left 

or right hand moves for 1 second, which triggers the 

patient to start the corresponding movement imagery. 

When the BCI system correctly classifies the activity, 

then the avatar hand movement is prolonged and the FES 

is triggered. When the classification is wrong, then the 

avatar and the FES are temporarily inactive. Apart of the 

avatar feedback, we are also exploring improved 

hardware. In this work the experiments were performed 

using 45 channels wired electrode cap with gel 

electrodes. Recently, we developed a wireless version of 

the system using only 16 gel electrodes overlying over 

the motor areas. The new amplifier is lightweight (only 

70 grams), placed on the back side of the electrode cap 

 

 
 

Figure 6. The experimental setup with avatar feedback 

and FES. 
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and transmits wireless, in real time, the recorded data to 

the laptop/PC.  

The FES device will be replaced by our new g.Estim 

neurostimulator developed mainly for BCI applications. 

Fig. 6 illustrates the future setup of the system, using the 

avatar, wireless EEG cap and the new neurostimulator. 
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